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Drought stress has adverse effects on growth, water relations, photosynthesis and
yield of groundnut. WRKY transcription factors (TFs) are the plant-specific TFs which
regulate several down-stream stress-responsive genes and play an essential role in plant
biotic and abiotic stress responses. We found that WRKY3 gene is highly up-regulated
under drought stress conditions and therefore isolated a new WRKY3TF gene from a
drought-adapted horsegram (Macrotyloma uniflorum Lam. Verdc.). Conserved domain
studies revealed that protein encoded by this gene contains highly conserved regions
of two WRKY domains and two C2H2 zinc-finger motifs. The fusion protein localization
studies of transient MuWRKY3-YFP revealed its nuclear localization. Overexpression of
MuWRKY3 TF gene in groundnut (Arachis hypogaea L.) showed increased tolerance to
drought stress compared to wild-type (WT) plants. MuWRKY3 groundnut transgenics
displayed lesser and delayed wilting symptoms than WT plants after 10-days of drought
stress imposition. The transgenic groundnut plants expressing MuWRKY3 showed less
accumulation of malondialdehyde, hydrogen peroxide (H2O2), and superoxide anion
(O•−

2 ), accompanied by more free proline, total soluble sugar content, and activities
of antioxidant enzymes than WT plants under drought stress. Moreover, a series
of stress-related LEA, HSP, MIPS, APX, SOD, and CAT genes found up-regulated
in the transgenic groundnut plants. The study demonstrates that nuclear-localized
MuWRKY3 TF regulates the expression of stress-responsive genes and the activity of
ROS scavenging enzymes which results in improved drought tolerance in groundnut.
We conclude that MuWRKY3 may serve as a new putative candidate gene for the
improvement of stress resistance in plants.

Keywords: MuWRKY3 TF, drought stress tolerance, transgenic groundnut, stress-responsive genes, ROS,
antioxidative metabolism
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INTRODUCTION

The abiotic stresses such as drought, heat, salt, and cold are the
major causes for declined crop productivity worldwide. Combat
to the stress, plants have evolved a sophisticated physiological and
molecular networks. Drought is a severe environmental factor
that significantly restricts the plant growth and productivity
(Surendran et al., 2017). Drought stress causes changes in the
cell membrane, osmolytes accumulation, inhibit photosynthesis
traits, decrease biomass production and yield components in
crop plants. (Binott et al., 2017). At the molecular level, several
TFs like AP2/EREBP, NAC, WRKY, bZIP, MYB, and bHLH
play a vital role in regulating downstream genes to protect
plants from drought stress (Hennig, 2012). The WRKY TFs
are one of the predominant families of plant-specific regulatory
proteins in the plant kingdom and are known to participate
in biotic and abiotic stress responses (Rushton et al., 2010; Liu
et al., 2015; Sarris et al., 2015; Joshi et al., 2016). TFs play a
vital role in stress responses by interacting with specific cis-
acting elements present in gene promoters thereby regulating
expression of down-stream elements (Birkenbihl et al., 2017;
Chen et al., 2017). All WRKY TFs contain one or two conserved
domains having approximately 60 amino acid residues with a
conserved heptapeptide WRKYGQK, and a C2H2 or C2HC zinc
finger-like motif (Eulgem et al., 2000). WRKY domain binds
to the TTGACC/T W-box of the target gene and regulates
its transcription (Brand et al., 2013; Bakshi and Oelmüller,
2014). WRKY TFs have been classified into three groups based
on the number of WRKY domains present and the features
of their zinc finger motif (Rushton et al., 2010; Rinerson
et al., 2015a). Each domain of group I WRKY TFs appear
to be functionally diverse; the C-terminal domain helps in
specific binding to the W box, and the N-terminal domain
is involved in increasing the affinity (Eulgem et al., 2000).
In normal growth conditions, some members of WRKY TFs
play regulatory roles like trichome development (Bakshi and
Oelmüller, 2014), root growth (Grunewald et al., 2013), seed
development (Schluttenhofer and Yuan, 2014), leaf senescence
(Miao and Zentgraf, 2007; Rinerson et al., 2015b), dormancy
(Ding et al., 2014), and secondary metabolites biosynthesis
(Eulgem et al., 2000). In general, WRKY TFs can play multiple
roles in plants by regulating the downstream related genes either
positively or negatively (Dai et al., 2015).

