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Water stress has a major influence on plant growth, development, and productivity.
However, the cross-talk networks involved in drought tolerance are not well understood.
Arabidopsis PCaP2 is a plasma membrane-associated Ca2+-binding protein. In this
study, we employ qRT-PCR and β-glucuronidase (GUS) histochemical staining to
demonstrate that PCaP2 expression was strongly induced in roots, cotyledons, true
leaves, lateral roots, and whole plants under water deficit conditions. Compared
with the wild type (WT) plants, PCaP2-overexpressing (PCaP2-OE) plants displayed
enhanced water deficit tolerance in terms of seed germination, seedling growth, and
plant survival status. On the contrary, PCaP2 mutation and reduction via PCaP2-RNAi
rendered plants more sensitive to water deficit. Furthermore, PCaP2-RNAi and pcap2
seedlings showed shorter root hairs and lower relative water content compared to WT
under normal conditions and these phenotypes were exacerbated under water deficit.
Additionally, the expression of PCaP2 was strongly induced by exogenous abscisic
acid (ABA) and salicylic acid (SA) treatments. PCaP2-OE plants showed insensitive
to exogenous ABA and SA treatments, in contrast to the susceptible phenotypes of
pcap2 and PCaP2-RNAi. It is well-known that SNF1-related kinase 2s (SnRK2s) and
pathogenesis-related (PRs) are major factors that influence plant drought tolerance by
ABA- and SA-mediated pathways, respectively. Interestingly, PCaP2 positively regulated
the expression of drought-inducible genes (RD29A, KIN1, and KIN2), ABA-mediated
drought responsive genes (SnRK2.2, -2.3, -2.6, ABF1, -2, -3, -4), and SA-mediated
drought responsive genes (PR1, -2, -5) under water deficit, ABA, or SA treatments.
Taken together, our results showed that PCaP2 plays an important and positive role in
Arabidopsis water deficit tolerance by involving in response to both ABA and SA signals
and regulating root hair growth. This study provides novel insights into the underlying
cross-talk mechanisms of plants in response to water deficit stress.
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INTRODUCTION

Water deficit is one of the most acute abiotic stresses affecting
plant growth and the economic yield of crop plants. It
leads to alterations in various cellular processes in plants, for
example, gene expression, photosynthesis, protein synthesis,
carbon partitioning, lipid metabolism, and osmotic homeostasis
(Hua et al., 2012; Jarzyniak and Jasiński, 2014; Fleta-Soriano
and Munné-Bosch, 2016). Phytohormones, such as abscisic acid
(ABA), salicylic acid (SA), gibberellin (GA), indole-3-acetic acid
(IAA), and jasmonic acid (JA) function as central factors that
link and reprogram these complex cellular processes (Hua et al.,
2012).

In response to water deficit, ABA, a well-known stress
phytohormone, is rapidly induced, leading to the expression
of stress-responsive genes and the activation of plants’ cellular
physiological adaptation to water stress (Fujii and Zhu, 2009;
Cutler et al., 2010; Weiner et al., 2010). In the ABA signaling
pathway, SNF1-related kinase 2s (SnRK2s) are central regulators
that mediate ABA-responsive transcription factors and genes to
activate ABA-mediated physiological processes (Yoshida et al.,
2002; Boudsocq et al., 2004; Fujita et al., 2009; Umezawa, 2009;
Vlad et al., 2009; Raghavendra et al., 2010; Kulik et al., 2011;
Ambrosone et al., 2015).

Among the 10 SnRK2s in Arabidopsis, SnRK2.2, SnRK2.3, and
SnRK2.6 function as central regulators in response to ABA and
drought. Genetic analysis has shown that the Arabidopsis triple
mutant snrk2.2/snrk2.3/snrk2.6 exhibits greatly reduced water
deficit tolerance and is extremely insensitive to ABA (Fujii and
Zhu, 2009; Fujita et al., 2009). The triple mutant is strongly
impaired in ABA- and drought-responsive genes expression
under water stress (Fujita et al., 2009). The phenotype of the triple
mutant indicates that these three SnRK2s are partially redundant,
although all of them are crucial for plants’ response to water
stress and ABA, as well as ABA-mediated seed germination and
dormancy. Seed dormancy, germination, and seedling growth
of snrk2.2/snrk2.3 mutants are greatly insensitive to exogenous
ABA. In contrast, snrk2.6 shows a significant increase in leaf
water loss after ABA treatment (Yoshida et al., 2002; Fujii
et al., 2007; Nakashima et al., 2009). This could be because
SnRK2.6/ OST1 are important for stomatal movements, as they
phosphorylate anion (SLAC1) and cation (KAT1) channels,

Abbreviations: ABA, abscisic acid; ABF, abscisic acid responsive element-
binding factor; ABI, abscisic acid insensitive; AREBs/ABFs, ABRE-binding
proteins/factors; Ca2+, calcium ion; CaM, calmodulin; CCD, charge-coupled
device; CPK, calcium-dependent protein kinase; Di19, drought-induced 19;
GA, gibberellin; GR, glutathione reductase; GST, glutathione s-transferase;
GUS, β-glucuronidase; IAA, indole-3-acetic acid; JA, jasmonic acid; KIN,
kinase; MDHAR, Monodehydroascorbate reductase; MAP18/PCaP2, microtubule-
associated protein18/plasma membrane-associated Ca2+-binding protein-2; MT,
microtubule; MS, Murashige Skoog; NO, nitric oxide; OST1, open stomata1;
PA, phosphatidic acid; PCaP2-OE, PCaP2 overexpression; PCaP2-RNAi, PCaP2
RNA interference; PEG, polyethylene glycol; PR, pathogenesis-related; PtdInsPs,
phosphatidylinositol phosphates; qRT-PCR, quantitative real-time PCR; RD29A,
responsive to desiccation 29A; RT-PCR, reverse transcriptase-mediated PCR;
SA, salicylic acid; S. lycopersicum, Solanum lycopersicum; SNF, sucrose non-
fermenting; SnRK2, SNF1-related protein kinase 2; WT, wild type; Z. mays, Zea
mays; RGGA, Arginine Glycine Glycine (RGG) box-containing RNA-binding
protein; Di19, drought-induced protein19.

