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Childhood adversity can have life-long consequences for the response to stressful events
later in life. Abuse or severe neglect are well-known risk factors for post-traumatic stress
disorder (PTSD), at least in part via changes in neural systems mediating the endocrine
response to stress. Determining the biological signatures of risk for stress-related mental
disorders such as PTSD is important for identifying homogenous subgroups and improving
treatment options. This review will focus on epigenetic regulation in early life by adversity
and parental care – prime mediators of offspring neurodevelopment – in order to address
several questions: (1) what have studies of humans and analogous animal models taught us
about molecular mechanisms underlying changes in stress-sensitive physiological systems
in response to early life trauma? (2) What are the considerations for studies relating early
adversity and PTSD risk, going forward? I will summarize studies in animals and humans
that address the epigenetic response to early adversity in the brain and in peripheral tissues.
In so doing, I will describe work on the glucocorticoid receptor and other well-characterized
genes within the stress response pathway and then turn to genomic studies to illustrate
the use of increasingly powerful high-throughput approaches to the study of epigenomic
mechanisms.

Keywords: epigenetics, DNA methylation, early adversity, childhood abuse, brain development, hypothalamic-
pituitary-adrenal axis, stress response, glucocorticoid receptor

INTRODUCTION
Childhood adversity can have life-long consequences for the
response to stressful events later in life (1). Repeated exposure
to trauma alters neurodevelopment (2), enhances the activity of
endocrine mechanisms involved in the stress response (3, 4) and
increases the risk of multiple forms of psychopathology (5, 6). For
example, the risk of suicide is strongly linked to childhood sexual
and physical abuse or severe neglect (7–9). Sexual and physical
abuse or severe neglect in childhood are also well-known risk fac-
tors for adult forms of post-traumatic stress disorder (PTSD),
at least in part via changes in neural systems mediating the
endocrine response to stress (10). The hypothalamic-pituitary-
adrenal (HPA) axis shapes the endocrine response to stress in
addition to its role in many other physiological processes, includ-
ing immune and metabolic function. As such, the HPA axis plays
an adaptive role by maintaining allostasis (i.e., stability amid
change) in the face of challenging environmental conditions. Part
of the explanation for the enhanced impact of adversity in early
life is thought to lie in the relatively high degree of plasticity
during this period, when environmental factors exert pervasive
effects on a number of health trajectories (11, 12). Accumulating
evidence indicates that this phenomenon, sometimes called “bio-
logical embedding,” involves persistent changes in gene regulation
via epigenetic mechanisms (13). The goal of this review is to high-
light research on epigenetic mechanisms of early life adversity and
parental care – prime mediators of offspring neurodevelopment

(11) – that addresses several critical issues for research in this
rapidly evolving area. We conclude by providing examples of
the ways in which research in this area may provide insights for
PTSD researchers on the epigenetic impacts of early adversity and
highlight challenges for the field going forward.

EPIGENETIC MECHANISMS: STABILITY AND CHANGE
A first critical issue in understanding the relative risk conferred by
early life adversity concerns the molecular mechanisms mediating
altered HPA function as well as other pathways underlying vul-
nerability that respond in a manner that is both contingent upon
the adversity and stable in the face of similar perturbations in later
life. Epigenetic mechanisms include DNA methylation, histone
modifications, and non-coding RNA. The methylation of cytosine
in cytosine-guanine dinucleotides (CpGs) in the DNA itself (i.e.,
5meC) is the best understood epigenetic mark and the focus of
the majority of current investigations. However other modifica-
tions to DNA, including hydroxymethylation (5-hmC) and other
recently identified DNA modifications, are attracting increasing
interest as potential gene regulatory mechanisms (14). It should
be noted that the conventional methods used for mapping 5-mC,
such as bisulfite sequencing and methylation-sensitive restriction
enzyme-based approaches, do not differentiate it from 5-hmC. As
such, although I use the term “DNA methylation” in this review to
be consistent with the majority of primary publications to date, the
term“DNA modification” is a more accurate descriptor. Variations
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in these modifications occur as a result of genetic, stochastic, and
environmental factors, all of which drive the epigenetic regulation
of gene expression. There is some debate as to the primacy of sto-
chastic and environmental factors in epigenetic variation (15). It
is clear that proper epigenetic regulation is essential for normal
development and cell division, conferring cell-type identity in a
stable manner that appears to a large degree unresponsive to early
life adversity. There also is now compelling evidence of epigenetic
regulation by environmental factors. Epigenetic regulation thus
provides a potential mechanism for understanding well-defined
environmental effects on phenotypes.