The majority of deduced WRKY TFs are well-known for
their functions in biotic stress response. Expression of NtWRKY3
and NtWRKY6 TFs was reported in Nicotiana attenuata during
herbivore attacks (Skibbe et al., 2008). Lai et al. (2008) reported
the elevated transcript abundance of AtWRKY3 and AtWRKY4,
in Arabidopsis infected with Botrytis cinerea. Currently, research
focus is on the functional characterization of WRKY proteins
in response to abiotic stresses. Either up-regulation or down-
regulation of an individual WRKY gene can result in improved
abiotic stress tolerance (Wang et al., 2013; Dai et al., 2015).
Several WRKY TF gene family members responsive to abiotic
stresses have also been reported WRKY TF genes like WRKY25,
WRKY26, and WRKY33 were recognized to regulate cross-
talk between ethylene and heat shock protein response related

signaling pathways (Li et al., 2011). A multiple abiotic stress
responsive TaWRKY10 up-regulated during PEG, NaCl, cold,
and H2O2 treatment was reported in wheat (Wang et al.,
2013). In contrast to other abiotic stresses, few WRKY TFs
were identified specifically to drought stress response. The
expression of WRKYs in response to drought such as AtWRKY57
from Arabidopsis (Jiang et al., 2012), GsWRKY20 from soybean
(Luo et al., 2013), and ZmWRKY58 from maize (Cai et al.,
2014) have been investigated. The overexpression of WRKY
genes in plants showed enhanced tolerance to several abiotic
stresses. For example, overexpression of OsWRKY11 in rice
displayed an improved tolerance to high temperature and
salt (Wu et al., 2009). Also, overexpression of several cotton
WRKY genes (GhWRKY17, GhWRKY34, and GhWRKY41)
showed an increased salt and drought tolerance in tobacco
(Yan et al., 2014; Chu et al., 2015; Zhou et al., 2015).
Further, overexpression of two wheat WRKY genes (TaWRKY19
and TaWRKY93) in Arabidopsis confers higher tolerance to
salt and drought stress (Niu et al., 2012; Qin et al., 2015).
These genes conferred tolerance to abiotic stresses in plants
through detoxification of cytotoxic compounds (ROS and RCC
scavenging), with improved osmotic adjustment, maintaining
membrane stability, and by regulating the stress-responsive
genes. Though, a few researchers reported the role of WRKY
TFs in abiotic stress responses in model plants, the functions of
most WRKY TFs from non-model plants remains underexplored.
Horsegram, a drought-adapted grain-legume has the unique
ability to grow in poor soils under receding moisture conditions.
Groundnut is important oil yielding seed-legume crop grown
in semi-arid regions of the world in rain-fed areas and is
frequently encounters to drought spells of different duration and
intensities. Considering the importance of groundnut in dry-land
agriculture, its tolerance to drought raises an important issue
for groundnut improvement programs. Keeping in mind the
various functions of WRKY TFs under complex environmental
conditions and to further understand the function of WRKY
TFs, we isolated and funcationally characterized a drought
stress-responsive MuWRKY3 gene from horsegram. Transgenic
groundnut plants overexpressing MuWRKY3 exhibited improved
drought stress tolerance compared to wild-type (WT) suggesting
that MuWRKY3 can serve as a new candidate gene for improving
the tolerance to drought stress in crop plants.

MATERIALS AND METHODS

Plant Material and Stress Treatments
The pot-cultured horsegram plants were grown for 19-days in
botanical garden under natural photoperiod (10–12 h; 27 ± 4◦C).
Stress treatments included were, (1) drought stress imposed to
plants by withholding water and leaf samples were collected at
wilting stage, (2) salt stress imposed by adding 2% NaCl solution
to the pots and collected samples at 72 h after treatment, (3)
for dehydration stress, detached leaves were allowed to dry on
filter paper in ambient conditions for 8 h, (4) for cold stress
treatment potted plants were subjected to 10◦C for 48 h, and (5)
for heat stress treatment plants were subjected to 50◦C for 8 h in a
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temperature controlled growth chamber. The samples were flash
frozen in liquid nitrogen and stored at −80◦C for further analysis.

