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The development of transgenic glyphosate-tolerant crops has revolutionized weed
control in crops in many regions of the world. The early, non-destructive identification
of superior plant phenotypes is an important stage in plant breeding programs.
Here, glyphosate-tolerant transgenic maize and its parental wild-type control were
studied at 2, 4, 6, and 8 days after glyphosate treatment. Visible and near-infrared
hyperspectral imaging and chlorophyll fluorescence imaging techniques were applied
to monitor the performance of plants. In our research, transgenic maize, which was
highly tolerant to glyphosate, was phenotyped using these high-throughput non-
destructive methods to validate low levels of shikimic acid accumulation and high
photochemical efficiency of photosystem II as reflected by maximum quantum yield and
non-photochemical quenching in response to glyphosate. For hyperspectral imaging
analysis, the combination of spectroscopy and chemometric methods was used to
predict shikimic acid concentration. Our results indicated that a partial least-squares
regression model, built on optimal wavelengths, effectively predicted shikimic acid
concentrations, with a coefficient of determination value of 0.79 for the calibration set,
and 0.82 for the prediction set. Moreover, shikimic acid concentration estimates from
hyperspectral images were visualized on the prediction maps by spectral features,
which could help in developing a simple multispectral imaging instrument for non-
destructive phenotyping. Specific physiological effects of glyphosate affected the
photochemical processes of maize, which induced substantial changes in chlorophyll
fluorescence characteristics. A new data-driven method, combining mean fluorescence
parameters and featuring a screening approach, provided a satisfactory relationship
between fluorescence parameters and shikimic acid content. The glyphosate-tolerant
transgenic plants can be identified with the developed discrimination model established
on important wavelengths or sensitive fluorescence parameters 6 days after glyphosate
treatment. The overall results indicated that both hyperspectral imaging and chlorophyll
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fluorescence imaging techniques could provide useful tools for stress phenotyping in
maize breeding programs and could enable the detection and evaluation of superior
genotypes, such as glyphosate tolerance, with a non-destructive high-throughput
technique.

Keywords: chemometric analysis, chlorophyll fluorescence imaging, hyperspectral imaging, plant breeding,
transgenic maize

INTRODUCTION

Weed management in maize production is essential to maximize
yield and to achieve a good harvest. Glyphosate is a broad-
spectrum herbicide possessing several desirable characteristics,
such as environmental safety, broad-spectrum mode-of-action,
and low cost (Sammons and Gaines, 2014). The development
of transgenic glyphosate-tolerant crop cultivars has allowed this
non-selective herbicide to be used for post-emergence weed
control in crops. Glyphosate is the only commercial herbicide
which operates by blocking the activity of the enzyme 5-
enolpyruvylshikimate-3-phosphate synthase (EPSPS) (Sammons
and Gaines, 2014). Extensive research has illustrated that
tolerance of high concentrations of glyphosate depends on the
expression of an EPSPS with a low binding affinity for glyphosate
(Duke et al., 2017). Genetic engineering of the cp4-epsps gene
from Agrobacterium tumefaciens strain CP4 into maize and
other crops achieved glyphosate-specific herbicide tolerance and
subsequently improved the control of weeds in these transgenic
crop cultivars (Howe et al., 2002).

An important step in plant breeding is selection (usually
more accurately described as “screening”), by which superior
plant phenotypes are identified for the development of improved
cultivars better suited to the needs of farmers and consumers.
Visual phenotypic selection can be slow and inefficient,
particularly with respect to quantitative traits. Glyphosate is
a relatively slow-acting herbicide, and visual assessment of
herbicide injury may take several weeks (Singh and Shaner,
1998). An early and non-destructive assessment of glyphosate
phytotoxicity damage would be useful for identifying glyphosate-
tolerant individuals in a segregating breeding population.
Previous research had demonstrated that the lack of shikimate
accumulation in glyphosate-treated plants could be used as an
indicator of glyphosate resistance (Padgette et al., 1995; Mueller
et al., 2003). Standard biochemical detection techniques, such as
spectrophotometry or high-performance liquid chromatography,
have been used to quantify shikimic acid concentration in
glyphosate-treated plant tissues (Pline et al., 2002). These
methods yield accurate results, but they are time consuming,
labor intensive and destructive, and cannot meet the needs of
large-scale screening programs. Maize breeding programs need
a quick and easy tool for assessing phenotypes, which allows the

Abbreviations: Fm, maximum fluorescence; Fv/Fm, maximum PSII quantum
yield; NPQ, instantaneous non-photochemical quenching relaxation; PLSR,
partial least-square regression; qL, (Fq/Fv)/(Fo/Ft); coefficient of photochemical
quenching measured the fraction of open PSII centers based on a ‘lake’ model
for PSII; qP, (Fm-Ft)/(Fm-Fo); coefficient of photochemical quenching; QY, (Fm-
Ft)/Fm; instantaneous PSII quantum yield; RF, random Frog; SPA, successive
projections algorithm.

non-destructive screening of large numbers of plants, making
it possible to identify desired individuals early in the screening
process. Therefore, more rapid and less expensive alternative
high-throughput approaches are needed for the screening and
identification of glyphosate-tolerant maize plants.