Elucidating which regions of the genome are labile in response
to early life adversity, how rapidly changes can occur, and the
ontological time-course of epigenetic changes remains a matter of
active investigation. As I discuss below, these epigenetic responses
likely depend on the genomic loci under consideration. Humans
are exposed to a variety of stressors throughout life, however early
life stress appears to exert an profound effects on HPA function
that is pervasive throughout life in part by altering epigenetic
mechanisms in a stable manner. I will illustrate this point by dis-
cussing several studies in rodents that have provided foundational
knowledge applicable to investigations in humans.

ANIMAL MODELS OF EPIGENETIC MECHANISMS IN EARLY
LIFE SHAPING THE RESPONSE TO STRESS IN ADULTHOOD
Animal models of maternal care and perinatal stress have helped
to provide a mechanistic understanding of the impacts of early
life adversity, allowing for control of genetic variation and a
temporal dynamics of environmental exposures. Classic exam-
ples are experiments pioneered by Levine in the late 1960s and
Meaney beginning in the late 1980s that indicated that laboratory
rodents exposed to different levels of maternal care show behav-
ioral alterations in fearfulness in response to novel environments
and endocrine-mediated stress responses (16). These studies have
documented sustained alterations in the expression genes regulat-
ing HPA function, such as the Glucocorticoid Receptor (GR), in
brain areas mediating anxiety behavior and HPA circuitry, such
as the prefrontal cortex, hippocampus, and hypothalamus. As
adults, the offspring of rat mothers providing relatively high or
relatively low levels of maternal care display life-long alterations
in DNA methylation and Histone 3 lysine 9 (H3K9) acetylation
of the untranslated 17 splice variant of the GR promoter in the
hippocampus and of the promoter of the GAD67 gene in the
prefrontal cortex (17, 18). Other groups have provided evidence
that additional genes in neural pathways mediating the stress
response are epigenetically regulated in association with early life
stress, including arginine vasopressin in the hypothalamus (19),
and BDNF in the prefrontal cortex and hippocampus (20). Inter-
estingly, apparently stable changes in GR promoter methylation
emerge within the first week of life as a function of naturally
occurring variations in maternal care. However, a recent study
found evidence of sex-specific DNA methylation changes in BDNF
and reelin in the medial prefrontal cortex of offspring subjected
to an adverse maternal environment that emerge in the transition
between adolescence and adulthood (21). These data indicate a
complex temporal relationship between environmental adversity
and epigenetic variation in the medial prefrontal cortex,dependent

upon unknown mediating factors. The data suggest that the tem-
poral dynamics of the epigenetic response to early adversity may,
at least to some extent, be loci- and tissue-specific.

HUMAN STUDIES OF EPIGENETIC MECHANISMS IN EARLY
LIFE SHAPING THE RESPONSE TO STRESS IN ADULTHOOD
In light of findings in animal models, GR is an obvious candidate
gene of interest in exploring the relationship between epigenetic
regulation as a function of early life adversity and mental health
outcomes in humans. Perhaps less clear is the choice of appropri-
ate cohorts and cell types in humans to test these relationships. As
mentioned, epigenetic mechanisms play an important role in con-
ferring cell-type identity during development and cell division. As
a result, it is perhaps reasonable to assume that the impact of envi-
ronmental factors on epigenetic marks is likely to be to some extent
cell-type specific, limiting analysis to appropriate tissues of inter-
est. We used hippocampal samples from suicide completers with
and without a history of childhood abuse, and examined DNA
methylation of the GR1F promoter, a region highly syntenic with
the rat GR17 splice variant. We found higher levels of DNA methy-
lation of the GR promoter region among suicide victims with a
history of abuse or severe neglect in childhood, but not among
suicide victims who were not abused in childhood or among a
control group who had died of causes unrelated to suicide (22).
This hypermethylation was associated with increased transcript
abundance of both GR1F splice variant and total abundance of GR
transcript, and in vitro analysis indicated that regions hypermethy-
ated in abused suicide victims inhibited the binding of the EGR1
transcription factor (also known as NGFI-A, Zif268, Krox24, and
ZENK) to select nucleotides within the promoter. Another recent
study has replicated the finding of enhanced DNA methylation at
this splice variant and gone on to identify altered DNA methyla-
tion in additional splice variants of the GR promoter and show
that this response to early adversity is brain region specific, not
occurring in the anterior cingulate (23).

