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The availability of high-throughput data from transcriptomics and metabolomics

technologies provides the opportunity to characterize the transcriptional effects on

metabolism. Here we propose and evaluate two computational approaches rooted in

data reduction techniques to identify and categorize transcriptional effects onmetabolism

by combining data on gene expression and metabolite levels. The approaches determine

the partial correlation between twometabolite data profiles upon control of given principal

components extracted from transcriptomics data profiles. Therefore, they allow us to

investigate both data types with all features simultaneously without doing preselection

of genes. The proposed approaches allow us to categorize the relation between pairs

of metabolites as being under transcriptional or post-transcriptional regulation. The

resulting classification is compared to existing literature and accumulated evidence

about regulatory mechanism of reactions and pathways in the cases of Escherichia coli,

Saccharomycies cerevisiae, and Arabidopsis thaliana.

Keywords: E. coli, S. cerevisiae, A. thaliana, partial correlation, principal component analysis, metabolomics, data

reduction, regulation

1. INTRODUCTION

Metabolism is the integrated output of transcription, post-transcriptional processes, translation
and post-translational processes, and reflects the environment and changes in the availability
of nutrients (Stitt, 2013; Johnson et al., 2016). The combined outcome of the aforementioned
processes is the metabolic state of the system, observed in its metabolite and enzyme levels as well
as the resulting reaction rates. The rates of metabolic reactions, however, are difficult to monitor
and require involved computational integration of data and models (Tang et al., 2009; Sims et al.,
2013). With advances in high-throughput techniques for monitoring of both metabolite and gene
expression levels, the biological community is faced with the challenge of evaluating and integrating
the obtained large-scale data to address several pressing questions: (i) which parts of metabolism are
under regulation from transcriptional and downstream processes? (Less and Galili, 2008; Moxley
et al., 2009; Haverkorn van Rijsewijk et al., 2011), (ii) how metabolism feeds back to transcription
to coordinate the systemic functions? (Pego et al., 2000; Kresnowati et al., 2006; Ladurner, 2006; Lu
et al., 2007; Kochanowski et al., 2017), and (iii) how and why are the changes at different cellular
layers, like transcription and metabolism, suppressed or propagated to other layers? (Price et al.,
2004; Gonçalves et al., 2017; Ledezma-Tejeida et al., 2017). In this context, we ask to what extent
purely statistical techniques can be used to investigate whether data from metabolomics platforms
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in combination with transcriptomics data corroborate existing
findings or yield new insights into transcriptional control of
metabolism.

Microarray and RNA-sequencing techniques can measure
several thousand genes from multiple conditions and time
points simultaneously (Meyers et al., 2004; Jain, 2012). In
contrast, metabolomics platforms provide measurements for
only a fraction of the metabolon, including all metabolites
in a given system (Fernie et al., 2004). Despite the growing
number of publically available data sets, the case in which
both data types are available from the same experiments is
limited to only few observations (i.e., experiments, time points,
replicates). Therefore, any method which is used to jointly
investigate transcriptomic and metabolomic data faces the
problem of high dimensionality of both data types and difference
in the number of components measured. As a result, various
multivariate statistics approaches have been evaluated to facilitate
the analysis of transcriptomic and metabolomic data from the
same experiments.

Whatever the multivariate statistical approach used, its aim is
to identify an association between one or more genes and one or
more metabolites. As a result, we can classify the methods into
those which establish an association between (i) single gene and
single metabolite, (ii) multiple genes and a single metabolite, (iii)
single gene and multiple metabolites, and (iv) multiple genes and
multiple metabolites. The first set of approaches is the simplest
and aims at identifying the association for a pair of gene and a
metabolite (Tohge et al., 2015; Cavill et al., 2016) by applying
different similarity measures, such as: Pearson and Spearman
correlation (Urbanczyk-Wochniak et al., 2003; Gibon et al., 2006;
Hannah et al., 2010) or time-shifted correlations, in case when
time-series data are analyzed (Walther et al., 2010; Takahashi
et al., 2011). A general observation is that there is a high number
of correlations between transcripts and metabolites, rendering
it challenging to determine molecular/cellular mechanisms, and
that one metabolite correlates to multiple transcripts, likely
due to pleiotropic effects (Urbanczyk-Wochniak et al., 2003;
Hannah et al., 2010). Further, the type of observed correlation
(positive or negative) highly depends on the experimental
condition. Along these lines, the resulting associations have also
been analyzed with methods from network analysis (Bradley
et al., 2008; Redestig and Costa, 2011). Approaches based on
correlation networks have been employed for annotation of
gene function given information about the compound class
and structure of the metabolite (Tohge and Fernie, 2010,
2012).

In the case where association between multiple genes and one
metabolite is to be identified one can use several approaches. For
instance, classical regression techniques can be readily employed,
with additional regularization to address the issue of high-
dimensionality of the data (Auslander et al., 2016). On the other
hand, dimension reduction techniques coupled with network
analysis can be used to identify such associations: For instance,
Inouye et al. (2010) identified modules of coexpressed genes
on which they perform principal component analysis (PCA).
The association (per Spearman correlation) between the first
principal component and a given metabolic data profile is used

as a means to determine which modules have influence on the
metabolite level. While regression-based analysis is unbiased,
in the sense that it can include all measured genes, it requires
large data sets for estimation of the model coefficients. On
the other hand, the identified modules based on correlation
may be change if new data are analyzed indicating bias in
the identified associations. In principal, by symmetry, these
approaches can be used to identify and study associations
between multiple metabolites and a single gene (Kochanowski
et al., 2017).

