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Phytophthora capsici is the most devastating pathogen for chile pepper production
worldwide and current management strategies are not effective. The population
structure of the pathogen is highly variable and few sources of widely applicable host
resistance have been identified. Recent genomic advancements in the host and the
pathogen provide important insights into the difficulties reported by epidemiological and
physiological studies published over the past century. This review highlights important
challenges unique to this complex pathosystem and suggests strategies for resistance
breeding to help limit losses associated with P. capsici.
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INTRODUCTION

The soil-borne oomycete plant pathogen Phytophthora capsici (Leon.) is the most devastating
pathogen to chile pepper production. Chile pepper is an increasingly important crop used as a
vegetable, spice, food colorant, and medicinal applications. Over the last 30 years, chile pepper
consumption has increased 40-fold (Rehrig et al., 2014). Chile pepper is a high-value crop and
has immediate economic benefits for producers. Additionally, chile peppers are important sources
of essential nutrients providing long term nutritional benefits for consumers. Globally, P. capsici
causes more than $100 million in losses annually (Bosland, 2008). This enormity of damage
has stimulated extensive collaborations between plant pathologists and plant breeders to better
understand the epidemiology of the pathogen as well as the mechanisms of resistance in the host.
This review highlights recent work with the Capsicum–Phytophthora pathosystem and discusses
novel approaches to more effectively manage this devastating disease.

Pathogen Identification
Phytophthora capsici was first reported in New Mexico by Fabián García as a “souring of the soil”
(García, 1908). In 1922, Leonian systematically described P. capsici isolated from chile pepper
in 1918 at the New Mexico Agricultural Research Station in Las Cruces, NM, United States
(Leonian, 1922). Synonyms for P. capsici include P. hydrophila (Cruzi, 1927), P. parasitica var.
capsici (Sarejanni, 1936), and P. palmivora MF4 (Griffin, 1977).

Phytophthora capsici is part of a species complex with several attempts at resolution over
the years, but it has not been fully determined whether it is one species with formae speciales,
or multiple species. Studies of P. capsici populations recovered from vegetables at diverse
locations reveal a very high level of heterozygosity, typical for an obligately outcrossing diploid
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organism. Despite individual isolates carrying a large
complement of genetic variation, populations can vary
dramatically, with some comprised almost entirely of long-
lived clonal lineages (e.g., Peru, Argentina, Taiwan, and portions
of China) and others displaying a wide array of diverse
genotypes that change yearly due to the requirement for sexual
recombination and development of thick-walled oospores to
survive (e.g., United States and Mexico) (Gobena et al., 2012b;
Hu et al., 2013a,b; Castro-Rocha et al., 2016, 2017; Barchenger
et al., 2017). The extensive of genetic variation may play a part in
attacking such a large host group. Satour and Butler (1967) found
45 species of cultivated plants and weeds susceptible to P. capsici.
There is currently a lack of clear delineation between P. capsici,
the closely related P. tropicalis and multiple, un-named, but
clearly evolutionarily distinct species (Lamour et al., 2012).
This is due to the historical use of spore shape (sporangial
length/breadth ratio), pedicel length and caducity, and the
amphigynous oospore structure – which are poor characters
for defining evolutionary relationships, and the difficulty in
knowing how much genetic differentiation is sufficient to fully
resolve the species. In practice, isolates recovered from woody
or perennial hosts are not the same species as isolates recovered
from herbaceous annual plants (Lamour et al., 2012).

Disease Symptoms
Phytophthora capsici causes root-rot as well as stem-, leaf-,
and fruit-blight. These disease syndromes are dependent on
host species, point of infection, and also are influenced by
environmental conditions. Furthermore, disease severity is
affected by plant maturity, with more mature plants generally
being more resistant than seedlings or young fruit (Erwin and
Ribeiro, 1996; Lamour et al., 2011; Mansfeld et al., 2017).

In chile pepper, the root-rot syndrome caused by P. capsici
is associated with root darkening and small lesions that can
quickly expand to girdle and kill the root. In seedlings, damping
off associated with root-rot can kill plants two to 5 days after
inoculation (Erwin and Ribeiro, 1996). In older plants, root
infections can result in stunting, wilting, and eventual plant
death in approximately 2 weeks. Root-rot is the most destructive
and economically important disease syndrome of chile pepper
(Walker and Bosland, 1999; Bosland, 2008).

Foliar-blight symptoms include dark, water soaked areas of the
leaves (Walker and Bosland, 1999). The disease starts with a small
circular or irregular-shaped lesion on the leaves giving a “scalded”
appearance. Later, the lesions enlarge, dry, and bleach to a light
tan. The disease progresses to the stem as a dark-green and water-
soaked lesion. Finally, the plant is defoliated and stems dry and
brown (Weber, 1932). Infected leaves will turn brown or tan and
may defoliate as infection spreads to the stem (Alcantara and
Bosland, 1994). Stem-blight and crown-rot symptoms of chile
pepper are often similar. These symptoms include distinctive
black or purple lesions near the soil line (Erwin and Ribeiro, 1996;
Ristaino and Johnston, 1999). The lesions rapidly coalesce and
girdle the main branches of stem, which results in stem or entire
plant death (Erwin and Ribeiro, 1996).

The early symptoms of fruit-blight include small, water-
soaked, dull-colored spots that can rapidly elongate under

favorable conditions. Fruit-blight symptoms can continue to
spread until most of the chile pepper pod is symptomatic,
resulting in unmarketable fruit. Lesions generally occur at either
the stem end or the blossom tip of the fruit, but can spread quickly
toward the center of the fruit (Erwin and Ribeiro, 1996). The
infected tissue becomes dry, sunken, and paper-like and will often
turn a tan or straw color.

Management Strategies
Phytophthora blight encompasses both below-ground and above-
ground symptoms (Leonian, 1922). Conditions conducive to root
infection by P. capsici are saturated soil for extended periods
and warm soil temperatures (Weber, 1932; Walker and Bosland,
1999). Free water in the soil from rainfall and irrigation has a
greater effect on disease severity than the initial concentration of
inoculum (Ristaino, 1991). Additionally, Phytophthora outbreaks
may be more severe in low or shaded areas of a field, due to slow
drying in these areas (Bosland and Lindsey, 1991; Goldberg, 1995;
Hausbeck and Lamour, 2004).