RNA Extraction and Quantitative
Real-Time PCR Analysis
Total RNA from horsegram leaf samples was extracted using
TRIzol reagent method. DNase treatment of extracted total
RNA was performed using the TURBO DNA-free kit (Ambion,
United States). 200 ng of RNA was used to synthesize cDNA and
subsequently used as a template for PCR and quantitative RT-
PCR analysis (Hu et al., 2012). Expression analysis was performed
using Real-time PCR-System (AB StepOne, United States) with
three biological replicates and actin as an internal control. The
relative quantification was studied using 2−11Ct method (Livak
and Schmittgen, 2001) to evaluate quantitative variations in
transcript level between three replicates. Primers used in the
RT-PCR assay are included in (Supplementary Table S1).

MuWRKY3 Gene Cloning and
Phylogenetic Analysis
Gene-specific primers were used to amplify the full-length
gene from horsegram cDNA (Supplementary Table S1). The
amplified full-length product was cloned into pTZ57R/T vector
and sequenced. WRKY3 sequences from different plants were
downloaded from Plant TF Database and compared with the
MuWRKY3 sequence. Multiple sequence alignment was done
using ClustalX software. Unrooted Neighbor-joining Tree used
to perform the phylogenetic tree analysis. Tree view software
produced a graphical representation, and internal branching
support was estimated using 1000 bootstrap replicates and 111
random odd numbers. Conserved domains were predicted by
using NCBI conserved domain database. Molecular weight and
isoelectric point were predicted using online software Expasy1.
Subcellular localization was predicted by Plant-mPLoc 2.02 (Chen
et al., 2010) (Supplementary Figure S4).

Vector Construction and Plant
Transformation
A gene construct overexpressing MuWRKY3 was generated
by cloning full-length gene to binary vector pCAMBIA2301
under a constitutive 35S promoter. Agrobacterium EHA105 is
carrying CaMV35S:MuWRKY3 with kanamycin as a selectable
marker was used for plant transformation. Transgenic plants
were generated by in planta transformation (Rohini and Rao,
2001). MuWRKY3 gene fused with YFP (35S:MuWRKY3::YFP)
was used for localization studies. MuWRKY3 gene was cloned in
pDONOR207 (Invitrogen) using gateway cloning method, and
the gene was subsequently cloned into a binary vector pAM-PAT-
p35S-YFP (Bernoux et al., 2008). The plant expression vector
expressing pAM-PAT-p35S-MuWRKY3-YFP and pAM-PAT-
p35S-YFP were transformed into Agrobacterium tumefaciens
strain EHA105.

1https://web.expasy.org/protparam/
2http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/

Sub Cellular Localization and
Transactivation Assay
Agrobacterium EHA105 carrying pAM-PAT-p35S-MuWRKY3-
YFP and pAM-PAT-p35S-YFP were introduced into Nicotiana
benthamiana leaves using a needle-less syringe (Li et al., 2014).
After 48 h of incubation, the leaf samples were observed for
YFP signal. YFP excitation was performed at 515 nm, and
emission was spotted in the range of 525–600 nm using a confocal
laser scanning microscope (Olympus, FV1000, Germany). The
transactivation activity of MuWRKY3 genes was investigated by
yeast one-hybrid assay using strain AH109. The vector pGBKT7
carrying MuWRKY3 (pBD), His-tag reporter gene (pGBKT7-
MuWRKY3) and pBD were transformed into yeast, following
Clontech yeast protocol handbook. Colony PCR was performed
for selecting the positive colonies. The yeast strains were streaked
on SD/-Trp and SD/-His plates containing five mM 3-amino-1,
2, 4-triazole (3-AT) for transcriptional activity assay.

Analysis of Gene Integration and
Overexpression
The seeds harvested from T0 plants were sown on MS medium
containing 200 mg/L kanamycin, and the kanamycin survived
plants were selected as true transformants (Herrera-Estrella
et al., 1983). The presence and integration of transgene were
further confirmed by PCR analysis from genomic DNA using
gene-specific WRKY3, NptII and GUS primers (Supplementary
Table S1). GUS enzyme activity was assessed in seedlings
of putative transformants and WT (Jefferson, 1987). After
confirmation, positive transgenic plants were advanced to further
generations. Putative transgenic plants were confirmed by PCR
amplifications to select T2 and T3 seeds. QRT-PCR used to
quantify transcript abundance of the transgene. Southern blot
analysis was done to confirm the stable transgene integration
in T3 generation transgenic line. Genomic DNA digested
with, BamHI at 37◦C and GUS probe was used for analysis.
Blotting was performed using Biotin-labeled PCR amplified gene
fragment of GUS probe (Dai et al., 2015). The hybridized
membrane was washed and detected according to manufacturer’s
instructions (Thermo Scientifics Biotin DecaLabel DNA Labeling
Kit, Germany).

