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Structural brain connectivity is generally assessed through methods that rely on pre-defined
regions of interest (e.g., Brodmann’s areas), thus preventing analyses that are largely free
from a priori anatomical assumptions. Here, we introduce a novel and practical technique
to evaluate a voxel-based measure of axonal projections connecting gray matter tissue
[gray matter axonal connectivity map (GMAC)]. GMACs are compatible with voxel-based
statistical approaches, and can be used to assess whole brain, scale-free, gray matter con-
nectivity. In this study, we demonstrate how whole-brain GMACs can be generated from
conventional structural connectome methodology, describing each step in detail, as well
as providing tools to allow for the calculation of GMAC.To illustrate the utility of GMAC, we
demonstrate the relationship between age and gray matter connectivity, using voxel-based
analyses of GMAC. We discuss the potential role of GMAC in further analyses of cortical
connectivity in healthy and clinical populations.

Keywords: connectome, magnetic resonance imaging, diffusion tensor imaging, structural networks

INTRODUCTION
Magnetic resonance (MR) diffusion tensor imaging (DTI) can be
used to reconstruct white matter water molecule diffusion path-
ways, which are considered to be the biophysical representations
of axonal bundles and their myelin sheath (1, 2). The combina-
tion of data from DTI tractography and data from segmentation
of gray matter tissue (derived from T1-weighted MR images) into
anatomical regions of interest (ROIs) enables the quantification of
white matter pathways connecting gray matter ROIs (3). The struc-
tural brain connectome, which is an individualized whole-brain
map of white matter connectivity (3, 4), can thus be obtained by
assessing the DTI connectivity between all possible combinations
of gray matter ROIs.

Examining the brain connectome and its relationship with
behavioral phenomena or neurological symptoms has become a
popular way to address the association between brain structure
and function (5–7). The brain connectome can be used to evalu-
ate the effects of regional and global network organization as they
relate to developmental and pathological processes associated with
changes in connectivity (7).

One important limitation of the current methodology
employed in connectome studies, however, is its strong depen-
dence on anatomically pre-defined gray matter ROI parcellation
atlases. In general, gray matter segmentation is performed based
on the probabilistic subject’s gray matter map (composed of cor-
tical and subcortical regions) fitted onto an anatomically defined
atlas (8, 9). While there is an abundance of examples of gray matter
atlases, it is well recognized that the division of the cortex into ROIs
is a semi-arbitrary process, which typically does not directly rep-
resent functional or histological boundaries. Individual variability
in cortical anatomo-functional localization, notably as it relates
to more superficial and more variable sulci and gyri, may lead

to cortical subdivisions that do not exactly represent equivalent
functional areas across individuals.

Thus far, existing approaches designed to overcome this prob-
lem, such as cytoarchitectonic atlases (10–12)1, or custom-made
functionally defined ROIs (e.g., from functional MRI data) can
provide a limited coverage of the brain and are unable to provide
a scale-free representation encompassing the whole brain.

In this study, we describe a new methodology aimed at over-
coming this limitation. We demonstrate how whole-brain gray
matter axonal connectivity maps (GMAC) can be generated from
conventional connectome methodology, yielding a voxel-based
representation of gray matter connectivity that are largely inde-
pendent from parcellation atlases and compatible with voxel-based
statistical analyses.

METHODS
SUBJECTS
We assessed 18 healthy individuals (mean age 40.5± 5.3 years, 8
males) recruited from the local community with no significant
past medical history of neurological or psychiatric problems. This
study was approved by the Institutional Review Board of the Med-
ical University of South Carolina. All subjects signed an informed
consent to participate in this study.

MRI ACQUISITION
Images were acquired on a Siemens 3 T Verio MRI scanner equip-
ped with a 12-channel head coil. Two sequences were employed:
(1) high-resolution T1-weighted image, with an isotropic voxel
size of 1 mm (TR= 2250 ms, TE= 41 ms, FOV= 256 mm×

1http://www.fz-juelich.de/inm/inm-1/EN/Forschung/_docs/
SPMAnatomyToolbox/SPMAnatomyToolbox_node.html
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Bonilha et al. Gray matter axonal connectivity maps

256 mm); and (2) diffusion-weighted images using two diffusion
weightings (b= 0 and 1000 s/mm2) along 30 diffusion-encoding
directions (TR= 10,600 ms, TE= 100 ms, FOV= 224 mm×
224 mm, parallel imaging factor of 2, slice thickness= 2 mm, and
60 axial slices, isotropic voxel size of 3 mm).