which might be required for ABA-dependent stomatal closing in
response to water deficit (Pilot et al., 2001; Geiger et al., 2009,
2010; Lee et al., 2009; Sato et al., 2009). In addition, guard cells
(GCs) display transcriptional memory in a daily dehydration
stress and watered recovery cycle. SnRK2.2, SnRK2.3, and
SnRK2.6 have distinguishable roles in the process: SnRK2.2 and
SnRK2.3 are more important for implementing guard cell stress
memory, while SnRK2.6 is more important for overall stomatal
control in the subsequent dehydration response (Virlouvet and
Fromm, 2015). It has been found that SnRK2.2, -2.3, and 2.6 are
regulated by nitric oxide (NO), phosphatidic acid (PA), and Ca2+

changes (Boudsocq et al., 2004; Fujii and Zhu, 2009; Kulik et al.,
2011), suggesting SnRK2s may be regulated by complex pathways
during water stress; however, such mechanisms remain largely
unknown.

The phytohormone SA plays an important role in various
plant developmental processes and responses to abiotic and biotic
stress (Raskin, 1992; Bandurska and Stroiński, 2005; Khan et al.,
2012a,b, 2013). Water deficit induces increased endogenous SA
levels in various plants (Munne-Bosch and Penuelas, 2003; Miura
and Tada, 2014). Exogenous treatment with SA modulates plant
drought resistance through multiple pathways such as oxidative
stress (Alam et al., 2013), stomatal conductance (Hao et al., 2010;
Khokon et al., 2011; Habibi, 2012), antioxidant defense system
(Hayat et al., 2008; Saruhan et al., 2012), and NO production
(Hao et al., 2010; Khokon et al., 2011). Additionally, some SA-
responsive genes are involved in plant response to water deficit,
such as GST1, GST2, GR, and MDHAR in Triticum aestivum
(Kang et al., 2013) and MPK3, MPK4, MPK6, PR1, PR2, and
PR5 in Arabidopsis thaliana (Ichimura et al., 2000; Ahlfors et al.,
2004; Gudesblat et al., 2007; Liu P. et al., 2013; Liu W.X. et al.,
2013). Some Arabidopsis mutants that accumulate endogenous
SA (adr1, acd6, cpr5 myb96-1d, and siz1) show both SA-mediated
disease resistance and water deficit tolerance (Miura et al.,
2013). One genetic analysis reports that Arabidopsis seedlings
overexpressing PR1, PR2, or PR5 are drought tolerant (Liu W.X.
et al., 2013). In addition, PR1, -2, and -5 genes are widely used
as marker genes for SA-mediated drought tolerance in plants.
For example, both SA-accumulating mutants (cpr5 and acd6)
and overexpression of transcription factor Di19 in Arabidopsis
improve drought tolerance via SA-induced expression of PR1, -2,
-5 genes (Liu P. et al., 2013; Liu W.X. et al., 2013). Interestingly,
SA treatments lead to an increase of ABA and proline in the
barley leaves (Bandurska and Stroiński, 2005); however, the
relationship between SA and ABA signals in water deficit remains
unknown.

Arabidopsis microtubule-associated protein-18/plasma
membrane-associated Ca2+-binding protein-2 (MAP18/PCaP2)
is important for several physiological activities. For example,
it is involved in Ca2+ binding and the organization of cortical
microtubules (MTs) and F-actin. It also has a critical role in
root hair, pollen tube growth, and directional cell growth (Wang
et al., 2007; Kato et al., 2010, 2013; Zhu et al., 2013; Zhang
et al., 2015; Kang et al., 2017). For example, the cell polarity and
cortical microtubule array in line 2 of MAP18-overexpressing
Arabidopsis (OE2) and line 18 of MAP18 RNAi transgenic
Arabidopsis (R18) are altered (Wang et al., 2007). The T-DNA
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insertion line map18 (SALK_021652), which is confirmed as a
knock-down mutant by qRT-PCR analysis, displays abnormal
pollen tube growth and root hair growth (Kato et al., 2013; Zhu
et al., 2013; Zhang et al., 2015; Kang et al., 2017).

Interestingly, the mRNA expression level of PCaP2 is induced
by heat, cold, drought, ABA, SA, osmotic stress, and GA3
(Kato et al., 2010, 2013). This implies that it may function
in response to abiotic stress and phytohormone signals. Root
hairs are the main sites of water absorption in plants, which
is important for water deficit tolerance (Worrall and Roughley,
1976; Zahran and Sprent, 1986; Schnall and Quatrano, 1992).
Thus, we hypothesized that PCaP2 might be an important
regulator of plant water deficit tolerance in various pathways,
such as phytohormone signals and root hair growth, suggesting
that PCaP2 might be a cross-talker between complex mechanisms
involved in plant water deficit tolerance. In this study, we found
that PCaP2 is vital for plant water deficit tolerance by responding
to ABA and SA signals, regulating the expression of the key
ABA- and SA-mediated genes, and affecting root hair growth.
Collectively, our data provide novel evidence of the underlying
complex mechanisms, especially of crosstalk between ABA and
SA signaling pathways in plant water deficit tolerance.