Stress Tolerance Assays of Transgenic
and WT Plants
To assess the drought tolerance, pot grew 30-day-old groundnut
transgenic, and WT plants were subjected to drought stress by
withholding water for 10 days. Phenotypic differences between
WT and transgenic groundnut plants were recorded. Reactive
oxygen species, superoxide anions were measured according to
Doke (1983) and hydrogen peroxide content by Singh et al.
(2006), lipid peroxidation were estimated by measuring the MDA
content according to Hodges et al., 1999. Leaf free proline
content was measured by Ninhydrin method (Bates et al., 1973).
Leaf total soluble sugars were measured by Arnon (1949) and
antioxidative enzyme activities, SOD by Giannopolitis and Ries
(1977) and APX by Nakano and Asada (1981) were determined
sectrophotometrically (Shimadzu UV-1800, Japan).
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Statistical Analysis
To check the significant differences in all the physiological and
biochemical experiments were subjected to the SPSS statistic data
software (version 16.0) and evaluated using one-way ANOVA
post hoc multiple comparisons from the Duncan’s test at a
significance level of P ≤ 0.05.

RESULTS

Expression Patterns of MuWRKY3 Under
Various Stress Treatments
The quantitative RT-PCR analysis was performed to determine
the transcript abundance patterns of MuWRKY3 in leaf tissues
of horsegram under unstressed and several imposed abiotic
stresses. The results showed that expression of MuWRKY3
was detected in leaf tissues under dehydration, drought, heat,
salt, and cold treatments. Although the WRKY3 gene was
highly up-regulated in all stress conditions, its expression was
significantly higher under drought stress condition (Figure 1A)
than under other stresses. Salt stress (200 mM NaCl) treatment
caused an increase in MuWRKY3 transcript abundance by

3.4-fold, heat stress by 6.1-fold, low temperature (cold)
treatment led to up-regulation by 5.0-fold. During dehydration
and drought treatments, the transcription of MuWRKY3
performed a significant up-regulation by 9.4- and 13.5-fold,
respectively.

Cloning and Sequence Annotation
Analysis of MuWRKY3
Horsegram (Macrotyloma uniflorum Lam. Verdc.) is well adapted
to semi-arid conditions with higher drought tolerance ability.
From, our previous study, the MuWRKY3 gene was found
to be highly up-regulated among eight different WRKY genes
studied (Kiranmai et al., 2016). In this study, the full-length
WRKY3 gene was successfully isolated from horsegram and
designated as MuWRKY3 (GenBank Accession: KM520390.1).
Sequence analysis presented that the MuWRKY3 gene is 1476 bp
with coding a deduced protein of about 490 amino acids with
molecular weight of 53.7 kDa and an isoelectric point of 6.12.
MuWRKY3 protein conserved domain analysis displayed that the
presence of two WRKY domains and a C2-H2 zinc finger motif
and belongs to group I of WRKY TF superfamily (Rushton et al.,
2010; Huang et al., 2012) (Supplementary Figures S1–S3).

FIGURE 1 | (A) Expression of MuWRKY3 in horsegram under various abiotic stresses as determined by real-time PCR analysis. Error bars represent standard
deviations (SD) for three independent replicates with different letters at P < 0.05 significant level. (B) Unrooted Bootstrapped Neighbor Joining tree analysis of
MuWRKY3 and WRKY protein sequences from different species. The amino acid sequences of the conserved WRKY domain region were aligned using ClustalX
version 2.1. MuWRKY3 is boxed in the figure (Supplementary Figure S5).
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Phylogenetic Relationship of MuWRKY3
With Other WRKY Proteins
To characterize the divergence of the isolated MuWRKY3 protein
with the other plant WRKY3 proteins, domain proteins were
analyzed by ClustalX alignment (Figure 1B). The phylogenetic
analysis revealed that MuWRKY3 was clustered into group I of
the WRKY TF family and most closely associated to GmWRKY3
than from NaWRKY3, GhWRKY3, AtWRKY3, BpWRKY3, and
BrWRKY3.