STUDYING EPIGENETIC MECHANISMS OF HPA REGULATION
BY EARLY ADVERSITY IN PERIPHERAL TISSUES IN HUMANS
A second important consideration for studies of the epigenetic
response to early life adversity in living humans is its impacts on
peripheral tissues, essential for efforts to sample potential changes
over time and after interventions in humans. Lymphocytes are
well-known targets of glucocorticoids, and immune profiles are
known to be sensitive to alterations in GR abundance (24). One
study found that childhood adversity (as measured by parental
loss, childhood maltreatment, and parental care) was associated
with increased DNA methylation of several sites within the GR1F
promoter region in lymphocytes in adulthood (25). These results
and other analogous data are important because they indicate that
epigenetic alterations as a result of childhood adversity persist in
peripheral tissues and are detectable in mixed lymphocyte cell
populations. A recent investigation in whole blood of FKBP5, a
negative regulator of GR, links PTSD to both genetic variation and
early adversity (26). The authors of this study had previously char-
acterized several genetic polymorphisms associated with PTSD
risk. In the recent study, they found evidence of DNA demethyla-
tion in an intronic region only in individuals subjected to abuse
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in childhood and only in those carrying the “risk” allele of the
gene, with experiments in cultured cells indicating an effect shown
to occur before and persist after differentiation in cultured hip-
pocampal cells. In light of previous animal work showing that
glucocorticoid exposure can drive DNA demethylation in mouse
hippocampal dentate gyrus, indicating neural target tissues and
in vivo conditions where glucocorticoid activity may modulate
other HPA-responsive genes (27). These data investigating candi-
date genes demonstrate the capacity of the epigenetic machinery to
respond to the psychosocial environment in early life in a manner
that confers stable changes in stress pathways in lymphocytes –
cells that evidently go through numerous cycles of cell division
throughout life.

EPIGENOMIC REGULATION BY EARLY LIFE ADVERSITY IN
GENE REGULATORY ELEMENTS AND BEYOND
A third consideration addressed by these studies is the need to
identify genomic loci that are epigenetically labile in response to
early life adversity. Studies to date have predominantly focused on
epigenetic changes in gene regulatory elements (e.g., promoters)
and defined candidate genomic loci. A study using a microarray
approach combined with methylated DNA immunoprecipitation
to interrogate promoter regions in all known protein-coding genes
found that evidence of hypo- and hypermethylation among hun-
dreds of genes in hippocampi from suicide completers with a
history of early life abuse compared to non-abused controls (28).
This study identified novel candidate genes (e.g., ALS2; involved in
small GTPase regulation) and enriched candidate pathways (e.g.,
neuroplasticity) that may be epigenetically regulated in response
to early life abuse and suicide. Another study of whole blood using
the Illumina 450 K array, which examines the methylation status
at single-nucleotide resolution in ∼480,000 CpG sites, covering
most known genes and regulatory elements, found evidence of
predominantly hypermethylated DNA within exons and 3′ UTRs
of differentially expressed genes in PTSD patients with a history of
early abuse, with epigenetic differences showing general agreement
with levels of transcription (29). This study indicated that changes
in DNA methylation among PTSD patients were enhanced in a
with a positive history of childhood abuse, suggesting a potentially
distinct epigenetic profile in this subgroup.