Hyperspectral imaging (HSI) integrates spectroscopy and
imaging techniques, and has been employed as a non-invasive
imaging technology for the evaluation of quantitative and
qualitative changes caused by abiotic or biotic stresses at the
leaf and canopy levels (Li et al., 2014; Lowe et al., 2017). For
plant stress, the most commonly used wavelengths are in the
visible region (400–700 nm) to observe photoactive pigments,
the near-infrared region (750–1200 nm) to detect leaf water
content and mesophyll cell structure, and the shortwave infrared
region (1200–2400 nm) to investigate biochemical components
(Lowe et al., 2017). Recently, numbers of reviews have been
published on the potential applications and advantages of high-
throughput plant screening phenotyping methods based on HIS
(Li et al., 2014; Humplík et al., 2015; Mutka and Bart, 2015;
Walter et al., 2015). This technique has been successfully using
in plant phonemics applications to estimate plant variation in
response to stresses caused by salt (Sytar et al., 2017), toxic
metals (Rathod et al., 2013), disease (Ashourloo et al., 2014),
drought and heat (Estrada et al., 2015), particularly at the early
stages shortly after treatment (Lowe et al., 2017). However,
the large size data generated from HSI often complicates the
computing process and limits its high-throughput applications
(Sun et al., 2015). In recent years, vegetative indicators that
calculated as ratios or linear combinations with several spectral
bands are used for plant trait detection and phenotyping.
Such indices are, for example, normalized difference vegetation
index, a bio-indicators for chlorophyll and other pigments,
and the photochemical reflectance index, an estimator of
the photosynthetic efficiency (Rathod et al., 2013). These
vegetation indices have been used to predict the biomass,
chlorophyll content, and yield for different plant (Li et al.,
2014; Mutka and Bart, 2015; Walter et al., 2015). Glyphosate
promotes deregulation of the shikimate pathway and can affect
a series of events, such as blocking photosynthetic electron
transport, inhibiting CO2 assimilation processes, and reducing
chlorophyll and leaf water concentrations, which are ultimately
reflections of biochemical, physiological, and cell structural
changes in response to glyphosate exposure (Silva et al., 2014).
There have been no studies reported on the application of
HSI for high-throughput plant stress phenotyping to evaluate
glyphosate tolerance in a plant breeding program. At more
complex level, entire spectra should be analyzed combined
with chemometric approaches that allow for comparison many
wavelengths.
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Chlorophyll fluorescence (ChlF) has been widely and
successfully used as a tool for estimating plant physiological
response to abiotic and biotic stresses (Porcarcastell et al., 2014),
and has the potential to overcome the traditional screening and
phenotyping limitations for glyphosate tolerance. This system not
only measures the visible effects of stress-induced chlorophyll
breakdown but also provides a comprehensive insight into the
potential and actual efficiency of photosynthesis (Lichtenthaler
and Miehé, 1997). ChlF imaging can be used to screen many
plants simultaneously by providing information on both the
spatial and temporal dynamics of photosynthesis (Porcarcastell
et al., 2014). Moreover, ChlF is extremely sensitive to different
environmental changes that affect the physiological process,
such as herbicide stress (Barbagallo et al., 2003), toxic metals
(Joshi and Mohanty, 2004), drought (Estrada et al., 2015),
nutritional deficiencies (Kalaji et al., 2014) or disease (Cen
et al., 2017). ChlF has been widely used in plant breeding
as a basis for screening (Humplík et al., 2015; Justine et al.,
2015; Awlia et al., 2016; Kalaji et al., 2016). Herbicides have
many different modes of action to kill or inhibit the growth
of target plant, one of which is inhibiting photosynthesis, such
as diuron, isoproturon (Haynes et al., 2000; Laviale et al.,
2011). Glyphosate, which inhibits the shikimate pathway, not
only decreases the biosynthesis of aromatic amino acids, but
also influences photosynthetic activity and induces substantial
changes in chlorophyll fluorescence characteristics (Pavlović
et al., 2014). It is possible that ChlF could achieve in vivo
vitality screening, either to analyze the glyphosate effect on the
photosynthetic physiological processes or to screen for individual
plants of interest.

The aim of this study was to apply the non-destructive
techniques HSI and ChlF imaging to evaluate differences in
glyphosate tolerance between the transgenic (TG) maize and
its parental wild-type (WT). We assumed that the specific
physiological effects of glyphosate would affect photochemical
processes captured by ChlF parameters, and induce physiological
and biochemical changes detected by spectral information.
Additional aims were: (1) to identify sensitive wavelengths
from hyperspectral data and to establish a mathematical
model for predicting shikimic acid concentration; (2) to
discover the appropriate ChlF indicators for rapid detection of
glyphosate-induced metabolic perturbations and to investigate
the relationship between glyphosate-induced ChlF characteristics
and the level of glyphosate stress; (3) to find the optimal imaging
technique for high-throughput screening and characterization
of the glyphosate-tolerant maize genotype to facilitate plant
breeding programs.

MATERIALS AND METHODS

Plant Material and Experimental Design
Seeds of transgenic glyphosate-tolerant (TG) maize and the
corresponding wild-type (WT) line were provided by the
Institute of Insect Sciences, Zhejiang University, Hangzhou,
China. The glyphosate-tolerant maize line, SK12-5 (TG), was
obtained after transformation of the WT (zhengdan958) with a

gene encoding a glyphosate-insensitive 5-enolpyruvylshikimate-
3-phosphate synthase (EPSPS) from Agrobacterium sp.

The experiments were conducted in a greenhouse at Zhejiang
University, in October 2016. The average temperature registered
in the greenhouse during the experimental period for 24-h was
20◦C and the average relative humidity was 65%. Maize seeds,
one per pot were sown in a plastic bucket (108 mm bottom
diameter× 131 mm height) with drainage holes in a 1:1:1 mix of
soil: calcined clay: torpedo sand. The soil used in the experiments
was air-dried, and debris, weeds and gravel were removed before
use.

On reaching the 3-leaf stage (second leaf fully expanded, third
leaf emerging), plants were sprayed with either water or 1.08 kg
a.i ha−1 glyphosate. A commercial formulation of glyphosate
(Zhejiang Wynca Chemical Group Co., Ltd., Hangzhou, China)
was dissolved in water. The samples that were treated with water
were regarded to be the control. The treatments (glyphosate
or water) were carried out, using a CO2 pressurized portable
sprayer equipped with flat-fan nozzles that sprayed over a 0.7 m
width from a distance of 1.5 m. Glyphosate efficacy was assessed
2, 4, 6, and 8 days after treatment, with 10 replicate pots of
each control treatment and 20 replicate pots of each glyphosate
treatment. In total, 120 plants of each of the TG and WT maize
treatments were collected. For each collected days, there were 10
plants sprayed with water and 20 plants sprayed with glyphosate
for TG or WT. The samples were collected for recording
hyperspectral imaging and chlorophyll fluorescence imaging data
during the experiment. After acquiring the hyperspectral imaging
and chlorophyll fluorescence imaging data, the above-ground
part of the maize plants were harvested to measure the shikimic
acid concentration and chlorophyll content.