MuWRKY3 Gene Localizes to Nucleus
and Exhibit Transcriptional Activity
To determine the subcellular localization of the MuWRKY3
gene was fused to N-terminal with YFP reporter gene that was
expressed under the constitutive promoter (35S CaMV). The
Agrobacterium harboring 35S::MuWRKY3-YFP and 35S::YFP
constructs was infiltrated to 3-week-old tobacco leaves by
needleless syringe. The microscopic image clearly shows
that MuWRKY3-YFP protein is accumulated in the nucleus
and the YFP alone occurred all over the cell organelles
including cytoplasm and nucleus (Figure 2A). Further, yeast
transactivation assay was carried out for MuWYKY3 gene in yeast
cells revealed the activation of His-reporter gene in the presence
of MuWRKY3 protein. The yeast cells transformed with pBD-
MuWRKY3 grew well in SD/-Trp and SD/-His plates containing
5 mM 3-amino-1, 2, 4-triazole (3-AT) where pBD could survive
in SD/-Trp medium only (Figure 2B). Together these results
suggest that MuWRKY3 is nuclear-localized protein serving
as a TF.

Generation of Transgenic Groundnut
Plants Overexpressing MuWRKY3
To study the functional relevance of MuWRKY3 gene in
response to drought stress the groundnut transgenic expressing
MuWRKY3 driven by the CaMV 35S promoter was developed
(Figure 3A). A tissue culture independent Agrobacterium
mediated in planta transformation method was adopted to
develope the groundnut transgenics (Rohini and Rao, 2001).
The putative transformants were analyzed in T1, T2, and T3
generation for the resistance to kanamycin (Figure 3B), drought
tolerance and integration of the gene by PCR. Lines resistant
to kanamycin were selected and advanced next generation
(Supplementary Figure S6). The transgenics were also confirmed
for the activity of glucoronidase due to the expression of Gus
gene. The transgenic cotyledons clearly demonstrate that the
higher activity of glucoronidase (Figure 3C). The presence of
the transgene in transgenic groundnut plants in T3 generation
confirmed by PCR analysis using gene-specific primers of
WRKY3, GUS, and NptII(Figure 3D).

Transgenic Groundnut Plants Expressing
MuWRKY3 Showed Improved Drought
Tolerance
Under unstressed conditions, all groundnut lines showed no
visible phenotypic differences (unpublished data). However, WT

FIGURE 2 | (A) Sub-cellular localization of YFP and MuWRKY3:YFP in the
epidermal peels of Nicotiana Benthamiana. (B) Transactivation activity analysis
of MuWRKY3 was performed using yeast strain AH109. The transformants
pBD-WRKY3 and pBD (pGBKT7) were streaked on SD/-Trp and SD/-His
plates containing 5 mM 3-amino-1, 2, 4-triazole (3-AT).

and independent T3 lines exposed to drought stress for 10 days
showed stress-induced wilting, but visible wilting symptoms
appeared much earlier in WT plants. The transgenic plants
remained green after 10 days of drought stress (Figure 4A).
Under stress conditions, the transgenic plants showed
significantly reduced levels of lipid peroxidation end product,
malondialdehyde (MDA) (Figure 4B). The MDA content was
3.5- to 2-fold lesser in transgenic plants than in WT. The
groundnut transgenics expressing MuWRKY3 maintained a
higher amount of free proline and total soluble sugar content
than the WT plants even after 10 days of drought stress
imposition (Figures 4C,D), resulting in a range of 1.5- to 2.5-fold
and 2.3- to 4.4-fold increase in the amount of proline and total
soluble sugar contents, respectively, in transgenic lines was
observed.

Transgenic Groundnut Expressing
MuWRKY3 Increases Antioxidant
Enzymes to Reduce Oxidative Stress
Damage
The ability of transgenic groundnut plants to withstand the
oxidative stress damage was studied by exposing the plants to
drought stress conditions. The antioxidant enzyme activity (SOD
and APX) was significantly higher in transgenic lines compared
to WT. The SOD activity was three- to fivefold more in transgenic
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FIGURE 3 | (A) A linear map of MuWRKY3 overexpressing vector with GUS and NptII marker genes for screening, 35S promoter and polyA terminator. Entire
expression cassette is flanked by left and right borders in pCAMBIA2301. (B) Screening of transgenic and WT plants on half strength MS medium containing
200 mg/lit kanamycin and their acclimatization. (C) GUS histochemical staining of WT and transgenic seedlings at T3 generation. (D) PCR Amplification of
MuWRKY3 gene GUS and NptII gene from genomic DNA of transgenic and WT plants: M, gene ruler mix; WT, wild-type; TR1 to TR10, transgenic lines.

lines than in WT. Similarly, APX activity was three- to sevenfold
more in transgenic plants than in WT (Figures 5A,B). The stress-
induced production of O•−

2 and H2O2 radicals were higher in WT
plants than that of transgenic lines (Figures 5C,D). These results
were also supported by the in situ histochemical staining of O•−

2
with NBT and H2O2 ions with DAB. Remarkable differences were
observed where WT plants accumulated higher free radicals than
that of transgenic plants (Figures 5E,F). These results suggest that
transgenic plants overexpressing MuWRKY3 gene showed better
tolerance to drought with increased antioxidant efficacy.