RESULTS

The Expression of PCaP2 Is Highly
Induced in All Tissues in Water Deficit
To fully understand the expression pattern of PCaP2 under
water deficit stress, we examined the expression of PCaP2 in
more details by quantitative real-time PCR (qRT-PCR) and
β-glucuronidase (GUS) staining. Firstly, the wild type (WT)
plants were exposed to dehydration conditions for 1, 3, 6, 9, and
12 h. The qRT-PCR results showed that PCaP2 expression was
highly induced by water deficit treatments from 1 to 12 h, with
the peak level of 10-fold increased at 6 h treatment (Figure 1A).
Furthermore, GUS staining showed that the promoter activity of
PCaP2 was significantly increased after water deficit treatments
for 6 h which was consistent with the results of qRT-PCR
(Figure 1B) and PCaP2 expression was induced in primary roots
and lateral roots, cotyledons, true leaves, and the whole seedlings
after water deficit treatments (Figures 1B–D).

PCaP2-OE Plants Display Increased
Tolerance While PCaP2 RNAi and Mutant
Seedlings Are Hypersensitive in
Response to Water Deficit
To elucidate the function of PCaP2 in plant tolerance to
water deficit, the previous identified one PCaP2 overexpression
(PCaP2-OE) line (Wang et al., 2007), one knockdown of T-DNA
insertion (pcap2) line (SALK_021652; Kato et al., 2013; Zhu et al.,
2013; Zhang et al., 2015; Kang et al., 2017), and one fully silenced
PCaP2 RNA interference (PCaP2-RNAi) line (Wang et al., 2007)
were used. The PCaP2 expression of these lines was analyzed
by qRT-PCR which is consistent with the previous publications
(Supplementary Figure S1). We firstly investigated their seed

germination rates under normal or drought conditions. Under
normal conditions, germination rates of PCaP2-RNAi and pcap2
seeds were lower than those of PCaP2-OE and WT seeds at 1
day, and then these seeds gradually showed similar germination
rate. At 4 and 5 days, the germination of these seeds was identical
(Figure 2A). Water deficit significantly inhibited the germination
of all seeds at 1 day, germination rates of PCaP2-RNAi were lower
from 1 to 4 days, then the germination of these seeds was identical
germination at 5 days (Figure 2A).

Next, the growth and survival status of the four-day-old
seedlings were observed in water deficit treatments. It was found
that the grown status showed no significant differences among
WT, PCaP2-OE, pcap2, and PCaP2-RNAi lines under normal
conditions. The PCaP2-OE seedlings showed longer roots and
larger leaves than WT while pcap2 and PCaP2-RNAi showed
opposite growth phenotypes under water deficit (Figures 2B,C).
The results of survival status after water deficit treatments
showed that PCaP2-OE plants were more tolerant in response to
water deficit than WT (Figures 2C,D) while pcap2 and PCaP2-
RNAi plants exhibited sensitivity to water deficit. To determine
recovery after water deficit, we re-watered these seedlings for 7
days. The results showed that PCaP2-OE plants, WT, and some
pcap2 seedlings were recovered while all PCaP2-RNAi seedlings
exhibited water deficit sensitivity (Figure 2D). The changes of
leaf water loss and root water absorption in WT, PCaP2-OE,
pcap2, and PCaP2-RNAi lines under water deficit conditions
were observed. The results showed that pcap2 and PCaP2-RNAi
lines lost water faster and wilted earlier than WT in dehydration
stress while PCaP2-OE seedlings showed opposite phenotypes
(Figures 2E,F). Additionally, the pcap2 and PCaP2-RNAi lines
displayed shorter root hairs and less relative water content than
WT in normal condition, the phenotypes were more significant
in water deficit stress (Figures 2G–I). These results indicated
that overexpression of PCaP2 enhanced the tolerance of plants
to water deficit and down of PCaP2 led to plant water deficit
hypersensitivity.

The PCaP2 Expression Is Highly Induced
in Response to Exogenous ABA and SA
Treatments
Abscisic acid and SA are important regulatory signals in water
deficit stress, and the higher expression level of PCaP2 has been
found in exogenous 100 µM ABA and 100 µM SA treatments
(Kato et al., 2010; Trivedi et al., 2016). To determine PCaP2
in ABA and SA signaling pathways, the expression of PCaP2
was examined in exogenous ABA and SA treatments by qRT-
PCR and GUS staining assay in more details. Because the
expression of many genes in Arabidopsis can be induced by
10–100 µM ABA (Zhu et al., 2007, 2017; Kato et al., 2010;
Tian et al., 2015) and we found the expression of PCaP2 is
higher in 40 µM ABA treatments than that in 100 µM ABA
treatment (Figure 3A; Kato et al., 2010). Thus, 40 µM ABA
and 100 µM SA treatments were used in our studies. The
results showed that the PCaP2 mRNA level was significantly
increased with ABA and SA treatments from 1 to 12 h, the peaks
appeared at 6 h ABA and 3 h SA treatments (Figures 3A,B).
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FIGURE 1 | Expression pattern of PCaP2 under water deficit stress. (A) Relative expression of PCaP2 in response to water deficit. Fourteen-day-old WT seedlings
were treated with water deficit for 0, 1, 3, 6, 9, and 12 h, and the expression of PCaP2 was detected by qRT-PCR. Data represent mean values of three biological
replicates ± SE. The significant difference was determined by ANOVA in comparison to 0 h: ∗∗P < 0.01, ∗∗∗P < 0.001. (B) Comparison of PCaP2 expression levels
treated with water deficit different times by GUS staining. Seven-day-old seedlings of pPCaP2::GUS transgenic plants were treated with water deficit for 0, 1, 3, 6, 9,
and 12 h. Scale bar = 2.5 mm. (C, D) Analysis of the expression pattern of PCaP2 by GUS staining of pPCaP2::GUS transgenic seedlings in normal (without water
deficit treatment) (C) and water deficit treatments for 6 h (D). At least 15 seedlings from each sample were used for every technical replicate and three biological
replicates were conducted. The scale bar is 5 mm in the pictures of whole plant, and 0.25 mm in the pictures of cotyledons, true leaves, hypocotyls, lateral roots and
main roots.