The most involved cases are those where associations are to
be established between multiple genes and multiple metabolites.
In this case, there have been several approaches developed and
used in the joint analysis of transcriptomics and metabolomics
data sets: Partial Least Squares (PLS) and its extensions (Bylesjö
et al., 2007) and Canonical correlation analysis (CCA) (Jozefczuk
et al., 2010). PLS aims to find the relation between two matrices
X and Y by estimating the direction in X that explains most of
the variance in Y (Boulesteix and Strimmer, 2007). Due to its
multivariate nature, PLS regression is difficult to interpret. The
orthogonal projections to latent structures (OPLS) was designed
to improve the interpretation of the regression. The approach
allows to remove variation form X, which is uncorrelated
(orthogonal) to Y . The advantage compared to PLS is twofold:
first, the orthogonal part of X can be separately investigated
and secondly and more important the removal of uncorrelated
variation increases the interpretation (Trygg and Wold, 2002;
el Bouhaddani et al., 2016). Given two data sets X and Y , CCA
finds the canonical variates, U = a′X and V = b′Y , so that
the correlation between U and V is maximized. The advantage
of CCA is, that it is invariant with respect to transformation
of the variables. However, the calculation of the CCA requires
the inverse of XXT which is challenging when the number of
transcripts or metabolites exceeds the number of observations
(as is the case for most biological studies). A solution to this
dimensionality problem is to focus on a subset of the data, so
that the number of transcripts (metabolites) is smaller than the
number of observations, whichmay introduce bias in the analysis
(Jozefczuk et al., 2010).

While the four classes of approaches can determine
association between a subset of genes and a subset of metabolites,
they cannot be used to determine if the relation between two
metabolites is under transcriptional or post-transcriptional
control. This question goes beyond the analysis of the affects
of transcript on the level of metabolites, but rather on the
coordination between metabolite levels. Addressing this issue
will shed light on the transcriptional control of metabolic
coordination. To this end, we propose two approaches rooted in
a combination of partial correlation and dimension reduction
techniques. We tested our proposed approaches with data
sets from E. coli, S. cerevisiae and A. thaliana to identify
metabolite pairs which are associated either by transcriptional
or post-transcriptional regulatory effects. Our proposed
approach might be used for biotechnology studies, where it can
suggest metabolites whose relationship is under transcriptional
regulation and is therefore easier to manipulate through genetic
engineering.
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2. MATERIALS AND METHODS

2.1. Data Used in the Study
The data used in this study were downloaded from the
supplementary of Jozefczuk et al. (2010) and contain
metabolomic and transcriptomic data from E. coli under
different conditions (cold, heat, change from glucose to
lactose and oxidative stress) as well as control treatment. The
metabolomic data were generated by gas chromatography-
mass spectroscopy (GC-MS) and contain 192 metabolites. All
measured metabolites were normalized to cell number and
the chromatographic internal standard. Transcript data were
measured with microarray based technique and 4,440 transcripts
were detected. The normalization procedure of the transcript
data is described in the Materials and Methods section of
Jozefczuk et al. (2010). In total 82 common data points were used
for the analysis. Additionally, A. thaliana data from the study
of Caldana et al. (2011) were used. The metabolomic data were
generated by GC-MS and consists of 92 metabolites measured
under the following conditions: 21◦C at 75µE m−2 s−1, 150µE
m−2 s−1 light intensity and darkness, 4◦C at 85µEm−2 s−1 light
intensity and darkness, 32◦C at 150µE m−2 s−1 and darkness.
Therefore, the analyzed data set consists of metabolic time series
covering 20 time points and gathered under seven different light
and temperature combinations. The normalization procedure of
both data types is described in the Materials andMethods section
of Caldana et al. (2011). Further, a data set from S. cerevisiae
containing metabolomic and transcriptomic data from three
different growth conditions, nitrogen upshift (shift from proline
two glutamine), nitrogen downshift (shift from glutamine two
proline) and Rapamycine treatment, was included. The data
set contains 256 metabolites measured with FIA-QTOF-MS
and 5,716 transcripts measured with Affymetrix chips (Oliveira
et al., 2015). The normalization procedure is described in the
Materials and Methods section of Oliveira et al. (2015) and
the data were used as provided in the Supplementary. As the
dimensions of the two data sets, i.e., transcripts and metabolites,
need to agree, only matching time points per experiment
were taken into account. The complete list of experiments
and the appropriate time points is provided in Supplemental
Table 1. In total 41 data points were used per metabolite and
transcript.

2.2. PCA and Partial Correlation
PCA is a statistical procedure that uses an orthogonal linear
transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated
variables called PCs. The PCs are ordered according to the
variance they explain (Wold et al., 1987).