Foliar-blight and stem-blight are serious problems in areas
with high relative humidity (Gevens et al., 2007) or during the
fall rainy period in other regions (Barksdale et al., 1984; Alcantara
and Bosland, 1994). Splashing water due to heavy rainfall or
overhead irrigation may allow normally soil-borne P. capsici to
infect aerial plant parts (Black, 1999). The disease may also result
from sporangia and zoospores produced on diseased plant parts
when environmental conditions are favorable. In New Mexico,
United States, plants are contaminated when fruit pickers spread
infested soils onto wet leaves; especially when harvesting early in
the morning when dew is on the leaves.

Current management practices for Phytophthora are cultural,
chemical and planting resistant hosts. These approaches include
irrigation management, crop rotation, soil solarization, fungicide
applications (Ristaino and Johnston, 1999; Sanogo, 2003;
Hausbeck and Lamour, 2004; Granke et al., 2012; Sanogo and
Bosland, 2012), and the planting of cultivars that are resistant to
local isolates. Generally, these management strategies aim to limit
losses associated with the pathogen because once established,
P. capsici is very difficult to eradicate (Lamour et al., 2011).
Additionally, P. capsici can readily move from field to field and
rapidly establish itself in a given region, as surface water used for
irrigation is an important means of disseminating the pathogen
(Gevens et al., 2007). Extreme weather events (e.g., flooding,
hurricanes, or typhoons) can initiate new and widespread
infestations (Sheu et al., 2009; Dunn et al., 2010). Since fully
restricting the movement of P. capsici among sites is often
impossible, the best approach to prevent P. capsici infection in
vegetable crops is the development of resistant cultivars because
it is less expensive and a sustainable alternative to fungicide
applications and other management practices (Hausbeck and
Lamour, 2004).

Host Range
Originally considered to be host specific (Tucker, 1931),
it has since been shown that P. capsici can infect many
other plant species including cultivated crops, ornamentals,
and native plants belonging to more than 15 plant families
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(Satour and Butler, 1967; Erwin and Ribeiro, 1996; Hausbeck and
Lamour, 2004; Tian and Babadoost, 2004; French-Monar et al.,
2006; Granke et al., 2012). It is a major threat to the important
crop plant families Cucurbitaceae, Fabaceae, and Solanaceae
(Hausbeck and Lamour, 2004). Soon after its identification
in 1922, P. capsici was reported to infect eggplant (Solanum
melongena L.) (Cruzi, 1927). Phytophthora capsici was first
reported to infect cucurbits when Kreutzer (1937) isolated P.
capsici in a field of cucumber (Cucumis sativus L.). Three years
later, the pathogen was reported to infect muskmelon (C.melo L.),
summer squash (Cucurbita pepo L.), and tomato (S. lycopersicum
L.) (Kreutzer et al., 1940; Wiant and Tucker, 1940).

In addition to members of the families Cucurbitaceae,
Fabaceae, and Solanaceae, Satour and Butler (1967) found the
annual crops of okra (Abelmoschus esculentus L.), safflower
(Carthamus tinctorius L.), and spinach (Chenopodium
amaranticolor Coste and Reyn.) as well as onion (Allium
cepa L.) (Leu and Kao, 1981) are hosts of P. capsici. Additionally,
woody perennial crops such as apple (Malus pumila Mill.)
(Wiant and Tucker, 1940), avocado (Persea americana Mill.)
(Tompkins and Tucker, 1937), black pepper (Piper nigrum L.)
(Tsao et al., 1985), cacao (Theobroma cacao L.) (Zentmyer et al.,
1977), fig (Ficus carica L.) (Katsura and Tokura, 1955), Fraser fir
(Abies fraseri Pursh.) (Quesada-Ocampo et al., 2009), macadamia
(Macadamia integrifolia Maiden & Betche) (Hunter et al., 1971),
papaya (Carica papaya L.) (Erwin and Ribeiro, 1996), peach
(Prunus persica L.) (Tompkins and Tucker, 1937), and rubber
(Hevea brasiliensis Müll. Arg.) (Erwin and Ribeiro, 1996) are also
host species. Most of these isolates likely belong to evolutionarily
distinct species and can no longer share genetic information
via mating with the vegetable strains (Donahoo and Lamour,
2008).

Pathogen Distribution
After its first identification, P. capsici was quickly recognized
throughout important production regions in the United States.
Following New Mexico, the pathogen was identified in California
(Tompkins and Tucker, 1937, 1941) in the 1920s, in Colorado
(Bodine, 1935; Sandsten, 1939), Florida (Weber, 1932), Arizona
(Brown and Evans, 1933), and New York (Wiant and Tucker,
1940) in the 1930s, Texas in the 1940s (French-Monar et al.,
2009, New Jersey in the 1960s (Barksdale et al., 1984; Parra
and Ristaino, 1998), Hawaii in the 1970s (Hunter et al., 1971),
and in South Carolina (Quesada-Ocampo et al., 2011), Michigan
(Hausbeck and Lamour, 2004), and Illinois (Babadoost, 2000) in
the 1990s. Today, P. capsici is likely established in every state
(Hausbeck and Lamour, 2004; Quesada-Ocampo et al., 2011;
Granke et al., 2012).

Although it is not known how the pathogen is spread over long
distances (Lamour et al., 2011), P. capsici is truly a global disease
(Cruzi, 1927; Tucker, 1928; Sarejanni, 1936; Marchionatto, 1938;
Godoy, 1940; Thomas et al., 1947; Osnitzkaya, 1949; Malaguti and
Pontis-Videla, 1950a,b; Do Amaral, 1952; Katsura and Tokura,
1954; Bell and Alandia, 1957; Turner, 1960, 1961a,b; Holliday
and Mowat, 1963; Ravise, 1966; Brasier, 1969; Ershad, 1971;
Fernandez-Northcote, 1971; Alfaro Moreno and Vegh, 1972;
Clerjeau, 1973; Zentmyer et al., 1973; Aleksić et al., 1975;

Kim et al., 1975; Griffin, 1977; Tsao and Tummakate, 1977; Zhou
et al., 1984; Alizadeh and Tsao, 1985; Tsao et al., 1985; Carter,
1986; Mu and Tsao, 1987; Tsao and Mu, 1987; Romero-Cova,
1988; Ho, 1990; Thompson et al., 1994; Anderson and Garton,
2000; Gilbert et al., 2001; Guigón-López and González-González,
2001; Velásquez-Valle et al., 2001; Pérez-Moreno et al., 2003;
Noveriza and Quimio, 2004; Silvar et al., 2006; Sholberg et al.,
2007; Silva-Rojas et al., 2009; Vásquez-López et al., 2009; Zapata-
Vázquez et al., 2012; Nguyen, 2015; Callaghan et al., 2016).
The chronological spread of P. capsici is presented in Figure 1.
However, this is likely not an exhaustive list, as the pathogen
could be present in other countries and just not yet reported.