Hyperspectral Imaging Acquisition
Hyperspectral images were acquired over the visible and
near-infrared (Vis-NIR) range from 380 to 1030 nm using
the following devices: an imaging spectrograph (ImSpector
V10E; Spectral Imaging Ltd., Oulu, Finland), a high-
performance charge-coupled device (CCD) camera [672 × 512
(spatial × spectral) pixels with a spectral resolution of 2.8 nm;
Hamamatsu Photonics K.K., Hamamatsu City, Japan], coupled
with a camera lens (OLES23; Spectral Imaging Ltd., Oulu,
Finland), and two 150 W tungsten halogen lamps (9596ER;
Dolan-Jenner Industries Inc., Boxborough, MA, United States)
for illumination. The intact plant was placed on the conveyer
belt to conduct linear HSI scanning. For image acquisition, the
distance between the lens of the CCD camera and the plant
canopy, the exposure time of the camera, and the speed of
the conveyer belt were adjusted to 56.3 cm, 4 ms and 7 mm/s,
respectively, before image acquisition to acquire clear and
non-deformed images.

The original hyperspectral images were corrected to the dark
and white reference images. The entire plant image was isolated
from the soil and conveyer belt backgrounds, using the image
segmentation method, and identified as the region of interest
(ROI). For each ROI, the spectral reflectance values of all
pixels within the area were averaged. Wavelet transformation,
employing Daubechies 6 with decomposition scale 3 was used for
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removing the background in the spectrum (Carlomagno et al.,
2004; Shao and Zhuang, 2004). Other preprocessing methods,
namely, standard normal variate, multiplicative scatter correction
and Savitzky–Golay smoothing were then implemented to
decrease the noise and enhance possible spectral features related
to the property studied. The spectral data preprocessing methods
were compared and tested, but these preprocessing methods did
not improve the predictive capability of the model, compared
to the wavelet transformation procedures (Supplementary
Table S1).

Chlorophyll Fluorescence Imaging
ChlF images of the whole plants were captured at room
temperature using a FluorCam 800 imaging system (Photon
Systems Instruments, Brno, Czechia). The Chl-F emission
transients were captured by a CCD camera (SV-H 1.4/6,
VS Technology, Tokyo, Japan) in a series of images
(696 pixels × 520 pixels, spectral × spatial). The system
included four LED panels to supply actinic light and saturating
flashes. The kinetic chlorophyll fluorescence imaging system
was that previously described by Cen et al. (2017). The plant
was dark adapted for 30 min before measurements were taken.
Fm was recorded following a strong light flash (1,400 µmol
photons m−2 s−1) at 5.56 s. Then, the plant was irradiated with
continuous actinic light (120 µmol photons m−2 s−1) for 70 s,
supplemented with five saturating pulses to measure the Fm
signals during light adaptation (Fm_Ln) and steady-state Fm in
light (Fm_Lss) at 31.92, 41.92, 51.92, 71.92, and 91.92 s of actinic
light. Three saturated pulses were applied after switching off the
actinic light to measure the Fm signals during dark relaxation
(Fm_Dn) (Supplementary Figure S1). With this system, various
fluorescence signals could be obtained. For each ROI, the
fluorescence parameter values of all pixels within the area were
averaged. Many different fluorescence parameters were used to
characterize the various aspects of photosynthetic performance
comprehensively.

The FluorCam7 (PSI) software allows the determination of
the area generating a fluorescence signal in any given image. For
maize plants, the area of the entire plant was estimated using
ROI pixel numbers, and was used to monitor plant growth. ChlF
transients of the entire plant imaged with the time points were
analyzed. Once chlorophyll fluorescence images were obtained,
the entire illuminated plant was freeze-clamped in liquid N2 and
stored at −80◦C until used for shikimic acid and chlorophyll
concentration assays.

Analysis of Shikimic Acid and
Chlorophyll Concentrations
The determination of shikimic acid in maize leaves followed the
procedure described by Singh and Shaner (1998), with some
modifications. Frozen leaf tissue was rapidly homogenized in
0.25 M HCl, at a ratio of 0.1 g: 1.5 mL. The extract homogenate
was centrifuged at 15,000 × g for 5 min at 4◦C. An aliquot
(200 µL) of the supernatant from the test sample was mixed
with 2 mL 1% (v/v) periodic acid solution to oxidize shikimic
acid. After 3 h of incubation at room temperature, the sample

was mixed with 2 mL 1 M NaOH, and 1.2 mL 0.1 M glycine.
The solution was thoroughly mixed, and the optical density at
380 nm was measured immediately to quantify the shikimic acid
concentration, following reference to a calibration curve.

For the determination of chlorophyll concentration, the
pigments were extracted from 0.1 g frozen leaf tissue immersed
with 2 mL of 95% ethanol for 24 h in dark environment.
Chlorophyll a and b concentrations were then determined
spectrophotometrically according to Arnon (1949). Shikimic acid
and chlorophyll concentrations were expressed on a fresh weight
basis.

Data Analysis and Image Visualization
Chemometric methods, including partial least squares
discriminant analysis (PLS-DA) (Feng et al., 2017), PLSR
(Wold et al., 2008), SPA (Liu and He, 2009), and RF algorithm
(Li et al., 2012) were used in the present study to investigate
and screen the responses of the WT and TG maize plants to
glyphosate stress.

