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Non-specific lipid transfer proteins (nsLTPs) had been previously isolated from cotton fiber

but their functions were unclear so far. Bioinformatic analysis of the tetraploid cotton

genome database identified 138 nsLTP genes, falling into the 11 groups as reported

previously. Different from Arabidopsis, cacao, and other crops, cotton type XI genes

were considerably expanded and diverged earlier on chromosome At11, Dt11, and

Dt08. Corresponding to the type XI genes, the type XI proteins (GhLtpXIs) all contained

an extra N-terminal cap resulting in larger molecular weight. The research revealed

that the expression of type XI genes was dramatically increased in fibers of tetraploid

cotton compared with the two diploid progenitors. High-level of GhLtpXIs expression

was observed in long-fibered cotton cultivars during fiber elongation. Ectopic expression

of GhLtpXIs in Arabidopsis significantly enhanced trichome length, suggesting that

GhLtpXIs promoted fiber elongation. Overall, the findings of this research provide insights

into phenotypic evolution of Gossypium species and regulatory mechanism of nsLTPs

during fiber development.

HIGHLIGHT

A specific group, type XI nsLTPs, was identified with predominant expression in

elongating fibers of Gossypium hirsutum based on evolutionary, transcriptional, and

functional analyses.

Keywords: cotton, nsLTP, type XI, expansion, fiber development, fiber evolution

INTRODUCTION

Cotton is one of the important commercial fiber crops worldwide. Cotton fiber initiates from the
outer epidermis of the ovules, followed by extensive cell elongation (about 1,000∼3,000 times)
and cell wall synthesis (Basra and Malik, 1984; Kim and Triplett, 2001). In G. hirsutum, lint fibers
start to develop prior to or on the day of anthesis, and fuzz fibers develop a few days later (Joshi
et al., 1967; Stewart, 1975). Fiber quantity and length, to a large extent, determine cotton yield
and quality of the resulting spun thread. Long-chain fatty acid (LCFA) functions as a regulator
of endogenous ethylene biosynthesis in cotton ovules, which can maximize the extensibility of
cotton fibers (Qin et al., 2007). However, it is unclear how LCFA is transported and accumulated on
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the outer epidermis of ovules to regulate fiber development. The
nsLTP is one of the well-known protein families with bound
lipids (Boutrot et al., 2008) such as LCFA. Detailed studies of gene
expression and function of nsLTPs are paramount for addressing
the above question.

The nsLTPs are widely distributed in the plant kingdom and
are capable to bind to acyl groups, various phospholipids and
other fatty acid groups with a broad binding affinity (Ostergaard
et al., 1993; Kader, 1996; Kragelund et al., 1997; Sodano et al.,
1997; Charvolin et al., 1999; Han et al., 2001). It has been revealed
that most nsLTPs have a small molecular weight of about 9
kDa in higher plants (Kader, 1996). All known plant nsLTPs
contain an N-terminal signal peptide which is characterized
by an eight cysteine motif (ECM) backbone forming four
conserved disulfide bonds that stabilize a hydrophobic cavity
to enclose the lipid to shield the hydrophobic portions of the
lipid (Carvalho and Gomes, 2007; Boutrot et al., 2008; Wong
et al., 2017). Plant nsLTPs are deemed to be responsible for the
shuttling of lipids across cytoplasm and between membranes
and regulate the beta-oxidation of fatty acids in glyoxysomes
and the intracellular fatty acid pools (Kader, 1996; Cheng
et al., 2004). Multiple physiological and biological functions of
nsLTPs have been suggested, including membrane and liposome
biogenesis (Pyee et al., 1994), somatic embryogenesis (Lee et al.,
2009; Chae et al., 2010; Edstam and Edqvist, 2014), pollen
development (Zhang et al., 2010; Chen et al., 2011), stress
resistance (Zhang et al., 2016), defense (Molina et al., 1993;
Schweiger et al., 2013), and signal transduction (Sarowar et al.,
2009).

Cotton nsLTP genes have been isolated from fibers decades
ago (Ma et al., 1995). GH3, Ltp3, Ltp6, and GhLTPG1
are proved to be specifically expressed in fiber cells and
Ltp3 expression reaches to a maximum at the late fiber
elongation stage (Ma et al., 1995; Han et al., 2013; Deng
et al., 2016). Expression analysis showed that GhLtp6, GhLtp7,
GhLtp8, and GhLtp11 are highly expressed during fiber
initiation (Han et al., 2013). Regarded as seed trichomes, fiber
initiation, and elongation are regulated by MYB genes as
leaf trichomes (Guan et al., 2008; Pu et al., 2008; Machado
et al., 2009; Walford et al., 2011; Huang et al., 2013;
Wang et al., 2013; Liu et al., 2015). And cotton LTP3 was
regulated by a MYB protein (Hsu et al., 2005). Thus it is
supported that nsLTPs are involved in fiber development.
However, the gene family members and the biological function
during fiber development are largely unknown of these a
few cotton nsLTPs cloned previously. The availability of
genome sequence of G. hirsutum and insights into trichome
developmental mechanism enable us to understand these
scientific issues.