CHALLENGES

For nearly a century, researchers around the world have studied
the Capsicum–Phytophthora pathosystem, making great strides in
understanding this complex interaction. However, even with the
greater knowledge gained, the global incidence of the disease is
increasing (Hwang and Kim, 1995; Ristaino and Johnston, 1999;
Parra and Ristaino, 2001; Kousik and Keinath, 2008; Stam et al.,
2013) and most commercial cultivars are either very susceptible
or only partially resistant to P. capsici (Ristaino and Johnston,
1999; Hausbeck and Lamour, 2004; Café-Filho and Ristaino,
2008). Progress is slow in limiting losses associated with P. capsici
because of the unique challenges presented by this devastating
pathogen.

Fungicide Resistance
Although morphologically similar to fungi, oomycetes are
genetically and biochemically divergent (Erwin and Ribeiro,
1996) and are generally not sensitive to most broad-spectrum
fungicides (Davidse et al., 1991). Therefore, the fungicides
growers can rely on to manage oomycetes are limited (Lamour
and Hausbeck, 2000). Metalaxyl (Ridomil R©; Syngenta) is a
phenylalamide fungicide introduced in 1977 that provided
systemic protection against oomycetes diseases, including
Phytophthora sp. (Cohen et al., 1979; Davidse, 1995; Schwinn
and Staub, 1995). Metalaxyl has been used to manage root-
and crown-rot of chile pepper (Papavizas and Bowers, 1981;
Johnston, 1982; Schlub and Johnston, 1982; Hwang and Sung,
1989; Ristaino et al., 1993; Matheron and Matejka, 1995).
Metalaxyl was replaced with mefenoxam (Ridomil Gold R©;
Syngenta), contains the active enantiomer contained in metalaxyl
(Parra and Ristaino, 2001) and has been widely used to
manage P. capsici (Lamour and Hausbeck, 2000; Silvar et al.,
2006).

The mode of action of phenylamide fungicides is site specific,
and fungicide insensitivity was observed in susceptible plant
pathogens soon after their introduction in the 1970s (Lamour and
Hausbeck, 2000). Insensitivity to mefenoxam and metalaxyl has
been widely observed in P. capsici (Bruin and Edington, 1981,
1982; Bower and Coffey, 1985; Abdellaoui-Maane et al., 1988;
Lucas et al., 1990; Miller et al., 1994; Hwang and Kim, 1995;
Parra and Ristaino, 1998, 2001; Mathis et al., 1999; Ristaino and
Johnston, 1999; Agosteo et al., 2000; Lamour and Hausbeck, 2000,
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FIGURE 1 | Progressive global spread of Phytophthora capsici from first identification in New Mexico, United States in the early 1900s through to 2017. The
countries that are white in color may have P. capsici; however, no reports identifying the pathogen have been published.

2001b, 2003; Louws et al., 2000; Stevenson et al., 2000, 2001;
Babadoost and Islam, 2001; Ploetz R.C. et al., 2001; Tamietti
and Valentino, 2001; Matheron and Porchas, 2002; McGovern
et al., 2003; Seebold and Horten, 2003; Zhang and Liang, 2003;
Hausbeck and Lamour, 2004; McGrath, 2004; Waldenmaier,
2004; French-Monar et al., 2006; Silvar et al., 2006; Gevens et al.,
2007; Café-Filho and Ristaino, 2008; Qi et al., 2008; Liu et al.,
2009).

Given the global emergence of insensitivity to phenylamide
fungicides in P. capsici, alternative fungicides have been
evaluated (Cui et al., 2009; Sun et al., 2010; Bi et al., 2014).
Some of these compounds include azoxystrobin, cyazofamid,
cymoxanil, dimethomorph, fluazinam, fosetyl-A1, oligochitosn,
oxathiapiprolin, and zoxmide (Matheron and Porchas, 2000;
Ivors et al., 2006; Keinath, 2007; Xu et al., 2007a,b; Ji and Csinos,
2015). However, soon after their first use to manage the disease,
insensitivity is often observed (Kousik and Keinath, 2008; Cui
et al., 2009; Sun et al., 2010; Bi et al., 2014; Miao et al., 2016).

The unusually rapid and high preponderance of fungicide
insensitivity in P. capsici is likely due to the pathogen’s
ability to sexually reproduce resulting in high rates of genetic
recombination in addition to the production of oospores that
can persist in the soil for many years (Lamour and Hausbeck,
2000, 2001b; Bi et al., 2014). Additionally, this is further evidence
that resistant cultivars are the best management strategy for
P. capsici. In Phytophthora, insensitivity to the phenylamide
class of fungicides has been reported to be controlled by a
single major effect locus with incomplete dominance that is
subject to modifying genes with minor effects (Shattock, 1988;
Chang and Ko, 1990; Bhat et al., 1993; Fabritius et al., 1997;
Lamour and Hausbeck, 2000). Additionally, once mefenoxam
insensitivity has been introduced into a population it is persistent
and the frequency of insensitive individuals does not decrease
after selection pressure is removed (Bower and Coffey, 1985;

Lamour and Hausbeck, 2001b). Sensitivity to dimethomorph
was found to be controlled by two dominant genes (Bi
et al., 2014) and oxathiapiprlin by a single gene (Miao et al.,
2016).

Multiple Disease Syndromes
As previously stated, depending on the point of infection,
growing environment, and plant maturity, P. capsici can cause
disease on effectively every part of the chile pepper plant
(Alcantara and Bosland, 1994; Goldberg, 1995; Ristaino and
Johnston, 1999; Walker and Bosland, 1999; Sy et al., 2005).
For each P. capsici disease syndrome (root-rot, foliar-blight,
stem-blight, and fruit-blight) separate and independent resistant
systems have evolved in the host (Monroy-Barbosa and Bosland,
2010), requiring the presence of independent resistance genes for
the control of each disease syndrome (Walker and Bosland, 1999;
Sy et al., 2005).