IMAGE PROCESSING
Overview
The initial preprocessing steps were similar to conventional steps
employed in connectome reconstruction (5). We employed a prob-
abilistic approach for DTI tractography (13). We chose to employ
probabilistic tractography in this study, since it is theoretically
capable of accommodating intra-voxel fiber crossings and com-
plex fiber geometry (13, 14). Cortical seed regions for tractography
were obtained from an automatic segmentation process employ-
ing FreeSurfer (15)2 [the Lausanne anatomical atlas, distributed
as part of the Connectome Mapping Toolkit (9)]3. This initial
atlas-based ROI segmentation is performed solely to provide start-
ing points for tractography. The ROIs were transformed into each
subject’s native DTI space using an affine transformation obtained
with FMRIB Software Library (FSL)’s FLIRT (16). Probabilistic
tractography was then performed using each one of the gray mat-
ter ROIs in diffusion space as a seed region, with the no-diffusion
dMRI sequence (B0 image) as the inclusion mask for fiber tracking.

The purpose of the gray matter connectivity maps (henceforth
denoted as GMAC) is to denote a measure of axonal pathways
entering and exiting the gray matter tissue, as demonstrated in
Figure 1. Thus, to quantify regional cortical connectivity, a shell
was constructed to represent the voxel-layer in the transition
between gray and white matter (Figure 2). For each voxel in

2http://surfer.nmr.mgh.harvard.edu/
3http://www.connectome.ch

FIGURE 1 | Gray matter axonal connectivity maps quantifies a count of
axonal pathways entering and exiting the gray matter tissue, as
illustrated in this artistic representation. The resulting voxel-based
connectivity measure reflects the combination of all axonal pathways
transitioning from the gray matter into white matter (axonal pathways
leaving the gray matter are represented with dashed lines).

the shell, the closest gray matter ROI was identified through a
proximity-voting algorithm. In case of a draw, the assignment of
the closest ROI was a random choice between the two or more
equally close ROIs. The next step involved the evaluation of the
connectivity of each voxel in the shell, which was accomplished
by summing the number of fibers arriving at this voxel when each
ROI was seeded (except for the ROI corresponding to the gray
matter region immediately adjacent to that voxel, to avoid overes-
timating cortical connectivity). Since DTI tractography does not
represent directionality of fibers, fibers traversing each voxel could
represent fibers traveling either to or from the adjacent gray matter.
The resulting image is a voxel-based count of regional connectiv-
ity in standard stereotaxic space, thus amenable to any form of
voxel-based statistical analysis.

Below, we describe in detail each preprocessing step. We also
provide a description and links to the scripts necessary to construct
GMAC.

White matter fiber tract reconstruction
DICOM images were converted to NIfTI format (with extraction
of diffusion gradient directions) using the software dcm2nii, part
of the software suite MRIcron (17)4. The package FSL’s Diffu-
sion Toolkit (FDT) (18)5 was used for preprocessing diffusion-
weighted images and for diffusion-tensor estimation (13, 19).
The images underwent eddy current correction through affine
transformation of each DWI to the base b= 0, T2-weighted image.

Structural connectivity was obtained by applying FDT’s proba-
bilistic method for fiber tracking (13, 18, 20). Probabilistic tractog-
raphy was performed on diffusion data after voxel-wise calculation
of the diffusion tensor. FDT’s BEDPOST was used to build default
distributions of diffusion parameters at each voxel (18). Proba-
bilistic tractography was estimated by applying FDT’s probabilistic
method of fiber tracking (13), i.e., FDT’s BEDPOST was used to
build default distributions of diffusion parameters at each voxel,
each time evaluating the samples to generate a probabilistic distrib-
ution, which is used to build a posterior of the streamline location
of the streamline location. Subsequently, tractography analyses
were run using FDT’s probtrackx with default parameters, namely
5000 individual pathways drawn through the probability distri-
butions on principle fiber direction, curvature threshold set at
0.2, 200 maximum steps, step length 0.5 mm, and distance correc-
tion (default settings). Of note, while probabilistic tractography
is not the only alternative to attempting to resolve fiber crossing,
with other examples being diffusion spectral imaging (21) and
diffusional kurtosis imaging (22), it is likely the most appropriate
method for a dataset with a limited number of diffusion directions.

