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Genebanks are a rich source of genetic variation. Most of this variation is absent in
breeding programs but may be useful for further crop plant improvement. However,
the lack of phenotypic information forms a major obstacle for the educated choice
of genebank accessions for research and breeding. A promising approach to fill
this information gap is to exploit historical information gathered routinely during
seed regeneration cycles. Still, this data is characterized by a high non-orthogonality
hampering their analysis. By examining historical data records for flowering time, plant
height, and thousand grain weight collected during 70 years of regeneration of 6,207
winter wheat (Triticum aestivum L.) accessions at the German Federal ex situ Genebank,
we aimed to elaborate a strategy to analyze and validate non-orthogonal historical
data in order to charge genebank information platforms with high quality ready-to-
use phenotypic information. First, a three-step quality control assessment considering
the plausibility of trait values and a standard as well as a weather parameter index
based outlier detection was implemented, resulting in heritability estimates above 0.90
for all three traits. Then, the data was analyzed by estimating best linear unbiased
estimations (BLUEs) applying a linear mixed-model approach. An in silico resampling
study mimicking different missing data patterns revealed that accessions should be
regenerated in a random fashion and not blocked by origin or acquisition date in order
to minimize estimation biases in historical data sets. Validation data was obtained from
multi-environmental orthogonal field trials considering a random subsample of 3,083
accessions. Correlations above 0.84 between BLUEs estimated for historical data and
validation trials outperformed previous approaches and confirmed the robustness of our
strategy as well as the high quality of the historical data. The results indicate that the
IPK winter wheat collection reveals an extraordinary high phenotypic diversity compared
to other collections. The quality checked ready-to-use phenotypic information resulting
from this study is the first brick to extend traditional, conservation driven genebanks into
bio-digital resource centers.

Keywords: genetic resources, genebank, winter wheat, historical data, bio-digital resource center, data quality
assessment
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INTRODUCTION

Plant breeders improve the performance of crops by means
of controlled crosses followed by selection (Bernardo, 2010;
Becker, 2011). The first step intends to maximize diversity for
those traits aimed to be improved, which in turn allows plant
breeders to find those progenies that enhance the desired trait
levels. Consequently, the genetic improvement of crops relies
on the genetic diversity existing within plant populations. In
line breeding of species like wheat, the parental material used
in crosses can be of many different types (National Research
Council, 1993; Sachs, 2009; Hammer and Knüpffer, 2015). This
ranges from very well adapted material like released varieties or
advanced breeding lines to less adapted old varieties, landraces,
and even crop wild relatives. Nevertheless, most breeders have
been reluctant to use less adapted plant material to perform
crosses due to the potential risk of disrupting haplotype blocks
associated to high crop performance that are present in elite
material (National Research Council, 1993).

The evolution of ex situ conservation – in general known as
genebanks – was divided into four major time eras by Cohen et al.
(1991), where (i) in the “Era of plant exploration and introduction
(1850 to 1950)” accessions were studied taxonomically and
their utility was tested, (ii) in the “Era of conservation (mid
1950s to 1980s)” a wide spectrum of diversity was conserved,
induced by the adoption of high-yielding varieties and the
displacement of local varieties, (iii) in the “Era of regeneration
and new international linkages (1990s)” the long-term viability of
the collections were ensured in combination with international
agreements and cooperation and (iv) in the “Era of more
efficient utilization (2010 and beyond)” there is an enhanced
exploitation of genetic resources by breeding. In order to guard
against genetic erosion due to the recurrent use of elite material
in crosses, genebanks are expected to be a rich source of
alleles that are absent in breeding programs. Moreover, these
alternative sources of trait variation and adaptation would be
of uppermost importance to confront the challenging future
scenario imposed by climate change and the continuously
growing world population (Ray et al., 2012; Hall and Richards,
2013).

Maintenance methods for germplasm collections in wheat can
be classified into two types: in situ and ex situ (Hammer and
Knüpffer, 2015). In situ maintenance denotes the preservation
of plant material at their native habitats, e.g., landraces and
wild wheats on farms and geographic areas of high genetic
diversity, respectively. In contrast, ex situ maintenance is the
preservation of plant material outside of its original agro-
ecological context. However, in both kinds of maintenance
methods, seed regeneration is essential both to provide seeds
to external users and to maintain germination capacity. In
many ex situ collections, curators monitor the identity and
purity of individual accessions, by collecting characterization
and evaluation data during each regeneration cycle (Oppermann
et al., 2015). However, data gathered during seed regeneration
cycles is characterized by a high non-orthogonality. This is
due to the fact that every year only a small proportion of the
total collection is cultivated in unreplicated plots with changing

regeneration frequency across the years. Therefore the unbiased
analysis of historical data while keeping a maximum of their
information content is challenging.

The German Federal ex situ Genebank of agricultural and
horticultural crops maintained by the Leibniz Institute of Plant
Genetics and Crop Plant Research (IPK) in Gatersleben is the
largest collection in the European Union and ranks among
the ten largest collections worldwide (Oppermann et al., 2015).
The genebank is preserving 151,000 accessions comprising close
to 3,000 plant species of 756 genera. Every year about 8,000
accessions are regenerated to keep up viability of seeds and to
comply with 600 user’s requests involving approximately 30,000
samples. The IPK collection comprises 27,350 accessions of the
genus Triticum. Comprehensive historical characterization and
evaluation data are available for 6,207 winter wheat accessions
(Triticum aestivum L). The information hidden in these historical
data is of high value for all potential genebank users. In this
context, first analysis of historical data allowed for discovery of
new alleles for flowering time by means of targeted allele mining
(Keilwagen et al., 2014).

