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Drought tolerance is a complex trait that involves numerous genes. Identifying key
causal genes or linked molecular markers can facilitate the fast development of drought
tolerant varieties. Using a whole-genome resequencing approach, we sequenced 132
chickpea varieties and advanced breeding lines and found more than 144,000 single
nucleotide polymorphisms (SNPs). We measured 13 yield and yield-related traits in
three drought-prone environments of Western Australia. The genotypic effects were
significant for all traits, and many traits showed highly significant correlations, ranging
from 0.83 between grain yield and biomass to −0.67 between seed weight and seed
emergence rate. To identify candidate genes, the SNP and trait data were incorporated
into the SUPER genome-wide association study (GWAS) model, a modified version
of the linear mixed model. We found that several SNPs from auxin-related genes,
including auxin efflux carrier protein (PIN3), p-glycoprotein, and nodulin MtN21/EamA-
like transporter, were significantly associated with yield and yield-related traits under
drought-prone environments. We identified four genetic regions containing SNPs
significantly associated with several different traits, which was an indication of pleiotropic
effects. We also investigated the possibility of incorporating the GWAS results into
a genomic selection (GS) model, which is another approach to deal with complex
traits. Compared to using all SNPs, application of the GS model using subsets of
SNPs significantly associated with the traits under investigation increased the prediction
accuracies of three yield and yield-related traits by more than twofold. This has important
implication for implementing GS in plant breeding programs.

Keywords: drought tolerance, genome-wide association mapping, genomic selection, chickpea, whole-genome
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INTRODUCTION

Chickpea (Cicer arietinum L.) is ranked second after soybean in
terms of global legume production, reaching∼13 million tons in
2014 (FAOSTAT 2017). Consisting of 25% of the total exports
worldwide, Australia was the second-largest producer and the
largest exporter of chickpea in 2014 (FAOSTAT 2017). Chickpea
is an important component of the farming system in Australia,
serving as a disease break crop and nitrogen fixer (Knights et al.,
2009; Siddique et al., 2013). Chickpea seed is a rich source of
protein, essential minerals, and dietary fiber (Bar-El Dadon et al.,
2017).

Drought is one of the most important constraints limiting
yield potential in cereal and legume crops. Significant differences
in terms of drought tolerance, measured by yield reduction,
were observed among legume species in a meta-analysis of over
100 studies with chickpea ranking seventh among 13 legume
species (Daryanto et al., 2015). There are generally two types
of drought: transient drought and terminal drought. Transient
drought is a short-term water deficit that can be relieved by
precipitation and can occur at any stages of the growing season.
Terminal drought is an unrelieved water deficit that terminates
the reproductive growth of the plant. Terminal drought is very
common in semi-arid tropics (South Asia, north-east Australia)
and Mediterranean-type climates such as southern Australia.
More than 80% of the world chickpea production is located in
South Asia and north-east Australia. Australia has experienced
severe drought events from the late 1990s to mid 2000s known
as “the Millennium drought.” As a consequence, the total
production of irrigated rice and cotton fell by 99 and 84% during
2002 and 2009, respectively (van Dijk et al., 2013).

With current climate change projections, extremely hot
weather will become more frequent and rainfall will be more
erratic in Australia and other regions of the world (Hennesy et al.,
2010; Foyer et al., 2016). The reproductive stage of growth is
usually the most critical phase influencing grain yield in crops.
It is well documented that drought stress during pod filling
can lead to pod abortion thus reducing the number of seeds
per plant (Leport et al., 1999; Fang et al., 2010; Pang et al.,
2017). In a glasshouse experiment, seed yield declined by 85% in
chickpea plants exposed to terminal drought at the early podding
stage, relative to well-watered plants (Pang et al., 2017). There
is an urgent need to develop chickpea varieties that are drought
resilient.

Chickpea has a relatively small genome size of 730 Mb,
compared to other food legumes such as lentil (Lens culinaris L.)
and faba bean (Vicia faba L.). Thanks to the advance of next-
generation sequencing (NGS) technology and a relatively small
genome size, chickpea has well-developed genomic resources.
Chickpea reference genomes for kabuli, desi, and wild Cicer
species are available and there are ongoing efforts to improve
the assemblies and annotation of the genomes (Jain et al., 2013;
Varshney et al., 2013; Ruperao et al., 2014; Parween et al., 2015;
Gupta et al., 2017). Whole-genome resequencing (WGRS) has
emerged as one of the best methods for genome-wide association
studies (GWAS) due to its potential to discover a large amount
of sequence variants [single nucleotide polymorphisms (SNPs),

Indel, CNV] in a cost effective manner. A recent study using
this method narrowed down a major QTL for ascochyta blight
resistance in chickpea (Li et al., 2017). Using WGRS data, several
genomic regions were identified under positive selection for
plasticity for yield, nitrogen fixation, and δ13C in chickpea under
drought and/or heat conditions in the field (Sadras et al., 2016).