Hyperspectral imaging data contains redundant
multicollinearity information among contiguous wavelengths
(Liu et al., 2014). SPA is a forward selection approach, which
selects combination of variables with minimal collinearity
information (Wang et al., 2015). The principle of the SPA
method was described by Liu and He (2009). In this case, SPA
was firstly used to select sensitive wavelengths and to speed up
the prediction models from hyperspectral imaging data. The
sensitive bands could be determined on the basis of the smallest
root mean error of prediction in validation set of multiple linear
regression calibration (Liu and He, 2009). The RF approach
works on an iterative pattern. This selection method is based on
the reversible-jump Markov chain Monte Carlo, and its output
features provide the relative selection probability, identifying
the important feature (Li et al., 2012). In the present work,
RF was performed on all the ChlF parameters to extract the
important photosynthetic fingerprint for detecting the response
to glyphosate treatment of the crop canopy.

Partial least squares is a powerful chemometric method which
has proved to be stable, accurate and highly predictive (Wold
et al., 2008). It can handle both univariate and multivariate
responses and is computationally fast. Leave-one-out cross-
validation was used to determine the optimal number of latent
variables (LVs) in the calibration model. PLSR is used to find the
fundamental relations between two matrices (X and Y) and to
explore the linear regression model between X and Y. For spectral
data, PLSR was used to implement predictive modes based on the
full wavelengths and the sensitive wavelengths. The X matrices
presented the spectral data, and the Y matrices presented the
shikimic acid concentrations. For ChlF parameters, the PLSR
model was developed to construct the predictive models based
on the ChlF parameters and ChlF features. The two matrices,
X (here: chlorophyll fluorescence parameters) and Y (here:
shikimic acid concentrations), were interactively decomposed
into LVs. Before establishing the prediction models, we detected
the outliers for both spectral data and ChlF parameters based on
the prediction of shikimic acid concentration by the PLSR model,
using all the samples. After removing the outliers, the data set was
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divided into two subsets by sample set portion based on the joint
x–y distances algorithm (Galvão et al., 2005), a calibration set
containing 144 samples and a prediction set with the remaining
72 samples.

Partial least squares discriminant analysis was used to find
the discrimination of glyphosate phytotoxicity damage groups for
the purpose of classification the glyphosate-tolerant transgenic
plants. For both spectral data and ChlF parameters, the PLS-
DA model was established by assigning a dummy variable 1 or
2 reference values for all the sample. It is an arbitrary number
that indicates whether the sample belongs to a specific group or
not. The health samples included all the TG plants and WT plants
sprayed with water, while samples with glyphosate phytotoxicity
damage included those of WT plants sprayed with glyphosate.
The health plants were assigned a value of 1, and those glyphosate
phytotoxicity damage plants were assigned a value of 2. It was
health sample if the value was between 0.5 and 1.5. The glyphosate
phytotoxicity damage sample would be classified correctly if
the values was between 1.5 and 2.5, otherwise, the sample was
considered as incorrectly. The data set of every treatment time
was divided into two subsets with the ratio of 3:1, a calibration set
containing 45 samples and a prediction set with the remaining 15

samples. The accuracy of the discrimination for both calibration
and prediction sets is expressed as the fraction of correctly
classified samples to the total samples.

Each pixel in a hyperspectral image has a corresponding
spectral fingerprint which provides the foundation for
constructing the chemical images (Zhang et al., 2016a,b). Regions
of the image with the same spectral information should have the
same chemical composition. It was impossible to measure the
physiological parameters of each pixel, so the average value for
the physiological parameters and the corresponding spectrum
from each sample were used for calibration. To develop a
low-cost multispectral imaging device for further plant breeding
application, the determination of the corresponding chemical
composition of each pixel on the hyperspectral images was
always achieved with the calibration model established with
the sensitive wavelengths. In the current study, the optimal
prediction model, combined with the image processing method,
was used to establish the shikimic acid concentration prediction
map for visualizing the spatial distribution between the samples.

The performances of the PLSR models were evaluated by
calculating the coefficient of determination for the calibration
sets (R2 c) and the prediction sets (R2 p), as well as the root

FIGURE 1 | Flowchart of determination of shikimic acid concentration in maize leaves based on chlorophyll fluorescence and hyperspectral imaging.
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mean square error of the calibration (RMSEC) and prediction
(RMSEP) sets. A better model should have a higher coefficient of
determination and lower root mean square error value for both
calibration and prediction sets. Figure 1 shows the main steps for
the whole procedure.

Statistical Analysis
Statistical comparisons were made by a one-way analysis
of variance (ANOVA). The differences between means were
established using the Student–Newman–Keuls tests (p < 0.05)
by SPSST version 18.0 statistical program (SPSS Inc., Chicago,
IL, United States). Unscrambler X version 10.1 software (CAMO
AS, Oslo, Norway) was used to process the PLSR and PCA
programs. The SPA and RF methods were developed using the
relative toolbox of MATLAB R2014b (The MathWorks, Natick,
MA, United States). The chemical image was also developed in
MATLAB R2014b. OriginPro 9.0SR0 (Origin Lab Corporation,
Northampton, MA, United States) graphing software was used to
draw the graphs.

RESULTS

Comparison of Glyphosate Injury Levels
In our research, the glyphosate-tolerant maize line, SK12-
5, was obtained by expression of the bacterial EPSPS from
Agrobacterium sp. strain CP4. This TG maize is highly tolerant
to glyphosate and showed no visible injury 8 days after spraying
with glyphosate (Figure 2).

The levels of shikimate in a damaged crop indicate glyphosate
injury as glyphosate inhibits the biosynthesis of aromatic
amino acid biosynthesis, which causes accumulation of the
precursor, shikimic acid, in plants (Singh and Shaner, 1998).
The concentration of shikimic acid increased rapidly with time
in the glyphosate-treated WT maize, but, as expected, low
levels of shikimate were observed in TG maize plants compared
to WT after the same number of days following treatment
with glyphosate (Figure 3A). The shikimic acid concentration
increased in WT maize over the time course but remained
relatively constant for TG maize. For example, the amount of
shikimic acid in WT maize was 1.4 times more than in TG plants
at 8 days.