The necessity of independent resistance genes for each
of the multiple disease syndromes caused by P. capsici in
chile pepper increases the complexity of resistance breeding.
For host resistance, plant breeders have to pyramid multiple
resistance genes in a cultivar to a single race of P. capsici.
A similar phenomenon has been observed in the closely related
pathosystem of potato (S. tuberosum L.) and P. infestans ([Mont.]
de Bary) (Bonde et al., 1940; Rudorf et al., 1950).

Multitude of Races
Within the Phytophthora root-rot and foliar-blight disease
syndromes, more than 45 physiological races for have been
identified (Hwang et al., 1995; Oelke et al., 2003; Glosier et al.,
2008; Sy et al., 2008; Lee et al., 2010; Monroy-Barbosa and
Bosland, 2011; da Costa Ribeiro and Bosland, 2012; Jiang et al.,
2015; Barchenger, 2017) with different R genes controlling
the resistant phenotype against each physiological race of P.
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capsici within each disease syndrome (Monroy-Barbosa and
Bosland, 2008). Screening for resistance has been accomplished
on a wide range of genetic material (Kimble and Grogan,
1960; Barksdale et al., 1984; Peter et al., 1984; Reifschneider
et al., 1986; Ortega et al., 1991; Candole et al., 2010), and
sources for P. capsici resistance have been identified in C.
annuum such as Criollo de Morelos 334 (CM334), PI 201232,
PI 201234, PI 201237, and PI 640532 (McGregor et al., 2011)
from southern Mexico, AC2258 from Central America, and
‘Perennial’ from India. Among the sources of resistance, CM334
has the highest resistance level (Quirin et al., 2005). It is
proposed that the center of origin for P. capsici is Mexico,
Central or South America (Zentmyer, 1988). The reason the
majority of P. capsici resistant chile peppers are from this
region can be explained by an evolutionary arms race. This
coevolution results in plant specificity and pathogen virulence
continually adapting in response to each other. For this reason,
breeding for P. capsici resistance in chile pepper is challenging,
because new races are continually evolving to overcome the host
resistance.

Several P. capsici race identification systems have been
proposed (Black, 1999; Oelke et al., 2003; Glosier et al., 2008; Lee
et al., 2010); however, these relied on the use of cultivars as the
host differential. Using chile pepper cultivars for race detection
has limitations because cultivars can vary among seed companies
and can segregate (Votava and Bosland, 2002; Candole et al.,
2012). Additionally, cultivars can become unavailable, and not all
accessions are available to scientists in different countries. Sy et al.
(2008) developed a differential set of New Mexico Recombinant
Inbred Lines (NMRIL) for P. capsici race characterization that
been used for large scale race detection. Recombinant inbred
lines (RILs) are often used as host differentials to identify
races of pathogens (Lister and Dean, 1993). The RILs allow
the maximum genetic variability within a population with
homozygous genotypes that can be replicated permanently
without the risk of segregation occurring. The NMRILs have been
used for race detection in the United States (Monroy-Barbosa and
Bosland, 2008, 2010, 2011; Sy et al., 2008; Jiang et al., 2015), Brazil
(da Costa Ribeiro and Bosland, 2012), and Taiwan (Barchenger,
2017). The NMRILs have the potential to differentiate thousands
of races of P. capsici based on the formula 2n, where 2 is the
number of possible reactions (resistant and susceptible) and n is
the number of host differentials used.

Mating Type and Genetic Recombination
Phytophthora capsici is a heterothallic species that can reproduce
both asexually and sexually (Erwin and Ribeiro, 1996). Once the
pathogen is introduced into a field and exposed to water (such
as rainfall or irrigation), P. capsici rapidly reproduces asexually
through the production of sporangia and motile zoospores
(Hausbeck and Lamour, 2004; Lamour and Kamoun, 2009). Each
sporangium can produce 20–40 zoospores that can travel in
standing water and infect nearby plants (Hausbeck and Lamour,
2004). This swift spread throughout a field can result in losses
up to 100% within days. For isolates recovered from the middle
and eastern United States, there is no evidence to suggest host
specialization (Castro-Rocha et al., 2017). Infection on a single

cucumber or pumpkin easily leads to 100’s of millions of spores
being released during a rain or irrigation event. Recent studies
indicate zoospore progeny can have genomes markedly different,
at the chromosome level, from the isolate (or isolates) that
initiated the infection and that an impressive, and potentially
highly significant, amount of asexual evolution is occurring
during spore production (Barchenger et al., 2017; Castro-Rocha
et al., 2017; Shrestha et al., 2017).

Sexual reproduction occurs when the two mating types that
have been designated as A1 and A2 (Erwin and Ribeiro, 1996), are
in close proximity. Exposure to mating type specific hormones
α1 and α2 stimulates production of gametangia, outcrossing,
and recombinant oospore formation (Ko, 1988). Interestingly,
both mating types also produce male and female gametangia
and are capable of self-fertilization (Ko, 1988). However, self-
fertilization is not likely to occur as often as outcrossing (Uchida
and Aragaki, 1980; Dunn et al., 2014a). These recombinant
oospores can survive extended periods of cold temperatures
(Hausbeck and Lamour, 2004; Babadoost and Pavon, 2013) and
are the source of overwintering inoculum in regions with cold
winter conditions (Bowers, 1990; Lamour and Hausbeck, 2003;
Granke et al., 2012). Regardless of host availability, oospores
have been observed to remain viable in diverse soil textures for
several years (Babadoost and Pavon, 2009). When the oospores
are exposed to a susceptible host and favorable conditions, they
rapidly initiate the repeating asexual reproductive cycle and begin
their progression throughout the field (Hausbeck and Lamour,
2004; Granke et al., 2012).

Recently, Carlson et al. (2017) identified a 1.6 Mbp region
associated with mating type determination, designated the
“mating type region” (MTR) in a closed bi-parental field
population in New York, United States. This population
started with diploid parents and the authors report elevated
heterozygosity across the MTR for the A2 mating type relative
to the A1 mating type followed intensive inbreeding. This finding
was supported by Barchenger et al. (2017), who found that the
A1 isolates collected in Taiwan were largely diploid and the A2
isolates were generally triploid or higher ploidy.