To identify QTL/genes associated with drought tolerance in
chickpea, different forward-genetic approaches using various
molecular markers have been used. A recent study using
bi-parental mapping population (ILC588 × ILC 3279) and
sparse simple sequence repeat (SSR) markers, identified 15
and 93 QTL associated with different drought-related traits
(Rehman et al., 2011; Hamwieh et al., 2013). However, the
resulting large QTL intervals have limited practical application
in breeding. A “QTL-hotspot” region on chromosome 4 was
identified using traditional QTL analysis with SSR and GBS
(genotyping-by-sequencing) markers (Varshney et al., 2014b;
Jaganathan et al., 2015). This region was further fine mapped
to a ∼300 kb region, which contains 26 genes using a QTL
bin-mapping approach and gene enrichment analysis by adding
more SNPs (Kale et al., 2015). The authors also tested 12
genes for differential gene-expression profiling using real-time
PCR. Under drought condition, several genes had higher gene-
expression levels in the resistant line than in susceptible
lines, including E3 ubiquitin ligase, serine/threonine protein
kinases, and homocysteine S-methyltransferase. Another study,
employing the GWAS approach, discovered over 200 markers
associated with drought-related traits using SSR, DArT, and SNP
markers (Thudi et al., 2014). The results, albeit needing further
validation, are promising for marker-assisted selection. However,
the development of these molecular markers is labor-intensive
and not cost-effective.

One of the challenges of marker-assisted selection is how to
pyramid numerous markers with small effect size, particularly for
complex traits such as yield under drought environments (Collins
et al., 2008). As such, genomic selection (GS), also known as
genome-wide selection, was proposed as an alternative method
for marker-assisted selection for complex traits (Meuwissen et al.,
2001). GS uses information from all of the markers to estimate
the breeding value of plants, thus eliminating the complicated
pyramiding process in marker-assisted selection. This approach is
more relevant to breeding programs as it can help select the best
parents for crossing and reduce the cost and time of a standard
breeding cycle; thus it has been adopted rapidly by many livestock
and crop breeding programs (Hayes et al., 2009a; Meuwissen
and Goddard, 2010; Crossa et al., 2014). Traditionally, animal
scientists estimated breeding values by best linear unbiased
prediction (BLUP) using the additive-genetic relationship matrix
obtained from pedigree information (Henderson, 1975). Thanks
to advances in genotyping and NGS technology, a large amount
of molecular markers can be obtained at a relatively low cost
(Davey et al., 2011; Elshire et al., 2011; Poland and Rife,
2012). The genomic estimated breeding values can be estimated
more accurately using the ridge regression BLUP (RR-BLUP)
model which replaces the pedigree matrix (A matrix) with
the genomic relationship matrix (G matrix), which is obtained
from genome-wide markers (VanRaden, 2008; Hayes et al.,
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2009b). A simulation study in barley showed that GS was better
than phenotypic selection when the traits had low heritability
and the training population was large enough. Ziyomo and
Bernardo (2013) demonstrated in a real experiment that GS
is superior to indirect phenotypic selection using secondary
traits for improving drought tolerance of maize. However, a
recent GS study in chickpea showed that prediction accuracies
of yield under rainfed environments were much lower than
under irrigated environments (Roorkiwal et al., 2016). A similar
observation was reported in synthetic wheat, posing a challenge
to improving drought tolerance using GS (Jafarzadeh et al.,
2016). A new method is needed to increase prediction accuracy,
particularly when applied to drought-stressed environments. The
objectives of this study were to: (1) identify candidate genes/SNPs
significantly associated with yield and yield-related traits under
drought stressed environments using GWAS approaches; and
(2) investigate whether incorporation of the GWAS result can
increase prediction accuracy.

MATERIALS AND METHODS

Plant Materials and Field Experiments
Plant materials included 13 Australian released varieties and
119 Australian and Indian-derived breeding lines, which were
selected for yield potential and adaptation to drought-prone
environments. The field experiments are described in detail by
Pang et al. (2017). Briefly, chickpea accessions were planted in
plots (6 × 1.5 m) in Western Australia at one site in 2012
and two sites in 2013. There were three replicates for each site.
Rainfall at the three sites during the growing seasons ranged
from 196 to 230 mm, and no irrigation was supplied. Twelve
traits were measured: grain yield per ha (GY), hundred seed
weight (100SW), seed number per plant (SN), empty pod ratio
(EPR), harvest index (HI), biomass dry weight (DW), flowering
time score (FT), podding time score (PT), maturity score (MA),
emergence score (EM), early vigor score (EV), and plant height
(PH). Five plants per plot were randomly cut at ground level to
measure SN, EPR, HI, and DW. Scores for FT, PT, MA, EM, and
EV were on a 1–9 scale.