To further investigate the relative response of the two maize
genotypes, we compared the effect of glyphosate stress on the
time course of the response of two common ChlF parameters,
Fv/Fm and NPQ. The parameter Fv/Fm reflects the photochemical
efficiency of PSII and is used as a sensitive bioindicator to
evaluate a plant’s photosynthetic performance (Porcarcastell
et al., 2014), while NPQ reflects heat-dissipation of chlorophyll
excitation energy in antenna systems and is considered to be
a good indicator of “excess excitation energy” (Maxwell and
Johnson, 2000). We observed clear differences in glyphosate
responses between WT and TG maize. The results demonstrated
that glyphosate produced phytotoxic effects on WT maize and
caused significant decreases in photosynthesis, with decreased
Fv/Fm and increased NPQ 6 days after glyphosate application
(Figures 3B,C). On the other hand, Fv/Fm and NPQ were

FIGURE 2 | Phenotype of wild-type (WT) and transgenic (TG) maize sprayed
with glyphosate after 2, 4, 6, and 8 days, compared with the corresponding
control ones (in their original RGB color format).

unchanged for TG maize during the experimental period after
glyphosate application.

Additionally, the leaves of WT appeared both chlorotic and
necrotic after 8 days exposure to glyphosate. The concentrations
of the different chlorophylls (chlorophyll a, chlorophyll b, and
chlorophyll a+b) decreased in the leaves of the WT in response
to glyphosate, whereas, in the case of TG, there was no significant
effect of glyphosate treatment on chlorophyll concentrations
(Figures 3D–F).

Time Course of Hyperspectral Spectral
Data Response to Glyphosate Treatment
Following on from the results which showing that the destructive
assays to determine shikimic acid and chlorophyll concentrations
demonstrated differences between the response to glyphosate of
the WT and TG genotypes, non-invasive techniques, namely Vis-
NIR HIS and ChlF imaging, were then tested to detect effects
on photosynthesis. The Vis-NIR spectral dataset consisted of 216
samples, including TG and WT maize plants, over the spectral
range of 380.67–1030.03 nm. The beginning and end regions of
the spectra were accompanied by a large amount of noise caused
by the optical instrument and the measurement conditions, so
were excluded and only the range of 427.75–948.49 nm was used
for analysis. The Vis-NIR spectral characteristics of the plant
canopy showed important information related to the pigment
concentrations, cell structures, and the biochemical composition
of the leaves (Rathod et al., 2013). All the sample spectral profiles
showed similar spectral trends, but there were obvious average
spectral reflectance value differences between the genotypes
(TG vs. WT) and the treatments (water vs. glyphosate) 6 days
after glyphosate (or water) application (Figure 4). WT plants
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FIGURE 3 | Time-course effect of glyphosate on the responses of leaf shikimic acid concentration (A), Fv/Fm (B), NPQ (C), chlorophyll a (D), chlorophyll b (E), and
chlorophyll (a+b) content (F) in WT and TG maize plants. Values are presented as the means plus error bars, where the error bars represent the SD of the mean.
Within a graph, any two bars with a common letter are not statistically significant (P > 0.05).

treated with glyphosate exhibited different spectral behavior
than did either glyphosate-treated TG plants or the WT control
several days after treatment. In the visible region of 400–
780 nm, WT plants treated with glyphosate had higher spectral
reflectance values than did glyphosate-treated TG plants and
WT control plants after 6 days treatment, which might be
caused by the decrease in chlorophyll concentration. In the NIR
region (780–950 nm), glyphosate-treated WT plants had lower
reflectance values 6 days after glyphosate treatment than did
glyphosate-treated TG and control WT plants, effects which
were mainly caused by influences on biochemical composition
and cellular structure. Glyphosate is a slow-acting herbicide that
takes a long time to exhibit the visual symptoms of herbicide
damage (Sammons and Gaines, 2014; Figure 2). Therefore,
the phenotyping difference in response to glyphosate stress
between the two maize genotypes (tolerant TG and sensitive
WT) was captured by the Vis-NIR spectral signature after 6 days
treatment.

The canopy Vis-NIR spectral signal response to gene-
environment interactions is the theoretical foundation for finding

the mathematical relationships between spectral information
and the glyphosate-induced effects. The amount of shikimate
accumulation in response to glyphosate treatment is the
quantitative index for examining glyphosate tolerance of a
plant. Therefore, the combination of spectral information
and multivariate analysis using PLSR was applied to achieve
rapid and real-time quantification of shikimate concentrations
in different genotypes of maize under stress and control
environments. It is universally known that the Vis-NIR HIS
dataset has high dimensionality of variables that always exhibit
collinearity (Liu et al., 2014). Recent research has proposed
band selection using improved sparse subspace clustering (Sun
et al., 2015), dissimilarity-weighted sparse self-representation
(Sun et al., 2016), SPA, uninformative variable elimination,
competitive adaptive reweighted sampling (Zhang et al., 2016a),
and so on. Here, SPA was firstly implemented to select
the sensitive wavelengths which carried the most significant
information for predicting shikimic acid concentration. Thirteen
wavelengths (446, 452, 473, 505, 524, 534, 568, 594, 673,
704, 715, 734, and 949 nm), with RMSE of 11.54, were
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FIGURE 4 | Profiles of average spectra from the visible and near-infrared ranges after 2 (A), 4 (B), 6 (C), 8 (D) days glyphosate treatment on TG and WT maize
plants.

identified by the SPA method (Figure 5). Optimal wavelengths
selection aims at selecting wavelengths subset has maximum
information and the selected appropriate wavelengths subset
with minimum correlation with other wavelengths (Sun and
Liu, 2012). Therefore, simple correlation analysis was conducted
between each selected wavelengths and their spectral response
to corresponding shikimic acid concentration (Supplementary
Figure S2A). There were still high correlation coefficients found
between some wavelengths. PLSR model was implemented to
evaluate the actual roles of sensitive wavelengths. The predictive
capability of PLSR model was reduced with the input number of
wavelengths decreased (Supplementary Figure S2B). When the
number of wavelengths was decreased to 11, the PLSR model
was still considered as acceptable with R2

c of 0.79 (RMSEC,
13.36) and R2

p of 0.82 (RMSEP, 13.38). Therefore, 11 wavelengths
were selected as the sensitive wavelengths related to shikimic
acid concentration. The majority of the sensitive wavelengths
were located in the Vis region (380–780 nm) as a result of
light absorption by the chlorophylls (Pan et al., 2015), which
is consistent with the results that chlorophyll concentration
decreased in glyphosate-treated WT plants (Figures 3D–F). In
addition, the absorptions at ∼950 nm were assigned to the
second overtones of O-H stretching of water (Zhao et al.,
2016).