Both A1 and A2 mating types of P. capsici have been widely
identified within the same field (Ristaino, 1990; Pan, 1997; Parra
and Ristaino, 1998, 2001; Lamour and Hausbeck, 2000, 2001a,
2002; Ploetz R. et al., 2001; Fernandez-Pavia et al., 2004; Islam
et al., 2004; Ann et al., 2008; Donahoo and Lamour, 2008; Glosier
et al., 2008; French-Monar et al., 2009; Sheu et al., 2009; Dunn
et al., 2010; Gobena et al., 2012a; Yin et al., 2012; Jiang et al.,
2015; Barchenger et al., 2017), increasing the probability of sexual
reproduction leading to new races and recombinant oospores
resulting in persistence across growing seasons.

Where both mating types exist, sexual reproduction is
associated with genetic diversity, persistent pathogens, and often
an A1:A2 ratio of ∼1:1 (Lamour and Hausbeck, 2001a; Dunn
et al., 2010). Additionally, it has been proposed that there is
a climatic influence on mating type distribution. In tropical
regions, it is not completely necessary for the pathogen to
produce oospores to survive dormantly and clonal lineages may
persist for years (Hulvey et al., 2011). A predominance of one or
the other mating type has been observed in tropical environments
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(da Costa Ribeiro and Bosland, 2012; Barchenger et al., 2017). In
more temperate environments with greater seasonality, low rates
of selfing as well as persistent and a more uniform distribution
of mating type has been observed (Lamour and Hausbeck,
2001a; Dunn et al., 2010; Hu et al., 2013b; Carlson et al., 2017).
Additionally, exceptions in which there are deviations from a 1:1
ratio in mating type have been observed (Glosier et al., 2008; Sun
et al., 2008; Sy et al., 2008; Sheu et al., 2009). This is likely due to
the rise of particularly virulent clonal lineages within a growing
season and may not reflect the full diversity of a population
(Lamour and Hausbeck, 2001b).

Mutation and Loss of Heterozygosity
The high level of diversity found in P. capsici in a single field
has also been attributed to mutation and loss of heterozygosity
(Lamour et al., 2012; Hu et al., 2013a; Dunn et al., 2014a).
Although mutations are the primary source of new genetic
variation in oomycetes (Goodwin, 1997), these mutations often
cause no observable changes (Silvar et al., 2006). However, rapid
genetic changes due to mutation at virulence loci have been
observed in P. infestans and P. sojae (Drenth et al., 1994, 1996;
Förster et al., 1994; Goodwin et al., 1995; Sujkowski et al.,
1996).

Recent work with P. capsici in Taiwan and the closely related
species P. colocasiae (host specific to taro [Colocasia esculenta
(L.) Schott]), recovered from Nepal, Vietnam, China, and Hawaii,
are shedding new light on a novel component to diversity
with P. capsici and P. colocasiae and very likely, the genus
as a whole (Barchenger et al., 2017; Shrestha et al., 2017).
Loss of heterozygosity was described in detail in the paper
presenting the draft reference genome for P. capsici (Lamour
et al., 2012). This phenomenon occurred on a large scale,
across a high percentage of sexual progeny produced to make
a detailed genetic map, and was not specific to any one region
of the genome and in total – impacted more than 30% of
the P. capsici genome (Lamour et al., 2012). How it occurs
is a mystery but newer sequencing technologies, particularly
whole genome sequencing and targeted amplicon sequencing
indicate the genomes for P. capsici and P. tropicalis can differ
dramatically from the diploid state. The difference is not limited
to a situation where all the chromosomes are triploid or
some other ploidy level, instead it was found that individual
isolates can be a mosaic of aneuploid variation. Current work
investigating single zoospore progeny from multiple field isolates
indicates chromosome dosage can be highly variable within
a single zoospore-derived isolate and there is little fidelity to
the chromosomal complement of the parental strain. This has
potentially significant implications for rapid evolution where
gene dosage may allow an isolate to overcome a novel human-
mediated selection pressure, including resistance genes and
Phytophthora-toxic chemicals, and clearly can play a role in the
rapid evolution of populations to novel resistance incorporated
by the plant breeder.

Breeding Approaches
Classical breeding approaches for transferring resistance to P.
capsici into adapted chile pepper germplasm has been a goal of

many breeding programs. One major challenge to chile pepper
breeders is that different inheritance models have been reported
among the sources of resistance to P. capsici. Several laboratories
studying CM334 report at least two genes; but often more genes
confer resistance (Guerrero-Moreno and Laborde, 1980; Ortega
et al., 1991, 1992; Reifschneider et al., 1992; Walker and Bosland,
1999; Thabuis et al., 2003; Sy et al., 2005). Other studies report
a single dominant gene (Saini and Sharma, 1978; Kim and Hur,
1990) or a single dominant gene with modifying genes (Barksdale
et al., 1984) control resistance such as in PI 201234 and bell
pepper (Smith et al., 1967). Multiple genes with additive or
epistatic effects are involved in resistance in ‘Perennial’ (Lefebvre
and Palloix, 1996). However, it is likely that the qualitative
gene model reported for resistance in chile pepper is actually
race-specific resistance (Sy et al., 2008; Foster and Hausbeck,
2010) as well as syndrome-specific resistance (Sy et al., 2005).
Another effect confounding inheritance studies is variation in
the screening techniques among the studies, leading to different
interpretations of potentially the same results.

Resistance in chile pepper has polygenetic inheritance based
on multimodal distributions and higher order epistasis effects
(Pochard and Daubeze, 1980; Palloix et al., 1988; Bartual et al.,
1991, 1993; Pflieger et al., 2001; Lefebvre et al., 2002; Ogundiwin
et al., 2005; Bonnet et al., 2007; Minamiyama et al., 2007; Truong
et al., 2012; Curtis, 2014). Efforts have been made to identify
quantitative trait loci (QTL) linked with P. capsici resistance
and transfer these QTLs into elite material (Thabuis et al., 2003,
2004b; Ogundiwin et al., 2005; Sugita et al., 2006; Jin et al., 2007;
Minamiyama et al., 2007; Kim et al., 2008; Truong et al., 2012; Liu
et al., 2014; Naegele et al., 2014). Although, these QTLs are also
often associated with race-specific resistance.

Several molecular markers associated with resistance to P.
capsici have been reported in chile pepper for more rapid
selection (Quirin et al., 2005; Kim et al., 2008; Truong et al., 2012;
Chomkaeo et al., 2014; Liu et al., 2014; Wang et al., 2016; Xu
et al., 2016). However, to date, these publically available molecular
markers are generally not widely applicable, and some level of
phenotype and genotype mismatch has been observed when
they are used in diverse germplasm. This phenotype–genotype
mismatch limits selection efficiency for marker assisted selection
and also further highlights the high level of plasticity in the
pathogen.