Phenotypic Analysis
The three sites were first analyzed separately for each trait by
fitting a linear mixed model (LMM), which included spatial
effects (row and column effects). The resulting best linear
unbiased estimator (BLUE) values for each genotype were used
to fit a multiple-environment LMM in which environments were
treated as random effects. Statistical significance of fixed and
random effects were assessed using Wald’s test (Wald, 1943) and
the likelihood ratio test, respectively (Van Belle et al., 2004).
The resulting BLUE values were subsequently used for GWAS
analysis. Broad-sense heritability (h2) was estimated using the
following formula:

ĥ
2
= σ̂ 2

g /(σ̂ 2
g +σ̂ 2

ge /t+σ̂ 2
e /rt)

where σ̂ 2
g , σ̂ 2

ge, and σ̂ 2
e denote genotypic variance,

genotype × environment interaction variance, and experimental
error variance, respectively. t and r are the numbers of
environments and replications within an environment,
respectively. All phenotypic analysis was done using GenStat,
16th edition.

WGRS and SNP Discovery
DNA of the 132 genotypes was extracted from young leaf
tissues using the Qiagen DNeasy Plant Mini Kit following the
manufacturer’s instruction. Paired-end sequencing libraries were
constructed using the TruSeq library kit for each genotype
with an insert size of 500 bp. The procedure was implemented
according to the Illumina manufacturer’s instruction. Paired-end
short reads (150 bp) were generated using the Illumina HiSeq
2000 platform. Sequence data is available from the NCBI Short
Read Archive under BioProject accession PRJNA375953. Paired-
end reads for each genotype were trimmed, filtered, and mapped
to the kabuli reference genome 2.6.31 using SOAP2. Homozygous
SNPs were called using the SGSautoSNP pipeline (Lorenc et al.,
2012).

Population Structure and Linkage
Disequilibrium
To correct for confounding effects in the association studies,
population structure was estimated based on 144,777 SNPs
(MAF > 0.05) using ADMIXTURE (v1.23) software (Alexander
and Lange, 2011). Similar to the popular software STRUCTURE,
ADMIXTURE uses a model-based algorithm to estimate the
ancestry of unrelated individuals. The number of underlying
population groups (K) was estimated from 1 to 10 using the
maximum likelihood estimation approach with a fast numerical
optimization algorithm. Cross-validation method of Alexander
and Lange (2011) was used to determine the most likely number
of population group (K). Linkage disequilibrium (LD) was
measured by the parameter r2 using SNPs with high confidence
(minimum five reads per genotype). An r2

= 0.2 was used as a
threshold to determine LD extent. The method to estimate the
LD-decay curve under the mutation-drift-equilibrium model was
described in detail in Li et al. (2011).

Genome-Wide Association Mapping
Genome-wide association analysis was done using BLUE values
of the 132 genotypes with 12 traits and 144,777 SNPs
(MAF > 0.05). Adjusting the confounding effects of population
structure and kinship, the SUPER GWAS method, implemented
in the GAPIT software, was used to estimate each SNP effect
(Lipka et al., 2012; Tang et al., 2016). This method can increase
statistical power by estimating kinship matrix with a subset of
markers which are not in LD with the testing marker (Wang et al.,
2014). The kinship matrix was estimated using the VanRaden
method and later compressed to its optimum groups using the
P3D method to speed up computation time. Default parameters
of the SUPER model were used: sangwich.top = “MLM,”

1http://www.cicer.info/databases.php
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sangwich.bottom = “SUPER,” LD = 0.1. The significant p-value
cut-off was set as p = 3.45e-07, equivalent to the α level of
0.05 after Bonferroni correction. The two genes flanking the
significant SNP are reported.

Genomic Selection
Genomic predictions were performed using three different
models: RR-BLUP, Bayesian least absolute shrinkage and
selection operator (Bayesian LASSO or BL), and Bayesian ridge
regression (BRR). The RR-BLUP model is written as:

y = µ1n + Zg + e, e ∼ N(0, Iσ2), ,

where y is the adjusted entry means of phenotypes, µ is the overall
mean, 1n denotes n × 1 vector of 1s, Z is an incident matrix for
random genotype effect, and g is genotype effect with normal
distribution N (0, Gσ2

g), where G is the genomic relationship
matrix obtained from markers (VanRaden, 2008). The markers
included all 147,777 markers or a subset of markers selected based
on different levels of p-value from GWAS.

The general structure of the two Bayesian linear regressions
BL and BRR can be written as,

p(µ,βββ, σ2
|yyy,θθθ),

the posterior probability of unknown parameters includes overall
mean µ, marker effect β, and its variance σ2, given the data y
and hyperparameters θθθ. Estimates of these unknown parameters
are obtained by solving the optimization problem and adding a
penalty function to βββ. For BRR, the same Gaussian prior was
assigned to βββ, resulting in the same shrinkage for all markers.
For BL, a Bayesian version of the least absolute shrinkage and
selection operation (Tibshirani, 1996) was introduced in the
penalty function of βββ, resulting in greater shrinkage of markers
with small effects and less shrinkage of markers with large effects.
BL has a special feature of both variables selection and shrinkage,
whereas BRR only shrinks variables. The detailed similarities and
differences between genomic prediction models are reviewed by
de Los Campos et al. (2013). The R package synbreed was used to
fit the three models (Wimmer et al., 2012).