The expression level of PCaP2 was higher in 40 µM ABA than
100 µM SA treatments (Figures 3A,B). Further, the PCaP2
expression was induced in the whole seedlings, cotyledons, true
leaves, hypocotyls, primary roots, and lateral roots by ABA and
SA treatments (Figures 3B–E), which were consistent with the
results from water deficit treatments.

PCaP2-OE Plants Show Increased
Tolerance, While Its RNAi and Mutant Are
More Sensitive in Exogenous ABA and
SA Treatments
Then we tested the germination rate of seeds and seedling growth
of WT, PCaP2-OE, pcap2, and PCaP2-RNAi lines under normal,
ABA, and SA treatments. To choose the most appropriate
concentrations for ABA and SA treatments, 0.01–40 µM of ABA
and SA were tested in the previous experiments used (data not
shown). The results showed WT and PCaP2-OE showed the
similar germination rates. The PCaP2-RNAi and pcap2 showed
much higher germination rates in 0.8 µM ABA and 0.3 mM SA

treatments, compared to WT and PCaP2-OE (Figure 4A). The
germination rates of PCaP2-RNAi and pcap2 seeds were lower
than those of PCaP2-OE and WT seeds in 1-to-5-day ABA and in
1-to-3-day SA treatments. The germination rates of these seeds
were similar at day 4 of SA treatment and identical at day 5
of SA treatment. The growth status of WT, PCaP2-OE, pcap2,
and PCaP2-RNAi lines was significantly different under 0.5 µM.
ABA and 0.05 mM SA treatments (Figures 4B,C). The PCaP2-OE
seedlings showed larger leaf area and longer primary roots than
WT while pcap2 and PCaP2-RNAi lines showed smaller leaves
and shorter roots and root hairs, which were consistent with the
water deficit inducible phenotypes (Figures 4B,C).

PCaP2 Positively Regulates the
Expression of SnRK2 Genes and PR
Genes Under Water Deficit Stress
To analyze whether the role of PCaP2 in water deficit tolerance
was mediated by ABA and SA signaling pathways, we firstly
checked the PCaP2 expression of WT, PCaP2-OE, pcap2, and
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FIGURE 2 | Effects of PCaP2 on Arabidopsis seed germination and seedling growth under water deficit stress. (A) Quantification of germination rates of the
PCaP2-OE, WT, pcap2 and PCaP2-RNAi seeds in 1/2 MS medium or coated with 25 % PEG from 1 to 5 d. At least 50 seeds from each sample were used for every
technical replicate and three biological replicates were conducted. (B) Phenotypes of the PCaP2-OE, WT, pcap2 and PCaP2-RNAi seedlings grown in water deficit.
Scale bar = 1 cm. (C) The phenotypes statistics of the PCaP2-OE, WT, pcap2 and PCaP2-RNAi seedlings grown in water deficit. At least 70 roots or 200 leaves from
about 70 seedlings from each sample were used for every technical replicate and three biological replicates were conducted. (D) The survival status of PCaP2-OE,
WT, pcap2 and PCaP2-RNAi in normal, water deficit and rehydration matrix soil, respectively. Scale bar = 1 cm. (E) Phenotypes of leaves wilted of PCaP2-OE, WT,
pcap2 and PCaP2-RNAi plants for 0 h (up) and 4 h (down) under dehydration stress. Scale bar = 1 cm. (F) Water loss measurements for genotypes. Water loss in
detached leaves was measured at the time points indicated. Water loss was expressed as a percentage of initial fresh weight. At least 30 detached leaves from each
sample were used for every technical replicate and three biological replicates were conducted. (G) Phenotypes of root hairs in WT, pcap2, and PCaP2-RNAi lines in
1/2 MS or coated with 15% PEG. Scale bar = 0.5 mm. (H) The statistics of average root hair length in (G). About 250 root hairs from 30 roots of each sample were
used for every technical replicate and three biological replicates were conducted. (I) The relative water content (RWC) of WT, pcap2 and PCaP2-RNAi lines in 1/2MS
or coated with 15% PEG. About 30 seedlings from each sample were used for every technical replicate and three biological replicates were conducted. All data are
mean values of three biological replicates ± SE. The significant difference was determined by ANOVA: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.
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FIGURE 3 | Expression pattern of PCaP2 with exogenous ABA or SA treatments. (A) Relative expression of PCaP2 in response to exogenous ABA and SA
treatments. Fourteen-day-old seedlings were treated with 40 µM ABA or 100 µM SA for 0, 1, 3, 6, and 12 h by qRT-PCR analysis. Data represent mean values of
three biological replicates ± SE. The significant difference was determined by ANOVA in comparison to 0 h: ∗∗∗P < 0.001. (B) Comparison of PCaP2 expression
levels with exogenous ABA or SA treatments by GUS staining. Seven-day-old seedlings of pPCaP2::GUS transgenic plants were treated with 40 µM ABA or
100 µM SA for 0, 1, 3, 6, and 12 h. Scale bar = 2.5 mm. (C–E) Analysis of the expression pattern of PCaP2 by GUS staining of pPCaP2::GUS transgenic seedlings
in normal (without ABA or SA treatments) (C) and 40 µM ABA treatments for 6 h (D) and 100 µM SA treatments for 6 h (E). At least 15 seedlings from each sample
were used for every technical replicate and three biological replicates were conducted. The scale bar is 5 mm in the pictures of whole plants, and 0.25 mm in the
pictures of cotyledons, true leaves, hypocotyls, lateral roots, and main roots.

PCaP2-RNAi in water deficit conditions by qRT-PCR. The
analysis showed that the increasing expression of PCaP2 in
PCaP2-OE and the decreasing expression in pcap2 and PCaP2-
RNAi were compared with that in WT under water deficit
treatments (Supplementary Figure S1).