Cortical seed regions for tractography were obtained from
an automatic segmentation process employing FreeSurfer (15)6

applied to T1-weighted images. This process subdivides the
human cerebral cortex into sulco-gyral-based cortical and sub-
cortical ROIs by automatically assigning a neuroanatomical label
to each location on a cortical surface model based on probabilistic
information estimated from a manually labeled training set [the

4http://www.mccauslandcenter.sc.edu/mricro/mricron/dcm2nii.html
5www.fmrib.ox.ac.uk/fsl
6http://surfer.nmr.mgh.harvard.edu/
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Bonilha et al. Gray matter axonal connectivity maps

FIGURE 2 | An example of a subject’s gray and white matter transition shell is demonstrated in the color-coded voxels, where each color corresponds
to the closest gray matter ROI in accordance with the Lausanne anatomical atlas.

Lausanne anatomical atlas, distributed as part of the Connectome
Mapping Toolkit (9)] (see text footnote 3), yielding 82 ROIs in
the subjects’ native T1-weighted space (41 regions in each hemi-
sphere). All processed images were visually inspected to ensure
cortical segmentation quality.

The ROIs were transformed into each subject’s DTI space using
an affine transformation obtained with FSL’s FLIRT (16). Proba-
bilistic tractography was performed using the non-diffusion (B0)
image as an inclusion mask. The seed masks were composed of
the voxels from the gray and white matter shell corresponding to
the each one of the 82 cortical ROIs in diffusion space. Each ROI
shell was seeded independently (with the B0 image set as an inclu-
sion mask, with no waypoint or termination masks). Thus, after
seeding each ROI, a voxel-based map of probabilistic connections
from each ROI was obtained as a three-dimensional volume and,
in each volume, the number of voxel-based streamlines in each
one of the other ROI shells was assessed as explained below.

Gray–white matter transition shell
We used the white matter mask and the gray matter ROIs generated
by the cortical parcellation step to construct a shell representing
the voxel-layer in the transition between gray and white matter.
First, we united all gray matter ROIs into one single gray matter
mask. Then, we employed a proximity-voting algorithm whereby,
for each voxel in the white matter mask, a search was performed
to assess which (if any) gray matter ROI was in contact with each
one of the possible six sides of the voxel. If at least one side was
in contact with a gray matter ROI, this white matter voxel was
then included in the shell. The gray matter ROI corresponding to
this voxel shell was defined as the gray matter ROI accounting for
the majority of sides of the voxel (in a voting system). An exam-
ple of a transition shell is demonstrated in Figure 1. The source
code used for generating a shell can be observed in the Appen-
dix below. The source code will also be available for download at
http://www.mccauslandcenter.sc.edu/CRNL/ once this article has
been peer reviewed and accepted for publication.

Gray matter axonal connectivity maps
For each voxel in the transition shell, we counted the number
of tractography streamlines traversing that voxel when all other
ROIs were seeded. Specifically, if the voxel being analyzed cor-
responded to ROI #1 (i.e., was in the transition between the
gray matter from ROI#1 and white matter), we counted the

number of tractography streamlines traversing that voxel when
all ROIs #2 to #82 where seeded (i.e., all other ROIs). Each
voxel’s resulting number of streamlines f was then log trans-
formed as f ′= log(f+ 1). Finally, a within subject normalization
was performed as F = [f ′− f ′(min)]/[f ′(max)− f ′(min)]; where
F is the resulting normalized voxel-based connectivity value and
f ′(min) and f ′(max) are the minimal and maximal non-zero
log-transformed voxel values (across the entire brain) for that
subject.

Finally, the GMAC was then transformed into the subject’s
native T1 space and subsequently into stereotaxic MNI space using
an affine transformation obtained with FSL’s FLIRT (16).

RESULTS
Across all subjects, the average number of voxels in the gray–white
matter transition shell was 220,018± 7122, which corresponded
to 3± 0.1% of the total number of voxels in the spatially normal-
ized T1-weighted image. The number of voxels in each ROI ranged
from 9,306± 756 (largest ROI) to 214± 44 (smallest ROI).

The resulting average whole-brain GMAC can be appreciated
in Figure 3. This figure also demonstrates the voxel-based SD of
GMAC. Based on visual inspection, the somatosensory cortex and
the temporal and frontal opercula demonstrated a relatively higher
voxel-based number of streamline counts compared with adjacent
regions.

In order to illustrate how GMACs can be used to investigate
neurobiological phenomena, we performed a voxel-based analysis
assessing the statistical relationship between gray matter connec-
tivity and age. GMAC are immediately compatible with several
well-established voxel-based tools, and we used the software NPM,
part of the software package MRIcron (17)7 to evaluate the voxel-
based correlation coefficient between age and gray matter con-
nectivity. The results from this analysis (Figure 4) demonstrate
areas with a statistical decrement in connectivity associated with
older age.

