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Phytohormones regulate numerous important biological processes in plant development
and biotic/abiotic stress response cascades. More than 50 and 100 years have
passed since the initial discoveries of the phytohormones abscisic acid (ABA) and
gibberellins (GA), respectively. Over the past several decades, numerous elegant
studies have demonstrated that ABA and GA antagonistically regulate many plant
developmental processes, including seed maturation, seed dormancy and germination,
root initiation, hypocotyl and stem elongation, and floral transition. Furthermore, as
a well-established stress hormone, ABA plays a key role in plant responses to
abiotic stresses, such as drought, flooding, salinity and low temperature. Interestingly,
recent evidence revealed that GA are also involved in plant response to adverse
environmental conditions. Consequently, the complex crosstalk networks between ABA
and GA, mediated by diverse key regulators, have been extensively investigated and
documented. In this updated mini-review, we summarize the most recent advances in
our understanding of the antagonistically regulatory roles of ABA and GA in different
stages of plant development and in various plant–environment interactions, focusing
on the crosstalk between ABA and GA at the levels of phytohormone metabolism and
signal transduction.

Keywords: seed dormancy, germination, ABA, GA, antagonism, abiotic stress

INTRODUCTION

Various plant hormones play key and distinct roles in the plant life cycle, from seed maturation,
seed germination to the floral transition and abiotic/biotic stress responses (Shu et al., 2016c;
Yang and Li, 2017). Which phytohormones regulate plant developmental processes and stress
adaptation, and what are the mechanisms? In the past decades, tremendous progress has been
achieved in the field of plant hormone biology to answer these questions, in particular in the model
plant Arabidopsis thaliana. The anabolism, catabolism, transport and signal transduction pathways
of the phytohormones have been documented (Novak et al., 2017). Numerous elegant studies have
demonstrated that different phytohormones interact antagonistically and/or synergistically with
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one other, forming complicated crosstalk networks (Shan
et al., 2012). As a result of such crosstalk networks, different
phytohormones regulate distinct biological processes precisely
throughout a plant’s life cycle.

Abscisic acid (ABA) and gibberellins (GA) are one pair of
classic phytohormones, which antagonistically mediate several
plant developmental processes, including seed maturation, seed
dormancy and germination, primary root growth, and flowering
time control (Wang et al., 2013; Luo et al., 2014; Yang et al., 2014;
Shu et al., 2016a,c). Thus, the crosstalk between ABA and GA is
a research hotspot in the fields of plant molecular biology and
plant genetics, with numerous key regulators, including DELLAs
and AP2-domain-containing transcription factors, having been
extensively investigated and reviewed (Liu X. et al., 2016; Shu
et al., 2018b). These factors carry out functions, central to
ABA and GA antagonism, affecting phytohormone biosynthesis
and/or signal transduction pathways (Lin et al., 2015; Liu X. et al.,
2016; Shu et al., 2018b).

Furthermore, as a near-universal abiotic stress hormone, ABA
is involved in diverse abiotic stress response cascades, including
those related to drought, flooding, salinity and low temperatures
(Zhu et al., 2017). Although GA are primarily regarded as
plant growth regulators involved in a number of developmental
processes, including stem elongation (Jan et al., 2006; Iwamoto
et al., 2011; Li et al., 2011), and flowering time control
(Ding et al., 2013; Hyun et al., 2016), recently published data
demonstrate that GA also control certain biological processes
in response to stress (Qin et al., 2011; Hamayun et al., 2017;
Urano et al., 2017; Wang et al., 2017). Consequently, the
detailed mechanisms by which ABA and GA precisely mediate
plant development and stress responses are ripe for further
exploration.

Given the significant progress which has taken place in
research into ABA and GA antagonism field, this mini-review
will highlight the most recent advances (primarily, over the
past 4 years) in the regulatory roles of ABA and GA in plant
development and stress responses, focusing on the crosstalk
between ABA and GA, as mediated by the key regulators. Finally,
future research directions and challenges in this field will be
discussed.