The aim of this study was to elaborate a strategy to analyze
a non-orthogonal historical data set and validate their quality
and usefulness for the selection of accessions with defined trait
performance characteristics. In particular our objectives were to
(i) implement a three-step strategy for data quality assessment
comprising a plausibility check, a standard outlier detection
method and a weather parameter index based outlier detection,
(ii) study the role of the missing value structure on the precision
to estimate variance components and genotypic values, (iii)
validate parts of the historical data in multi-environmental,
orthogonal field trials, (iv) examine the phenotypic diversity
of the IPK winter wheat collection and their relevance for
plant breeding and research, and (v) give recommendation on
genebank regeneration strategies to warrant the usability of the
collected data.

MATERIALS AND METHODS

Plant Material
The present study included 6,207 accessions of winter wheat
(T. aestivum L.) from the German Federal ex situ Genebank
of agricultural and horticultural crops maintained at the IPK
Gatersleben. Sixty-six percent of the accessions were collected in
Europe and the countries of the former Soviet Union. Thereof,
approximately one third of the wheat accessions originate from
Germany (11%), Italy (11%), and countries of the former Soviet
Union (10%). For 10% of the accessions the origin was unknown.
Around 13% of the accessions originate from the Middle East and
6% were collected in the Far East. Notable collections covered also
North America (6%).

Field Trials of the Historical Data
The phenotypic data was routinely collected in the course of
the seed regeneration activities. Amongst others, the accessions
of winter wheat were evaluated for flowering time (FT), plant
height (PH), and thousand grain weight (TGW) between harvest
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season 1946 and 2015 in Gatersleben, Germany (latitude 51◦ 49′
19.74′′ N, longitude 11◦ 17′ 11.80′′ E, 110.5 m.a.s.l., black soil
of clayey loam type, 9◦C average annual temperature, 490 mm
average annual rainfall). The evaluation in unreplicated trials was
based on plots with a size of 3.75 m2. A randomized experimental
design was assumed. FT corresponds to the date on which plants
reached stage Z65 (Zadoks et al., 1974) and is expressed as days
after January 1st. PH was measured as the distance between soil
surface and the top of the spike (including awns) at grain filling
(growth stage Z70, Zadoks et al., 1974) and is expressed in cm.
TGW was determined in accordance with the official seed board
regulations and is expressed as the weight of thousand grains in g.
For FT, PH, and TGW, observations were made in 69, 70, and 59
different years and 31,817, 31,139, and 25,808 phenotypic records
were available for 6,206, 6,164, and 5,841 accessions, respectively.
Until 1975, each accession was regenerated and evaluated in time
intervals of maximum 4 years (Supplementary Figure S1). Cold
storage was implemented in 1976, which allowed for an extension
of regeneration intervals to up to 30 years. On average 452, 439,
and 439 accessions were phenotyped per year for FT, PH, and
TGW, respectively, with a peak of 3,008 accessions in the year
1970 and a minimum of 37 accessions in the year 2014 for FT.
Each accession was evaluated on average 5.03, 4.99, and 4.29
times for FT, PH, and TGW, respectively, again with substantial
variation across years (Figure 1).

Phenotypic Data Analyses of the
Historical Data
Before analyzing the data we implemented a plausibility check
on historical data guaranteeing that only autumn sown hexaploid
winter wheat accessions with physiologically possible trait
records and publically available accessions were entering the
analysis. Details on the plausibility check are described in
Supplementary Table S1.

Then we fitted the following linear mixed model to analyze the
historical data of each trait:

yij = µ+ gi + aj + eij [1]

where yij referred to the phenotypic value of the ith accession
in jth year, µ was the intercept, gi was the effect of the ith
accession, aj referred to the effect of jth year, and eij were
the residuals. The variances of the residuals were assumed to
be heterogeneous across years. For testing outliers, we used
studentized residuals following the proposal of Nobre and
Singer (2011). The Bonferroni–Holm method was applied to
correct for multiple testing (Holm, 1979). All detected outliers
were removed and Equation [1] was again fitted. Variance
components estimated before and after outlier detection were
compared. In Equation [1], we assumed random year and fixed
accession effects for outlier detection and to compute best linear
unbiased estimations (BLUEs) of accessions. Phenotypic variance
components were estimated assuming accession and year effects
as random. Later, heritabilities were calculated by the following
formula:

h2 =
σ2

G

σ2
G +

σ2
e

Year

[2]

FIGURE 1 | Number of regeneration years per accession for flowering time
(FT) (A), plant height (PH) (B), and thousand grain weight (TGW) (C).

where σ2
G refers to the variance of accessions, σ2

e to the average
variance of residuals and Year to the average number of years
each accession was tested.

