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A number of cell fate determinations, including cell division, cell differentiation, and
programmed cell death, intensely occur during plant germline development. How these
cell fate determinations are regulated remains largely unclear. The transcription factor
E2F is a core cell cycle regulator. Here we show that the Arabidopsis canonical E2Fs,
including E2Fa, E2Fb, and E2Fc, play a redundant role in plant germline development.
The e2fa e2fb e2fc (e2fabc) triple mutant is sterile, although its vegetative development
appears normal. On the one hand, the e2fabc microspores undergo cell death during
pollen mitosis. Microspores start to die at the bicellular stage. By the tricellular stage,
the majority of the e2fabc microspores are degenerated. On the other hand, a wild type
ovule often has one megaspore mother cell (MMC), whereas the majority of e2fabc
ovules have two to three MMCs. The subsequent female gametogenesis of e2fabc
mutant is aborted and the vacuole is severely impaired in the embryo sac. Analysis
of transmission efficiency showed that the canonical E2Fs from both male and female
gametophyte are essential for plant gametogenesis. Our study reveals that the canonical
E2Fs are required for plant germline development, especially the pollen mitosis and the
archesporial cell (AC)-MMC transition.
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INTRODUCTION

Plant germline development, includes sporogenesis and gametogenesis, begins with the
differentiation of a spore mother cell which produces haploid gametes through meiosis and
mitosis (Schmidt et al., 2015). After meiosis, plant haploid spores undergo two (for sperm) or
three (for egg) rounds of mitoses to form a multicellular gametophyte. These processes involve
a number of cell fate determinations including cell division, cell differentiation and programmed
cell death (PCD) (Drews and Yadegari, 2002; Berger and Twell, 2011; Daneva et al., 2016). The
male gametogenesis takes place in anther, while the female gametogenesis occurs in ovule. An
anther often produces numerous microspore mother cells. A diploid microspore mother cell is
divided through meiosis into a tetrad of four haploid microspores (Preuss et al., 1994; Rhee and
Somerville, 1998). Subsequently, microspore undergoes two rounds of mitoses: pollen mitosis I
(PMI) and pollen mitosis II (PMII). PMI is an asymmetric mitosis producing a large vegetative
cell and a smaller generative cell (Eady et al., 1995). In Arabidopsis, the generative cell undergoes
a second mitosis (PMII) to give rise to two sperms, resulting in a three-celled male gametophyte
(McCormick, 1993; Twell, 2011; Gomez et al., 2015). The tapetum is degenerated at the later stage
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of pollen development (Gomez et al., 2015). In contrast to
an anther, an ovule often selects a single archesporial cell
(AC) to develop into a diploid megaspore mother cell (MMC)
which is divided into four haploid megaspores through meiosis
(Drews and Koltunow, 2011). Three of the megaspores are
degenerated. The chalazal-most megaspore undergoes mitoses
and cellularization to form a seven-celled female gametophyte,
composed of four types of cells: egg, synergid, central, and
antipodal (Schneitz, 1999; Skinner et al., 2004; Yang et al., 2010).