Next, we examined the expression of the following
ABA-responsive genes, including SnRK2.2, -2.3, -2.6, ABF2,

-3, -4 (Choi et al., 2000; Uno et al., 2000; Boudsocq et al.,
2004; Gong et al., 2015; Jia et al., 2015); drought-inducible
genes, including RD29A (Yamaguchi-Shinozaki and Shinozaki,
1994); KIN1 and KIN2 (Kurkela and Borg-Franck, 1992); and
SA-responsive genes such as PR1, -2, -5 genes (Liu P. et al., 2013;
Liu W.X. et al., 2013) in WT, PCaP2-OE, pcap2 and PCaP2-RNAi
with dehydration conditions at 0, 6, and 12 h by qRT-PCR
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FIGURE 4 | Effects of PCaP2 on Arabidopsis seed germination and seedling growth in ABA or SA treatments. (A) Quantification of germination rates of the
PCaP2-OE, WT, pcap2, and PCaP2-RNAi seeds in 1/2 MS medium or mixed with 0.8 µM ABA and 0.3 mM SA from 1 to 5 days. A total of 40 seeds of each line
were used for every technical replicate and three biological replicates were conducted. (B) Phenotypes of the PCaP2-OE, WT, pcap2, and PCaP2-RNAi seedlings
grown in exogenous ABA and SA treatments. The seedlings were sown on 1/2 MS medium for 5 days, then transferred to 0.5 µM ABA or 0.05 mM SA medium and
grew for 10 days. Scale bar = 1 cm. (C) The phenotype statistics of the PCaP2-OE, WT, pcap2, and PCaP2-RNAi seedlings grown in exogenous ABA and SA
treatments. The main root length and leaf area of these seedlings were calculated after growth on 1/2 MS medium or supplemented with 0.5 µM ABA and 0.05 mM
SA. At least 70 roots or 200 leaves from about 70 seedlings from each sample were used for every technical replicate and three biological replicates were
conducted. All data are mean values of three biological replicates ± SE. The significant difference was determined by ANOVA: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

analysis. Under normal conditions, pcap2 and PCaP2-RNAi
inhibited the expression of ABA- and drought-responsive
genes, except SA-responsive genes (Figure 5), and PCaP2-OE
increased the expression of SA-responsive genes, suggesting that
PCaP2 might be the complex mechanisms in regulating gene
expression in normal conditions. Under water deficit stress, the
expression of all these genes, including ABA-, drought-, and
SA-responsive genes, was significantly inhibited in pcap2 and
PCaP2-RNAi while increased in PCaP2-OE, compared with
that in WT, indicating that PCaP2 was involved in regulating
drought-, ABA- and SA-responsive genes under water deficit
stress.

PCaP2 Positively Regulates
ABA-Mediated SnRK2s Expression and
SA-Mediated PRs Expression in Water
Deficit
To further analyze whether the effect PCaP2 on gene expression
in response to water deficit was mediated by ABA and SA
signaling pathways, we firstly checked the PCaP2 expression
of WT, PCaP2-OE, pcap2 and PCaP2-RNAi in ABA and SA
treatments by qRT-PCR. The analysis showed that the increase
expression of PCaP2 in PCaP2-OE and the decreasing expression
in pcap2 and PCaP2-RNAi were compared with that in WT
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FIGURE 5 | Effect of PCaP2 on the expression of ABA-, drought- and SA-responsive genes under water deficit. The relative gene expression of the 14-day-old
seedlings of WT, PCaP2-OE, pcap2, and PCaP2-RNAi with water deficit treatments for 0, 6, and 12 h was determined by qRT-PCR analysis. Data represent mean
values of three biological replicates ± SE. The significant difference was determined by ANOVA: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

under ABA and SA treatments (Supplementary Figure S1). Next,
we examined the expression of SnRK2.2, -2.3, -2.6 and PR1, -
2, -5 genes in WT, PCaP2-OE, pcap2, and PCaP2-RNAi with
ABA and SA treatments at 0, 6, and 12 h by qRT-PCR analysis.
The results showed that the effect of PCaP2-OE, pcap2, and
PCaP2-RNAi on affecting the ABA-responsive gene expression
in ABA treatments, rather than SA treatments, were similar
to that in drought treatments, (Figure 6A). In contrast, the
effect of PCaP2-OE, pcap2, and PCaP2-RNAi on affecting the
SA-responsive gene expression in SA treatments, rather than
ABA treatments, were similar to that in drought treatments
(Figure 6B). These results illustrated that PCaP2 regulated the
expression of ABA-mediated SnRK2 genes and SA-mediated PR
genes under water deficit stress, indicating that PCaP2 was a
crosstalk factor in response to ABA and SA signals in water
deficit.

DISCUSSION

Water deficit significantly influences plant growth, development,
and productivity. One of the most important regulators in
drought is ABA, and some cases of SA-mediated plant water
deficit tolerance have been documented. However, details of
crosstalk between ABA and SA signaling cascades in response
to water deficit remain largely unknown. Previous studies have
suggested that PCaP2 responds to some phytohormone signaling
pathways and abiotic stress through mRNA expression pattern
analysis (Kato et al., 2010). Our results further support a
key role for PCaP2 in Arabidopsis water deficit tolerance and
suggest that it is connected to the main ABA and SA signaling
pathways.