Weather Data and Weather Parameter
Index
Comprehensive monthly weather records were available at the
experimental site for rainfall, air humidity and temperature
(average, T.avg; minimum, T.min; maximum, T.max) measured
2 m above the ground for the time span between 1953 and 2015.
Between April 1993 and November 1999 no records for T.min
and T.max were available. Stepwise multiple regressions were
used to identify standardized weather parameters explaining the
highest proportion of the variation for year effects (YE) on each
trait as estimated with Equation [1] assuming random genotype
and fixed year effects. The resulting regression coefficients were
used to define an aggregated weather parameter index for each
trait × year combination. This index was compared to the
coefficient of variation (CV) of the year specific error variances
calculated as:

CV =

√
σ2

e∗

YE
[3]
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where σ2
e∗ refers to the year specific error variance and

YE to the corresponding year effect. An inflated CV in
combination with weather parameter index anomalies indicates
that unfavorable weather conditions may have influenced the
quality of phenotypic data in a specific regeneration year.

Validation of the Results of the Historical
Data in Replicated Multi-Environmental
Trials
The validation experiments included a random sample of 3,083
genebank accessions and 47 advanced elite lines of current
agronomical relevance in Germany. Together they were evaluated
for FT and PH in two different trials in up to five environments
in Gatersleben and Schackstedt (latitude 51◦ 43′ 0′′ N, longitude
11◦ 37′ 0′′ E, 122.0 m.a.s.l., black soil of clayey loam soil type,
8.9◦C average annual temperature, 483 mm average annual
rainfall) during harvest years 2014, 2015, and 2016. In each
trial × environment combination accessions were randomized
following an alpha lattice experimental design with a plot size of
0.4 m2. Each plot consists of a double-row with 100 plants in total.
The trials were connected by up to 15 common checks.

We analyzed the validation experiments by fitting following
linear mixed model for each trait:

yijklm = µ+ gi + vj +
(
gv
)

ij + tk + rl(k) + bm(kl) + eijklm [4]

where yijklm was the phenotypic value of the ith accession in the
jth environment in the kth trial in the lth replication within the
mth block, µ was the intercept, gi referred to the effect of the
ith accession, vj was the effect of jth environment,

(
gv
)

ij was the
interaction of ith accession with the jth environment, tk the effect
of kth trial, rl(k) the effect of lth replication in kth trial, bm(kl) the
effect of mth block in lth replication within kth trial, and eijklmwas
the residual of yijklm. Accessions were set as fixed effects and all
others were considered as random effects. Linear mixed models
were solved using the restricted maximum likelihood (REML)
algorithm as implemented in the ASReml-R package (Butler et al.,
2009).

Correlations between BLUEs of validation experiments and
the historical data were calculated considering 2,232 and 2,221
overlapping accessions for FT and PH, respectively. Finally,
BLUEs of accessions evaluated in the validation experiments were
also correlated with estimations from the historical data reported
by Keilwagen et al. (2014). Specifically, these authors reported
arithmetic means and normalized rank product (NRP) for each
accession.

Impact of Deviations From the
Assumption of Missing at Random
The historical data is characterized by a high degree of missing
values, because only 7% of the total number of analyzed
accessions has been regenerated on average in each year. Before
the implementation of the cold storage facilities, regeneration
was performed in a block-wise manner, which was mainly based
on the year the accessions entered the genebank. Moreover,
blocks sometimes reflect collection hotspots of certain years.

This was for instance the case for 391 accessions originating
from Iran from which 91% were first regenerated in the year
1960 (Supplementary Figure S2). One basic assumption of the
REML algorithm on non-orthogonal data is that the missing
data follows either a missing-completely-at-random (MCAR)
or a missing-at-random (MAR) pattern (Piepho and Möhring,
2006). The block-wise regeneration may deviate from the MAR
assumption when blocks are not composed by random samples
of accessions. We therefore performed a resampling study to
investigate the potential bias in estimating first and second-
degree statistics caused by block-wise missing value structures.
For this, we sampled a balanced sub data set of 160 accessions,
which were all evaluated for FT and PH in the years 1951, 1953,
1956, 1959, 1964, and 1970. These 160 accessions originate from 8
countries: 51 from Germany, 42 from the United States, 27 from
Sweden, 15 from Greece, 7 from France, 6 from Afghanistan,
6 from Albania, and 6 from Great Britain. Based on the 160
accessions a resampling study was performed mimicking block
structures resulting due to common geographic origins (Scenario
A; Supplementary Figure S3A) or year of collection (Scenario
B; Supplementary Figure S3B). In addition, a MCAR scenario
was implemented (Scenario C; Supplementary Figure S3C). For
Scenario A, we used the eight different geographic origins for
blocking and assumed that every block was evaluated in three
out of the 6 years. For Scenario B, the same block sizes and
phenotyping intensity were assumed as in Scenario A but the
geographic origin of the accessions was ignored. For Scenario C,
we ignored blocks and assumed the same phenotyping intensity
per accession as for the Scenarios A and B. Resampling was
repeated 100 times and the BLUEs as well as the phenotypic
variance components were estimated in each resampling run.
All computational methods were implemented in R environment
(R Core Team, 2016).

RESULTS

Three-Step Strategy to Assess the
Quality of Phenotypic Data Resulted in
Increased Heritability Estimates
We implemented a three-step strategy to assess the quality of
the historical phenotypic data. First, plausibility checks were
performed and data from other species, spring wheat, no longer
existing accessions, and records with unusual sowing time
or physiological impossible trait observations were removed
(see Supplementary Table S1 for more details). Second, we
implemented a standard outlier detection method. Third, we used
historical weather data to identify years with inflated CV of the
residuals. In total 31,817, 31,139, and 25,808 data points survived
the plausibility tests for FT, PH, and TGW, respectively, and
underwent outlier detection, where we identified 251, 46, and 93
outliers for FT, PH, and TGW, respectively (Figure 2). Outliers
were excluded from the dataset and corresponded to 0.79, 0.15,
and 0.36% of FT, PH, and TGW records, respectively.