In mammals, the E2F signaling pathway plays a key
role in cell fate determination (Polager and Ginsberg, 2008).
Plants have orthologs of all the core regulators in the E2F
signaling pathway including cyclins, cyclin-dependent kinases
(CDKs), CDK inhibitors (CKIs), retinoblastoma (RB), and
E2Fs. Cyclins and CKIs are positive and negative regulators of
CDK, respectively. RB binds E2F to inhibit its activity. CDK
phosphorylates RB to release E2F. The transcription factor E2F
activates genes involved in the G1-S phase transition (Polager
and Ginsberg, 2009). These core regulators have been implicated
in plant gametogenesis. Mutation of an A-type cyclin, CYCA1;2,
leads to delayed and asynchronous cell divisions during male
meiosis (Wang Y. et al., 2004). Arabidopsis has only one A-type
CDK, referred to as CDKA1, which is a homolog of yeast CDC2.
In the cdka1 mutant, the female gametogenesis is not affected,
whereas the male gametogenesis is significantly disrupted. As a
result of the failure of PMII, a cdka1 mature pollen produces
only a single sperm cell (Nowack et al., 2006). Arabidopsis
also has a single copy of the RB gene, referred to as RB-
RELATED 1 (RBR1) (Ebel et al., 2004). RBR1 is involved in both
male and female gametogenesis. In the rbr1/RBR1 heterozygous
anther, more than 40% of pollen contain two vegetative nuclei
as a result of supernumerary mitosis. The rbr1 microspores
undergo cell death after the unicellular stage (Johnston et al.,
2008). Meanwhile, the rbr1 megaspores have more than three
nuclear mitotic divisions, resulting in supernumerary nuclei
(up to 15) (Ebel et al., 2004; Zhao et al., 2017). In terms
of the mitotic division, the phenotype of cdka1 mutant is
opposite to that of the rbr1 mutant as the cdka1 mutant
undergoes hypoproliferation, whereas the rbr1 mutant does
hyperproliferation. Consistently, the defects of rbr1 mutant are
suppressed by the cdka1 mutant and vice versa (Chen et al.,
2009; Nowack et al., 2012). The Arabidopsis E2F family consists
of eight genes. In cell proliferation, it has been found that the
canonical Arabidopsis E2Fs played an antagonistic role as E2Fa
and E2Fb were positive regulators, whereas E2Fc was a negative
regulator (del Pozo et al., 2002, 2006; Vandepoele et al., 2002;
Magyar et al., 2005). Recently, we discovered that these E2Fs
played a redundant role in plant fertility as the e2fa e2fb e2fc
triple mutant (referred to as e2fabc) was sterile while their single
and double mutants were fertile (Wang et al., 2014; Gu et al.,
2016; Wang, 2017). These data suggest that the CDK-RB-E2F
core cell cycle signaling pathway plays an important role in cell
fate determination during plant germline development. However,
the underlying mechanism of the regulation remains unclear. In
this study, we further characterized the role of the E2Fs in plant
germline development to better understand the regulation of this
processes.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Arabidopsis plants used in this study are in the Columbia (Col-0)
background. Mutants of e2fa (GK-348E09), e2fb (SALK_103138),
and e2fc (GK-718E12) are as described (Wang et al., 2014). The
condition of growth chamber was set at 22◦C under a 16-h
light/8-h dark photoperiod.

Complementation of e2fabc Mutant
The E2F genes, including E2Fa (AT2G36010), E2Fb
(AT5G22220) and E2Fc (AT1G47870), for complementation of
the e2fabc mutant were amplified by PCR and integrated into
the SalI site of the binary vector pCAMBIA1300 1 using the
pEASY Uni-Seamless Cloning and Assembly Kit (TransGen
Biotech, Beijing, China) to generate pCAMBIA1300-E2Fs. The
primers used for construction of pCAMBIA1300-E2Fs are listed
in Supplementary Table S1.

Analysis of E2F Expression
The reporters were used for analyzing the expression of E2F
genes. The construct of pE2F:E2F-VENUS was a translational
fusion of E2F to VENUS which was driven by its native promoter
(∼2 kb). NOS terminator and VENUS were amplified by PCR
and consecutively inserted into the PstI-HindIII site and the
SalI-PstI site of pCAMBIA1300 to generate pCAMBIA1300-
VENUS. Subsequently, the genomic DNA sequence of a E2F
gene was amplified by PCR and integrated into the SalI
site of pCAMBIA1300-VENUS using the pEASY Uni-Seamless
Cloning and Assembly Kit (TransGen Biotech, Beijing, China) to
generate pE2F:E2F-VENUS. The primers used for construction
of pE2F:E2F-VENUS are listed in Supplementary Table S1. To
visualize the expression pattern of a reporter, the fluorescence was
excited at 488 nm and collected with a 515∼530 nm bandpass
filter using a Zeiss LSM 5 Pascal Confocal Laser Scanning
Microscopy (Germany).

Alexander Staining
The Alexander staining was performed as described (Alexander,
1969). Briefly, anthers were stained with the Alexander solution
for 30 min and images were taken using an Olympus BX51 digital
microscope (Japan).