In Arabidopsis and rice, nsLTPs can be classified into several
types (I, II, III, IV, V, VI, VII, VIII, IX, XI, and nsLTPy) based
on the sequence similarity (Boutrot et al., 2008). Currently,
51 nsLTP genes have been identified in Arabidopsis (Boutrot
et al., 2008; Li et al., 2014), 63 in rape and maize (Li
et al., 2014; Wei and Zhong, 2014), 58 in sorghum (Wei and
Zhong, 2014), and 52 in rice (Boutrot et al., 2008). In the
present study, 138 nsLTP genes were identified in G. hirsutum

that considerably expanded in Gossypium species during
fiber evolution. Both transcriptional and functional analyses
suggested an important role of GhLtpXIs in promoting fiber
elongation.

MATERIALS AND METHODS

Identification and Bioinformatics Analyses
of nsLTP Genes
The genome sequences of G. hirsutum TM-1, Gossypium
arboreum, Gossypium raimondii, Arabidopsis thaliana, Brassica
rapa, Theobroma cacao, Oryza sativa, and Vitis vinifera
were downloaded from CottonGen (https://www.cottongen.
org), CottonFGD (https://cottonfgd.org), TAIR (http://www.
arabidopsis.org), BRAD (http://brassicadb.org), Cacao Genome
Database (https://www.cacaogenomedb.org), RAP (http://rapdb.
dna.affrc.go.jp/), and Grape Genome Browser (http://www.
genoscope.cns.fr/externe/GenomeBrowser/Vitis/) networks,
respectively. The local genomes including coding sequences
and protein sequences were constructed with the blast-
2.2.9 program downloaded from the national center for
biotechnology information (NCBI) (ftp://ftp.ncbi.nlm.nih.
gov/blast/executables/release/2.2.9/blast-2.2.9-ia32-win32.exe).
Candidate nsLTP genes were identified by BLASTP against
the local databases using published nsLTP protein sequences
of Arabidopsis and Brassica (Li et al., 2014) as queries with
a cut-off value of e−5. The deduced protein sequences were
analyzed for their signal peptides using SignalP 4.0 (http://
www.cbs.dtu.dk/services/SignalP). Then the mature proteins
with more than 120 amino acids were discarded, followed by
analysis of the ECM domains with BioEdit. The structural
domains were further analyzed with Batch Web CD-Search
Tool (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)
and the members of nsLTPs were finally confirmed with
HMMER. ProtParam (http://web.expasy.org/protparam/) was
used to calculate the molecular weights and isoelectric points of
GhLtps.

Multiple alignments of the nsLTP protein sequences of
ECMs were performed using Clustal X version 2.0 program.
Phylogenetic trees were constructed with the method of
Maximum likelihood or Neighbor-Joining using MEGA 6.0 in
pairwise complete deletion and Amino Acid P-distance model.
For statistical reliability, bootstrap tests were carried out with
1,000 replicates.

The downloaded CDS and genomic sequences of GhLtps were
used to construct gene structures on Gene Structure Display
Server 2.0 (http://gsds.cbi.pku.edu.cn/). Mapinspect software was
used to generate chromosome location image of each GhLtp
according to their starting position on chromosomes. The
segmental duplication was defined as the following: (1) the length
of aligned sequences cover >80% of the longer gene; (2) the
identity of the aligned regions >80%; (3) only one duplication
event was counted for tightly linked genes (Kong et al., 2013;
Wei et al., 2013; Liu et al., 2014). Tandem duplication was
defined on the basis of the criteria that tandem duplicated genes
are located within 15 predicted open reading frames or within
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30 kb of each other (Shin and Bleecker, 2003; Wang et al.,
2011). The non-synonymous to synonymous substitution ratio
(Ka/Ks) for each duplicated GhLtp gene pairs was calculated
using KaKs_Calculator 2.0 software.

Expression Analysis of Cotton nsLTPs
The RPKM (Reads Per Kilobase of gene model per Million
mapped reads) values of GhLtps were extracted from our
RNA-seq data using ovules [0 and 5 days post anthesis (DPA)]
and fibers (10–30 DPA) collected from G. hirsutum cultivars
including HY405, CCRI8, and ND601 (Ma et al., 2018).
Expression pattern analysis and differential expression analysis
were subsequently applied with online tools Trend (http://
www.omicshare.com/tools/Home/Soft/trend) and Diffanalysis
(http://www.omicshare.com/tools/Home/Soft/diffanalysis),
respectively. The volcano plot was generated with Excel
(Microsoft, United States) to display differentially expressed
GhLtps. Transcriptome data of genome-wide gene expression
in different organs and cotton species was obtained from
cottonFGD (file name: fpkm.Ghir.NAU.txt.gz) and the FPKM
(Fragments Per Kilobase of exon per Million fragments mapped)
values of cotton nsLTPs were extracted for comparison between
different tissues or organs and different Gossypium species. The
heatmaps were generated with HemI version 1.0.