Previous studies have shown that PCaP2 is mainly expressed
in roots and flower tissues in normal conditions, and its mRNA

level in whole seedlings is induced by drought as well as treatment
with ABA or SA (Wang et al., 2007; Kato et al., 2010). Compared
with previous studies, our data provide more detailed findings.
High expression of PCaP2 in roots was found under normal and
stress conditions. This might be related to its function in root
water absorption and root hair growth in both normal and water
deficit conditions. Additionally, PCaP2 was not expressed in true
leaves under normal conditions, but was highly induced in water
deficit and treatment with ABA or SA. This indicated that in true
leaves, the increase of PCaP2 level is a key response to stress that
is triggered by phytohormone signals, which may be associated
with its function in controlling water deficit-induced leaf water
loss.

Some ABA-sensitive seedlings show improved drought
tolerance in soil, such as SnRK2s-OE and AREBs-OE, while
some mutants show the same sensitivity to ABA and drought
treatments, such as Atrgga and AtDi19-3 (Fujita et al., 2009;
Qin et al., 2014; Ambrosone et al., 2015). Generally, ABA-
sensitive mutants improve drought tolerance by regulating
stomatal movement. However, changes in the drought tolerance
of Atrgga and AtDi19-3 are not dependent on stomatal
movement (Fujita et al., 2009; Qin et al., 2014; Ambrosone
et al., 2015). In the present study, we used the previously
identified PCaP2-OE line (Wang et al., 2007) pcap2 mutant
(Kato et al., 2013; Zhu et al., 2013; Zhang et al., 2015;
Kang et al., 2017) and PCaP2-RNAi lines (Wang et al.,
2007), and our analysis of PCaP2 expression of these lines
is the same with the prior findings. Our results showed that
pcap2 and PCaP2-RNAi lines were more sensitive to ABA
and drought, while PCaP2-OE plants were more resistant
to ABA and drought stress. Although our results do not
address whether PCaP2 can regulate stomatal movement, it
is possible that PCaP2 has a similar mechanism to AtRGGA
and AtDi19-3. PCaP2 do not fully depend on the regulation
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FIGURE 6 | Effect of PCaP2 on the expression of SnRK2 and PR genes with exogenous ABA and SA. (A) The relative expression of SnRK2 genes and PR genes of
the 14-day-old plants with 40 µM ABA treatments for 0, 6, and 12 h was determined in WT, PCaP2-OE, pcap2, and PCaP2-RNAi by qRT-PCR assay. (B) The
relative expression of PR and SnRK2 genes of the 14-day-old plants with 100 µM SA treatments for 0, 6, and 12 h was determined in WT, PCaP2-OE, pcap2, and
PCaP2-RNAi by qRT-PCR assay. Data represent mean values of three biological replicates ± SE. The significant difference was determined by ANOVA: ∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001.

of stomatal movement in response to drought stress; PCaP2
functionality in plant water deficit tolerance can be borne out
by regulating root hair growth to benefit water absorption and
to induce the expression of numerous key drought-responsive
genes (Figure 7). Furthermore, the water deficit-inducible
phenotypes in fully silenced PCaP2-RNAi plants were greater
in magnitude to those in knockdown pcap2 mutants. This
suggests that the role of PCaP2 in water deficit is dependent
on its inducible expression level. These results indicate that
PCaP2 is a positive regulator of water deficit tolerance in
Arabidopsis.

Root hairs are the major water absorbing tissue in plants.
Under water-limited conditions, root hair growth is significantly
inhibited, which affects root water absorption and plant water
deficit tolerance (Worrall and Roughley, 1976; Zahran and
Sprent, 1986; Schnall and Quatrano, 1992). Our results showed
that reduced expression of PCaP2 leads to shorter root hairs
under normal conditions, which is consistent with previous
results from Zhang et al. (2015). Moreover, significant inhibition
of shorter root hair development was seen under water deficit
conditions in pcap2 and PCaP2-RNAi, which could be one

main pathway through which PCaP2 induces plant water deficit
tolerance.

In Arabidopsis, SnRK2.2, -2.3, and -2.6 are crucial in the
response to water deficit stress (Shi and Yang, 2014; Trivedi et al.,
2016). Prior studies have shown that SnRK2.2, -2.3, and -2.6 triple
mutants are insensitive to ABA and water deficit treatments (Fujii
and Zhu, 2009; Fujita et al., 2009). Thus, PCaP2 mainly influences
plant water deficit tolerance by regulating the ABA-mediated
SnRK2 signaling pathway. It has been shown that SnRK2.6
functionally separates from SnRK2.2 and -2.3 under water deficit
stress (Fujii et al., 2007; Kulik et al., 2011). Furthermore, SnRK2.2
and SnRK2.3 kinases regulate seed dormancy, germination, and
seedling growth under water deficit conditions (Fujii et al.,
2007; Fujita et al., 2009). SnRK2.6/OST1 plays an important
role in stomatal movement (Vlad et al., 2009; Vahisalu et al.,
2010; Brandt et al., 2012; Acharya et al., 2013; Imes et al.,
2013; Grondin et al., 2015; Matrosova et al., 2015; Yin et al.,
2016), suggesting that it is involved in plant drought tolerance
by regulating stomatal movement. Some studies have further
demonstrated that SnRK2.2, -2.3, and -2.6 are crucial in the
response of Arabidopsis to ABA and water deficit stress (Shi
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FIGURE 7 | Working model of PCaP2 function in plant response to water
deficit stress. Arrows ending solid lines indicate positive and direct regulation,
arrows ending broken lines denote hypothetical or indirect regulation. Details
of this model are discussed in the text.

and Yang, 2014; Trivedi et al., 2016). The expression of ABA-
dependent transcription factors, such as ABIs and ABFs, is
also stimulated by SnRK2s (Fujii et al., 2007). These factors
mediate the expression of downstream ABA-inducible genes to
improve plant water deficit resistance. Our results illustrated
that PCaP2 increased SnRK2.2, -2.3, and -2.6 expression as
well as SnRK2-mediated gene expression, such as ABF1, -2, -3,
-4, KIN1, KIN2, and RD29, in water deficit stress and ABA
treatments. Consequently, it can be speculated that water deficit
stress-induced PCaP2 may affect the ABA-mediated SnRK2
signaling pathway and thus regulate drought-inducible gene
expression, seed germination, seedling growth, and leaf water
loss.