Semi-Thin Section
Floral buds were fixed and embedded in the Spurr’s epoxy
resin as described (Zhang et al., 2007). The embedded materials
were sectioned to 1-µm thick using an RMC Powertome XL
Ultramicrotome (Tucson, AZ, United States). Semi-thin sections
of anthers were stained with toluidine blue and photographed
using an Olympus BX51 digital microscope (Japan).

DAPI Staining
Pollen was stained with 4′-6-diamidino-2-phenylindole (DAPI)
as described (Ross et al., 1996). Briefly, floral buds were fixed with

1http://www.cambia.org
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Carnoy’s solution (ethanol: acetic acid = 3: 1) for 4 h at room
temperature and washed with water. Pollen was then released
from anther and stained with 0.1 µg/ml DAPI.

Analysis of Female Gametophyte
Development
The procedure used to analyze female gametophyte development
was carried out as described (Christensen et al., 1997). Briefly,
pistils were fixed in the fixative solution (4% glutaraldehyde
and 12.5 mM cacodylic acid, pH 6.9) for 4 h. The tissues
were dehydrated in a series of increasing concentrations of
ethanol (10, 20, 40, 60, 80, and 95%, each for 10 min) and
kept in 95% ethanol overnight. The tissues were then washed
with 100% ethanol twice, each for 10 min. After dehydration,
the tissues were cleared in the benzyl benzoate/benzyl alcohol
(2:1) solution for 20 min. Ovules were dissected, mounted
in immersion oil, and observed at the excitation wavelength
488 nm and the emission wavelength 515∼530 nm using a
Carl Zeiss LSM 5 Pascal Confocal Laser Scanning Microscopy
(Germany).

Quantitative PCR (qPCR)
The qPCR was performed as described (Ma and Wang,
2016). Briefly, Arabidopsis RNA was extracted using TRIzol
Reagent (Invitrogen) and measured by NanoDrop 2000
Spectrophotometer (Thermo Fisher). Five µg of RNA was
treated with DNase (Ambion TURBO DNA-free Kit, Thermo
Fisher). Two µg of DNase-treated RNA was used to synthesize
cDNA using the TransScript Fly First-strand cDNA synthesis
SuperMix (TransGen Biotech, Beijing, China). The synthesized
cDNA, diluted 5 times, was used as templates. qPCR was
performed using the SYBR Green Realtime PCR Master Mix
(Toyobo, Japan) in Mastercycler ep realplex (Eppendorf). All
genes were normalized to TUBULIN BETA CHAIN 2 (TUB2).
The primers used for qPCR are listed in Supplementary Table S1.

RESULTS

The Arabidopsis E2Fa, E2Fb, and E2Fc
Are Canonical E2F Proteins
There are three categories of E2Fs in both human and
Arabidopsis based on their protein domain structures
(Figure 1A) (Vandepoele et al., 2002; Attwooll et al., 2004).
The most conserved domain in E2F proteins is the DNA-
binding domain (DBD), especially the core DNA-binding
motif “RRxYD” which binds to the palindromic CGCGCG
sequence (Figure 1B) (Zheng et al., 1999). DBDs are classified
into DBD1 and DBD2 (Lammens et al., 2009). We found that
two amino acids, glutamate at 261 and asparagine at 272 in
Arabidopsis E2Fa protein, were highly conserved in DBD1
(Figure 1B and Supplementary Figure S1). The first category,
referred to as E2F, is the canonical E2Fs possessing a DBD1
and a dimerization domain (DD). In addition, these E2Fs have
a RB-binding domain or a polycomb-group (PcG)-binding
domain. The second category, referred to as DP-E2F-like 1