DISCUSSION
In this study, we described a new methodology that allows for
the quantitative evaluation of regional gray matter structural
connections. This method has two advantages: First, GMAC

7http://www.mccauslandcenter.sc.edu/mricro/mricron/
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Bonilha et al. Gray matter axonal connectivity maps

FIGURE 3 |The average whole-brain GMAC from 18 healthy adults is
demonstrated in the upper panel. Each voxel is colored in accordance with
the resulting normalized voxel-based connectivity value, as demonstrated in

the color bar. The middle panel illustrates a three-dimensional reconstruction
of the average GMAC maps. The lower panel demonstrates the voxel-wise
GMAC SD.
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Bonilha et al. Gray matter axonal connectivity maps

FIGURE 4 |To exemplify GMAC usability, the statistical results from a voxel-based correlation between individual GMAC (smoothed with an isometric
8 mm Gaussian kernel) and age are shown here. Areas color-coded in “hot” represent those with a negative correlation between GMAC and age with a
statistical z score less than −1.

provide a measure of gray matter connectivity that is largely
independent from a priori anatomical parcellations, thus per-
mitting a more detailed and fine-grained analysis of regional
connectivity changes, without the limits imposed by the bound-
aries of ROIs. Second, GMAC is a voxel-based map of gray matter
axonal projections in standard space, therefore amenable to sta-
tistical voxel-based analysis, which can be performed using any
of the several packages for voxel-based statistical analyses that are
popular in the neuroimaging community, such as, for example,
NPM, SPM, and FSL.

In order to illustrate this last topic, the simple voxel-based cor-
relation with age demonstrated a rich pattern of decrement in
connectivity with older age. While the purpose of this study is to
propose a new method, instead of providing an in-depth evalua-
tion of the neurobiology of aging, the results from this correlation
are in accordance with previous findings suggesting widespread
reduction in white matter in healthy aging (23, 24). More impor-
tantly, these results provide an example of the utility of the GMAC,
which can help reveal a finer grained pattern of connectivity decre-
ment, which could have been missed by ROI analyses when the
values of all included voxels are averaged and regional changes,
within ROI effects, are possibly overlooked.

Another practical utility of GMAC is the anatomical display of
the connectivity patterns through the use of volume or surface
rendering software. Since GMAC are voxel-based images, they are

compatible with several three-dimensional volume reconstruction
programs, such as, for example, MRIcro (25), FSLView (26), MRI-
croGL8, BrainNetViewer (27), and MRIcroS9. This feature will
enable the visualization of regional connectivity patterns that are
difficult to discern from two-dimensional connectome data.

We believe that an important application of GMAC will be its
evaluation in the context of brain damage, akin to voxel-based
lesion-symptom mapping (VLSM). Our group recently demon-
strated that neuronal loss may affect remote areas after tissue
necrosis from stroke (28), leading to gray matter disconnection,
even though this pattern is largely invisible to many quantita-
tive imaging modalities. In fact, disconnection syndromes are
a prominent clinical phenomenon in neurology, but the quan-
tification of structural disconnection has been hitherto elusive
due to limitations in direct connectivity measures. It is only
through the use of comprehensive connectome mapping that it
is now possible to appreciate the extent of remote axonal loss
and its clinical relevance. At the moment, there are no meth-
ods that provide a voxel-based whole-brain map of gray matter
connectivity, and GMAC will fill this gap. Moreover, another prac-
tical utility of these methods are the use of gray–white matter

8http://www.mccauslandcenter.sc.edu/mricrogl/
9http://www.nitrc.org/projects/mricros/
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transition shells to better define the white matter boundaries from
ROIs, for example, from functional MRI studies, thus permit-
ting a better evaluation of regional axonal connectivity related
to functional areas.

Compared with regular connectome mapping, the main disad-
vantages of GMAC are: first, the absence of information regarding
pairwise connections, i.e., if GMAC are constructed from the entire
connectome, GMAC provide a measure of regional gray matter
connectivity but it does not provide information of the target or
the origin of the fibers reaching that voxel. A simple strategy to
overcome this problem would be to calculate the GMAC based
on fibers obtained from seeding only a limited number of ROIs;
for example, how much voxel-based connectivity is there in the
hippocampus when only the anterior cingulate is seeded. This
later approach is akin to the previously described connectivity par-
cellation maps, as elegantly demonstrated for connectivity-based
segmentation of the thalamus (29, 30) or Broca’s area (31).