ABA AND GA: FOCUSING ON SEED
DORMANCY AND GERMINATION

Seed science is one of the most important research fields in plant
molecular biology, including seed maturation, seed dormancy
and germination, and seed longevity (Waterworth et al., 2015;
Sano et al., 2016; Shu et al., 2016c; Nee et al., 2017). Crop
seed is the direct product of the agricultural system, and thus
optimal germination and seedling emergence in the field are
important to achieve the final yield. ABA and GA play different
key roles in the regulation of seed dormancy and germination,
and the metabolism of and signaling by both phytohormones also
changes during seed development, namely seed maturation, seed
dormancy and germination, and seedling establishment (Shu
et al., 2015, 2016c).

ABI4 (Abscisic acid-insensitive 4), an enhancer of the
ABA signal transduction pathway, deepened seed dormancy in
Arabidopsis by increasing ABA biosynthesis while decreasing
GA biosynthesis (Shu et al., 2013). Detailed biochemical
analysis showed that ABI4 directly interacts with promoter
regions of NCED6, an ABA biosynthesis gene, and of GA2ox7,
a GA-inactivator gene (Shu et al., 2016b). Consequently,
ABI4 is the central factor which mediates the antagonism
between ABA and GA by regulating the biosynthesis of both
phytohormones, resulting in the precise control of the degree
of seed dormancy and post-germination seedling growth (Shu
et al., 2016c, 2018b). Interestingly, ABI4 also inhibits seed
germination and cotyledon greening through the mediation
of cytokinin signaling (Huang et al., 2017). Investigations
revealed that, in Sorghum bicolor, transcription factors SbABI4
and SbABI5 enhanced the transcription of SbGA2ox3, a GA-
inactivator gene, through directly binding to its promoter, and
consequently extended seed dormancy (Cantoro et al., 2013).
During the post-germination seedling growth stage, ABI4 also
enhanced ANAC060 transcription by directly interacting with its
promoter, with ANAC060 reducing ABA sensitivity and glucose-
mediated ABA accumulation (Li et al., 2014). Another gene,
CK2 (Casein Kinase 2), positively mediated ABA signaling and
stress responses during seed germination and early seedling
establishment, the partial mechanism being that CK2 indirectly
enhanced ABI4 expression (Wang et al., 2014). Furthermore,
diverse factors, including miRNA 165/166, E3 ubiquitin ligase
CER9 (ECERIFERUM 9), transcription factors RAV1, OsAP2-
39 and MYB96, nuclear C2H2 zinc-finger protein ZFP3, and
AtGLR3.5 (glutamate receptor homolog 3.5), regulated ABA
signaling during seed germination and post-germination seedling
growth through the ABI4-mediated cascades (Yaish et al.,
2010; Feng et al., 2014; Joseph et al., 2014; Zhao et al.,
2014; Kong et al., 2015; Lee et al., 2015; Yan et al., 2016).
Consequently, ABI4 is a key factor with regard to ABA-
mediated regulation of seed germination and early seedling
establishment.