Plant Materials
The cotton cultivars (HY405 and ND601) were grown in the
growing season in the field in Baoding, Hebei (Latitude 38◦48′N,
115◦25′E). Cotton ovules (0 DPA) and fibers (5, 10, 15, and 20
DPA) were collected at 14:00–16:00 and fast frozen in liquid
nitrogen for qPCR. The cotton cultivar TM-1 were grown at 28◦C
day/25◦C night with 10 h light/14 h dark cycles in greenhouse
of Hebei Agricultural University and ovules and fibers were
collected at 10 DPA followed by fast frozen in liquid nitrogen for
gene amplification.

Arabidopsis including Col wild-type (WT) plants and
transgenic plants were grown at 22◦C with 16 h light/8 h dark
cycles in growth chamber at the North China Key Laboratory
for Germplasm Resources of Education Ministry. Mature rosette
leaves and cauline leaves were collected from flowering plants and
frozen in liquid nitrogen before RNA extraction.

RNA Extraction and Quantitative
Real-Time PCR Analysis
Frozen tissues were ground to a fine powder in liquid nitrogen
and the total RNA was extracted with RN09-EASYspin Plant
RNA purification kit (Aidlab). After quality and quantity
analysis with gel electrophoresis and NanoDrop 2000, the
first cDNA strand was synthesized using the PrimerScriptTM

RT Master Mix (TaKaRa). Then quantitative real-time PCR
was performed with Fast Super EvaGreen qPCR Master Mix
(US EVERBRIGHT R©INC) on an ABI 7500 Real-Time PCR
machine. Three biological replicates of each sample and three
technical replicates of each biological replicate were used. The
relative expression level of the target gene was calculated with
the difference between the cycle threshold (Ct) of the target
gene and reference gene (1Ct = Cttargetgene − Ctreferencegene)

and corresponded to 2−1Ct. Primers used for qPCR were
designed against gene specific sequences of CDS and listed in
Supplemental Table S1.

Generation of Transgenic Plants
Overexpressing GhLtpXIs in Arabidopsis
The full-length of GhLtpXIs coding sequences were
PCR-amplified from cotton cDNA (RNA was extracted
from ovules and fibers of TM-1) with primers listed in
Supplemental Table S1, and the resulting products were cloned
into pGreen 0229 harboring 35S promoter (Yu et al., 2004). After
verification by nucleotide sequencing, the resulting vectors were
transformed into Agrobacterium followed by transformation
with floral dip into Arabidopsis WT (Col) plants. The transgenic
plants were selected by BASTA and the first three mature rosette
leaves were cut from the petioles after bolting for discoloration
with gradient ethanol followed by observation of trichomes
under microscope with 20× objective lens. The trichome
length was measured using cellSens Standard (Olympus, Japan).
Statistical analyses were performed using Excel (Microsoft,
United States) with T-test (tail= 1, type= 3).

RESULTS

Identification and Classification of nsLTP
Genes in G. hirsutum
To identify the entire collection of putative nsLTP genes in the
G. hirsutum genome, local BlastP searches were conducted using
53 and 63 nsLTP protein sequences of Arabidopsis and B. rapa as
queries on the whole genome ofG. hirsutum. A total of 219GhLtp
genes were obtained. Each of the deduced protein sequences was
analyzed with SingalP, after which 18 proteins lacking N-terminal
signal sequences (NSS) were omitted. Since lowmolecular weight
is a common character of nsLTP proteins, 46 mature proteins
whose peptide length was more than 120 amino acids were
not taken into consideration. Then 16 proteins lacking the
Cys residues were excluded following manually scanning for
the presence of the eight essential Cys residues and 1 protein
without the M residue (starting residue) was removed. The
remaining protein sequences were detected for the LTPAAI_LTSS
structure using the BatchWeb CD-Search tool. Subsequently, the
GhLtp candidates were further verified according to the HMMER
method. Finally, 138 genes of G. hirsutum coding the nsLTP were
confirmed (Table 1).

The sequence similarity method (Boutrot et al., 2008)
was employed to classify the identified GhLtps and our
results showed that the 138 GhLtps could be divided into
10 groups after multiple sequence alignments (Table 1 and
Supplemental Table S2). The results showed that the ECMs
were highly conserved in all of the 138 GhLtps, which could
form four disulfide bonds to stabilize the tertiary structure of
hydrophobic cavity (Figure 1). Different from rice, wheat, rape,
and Arabidopsis, in which the majority of nsLTPs belongs to
type I or II (Boutrot et al., 2008; Li et al., 2014), type XI is the
largest group inG. hirsutum (Figure 1 and Table 1). The flanking
amino acid residues of each CXCmotif were conserved within the
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members of the same group, except for type I. A more conserved
consensus pentapeptide Thr/Ser-X1-X2-Asp-Arg/Lys and amore
variable one Pro-Tyr-X-Ile-Ser were found in type I GhLtps as
reported previously (Douliez et al., 2000; Li et al., 2014). As
small molecules, nsLTPs lack supernumerary sequences at C/N-
terminal or contain a short C-terminal tail. However, GhLtpXIs
contained a relatively long N-terminal cap.