Historically, it is difficult to introduce P. capsici resistance
into well-adapted susceptible cultivars. When using classic
backcross methods, resistance is lower than the donor parent
with threshold effects, which is likely due to the loss of
secondary resistance genes (Palloix et al., 1990). Recurrent
selection has been used to move polygenic resistance into
elite material (Thabuis et al., 2004a). However, linkage drag
associated with low yield, small and undesirable fruit, and
less vigorous plants is a major limitation to wide adoption of
resistant cultivars. Growers would rather plant high yielding,
high quality, more uniform cultivars that are susceptible to
P. capsici and risk losing a portion of their crop, than
plant less adapted but resistant cultivars. Even cultivars that
had field resistance to P. capsici, e.g., Paladin (Dunn et al.,
2014b), became susceptible within a decade as the pathogen
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evolved new virulence in New Jersey (Krasnow et al., 2017).
An excellent example of the boom-and-bust cycle of disease
resistance.

Additionally, Reeves et al. (2013) identified an inhibitor
to P. capsici resistance gene (Ipcr) in New Mexico Capsicum
Accession 10399 (NMCA10399). Their results indicate that a
single dominant gene inhibited polygenic host resistance to
multiple isolates of P. capsici. The single dominant gene inhibited
resistance to all disease syndromes. The genetic mechanisms of
the Ipcr gene is unknown; however, it is hypothesized to interfere
with upstream recognition sites in the host. Additionally, the
frequency of the Ipcr gene in commercial cultivars is not known.
The authors proved that a chile pepper can be susceptible to P.
capsici for two reasons: lack of R genes or presence of an inhibitor
gene. These findings further complicate a difficult pathosystem
and highlight the complexity of breeding for resistance to P.
capsici.

Transgenic Issues
Genetic engineering using Agrobacterium-mediated transgenic
approaches has long been used to increased plant resistance
to biotic stresses. Members of Solanaceae such as eggplant,
petunia (Petunia x hybrid Juss.), potato, tobacco (Nicotiana
tabacum L.), and tomato are readily transformed and are
considered model organisms for this technology. However,
chile pepper is extremely recalcitrant to in vitro regeneration
and genetic transformation (Li et al., 2003). Regeneration and
transformation of chile pepper has been widely reported (Wang
et al., 1991; Zhou et al., 1991; Dong et al., 1992; Lee et al.,
1993; Ye et al., 1993; Fari and Andrasfalvy, 1994; Zhu et al.,
1996; Jayashankar et al., 1997; Kim et al., 1997; Subhash and
Christopher, 1997; Manoharan et al., 1998; Steinitz et al., 1999;
Wolf et al., 2001; Li et al., 2003; Lopez-Puc et al., 2006; Arcos-
Ortega et al., 2010). However, the problem is an overall lack of
reproducibility in these published techniques. One reason for the
lack of reproducibility is that regeneration and transformation
techniques in chile pepper are genotype-specific (Manoharan
et al., 1998). Therefore, different protocols are required
depending on the accession being transformed. Furthermore,
successfully introduced transgenes in plants regenerated in vitro
are often not inherited through subsequent generations of
self- or cross-pollination. It is hypothesized the transgenes are
quickly lost via transposition. More than 81% of the Capsicum
genome consists of transposons, which is high compared to
closely related tomato (50%) and potato (47%) (Qin et al.,
2014).

STRATEGIES

Despite decades of research to better understand the Capsicum–
P. capsici pathosystem, P. capsici is still a major limiting factor
for pepper production. Some of the strategies developed in other
pathosystems with efficacy in limiting losses associated with
infection and disease are not practical for P. capsici. There is a
need to identify strategies that can be adopted to better breed for
resistance to P. capsici in chile pepper.

Screening Methodology
Breeding for resistance to P. capsici is heavily dependent on the
accuracy and precision of the disease screening method used
(Chavez and Kabelka, 2009). Several disease screens have been
developed for P. capsici. For foliar blight screening, using 1,000
zoospores per plant (Alcantara and Bosland, 1994) and 2,000
zoospores per plant using soaked germination paper (Monroy-
Barbosa and Bosland, 2010) have been proposed. Additionally, a
foliar spray using inoculum has been used. For root-rot screening,
10,000 zoospores per plant (Bosland and Lindsey, 1991) and
100,000 zoospores per plant (Black, 1999) have been used. In
addition, a dose of 5,000 zoospores per plant has been used for
screening fruit-rot/blight resistance (Biles et al., 1995). Inoculum
concentration and plant age play a major role in the level of
resistance displayed in the host (da Costa Ribeiro and Bosland,
2012; Barchenger, 2017; Mansfeld et al., 2017). In order to
effectively breed for resistance and correctly identify races of P.
capsici, standardized screening protocols should be developed
and followed by scientists worldwide.

Race Nomenclature
As described above, several studies identified physiological races
of P. capsici (Black, 1999; Oelke et al., 2003; Glosier et al., 2008;
Monroy-Barbosa and Bosland, 2008, 2010, 2011; Sy et al., 2008;
Lee et al., 2010; da Costa Ribeiro and Bosland, 2012; Jiang
et al., 2015). Unfortunately, there is a lack of consistency that
can limit overall progress among breeders. Some studies use a
numerical or alphabetical nomenclature system with the first race
designated Race 1 or A (Glosier et al., 2008; Lee et al., 2010).
Other studies number races based on virulence with Race 1 being
either the most virulent (Sy et al., 2008) or the least virulent
(Black, 1999). Despite the inconsistencies in how the races are
identified, the most important limitation is they do not provide
a naming scheme that allows for more or less virulent races to be
described (Barchenger et al., 2017, 2018). Furthermore, there are
overlapping names for genetically divergent races.

Over the years many different races for the different disease
syndromes of P. capsici have been identified around the world,
and the systems used to designate the different races have no
real biological meaning. Therefore, the term race is now being
supplemented by a new term, virulence phenotype (Barchenger
et al., 2018). Virulence phenotype is used to designate the
virulence of the P. capsici isolate on the various host resistance
genes. Races are identified based on the differential reaction with
the NMRIL, which defines isolates by resistance genes and will
hopefully contribute to practical advances in breeding.