Recently, several key components, which regulate seed
germination, were dissected by analyzing their effect on
the balance between ABA and GA. GIM 2 (Germination
Insensitive to ABA mutant 2) promoted GA biosynthesis
while reducing ABA biosynthesis, and subsequently the gim2
mutant seeds showed the ABA-insensitive phenotype during
seed germination and post-germination seedling growth (Xiong
et al., 2017). In addition, exogenous auxin or NaCl treatment
delayed soybean seed germination through decreasing the
GA/ABA ratio (Shu et al., 2017; Shuai et al., 2017). A similar
effect of NaCl on seed germination of the halophyte Suaeda
salsa has been reported, which is also mediated through
ABA and GA pathways (Li et al., 2015). Aluminum (Al)
in contaminated soil inhibited rice seed germination, while
exogenous H2 (hydrogen) alleviated the Al toxicity through
increasing the GA/ABA ratio (Xu et al., 2017). Further
detailed analysis showed that H2 promoted the expression of
GA20ox1 and GA20ox2, two GA biosynthesis genes, and of
ABA8ox1 and ABA8ox2, two ABA catabolism genes (Xu et al.,
2017).
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In maize, under chilling stress, the combination of the
phytohormone salicylic acid (SA) and the reactive oxygen
species hydrogen peroxide (H2O2) up-regulated transcription
of both the GA biosynthesis gene ZmGA20ox1 and the ABA
catabolism gene ZmCYP707A2, while down-regulating the
expression of the GA catabolism gene ZmGA2ox1 (Li Z. et al.,
2017). Exogenous application of SA and H2O2 increased the
GA/ABA ratio and accelerated maize seed germination under
chilling stress conditions (Li Z. et al., 2017). Karrikins, a
group of plant growth regulators present in the smoke of
burning plant material, mediated soybean seed germination
through regulating GA and ABA biosynthesis and signal
balance (Meng et al., 2016a,b). Moreover, the NF-YC-RGL2-
ABI5 cascades, which integrate GA and ABA signaling pathways
to precisely regulate seed germination (Liu X. et al., 2016),
have been dissected. FOA2 (F-box overexpressed/oppressed
ABA signaling), and the transcription factors FUSCA3 and
DAG1 (DOF AFFECTING GERMINATION 1) also regulate
biosynthesis and signal transduction of GA and ABA during
seed germination (Boccaccini et al., 2014a,b, 2016; Chiu et al.,
2016a,b; He et al., 2016). Overall, diverse key genes regulate
seed germination by mediating ABA and GA biosynthesis and/or
signal transduction pathways (Table 1).

ABA AND GA IN THE REGULATION OF
ROOT DEVELOPMENT

The root system is of great significance in both plant stress
response and nutrient absorption. Numerous studies have
demonstrated that auxins play important roles in the regulation
of root growth, especially in the maintenance of the root stem
cell niche (Liu et al., 2017; Du and Scheres, 2018). However, ABA
and GA are also involved in the control of root development,
although the detailed molecular mechanisms involved require
further investigation.

A previous study had revealed that low concentrations of
ABA enhanced quiescence of the quiescent center and suppressed
stem cell differentiation in the primary root meristem niche
of Arabidopsis (Zhang et al., 2010). Applications of high
concentrations of exogenous ABA or the abiotic stress-induced
accumulation of ABA inhibited Arabidopsis primary root growth,
but the molecular mechanisms involved are not fully understood.
An earlier study showed that ABA promoted the transcription
of ICK1/KRP1, which encode a negative regulator of the cell
cycle, so that ABA delays cell expansion and proliferation
(Wang et al., 1998). Recently, the Gong lab showed that ABA
inhibited root growth by enhancing ethylene biosynthesis (Luo
et al., 2014). The ethylene biosynthesis inhibitor L-alpha-(2-
aminoethoxyvinyl)-glycine reduced ABA-mediated inhibition of
root growth. Further biochemical analysis revealed that CPK4
and CPK11, two ABA-activated calcium-dependent protein
kinases, phosphorylate the C-terminus of ACS6, increasing the
stability of this protein, and promote ethylene biosynthesis (Luo
et al., 2014). The identification of this ABA-ethylene cascade
represents a recent breakthrough in the regulation of root
development mediated by ABA.

Previous studies had demonstrated that GA exhibited a
positive effect on root growth in Arabidopsis (Ubeda-Tomas
et al., 2008, 2009). A recent study revealed that HDT1/2
(histone deacetylases) mediated the switch from cell division to
expansion in the root tip through repressing the transcription
of GA2ox2, a GA-inactivator gene (Li H. et al., 2017). Further
genetic analysis showed that upregulation of GA2ox2 in hdt1
and hdt2 background caused a decrease in GA concentration,
which then resulted in an earlier switch from cell division to
cell expansion of the transit-amplifying cells developing from
the root stem cells (Li H. et al., 2017). Precise control of the
timing and extent of asymmetric cell divisions is crucial for
correct patterning. Previous studies had demonstrated that ABA
and GA function together to mediate periclinal asymmetric cell
divisions of the endodermis during ground tissue formation (Cui
and Benfey, 2009). Recent studies revealed that the GAZ (GA-
AND ABA-RESPONSIVE ZINC FINGER) gene is involved in the
regulatory pathways, while transcription of GAZ is regulated by
GA and ABA (Lee et al., 2016). Transgenic GAZ-overexpressed
plants were sensitive to both ABA and GA during the middle
cortex formation stage, whereas RNAi-GAZ lines displayed the
opposite phenotype. Further transcriptional analysis showed that
GAZ is also involved in ABA and GA homeostasis during
root ground tissue formation (Choi and Lim, 2016; Lee et al.,
2016).