The molecular weight (MW) and theoretical pI (isoelectric
point) of each GhLtp were calculated and summarized in Table 1.
Low MW is a common characteristic of plant nsLTPs and very
few nsLTPs were found with a MW above 11 kDa in rice, rape
and Arabidopsis. Interestingly, all GhLtpXIs displayed high MW
(about 11–13 kDa). The high MWs of all the type XI members
were due to the presence of supernumerary amino acid residues
located at the N-terminal.

Phylogenetic and Sequence Analysis of
nsLTPs
Type XI nsLPTs are rare in plants. None of them was identified
in rice and wheat, and only two and three nsLTPs belong to this
group in Arabidopsis and B. rapa, respectively (Boutrot et al.,
2008; Li et al., 2014). On the contrary, type XI contained most
members in G. hirsutum. To study the evolution of cotton nsLTP
genes, this gene family was additionally identified and classified
from G. arboreum, G. raimondii, Th. cacao and V. vinifera using
the same method described above (Supplemental Table S3). An
unrooted phylogenetic tree was subsequently built with nsLTP
proteins from 8 species including G. hirsutum, G. arboreum,
G. raimondii, A. thaliana, B. rapa, Th. cacao, O. sativa, and
V. vinifera with neighbor-joining method (Figure 2). None of
these proteins formed distinct monophyletic clusters. Type I was
the largest group in plants and most sequences of this group
formed a separated cluster in the tree. Cotton species have
evolved a large number of type XI genes though this group is also
identified in grape, cacao and rape. Two type I genes (Bra024938
and Tc11g016320) and five cotton type II genes (Ga3164g39880
and GhLtpII12-15) were close to type XI genes, indicating that
cotton type XI genes maybe evolved from type I or II genes. Most
importantly, only type XI sequences formed a specific cluster in
the tree, indicating that these genes shared a common ancestor.

To further study the phylogenetic organization of the
GhLtpXIs, a phylogenetic tree was constructed using Maximum-
likehood inference from the alignment of respective 138 and 53
protein sequences of G. hirsutum and Arabidopsis. The results
showed that all the nsLTPs can be divided into four clusters from
A-D (Supplemental Figure S1). All the type I and III GhLtps
belonged to cluster C. Type V, VIII, and IX GhLtps fell into
cluster D, and cluster A contained all members of type VI and
XI. Phylogenetic analysis had shown that the same type AtLtps
constituted monophyletic groups except for the type II (Boutrot
et al., 2008; Li et al., 2014). Consistently, GhLtpII12-15 were more
distantly related to other type II GhLtps. GhLtpII13, GhLtpII14,
and GhLtpII15 were more close to GhLtpXIs, while GhLtpII12
was more related to GhLtpVIs and GhLtpXI1/2/3.

Gene structures of the GhLtps were obtained by comparing
the predicted CDS with their corresponding genomic DNA

sequences (Supplemental Figure S2). The results showed that
only 16 GhLtps had introns. Among these GhLtps, six GhLtps
were interrupted by two introns, and the others were interrupted
by a single intron. According to the previous studies in some
other plants, 35 out of 52 OsLtps, 25 out of 51 AtLtps, and
17 out of 63 BrnsLtps contain introns (Boutrot et al., 2008; Li
et al., 2014). These results revealed that the percentage of GhLtps
lacking introns was much higher among rice, Arabidopsis, B.
rapa, and G. hirsutum, and the diverse distribution of intronic
regions was quite low.

Chromosomal Localization and Gene
Duplication of GhLtps
To determine the chromosomal distribution of GhLtps, the
approximate position of each GhLtp was marked on the physical
map of the 26 G. hirsutum chromosomes (Figure 3). It was
found that the majority of the GhLtp genes located at the
ends of the chromosomes. Chromosome Dt11 harbored the
most GhLtps with 13 genes including 9 GhLtpXIs and none
of the GhLtps located on chromosome At06 and Dt06. Since
G. hirsutum is tetraploid with subgenome At and Dt, comparison
was performed between each pair of homologous chromosomes.
Ignoring three genes that are unable to locate, the GhLtps almost
equally positioned on each genome and the number of genes
on chromosomes At and its relative homologous chromosome
Dt was uniform or close. Additionally, the distribution patterns
of GhLtps were quite similar within each pair of homologous
chromosomes, which would probably result from complex
evolutional process including recombination, DNA exchanges
and gene duplications after merge of genome A and D. These
results showed that GhLtps distributed congruently within
subgenome At and Dt.