We documented changes in DNA methylation, H3K9 acteyla-
tion and gene expression across a 7 Mb region flanking the GR gene
hippocampus using a tiling microarray approach in rats (30). Dif-
ferences in the amount of maternal care received during the first
week of life were associated with epigenetic differences over large
genomic regions (∼100 kB) in hippocampi of adult animals. Dif-
ferences in transcription occurred in the context of hyperacetyla-
tion and hypomethylation of promoters and hypermethylation of
exons. Interestingly, hypermethylation within exons was the largest
detect difference in DNA methylation as a response to higher lev-
els of maternal care. Using this methodology, we identified a novel
linkage between altered epigenetic status of a large protocadherin
(PCDH) gene cluster of cell-adhesion molecules and maternal
care. Previous studies have indicated that PCDH gene clusters reg-
ulate neuronal morphology and synaptic plasticity (31). It remains
to be determined whether epigenetic alterations in these genes are
linked to differences in neuroplasticity observed as a function of
differences in maternal care (32). Nevertheless, as technologies for

generating genome-wide epigenetic profiles become economically
accessible to a wider array of researchers and bioinformatics tools
for genomic analysis become more standardized, these approaches
will likely provide powerful methods for hypothesis generation by
consolidating multiple levels of biological information.

In a follow-up to this study, we analyzed the GR locus in hip-
pocampi of adult suicide victims who were abused early in life
compared to non-abused controls (33). Abused suicide victims
showed broad statistical dependencies in DNA methylation dif-
ferences in a manner akin to what was observed in the rat study
described above (30). As in the previous study, the clustered PCDH
gene cluster showed the largest alterations in DNA methylation
within the locus examined. In humans, alterations in PCDH genes
impair intellectual function, and mutations in PCDH genes are
linked to autism (34). PCDH genes show evidence of distinct DNA
methylation in whole blood from individuals with a childhood his-
tory of low socio-economic (35). The function of these epigenetic
differences in PCDH remains unknown, however the data suggest
that these genes are epigenetically labile in response to the early
life social environment in both rodents and humans (33). Taken
together, the data suggest that animal model of parental care may
have broad applicability for understanding the consequences of
epigenetic modification of PCDH gene pathways in humans.

An important caveat of these studies is that they often report
data from mixed cell populations, potentially masking epigenetic
differences in select cell types or skewing group differences due
to cell admixture. Fluorescence-associated cell sorting followed by
cell-type-specific epigenomic analysis is a potential solution. How-
ever, the relevant cell types are not often known, and cell types that
are routinely extracted (e.g., CD4+ T-cells) can often be divided
into functional classes that are dissociable by additional rounds
of selection, making it difficult to know whether one has attained
the necessary level of specificity. An additional method to address
this problem is informatic. Data gathered by the Encyclopedia of
DNA Elements (ENCODE) project and other large-scale genomics
initiatives are providing multidimensional representations of epi-
genetic and functional genomic signatures from a large number of
cell types (36). These data will serve as important information on
regions that identify cell types that can be used to bioinformatically
deconvelute the constituents of cell admixture in mixed tissue pop-
ulations [e.g., peripheral blood; (37)]. The data will also provide
a valuable method to identify epigenetically invariant genomic
regions that can serve to reduce genomic complexity in genome-
wide analysis of epigenetic signaling, and transcriptional “silent”
regions in specified cell types unlikely to be responsive to environ-
mental perturbations. These data, together with an accumulating
array of published epigenomic analysis, should help move research
on the impacts of early life adversity beyond candidate gene to
“candidate pathway” and “candidate network” levels of analysis,
which are finding utility in other areas of complex disease research
[e.g., (38)].