Compared to the ABA signaling pathway, relatively few
cases of SA-mediated drought tolerance have been presented,
Kang G. et al. (2012) and Kang G.Z. et al. (2012) identified 76
proteins as potentially involved in the SA signaling pathway
in drought-exposed T. aestivum. Genetic and gene expression
analysis of these proteins show that PR1, -2, and -5 are
required in SA signaling in drought stress (Liu P. et al., 2013;
Liu W.X. et al., 2013). Arabidopsis cpr5 and acd6 mutants exhibit
SA accumulation, and their drought tolerance is improved by
inducing SA-mediated expression of PR1, -2, and -5 (Liu P. et al.,
2013). Additionally, PR1, -2, and -5 overexpression enhances
drought tolerance in Arabidopsis (Liu W.X. et al., 2013; Qin et al.,
2014).

Transcription factor Di19 regulates the expression of PR1, -2,
and -5 in drought conditions (Liu W.X. et al., 2013; Qin et al.,
2014). Water loss rates of PR1-, PR2-, and PR5-overexpressing
lines are lower than those of WT plants, and the three genes
are highly expressed in stomata, suggesting that PR1, PR2, and

PR5 may regulate stomatal movement in response to drought
tolerance (Liu W.X. et al., 2013; Qin et al., 2014). Additionally,
PRs play significant roles in regulating phytohormone-signaling,
such as auxin and JA (Thaler et al., 1999; Wang et al., 2001;
Wen et al., 2008; Iglesias et al., 2011), suggesting that PR1,
PR2, and PR5 may mediate the complex crosstalk between
phytohormone signals under drought stress. However, complete
mechanisms of PR actions under drought stress are largely
unknown. Our results show that PCaP2 positively regulates
the expression of PR1, -2, and -5 after SA and water deficit
treatments, but not ABA treatment. In addition, PCaP2-RNAi
and pcap2 lines lost water faster and wilted earlier than WT
lines, which stands in contrast to the phenotypes of PR1-, PR2-
, and PR5-overexpressing seedlings (Liu W.X. et al., 2013; Qin
et al., 2014). However, the phenotypes of PCaP2-OE plants are
consistent with those of PRs-overexpressing seedlings. Thus,
these results support the idea that PCaP2 activates the key
SA-mediated signaling pathway in response to water deficit,
providing a new pathway to regulate PRs under water deficit
conditions.

Interactions between SA and ABA signals have been
shown to occur during abiotic stress, such as salt and cold
stress. In S. lycopersicum, treatment with SA improves plant
growth, osmotic adaptation, and ABA accumulation under
normal conditions and during salt stress (Szepesi et al.,
2009). Under cold conditions, exogenous ABA treatment
increases endogenous SA level and oHCA content in Z. mays,
suggesting that the ABA signal may combine with SA-
related stress responses during cold stress (Szalai et al., 2011).
Our results showed that ABA and SA can trigger PCaP2,
and that PCaP2 then regulates the ABA-mediated SnRK2
signaling pathway as well as the expression of SA-mediated
PR genes during water deficit stress. Thus, PCaP2 mediates
crosstalk in response to ABA and SA signals during water
deficit.

We have not interrogated whether PCaP2 can directly regulate
SnRK2s and/or PRs in normal, water deficit, or exogenous ABA
and SA conditions. However, previous studies have shown that
PCaP2 can bind PtdInsPs, Ca2+ and Ca2+/CaM complexes.
These ligands are important components of intracellular
signaling networks involved in plant water deficit tolerance
(Zielinski, 1998; Meijer and Munnik, 2003; Carlton and Cullen,
2005; Perera et al., 2008; DeFalco et al., 2009; Kleerekoper
and Putkey, 2009; Luan, 2009; Xue et al., 2009; Kato et al.,
2010, 2013). Our results also showed that PCaP2 regulated the
expression of many key ABA-responsive genes, SA-responsive
genes, and drought-inducible genes, including upstream genes
such as SnRK2.2, -2.3, and -2.6. Thus, it is well-accepted
that PCaP2 mainly functions as a Ca2+-binding protein to
participate in intracellular signaling transduction under water
deficit stress.

In conclusion, water deficit triggers ABA and SA
accumulation, which, in turn, induce PCaP2 expression.
PCaP2 then activates the expression of many key drought-
responsive genes, including ABA-mediated genes (SnRK2.2, -2.3,
-2.6, ABF1, -2, -3, -4) and SA-mediated genes (PR1, -2, -5) and
drought-inducible genes (RD29A, KIN1 and KIN2), and affects
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root hair growth to increase water absorption, which improve
plant water deficit tolerance (Figure 7). This study highlights
the positive and important role that PCaP2 plays in plant water
deficit tolerance by mediating crosstalk between ABA and SA
signals, providing novel evidence relating to the underlying and
complex mechanisms mediated by ABA and SA signals during
plant water deficit tolerance.

MATERIALS AND METHODS

Plant Materials, Growth Conditions, and
Treatments
Arabidopsis ecotype Col-0 was the background for all transgenic
and mutant plants in this study. The seeds of PCaP2-OE line
(Wang et al., 2007), pcap2 mutant (Kato et al., 2013; Zhu et al.,
2013; Zhang et al., 2015; Kang et al., 2017), and PCaP2-RNAi line
(Wang et al., 2007) and PCaP2 promoter::GUS (pPCaP2::GUS)
(Wang et al., 2007) were provided by Professor Ming Yuan, China
Agricultural University, Beijing, China. All these seeds were used
in the previous reports.