Partial correlation measures the relationship (correlation) of
two variables while controlling for a third or more variables.
When using a single controlling factor, one calculates the first
order partial correlation. If the number of controlling factors is
higher, their information is recursively removed and the second
or higher order partial correlation is determined. The zero order
partial correlation is the same as the Pearson correlation. The
expression for recursive calculation of partial correlation between

the variables X and Ygiven a set of controlling variables in the set
V is given by

rXY .V =
rXY .V/Z − rXZ.V/ZrYZ.V/Z

√

1− r2XZ.V/Z

√

1− r2YZ.V/Z

. (1)

where Z ∈ V.

2.3. Combination of PCA and Partial
Correlations to Investigate Influence of
Transcripts on Metabolites
The combination of partial correlation and PCA allows the
calculation of the two approaches Transcriptional dependent
Partial Correlation (TPC) and Post-transcriptional dependent
Partial Correlation (PPC).

We compute the first p PCs of the transcript data and use
them as controlling variables for the partial correlation for each
combination of metabolites. The number of PCs to choose
was investigated based on the Broken-Stick model (Jackson,
1993), Kaiser-Guttman criteria (Yeomans and Golder, 1982)
and the Horn’s parallel analysis (PA) (Horn, 1965; Dinno,
2009). For the Broken-Stick model a distribution is calculated
λi =

∑p

k=i
1
k
, where p is the number of variables and λi

the eigenvalue of the ith component (Jackson, 1993). In the
Kaiser-Guttman approach, the PCs with an eigenvalue above the
mean of the eigenvalues are regarded as significant (Yeomans
and Golder, 1982). We performed Horn’s parallel analysis by
randomizing the transcript data and calculating the eigenvalues
for the randomized data. A PC is identified as significant
if its eigenvalue is larger than a chosen percentile of the
distribution of eigenvalues of that component. We performed
1,000 randomization and regarded a PC as significant, if it
exceeds the 99 percentile of the distribution of eigenvalues.
We then compute significant differences of Pearson correlation
and in-significant partial correlation pairs after removing the
first p representative PCs from the transcriptomic data, yielding
TPC. This gives transcriptionally regulated pairs of metabolites.
In contrast we can use the same first p representative PCs to
calculate the PPC, using the significant differences of Pearson
correlation and significant partial correlations.

2.4. Calculating Significant Differences
With Permutation Test
Testing for significant interactions of metabolites was performed
by permutating the transcript and metabolite data component-
wise. Calculations based on the two approaches are repeated for
each of the 5,000 permutations. For all approaches we adjusted
for multiple hypothesis testing, using Benjamini-Hochberg with
a significance level α = 0.01.

2.5. Algorithm Implementation
All analysis were performed in R (R-Core-Team, 2017) using
the default functions and the corr.test() function of the psych
package. For the recursive calculation of the partial correlation
the pcor.rec() function was used, downloaded at http://www.
yilab.gatech.edu/pcor.R. Evaluation of the permuted data to
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determine significance was implemented as stand-alone function.
The estimation of the Kaiser-Guttman and the Broken-Stick
model were done based on the provided function in the
supplemental material of Borcard et al. (2011).

3. RESULTS

3.1. Two Novel Methods for Categorization
of Metabolite Pairs Based on
Transcriptional Effects
In this study we developed two approaches that allow the
simultaneous investigation of transcriptomic and metabolomic
data from the same experimental setup (see Figure 1). The
novelty of the proposed approaches lies in the way the
transcriptomic data are used to partial out (remove) the effect
of the transcription layer from the metabolitc layer. Partial
correlation has been used to investigate large-scale data sets
from different omics technologies (de la Fuente et al., 2004;
Veiga et al., 2007; Ursem et al., 2008; Wu et al., 2013). Partial
correlation quantifies the association between two variables,
while controlling for the influence of another set of variables.
Therefore, it has been helpful in identifying non-spurrious
associations (Baba et al., 2004). However, as higher order partial
correlations are calculated iteratively, the calculation quickly
becomes unfeasible with large transcriptomic or metabolomic
data sets.

Our first approach, termed TPC, aims at identifying pairs
of metabolites whose association is related to transcriptional
regulation. The approach is composed of four steps: (1)
We calculate the first p principal components (PCs) of the
trancriptomic data, (2) we determine all metabolite pairs
which have a significant Pearson correlation coefficient, (3)
we determine all metabolite pairs which have non-significant
partial correlation upon removal of the controlling variables,
i.e., the p PCs from step (1), above, and (4) for the pairs
of metabolites in the sets obtained from (2) and (3), we
select those that show a significant difference between their
Pearson correlation and partial correlation values. The reason
for such construction of the approach is the following: if the
removal of the significant PCs leads to a non-significant partial
correlation between two metabolites, their association was due to
transcriptional regulation. As the significant PCs capture most of
the transcriptional effects, by finding the partial correlations we
remove most of the transcriptional influence on the association
between the two metabolites. The statistical tests ensure that the
consideration of the significant PCs indeed break the significant
association between metabolites and that the difference between
the values is significant. To determine statistical significance we
rely on permutation tests (see section Materials and Methods).