(DEL1), contains two DBDs: DBD1 and DBD2. The third
category, referred to as dimerization partner (DP), has a
DBD2 and a DD. Structural analysis demonstrated that among
E2F proteins, there was a preference for heterodimers over
homodimers in DNA binding (Zheng et al., 1999). Therefore,
E2F and DP form a heterodimer through DD to bind DNA,
whereas DELs, possessing both DBD1 and DBD2, bind DNA
by themselves (Figure 1) (Logan et al., 2004; Lammens et al.,
2009). There are eleven members of E2F family proteins in
human (Figure 1). Based on their transcriptional properties,
human E2F proteins are classified into activators, E2F1 through
E2F3, and repressors, E2F4 through E2F8 (DeGregori and
Johnson, 2006). Meanwhile, there are eight members of E2F
family proteins in Arabidopsis (Vandepoele et al., 2002). The
first category includes E2Fa, E2Fb, and E2Fc, which are the
canonical E2Fs. The second category consists of DEL1, DEL2,
and DEL3. The third category includes DPa and DPb (Figure 1).
Both DBDs and three categories of E2Fs are highly conserved in
plants across eudicot, monocot, lycopodiophyta, bryophyta and
algae (Figure 1B, Supplementary Figure S1, and Supplementary
Tables S2, S3).

The Canonical E2Fs Play an Essential
Role in Plant Fertility
Phylogenetic analysis showed that the sequences of three
canonical Arabidopsis E2F proteins were similar to each other
(Figure 1C). Consistently, our genetic analysis revealed that
these canonical E2Fs functioned redundantly to activate plant
effector-triggered cell death and immunity (Wang et al., 2014).
In addition, they played a redundant role in plant fertility as the
e2fabc triple mutant was sterile, whereas single and double e2f
mutants were all fertile (Figure 2 and Supplementary Figure S2)
(Wang et al., 2014). The e2f mutant lines used for generating
the e2fabc triple mutant are likely knockout lines as the insertion
sites disrupt their DDs (Supplementary Figure S3). Although
the reproductive development was severely compromised, the
vegetative development of e2fabc mutant (germinated later
than wild type plant) appeared normal (Supplementary Figure
S4). We introduced the E2Fa gene, as well as E2Fb and
E2Fc, into the e2fabc triple mutant and found that it fully
restored the fertility of this mutant, confirming that mutations
of the E2F genes are responsible for the sterility of e2fabc
mutant (Figure 2, Supplementary Figure S5, and Supplementary
Table S4).

The Canonical E2Fs Are Essential for
Pollen Mitosis During Male
Gematogenesis
To explore the role of the canonical E2Fs in gametophytic
control, we first examined the male gametogenesis which occurs
in the anther. The reporters of pE2F:E2F-VENUSs showed
that E2Fs were expressed in microspores, with the peak at
the bicellular stage (Supplementary Figure S6). This expression
pattern suggests that E2Fs play a role in male gametogenesis.
The Alexander staining showed that in an e2fabc anther, some
of pollen were viable, whereas the majority (81%, n = 600)
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FIGURE 1 | Arabidopsis E2Fa, E2Fb, and E2Fc are the canonical E2F proteins. (A) Schematic representation of domains of Arabidopsis and human E2F family
proteins, which are classified into three categories: E2F, DEL, and DP. DBD1 and DBD2, DNA-binding domain 1 and 2; DD, dimerization domain; RB, RB-binding
domain; PcG, polycomb group protein-binding domain. At, Arabidopsis thaliana; Hs, Homo sapiens. aa, amino acid residues. (B) Alignment of DBD of the E2F
proteins using ClustalX2 (http://www.clustal.org/). Red dots indicate the core DNA recognition motif RRxYD. Arrows indicate that two amino acids, glutamate (E) and
asparagine (N), in DBD1 are shared between E2F and DEL proteins. Arabidopsis DEL1, DEL2 and DEL3 and human E2F7 and E2F8 possess two DBDs:
DEL1/2/3-1 and E2F7/8-1, DBD1; DEL1/2/3-2 and E2F7/8-2, DBD2. (C) Phylogenetic tree of plant and human E2F family proteins is constructed by the
Phylogeny.fr (http://www.phylogeny.fr/). The sequences of E2F proteins in fasta format were pasted and the software was performed in “One Click” mode to
generate the phylogenetic tree. The number at each branch point represents the bootstrap values.

of pollen were aborted (Figure 3A). The Arabidopsis anther
development is divided into 14 stages (Sanders et al., 1999).
The e2fabc mutant anther was not distinguishable from wild
type anther until the stage 10, when the degeneration of
tapetum initiated. The majority of the e2fabc microspores
underwent cell death at the stage 11, when pollen mitosis
I (PMI) initiated (Figure 3B). Consistently, the unicellular
microspores were uniformly formed in both wild type and
e2fabc anthers. The degeneration of e2fabc microspore started
from the bicellular stage. At the tricellular stage, 75.6% of
microspores were degenerated, whereas 13.4% of microspores
developed into tricellular microspores in the e2fabc mutant
(Figures 3C,D). These data suggest that the canonical E2Fs

are required for the microspore development during the PMI
progression.

