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Language disorders and infections may occur together and often concur, to a differ-
ent extent and via different modalities, in characterizing brain pathologies, such as 
schizophrenia, autism, epilepsies, bipolar disorders, frontotemporal neurodegeneration, 
and encephalitis, inter alia. The biological mechanism(s) that might channel language 
dysfunctions and infections into etiological pathways connected to neuropathologic 
sequelae are unclear. Searching for molecular link(s) between language disorders and 
infections, the present study explores the language-associated NMDA 2A subunit 
for peptide sharing with pathogens that have been described in concomitance with 
neuropsychiatric diseases. It was found that a vast peptide commonality links the 
human glutamate ionotropic receptor NMDA 2A subunit to infectious agents. Such a 
link expands to and interfaces with neuropsychiatric disorders in light of the specific 
allocation of NMDA 2A gene expression in brain areas related to language functions. The 
data hint at a possible pathologic scenario based on anti-pathogen immune responses 
cross-reacting with NMDA 2A in the brain.

Keywords: neuropsychiatric diseases, language disorders, infectious agents, nMda 2a, peptide sharing, cross-
reactivity

introdUCtion

Neuropsychiatric diseases, such as frontotemporal degeneration, schizophrenia, autism, 
epilepsies, and bipolar disorders, are, in general, accompanied by language dysfunctions 
that have been clinically described and tentatively classified into variants and subvariants, 
such as progressive non-fluent aphasia, logopenic primary progressive aphasia, semantic 
variant primary progressive aphasia, non-fluent speech out-put, expressive aphasia, loss of 
word meaning, impaired word comprehension, dysphasic dementia, speech apraxia, fluent 
speech with anomia, and schizophasia, inter alia (1–3). Speech and language disturbance 
manifestations may be present from the beginning of the neuropsychiatric disease, may be 
transient and reversibile, or can progress toward full-blown aphasia; or may gradually develop 
during progressive brain decay such as frontotemporal lobar degeneration. On the whole, 
the multiplicity of language disorders and their definitions mirrors the complexity of the 
symptoms of the associated neuropsychiatric disorders (4, 5). At the molecular level, the 
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determinant(s) and mechanism(s) that relate neuropsychi-
atric diseases to language alteration/disintegration remain 
poorly understood.

Genes coding for neuropathological proteins, such as 
chromatin-modifying protein 2b (CHMP2B), protein chromo-
some 9 open-reading-frame 72 (C9ORF72), granulin (GRN), 
microtubule-associated protein tau (TAU), and the glutamate 
receptor ionotropic N-methyl-d-aspartate receptor subunit 2A 
(NMDA 2A), have been intensively investigated as possible 
genetic markers of neuropsychiatric diseases and/or language 
disorders (6–8). Nonetheless, the relationship between gene 
mutations, neuropathologies, and/or language dysfunctions 
remains obscure. For example, studies on frontotemporal demen-
tia (FTD) and the accompanying language dysfunction antigens 
showed: the presence of C9ORF72 mutations in only 6.8% of 
primary progressive aphasia patients (9); low frequency of GRN 
gene mutations (about 6%) (10–12); lack of a solid association 
between mutations in the three genes most commonly associated 
with FTD (C9ORF72, TAU, and GRN) and progressive apraxia 
of speech and primary progressive aphasia (13); absence of TAU 
mutations in 25 patients with primary progressive aphasia (14); 
that 73% of 364 patients with FTD did not have clear evidence of 
a genetic abnormality (12); and, in addition, that GRN contains 
a high percentage of non-pathogenic variants and variants of 
unclear pathogenicity, thus underlining the need of discriminat-
ing between genetically normal variants and pathogenic muta-
tions (15).