Global Strategies for Local Gene
Deployment
Based on the current knowledge of this complex pathosystem,
it may not be possible to develop cultivars with global or even
country-wide durable resistance. However, we propose plant
breeders utilize global strategies for local gene deployment for P.
capsici resistance. The NMRILs have been used globally (Brazil,
China, Taiwan, and across the United States) to characterize
P. capsici for the past decade (Monroy-Barbosa and Bosland,
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2008, 2010, 2011; Sy et al., 2008; da Costa Ribeiro and Bosland,
2012; Hu et al., 2013b; Naegele et al., 2014, 2017; Naegele and
Hausbeck, 2014; Rehrig et al., 2014; Jiang et al., 2015; Barchenger
et al., 2018). The NMRILs provide a host differential to identify
the virulence phenotype in a given region at a particular time
(Barchenger et al., 2018). Simultaneously, the NMRILs also
provide insights into the resistance gene(s) required in that
region.

A recommended strategy to breed for resistance in a particular
region is to utilize the NMRILs to identify the virulence
phenotypes in a given region and compare these to the virulence
phenotypes from other regions (Sy et al., 2008; da Costa Ribeiro
and Bosland, 2012; Jiang et al., 2015; Barchenger et al., 2018).
The resistant NMRILs can then be utilized to move resistance
into elite germplasm for region-targeted resistant cultivars. The
NMRILs provide information on both the pathogen and the
host that can be utilized in developing a resistance breeding
strategy in a particular region. This was recently demonstrated
in Taiwan (Barchenger et al., 2017), where we conducted targeted
sequencing on P. capsici isolates collected in Taiwan and analyzed
the data in terms of the virulence phenotypes developed based
on the NMRILs. A clear relationship between polyploidy in
the pathogen and fewer susceptible reactions was found among
a set of NMRILs. Polyploid isolates were largely present on
the East coast of the island and diploid isolates were largely
on the West coast, enabling local gene deployment. Utilizing
a globally standardized system to characterize resistance on a
local scale also allows plant breeders to compare resistance
globally and select lines from different countries or regions
with similar virulence phenotypes for use in their own breeding
program.

Gene Targeted Resistance
The gene-for-gene model (Flor, 1955, 1971) specifies that
in race-specific interactions, the host plant inhibits infection
through deployment of defense functions via recognition. This
is made possible by the presence of dominant resistance
genes in the host that enable recognition of effectors in
the pathogen. These effectors encode Pathogen Associated
Molecular Patterns/Microbial Associated Molecular Patterns
(PAMPs/MAMPs) that are recognized by resistant hosts and
trigger Pattern Triggered Immunity (PTI). Successful pathogens,
such as P. capsici, have evolved a large and diverse set of secreted
effectors that can suppress PTI and initiate Effector-Triggered
Susceptibility (ETS) (Jones and Dangl, 2006; Hein et al., 2009; Gill
et al., 2015).

Using the P. capsici reference genome, Stam et al. (2013)
identified pathogen effector proteins. Several effectors produced
by P. capsici, such as those in the RXLR, Crn, and PcNpp
classes are thought to play important roles in infection of chile
pepper. More than 400 candidate RXLP effectors have been
identified in the P. capsici genome (Lamour et al., 2012; Stam
et al., 2013). Several necrosis-inducing proteins (PcNLP) have
been found to play important roles in symptom development
in chile pepper (Feng et al., 2011, 2014). Fu et al. (2015)
identified several cell-death-inducting members of the pectate
lyase gene family (PcPL) that were highly induced during

infection, and could be effectors. The ethylene-responsive factor
CaPTI1 appears to be involved in defense response to P.
capsici (Jin et al., 2015). A single effector, a PcAvr3a-like
protein, has been correlated to non-host resistance in several
Nicotiana species (Vega-Arreguín et al., 2014). Interestingly,
Vega-Arreguín et al. (2017) found the non-host resistance
mechanisms to P. capsici are the same as the mechanism for
host-resistance. Selections made within the landrace CM334
act like a non-hosts because no isolates, to date, can infect.
To be useful for chile pepper breeding, the effector targets in
host differentials derived from CM334 need to be identified.
The resistant parent of the host differential NMRILs, CM334,
has been sequenced (Kim et al., 2014), which is an important
step in identifying effector targets. However, to date, no
efforts have been made to identify these regions in the
NMRILs.

Although detection of effector targets in the host are limited,
efforts have been made to identify resistance genes (Silvar et al.,
2008; Wang J.E. et al., 2013; Zhang et al., 2013; Rehrig et al.,
2014; Xu et al., 2016). Mallard et al. (2013) identified a major
QTL, Pc5.1, located on chromosome 5 associated with resistance
to 12 isolates of P. capsici from different geographic regions.
It has been widely reported that P. capsici resistance genes
are clustered on chromosome 5 (Bonnet et al., 2007; Truong
et al., 2012; Liu et al., 2014; Rehrig et al., 2014; Wang et al.,
2016). The authors conducted a meta-analysis and found this
QTL is highly conserved among diverse resistant chile pepper
accessions. Several resistance genes are within and very near
to Pc5.1, including CaPhyto (Wang et al., 2016), CaDMR1
(Rehrig et al., 2014) and likely others (Liu et al., 2014). The C.
annuum Polygalacturonase-inhibiting Protein1 (CaPGIP1) gene
has been identified as to reduce susceptibility in GM tobacco
plants (Wang X. et al., 2013). The PGIPs are extracellular plant
proteins with recognition ability against many PGs produced
by fungi (De Lorenzo et al., 2001). Furthermore, ChiIV3 is
a positive regulator of plant cell death and triggers defense
signaling and upregulation of pathogenesis related genes against
P. capsici infection (Liu et al., 2017). Interestingly, there appears
to be several different types of R genes in Capsicum. The
majority of the R genes are nucleotide-binding and leucine-rich-
repeat proteins (NLRs). Work in R gene identification is more
extensive in other Solanaceae crops, and several NLRs have been
identified with high orthology to those in tomato and potato
(Kim et al., 2014). Recent findings suggest massive expansion
of NLR genes in Capsicum, largely due to long-terminal-repeat-
retrotransposons-mediated retroduplication (Kim et al., 2017).
Richins et al. (2010) identified 168 differentially expressed genes
under root-rot inoculation of P. capsici and one of these genes,
XEGIP, was further characterized by Jones et al. (2015). The
XEGIP gene is modeled to inhibit xyloglucan-specific endo β-
1,4 glucanase produced by P. capsici and attacks the xyloglucan
bonds in plant cell walls (Yoshizawa et al., 2012). However,
the capacity of these genes to recognize PAMPs is unknown.
Despite the high number and diversity of resistance genes,
breeding for resistance to P. capsici is still inadequate and other
strategies are needed to more effectively develop durable resistant
cultivars. Further genome-wide analysis of the evolution of NLRs
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and effectors could provide a basis for gene-targeted resistance
breeding.