The Canonical E2Fs Are Essential for the
Transition From Archesporial Cell to
Megaspore Mother Cell During Female
Sporogenesis
The female sporogenesis takes place in ovule. The AC is derived
from a sub-epidermal somatic cell at the distal end of the ovule
primordium. Usually, a single AC is selected to develop into a
large MMC at the female gametophyte 0 (FG0) stage. Compared
to the surrounding sporophytic cells, the MMC has a denser
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FIGURE 2 | Arabidopsis E2Fs are crucial for plant fertility. Inflorescences of 5-week-old wild type (WT), e2fab, e2fc, e2fabc, and E2Fa-transgenic e2fabc
(e2fabc/E2Fa) plants. Arrows indicate the silique.

FIGURE 3 | E2Fs are crucial for male gametogenesis. (A) The Alexander staining of wild type (WT) and e2fabc anthers. The aborted pollen are stained in green.
Bar = 100 µm. (B) Semi-thin sections of WT and e2fabc anthers at the indicated stage are stained with toluidine blue. DP, degenerated pollen; PG, pollen grain; RM,
remnant of microspore. Bar = 20 µm. (C) The DAPI staining of WT and e2fabc pollen at unicellular stage (US), bicellular stage (BS) and tricellular stage (TS). BC,
bicellular cell; DC, degenerated cell; TC, tricellular cell; UC, unicellular cell. Bar = 5 µm. (D) Quantitative result of (C). Experiments were conducted three times with
similar results (n = 600∼800).

cytoplasm and a larger nucleus (Drews and Koltunow, 2011).
Intriguingly, multiple MMCs (up to 5) were formed in an e2fabc
mutant ovule. The majority of e2fabc mutant ovules produced
2-3 MMCs (Figure 4A). The subsequent female gametogenesis
of e2fabc mutant was aborted (93.8%, n = 97) and the vacuole
was severely impaired in the embryo sac (Figure 4B and

Supplementary Figure S7). The cell identities were confirmed
by a MMC marker pKNU:KNU-VENUS (Figure 4C) (Sun
et al., 2014). The reporters of pE2F:E2F-VENUSs showed that
the canonical E2Fs were expressed all over the ovule in the
early development stages (before FG4 stage) (Supplementary
Figure S8). Although about 5% of wild type ovules have two
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FIGURE 4 | E2Fs are crucial for female gametogenesis. (A) Ovules of wild type (WT) and e2fabc plants at the FG0 (female gametophyte 0) stage. Ovules are
classified by the number of MMC per ovule (from 1 to 5). The percent of ovules in different types is shown in the right panel. Experiments were performed three times
with similar results (n = 60∼80). MMC, megaspore mother cell. (B) Ovules of WT and e2fabc plants at the FG6 stage. There are two types of ovules: normal (wild
type) and abnormal (defective). The percent of ovules in different types is shown in the right panel. Experiments were performed three times with similar results
(n = 60∼80). AN, antipodal nuclei; CV, central cell vacuole; EN, egg cell nucleus; EV, egg vacuole; SEN, secondary endosperm nucleus; SN, synergid nucleus; SV,
synergid vacuole. (C) The MMC identity in WT and e2fabc ovules at the FG0 stage is shown by the marker pKNU:KNU-VENUS.