Among the studies cited above (6–16), a genome-wide asso-
ciation analysis on FTD and its subtypes (16) shifted the scientific 
attention from gene mutations to an immune context. The study 
was conducted on 3,526 patients and 7,444 healthy subjects. FTD 
patients comprehended 308 cases of semantic dementia versus 
616 controls, and 269 cases of progressive non-fluent aphasia 
versus 538 controls. In the end, the main conclusion of the study 
pointed to a link between FTD and the immune system, thus 
supporting the idea that immune reactions play an important 
role in the pathogenesis of neurodegenerative diseases. Moreover, 
a vast corpus of data has called attention to the possibility that 
anti-NMDA receptor immunoreactivity may be linked to neuro-
pathologies and cognitive decline. Indeed, anti-NMDA receptor 
antibodies have been described in encephalitis patients (17), 
different dementia types (18), and schizophrenia, schizoaffective 
disorder, mania, bipolar disorder, and major depressive disorder 
(19).

Finally, clinical and epidemiologic data introduced infections 
as a third player in the context of neuropsychiatric disorders and 
anti-NMDA receptor immunoreactivity. An association with 
infectious agents has been repeatedly suggested for psychoses 
(20), schizophrenia (21–23), autism (24, 25), aphasia (26–30), 
and encephalitis, often in concomitance with anti-NMDA 
receptor antibodies (31–35). The issue is further complicated by 
the plethora of pathogens that populate the clinical reports on 
neuroinfections (24, 31–33). Taken together, these studies posit 
together NMDA receptor, neuropsychiatric diseases that entail 
language impairment, and a vast array of pathogens into a mul-
tifactorial scenario, the molecular connections of which remain 
intricate, hypothetical, and unclear.

On these premises, the present investigation focused on a 
preliminary research question: might anti-NMDA receptor 
antibodies originate from sequences common to the ionotropic 
glutamate receptor and infectious antigens? As a matter of fact, 
when pathogens share peptide sequences with host proteins, then 
an immune response against the pathogen might result in autoim-
mune cross-reactions against the host proteins with consequent 
autoimmune damage to the tissue(s) expressing the proteins 
(36). Therefore, it was reasoned that peptide commonalities, if 
any, between NMDA receptor and pathogens would have as a 
consequence that anti-pathogen immune responses might cross-
react with the NMDA receptor and, consequently, hit and damage 
the neural tissues that allocate the glutamate ionotropic receptor. 
Hence, the kind and the extent of neurological sequelae would 
depend on the type of immune response, the antibody affinity 
and avidity, the possibility of concomitant immune phenomena, 
such as epitope spreading, the spatio-temporal expression of the 
glutamate ionotropic receptor, and, obviously, the integrity of the 
blood–brain barrier.

Along this research rationale that had been already applied in 
analyzing the peptide sharing between influenza A H1N1 hemag-
glutinin and human axon guidance proteins (23), this study 
uses as a model NMDA 2A, i.e., a NMDA receptor subunit that 
has been associated with language (7, 8) searching for peptide 
sequences in common with pathogens. The results document a 
vast peptide commonality between the language-associated pro-
tein and numerous infectious agents, thus showing the possibility 
of cross-reactions with the neural receptor subunit following 
pathogen infections. The data are discussed in light of the specific 
NMDA 2A expression in brain language areas.

MetHods

Sequence matching analyses were conducted on the human 
glutamate ionotropic receptor N-methyl-d-aspartate receptor 
subunit 2A (NMDA 2A, 1,464 amino acids) described at http://
www.uniprot.org/uniprot/Q12879. NMDA 2A primary sequence 
was dissected into heptapeptides offset by one residues: i.e., 
MGRVGYW, GRVGYWT, RVGYWTL, VGYWTLL, etc. Then, 
each NMDA 2A heptapeptide was analyzed for exact matching 
against the proteome database as represented by UniProtKB1 
using the Protein Information Resource perfect batch program2 
(37). The UniProt Knowledgebase (UniProtKB) is the central hub 
for the collection of functional information on proteins from 
known species (580,793 at the time of this study). Matches with 
proteins from pathogens that have been reported or mentioned 
in neurological disorders (20–35) were captured and recorded.