The CV of the residuals was inspected for each trait × year
combination (Supplementary Figure S4). We detected an inflated
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FIGURE 2 | Studentized residuals of FT (A), PH (B), and TGW (C) for each regeneration year. Residuals were estimated by modeling independent variances of
residuals for each of the regeneration years. We alternated between red and blue colors to distinguish consecutive years. Dashed lines display thresholds for defining
outliers. For TGW the outlier year 1961 is not shown. Please note that due to different data density per year and years without data the x-axes are not linear.

CV of the residuals for TGW in the year 1961, which was
2.82 times larger compared with the average CV of the other
years. To verify whether extreme weather events occurred in the
year 1961, a stepwise multiple linear regression was performed
using BLUEs of year effects for TGW as dependent variable
and monthly recorded rainfall, air humidity, as well as T.avg,
T.min, and T.max as explanatory variables. For model selection,
GLMSELECT procedure of the SAS system (SAS Institute Inc,
2011) was applied. Maximum temperature in February, rainfall
in April and June as well as air humidity in April were selected
explaining 38% of the variation of the year effects of TGW. The
selected variables were combined to a weather parameter index,
which revealed for 1961 an extreme value, which was 4.14 times
lower than the average negative index values across years. In
particular, rainfall was 3.6 higher in April 1961 than on average
in the other years (Supplementary Figure S5). This high rainfall
during 1961 could have caused severe infections due to Septoria
leaf blotch which is spread by rain splash to the upper leaves
(Shaw and Royle, 1993) detrimentally affecting TGW (Shaw
and Royle, 1989) in an extraordinary manner. Consequently, we
excluded all 600 records of TGW for the year 1961 for further
analysis.

The implemented three-step strategy to perform quality
assessment had a substantial impact on the variance of the
residuals, which decreased by 29, 4, and 15%, for FT, PH, and

TGW, respectively (Table 1). In contrast, the genetic variances
changed only marginally for the three traits with differences
ranging from 1% for PH to 3% for FT. Heritability estimates
increased by a maximum of 3% for FT and were high for all traits
with values above 0.90.

Block-Wise Missing Value Structure Can
Influence Precision in Estimating First-
and Second-Degree Statistics When
Analyzing Historical Genebank Data
The data collected during annual seed regeneration until
establishment of the cold storage facilities in 1976 followed a
block-like missing value structure according to the years of
collection (Supplementary Figure S1), which is often associated
with the geographic origin of accessions (Supplementary
Figure S2). The geographic origins can influence phenology
traits (Langer et al., 2014; Würschum et al., 2015). We
therefore investigated the risk of obtaining biased estimates
of first- and second-degree statistics when analyzing historical
data generated during genebank regeneration by applying a
resampling approach. The resampling study revealed that the
block-like missing value structure led to only a minor average
bias, which ranged between – 0.04 and 0.05% depending on the
trait (Figure 3). The standard deviations of 100 resampling runs
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TABLE 1 | Second-degree statistics for flowering time (FT), plant height (PH), and
thousand grain weight (TGW) before and after outlier correction, where σ2

Y refers to
the variance of the years, σ2

G denotes the genetic variance, σ2
e is the variance of

the residuals, Number of years is the average number of years when accessions
were regenerated, and h2 refers to the heritability.

Source FT PH TGW

Before outlier correction

σ2
Y 72.36∗∗∗ 228.75∗∗∗ 17.91∗∗∗

σ2
G 15.23∗∗∗ 342.15∗∗∗ 28.98∗∗∗

σ2
e 9.08 102.62 16.13

Number of years 5.13 5.05 4.42

h2 0.90 0.94 0.89

After outlier correction

σ2
Y 71.95∗∗∗ 230.99∗∗∗ 15.02∗∗∗

σ2
G 15.62∗∗∗ 346.72∗∗∗ 29.67∗∗∗

σ2
e 6.48 98.53 13.76

Number of years 5.09 5.04 4.30

h2 0.92 0.95 0.90

∗∗∗P < 0.001.

were, however, much smaller for a random scenario (Scenario C)
than for the studied block-like missing value structures (A and
B Scenarios). For example the standard deviations of the point
estimates for the genetic variance of FT were elevated by 57%
for Scenario B and 105% for Scenario A compared to Scenario C
(Figure 3).

Validation of the Results of the Historical
Data Sets Based on Orthogonal Field
Trials
The results of the historical data sets were validated performing
designed multi-environmental trials focused on PH and FT. Data
quality of validation trials was high with heritabilities of 0.95 and
0.85 for PH and FT, respectively. For both traits, the ranges of
BLUEs from validation experiments were comparable to those
portrayed in the historical data (Figure 4). The mean of FT
observed in the validation trial, however, was 4.30 days lower
than that for the historical data (Figure 4). This difference can
be explained by a temporal trend toward earlier flowering across
the last 70 years (Supplementary Figure S6). The correlation of
BLUEs between the historical data and validation experiment
were high with a coefficient of 0.84 for FT and 0.87 for
PH (Table 2). Moreover, we contrasted our analyses strategy
with one based on arithmetic means and NRP estimated in
a previous study (Keilwagen et al., 2014). For both traits, we
observed a higher correlation between BLUEs estimated with
the historical data and validation trials as compared to those
between arithmetic means or NRP of the historical data reported
by Keilwagen et al. (2014) and the validation trials (Table 2).