Transgenic Groundnut Plants Are Stable
and Showed Increased Expression of
Stress-Responsive Genes
Selected groundnut transgenic plants are tested for the stable
integration of gene by Southern blot analysis in a T3 generation.
The variation in the integration pattern between transgenic

lines demonstrated the independent transgenic events and also
confirmed transgenic nature of groundnut plants (Figure 6A).

Further understanding of the WRKY TF role in the
mechanism of drought tolerance, the selected six down stream
stress-responsive gene expression was studied and compared
between WT and MuWRKY3 transgenic groundnut plants under
drought stress conditions. An efficient antioxidant system is
crucial to alleviate the oxidative damage caused by drought stress.
QRT-PCR analysis studies used to check the gene expression of
ROS-scavenging enzymes (CAT, SOD, and APX genes) and other
stress responsive genes such as MIPS, LEA, and HSP. Drought
stress increased the transcript levels of CAT, SOD, and POD in
transgenic lines. The drought stress-induced expression of all six
selected stress-responsive genes showed elevated expression in
transgenic groundnut plants.The increases in transcript levels of
2.71-fold for SOD, 5.5-fold for APX, 7.3-fold for CAT, 4.4-fold for
MIPS, 5.3-fold for LEA, 4.0-fold for HSP, 9.4-fold for MuWRKY3
over those in WT plants (Figure 6B). Overall these results suggest
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FIGURE 4 | (A) Phenotypic differences in transgenic lines and WT groundnut plants under unstressed and drought stressed for 10 days. (B) MDA content in WT and
transgenic plants under stress. (C) Free proline content and (D) total soluble sugars in transgenic and WT plants under drought stress conditions (WT- WT, TRL1 to
TRL8 – Transgenic lines). Data is analyzed using SPSS version 16.0, values shown is the mean of three replicates and ± SE of three replicates and letters shown
above the bars are significantly different at P < 0.05 (DMR).

that over-expression of MuWRKY3 regulates the expression of
downstream stress-responsive genes under drought conditions.

DISCUSSION

Drought is one of the major abiotic factors that accounts for
30–70 percent of crop yield loss worldwide. At whole plant level,
drought stress causes a series of morphological, physiological,
biochemical, and molecular changes that effect plant growth,
development and productivity (Rahdari and Hoseini, 2012; Ali
et al., 2014). Effect of drought on plants growth (Rampino et al.,
2006), water content (Jaleel et al., 2009) decrease nutrient uptake
(Selvakumar et al., 2012), decrease in photosynthesis (Rahdari
et al., 2012) resulting in the severe damage and yield loss was
extensively studied. Many research efforts have been made to
produce the crops tolerant to drought through plant breeding
and genetic engineering technologies. Transcription factors (TFs)
are the ideal candidates to engineer crops for improved tolerance
as they regulate many downstream functional genes (Agarwal
et al., 2011). Under stress conditions the TFs interact with cis-
elements in the promoter region of the gene and up-regulate
the expression of many downstream genes imparting stress

tolerance (Agarwal et al., 2011; Li et al., 2013). Overexpression
of TFs imparting plant drought stress was previously reported.
Expression of MYB (Seo et al., 2011; Shin et al., 2011; Nakashima
et al., 2014), bZIP TF genes (Banerjee and Roychoudhury, 2017)
and NAC family TFs (Shao et al., 2015) imparting drought
stress tolerance was extensively studied in plants. These TFs
impart stress tolerance by altering the biochemical characters
like osmolyte accumulation (Wang et al., 2009; Niu et al., 2014),
antioxidant enzyme production (Shi et al., 2014; Chu et al., 2016)
and by the regulation of stress responsive genes (Zheng et al.,
2013; Wang et al., 2015).