In addition to GAZ, another key factor, SEUSS, is also
involved in middle cortex formation. The seu mutants exhibited
clearly reduced expression of SHR (SHORT-ROOT), SCR
(SCARECROW), and SCL3 (SCARECROW-LIKE3), suggesting
that SEUSS positively regulated the transcription of these
genes (Gong et al., 2016). In addition, SEUSS transcription
was repressed by GA and enhanced by the GA biosynthesis
inhibitor, paclobutrazol, indicating that SUESS regulated middle
cortex formation via the GA pathway (Gong et al., 2016)
(Table 1). However, the antagonism between ABA and GA in
the regulation of root initiation needs further exploration and
dissection.

FLOWERING TIME CONTROL: THE
OTHER BATTLEFIELD BETWEEN ABA
AND GA

During the plant life cycle, the appropriate flowering time is
a crucial and important checkpoint for growth and survival,
especially under diverse environmental stress conditions. The
positive effect of GA on plant floral transition has been
extensively and intensively explored and documented (Ding et al.,
2013; Hyun et al., 2016; Zhu et al., 2016; Brambilla et al., 2017;
Conti, 2017; Gong et al., 2017; Sawettalake et al., 2017).

ABA is also involved in the regulation of flowering time (Wang
et al., 2013; Shu et al., 2016a). However, the contribution of ABA
to the control of flowering time is still controversial, as both
positive and negative effects have been documented (Riboni et al.,
2013, 2016; Wang et al., 2013; Shu et al., 2016a). With regard to
the effect of ABA on floral transition, we have recently reviewed
the literature and proposed a working model (Shu et al., 2018a).
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The positive and negative effects of ABA on floral transition
may be associated with environmental cues, such as drought, salt
and other abiotic stresses (Riboni et al., 2016; Shu et al., 2018a)
(Table 1). However, the detailed mechanisms through which
ABA and GA antagonistically mediate flowering need further
investigation.

SHADE RESPONSE: THE NEW
BATTLEFIELD BETWEEN ABA AND GA?

Numerous investigations have demonstrated that ABA is
involved in diverse abiotic/biotic stress response cascades,
including drought, salt, low temperature and pathogens, with
many research articles and reviews covering the effects of ABA
on stress responses (Edel and Kudla, 2016; Skubacz et al.,
2016; Lievens et al., 2017; Saradadevi et al., 2017). Although
GA is primarily regarded as a hormone contributing to the
control of plant growth and development, recent data showed
that GA also plays roles in plant adaptation to stresses, such
as dehydration stress (Qin et al., 2011; Plaza-Wuthrich et al.,
2016; Urano et al., 2017). A negative regulator of GA signaling,
SPINDLY, plays a negative role in drought stress tolerance by
integrating GA and cytokinin crosstalk (Qin et al., 2011). Under
early osmotic stress, differential levels of GA biosynthesis gene
expression, DELLA-regulated transcription and RGA protein
accumulation were reported in proliferating cells (Skirycz et al.,
2011; Claeys et al., 2012). GA is also involved in plant shade
and flooding stress responses (Bailey-Serres and Voesenek, 2010;
Colebrook et al., 2014; Li W. et al., 2017). In this review,
we focus mainly on the effects of ABA and GA on shade
response.