To evaluate the actual roles of individual features, the full
spectral range (412 wavelengths) and the above-mentioned
sensitive wavelengths (11 wavelengths) were therefore set as the
input of the PLSR model (Figure 6). The PLSR model established
over the whole range of Vis-NIR spectral data fitted well with
the results for shikimic acid concentration, with an R2 c value
of 0.81 and an R2 p value of 0.82 (Figure 6A). The optimal
PLSR model was obtained with nine LVs. When the number
of wavelengths was decreased to 2.67% of full spectral range,
the PLSR model developed for the sensitive wavelengths had
similar statistical characteristics compared to that based on the
whole spectrum (Figure 6B). The first nine LVs were selected to
establish the optimal model. The optimal model for constructing
the quantitative relationship between shikimic acid concentration
and spectral reflectance is shown as follows:

Y = 484.65X704 nm − 1018.89X5343 nm − 887.77X673 nm+

304.06X568 nm + 1645.31X505 nm + 354.86X734 nm+

1092.13X524 nm + 449.62X949 nm − 1997.31X446 nm

−589.93X594 nm + 1283.30X452 nm − 1126.19

where Y is the predicted shikimic acid concentration, and Xi nm
is the sensitive wavelength of the reflectance spectra.
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FIGURE 5 | Selection of sensitive wavelengths by the successive projections algorithm: distributions of important variables for shikimic acid concentration (A); final
number of selected variables determined on the basis of the root mean square error (RMSE) of validation set of multiple linear regression models (B).

The final step in employing hyperspectral imaging was
to construct the chemical image for rapid and non-invasive
detection of plant phenotyping changes caused by glyphosate
stress. On the basis of the established calibration model, the
shikimic acid concentration of every pixel in the examined
hyperspectral images can be obtained by transferring the optimal
model to each pixel. Figure 7 illustrates the visualized image of
the response over time of shikimic acid concentration in maize to
treatment with glyphosate. There were no obvious morphological
changes between TG and WT under glyphosate treatment at the
early stages. With HIS, however, the differences between WT
and TG plants were obvious, evolving from warm colors (high
shikimic acid values) to cold colors (low shikimic acid values)
after 6 days of treatment.

Time Course of Changes in Chlorophyll
Fluorescence Characters in Response to
Glyphosate Treatment
Changes in the commonly used ChlF parameters, Fv/Fm and
NPQ, indicated that glyphosate supply could cause changes

in the physiological state of the photosynthetic machinery of
the WT plants, and could be used to distinguish glyphosate-
tolerant from glyphosate-sensitive genotypes (Figures 3B,C).
However, they might be not the best biomarkers for identifying
superior plant phenotypes. We used the RF feature selection
method to identify parameters that showed the most sensitive
response (Figure 8). In the present study, a small number
of ChlF parameters displayed with high selection probabilities
(over 0.4). Most of the parameters were with low selection
probabilities. For the first 20 significant ChlF parameters selected
by RF, the selection probabilities were 0.918, 0.673, 0.671, 0.666,
0.614, 0.581, 0.547, 0.530, 0.486, 0.451, 0.411, 0.389, 0.377,
0.372, 0.356, 0.308, 0.294, 0.273, 0.272, and 0.266, respectively.
PLSR model was implemented to evaluate the actual roles of
individual features selected by RF. Supplementary Figure S3
shown the result of coefficient of determination by number
of ChlF parameter included in the model. R2

c value increased
with the number of parameter in the model. However, the R2

c
did not increased when the number was eleven. In the present
study, eleven ChlF parameter displayed selection probabilities
larger than 0.4. Therefore, the ChlF parameters with selection
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FIGURE 6 | Plot of reference vs. predicted values of shikimic acid concentration derived from the PLSR model based on the whole spectrum (A) or the sensitive
wavelengths (B).

probabilities higher than the threshold of 0.4 were selected as
features. And their performances were related to the response
of WT and TG maize to glyphosate treatment (Figure 9).
The distance from the center of the spider plot indicated
the relative change in the selected ChlF parameters over the
entire evaluation period. We observed clear differences in these
features in response to glyphosate stress between WT and TG
maize. No symptoms were visible in WT until 8 days after
application of glyphosate, when the leaves of maize became
withered and necrotic. In contrast, no such symptoms were
evident in glyphosate-treated TG maize at any point during
the experimental period. The foliar application of glyphosate
impaired the PS II photochemical efficiency of the WT plants,
which was clearly reflected in the significantly reduced values
for Fv/Fm, qL, Qp, and QY in the first few days after
glyphosate application (Figure 9A). For TG maize plants, the
selected ChlF features recorded in glyphosate-treated plants

remained similar to those recorded in the control WT plants
(Figure 9B).