Broad Phenotypic Diversity Observed in
the Winter Wheat Collection of the IPK
Gatersleben
We observed a moderate (r = 0.51; P-value < 0.001) correlation
between FT and PH, while correlation between FT and TGW

FIGURE 3 | Influence of different patterns of missing values on the precision in
estimating the genetic variance (A), the variance of the residuals (B) and best
linear unbiased estimations (BLUEs) (C) for FT as well as the genetic variance
(D), the variance of the residuals (E) and BLUEs (F) for PH. The scenarios are
based on 100-fold repeated sampling of historical data from 3 years from an
orthogonal dataset including 160 accessions evaluated in 6 years. Patterns of
missing values are based on eight blocks of accessions defined according to
their origin (Scenario A), eight blocks of accessions of the same size as
Scenario A but with random origin (Scenario B), and ignoring any block
structure (Scenario C).

as well as PH and TGW were much less pronounced with
coefficients of 0.05 (P < 0.001) and 0.16 (P < 0.001), respectively
(Figure 5). The estimates of FT of the historical data varied
between 144.6 and 179.1 days of the year, which corresponds
to a period between the 24th of Mai and the 28th of June. The
average FT was the 160.6th day of the year. Comparing the FT of
the historical data with the validation trials the genetic variance
of historical data was overestimated by 14%, while the genetic
variance of the advanced elite lines was 86% lower compared
to the validation trials (Figure 4A). The BLUEs for PH of the
historical data varied between 45.3 and 164.5 cm. The average
PH was 113.0 cm. Comparing the PH of the historical data
with the validation trials, the genetic variance of historical data
was underestimated by 14%, while the genetic variance of the
advanced elite lines was 95% lower compared to the validation
trials (Figure 4B). Last but not least, the estimates for TGW of
the historical data varied between 24.3 and 65.7 g with an average
of 46.9 g.
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FIGURE 4 | Comparison of best linear unbiased estimates (BLUEs) of
historical data with designed replicated multi-environmental validation trials
consisting of a random sample of genebank accessions (Validation trials) and
German advanced elite lines, where (A) are the distributions of BLUEs
estimated for flowering time of 6,206 accessions of historical data, 2,232
accessions of the validation trials and 47 advanced elite lines, (B) are the
distributions of BLUEs estimated for plant height of 6,164 accessions of
historical data, 2,221 accessions of the validation trials and 47 advanced elite
lines, (C) is the correlation between 2,232 common accessions of the
historical data and validation trials for flowering time and (D) is the correlation
between 2,221 common accessions of the historical data and validation trials
for plant height.

DISCUSSION

Charging the Genebank Information
Platforms With Phenotypic Data Is
Challenging
For feeding the future McCouch et al. (2013) proposed to mine
biodiversity of genebanks in three steps to overcome future food
shortages. Briefly, this includes (i) the genetic fingerprinting
of the accessions, (ii) phenotyping of the accessions, and (iii)
the presentation of the data in an internationally accessible
informatics infrastructure, where the phenotyping is considered
as “. . .the most intellectually challenging, complex, costly and
time-consuming stage” (McCouch et al., 2013).

In order to overcome the gap of phenotypic information
of genetic resources Keilwagen et al. (2014) suggested making
historical data produced during seed regeneration of genebank
accessions accessible by applying a NRP approach. Obviously,

TABLE 2 | Pearson’s correlation coefficients among best linear unbiased
estimations of validation trials (BLUESValidation) and best linear unbiased
estimations of the historical data (BLUESHistorical), the arithmetic means of the
historical data (MeanHistorical), and the normalized rank product of the historical
data (NRPHistorical) for flowering time (FT) and plant height (PH).

Source BLUESValidation

FT PH

BLUESHistorical 0.84∗∗∗ 0.87∗∗∗

MeanHistorical 0.70∗∗∗ 0.83∗∗∗

NRPHistorical 0.76∗∗∗ 0.76∗∗∗

∗∗∗P < 0.001. MeanHistorical and NRPHistorical were previously published by
Keilwagen et al. (2014). The correlations of flowering time and plant height were
estimated based on 2,232 and 2,221 common accessions, respectively.

FIGURE 5 | Best linear unbiased estimations of 5,799 winter wheat
accessions for FT in days of the year, PH in cm and TGW in g.

this approach is limited since rank values of the accessions
range between 0 and 1. Hence, the information system of the
IPK’s Genebank (Genebank Information System, GBIS) currently
provides solely the passport data which includes, for example,
information about taxonomy, collection site and collection time
(Oppermann et al., 2015). Thus, due to the lack of phenotypic
information, the educated choice of accessions for research and
breeding is still limited. Evidently this problem is also faced
by information systems developed to access data of genebank
collections at the European (Weise et al., 2017) or worldwide
level (GENESYS, 2018). Therefore, the challenge of each single
genebank worldwide is to provide quality checked adjusted entry
means of their accessions in a standardized, comparable fashion.
Against this backdrop, we elaborated and validated a strategy
to analyze non-orthogonal historical regeneration data in order
to charge genebank information platforms with ready-to-use
phenotypic information.