Shade stress is expressed as reductions in both
photosynthetically active radiation and the ratio between
red and far-red (R/FR) light, resulting from sunlight passing
through the leaves of neighboring plants under dense planting
systems (Yang and Li, 2017; Yang et al., 2018). Auxin biosynthesis
and signal transduction plays a key role with regard to plant
shade response, and the phytochromes PHYA, PHYB, and the
phytochrome-interacting factors (PIFs) are involved in these
cascades (Casal, 2012, 2013; Yang et al., 2018). A recent study
detected an effect of GA on shade adaptation in perennial
ryegrass (Lolium perenne) (Li W. et al., 2017). The ryegrass
shadow-1 mutant exhibited the dwarf and shade-insensitive
phenotype, while transcriptome analysis revealed that the
transcription of GA biosynthesis and response genes was down-
regulated in shadow-1 plants, compared to the wild type (Li W.
et al., 2017). This study highlighted the important roles of GA
biosynthesis under shade conditions. In line with this, phenotypic
analysis of GA-related mutants also suggested that GA positively
regulated plant shade avoidance in Arabidopsis (Liu H. et al.,
2016). Another study demonstrated that the transcriptional
regulator BBX24 promoted the plant shade avoidance response
through attenuating the activity of DELLA proteins, negative
regulators of the GA signaling pathway (Crocco et al., 2015).
The shade-response defect in bbx24 mutants was fully restored
by exogenous GA application, a treatment which promotes

DELLA degradation (Crocco et al., 2015). These investigations
highlighted the important functions which GA play in the plant
shade response (Table 1).

Although ABA is involved in diverse abiotic stress response
pathways, the detailed roles of ABA in shade avoidance have
not been elucidated to date. Earlier studies had shown that
shade stress up-regulated ABA concentration in tomato and
sunflower (Kurepin et al., 2007; Cagnola et al., 2012). Recent
studies revealed that shade stress promoted the transcription of
several ABA biosynthesis genes, including NCED3 and NCED5,
and of the ABA signaling gene, abscisic acid-responsive element-
binding factor 3 (ABF3) (Kohnen et al., 2016; Sellaro et al., 2017).
However, a better understanding of the function of ABA in the
regulation of shade response is needed.

CONCLUDING REMARKS

The antagonism between ABA and GA in the control of diverse
aspects of plant development and abiotic stress response is
an attractive target in the research field of plant molecular
biology. Significant progress has been made in the model
plant Arabidopsis to understanding the underlying mechanisms.
However, several key questions remain to be answered.

Firstly, it is proposed that several key factors regulate
the balance between ABA and GA, and subsequently achieve
precise mediation of plant development and stress responses.
Several transcription factors, including ABI4 and OsAP2-39,
belong to this large family, which directly or indirectly controls
the transcription pattern of ABA and GA biosynthesis genes
(Yaish et al., 2010; Shu et al., 2013, 2016b). Identification
and dissection of the modes-of-action of other, currently
unknown transcription factors, which mediate ABA and GA
antagonism, would be a major step forward in GA/ABA
antagonism research, while identification of the target genes
of these transcription factors in ABA and GA biosynthesis
and/or signaling pathways would also be a most worthwhile
project.

Secondly, in addition to transcriptional control, regulation
at the post-transcription level also needs an increased
focus, whereby the currently unknown transcription factors
regulate ABA and GA antagonism through mediating the
activity of some of the enzymes involved in ABA- and GA-
related biosynthesis and signaling pathways. For instance,
different types of protein modification, including protein
ubiquitination, acetylation, methylation and phosphorylation,
affect ABA/GA biosynthesis and signal transduction,
contributing to the control of plant development and stress
responses.

Thirdly, although GA has been shown to positively regulate
plant shade response (Liu H. et al., 2016; Li W. et al., 2017),
the detailed mechanisms involved, especially the relationship
between GA and auxin, need further investigation. In addition,
the roles of ABA in plant response to shade conditions are
also not fully understood. Overall, these remaining scientific
questions with regard to ABA and GA antagonism are worthy of
further exploration.
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