The second approach, termed PPC, follows a similar
methodology. Again, the significant PCs from the
transcriptomics data set are used as control variables in the
partial correlation analysis for pairs of metabolites. In contrast
to the TPC approach, we select those pairs of metabolites that
are significantly associated upon removal of the significant
PCs. Similar to TPC, we select those pairs of metabolites whose

partial correlations show significant difference from the values
of the respective Pearson correlation coefficient. The approach is
based on the premise that if correlation remains upon removal
of the transcriptional effect, the observed association is due
to post-transcriptional regulation of the two metabolites. The
significant difference to the observed Pearson correlation is
employed to ensure that the observed partial correlation is due
to post-transcriptional effects.

As both approaches relies on the estimation of principal
components from the transcriptiomic data, the question arises,
how many should be used for the analysis? More components
will increase the computation time, while a to small number
of PCs will not integrate sufficient transcriptomic information
into the analysis. Multiple approaches have been reported to
estimate the significant PCs. We employed the Kaiser-Guttman
criteria (Yeomans and Golder, 1982), the Broken-Stick model
(Jackson, 1993) and Horn’s parallel analysis (PA) (Horn, 1965;
Dinno, 2009) (see section Materials and Methods). Overall, we
used our TPC and PPC approach on three different data sets,
namely from E. coli, S. cerevisiae and A. thaliana (see section
Materials andMethods). To this end, we investigated the number
of significant PCs for each of the available data sets. The Kaiser-
Guttman approach suggested the use of three PCs in each of the
three data sets, whereas the Broken-Stick model suggest the usage
of only one PC for E. coli andA. thaliana and two for S. cerevisiae.
The PA approach confirms the one PC for E. coli and two for
S. cerevisiae. However, the approach estimates two significant PCs
for the A. thaliana data set. Overall, we found between one and
three significant PCs, depending on the approach and data set
(see Supplemental Figures 1–3). Therefore, we decided to use
three PCs as a good compromise between the variance of the
transcript data explained and the running time of the algorithm.

3.2. Transcriptional and
Post-transcriptional Control of Metabolite
Associations in E. coli
In this section, we applied our approaches with a transcriptomics
and metabolomics data set from E. coli (see section Materials
and Methods), containing the levels of 192 metabolites and
4,400 genes over five conditions. Employing the TPC resulted in
87 metabolite pairs under transcriptional control (Supplemental
Table 2), whereas 630 metabolite pairs were found to be
under post-transcriptional control with the PPC approach
(Supplemental Table 3). As a first control, we did not identify an
overlap between the pairs of metabolites detected with the two
approaches.

In a first general investigation we found no change in the
sign between Pearson and partial correlation. However, we
investigated, if the absolute value of the correlation increased
or decreased upon performing the partial correlation (Figure 2).
Most of the significant correlations had a lower value when using
partial correlation, in comparison to the Pearson correlation.
More than 80% of the positive correlations found with the
PPC approach decreased and around 60% of the positive
correlations from the TPC approach. However, the overall
observed differences between the values of Pearson and the
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FIGURE 1 | Schematic overview of the two approaches introduced in the study. The approaches Transcriptional dependent Partial Correlation (TPC) and

Post-transcriptional dependent Partial Correlation (PPC) use the first p PCs of the transcriptomic data as control variables in the partial correlation calculation.

partial correlation were between 0.005 and 0.03. Although, we
did observe a change in the correlation with our approach, the
magnitude is small.

In the following, we focused on the analyses of annotated
metabolite pairs to allow for a comparison to the results
previously reported in the literature. Out of the 87 metabolite
pairs from the TPC approach 19 metabolite pairs (Supplemental
Table 4) were unambiguously identified, whereas 132 of
the 630 pairs of the PPC approach (Supplemental Table 5)
were unambiguously identified. For instance, phosphate and
maltose showed Pearson correlation of −0.26 and a partial
correlation of −0.25. Both metabolites are part of the
phosphoenolpyruvate dependent phosphotransferase system
(PTS). The system consists of three enzymes performing the
phosphate transport from PEP onto a carbohydrate. Maltose is
one of the acceptors and belongs to the Glucose-class within the
PTS. The three enzymes in the PTS are EI, Hpr and EII, which
are encoded on the pts-operon, which itself is transcriptional
regulated and induced through glucose. We therefore found a
metabolite pair participating in a fully transcriptional regulated
pathway (Postma et al., 1993; Tchieu et al., 2001). The weak
negative correlation is explained by the fact that PEP acts a
the main phsophate donor and we therefore capture not the
complete active level of phosphates in this pathway. The negative
correlation is explained by the reversibility of the system. While
the sugar, here maltose, is only involved in one of the reactions

within the PTS, the phosphate can be transferred between the
three proteins (Deutscher et al., 2006). Therefore, an increase of
maltose will have a delayed effect on the phosphate pool.