Data on NMDA 2A gene expression were generously provided 
by GENEINVESTIGATOR (38); the data derive from expression 
mapping across 384 tissues by using the Affimetrix GeneChip® 
Human Genome U133 Plus 2.0 Array, a most comprehensive 
whole human genome expression.

1 http://www.uniprot.org
2 http://research.bioinformatics.udel.edu/peptidematch
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taBLe 1 | peptide sharing between infectious agents and the human nMda 2a protein.

infectious agent Heptapeptide(s) shared with nMda 2aa

Viruses

Hepatitis C virus LLWGLVF

Human herpes simplex virus 2 PAPSAAA

Human herpes virus 8 SRGIYSC

Human immunodeficiency virus 1 DGEMEEL; DIDPLTE; INNSTNE; KINNSTN; KTTVDNS; SKIMVSV; STESKAN; TESKANS; WKKSVDS

Human rotavirus A SKRSKSL

Influenza A virus IVLNKDR; VLNKDRE

West Nile virus GILTTAA

Bacteria

Acidovorax species LVLPALL; PAPSAAA; APSAAAE; QAAGLPL; GIGILTT; IGILTTA

Bartonella species AAAMALS; EARVRDG; GLVFNNS; GMIGEV; KGVEDAL; LEPFSAS; LLVLPAL; RDGIGIL; RELDLSR; SQSNMLK; VRDGIGI

Bordetella pertussis GLVFNNS; SDRPGLL

Borrelia burgdorferi FVPILGI; LEKFSYI

Clostridium difficile AAMALSL; APSAAAE; EDALVSL; FAVIFLA; IEEKKKS; ILTTAAS; ISLKDRE; KDEAVLI; KDNLNNY; KNHKTKD; LFSVPSS; LQLQKNK; 
LTINEER; MVSDKGN; NDQYKLY; NVTLPEN; SLEARVR; TINEERS; TSFEDAK; TTVDNSF; VITLDTS; VMLGHSH; YKAGRDE; 
YKKMPSI

Clostridium bolteae ETGISVM; GLSDKKF; SQSNMLK; VSDKGNL

Clostridium sp. (environmental 
samples)

AAAMALS; AAGLPLD; AAMALSL; AKNISSM; ALLVWRG; ANLAAFM; ARSLGLT; ASIQQQA; ASMIMAD; AVAQMLD; DDQRLVI; 
DDWDYSL; DILKKLS; DISETSN; DQYKLYS; DRERLLE; DVNVVAL; EEGLSNN; EEKKKSP; ELDLSRP; ENVTLPE; ERTYLKT; 
EVAVSTE; FGASIQQ; FISSHTF; FSYIPEA; FVIVEDI; GASIQQQ; GDGEMEE; GEVVYQR; GKLDAFI; GLEDSKR; GLLFSIS; GLVFNNS; 
IDILKKL; IEEKKKS; ILSEARS; INNSTNE; IPKEFPS; ISSMSNM; ISVSYDD; IVPSLVS; IVSAIAV; KDRERLL; KGTTSKI; KINNSTN; 
KKKSPDF; KKLSRTV; KLDAFIY; KLLRSAK; KLSGKKS; KNKLRIS; KTTVDNS; LAAAMAL; LFPQGLE; LISVSYD; LLIVSAI; LLVLPAL; 
LSFTEEG; LTINEER; LVSGNTE; LWKKSVD; LYDIDED; MALSLIT; MLAAAMA; NDQYKLY; NGTVSPS; NIAVMLG; NIRNNYP; NLYDIDE; 
NVTLPEN; PFVIVED; PSLVSGN; PSSKLSG; QAAGLPL; QMLQETG; RDKIYTI; RELDLSR; RNLAKGK; SDISETS; SGLISVS; SISRGIY; 
SKSLLPD; SLFPQGL; SLPSQAV; SSKLSGK; SYDNIVD; SYLRSSL; TELIPKE; TFVPILG; TIDGEKE; VASKYPK; VENVTLP; VEVAVST; 
VFNNSVP; VIVLNKD; VSGNTEL; VTLPENV; VVALLMN; YDIDEDQ; YLVTNGK; YTIDGEK