The second limitation is the inability to calculate graph-
based measures from the GMAC, since link-based information
is not included. For network architecture measures, the use of
connectome matrices is suggested and preferred.

Considering that GMACs are constructed based on data from
DTI tractography, cortical connectivity may also be related to
how accurate fiber tracking occurs in the adjacent white matter,
with a higher connectivity observed in regions that are imme-
diately adjacent to, or overlying, large white matter pathways;
while lower connectivity occurs in areas overlying white matter
regions where tracking is less accurate, such as locations with
extensive fiber crossings. Furthermore, the approach presented
here is a relatively conservative, not taking into account regional
microanatomy. A less conservative approach would entail assessing
a weighted average of the voxels in relationship with its neighbors,
but this approach could lead to artificially high numbers since
voxel boundaries may span over anatomical boundaries.

In summary, in this study, we introduce a practical and readily
accessible approach to generate whole-brain maps of gray mat-
ter connectivity. GMAC maps provide information that is not
exclusively limited to a priori anatomical parcellations and expand
connectomics research to a voxel-based metric that can be ana-
lyzed using conventional voxel-based statistical packages. As such,
any form of voxel-based statistical tests can be applied to GMACs,
including analyses evaluating continuous data, as well as thresh-
olded approaches that are analogous to lesion-symptom mapping.
There are no other currently available methods that quantify the
same biological features that are measured by GMAC. For this
reason, the applicability of GMAC is potentially vast, encom-
passing the study of neurobiological phenomena that are directly
or indirectly supported by the integrity of regional gray matter
connectivity.
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APPENDIX
MATLAB SOURCE CODE TO GENERATE A GRAY–WHITE MATTER TRANSITION SHELL

function roi_shell = create_roi_shell(roi_data, wm_data)

%% “create_roi_shell” propagates ROI labels to 1-voxel thick shell
%
% create_roi_shell(roi_data, wm_data)
%
% For a given ROI data volume, generate an “roi-shell,” where every voxel
% greater than zero in the white matter mask data volume that also
% neighbors a region is set equal to the label of the ROI region of which
% it shares the most adjacent voxels. If a given shell voxel has two or
% more maximal ROI neighbors, the voxel defaults to the ROI with the
% lowest value.
%
% INPUT
% roi_data – an ROI data volume with regions labeled as succesive
% integers
% wm_data – a mask indicating white matter where any value greater
% than zero will be treated as white matter
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% remove any of the white matter masks that happens to overlap with the
% ROIs, we want the very outer bound of the ROIs
wm_data(roi_data > 0) = 0;

% convolve roi_data where they intersect with wm_data, anything greater
% than zero in the result is a white matter voxel that neighbors an ROI
kernel = [[[0 0 0];[0 1 0];[0 0 0]];

[[0 1 0];[1 0 1];[0 1 0]];
[[0 0 0];[0 1 0];[0 0 0]]];

kernel = reshape(kernel,3,3,3);
shell_mask = (convn(roi_data,kernel,‘same’) > 0) & (wm_data > 0);

% create 6 neighbor kernels designed to extract the value of a specific
% neighbor voxel using convolution
n_kernel = zeros(6,3,3,3);
n_kernel(1,2,2,1) = 1;
n_kernel(2,1,2,2) = 1;
n_kernel(3,2,1,2) = 1;
n_kernel(4,2,3,2) = 1;
n_kernel(5,3,2,2) = 1;
n_kernel(6,2,2,3) = 1;
% create a representation of the shell image where the 4th dimension is
% designed to hold possible values for each of the voxel’s 6 neighbors
shell_neighbors = zeros(dims(1),dims(2),dims(3),6);
for n = 1:6

shell_neighbors(:,:,:,n) = convn(roi_data, n_kernel(n,:,:,:),‘same’);
shell_neighbors(:,:,:,n) = shell_neighbors(:,:,:,n) .* shell_mask;

end

% we now want the mode across the last dimension of our shell_neighbors
% matrix... but we really only care about a small amount of voxels, so it
% is actually quicker to loop through the voxels that we care about
% rather than perform the operation on the entire matrix
roi_shell = zeros(size(shell_mask));
[X,Y,Z] = ind2sub(size(shell_mask), find(shell_mask));
for idx = 1:length(X)

x=X(idx);y=Y(idx);z=Z(idx);
roi_shell(x,y,z) = mode(nonzeros(shell_neighbors(x,y,z,:)));

end
roi_shell(isnan(roi_shell)) = 0;
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