Further, we investigated the literature regarding GABA and L-
ornithine showing a Pearson correlation of −0.30 and a partial
correlation of−0.28. The negative correlation is related to the fact
that the two metabolites are competing substrates for the same
enzyme. The processing of one metabolite by the enzyme leads
to an accumulation of the other substrate, which was shown in
simulation studies (Schäuble et al., 2013). GABA and L-ornithine
are connected via the enzyme 4-aminobutyrate aminotransferase,
since it can use GABA and N-acetyl-L-ornithine as substrates
(Lal et al., 2014) and N-acetyl-L-ornithine can be transformed
into L-ornithine by one additional reaction. The enzyme, 4-
aminobutyrate aminotransferase, is encoded by the gene gabT
(Kurihara et al., 2010) and is activated by the regulatory protein
cAMP receptor protein (CRP) (Metzner et al., 2004). CRP
regulates gabTs activity mostly under stress conditions, more
precisely at starvation. Further, regulatory mechanisms that
influence the expression of gabT are the sigma factors sigmaS and
sigma38 which are encoded by the gene RpoS (Joloba et al., 2004).
Therefore, it is expected that the association between GABA and
L-ornithine is transcriptionally regulated by CRP and RpoS.

Finally, we investigated the identified pair of 3PGA and
aspartate. For these metabolites, the observed Pearson
correlation was 0.28 and the partial correlation was 0.27.
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FIGURE 2 | Changes from Pearson to partial correlation. Changes from Pearson to partial correlation for all three organism (E. coli, S. cerevisiae and A. thaliana) and

for TPC, positve correlation; TPC, negative correlations; PPC, positive correlations; PPC, negative correlations. The blue portion of the bar represents the percentage

of significant correlations whose absolute value increased from Pearson to partial correlation. The red portion of the bar represents the percentage of significant

correlations whose absolute value decreased from Pearson to partial correlation.

Jozefczuk et al. (2010) reported that in general 3PGA decreases
under stress conditions, while only under cold stresses aspartate
levels increase. The weak positive correlation is likely due
to the fact that we investigated the correlation over multiple
conditions (Bradley et al., 2008). Aspartate can be synthesized
out of oxaloacetate, which additionally stands in exchange with
3PGA through PEP within the glycolysis. We therefore are able
to identify two metabolites from the same pathway separated by
two reactions, taking part in the glycolysis and the TCA cycle.
Both pathways are partially regulated on the transcriptional level.
For instance, the transcription factor Cra is involved in feedback
and feed-forward regulation within these pathways (Shimizu,
2013). It is activating the transcription of the gene coding for
the enzyme isocitrate dehydrogenase, which is an essential step
for the transformation from citrate to all further downstream
metabolites in the TCA cycle (Prost et al., 1999). Overall,
the regulatory process will influence the pair of 3PGA and
aspartate.

To come to a general conclusion, we investigated the available
literature involving the metabolite pairs identified by the PPC
approach. In comparison to the TPC approach, we frequently
found amino acids within the pairs of the PPC approach
(Supplemental Table 3). As amino acids are regulated through
feedback inhibition by their loaded tRNAs (Sanchez and Demain,
2008), our approach captured the post-transcriptional regulation.
For further validation, we investigated the literature regarding

the two pairs of PEP-valine (Pearson correlation of −0.35
and partial correlation of −0.37) and PEP-leucine (Pearson
correlation of −0.37 and partial correlation of −0.39). The
negative correlation of PEP and the amino acids leucine and
valine were previously reported in Szymanski et al. (2009) under
stress conditions, which are comparable to the experimental
conditions from our data sets. The PEP generating enzyme,
the pyruvate kinase, is inhibited by fructose 1,6-bisphosphate
and structural similar metabolites (Speranza et al., 1990). The
synthesis of PEP is therefore under strong post-transcriptional
regulation. Additional, the both mentioned amino acids are
produced from pyruvate. Pyruvate is altered into PEP by a
reversible reaction linking it further to post-transcriptional
regulation. Further, valine and leucine share part of their
synthesizing pathways. Valine is involved in a feedback inhibition
of the enzyme acetohydroxy acid synthase and inhibits the
leucine and the isoleucine synthesis as well. Furthermore, leucine
inhibits its own producing enzymes (a-isopropylmalate synthase)
regulating the group of amino acids coming from pyruvate.
All three metabolites of the pairs are under post-transcriptional
regulation. In addition, we found metabolites belonging to the
TCA cycle and related reactions. Among these metabolites are
malate, fumarate, PEP, 3PGA and GABA. Out of these malate
and PEP (Pearson correlation of −0.29 and partial correlation
of −0.31) were previously reported to be negatively correlated
(Szymanski et al., 2009). PEP level increases under stress, while
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malate and precursors decrease. In contrast, the pair of 3PGA
and GABA are positively correlated (Pearson correlation of 0.30
and partial correlation of 0.29). 3PGA level were reported to
decreases under stress (Jozefczuk et al., 2010), while Szymanski
et al. (2009) reported that amino acids decreased under stress
conditions, which will effect GABA as well. The prevailing
regulatory mechanism in the TCA cycle are product inhibition,
substrate availability and competitive feedback inhibition. The
citrate synthase is inhibited by citrate, further Succinyl-CoA
is a competitor with acetyl-CoA for the citrate synthase as
well. The first example is a product inhibition, whereas the
second example is competitive feedback inhibition. Further,
the isocitrate dehydrogenase is regulated by phosphorylation in
E. coli. After phosphorylation the enzymes becomes inactive.
Therefore, the TCA cycle is highly regulated on the post-
transcriptional level (Voet and Voet, 2011). We can therefore
confirm that malate, PEP, 3PGA and GABA are under post-
transcriptional regulation.