Frontiers in Plant Science | www.frontiersin.org 7 May 2018 | Volume 9 | Article 609

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00609 May 8, 2018 Time: 12:23 # 8

Philipp et al. Utilizing Historical Genebank Regeneration Data

Valuable Phenotypic Data as Side
Product of Genebank Management
At the IPK genebank the regeneration pattern of the wheat
accessions analyzed in this study changed over time. While
until 1975 each wheat accession was regenerated every 2–
4 years in a block-wise manner together with other accessions
entering the genebank at the same time, the implementation
of cold storage facilities in 1976 enlarged the regeneration
interval per accession by up to three decades (Supplementary
Figure S1). Nonetheless, when the data is filtered by regeneration
pattern, the block-wise strategy results in relatively dense data
with many evaluation years per accession but the risk of
potentially biased estimates, while the random pattern from
1976 onwards fulfills the requirements for an unbiased analysis
with the REML-approach but provides much less evaluation
years per accession (Figure 3 and Supplementary Figure S1).
Together the data forms a highly non-orthogonal data set with
at least 93% of missing data for the full accession × year
matrix depending on the trait under consideration. Additionally,
temporal trends have to be considered. Accessions tend to flower
0.27 days earlier per year across the last 70 years (Supplementary
Figure S6) while the phenotyping protocols did not change
substantially.

Rigorous Quality Management Pays off
When Analyzing Historical Data
The proposed strategy of analyzing historical data has a clear
focus on quality assessment. In our three-step approach the
plausibility test plays an essential role requiring sufficient
knowledge about taxonomy, physiology, and agricultural practice
which is often ignored in pure statistical analysis. However, while
standard outlier detection methods may detect physiologically
unlikely records of the trait, the model cannot distinguish among,
e.g., different species or season and off-season sowing in the data
set, which potentially will bias the results.

The second step is the statistical outlier detection. The
applied approach in particular seems to play a minor role
and we implemented for the non-orthogonal data structure a
Bonferroni–Holm test in combination with studentized residuals
(Nobre and Singer, 2011; Bernal-Vasquez et al., 2016). For FT the
outlier test was reducing the error variance by up to 29% while
keeping the genetic variance approximately constant compared
to the analysis without outlier detection (Table 1). This was
achieved by omitting only 0.79% of the data as outlier, which is
quite efficient.

The last step is the outlier detection relying on historical
weather data. While the first two quality checks were record-
based approaches, the last step is an environment-based outlier
detection. Weather conditions are influencing the development
of plant growth. Especially the epidemic spread of diseases
like Septoria leaf blotch that in particular influences yield
performance of the plants can be forecasted by weather
parameters (e.g., Henze et al., 2007; te Beest et al., 2009; El
Jarroudi et al., 2017). If the CV of the error variance of a particular
environment is inflated and this inflation could be explained by
weather parameters we suggest excluding all records for this trait

from this outlier environment in order to improve data quality.
Heritability estimates above 0.9 for all traits confirm the utility of
the three-step quality control.

Linear Mixed Model Approach
Estimating BLUEs Is Advantageous
Orthogonal data validation outperformed the arithmetic means
and the NRP-approach published by Keilwagen et al. (2014)
(Table 2). Additionally, the BLUEs expressed in metric units for
time (FT in days), height (PH in cm), and weight (TGW in g)
have the advantage to be easily comparable across studies and
populations in contrast to NRP-values. The interpretation of the
latter is contextually limited, e.g., the position of an accession
or cultivar from outside the collection with a plant height of
100 cm can easily be classified among ordered BLUEs ranging
from 45.3 to 164.5 cm, while it is not possible to classify 100 cm
into rank-values ranging between zero and one.

In order to analyze non-orthogonal data sets Piepho and
Möhring (2006) suggested preferring best linear unbiased
predictions (BLUPs), obtained by assuming the effect of the
accession also as random in Equation [1], to BLUEs. The main
difference between both would be that the BLUP-approach might
change the rank of the accessions due to genotype specific
shrinkage toward the mean value. However, in the historical
data the Pearson correlation and the Spearman rank correlation
between BLUEs or BLUPs and the validation trials were almost
identical for both traits. A further reason why we prefer the
estimation of BLUEs is that BLUPs will end up in a double
shrinkage of the accessions when historical data is used later for
genome-wide association mapping or genomic prediction.