MMCs, it has never been observed that two female gametophytes
are formed in one ovule in Arabidopsis, suggesting that the
survival of one functional MMC per ovule is a strict rule required
for the subsequent female gametophyte development (Drews and
Koltunow, 2011). Occasionally, we observed a normal seven-
celled female gametophyte formed in the e2fabc mutants (6.2%
were normal at the FG7 stage, n = 97) (Supplementary Figure S7),
which appears that the development of e2fabc ovule is delayed.
This result is consistent with that the e2fabc mutant, especially
during the late flowering stage, can set some seeds (about 20 seeds
per plant, n = 50) (Supplementary Figure S9). These data suggest
that the canonical E2Fs are required for the AC-MMC transition
during female sporogenesis.

The Canonical E2Fs Are Required for
Gametophytic Control of Plant
Gametogenesis and Suppression of Cell
Cycle-Related Gene Expression
The development of plant gametophyte is controlled by
both gametophytic and sporophytic genes. To investigate
the role of the canonical E2Fs in plant gametophyte

development, we analyzed the genetic transmission via
gametophyte through reciprocal crosses between wild type
and e2fa+/− e2fb−/− e2fc−/− plants. The expected transmission
efficiency for the normal gametes is 100%. As shown in
Table 1, the transmission efficiency of e2fa e2fb e2fc triple
mutant allele was 20.5 and 23.6% via male and female
gametophytes, respectively, both of which were dramatically
reduced as compared to the expected value, suggesting that
the canonical E2Fs play a critical role in both male and female
gametogenesis. Consistently, we observed that the majority of
e2fa+/− e2fb−/− e2fc−/− plants produced abnormal pollen
and ovules (Supplementary Table S5). The deficiency of
gametophyte development varied dramatically as the ratio
of abnormal ovules was from 0 to 90%. The MMC marker
pKNU:KNU-VENUS showed that 20∼75% of ovules contained
multiple MMCs in e2fa+/− e2fb−/− e2fc−/− plants. We
further checked the e2fb e2fc double mutants and found
that their gametophyte development was deficient to some
extent, which was consistent with that more than 50% female
gametophytes were defective in an e2fa+/− e2fb−/− e2fc−/−

plant (Supplementary Table S6). Similarly, genetic analysis
of tetraploid plants (rbr1/rbr1/rbr1/RBR1, triplex for rbr1)
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TABLE 1 | Test of transmission efficiency through reciprocal crosses between wild type and e2fa+/− e2fb−/− e2fc−/− plants.

Parents (♀ × ♂)a Progeny Total TEc p-valued

e2fa+/−e2fb+/−e2fc+/− e2fa+/+e2fb+/−e2fc+/−

WTb
× e2fa+/− e2fb−/− e2fc−/− 26 127 153 20.5% <0.01

e2fa+/− e2fb−/− e2fc−/−
× WT 29 123 152 23.6% <0.01

a♀×♂, female × male. bWT, wild type plant. cTE, transmission efficiency. TE = number of e2fa+/−e2fb+/−e2fc+/− progenies/number of e2fa+/+e2fb+/−e2fc+/−

progenies × 100%. The expected TE for the normal gametes is 100%. dThe p-value is calculated by the χ2 test based on the expected TE of a 1:1 segregation ratio.
χ2 = 6(observed value-expected value)2/expected value.

found that regulation of the sporophytic development by RBR1
depended on the copy number of RBR1 (Johnston et al., 2010).
These data indicate that the gametogenesis is controlled by the
canonical E2Fs from both male and female gametophyte in a
dosage-dependent manner.