Our approach allows to distinguish between metabolite
pairs with associations controlled at transcriptional or post-
transcriptional level. Therefore, we extended our analysis to data
sets of S. cerevisiae and A. thaliana, aiming to reproduce the
classification of metabolite pairs into transcriptional and post-
transcriptional associated at higher organism.

3.3. Prevailing Regulatory Effects in
S. cerevisiae—Comparison With Published
Results
So far we were able to identify the prevailing regulatory
mechanism between identified pairs of metabolites. However, our
comparison focused on a broad literature comparison, but did
not compared our approach directly with a comparable method
capable of integrating transcriptomic and metabolomic data
into a combined analysis. Therefore, we chose to complement
our study with a comparison with the results obtained in
Oliveira et al. (2015). The study investigated the regulatory effect
occurring during a nitrogen supply shift (upshift and downshift)
as well as the treatment with Rapamycin in S. cerevisiae.
Metabolite and transcript data were measured at up to 19 time
points for the metabolite data and up to 8 time points for the
transcript data for each of the three conditions. The overlapping
eight time points are therefore ideal for our proposed method. In
the original study, the authors used Bayesian inference to assign
each metabolite to one of the four network motifs “unrelated”
(no regulation related to TORC1), “downstream” (metabolites
post-translational regulated downstream of TORC1), “upstream”
(transcriptional regulation by metabolites upstream of TORC1)
and “parallel” (transcriptional regulation by metabolites parallel
of TORC1). The assignment of metabolites into on of the four
categories is done by evaluating the dynamic dependence of
metabolite and transcript pairs over time and the association
of each metabolite with a specific set of genes regulated by
TORC1, called “representation of TOR genes.” Both features
are combined in a Bayesian inference framework approach
to calculate the probability for each metabolite to belong to
one of the four motifs. If the probability is above 50%, the

metabolite is assigned to that particular motif. Eight metabolites
were assigned to the downstream motif, eight metabolites
to the upstream motif and eight metabolites to the parallel
motif.

We used their provided data and applied our approaches,
which resulted in 1,221 unique pairs with the TPC approach
(Supplemental Table 6) and 4,239 unique pairs with the
PPC approach (Supplemental Table 7). We compared the
“downstream” assigned metabolites with our PPC approach,
whereas the motifs “parallel” and “upstream” both relate to
transcriptional regulation and were compared to our TPC
approach. Similar to the results of E. coli, we observed no change
in the sign of correlation between Pearson and partial correlation
(Figure 2). In addition, we report the number of significant
correlations above and below certain thresholds in Table 1. We
observed higher significant correlations with the PPC approach
for positive correlations, as well as for negative correlations, in
comparison to the TPC approach. We found correlation above
0.9 with the PCC approach, whereas the correlations of the TPC
did not exceed 0.65.

Within the eight metabolites assigned in the “downstream”
motif, we found 10 metabolite pairs with the PPC approach (see
Table 2). Only trehalose-6phosphate and tetracosanoate are not
part of any pair. Each of the remaining metabolites was part
of at least two and up to four pairs. We found 16 metabolites
of the “upstream” and “parallel” motifs, and we identified 11
pairs between these metabolites with the TPC approach (see
Table 3). Only two pairs were found within the “parallel” group,
the remaining nine pairs were between the groups “upstream”
and “parallel.”

Overall, our approaches were able to categorize all investigated
metabolites into transcriptionally or post-transcriptionally
associated. In contrast, in the study of Oliveira et al. (2015)
the majority of metabolites were assigned to the “unrelated”
motif or none. The main reason is that their study focuses on
TORC1 dependent regulation, while our approaches integrate all
regulatory effects given the available data sets. We can therefore
give a comprehensive overview of the regulatory mechanism
affecting the associtions in which each metabolite is involved.

TABLE 1 | Number of significant correlations above certain thresholds for the TPC

and PPC approach for the data of Oliveira et al. (2015).

Threshold Number of significant TPC

correlation

Number of significant PPC

correlation

> 0.9 0 4

> 0.8 0 151

> 0.7 0 567

> 0.6 2 1,170

> 0.5 43 2,152

> 0.4 456 3,260

< −0.4 49 495

< −0.5 1 125

< −0.6 0 16

< −0.7 0 0
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TABLE 2 | Metabolite pairs found within the downstream motif of the approach by

Oliveira et al. (2015) and our Post-transcriptional dependent Partial Correlation

(PPC) approach.

Metabolite 1 Metabolite 2 Pearson correlation Partial correlation

Pyrroline-3H-5C Adenosine 0.484 0.433

Pyrroline-3H-5C dGuanosine 0.483 0.433

Pyrroline-3H-5C IMP 0.759 0.736

Indole-3-acetate Adenosine 0.584 0.538

Indole-3-acetate dGuanosine 0.584 0.538

Indole-3-acetate IMP 0.616 0.571

Adenosine IMP 0.744 0.708

Adenosine L-Aspartate −0.471 −0.418

dGuanosine L-Aspartate −0.471 −0.418

dGuanosine IMP 0.744 0.701

TABLE 3 | Metabolite pairs found within the upstream and parallel motif of the

approach by Oliveira et al. (2015) and our Transcriptional dependent Partial

Correlation (TPC) approach.