WRKY TF are the largest TF family proteins bind to the
specific TTGAC(C/T) W-box elements in the promoters of a
many plant defense-related genes (Brand et al., 2013). Based on
the number of WRKY domains and the nature of their zinc-
finger motif the WRKY TFs are classified into three groups. The
presence of two conserved WRKY domains and a C2H2 zinc
finger motifs in the WRKY3 TF gene of horsegram reveals that its
a group I of WRKY superfamily proteins. Phylogenetic analysis
showed that MuWRKY3 is clustered with GmWRKY3 from
soybean. The previous studies suggest that WRKY genes play a
vital role in pathogen-defense mechanisms (Dang et al., 2013;
Cai et al., 2015; Sarris et al., 2015) and abiotic stress responses
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FIGURE 5 | Physiological characterisation of WT and MuWRKY3 transgenic plants under drought stress conditions. Antioxidant enzymes: (A) SOD (B) APX activity
in WT and transgenic lines under drought stress conditions. (C) O•− anions produced in WT and transgenic plants under stress conditions. (D) H2O2 ions produced
in WT and transgenic plants under stress. (E) In situ histochemical localization of O•− generated under drought stress using DAB. (F) In situ histochemical
localization of H2O2 production under stress using NBT. Data is analyzed using SPSS version 16.0, values shown is the mean of three replicates and ± SE of three
replicates and letters shown above the bars are significantly different at P < 0.05 (DMR).

FIGURE 6 | (A) Southern blotting analysis of transgenic plants for the detection of positive plants with stable integration (TR, transgenic line; WT, wild-type).
(B) qRT-PCR analysis of MuWRKY3 and stress responsive genes under drought stress conditions.
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(Luo et al., 2013; Banerjee and Roychoudhury, 2015; Dai et al.,
2015). In our study, the rapid up-regulation of MuWRKY3
gene was induced by drought, dehydration, heat, salt, and
cold stress. Similar results were reported from previous studies
where multiple abiotic stresses highly induced the expression of
TaWRKY10 (Wang et al., 2013) and TaWRKY2 genes (Niu et al.,
2012).

Transcription factors are known to be located in the
nucleus, where they bind to specific gene promoter sequences,
thereby controlling the downstream elements. The result
obtained from the subcellular localization of MuWRKY3 showed
that the YFP was located in the nucleus, suggesting that
this gene function could be nuclear localized. A similar
result was observed when soya bean WRKY20 was expressed
in transgenic Arabidopsis plants, where green fluorescence
protein localization was observed in the nucleus (Luo et al.,
2013). We employed a standardized tissue culture-independent
Agrobacterium-mediated in planta transformation protocol to
generate transgenic groundnut lines overexpressing MuWRKY3
(Rohini and Rao, 2001). The selection of putative transgenic
plants was carried out from the T1 generation as the primary
transformants (T0) are chimeric in nature (Rohini and Rao, 2001;
Kumar et al., 2009).

The previous studies has reported the improvement of
drought tolerance in plants by expression of WRKYTF genes
(Luo et al., 2013; Wang et al., 2013; Chu et al., 2015). An
increase in the expression of the OsWRKY30 in transgenic
rice was identified in response to drought by Shen et al.
(2012). The GmWRKY20 TF gene derived from wild soybean
has improved the drought tolerance in transgenic Arabidopsis
plants through ABA-mediated signaling (Luo et al., 2013).
Similarly, the overexpression of MuWRKY3 gene in groundnut
transgenics showed enhanced tolerance to drought stress. The
improved cellular level tolerance achieved by this MuWRKY3
expression and regulation of other stress-responsive genes could
be partialiy attributed to delayed wilting, stay green nature,
several physiological and biochemical changes in the groundnut
transgenics.

Firstly, accumulation of osmolytes such as soluble sugars
and free proline is an important phenomenon to facilitate
the osmoregulation in response to abiotic stress (Garg et al.,
2002; Singh et al., 2015). Higher accumulation of free proline
and soluble sugars was observed in MuWRKY3 transgenic
plants compared to WT plants under drought stress condition.
Consequently, the higher accumulation of osmolytes in the
MuWRKY3 transgenic plants may partially contribute to
the enhanced drought tolerance. Similarly, the transgenic
alfalfa plants overexpressing WRKY20 from Glycine soja have
accumulated more free proline and soluble sugars under drought
stress (Tang et al., 2014). BhWRKY1 from Boea hygrometrica
regulating the accumulation of osmolytes in response to water
stress was also reported (Wang et al., 2009).