To further assess the capability of features selected using the
RF approach to evaluate glyphosate tolerance in plant breeding
populations, we developed a PLSR model based on all the
ChlF parameters and glyphosate-sensitive parameters to calculate
the relationship between the ChlF parameters and glyphosate
stress-induced shikimic acid concentration (Figure 10). The
optimal number of LVs in the PLSR models were all defined as
three. The PLSR model established that all the ChlF parameters
had a better predictive capability than the model established
on the glyphosate-sensitive features, with an R2

c value of 0.85
(RMSEC = 11.16) and an R2

p value of 0.83 (RMSEP = 11.90).
The PLSR model calculated on parameters for shikimic acid
concentrations in leaves was less accurate, but was still considered
acceptable (R2

c , RMSEC, R2
p, RMSEP were 0.82, 12.13, 0.83, and

11.84, respectively). These results demonstrated the capability
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FIGURE 7 | Visualization of the response (over time) of shikimic acid
concentration to glyphosate treatment in WT and TG maize. The color bar,
from blue to red, shows increasing levels of shikimic acid concentration.

of the selected ChlF parameters to be optimal candidates
for fluorescence phenotyping markers in transgenic maize
glyphosate-tolerance breeding programs.

Chlorophyll fluorescence images showed heterogeneities and
temporal variations over the whole plant. Local changes in Fv/Fm
(the most glyphosate-sensitive parameter selected by the RF
method) were observed between WT and TG maize (Figure 11).
The given image was plotted on a false color pattern, where
the corresponding color represents its relative value to the
fluorescence intensity of the pixel. As expected, Fv/Fm decreased
during the time-course of response to glyphosate in WT maize.
However, this damage to PSII (suggested by Fv/Fm) seems to be
a late event in the present research. The first pre-symptomatic
effects were detected at 6 days after glyphosate application to WT
maize, using images of the ChlF parameter Fv/Fm. Effects like
the decrease of Fv/Fm, the increase in NPQ and the concomitant
reduction of qL, qP, QY are bioindicators for evaluating the
effects of induced damage on the photosynthetic machinery.

Classification of Glyphosate-Tolerant
Maize
Once it was determined that spectral information and ChlF
fingerprint could be used for predicting shikimic acid
concentration, we tested the approach by establishing a
model capable of discriminating the glyphosate-tolerant TG
maize. The classification model were conducted on the sensitive

wavelength and significant ChlF parameters. Table 1 shows
recognition accuracies obtained from the calibration and
prediction sets. For the first few days after treatment, the
classification ability of PLS-DA model calculated on spectral
information was slightly worse than that obtained from ChlF
information. The calibration set was 97.78% accurate and 93.33%
for prediction set 6 days after spraying with glyphosate based
on ChlF parameters. The classification capacity of PLS-DA
models established on spectral features were also acceptable, with
accuracy of 91.11% for calibration set. The PLS-DA established
on spectral information and ChlF parameter achieved same
recognition results at 8 days application of glyphosate. The result
demonstrated that glyphosate-tolerant transgenic maize could be
identified 6 days after glyphosate treatment with the developed
protocol.

DISCUSSION

Glyphosate is currently one of the most important active
ingredients for weed control, being toxicologically and
environmentally safe, as well as offering use as a growth
regulator (Duke, 2008). However, glyphosate is a broad-spectrum
herbicide that also injures or kills following post-emergence
application to crops, when it is in direct contact with foliage. The
introduction of transgenic glyphosate-tolerant crops, associated
with post-emergence glyphosate use, has resulted in a major
reduction in the use of other herbicides (Shaner, 2000). TG
maize, transformed with a bacterial gene encoding a glyphosate-
tolerant EPSPS, showed more than 100-fold greater tolerance
to glyphosate in comparison with its parental control at the
third-leaf stage (Hetherington et al., 1999).

An important procedure in plant breeding is the
fixation of superior plant phenotypes in the development
of improved cultivars suited to crop breeders. All mentioned
characteristics evaluated, including shikimate acid concentration,
ChlF parameters, chlorophylls, indicted that glyphosate
treatment resulted in photosynthetic efficiency reduction and
photosynthetic apparatus damage of WT maize (Figure 3). TG
maize showed substantially greater resistance to glyphosate
application than the corresponding untransformed parental
control. However, the biochemical analysis methods for
measuring shikimate acid concentration and chlorophyll
concentration are always destructive, time-consuming, and
having tedious and high costs; thus, it is unsuitable for online
application. Therefore, Non-invasive and high-throughput
imaging techniques, including Vis-NIR HIS and ChlF imaging,
were applied to plant phenotyping, and the results analyzed and
compared in the next step of the research.

Sub-lethal concentrations of glyphosate had a significant effect
on the leaf water content of Bolboschoenus maritimus after
prolonged treatment (Mateos-Naranjo and Perez-Martin, 2013).
It is suggested that glyphosate might alter the internal cellular
structure and physiology, resulting in changes in chlorophyll
concentration and leaf water content, which was consistent with
a previous study (Gomes et al., 2014). In the present study, Vis-
NIR HIS combined with chemometric methods was assessed
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FIGURE 8 | Selection probability of each feature by the Random Frog algorithm. The orange line highlights the selection probability threshold of 0.4.

FIGURE 9 | Relative changes in mean values of selected chlorophyll fluorescence parameters in WT (A) and TG (B) maize plants treated with glyphosate.

TABLE 1 | Performance of the discrimination models based on the sensitive wavelengths and sensitive chlorophyll fluorescence parameters.

Time after glyphosate treatment Sensitive wavelengths Sensitive chlorophyll fluorescence parameters

Par[a] Calibration set Prediction set Par[a] Calibration set Prediction set

2 days 9 88.89% 68.89% 2 84.44% 80.00%

4 days 6 88.89% 80.00% 3 91.11% 80.00%

6 days 8 91.11% 80.00% 6 97.78% 93.33%

8 days 10 95.56% 100% 2 95.56% 100%

[a]Model parameters indicate the optimal number of latent variables for establishing the partial least squares discriminant analysis calibration model.
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FIGURE 10 | Plot of reference vs. predicted values of shikimic acid concentration, derived from the PLSR model based on all the ChlF parameters (A) and the
sensitive features (B).

to predict shikimic acid concentration in leaves. A calibration
model was successfully developed by PLSR, based on 11 sensitive
wavelengths, with high R2-values of 0.79 for the calibration
set and 0.82 for the prediction set (Figure 6B). In addition,
glyphosate injury was shown clearly in the shikimic acid
concentration prediction map (Figure 7). The results indicate
that phenotyping system established by HIS cameras can be used
to screen the glyphosate tolerance crop and detect the changes
of glyphosate stress for the breeding purposes. However, the
low resolution of the Vis-NIR imaging system and the need for
algorithms to achieve image segmentation caused partial loss
of pixel information, resulting in changes in crop traits in the
prediction map.