A fivefold cross-validation was performed to evaluate the
prediction performance of the three models. The whole dataset
was randomly divided into five mutually exclusive subsets, four
of which formed the training set for fitting the model and
the fifth was used as a test set. This process was repeated
ten times, resulting in 50 cross-validations. Predictive abilities
were calculated as Pearson’s correlation coefficient between the
predicted values and observed phenotypic values of the test set.
An average predictive ability of 50 cross-validations was reported.

RESULTS

Yield and Yield-Related Traits
In total, 12 traits including phenology, yield, and yield
components were measured. Multiple-environment linear
mixed-models were fitted to obtain BLUE values for each
genotype (Table 1 and Supplementary Figure S1). The genotypic

effect of SN was significant at an alpha level of 0.05 while the
other 11 traits were highly significant at an alpha level of 0.001
(Table 1). Heritabilities (h2) of the 12 traits ranged from 0.11
for GY to 0.91 for 100SW. Many traits showed highly significant
correlations, ranging from 0.83 between GY and DW to −0.67
between 100SW and EM (Table 2). GY was positively correlated
with 100SW, SN, DW, FT, PT, EM, EV and negatively correlated
with EPR, MA, and PH. 100SW was positively correlated with
FT, DW, MA and negatively correlated with SN, PT, and EM. GY
has a highly positive correlation with DW (r= 0.83), which is not
surprising, given that a strong and healthy plant with sufficient
biomass is advantageous under drought to retain yield (Hamwieh
et al., 2013; Kashiwagi et al., 2013). PT and MA were negatively
correlated (−0.64), which appears counterintuitive. Due to the
low temperatures in early spring in Australian environments,
some genotypes originating from India with an early podding
trait, aborted their early onset pods which is reflected in the
negative correlation between PT and EPR (i.e., the earlier the
podding time, the higher the EPR). This supports the observation
that chickpea plants need to set pods within a fairly narrow
window to optimize yield in Australian environment.

SNP, Linkage Disequilibrium, and
Population Structure
A total of 144,777 homozygous SNPs were discovered in 132
genotypes (Table 3). The number of SNPs on each chromosome
ranged from 25,323 on Ca4 to 4,740 on Ca8, partially reflecting
the length of the chromosomes in the Kabuli 2.6.3 reference
assembly. The extent of LD on each chromosome ranged from
4,000 kb on Ca3 to 150 kb on Ca6 with an average of 700 kb
(Table 3 and Supplementary Figure S2). The average extent of
LD is almost seven times smaller than a previous study, in which
mainly Australian-released chickpea varieties were used (Li et al.,
2017). The short extent of LD in the 132 genotypes has the
potential to enable higher mapping resolution. To avoid false
positive results in association analysis, the population structure
was investigated using 144,777 SNPs (Figure 1). The most likely
number of groups (K) in the 132 genotypes was estimated to
be two using a cross-validation method from the ADMIXTURE
software. The red group in Figure 1 is mainly the DICC lines
(selected from ICRISAT breeding lines) consisting of progenies
from the crosses of ICCV98503 × Moti, ICCV96836 × PBG5,
ICCV96836× ICC12004, and ICCV96836× ICC3996. The green
group in Figure 1 consists of Australian-released varieties and
advanced lines. Genotypes with a mixture of red and green have
mixed ancestry from ICRISAT, ICARDA, and Australia.

Genome-Wide Association Mapping
In total, 38 SNPs were significantly (p < 3.45e-07) associated
with six traits: GY, 100SW, EPR, PT, EM, and EV (Supplementary
Table S1 and Figures 2, 3). One SNP, located in Ca3: 18,924,965,
was significantly associated with GY (Figure 2). The closest
gene near this SNP encodes a protein belonging to the ABC
transporter B family/p-glycoprotein (PGP). Nine SNPs, located
on Ca3, Ca4, Ca5, and Ca6, were significantly associated with
100SW (Supplementary Table S1 and Figure 2). Candidate
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TABLE 1 | BLUE values (minimum–maximum), genotypic effect, and heritabilities (h2) of 12 traits obtained from a multi-environment LMM.