Surface sterilized Arabidopsis seeds were sown on MS plates
with 1/2 MS (Murashige & Skoog) medium (pH adjusted to
5.8–6.0 with 1 M NaOH) with vitamins, 0.6 % phytoagar
(PlantMedia), and 1% sucrose, and then in darkness at 4◦C for
3 days. Seedlings were then transferred to a growth chamber at
22◦C, with a 16 h/8 h (light/dark) photoperiod at approximately
120 µmol m−2 s−1. The 1/2 MS plus 1% sucrose media
are usually used in water deficit, ABA, and SA treatments
(Jayakannan et al., 2015; Schwalm et al., 2017; Zhu et al., 2017).
PCaP2-OE, WT, pcap2, and PCaP2-RNAi were used for all
experiments. For germination rate analysis, seeds were sown
on 1/2 MS medium with 25 % PEG (dehydration), 0.8 µM
ABA and 0.3 mM SA for 1, 2, 3, 4, 5 days, respectively.
For seedling growth experiments, 4-day-old seedlings were
transferred to soil for 7 days, then with 40 % PEG (dehydration),
0.5 µM ABA and 0.05 mM SA for 10 days. For survival
experiments, 4-day-old seedlings were transferred to soil for 7
days, then were treated for 10 days without water, following
with water for 7 days. At least 20 seedlings were harvested
for observing in three biological replicates in each experiment.
The best concentration of ABA and SA in the present paper
was chosen by the prepared experiments for 0.01 to 40 µM of
ABA and SA (data not shown), because the previous findings
show that significantly different ABA and SA concentrations
from 1 nM to 80 µM are used in seed germination and
seedling growth experiments (Reyes and Chua, 2007; Zhu et al.,
2007; Horváth et al., 2015; Huang et al., 2017). For water-
loss assays, rosette leaves of comparable size from 4-week-old
plants grown under long days were detached, placed on a
Petri dish and weighted at a specified time (0, 0.5, 1, 1.5, 2,
2.5, 3, 3.5, and 4 h) after detachment. For root hair growth
assays, 3-day-old seedlings were transferred to 1/2 MS medium
with or without 15% PEG for 3 days, and the root hair
length was assayed by ImageJ software1. Three-day-old seedlings

1http://rsb.info.nih.gov/ij/

transferred to 1/2 MS medium with or without 15% PEG for
7 days were used to test relative water content. Relative water
content was measured as previous reports described (Brini et al.,
2007).

RNA Isolation and Quantitative RT-PCR
(qRT-PCR) Analysis
Total RNA was isolated from 1-day-old seedlings using
RNasy plant mini kit (Qiagen), treated with RNase-Free
DNase (Qiagen) at 37◦C for 1 h to degrade genomic DNA,
and 1 µg total RNA to synthesize cDNA by oligo-(dT)
20-primed reverse transcription by the Omniscript RT
Kit (Qiagen). The cDNA was amplified using SuperReal
PreMix Plus (SYBR Green, TIANGEN, China) in a 10 µL
volume. The expression levels of 18S rRNA was used
as an internal control. Analysis was performed using the
BioRad Real-Time System CFX96TM C1000 Thermal Cycler
(Singapore).

For the expression of PCaP2 under drought, ABA, and SA
treatment assays, 14-day-old seedlings from WT plants were
exposed 1/2 MS medium with or without drought, 40 µM
ABA and 100 µM SA for 0, 1, 3, 6, 9, and 12 h. The
previous finding showed the higher expression level of PCaP2
has been found in exogenous 100 µM ABA and 100 µM
SA treatments (Kato et al., 2010). The expression of many
genes can be increased in 10 to 100 µM ABA treatments in
Arabidopsis (Zhu et al., 2007; Kato et al., 2010; Tian et al.,
2015; Zhu et al., 2017). We found the expression level of
PCaP2 can be induced in 40 µM ABA treatments, and the
expression is higher than that in 100 µM ABA treatments
(Figures 3A; Kato et al., 2010). Thus 40 µM ABA was used
in our experiments. At each time point, all seedlings were
immediately frozen by liquid nitrogen and then stored at −80◦C
for RNA preparation. To assay the expression of drought-,
ABA- and SA-responsive genes under water deficit stress in
WT and pcap2, WT and mutant seedlings grown at normal
conditions for 14 days were harvested and treated by dehydration
stress for 0, 6, 12 h. To assay the expression of SnRK2 and
PR genes in WT and pcap2 treatment with ABA and SA, the
seedlings of 14-day-old at normal condition were harvested
and treated with 40 µM ABA and 100 µM SA for 0, 6,
12 h. Total RNA extraction and reverse transcription were
performed as described above. All primer pairs used for qRT-
PCR examination are listed in Supplementary Table S1. Each
representative experiment was performed with at least three
replicates.

Histochemical Staining of GUS Activity
Seven-day-old or 14-day-old pPCaP2::GUS seedlings treated
with 40% PEG, 40 µM ABA, or 100 µM SA for 0, 1, 3,
6, and 12 h were collected for observing the changes of
GUS activity. The GUS staining procedure was executed by
the method mentioned in Wang et al. (2007). Samples were
observed on an Olympus microscope equipped with a color
CCD camera (Sutter Instrument; LAMBDA 10-2) or by an Epson
scanner.
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Statistical Analysis
The experiments were conducted at least three times, each of
which contained three technical replicates. Data presented as
the mean ± SE of three biological replicates. The significant
difference was analyzed by SPSS statistical software (ver.16.0,
SPSS Inc., Chicago, IL, United States) via one-way or two-
way ANOVA (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001). In
addition, we tested the normality of data about the main root
length, leaf area, and root hair length under drought stress
with Lilliefors corrected K-Sa test and Shapiro–Wilk test by
SPSS (Supplementary Table S2). The detailed information of the
chemicals and kits used in this study are listed in Supplementary
Table S3.
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