Structure of Missing Pattern Has an
Influence on the Precision of Estimates
of First and Second Decree Statistics
In general three missing pattern can be distinguished (i) missing-
completely-at-random (MCAR), (ii) missing-at-random (MAR)
and (iii) not-missing-at-random (NMAR), where MCAR is
fulfilled if the missing value pattern does not depend on the
values of missing or observed data, MAR is fulfilled if the missing
value pattern only depends on the observed values and not
on the missing values and NMAR is fulfilled if the missing
value pattern depends on the missing values in the data (Little
and Rubin, 2002). For unbiased estimates in analyzing non-
orthogonal data by a REML approach the drop-out pattern has
to fulfill the MCAR or the MAR criteria as discussed by Piepho
and Möhring (2006). While the block-wise regeneration of the
historical data until 1975 refers to a MAR pattern simulated
in Scenario A and Scenario B, the regeneration structure
beginning from the introduction of cold storage facilities in
1976 fulfills the criteria of MCAR simulated in Scenario C
(Figure 3). As expected, the overall means of the validation
runs in the simulation study did not differ substantially for the
estimations of the variance components and BLUEs. However,
the MCAR Scenario C had highest precision in estimating
these parameters in contrast to the MAR scenarios. From the
latter, Scenario A, where the regeneration blocks were defined
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by the common origin of the accession, precision tend to be
lower compared to Scenario B where accessions of each block
were assembled randomly. One plausible explanation for this
is that accessions differ in their trait performance by origin
(Langer et al., 2014; Würschum et al., 2015), which is enlarging
the variance between the blocks in Scenario A compared to
Scenario B with random accessions per block, lowering the
precision of the overall estimates. Therefore, in order to make
best use of regeneration data we recommend that genebank
curators regenerate the accessions following a MCAR pattern
(Scenario C) where accessions for regeneration were not selected
by origin or acquisition date. In genebanks it is common practice
that accessions were regenerated when germination capacity
or the seed stock dropped below a certain threshold, which
indeed is a kind of selection. However, since seed request
or germination capacity of the accessions is not correlated to
the trait performance itself this is not violating the MCAR
assumption. Additionally, the use of 5–10 common checks across
a long term period would support the data analysis and further
boost the data quality.

Independent Validation of Historical Data
Confirms Robustness of the Applied
Strategy
The FT interval of 34.52 days of the historical data has to
be interpreted carefully. As we can see from Figure 4A, a
representative part of the data of 2,236 accessions was validated in
orthogonal, multi-environmental field trials. In these validation
trials we observed only an interval of 21.70 days for FT.
While the minimum values for FT of the historical data and
the validation trials were comparable with the 144.6th and
144.2th day of the year, respectively, the maximum values
differed significantly by 12.3 days between the 179.1th day of
the year for historical data and the 166.8th day of the year
for validation trials. This last difference could be explained by
the contrasting evaluation environments. The historical data
were evaluated in 69 different years at the same location
compared to the validation trials tested in three different years
at two locations. In the historical data we observed a temporal
trend of 0.27 days per year of early flowering (Supplementary
Figure S6). Due to non-overlapping environments between the
two data sets it is likely that FT values of current validation
trials were shifted toward early flowering compared to the
historical data. This was not only affecting the maximum
values but also the average value decreased by 4.2 days.
Additionally, some of the extreme performing accessions in
historical data have low individual phenotyping intensity,
influencing the precision of these estimations. Nevertheless,
comparing the upper and lower 2.5% of the ranked accessions
of historical data and validation trials, 57 and 43% of the
minimum and maximum accessions overlapped, respectively.
Next to the total correlation of 0.84 for FT of the two
data sets, this is confirming the high quality of the historical
data.

The range of the PH of the historical data was 119.2 cm
and again a representative part of 2,221 accessions was used for

validation (Figure 4B). Ignoring one outstanding tall accession of
the validation trials (TRI 8278), descriptive statistics of historical
data and validation trials were comparable with minimum values
of 45.4 and 47.1 cm, maximum values of 164.5 and 163.7 cm,
average values of 113.0 and 116.6 cm as well as ranges of 119.2
and 116.6 cm, respectively. Comparing the upper and lower 2.5%
of the ranked accessions of historical data and validation trials, 59
and 46% of the minimum and maximum accessions overlapped,
respectively. Next to the total correlation of 0.87 of the two data
sets, this is also confirming the quality of historical data for PH.

Exceptionally High Phenotypic Diversity
of the IPK Winter Wheat Collection
While many studies focused on the genetic diversity of wheat
as revealed by molecular markers in European (e.g., Würschum
et al., 2013; Nielsen et al., 2014) and global (e.g., Cavanagh et al.,
2013; Wang et al., 2014; Bonman et al., 2015) panels, only few
studies investigated the phenotypic diversity of agronomic traits
like FT (Langer et al., 2014; Zanke C. et al., 2014), PH (Zanke C.D.
et al., 2014; Würschum et al., 2015), and TGW (Zanke et al., 2015)
in European hexaploid winter wheat. Studies for hexaploid winter
wheat diversity panels of worldwide origin on useful phenotypic
traits are also very rare (Neumann et al., 2011; Wilhelm et al.,
2013). However, knowledge about the physiologically possible
ranges of these phenotypic traits plays a key role for breeders
and researches for utilization of plant genetic resources and to
cope with the future problems like the food shortage and climatic
change (Lopes et al., 2015). The historical phenotypic data of the
IPK winter wheat collection with 6,207 accessions collected or
obtained from at least 100 present and former countries during
the last 70 years is, to the best of our knowledge, the world–
wide largest winter wheat collection investigated for these three
traits.

In order to compare the phenotypic diversity of the IPK
winter wheat collection with other collections we contrasted it
to (i) a sample of 47 German advanced elite winter wheat lines
investigated for FT and PH tested together with the validation
trials, (ii) a European panel of 358 winter wheat and 14 spring
wheat varieties, sampled across 13 European countries evaluated
for the FT related trait heading date (Zanke C. et al., 2014),
PH (Zanke C.D. et al., 2014), and TGW (Zanke et al., 2015) in
eight environments and (iii) a world-wide collection of 96 diverse
winter wheat accessions, sampled across 21 countries evaluated
for FT, PH, and TGW in up to eight environments (Neumann
et al., 2011) (Supplementary Table S2).