Metabolite 1 Metabolite 2 Pearson

correlation

Partial

correlation

NAD AICAR 0.468 0.508

Thiamin triphosphate AICAR 0.468 0.392

Thiamin triphosphate L-Leucine 0.367 0.397

Thiamin triphosphate 5-L-Glutamyl-L-alanine 0.452 0.398

Ornithine Dihydroxyacetone −0.415 −0.377

Ornithine Glyceraldehyde −0.415 −0.377

Ornithine D-Lactate −0.415 −0.377

Ornithine Imidazole glycerol-P −0.374 −0.289

L-Leucine AICAR 0.434 0.462

GABA Glyceraldehyde −0.384 −0.348

GABA Glutamine −0.388 −0.319

3.4. Transcriptional Control of Metabolite
Associations in A. thaliana
We also investigated a data set from the model plant Arabidopsis
thaliana containing the levels of 92 metabolites and 15,089
genes over 7 conditions (see section Materials and Methods).
Within this data set, we found 295 transcriptional associated
metabolite pairs with the TPC approach (Supplemental Table 8).
The PPC approach yield in total 1,534 metabolite pairs under
post-transcriptional control (Supplemental Table 9). Similar to
the results of the two previous investigated data sets, we did not
observe a change in the sign of the correlation from Pearson to
partial correlation. In contrast to E. coli, we observe metabolite
pairs with a higher absolute partial correlation value than Pearson
correlation value (Figure 2). We found more than 72% of the
positively correlated metabolite pairs identified with TPC, more
than 74% of the positively correlated metabolite pairs identified
with PPC and 80% of the negatively correlated metabolite pairs
identified PPC have a higher absolute partial correlation, than the
respective Pearson correlation. However, the magnitude of the

changes is in the range of 0.01–0.08, similar to the observations
from the E. coli data set.

Like in the analysis of the E. coli data set, we focused
on a subset of fully annotated metabolite pairs. Of the 295
metabolite pairs of the TPC approach 150 were unambiguous
annotated (Supplemental Table 10), whereas 773 out of the
1,534 metabolite pairs of the PPC approach were unambiguous
annotated (Supplemental Table 11). The difference in numbers
of the TPC and PPC approach indicate a general tendency in
the regulation toward post-transciptional regulation. This was
already noted in the results of the original study in which the
authors observed only a minor interconnection of the measured
metabolites and transcripts. Further, they assume that this would
change with a higher proportion of secondary metabolites, as
primary metabolites have to react faster during external changes
and are therefore mostly under post-transcriptional regulation
(Caldana et al., 2011). We next focus on specific examples of both
approaches to show their capability to distinguish between both
regulatory mechanisms.

We start the investigation with the unique metabolite pairs
identified with the TPC approach. We observed that the highest
positive correlations are between amino acids and glycerol. In
studies relate to heat stress and heat tolerance it was shown that
glycerol increased as a response to heat. Additionally, the studies
showed an increase of amino acids as alanine, beta-alanine,
leucine, isoleucine and aspartate (Kaplan et al., 2004). We could
report the pairs glycerol and isoleucine (Pearson correlation
of 0.60 and partial correlation of 0.60), glycerol and leucine
(Pearson correlation of 0.59 and partial correlation of 0.60)
and glycerine and beta-alanine (Pearson correlation of 0.32 and
partial correlation of 0.33). The measurements were done under
different light and temperature conditions, including highlight
and high temperatures. It is therefore realistic to assume, that
we observe a mild heat stress reactions. The regulation of heat
stress response is reported to be completely under transcriptional
regulation (Ohama et al., 2016), which agrees with our findings.

Within the results of the PPC approach, we found amino acids
correlating with each other. This observation is in agreement
with previously published results, showing that the synthesizing
pathways of most amino acids are under post-transcriptional
regulation, more precisely under allosteric product inhibition
(Less and Galili, 2008). A well studied example is the branched-
chain amino acid metabolism (BCAA), in which leucine, valine
and isoleucine are synthesized. Each of these amino acids is
reported several times within our PPC approach and forms pairs
with other amino acids. Leucine and isoleucine are positively
correlated to ornithine which is of interest as as ornithine is a
precursor of glutamte. Glutamate is involved in the synthesis of
the BCAA amino acids. The reactions involved in these amino
acid synthesis pathways are reported be allosterically regulated
(Binder, 2010).

Additionally, we found a relationship between skikimate and
related amino acids, as well as shikimate and sugars. Shikimate
is a precursor to the amino acids tyrosine, phenylalanine and
tryptophan. Shikimate is negatively correlated to pheylalanine
(Pearson correlation of −0.42 and partial correlation of
−0.39) and tyrosine (Pearson correlation of −0.59 and partial
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correlation of −0.57). Tryptophan was not reported within the
uniquely identified metabolite pairs. At the same time shikimate
is positively correlated to pyruvic acid (Pearson correlation
of 0.67 and partial correlation of 0.64), fructose (Pearson
correlation of 0.74 and partial correlation of 0.76), glucose
(Pearson correlation of 0.78 and partial correlation of 0.80)
and sucrose (Pearson correlation of 0.74 and partial correlation
of 0.73). We therefore observed that metabolites upstream of
shikimate (sugars) were positiveley correlated, while downstream
metabolites were negatively correlated. The pathway is partly
feedback regulated meaning that the end products (amino acids)
inhibit their production which explains the negative correlation.
The sugars were positively correlated to shikimate as they are
potential precursors (Tzin and Galili, 2010a,b).