E2Fs function as transcription factors to activates the
expression of cell cycle regulators. To understand how E2Fs
regulate plant germline development, we examine the expression
of cell cycle-related genes. Genome-wide transcriptional profiling
analysis revealed that a few of cell cycle regulators, including
RBR1, ORIGIN OF REPLICATION COMPLEX 1B (ORC1B),
MINICHROMOSOME MAINTENANCE 8 (MCM8), CYCLIN-
DEPENDENT KINASE B1;1 (CDKB1;1) and CELL DIVISION
CONTROL 6 (CDC6), were upregulated by co-overexpression
of E2Fa with DPa or down-regulated by a dominant-negative
truncated DP gene (Ramirez-Parra et al., 2003; Vandepoele et al.,
2005; Naouar et al., 2009). As shown in Supplementary Table S7,
qPCR analysis was carried out to demonstrate the influence of
e2fabc mutant on the expression of these genes in anthers (stage
10∼ stage 12) and ovules (FG0∼FG7). TUBULIN BETA CHAIN
2 (TUB2) was used as an internal control. In addition, we first
examined two other internal controls, TUBULIN BETA 8 (TUB8)
and UBIQUITIN-CONJUGATING ENZYME 21 (UBC21), and
validated that the expression of these internal controls was
not altered by mutations of these E2F genes in anthers and
ovules. Consistent to the phenotype, the expression of both male
gametophyte-specific MICROSPORE-SPECIFIC PROMOTER 2
(MSP2) and female gametophyte-specific DOWNREGULATED
IN DIF1 33 (DD33) was significantly downregulated in anthers
and ovules, respectively, as both genes were about 10-fold
reduced in e2fabc mutant (Honys et al., 2006; Steffen et al., 2007).
Surprisingly, our results showed that the expression of all of the
five E2F-target genes was upregulated in both anthers and ovules
of e2fabc mutant, suggesting that the canonical Arabidopsis E2Fs
play a negative role in transcription of these genes.

DISCUSSION

In mammals, the G1-S phase transition is controlled by the CDK-
RB-E2F core cell cycle signaling pathway (Polager and Ginsberg,
2009). In the Arabidopsis genome, there are at least 50 cyclins,
12 CDKs, 18 CKIs and 8 E2Fs (Vandepoele et al., 2002; Wang
G. et al., 2004). In contrast, the Arabidopsis genome only bears
a single copy gene of CDKA1 and RB. All types of these cell
cycle regulators have been implicated in plant gametogenesis

(Twell, 2011; Zhao et al., 2012). During cell cycle progression,
CDK and E2F function as positive regulators, whereas RB acts
as a negative regulator. The phenotype of e2fabc mutant appears
earlier than that of cdka1 and rbr1 mutant (Figures 3, 4) (Ebel
et al., 2004; Nowack et al., 2006). The redundancy between
multiple genes (cyclins, CKIs, CDKs and E2Fs) and the lethality
of a single copy gene (RB and CDKA1) have long hampered
the genetic study on their functions. Fortunately, the e2fabc
mutant is severely but not completely sterile, especially during
the late flowering stage. A little bit of fertility and the normal
vegetative development in the e2fabc triple mutant provide us
with an opportunity to have in-depth study of the CDK-RB-E2F
signaling pathway in plant germline development. Plant E2Fs
control cell cycle as their mammalian counterpart (Vandepoele
et al., 2005; Sozzani et al., 2006; Cheng et al., 2013; Liu et al.,
2016). The canonical E2Fs had been found to play a distinct
role during cell cycle progression based on the ectopic studies.
Co-overexpression of E2Fa with DPa leads to activation of both
mitosis and endoreduplication, whereas E2Fb and E2Fc act
antagonistically as both co-overexpression of E2Fb with DPa and
down-regulation of E2Fc by RNA interference induced mitosis
but reduced the endoreduplication (De Veylder et al., 2002;
Magyar et al., 2005; del Pozo et al., 2006). In addition, E2Fb
is antagonistic to E2Fc in the transcription of the DEL1 gene
(Berckmans et al., 2011). Our data demonstrated that the three
Arabidopsis canonical E2Fs played a redundant role in plant
fertility (Figures 1–3), in addition to plant effector-triggered cell
death and immunity (Wang et al., 2014).