Clostridium tetani DQYKLYS; FFWIVPSL; FYGSLFS; SLVTTIF

Corynebacterium diphtheriae HNEEGLS; LVLPALL

Escherichia coli AAAMALS; ALSLITF; ALVSLKT; AVIFLAS; DILKKLS; DRERLLE; ESKANSR; GISVMVS; GLVFNNS; KKSVDSI; LASYTAN; LKKLSRT; 
LKTGKLD; LPSQAVN; LVTIGSG; NPATGEQ; NVTLPEN; PATGEQV; PVQNPKG; QIDLALL; RAADFIQ; RPSRSIS; RQIDLAL; 
RSEVVDF; SGKKSSL; SKLSGKK; SLFSVPS; SLKTGKL; SNPNTVE; SYTANLA; VWAFFAV; YTANLAA

Haemophilus influenzae  DKDPTST; GIGILTT; IGILTTA; KDNLNNY; LVFGDDT; NPATGEQ; SGLISVS

Helicobacter pylori AVIFLAS; LEPFSAS; LIVSAIA; QAAGLPL; TLNESNP; TNGKHGK

Klebsiella oxytoca AAMALSL; ENHTLSL; ETLWLTG; FKRSVAS; KKIHSSV; LDFISSH; LIVSAIA; LVLPALL; LVTIGSG; NMNSSRM; NVITLDT; QIDLALL; 
QQATVML; TLPENVD; VEDALVS; VTERELR

Klebsiella pneumoniae AAAMALS; APSAAAE; DRERLLE; EARSLGL; FKRSVAS; FSLVTTI; IRNNYPY; KKIHSSV; LDFISSH; LIVSAIA; LLPDHTS; LVLPALL; 
NPATGEQ; NVITLDT; QIDLALL; RAADFIQ; RSEVVDF; SGLISVS; SNPNTVE; TLPENVD; VTLPENV; VVDFSVP; VWAFFAV

Mycobacterium tuberculosis AFIYDAA; DRPGLLF; GPAPSAA; ILSEARS; LVLPALL; MLAAAMA; PAPSAAA; RVRDGIG; SLRSTAS; TVPNGST; VLPALLV; VSTESKA

Mycoplasma pneumoniae DILKKLS; GILTTAA; LLWGLVF; LVLPALL; PNTVEVA; SLGLTGY; VIVLNKD

Neisseria meningitidis ARSLGLT; GNPATGE; TGNPATG

Salmonella enterica GILTTAA

Salmonella typhimurium APSAAAE; AVIFLAS; IVTLEEA; PAPSAAA; PLTLNES

Staphylococcus aureus DILKKLS; DNHLSIV; IDILKKL; KKIHSSV; KLRISRQ; KRSKSLL; LKKIHSS; LSLITFI; NDSYLRS; SKRSKSL; TGLSDKK; TGNPATG; 
TLLVLPA; VALLMNR

Staphylococcus haemolyticus LSLITFI; QRDEATA

(Continued)
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resULts

peptide sharing between the  
Language-associated nMda 2a Molecule 
and infectious agents
Table 1 shows a synthesis of the heptapeptide overlap between 
the NMDA 2A protein and pathogen proteomes. In discussing 

Table 1 two premises are due. First, given the high number of 
pathogen species and subspecies that have been described or 
mentioned in neurodegenerative diseases, the data reported 
here refer to representative pathogens. Second, it has to be noted 
that the extent of the heptapeptide sharing reported in Table 1 
is mathematically unexpected. Indeed, assuming that the 20 
amino acids that form proteins occur with the same frequency 

http://www.frontiersin.org/Psychiatry/
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infectious agent Heptapeptide(s) shared with nMda 2aa