In comparison E. coli we found more pairs with both
approaches. The correlations of the TPC approach was higher
than in E. coli. A similar situation was observed for the PPC
approach. We observed more sugars and sugar derivatives in
E. coli, whereas amino acids were mostly found with high positive
correlation.

4. DISCUSSION

In this study we proposed two approaches for a combined
investigation of metabolic and transcriptomic data. The two
proposed approaches are based on the concept of removing
transcriptional information from metabolomic data, allowing us
to categorize pairs of metabolites into transcriptional or post-
transcriptionally regulated. The developed approach TPC allows
the identification of transcriptionally regulated metabolites
through a modified partial correlation approach using PCs of
the transcriptomic data as controlling variables. The second
approach, PPC, is based on a similar concept and it allows the
identification of post-transcriptional regulation between pairs of
metabolites.

The commonality of the investigate data sets is their focus
on the change of central metabolites after perturbation or
changing environmental conditions. It has been shown that in
microorganisms the majority of primary metabolites are mainly
regulated on the enzymatic level through feedback inhibition
(Sanchez and Demain, 2008). Further, the post-transcriptional
regulation allows the organism to react faster to changes in the
environment (Caldana et al., 2011). The combination of these
two criteria explain the larger amount of metabolite pairs found
with the PPC approach, in comparison of the TPC approach.
The low coverage of correctly annotated metabolites in the data
sets restricted our analysis to a smaller subset of metabolites.
Nevertheless, the annotated metabolites were sufficient to
obtain an overview over the potential of the approaches. We
demonstrated that there is experimental evidence in the literature
that the proposed approaches are capable of detecting differences
in the association of metabolites, namely if the association is due
to transcriptional or post-transcriptional effects. Moreover, we
could show that our results agree with the findings from the
study of Oliveira et al. (2015). Metabolites that were reported
to be post-transcriptionally regulated were also identified to

participate in relationships identified by our PPC approach. We
observed a similar situation with the transcriptionally associated
metabolites, although we had to pool the reported metabolites
from the “upstream” and “parallel” motif, as the TPC approach
takes all transcriptional regulation mechanism into account.

While we observed a differentiation into pairs found by TPC
and PPC, the detected partial correlation in each approach
did not differ strongly from the found Pearson correlation
(see Figure 3). The Pearson correlation captures most of
the association already. Therefore, our approach does not
strongly affects the correlation, but is a tool for categorizing
the associations between metabolites. This claim is supported
through two findings, the lack of overlap of metabolite pairs
found with the two approaches in all three data sets and the low
difference of the Pearson correlation and partial correlation for
the identified metabolite pairs.

In the recent work of Bradley et al. (2008), they reported
that the correlation between metabolites and transcripts depends
on the experimental condition. The authors report that
nearly no correlation was found when the correlation was
investigated over multiple conditions, whereas high (positive
or negative) correlations were observed if the conditions were
investigated separately. Our approach aims at identifying the
general underlying relations between metabolites and if these
originate from transcriptional regulation or post-transcriptional
regulation. While the magnitude of the correlation is often of
interest for many studies, our approach allows to gain further
knowledge through the classification of the identified metabolite
associations. Employing the approaches over multiple conditions

FIGURE 3 | Distribution of the absolute difference of Pearson and partial

correlation. The boxplots show the absolute difference of the Pearson and

partial correlations for each of the three organism (E. coli, S. cerevisiae, and

A. thaliana) and the two approaches, respectively.
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allows us to give a general statement about the regulation
associating pairs of metabolites.

A potential application for our proposed approaches is
metabolic engineering. Metabolic engineering aims at enhancing
certain important pathways which leads to an overproduction
of a metabolite of interest (Bailey, 1991; Nevoigt, 2008). A
frequently employed technique is the over expression of genes
associated with the metabolic pathway of interest. This technique
has the disadvantage that the resulting phenotype (metabolite
production) is difficult to predict and needs a strict monitoring
for the validation. The results of the over-expression approaches
might fall behind the expected yields of the metabolites. This
shortcoming may be due to post-transcriptional regulation
within the engineered pathway. Our method allows to investigate
metabolic pathways before establishing over-expression lines
and selecting metabolites and corresponding pathways which
are mostly under transcriptional regulation, rather than post-
transcriptional. This would allow biologists to focus their
experiments to a smaller set of over-expression lines which would
save both time and experimental resources.

Overall, we present here two approaches named TPC and
PPC for investigating the prevalent regulatory mechanism of
metabolite pairs. To our knowledge it is the first time that partial
correlation is used to remove all transcriptional information
from a metabolomic data set, removing not just the effect of
a set of genes, but the majority of transcriptional regulation.
This novel investigation methods will help to elucidate the

complex regulatory mechanism of metabolites while employing
well known and established statistical methods.
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