Traits No. of
genotypes

Mean Minimum Maximum Wald’s test for
genotypic effect

H2

GY (kg) 132 1027.11 623.19 1264.75 p < 0.001 0.11

100SW (g) 132 20.00 15.00 37.61 p < 0.001 0.91

SN 93 21.96 11.91 32.28 p = 0.015 0.32

EPR 59 0.31 0.14 0.46 p < 0.001 0.52

HI 93 0.38 0.28 0.46 p < 0.001 0.51

DW (g) 93 9.81 6.14 18.02 p < 0.001 0.49

FT 132 5.36 1.98 9.56 p < 0.001 0.70

PT 132 5.31 0.55 9.27 p < 0.001 0.72

MA 132 5.97 4.61 10.04 p < 0.001 0.25

EM 132 7.95 5.68 8.88 p < 0.001 0.49

EV 132 6.13 3.65 7.93 p < 0.001 0.65

PH (cm) 62 53.62 42.88 61.84 p < 0.001 0.64

GY, grain yield per ha; 100SW, hundred seed weight; SN, seed number per plant; EPR, empty pod ratio; HI, harvest index; DW, biomass dry weight; FT, flowering time
score; PT, podding time score; MA, maturity score; EM, seed-emergence score; EV, early vigor score; PH, plant height.

TABLE 2 | Correlation matrix of the 12 traits.

GY 100SW SN EPR HI DW FT PT MA EM EV PH

GY −

100SW 0.45∗∗∗ −

SN 0.47∗∗∗ −0.36∗∗ −

EPR −0.37∗∗ −0.12 −0.22 −

HI 0.13 −0.27∗ 0.56∗∗∗ 0.02 −

DW 0.83∗∗∗ 0.67∗∗∗ 0.15 −0.33∗ −0.35∗∗ −

FT −0.43∗∗∗ 0.42∗∗∗ −0.14 −0.55∗∗∗ −0.28∗ 0.43∗∗∗ −

PT 0.58∗∗∗ −0.42∗∗∗ 0.27∗ 0.58∗∗∗ 0.41∗∗ −0.40∗∗ −0.65∗∗∗ −

MA −0.53∗∗∗ 0.70∗∗∗ −0.17 −0.35∗∗ −0.47∗∗∗ 0.73∗∗∗ 0.54∗∗∗ −0.64∗∗∗ −

EM 0.42∗∗∗ −0.67∗∗∗ 0.20 0.25 0.27∗ −0.59∗∗∗ −0.29∗ 0.38∗∗ −0.59∗∗∗ −

EV 0.29∗ −0.20 −0.03 0.65∗∗∗ 0.03 −0.29∗ −0.60∗∗∗ 0.55∗∗∗ −0.37∗∗ 0.25 −

PH −0.22 0.25 −0.56∗∗∗ 0.18 −0.58∗∗∗ 0.08 0.11 −0.10 0.28∗ −0.27∗ 0.25 −

GY, grain yield; 100SW, hundred seed weight; SN, seed number; EPR, empty pod ratio; HI, harvest index; DW, biomass dry weight; FT, flowering time score; PT, podding
time score; MA, maturity score; EM, emergence score; EV, early vigor score; PH, plant height. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

TABLE 3 | Summary of LD and SNPs used to estimate LD.

Chromosome No. of SNPs Density of SNPs
(No. of

SNPs/10 kb)

No. of SNPs used
to estimate LD1

Mean r2 LD extent (kb)

Ca1 20,837 4.25 2,979 0.06 400

Ca2 11,181 3.01 2,826 0.03 200

Ca3 19,487 2.92 1,674 0.15 4,000

Ca4 25,323 4.30 7,106 0.02 200

Ca5 18,313 2.64 1,428 0.07 200

Ca6 15,620 2.37 2,469 0.05 150

Ca7 13,272 2.36 2,070 0.03 200

Ca8 4,740 2.38 933 0.06 200

Unassembled contigs 16,004 3.25 NA NA NA

Total/average 144,777 21,485 0.06 700

1SNPs with high confidence (minimum five reads per genotype).
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FIGURE 1 | Population structure diagrams of the 132 genotypes. Results of
population structure are shown when the numbers of estimated clusters is
k = 2. The vertical bar is partitioned into red and green segments that
represent the genotype’s estimated membership fractions.

genes located near these SNPs include two sugar transporters,
two nodulin MtN21/EamA-like transporters, one Lateral Organ
Boundaries (LOB) domain protein and several uncharacterized
genes.

There were five SNPs significantly associated with PT,
including two SNPs on Ca1, one SNP on Ca3, and two SNPs
on Ca4 (Supplementary Table S1 and Figure 3). One was
located on Ca4: 35,589,599 near a gene encoding a major latex
protein (MLP), which promotes vegetative growth and delays
flowering in Arabidopsis (Guo et al., 2011). Another significant
SNP was located on Ca3: 38,173,722 close to a transcriptional
factor squamosa promoter-binding-like protein 9 (SPL9). It was
shown that SPL9 and SPL15 act redundantly in promoting the

FIGURE 2 | Manhattan plots showing GWAS results of grain yield (GY), seed
number (SN), empty pod ratio (EPR), and early vigor score (EV). Each dot
represents a SNP. The x-axis is the physical position of the SNP.
Chromosomes are numbered from 1 to 8 while 9 represents all unassembled
contigs. The red line is a significant threshold of p-value = 3.47e-07, equal to
a level of 0.05 after Bonferroni correction. The blue line is a suggestive
threshold of p-value = 1.0e-04. Regions containing SNPs significantly
associated with different traits are highlighted with red rectangles.

juvenile-to-adult phase transition in Arabidopsis (Schwarz et al.,
2008).