Secondly, higher accumulation of cytotoxic compounds (ROS
and RCC) during drought stress can cause severe oxidative
damage in plants. The lipid peroxidation induced by higher ROS
accumulation produces a wide range of degradation products,
such as MDA, methylglyoxal (MG), HNE, which are responsible

for severe electrolyte leakage. The MuWRKY3 transgenics
showed lower levels of MDA under drought stress; this may
be due to lower O•− and H2O2 levels. Abiotic stress can cause
lipid peroxidation, leading to accumulation of MDA that reflect
the high degree of damage triggered by stress (Sathiyaraj et al.,
2011). The continuous monitoring of ROS in the cell is essential,
and equilibrium between the generations of ROS and scavenging
depends on antioxidative enzymes (Foyer et al., 2008; Suzuki
et al., 2012). Plants with a high level of antioxidant enzymes are
relatively more tolerant to abiotic stress (Peleg and Blumwald,
2011). The oxidative stress-responsive genes such as SOD, APX,
and CAT catalyze the degradation of ROS produced during stress
(Zheng et al., 2013; Wang et al., 2015). The MuWRKY3 transgenic
plants showed higher activity of antioxidative enzymes like CAT,
SOD, and APX compared to WT plants under drought stress.).
The results suggest that the over-expression of MuWRKY3
confers drought stress tolerance in transgenic plants by reducing
the effect of ROS and its accumulation.

Thirdly, to understand the specific role of MuWRKY3 during
drought stress, we studied the expression of six stress-responsive
genes such as SOD, APX, CAT, MIPS, LEA, and HSP in WT
and transgenic lines. The transgenic plants have shown the up-
regulation of all six stress-related genes with highest transcript
abundance in CAT. Wang et al. (2015) reported that the
transcript levels of antioxidant genes were increased in transgenic
tobacco plants expressing the TaWRKY44 gene under drought
stress treatments. Overexpression of ThWRKY4 conferred
tolerance to salt and oxidative stress by modulating ROS by
expression of SOD and APX genes (Zheng et al., 2013). Up-
regulation of HSP proteins like HSP (LOC_ Os0g16061) 358 and
HSP (LOC_Os9g31486) was observed in rice plants expressing
OsWRKY30 under drought stress (Shen et al., 2012). In the
present study, we report that the expression of MuWRKY3 in
transgenic plants is up-regulating the MIPS gene under drought
stress conditions. LEA proteins were known to accumulate
during water stress conditions and help plants to survive (Garay-
Arroyo and Covarrubias, 1999) by stabilizing macromolecules
and cellular structures (Liu et al., 2013). Transgenic tobacco
expressing TaWRKY44 showed elevated expression of LEA type
genes and confers drought tolerance (Wang et al., 2015). Positive
correlations between expression of HSPs and heat shock (HS)
tolerance have been reported previously (Burke and Chen, 2015).
MIPS gene is known to involve in membrane formation, cell
wall biogenesis, stress response, and signal transduction (Kaur
et al., 2013; Goswami et al., 2014). Zhai et al. (2016) as reported
that an myoinositol−1−phosphate synthase gene(IbMIPS1) has
enhanced the salt and drought tolerance in transgenic sweet
potato plants. The results indicate that HSP and MIPS genes were
up-regulated under drought stress conditions in transgenic plants
compared to WT plants. Up-regulation of HSP in rice plants
expressing OsWRKY30 under drought stress was previously
reported (Shen et al., 2012). The gene expression studies
demonstrated that MuWRKY3 gene regulates the expression
of drought stress-responsive genes. These results are supported
by the previous studies that the stress tolerance achieved in
transgenic plants expressing WRKY genes by up-regulation of
stress-related genes (Hu et al., 2013; Wang et al., 2015).
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CONCLUSION

In summary, the horsegram MuWRKY3 gene belonging to
group I of the WKRY superfamily is a stress-inducible TFs.
Overexpression of MuWRKY3 in groundnut enhanced drought
stress tolerance. MuWRKY3 transgenic plants showed up-
regulation of many stress-inducible functional genes involved in
diverse cellular mechanisms. The oxidative stress effect is reduced
due to higher expression and activity of antioxidant enzymes.
The study demonstrates that MuWRKY3 could be a candidate
gene for transgenic approaches to improve the stress tolerance in
crop plants for sustained growth and productivity under drought
conditions.
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