The genetic variance is less sensitive to extreme values within
the raw data and therefore a good measure to compare diversity.
The German advanced elite lines only represent 13 and 6% of
the genetic variance which is present in the IPK winter wheat
collection for FT and PH, respectively. As expected, the European
panel was more diverse representing 63, 23, and 39% of the
genetic variance existent for FT, PH, and TGW in the IPK
collection. In contrast the world-wide panel of Neumann et al.
(2011) outperformed the IPK collection representing 177, 111,
and 133% of the genetic variance for FT, PH, and TGW of the IPK
genebank. Nonetheless, this last observation must be carefully
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interpreted, because this relatively small world-wide collection
was sampled from a bigger collection in order to maximize
trait diversity (Neumann et al., 2011). Moreover, considering the
ranges between the minimum and maximum phenotypic trait
values this world-wide collection represents only 62, 84, and 74%
of the ranges compared to the IPK collection for FT, PH, and
TGW, respectively.

The high quality of the historical data of the IPK winter
wheat collection confirmed by high heritability estimates above
0.90 (Table 1) and validation field trials reveals a competitive
phenotypic diversity compared to European and even global
collections. Nevertheless, since the collection hot spots of the
IPK winter wheat collection were Europe and Asia, there
is still potential to boost the phenotypic diversity by filling
collection gaps using plant material from other geographic
regions. For instance, major wheat growing countries like India
and China as well as accessions from other continents in which
winter wheat plays a minor role (e.g., South America, Africa,
and Oceania) seem to be underrepresented in the collection.
However, especially wheats from tropical and subtropical
latitudes will lack in their environmental adaptation (e.g., frost
tolerance, photoperiod sensitivity and disease resistances) when
regenerated at the IPK genebank which is may masking their
phenotypic performance. This is one of the limitations in ex situ
conservation.

Utilization of Historical Data for Plant
Breeding and Research
The three agronomic traits investigated in this study are key
factors for wheat breeding. While FT is crucial for the global
and seasonal adaptation of wheat (Worland, 1996; Kamran
et al., 2014), PH played a central role during the Green
Revolution when semi-dwarfing genes were introduced into
global breeding material (Hedden, 2003) significantly increasing
lodging resistance, harvest index and grain yield of wheat
(Borlaug, 1968; Austin et al., 1980; Börner et al., 1993; Flintham
et al., 1997; Brancourt-Hulmel et al., 2003). Next to the number
of spikes per area and kernels per spike TGW is considered as a
major yield component (Simmonds et al., 2014). Due to its high
heritability this indirect trait is of importance for yield related
research in wheat (e.g., Groos et al., 2003; Cuthbert et al., 2008;
Neumann et al., 2011; Lopes et al., 2012; Sukumaran et al., 2015).
However, while the major loci of FT and PH (Distelfeld et al.,
2009; Liu et al., 2012; Würschum et al., 2015) are relatively well
understood, the genetic architecture of TGW is more complex
(Liu et al., 2012; Nadolska-Orczyk et al., 2017). The high quality
historical data of the IPK winter wheat collection provide a
valuable source of phenotypic information for association studies
mining loci and alleles which have a potential use in the fine
adjustment of these traits.

At present, about 4,000 accessions of the IPK winter wheat
collection still lack useful phenotypic information. With sufficient
molecular marker coverage, the available historical data can be
used for a genome-wide prediction, in order to completely charge
the genebank with phenotypic information (Crossa et al., 2016;
Yu et al., 2016).

Further, researchers will be able now to assemble their
individual core collections or targeted panels based on
phenotypic traits of 6,207 accessions, e.g., to avoid bias in
plant developmental stage by too much variation in FT or PH
when studying ear and leaf diseases under field conditions. In
addition, breeders can also benefit from historical data. Based
on FT estimates in days from the 1st January they can select
accessions, which fit to their national breeding pools in terms
of local adaptation or they use the data in order to synchronize
FT of the accessions and elite material to uncover the breeding
value of these accessions in a hybrid strategy (Longin and Reif,
2014). This targeted selection of potentially beneficial accessions
based on provided phenotypic information is a cost and time
effective way of utilizing the most promising accessions out of
the unmanageable amount of plant genetic resources hosted by
the genebank. The same goal has the Focused Identification of
Germplasm Strategy (FIGS) which uses detailed information
about the eco-geographic environment from which accessions
were collected to predict where plant traits are likely to have
evolved and thus have a high genetic variation of the considered
trait (Sanders et al., 2013). However, to implement the FIGS
algorithm a part of the genebank accessions have to be evaluated
for the trait under consideration to train the prediction model.
High quality historical data can be used to improve the training
of these prediction models in order to select promising accessions
without previous phenotypic records but information about their
origin from genebanks.

The results of the present study form a substantial
contribution to extend the IPK Genbank into a bio-digital
resource center. The widespread use of wheat genetic resources
will be spurred by the integration of the augmented phenotypic
data generated by this study to further enhance its information
and ordering system. Moreover, the integration of marker and
sequence data will further boost the practical and the academic
value of the wheat collection.
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