Chlorophyll fluorescence parameters have the potential to
quantify glyphosate-induced stress in the first few days more
effectively than do visual evaluations, and make it possible
to differentiate tolerant genotypes from those sensitive to the
aforementioned stress. Photosynthesis-targeting herbicides, such
as diuron, are known to interrupt the PS II electron transport
chain and thus reduce the ability of the plant to turn light
energy to chemical energy (Rutherford and Krieger-Liszkay,
2001). Consequently, alteration of photosynthetic electron flow
caused by diuron can be measured by monitoring induced ChlF
parameters. Haynes et al. (2000) studied the impact of diuron
on photosynthesis in seagrass by measuring ChlF. A decline
in effective quantum yield was found with 2 h of diuron
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FIGURE 11 | Chlorophyll fluorescence images of maximum photochemical quantum yield of PSII (Fv/Fm) for the whole canopy of WT and TG maize during the time
course study of response to glyphosate application. The color bar on the right side of the image represents the ranges of values and how they mapped to the color
palette.

exposure in Cymodocea serrulata, Halophila ovalis, and Zostera
capricorni. Significant changes in ChlF parameters, observed at
low concentrations of diuron were also indicative of alternation
in the structure of photosynthetic apparatus of Saccharina
japonica Aresch (Kumar et al., 2010). However, glyphosate do
not directly affect the photosynthetic apparatus, and in this case
clear change of ChlF parameters can be detected as indirect effect
of a secondary metabolic perturbation that results in damage
in the photosynthetic apparatus (Hunsche et al., 2011). A clear
difference in ChlF parameters, in response to glyphosate response
between WT and TG maize, was observed (Figure 9). Glyphosate
treatment of the WT regulated the light-harvesting capacity,
causing the down-regulation of photochemical quenching
capacity and the up-regulation of non-photochemical quenching
capacity in PS II. However, this damage to PSII (suggested by the
effects of Fv/Fm and NPQ) seems to be a late event, occurring
6 days after glyphosate treatment. This is in agreement with the
results reported by Mateos-Naranjo et al. (2009) for glyphosate
treatments of cordgrass. The R2

c(0.82), RMSEC (12.13), R2
p (0.83),

and RMSEP (11.84) values obtained from the regression models
established between the sensitive ChlF parameter and shikimic
acid concentration indicated that this system could be suitable
for high-throughput screening in a plant breeding program
(Figure 10).

A decreased value of Fv/Fm clearly indicated a blocked
electron transport chain caused by herbicide application and
subsequent damage to photosynthetic structures (Pavlović et al.,
2014). The Fv/Fm parameter has been used to successfully
monitor the effect of glyphosate on soybean (Huang et al.,

2012), willow (Gomes et al., 2016), Bolboschoenus maritimus
(Mateos-Naranjo and Perez-Martin, 2013) and Eleusine indica
(Zhang et al., 2015). ChlF imaging, using the parameter Fv/Fm,
has been widely used to screen for perturbations in metabolic
processes in plants exposed to abiotic and biotic stresses (Li
et al., 2014). Barbagallo et al. (2003) suggested using the Fv/Fm
imaging to screen plants treated with the herbicide imazaphyr
for evidence of metabolic perturbations. Because Fv/Fm is a
commonly used indicator of damage to the photochemical
apparatus, we proposed that it could be the preferred parameter
for screening for the glyphosate-tolerant phenotype in plant
breeding programs.

Glyphosate phytotoxicity could influence photosynthetic
processes, causing damage to cellular structure and interfering
with leaf water and chlorophyll content, which could be captured
by HIS techniques. Recording of ChlF transients and imaging
in our experiments allowed the quantification of photosynthetic
parameters that provide insight into the changes occurring in
PSII function following glyphosate application. The multivariate
chemometric analysis for predicting shikimic acid concentration
and the discrimination models demonstrated that both HIS
and ChlF imaging techniques could be used for screening and
characterization of the glyphosate-tolerant maize genotype to
facilitate plant breeding programs. In the future, more samples
with a wide range of stress degree caused by glyphosate should be
studied to established more accurate and robust inspection model
which could be applied in plant breeding programs. Furthermore,
large number of genotypes and validation of the predictions
of classifications (susceptible vs. resistant) should be studied to
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demonstrate the potential of screening based on HIS and ChlF
imaging.

AUTHOR CONTRIBUTIONS

XF, CY, YC, JP, LY, HW, and TS performed the measurements.
XF and YH designed the experiments and wrote and reviewed
the manuscript. YH reviewed the initial design of the experiments
and made guidance for the writing of the manuscript. All authors
reviewed the manuscript.

FUNDING

This work was supported financially by the Key R&D
Project of Zhejiang Provincial Science and Technology
Department (2015C02007), National Key R&D Program of China
2016YFD0300606, and Chinese Postdoctoral Science Foundation
(No. 2016M601940).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpls.2018.00468/
full#supplementary-material

FIGURE S1 | Chlorophyll fluorescence trace illustrating the terminology and
sequence of events for acquiring raw fluorescence images from plants. Dn, during
dark relaxation; Ln, during light adaptation; Lss, in steady-state.

FIGURE S2 | Correlation coefficients between each selected wavelengths and
their spectral response to corresponding shikimic acid concentration (A) and
performance of PLS-DA model established on increasing sensitive wavelengths
included in the model (B).

FIGURE S3 | Results of analysis by the PLSR models for estimating shikimic acid
concentration with the increasing number of sensitive ChlF parameters included in
the model.

TABLE S1 | Prediction results of the pre-processing models constructed by partial
least-squares regression (PLSR) based on spectral information for shikimic acid
concentration.
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