There were 12 SNPs significantly associated with MA,
including one SNP on Ca2, three SNPs on Ca4, six SNPs on Ca5,
and two SNPs on Ca6 (Supplementary Table S1 and Figure 3).
One of the significant SNPs was located on Ca5: 11,580,061,
near the nodulin MtN21/EamA-like transporter which has been
shown to be involved in auxin homoeostasis (Ranocha et al.,
2013). Another significant SNP was located on Ca5: 12,166,907,
near a sugar transporter gene with an important role in plant
growth (Wobus and Weber, 1999). Six SNPs were significantly
associated with EM, including one SNP on Ca3, three SNPs
on Ca4, and two SNP on Ca5 (Supplementary Table S1 and
Figure 3). One of the significant SNPs (Ca4: 35,589,599) was
located near a gene encoding MLP, which promotes vegetative
growth in Arabidopsis as described above (Guo et al., 2011).
Two SNPs were significantly associated with EV (Supplementary
Table S1 and Figure 2). One of the significant SNPs (Ca3:
38,177,160) was located near a gene encoding the transcriptional
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factor SPL9. It has been shown that SPL9 regulates leaf initiation
negatively in Arabidopsis, leading to a shorter leaf plastochron,
which is the time interval between two successive events of
plant growth (Schwarz et al., 2008). There were no SNPs
significantly (p < 3.45e-07) associated with SN, HI, DW, FT,
or PH. This could be attributed to the lack of statistical power
due to the small sample size (62–93 genotypes) employed in this
study.

Some regions contain SNPs significantly associated with
several different traits, which is an indication of a pleiotropic
effect (Figures 2, 3). For example, a genomic region of ∼274 kb
on Ca3 (18,924,965 to 21,660,191) contains a SNP significantly
associated with GY and two SNPs weakly (p-value = 1.59e-06
and 4.49e-05) associated with SN. A ∼437 kb genomic region on
Ca4 (35,589,599 to 36,026,910) contains eight SNPs, significantly
associated with four traits: EM, maturity, PT, and 100SW. Four
auxin-related genes, encoding one auxin efflux carrier protein
(PIN3) and three nodulin MtN21/EamA-like transporters, are
located in this region on Ca4. Another ∼587 kb genomic
region on Ca5 (11,580,061 to 12,166,907) contains two SNPs,
which were significantly associated with 100SW and MA. Five
auxin-related genes, including one auxin influx transporter
(LAX3) and four nodulin MtN21/EamA-like transporters, are
located in this region. Two SNPs, significantly associated with
both 100SW and maturity, were located in a 197 kb region
on Ca6 (39,200,356 to 39,397,897) which contains two sugar
transporters.

Genomic Prediction
Prediction accuracies for GY, 100SW, SN, and EV were
estimated using RR-BLUP and different subsets of the SNPs
based on p-values from GWAS results. Prediction accuracies
increased when subsets of the SNPs based on a more
stringent level of p-value were used (Figure 4). The increments
plateaued in all four traits using subsets of SNPs with
p-values between 0.05 and 0.01 and dropped dramatically at
p-values of 3.45e-07 (equal to 0.05 after Bonferroni correction).
The lowest prediction accuracies in three traits occurred
when using all SNPs, which was probably due to noise
introduced by non-causal variants as RR-BLUP shrikes each
marker effect equally (de Los Campos et al., 2013). We also
used BL and BRR to estimate prediction accuracies using
subsets of SNPs. The results were similar to the RR-BLUP
model.

DISCUSSION

Previous effort on breeding drought-tolerant chickpea has
concentrated on accelerating flowering to escape terminal
drought (Upadhyaya et al., 2012). This study showed that
some India-derived genotypes with early podding trait aborted
early onset pods in the Australian environments due to low
temperatures in early spring. This suggests that it may be more
relevant to focus on breeding for drought tolerance per se
under Australia environments, traits such as water-use efficiency
(Zaman-Allah et al., 2011; Kashiwagi et al., 2013), beneficial

FIGURE 3 | Manhattan plots showing GWAS results of hundred seed weight
(100SW), maturity score (MA), emergence score (EM), and podding time score
(PT). Each dot represents an SNP. The x-axis is the physical position of the
SNP. Chromosomes are numbered from 1 to 8 while 9 represents all
unassembled contigs. The red line is a significant threshold
of p-value = 3.47e-07, equal to a level of 0.05 after Bonferroni correction.
Regions containing SNPs significantly associated with different traits are
highlighted with red rectangles.

root traits (Zaman-Allah et al., 2011), stomatal conductance
(Rehman et al., 2011), and osmotic adjustment (Morgan et al.,
1991). As pointed out by Berger et al. (2016), the selection
pressure for drought escape and drought tolerance per se is
very different. Excessive use of the drought escape mechanism
can compromise yield potential due to shorter life cycles to
accumulate water and light resources. Thus a new breeding
strategy is warranted, such as the integrated framework proposed
by Berger et al. (2016).