Gene duplication events including segmental and tandem
duplications were thought to be essential for the expansion
of gene family in the genome (Maere et al., 2005) and thus
gene duplication events of nsLTP family were investigated
in G. hirsutum. A total of 32 duplication events were found,
including 9 segmental duplication pairs and 23 tandem
duplication pairs (Figure 3 and Supplemental Table S4).
The duplication events were mainly concentrated in the
same subfamily except for three pairs of tandem duplication
(GhLtpII2/III3, GhLtpI28/III2, and GhLtpXI33/II12/VIII6). It
was worthy to note that tandem duplication pairs distributed
in the proximate locations of each paralogous blocks and
the expansion of type XI group was largely contributed by
tandem duplication. We subsequently calculated the non-
synonymous to synonymous substitution ratio (Ka/Ks) for
each duplicated GhLtp gene pairs. Several duplication pairs
of GhLtpXIs displayed larger Ks values and these genes
constituted four gene clusters located in chromosomes
08 and 11 in subgenome At and Dt, implying an early
divergence time of these GhLtpXIs. Additionally, most
Ka/Ks ratios were below 1, except for five duplication pairs
(Supplemental Table S4), suggesting that GhLtps had mainly
experienced strong purifying selection pressure with limited
functional divergence. These results revealed that GhLtpXIs
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FIGURE 1 | Multiple sequence alignment of GhLtp proteins. The gene ID and names of different types of GhLtps are presented with different colors. The conserved

cysteine residues are marked against pink backgrounds. Consensus residues are marked by rectangles.
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FIGURE 2 | Phylogenetic tree of nsLtps in eight species. The full length of mature protein sequences of nsLTPs from G. hirsutum, G. arboreum, G. raimondii,

Arabidopsis, B. rapa, Th. cacao, O. sativa, and V. vinifera were used to construct the phylogenetic tree using a Neighbor-Joining method. Lines of different colors

represent classification of nsLTPs. Different species were marked at the end of the lines. Greek numerals present the corresponding type of genes that cannot be

displayed by lines.

expanded early on chromosome At11 and Dt11 and the
functions of the duplicated GhLtps did not diverge much during
evolution.

Transcriptional Analysis of GhLtps
In this study, expression of GhLtps were analyzed in various
organs/tissues (Supplemental Figure S3). It was worthy to point
out that all the type nsLTPy genes showed specific expression in
stamen, while other group members did not show any expression
preference. Thirty four genes showed abundant transcription

profile during fiber development and nearly 30% of them
pertained to type XI.

Due to the irreplaceable economical value of cotton fibers,
breeders have been making persistent efforts to develop
various types of cotton (Gossypium spp.) with desirable fiber
characteristics, which provides materials for investigation of the
regulation of fiber development (Han et al., 2016). To further
elucidate the function of GhLtps during fiber development,
the expression of GhLtps in cultivars HY405, CCRI8, and
ND601 was analyzed using our RNA-seq data. It was noted
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FIGURE 3 | Distribution of GhLtps in 26 chromosomes. Chromosome numbers are indicated above each vertical bar. The scale represents centimorgan (cM). The

segmental duplicated gene pairs are connected with red lines. The tandem duplicated gene clusters are marked in red perpendicular lines.

that 110 genes out of 138 GhLtps were expressed during
fiber development (Supplemental Figure S4). The other 28
GhLtps with scarcely any transcripts covered each group.
GhLtpI1/10/11 and GhLtpXI32 were highly transcribed during
fiber development. And seven GhLtpXIs out of 18 GhLtps
demonstrated high transcripts only in fiber initiation and early
elongation stage. Further, the 138 GhLtps could be clustered
into four groups based on the expression trend during fiber
development (Supplemental Figure S5). The majority of GhLtps
were expressed in the fiber initiation stage, and kept a relatively
high expression level during the early stage of elongation. It
was noticeable that the expression of nearly half of the GhLtps
decreased gradually, suggesting important roles in cotton fiber
initiation and elongation which are essential for lint fiber
formation. Additionally, over 60% of GhLtpXIs displayed higher
expression during fiber initiation and early elongation. It seemed
that type XI GhLtps were important for fiber initiation and
elongation.

Further comparison of the transcription level was made
between longer (HY405) and shorter (CCRI8 and ND601)
fibers. The results between comparison of HY405 vs.
CCRI8 and HY405 vs. ND601 were consistent (Figure 4A).
More GhLtps were significantly activated in cultivar
HY405 with longer fibers, especially at 5, 15, and 25 DPA
(Figure 4A). Among these genes, GhLtpIs and GhLtpXIs
occupied 54% proportion (Figure 4B). The transcripts of
GhLtpI26, V14, VI4, XI12, XI13, XI30, XI32, and XI33

dramatically accumulated in long-fibered cultivars when
fiber started to elongate (Figures 4A,C), suggesting a possible
contribution of GhLtps (especially GhLtpXIs) to fiber length
improvement.

After its divergence from an ancestor shared with Th. cacao
(Carvalho et al., 2011), the cotton lineage evolved into D-genome
and A-genome. However, spinnable fiber only evolved in the
A-genome and was further elongated after the merger of A and
D genome (Paterson et al., 2012). In order to further clarify the
function of GhLtpXIs in fiber development, the expression of
cotton type XI genes was analyzed. Firstly, orthologs of GhLtpXIs
were identified from D-genome and A-genome according
to the sequence similarity, which was further confirmed by
the syntenic relationships between diploid and tetraploid
cotton species identified previously (Supplemental Figure S6)
(Zhang et al., 2015). Ten type XI genes in A and D genome
lost during evolution and 4 pairs of non-reciprocal DNA
exchanges were identified including Gr13g0054/GhAt13g0035,
GhAt11g0237/GhDt11g0252, GhAt11g0234/GhDt12g1005,
and GhDt12g1005/GhAt12g0916. Then the expression of
orthologous gene pairs in ovules was compared at 10 and
20 DPA, respectively, using the downloaded transcriptome
data. The results demonstrated that the transcriptional
level of most GhLtpXIs, discarding 12 GhLtpXIs with scarce
transcripts, significantly varied from their diploid progenitors
(Figure 4D), among which the expression of 15 GhLtpXIs varied
at 10 DPA and 12 varied at 20 DPA. It was notable that the
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FIGURE 4 | Differential expression analysis of GhLtps. (A) Volcano plot shows expression comparison between HY405 vs. CCRI8 and HY405 vs. ND601 represented