E2F acts as a transcription factor which is an executor
of the CDK-RB-E2F signaling pathway on the expression
of target genes. Our data showed that the canonical E2Fs
were required for plant germline development, especially the
pollen mitosis and the AC-MMC transition (Figures 3, 4).
The underlying mechanism of how PMI is regulated remains
unknown. It seems that the cytokinesis plays a crucial
role in the asymmetrical cell division of PMI as most
of the identified mutants with PMI defects are related to
microtubule (Twell et al., 2002; Pastuglia et al., 2006). Plant
RB, E2F and MYB3R are proposed to be the member of a
DREAM complex which plays a critical role in maintaining
cell quiescence (Magyar et al., 2016). Arabidopsis MYB3Rs
were found to regulate cytokinesis through activation of the
KNOLLE transcription (Haga et al., 2007), suggesting that
E2F could be involved in cytokinesis through its partner
MYB3R. In the meantime, the underlying mechanism of how
the MMC develop also remains largely unknown. MAC1
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(MULTIPLE ARCHESPORIAL CELLS 1) encodes a leucine-
rich repeat containing receptor-like kinase (LRR-RLK). MSP1
(MULTIPLE SPOROCYTE 1) encodes a putative ligand of
MAC1. MAC1 and MSP1 control the transition from somatic to
germline fate as mutation of maize MAC1 and rice MSP1 resulted
in multiple ACs (Sheridan et al., 1996; Nonomura et al., 2003).
Previously, a combined analysis of laser-assisted microdissection
and microarray revealed that MNEME (MEM) was preferentially
expressed in the MMC. MEM encodes an ATP-dependent RNA
helicase. Mutation of MEM leads to the multiple MMCs. Like
MMCs of the e2fabc mutant, those of the mem mutant are also
aborted after the FG0 stage. The male gametophyte development
of mem mutant is not as dramatically affected as that of e2fabc
mutant. Intriguingly, the microarray data of microdissected cells
show that all of the canonical E2Fs are preferentially expressed
in MMCs as compared to ovules (Supplementary Figure S10)
(Schmidt et al., 2011), which is in good agreement with our
data that the canonical E2Fs play a crucial role in the MMC
initiation. The stem cell regulator WUSCHEL (WUS) plays a role
in the AC-MMC transition. RBR1, the repressor of E2Fs, was
found to control the AC-MMC transition through repression of
the WUS expression (Lieber et al., 2011; Zhao et al., 2017). It
has also been shown that the MMC initiation is controlled by a
clay of Argonaute (AGO) genes including AGO4, AGO6, AGO8
and AGO9 in Arabidopsis. Mutations of these genes give rise
to multiple MMCs per ovule. Among the multiple MMCs, only
one MMC is functional and further develops into a gametophyte
(Olmedo-Monfil et al., 2010; Hernandez-Lagana et al., 2016).
In contrast to the e2fabc mutants, these ago mutants are fertile,
suggesting that the canonical E2Fs are required for not only the
AC-MMC transition at the FG0 stage but also the gametophyte
development after the FG0 stage.

AGO protein is an RNA Slicer that functions in epigenetic
regulation through the RNA-dependent DNA methylation
(RdDM) signaling pathway. It interacts with transcripts
produced by Polymerase V (Pol V) to recruit de novo
DNA methyltransferases, such as DOMAINS REARRANGED
METHYLTRANSFERASE 2 (DRM2) histone methyltransferases
and chromatin remodelers, to silence a gene (Law and Jacobsen,
2010). It has been observed that the AC-MMC transition
in Arabidopsis was accompanied by a large-scale chromatin
reprogramming (She et al., 2013), suggesting that control of

the AC-MMC transition by AGOs may be attributed to the
epigenetic regulation. E2F forms a complex with RB which
represses the E2F activity through either physical interaction
(masking activation domain) or epigenetic regulation. RB recruits
chromatin-remodeling factors and chromatin modifiers such
as the SWITCH/SUCROSE NON-FERMENTABLE (SWI-SNF)
complex, HISTONE DEACETYLASES (HDACs), and SET-
DOMAIN-CONTAINING HISTONE METHYLTRANSFERASES
(HMTases) to epigenetically repress the E2F-target genes
(Robertson et al., 2000; Zhang et al., 2000). Our data showed
that the repression of E2F-target genes, which may be controlled
by the RB-E2F complex, was released in e2fabc mutant
(Supplementary Table S7). This is consistent with that mutations
of both E2Fs and its repressor RBR1 in Arabidopsis lead to
multiple MMCs (Figure 4; Zhao et al., 2017). These evidences
strongly support that epigenetic regulation plays a critical role in
the AC-MMC transition. The variation of female gametophyte
deficiency in the progeny of an e2fa+/− e2fb−/− e2fc−/− plant
may result from a combined effect of quantitative (copy of E2F)
and epigenetic factors.
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