Auxin-Related Genes and Sugar
Transporters Play an Important Role in
Yield-Related Traits under
Drought-Prone Environments
Several auxin-related genes, including PIN3, ABC transporter
B family/PGP, and nodulin MtN21/EamA-like transporters,
were found to be near SNPs significantly associated with GY,
100SW, PT, EM, and MA. Auxin (primarily indole-3-acetic
acid) is a well-known phytohormone that plays a pivotal
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FIGURE 4 | Prediction accuracies for grain yield (GY), hundred seed weight (100SW), seed number (SN), and early vigor score (EV) using different subsets of SNPs
based on p-values from GWAS results.

role in plant growth, seed development, and abiotic stress
response (Zhao, 2010; Kazan, 2013; Locascio et al., 2014).
A recent review paper summarized how plants coordinate
auxin biosynthesis, transport, perception under osmotic stresses
induced be drought, salinity (Naser and Shani, 2016). Auxin
was found to enhance drought tolerance via the regulation of
root architecture, expression of abiotic stress genes (DREB2A
and DREB2B), ROS metabolism, and metabolic homeostasis
in Arabidopsis (Shi et al., 2014). PIN3, belonging to the
auxin efflux carrier protein family, have been characterized as
important regulators involved in plant growth, phototropic
response, and drought stress response (Ding et al., 2011;
Zhang et al., 2012, 2013). A study in rice showed that drought,
cold and heat stress affected the expression of genes involved
in auxin signaling and polar transport, such as the PIN
protein family (Du et al., 2013). Several studies have shown
that PGP is involved in auxin transport through the plasma
membrane and can stabilize the PIN protein family (Geisler
and Murphy, 2006; Blakeslee et al., 2007; Titapiwatanakun
et al., 2009; Zazimalova et al., 2010). Arabidopsis WAT1, a
homolog of the nodulin MtN21/EamA-like transporter, was
recently identified as a vacuolar auxin transporter required for
auxin homoeostasis, a process that maintains an endogenous
steady-state concentration of primary auxin (Ranocha et al.,
2013). Several sugar transporters were found to be near SNPs
significantly associated with 100SW and MA. Comprising
hexose and sucrose transport proteins, the sugar transporters are
members of the major facilitator superfamily. Sugar transporters
play a key role in plant growth, source–sink partitioning,
molecular signaling, and seed development, and are therefore
important for optimal plant development and crop yield
(Wobus and Weber, 1999; Wingenter et al., 2010; Doidy et al.,
2012).

Using a bi-parental QTL mapping population, a “QTL-
hotspot” region on Ca4 13,239,546 to 13,547,009 (based on
the kabuli reference genome v1.0) was associated with at least
seven traits including root traits, 100SW, PH, and days to
flowering (Varshney et al., 2014b; Jaganathan et al., 2015; Kale
et al., 2015). In this study, we did not identify SNPs from the
“QTL-hotspot” region significantly associated with any traits.
We identified a ∼437 kb genomic region on Ca4: 35,589,599
to 36,026,910 (Ca4: 37,933,355 to 38,412,853 based on the
kabuli reference genome v1.0) containing eight SNPs significantly
associated with four traits: EM, maturity, PT, and 100SW.
Different 100SW QTL were identified between the two studies,
which may be attributed to the different mapping populations
examined.

Confounding Effects of
Self-Incompatibility with Pod Abortion
under Drought
Three SNPs, located on Ca2, Ca3, and an unassembled contig,
were significantly associated with EPR (Supplementary Table S1
and Figure 2). The kinesin-4 and self-incompatibility (SI)
proteins were adjacent to two of the three significant SNPs.
The kinesin-4 family plays an important role in cell elongation
and has been shown to affect the length of siliques and seeds
produced per silique in Arabidopsis (Kong et al., 2015). The SI
protein (IPR010264) is highly homologous (with a total score
of 141 and E value of 2e-32 using NCBI blastn) to a Medicago
gene Medtr1g057250.1, which was well characterized in Papaver
rhoeas (Foote et al., 1994; Wilkins et al., 2014). SI is a mechanism
used by many flowering plants to prevent self-fertilization and
inbreeding depression. Pollen from SI plants, carrying the same
haplotype as the pistil, was rejected via the program cell death
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mechanism (Wilkins et al., 2014). Chickpea is generally a self-
pollinating crop with an outcrossing rate of less than 2% (Toker
et al., 2006); however, SI plants with empty pods yet viable
pollen were observed in an F2 segregating population from
a cross (H 82-5 × E100 ym) × Bhim with ∼22% of F2 SI
plants (Lather and Dahiya, 1992). Pod abortion has long been
thought to be introduced mainly by abiotic stress (Fang et al.,
2010; Pang et al., 2017). Our findings, however, indicated that
SI might have confounding effects with pod abortion under
drought.