by round and square points, respectively. FC stands for fold change. (B) Pie chart shows the proportion of gene types in differentially expressed GhLtps. (C) Heatmap

shows expression of differentially expressed genes between cultivars with longer and shorter fibers. Data shown were log2-transformed RPKM. Developmental stages

of fiber are indicated in days post anthesis (DPA) above. The color bar represents the relative expression level. (D) Heatmap shows expression of differentially

expressed GhLtps compared with their orthologs in G. raimondii or G. arboreum. Data shown were log2-transformed FPKM of each gene which was quantified using

RNA-seq data downloaded from CottonFGD. Developmental stages of fiber are indicated in days post anthesis (DPA) above. The color bar represents the relative

expression level.

expression of most GhLtpXIs was higher than their diploid
progenitors except for GhLtpXI14-17. Especially, expression of
GhLtpXI32 and GhLtpXI33 was extremely higher in tetraploid
cotton than their orthologs in diploid cotton. Additionally,
transcripts of GhLtpXI6 and GhLtpXI12 were dramatically
abundant during fiber elongation in tetraploid cotton and

GhLtpXI27, GhLtpXI28, and GhLtpXI30 increased sharply at 20
DPA.

The previous studies showed that polar lipids increased and
reached the maximum level and were incorporated into the cell
wall from 3 to 20 DPA (Wan et al., 2005; Edstam et al., 2013;
Kumar et al., 2013). Our results suggested that GhLtps, especially

Frontiers in Plant Science | www.frontiersin.org 12 September 2018 | Volume 9 | Article 1285

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Meng et al. GhLtpXIs Regulate Fiber Development

GhLtpXIs play important roles during fiber elongation. Those
differentially expressed GhLtps are likely to delivering lipids to
the outer integument of cotton ovules (Edstam et al., 2013) and
thus contribute to the variance of fiber length.

GhLtpXIs Are Involved in Fiber
Development
Based on the analysis of the RNA-seq data, it is possible that
the considerably expanded GhLtpXIs play important roles in
different fiber developmental stages. On account of this, we
selected nine genes to verify their expression by qPCR (Figure 5).
The expression trend of the selected genes were consistent with
RNA-seq data except for GhLtpXI12 and GhLtpXI33, which
would be due to that samples at 5 DPA used for RNA-seq
and qRT-PCR were different. All of these GhLtpXIs showed
higher transcription levels in cultivar HY405 that produces
longer fibers. The expression profile of each gene varied in
different stages of fiber development, suggesting different roles
of GhLtpXIs. GhLtpXI27, GhLtpXI28, and GhLtpXI30 exhibited
highest transcripts at 0 DPA and decreased dramatically at
5 DPA, revealing a role in fiber initiation. The expression
of GhLtpXI6/7 decreased gradually during fiber elongation.
Noticeably, GhLtpXI6/7 maintained a high level in HY405 until
10 DPA when its transcription in ND601 has decreased to a
relatively low level, andGhLtpXI14 andGhLtpXI32 demonstrated
a constantly high level during fiber elongation in HY405, which
would probably contribute to long fiber quality of the cultivar.
GhLtpXI1, GhLtpXI12, and GhLtpXI33 showed a transcriptional
peak during fiber elongation. The expression trend of GhLtpXI1
was consistent in both cultivars with a higher expression in
HY405. Though the expression of GhLtpXI12 was comparable in
two cultivars, its expression peaked earlier in HY405 at 10 DPA
that is essential to fiber elongation. There is also an advanced
expression peak of GhLtpXI33 in HY405 with a significantly
abundant transcripts compared with that in ND601. It might be
another important effecter on fiber length.

It is believed that the regulatory mechanism is shared by
fiber and leaf trichome development (Kim and Triplett, 2001;
Qin and Zhu, 2011; Lei et al., 2014), and Arabidopsis continues
to serve as a useful experimental system for dissecting the
mechanisms of cotton fiber development (Guan et al., 2014;
Shangguan et al., 2016; Ma et al., 2018). Since GhLtpXIs
considerably expanded in Gossypium species, several members
with early divergent time were cloned and ectopically expressed
in Arabidopsis to further verify the function of GhLtpXIs in
fiber development. Expression analysis of T1 transgenic plants
revealed that these cotton genes were successfully expressed in
Arabidopsis (Figure 6A). The trichomes of the mature rosette
leaves were observed under microscope. The results showed that
the trichome morphology was not affected by overexpressing
of different GhLtpXIs, whereas the trichome length of all the
transgenic plants was significantly longer than that of the WT
plants (Figure 6B), and the improvement of trichome length
was positively correlated to the expression of GhLtpXIs. These
results suggested that GhLtpXIs function to promote trichome
elongation. Cotton fiber which is derived from the epidermal cells

is a single-celled trichome of seed and thus these GhLtpXIsmight
probably regulate fiber elongation.