PROSPECTIVE FOR PTSD RESEARCH
Early life trauma shapes resiliency to stress in later life and is a
risk factor for the development of PTSD, itself characterized by
a “transformational” change in the neurophysiological response
to stress that occurs in some but not all individuals exposed to
trauma (39). Inter-individual differences in PTSD susceptibility
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are modulated at least to some extent by early life adversity inas-
much as both are associated with HPA axis alterations – at least
in a subset of PTSD patients. Both early life trauma or severe
neglect and PTSD are generally associated with lower basal cir-
culating cortisol levels and an attenuated response to acute stress
challenge (10). These results have been proposed to explain a para-
dox of PTSD: namely that HPA dysfunction observed in PTSD
appears distinct from that observed in chronic stress or major
depression, conditions associated with elevated levels of cortisol.
Because PTSD and major depression co-occur ∼50% of the time,
the results indicate a distinct profile of PTSD in patients with a
past history of trauma or early life abuse (10). Likewise, not all
who experience trauma develop PTSD. A few studies have iden-
tified epigenetic variation associated with PTSD [e.g., (40)], and
patients with a history of early life adversity may show distinct
epigenomic profiles (29). These contrasts have made it challeng-
ing to identify epigenetic mechanisms linking early adversity to
PTSD risk, calling for a variety of approaches in appropriate ani-
mal models and human studies. The molecular and epigenetic
mechanisms associated with PTSD with and without a history of
early life adversity are beyond the scope of the present manuscript,
however this topic has been the focus of a number of excellent
reviews [e.g., (10, 41–43)] – including in this volume (44).

Questions that need to be addressed for a more complete under-
standing of the role of epigenetic mechanisms in conferring risk of
PTSD via early life adversity, include: when, precisely, during devel-
opment, do epigenetic changes related to early adversity emerge? In
what contexts, genomic regions/pathways, and in cell types? These
principles remain poorly understood. However, some interesting
parallels have been identified between regions of the genome that
are epigenetically responsive to psychosocial factors (e.g., mater-
nal care) in rodents, and syntenic regions of the human genome
that are epigenetically labile in conditions of early adversity [e.g.,
childhood abuse; (33)]. Studies in animal models have suggested
that early life stress impairs neuroplasticity in brain regions such
as the hippocampus and has a lasting impact on endocrine systems
underlying the response to psychosocial stressors (45, 46).

Many animals, including rodents and humans, appear to have
evolved to respond both to immediate threats to life and limb and
to psychosocial stress associated with predation risk, including via
the transfer of information about environmental conditions to the
offspring via maternal factors. For example, a number of studies
in wildlife ecology and comparative endocrinology over the past
20 years have indicated that the influence of predators on stress
in free-living animals is long-lasting, resembling stress effects in
laboratory animal models of PTSD (47). Response mechanisms
mediating the adaptive processes responsible for this transmission

implicate the HPA axis and pathways involved in neuroplastic-
ity (48, 49). Epigenetic research in this area is in its infancy, but
offers an important avenue to study the extent to which devel-
opmentally regulated epigenetic mechanisms and environmental
stressors interact in the context in which they have evolved.

Elucidating the biological mechanisms underlying effects of
early social experiences on later mental health is challenging in
humans for reasons that include technical/analytic complexity and
limited access to relevant biological material. New methods that
offer the ability to examine DNA methylation at single-nucleotide
resolution genome-wide are advancing rapidly and, in tandem,
a vast array of analytical tools and statistical methods are now
available to normalize known technical biases, visualize epige-
netic modifications, and identify differences among subjects (50).
Genome-wide changes with early adversity appear to occur in
association with pathway or network-specific alterations of the
epigenomic landscape. Thus, the selection of epigenetic modifi-
cation(s) for study and identification of the impacted pathways,
which rely on computationally predicted and biologically vali-
dated relationships, remain a challenge for future studies. The
use of whole-genome screens to identify stable combinations of
epigenetic modifications that distinguish cell- or tissue-specific
functional effects may be useful in tissue-specific gene targeting
of therapeutics while minimizing off-target effects (51). It may
not be clear, however, which cell types are relevant to the question
under study. Nevertheless, there is some indication that even buc-
cal epithelial cells may index the response to early life adversity,
though not via epigenetic changes in GR per se (52). Buccal cells
share embryonic stem cell origin with neurons, and therefore may
provide a valuable means of identifying the epigenetic signature
of early life adversity in young children, where blood sampling
is problematic. In addition, because changes in epigenetic pat-
terns are often only measured at one time-point, the involvement
of later life experiences in conferring epigenetic changes are dif-
ficult or impossible to rule out. Prospective research validating
the use of peripheral markers of early life impacts (which can
also be done in animal models) will offer critical insights into
the dynamic nature of epigenetic regulation and its role as a
mechanism for programing gene function in response to early
life trauma.
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