Incorporating the Results of GWAS
Increased Prediction Accuracy
Prediction models, employing variable selection procedures
such as the LASSO, are considered to be better than RR-
BLUP theoretically because they remove non-causal variants
and variants not in LD with causal variants (Daetwyler et al.,
2010; Meuwissen and Goddard, 2010). However, Wimmer et al.
(2013) showed that LASSO failed to achieve its superiority
and thus suggested to “preselect markers according to biological
prior information.” Our study supports this assumption by
showing that prediction accuracies were significantly improved
using a subset of SNPs significantly (between p < 0.05 and
p < 0.01) associated with traits. Several computer simulation
studies (Meuwissen and Goddard, 2010; Ober et al., 2012)
speculated that using large amounts of markers from WGRS
may increase prediction accuracy, particularly in cases where
the training population is distantly related to the prediction
population. We argue that having more markers alone may
not help to increase prediction accuracy, but it may help
to identify the causal variants. If the prediction is done
subsequent to the identification of causal variants, then the
prediction may increase, as demonstrated in the current study,
and thus the advantage of employing WGRS in GS can be
realized.

Many studies have been published on the effect of marker
density on prediction accuracy (Lorenzana and Bernardo, 2009;
Vazquez et al., 2010; Weigel et al., 2010; Hoffstetter et al.,
2016). Most have selected markers randomly or based on equal
space and found that prediction accuracy increased when the
number of markers increased, but reached a plateau depending
on the extent of LD and the population size (Vazquez et al.,
2010). A few studies selected markers based on biological prior
information (Hoffstetter et al., 2016; Kooke et al., 2016; Spindel
et al., 2016). Compared to using all markers in the RR-BLUP
model, prediction accuracies doubled by using a subset of
markers with significant association with grain yield in wheat
(Hoffstetter et al., 2016). Another GS study in rice also showed
that prediction accuracies were 7.0%–29.8% higher based on
RR-BLUP with all markers and markers (selected from GWAS)
fitted as fixed effects compared to that based on RR-BLUP
with all markers alone (Spindel et al., 2016). Using different
models, a recent GS study in chickpea indicated that prediction
accuracies of yield under rainfed environments ranged from
0.148 to 0.186, which is similar (0.25) to this study using all
144,777 SNPs, but much smaller (0.56–0.61) than when using a
subset of SNPs significantly associated with yield. We speculate

that prediction accuracy may increase if an approach described
here is adopted.

Training population size is an important factor in GS. Several
studies have been conducted to investigate the optimum size
for a training population in plants. Generally, the accuracy of
estimated marker effects increases as the sample size increases
(Albrecht et al., 2011; Endelman et al., 2014). Compared to
other prediction models, one simulation study showed that RR-
BLUP is robust with a small training population size even as
low as n = 75, with diminishing benefits between n = 125
and n = 300 (Lorenz, 2013). Riedelsheimer and Melchinger
(2013) reached a similar observation and recommended to
allocate more resources to the selection candidates (prediction
set) instead of the training population when budget is fix.
Compared to a GS study in chickpea conducted by Roorkiwal
et al. (2016), the training population size in this study is
relatively small. Because the main objective of this study is
to test the prediction accuracy based on subsets of significant
SNPs. The result of this study should hold since the size of
the training population was the same in different subsets of
SNPs. For real breeding application, such as selecting candidate
genotypes without phenotypic data, larger training populations
should be used to increase prediction accuracy. Additionally, the
training population needs to be updated regularly to maintain
a close relationship with selection candidates (Neyhart et al.,
2017).

Grain yield is a complex trait controlled by numerous genes
with small effect. We found only one SNP significantly associated
with grain yield in this study, probably due to limited statistical
power to identify genes which underline complex traits. Even
if all yield-related genes could be identified using a larger
sample size, pyramiding favorable alleles from all genes into
a single genotype using traditional marker-assisted selection
or transgenic approaches would be extremely difficult. The
superiority of the GS approach is that it can use all marker
information simultaneously and thus circumvent the complex
process of pyramiding. That is not to say that GWAS and marker-
assisted selection do not have a place in molecular breeding;
for example these approaches are useful for targeting simple
traits (Mendelian traits) such as disease resistance (Varshney
et al., 2014a; Li et al., 2017). This study also shows that
incorporating the results of GWAS into the prediction model
can significantly increase prediction accuracy. However, this gain
of prediction accuracy is only examined in a cross-validation
scheme. Further study is needed to investigate whether this
result holds true when this approach is applied to selection
candidates.
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