DISCUSSION

Type XI nsLTPs Expanded Considerably in
Gossypium Species
Plant nsLTPs are characterized by the ECM backbone forming
a stabilized hydrophobic cavity and could be classified into 11
groups including I, II, III, IV, V, VI, VII, VIII, IX, XI, and nsLTPy
according to the number of flanking amino acids within the
conserved ECM domain (Kader, 1996; Carvalho and Gomes,
2007; Boutrot et al., 2008; Li et al., 2014). The nsLTP family has
been identified in Arabidopsis, rice, rape, maize, and sorghum in
previous studies (Boutrot et al., 2008; Li et al., 2014; Wei and
Zhong, 2014) and in G. hirsutum, G. arboreum, G. raimondii, Th.
Cacao, and V. vinifera in this study (Supplemental Table S3). As
an ancient species, V. vinifera genome contained 3 type XI genes,
and this group is likely to disappear evolutionally because of the
lack of type XI genes in rice and Arabidopsis. Although several
type XI genes were identified in cacao, grape and rape, type I or II
consistently possess most members in grape, cacao, rape, rice and
Arabidopsis. It is interesting that cotton type XI nsLTPs harbor an
extra N-terminal cap and are larger in molecular weight, which
are different from other nsLTPs. These outcomes reveal that
type XI nsLTPs specifically expanded in the Gossypium species
(Figure 2).

Cotton type XI genes were close to type II genes
in the phylogenetic tree and duplication pairs were
found between GhLtpXIs and GhLtpIIs (Figures 2, 3 and
Supplemental Table S4). The special protein structure of
GhLtpXIs was only similar to GhLtpII13-15 (Figure 1). These
findings imply that cotton type XI genes might diverge from type
II genes. A large amount of tandem duplication events was found
within GhLtpXIs (Figure 3), suggesting an essential contribution
to the tremendous expansion of type XI genes.

GhLtpXIs Regulate Fiber Development
Considered as an ideal model for cell elongation, cotton fiber
is the single-celled seed trichome developed from the outer
integument of ovule and cotton fiber quality is quantitative traits
controlled by multiple genes. Due to their economic importance
and biological feature, cotton fiber development has been the
subject of much scientific interest. Two decades ago, scientists
have cloned nsLTPs from fibers and believed that they should play
roles during fiber development (Ma et al., 1995, 1997; Liu et al.,
2000; Orford and Timmis, 2000). Later, 12 nsLTPs were found
highly expressed during fiber elongation in upland cotton fibers
compared with fuzzless mutant ovules (Ji et al., 2003). However,
little progress was achieved on how these small proteins affect
fiber development. The complement of whole genome sequence
of G. hirsutum (Li et al., 2015; Zhang et al., 2015) facilitates the
study of gene families contributing to fiber development. In the
present study, 138, 65, and 70 nsLTPs were strictly identified from
G. hirsutum, G. arboretum, and G. raimondii, respectively. RNA-
seq data suggested that most GhLtps were transcribed during
fiber development and some GhLtpXIs displayed much abundant
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FIGURE 5 | Temporal expression of nine GhLtpXIs in developing fibers. Ovules were collected on the day of anthesis and fibers were harvested on 5, 10, 15, and 20

DPA. Gene expression levels determined by qPCR were normalized to UBQ14 expression and shown as relative values to the maximal gene expression levels set at

100%. Error bars indicate SD of three biological replicates.

transcripts during fiber initiation and elongation (Figure 5 and
Supplemental Figure S4). Significant transcriptional differences
of GhLtps were found between cultivated upland cotton varieties
with longer and shorter fibers. And many GhLtpXIs displayed
preponderance of expression in longer fibers, which was likely
to contribute to the variation of fiber quality (Figures 4, 5).
The transcription of several GhLtpXIs was verified by qPCR
with a higher level or advanced peak in long-fibered cultivar
(Figure 5). Furthermore, significant elongation of Arabidopsis
leaf trichomes induced by overexpression of GhLtpXIs suggested
functional roles of GhLtpXIs in promoting cell elongation
(Figure 6).

Since the first genetic map was constructed in cotton, many
QTLs for fiber quality traits have been identified (Shen et al.,
2005; Wang et al., 2006; Qin et al., 2008; Zhang et al., 2012; Ning
et al., 2014; Shao et al., 2014; Shang et al., 2015; Jamshed et al.,
2016). After blast with the QTLs for fiber quality traits, GhLtpI24,
GhLtpIV6 and a cluster of GhLtpXIs located in chromosome
Dt11 (GhLtpXI13/14/15/17/19/21/23/24/27) fell in QTL qFL15.1,
qFS-D13-1, and qFM21.1, respectively (Zhang et al., 2012; Ning
et al., 2014; Shao et al., 2014). These findings further proved
that GhLtps especially GhLtpXIs are important regulators of fiber
development and thus contribute to fiber quality.