A potential challenge to identifying effector targets in this host
is the presence of the Icpr gene as accessions containing the Icpr
gene are always completely susceptible (Reeves et al., 2013). The
mode of action and the frequency of the Icpr gene in Capsicum
populations are unknown.

Double Haploid Development
As previously described, the use of durable sources of P.
capsici resistance in traditional chile pepper breeding programs
has limitations. However, the use of double haploid (DH)
technology could be a way to fix resistance genes in elite
material. Hybridizing adapted material with good horticultural
traits to accessions with high levels of resistance and developing
DH lines from the F1 generation will allow plant breeders to
quickly fix resistance without losing the important horticultural
traits. However, there are major limitations to using DH lines,
including high cost, necessity of expertise in tissue culture, and
the development of protocols specific to each laboratory and
genotype. Double haploids have been developed in chile pepper
in the past; however, most of the time, success rates are generally
low (Dumas de Vaulx et al., 1981; Vagera and Havranek, 1985;
Morrison et al., 1986; Munyon et al., 1989; Kristiansen and
Andersen, 1993; Maheswary and Mak, 1993; Qin and Rotino,
1993; Ltifi and Wenzel, 1994; Mitykó et al., 1995; Dogimont et al.,
1996; Dolcet-Sanjuan et al., 1997; Gyulai et al., 2000; Supena
et al., 2006). The reason for the high failure rate is unknown,
but it is well known that Capsicum is highly recalcitrant to
in vitro regeneration and the media required is highly genotype
specific.

Omnigenics
Resistance to P. capsici in chile pepper is a highly complex trait.
Through genome-wide association studies, the understanding
of the genetic basis of complex traits has greatly expanded.
Many important loci generally have small effects and complex
traits are largely influenced by non-coding variants such as
promoters or enhancers (Boyle et al., 2017). Common SNPs
distributed throughout the genome with effects below detectable
significance levels account for a large portion of the heritability
of complex traits (Yang et al., 2010). Therefore, Boyle et al.
(2017) proposed the omnigenic model which postulates that most
heritability can be explained by effects on genes outside core
disease-related pathways. They suggest that essentially any gene
with regulatory variants in at least one tissue that contributes
to pathogenicity is likely to have non-trivial effects on disease
resistance.

While genes conferring resistance in chile pepper have largely
been localized on chromosome 5 (Mallard et al., 2013; Kim et al.,
2017), no loci have been identified that account for resistance over
a wide geographical region or in diverse genetic backgrounds. It
is likely that a large number of variants contribute to resistance
(Kim et al., 2017). Therefore, the omnigenic model suggests that
to understand the whole picture of disease resistance, we should
not only study core genes and pathways, but also the multitude
of variants throughout the genome that have seemingly small

effects on resistance. The omnigenic model has the potential
explain why developing molecular markers and breeding for
resistance to P. capsici in chile pepper has been limited in the
past and should be considered when breeding for resistance in
the future.

FAST SNP Markers for Increased
Selection Accuracy
The prediction accuracy from genomic selection for most crop
species is generally between 40 and 65%, and essentially never
100% (as reviewed by Fu et al., 2017), and this is also true for
most molecular markers available for P. capsici resistance in chile
pepper. Therefore, Fu et al. (2017) proposed the development
of function-associated specific trait (FAST) SNP markers, as an
alternative to regular genome selection, for rapid and more
accurate trait predictions. The FAST SNPs technology and has
not been employed on vegetable crops (including chile pepper)
with large and complex genomes; however, FAST SNPs may
increase P. capsici resistance prediction accuracy. To facilitate the
development of FAST SNP markers, Fu et al. (2017) proposed a
procedure based on RNA-seq of 10 or more pairs of individual
plants with extreme trait values (resistant vs. susceptible). Ideally,
the lines used for FAST SNP marker development are derived
from diverse resistance sources. The RNA-seq reads for each pair
of lines are then de novo assembled and differential transcripts are
identified. Trait-specific markers can then be developed based on
consensus SNPs among all the pairs. FAST SNP markers have the
potential to offer better marker-based trait prediction; however,
more empirical investigations are needed to confirm their true
value. Due to the large genome size of the host, the plasticity
of the pathogen genome, and the lack of widely applicable
molecular markers makes the multifaceted Capsicum–P. capsici
pathosystem an attractive candidate for FAST SNP validation in
vegetables.

CONCLUSION

These are exciting times for plant and pathogen research as new
tools, particularly at the genomic level, become available and
more affordable. Combinations of strategies and collaborative
efforts from scientists around the world are required to effectively
breed for resistance to P. capsici. Progress in understanding and
manipulating the Capsicum–P. capsici system is likely to be useful
in other complex host–pathogen systems and increase our odds
to develop durable management strategies.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

The authors thank Dr. Ariadna Monroy-Barbosa for her valuable
suggestions.

Frontiers in Plant Science | www.frontiersin.org 9 May 2018 | Volume 9 | Article 628

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00628 May 10, 2018 Time: 16:18 # 10

Barchenger et al. Phytophthora Resistance Breeding in Capsicum

REFERENCES
Abdellaoui-Maane, S., Sing, J. M., Sandrenan, P., and Bonpeix, G. (1988). Fosetyl-

A1 is effect against mutants of P. capsici resistance to metalaxyl. Cryptogam.
Mycol. 9, 47–56. doi: 10.1111/j.1365-2338.2000.tb00891.x

Agosteo, G. E., Raudino, F., and Cacciola, S. O. (2000). Resistance of Phytophthora
capsici to metalaxyl in plastic-house Capsicum crops in southern Italy. Bull.
OEPP 30, 257–261.

Alcantara, T. P., and Bosland, P. W. (1994). An inexpensive disease screening
technique for foliar blight of chile pepper seedlings. HortScience 29, 1182–1183.
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