LCFA regulates endogenous ethylene biosynthesis in
cotton ovules to promote the extensibility of fibers (Qin

et al., 2007). The basic function of nsLTPs is to transfer
lipids. GhLtps were speculated to bind with various lipids
to be responsible for the intracellular and intercellular
movement of lipids including fatty acids and thus affect
ethylene production and fiber elongation. A GPI-anchored
lipid transport protein (GhLTPG1) has been identified to
regulate cotton fiber elongation through mediating the transport
of phosphatidylinositol monophosphates (Ostergaard et al.,
1993; Deng et al., 2016), which supports the speculation. As
a consequence of the transportation of lipids, the intercellular
fatty acid pools will be regulated by GhLtps, which would
cause a feedback regulation on reactions enrolling fatty acids,
including LCFA biosynthesis and accumulation. In addition
to transferring lipids, nsLTPs can also act as lipid sensors and
lipid chaperones (Wong et al., 2017). Plant nsLTPs are supposed
to bind a lipid molecular competing with elicitin and mediate
signaling (Blein et al., 2002; Maldonado et al., 2002). When
nsLTPs present part of a lipid (typically the hydrophilic head
group) to another protein, they act as lipid chaperones to
mediate signaling (Wang et al., 2005). Thus a hypothesis that
GhLtps participant in the signaling of phytohormones involved
in fiber development and other signaling pathways mediating
fiber development could be proved when functional lipids
were isolated as signaling molecules from fibers or the outer
integument of ovules.

Frontiers in Plant Science | www.frontiersin.org 14 September 2018 | Volume 9 | Article 1285

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Meng et al. GhLtpXIs Regulate Fiber Development

FIGURE 6 | GhLtpXIs regulated trichome development in Arabidopsis. (A) Upregulation of GhLtpXIs in independent overexpression transgenic plants correlated to the

length of trichomes on the surface of mature rosette leaves. Trichome length was measured under microscope and calculated for average of 30∼50 trichomes.

Asterisks indicate the significant difference in relation to WT (T-test, *p < 0.05, **p < 0.01). Expression of GhLtpXIs was determined by qPCR in leaves of each

independent transgenic plants. Transcripts of GhLtpXIs were undetectable in WT. Results were normalized against the expression of TUB2. The maximum expression

of each GhLtpXI is set as 100%. Error bars indicate SD. (B) Overexpressing of GhLtpXIs in transgenic plants promoted trichome length. Trichomes were observed

under microscope after decolorization of leaves. The bar represents 100µm.

GhLtpXIs Might Comprise a Possible
“Fiber Clade”
Shortly after the divergence from the same ancestor as Th. cacao
at least 60 Myr ago (Carvalho et al., 2011), the genus Gossypium
experienced an abrupt polyploidization with a maternal A-
genome propagule resembling G. herbaceum and a pollen parent
D-genome species resembling G. raimondii which diverged
∼5–10 Myr ago (Senchina et al., 2003). The nascent AtDt

allopolyploid diverged into at least five species, of which
two major cultivated species G. hirsutum and G. barbadense

were domesticated independently to spawn textile industry and
became a major oilseed. Although G. hirsutum has been well

domesticated and bred for many cultivated varieties that vary in

fiber quality, the evolution of fiber and regulatory mechanism
of fiber development are unclarified. Our results suggested that
the expanded type XI genes in G. hirsutum genome are involved
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in fiber development. Although GhLtpXIs were phylogenetically
close to GhLtpIIs, they evolved to be different in protein structure
and MWs. Members of this group contain an extra N-terminal
cap (Figure 1). Protein sequences of GhLtpXIs were highly
conserved within the ECMs and only varied at the N-terminal
(Figure 1). Additionally, the divergence time of GhLtpXIs was
earlier than other GhLtps. It is clear that GhLtpXIs form a unique
group distinctive from other GhLtps.

The sequence of a G. hirsutum cultivar reveals many non-
reciprocal DNA exchanges between subgenomes that may
have contributed to phenotypic innovation that spinnable
fiber evolved from the merger of A genome and D genome
determining a fibered and a fibreless phenotype, respectively
(Paterson et al., 2012). Noticeably, non-reciprocal DNA
exchanges were found in cotton type XI genes and most
transcribed GhLtpXIs in ovules displayed significant expression
difference during fiber elongation compared with their orthologs
in A or D genome, indicating a correlation between cotton type
XI genes and fiber evolution. Therefore the cotton XI genes are
speculated to comprise a possible “fiber clade” (Paterson et al.,
2012) evolving from polyploidy, non-reciprocal DNA exchanges
and duplication events, which would be supported by further
sequence comparison of nsLTPs in different cotton species and
their evolutional close species and molecular investigation on
how these candidates regulate fiber development.
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which was quantified using RNA-seq data downloaded from CottonFGD.
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expression level.
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