Streptococcus agalactiae EEGLSNN; FATTGYG; GGASMIM; GILTTAA; IGILTTA; ILTTAAS; KRAADFI; LWLTGIC; NIAVMLG; RAADFIQ; TLWLTGI; TSFEDAK; 
VLPALLV

Streptococcus mutans ILTTAAS; IVSAIAV; IQEEFVD

Streptococcus pneumoniae EELETLW; GILTTAA; GKDLSFT; GKKVNNV; ILKKLSR; ILTTAAS; LAKGKAP; LKKIHSS; LLVLPAL; SVASKYP; TLPENVD; VITLDTS; 
VTGLSDK

Streptococcus pyogenes ILTTAAS; KRAADFIQ; LSLITFI; QRAVMAV; TSFEDAKT; VLPALLV

Streptomyces griseus AAGLPLD; FIQRGSL; GPAPSAA; LLVLPAL; LSEARSL; PAPSAAA; PEQAAGL; QHPLTLN; QKGVEDA; RDDQRLV; RLVVIVL; VLPALLV

Streptomyces sp. ATGEQVY; AVLILSE; EQAAGLP; FVANRQK; PAPSAAA; VEVAVST; VTLPENV

protozoans

Plasmodium falciparum ASSMLEK; GIYSCIH; HIEEKKK; IDILKKLS; KTKDNFK; LLEGNFY; RSAKNIS; SRGIYSC; STNEGMN; SVPSSKL

Toxoplasma gondii AGLPLDV; CSEVERT; DFSVPFV; EARSLGL; ERELRTL; ETGNPAT; GNPATGE; GSPWKRQ; IGILTTA; KGVEDAL; LKKLSRT; 
LLVLPALL; LRSSLRS; LTTAASS; MLAAAMA; NGTVSPS; PAPSAAA; PLHNEEGL; PSAFLEP; PSLVSGN; PYQDPSE; RERLLEG; 
RSKSLLP; SPSAFLE; TVSPSAF; VPNGSTE; VPSLVSG; YKHSLPS

Trypanosoma cruzi ALLQFVG; EMEELET; GILTTAAS; KKIHSSV; NPNTVEV; PAPSAAA; RLLEGNF; SLFSVPS; SSMSNMN; TVPNGSTE; VLPALLV

Fungi

Coccidioides immitis AAAMALS; AHSDISE; EDIDPLT; KEPGFHL; LAAAMAL; LPSQAVN; LRSSLRS; LTTAASS; PSIESDV; RELDLSR; RPSRSIS; RSKSLLP; 
SLVTTIF; TLSLRHA; VLILSEA; VPSLVSG; VTLPENV

Cryptococcus neoformans AMALSLI; ANSRPRQ; ELDLSRP; GKLDAFI; KEFPSGL; MLKLLRS; NLAAFMI; PAPSAAA; PHSETSE; PSLVSGN; RFCFTGV; 
SPHSETS; TKSSSPR

Cestodes

Echinococcus granulosus FLASYTANLAAFMIa

Echinococcus multilocularis FLASYTANLAAFMIa

trematodes

Schistosoma mansoni FLASYTANLAAFMIa

aOnly the common 14-mer peptide is reported in Table 1 for examined cestode and trematode organisms.

taBLe 1 | Continued
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and without considering protein length, the probability of a 
sequence of 7 amino acids occurring at random in two proteins 
is equal to 20−7, i.e., there is 1 probability out 1,280,000,000 of 
sharing a heptapeptide. In light of this mathematical notion, the 
peptide sharing shown in Table 1 is impressive and appears even 
more striking at level of Echinococcus granulosus, Echinococcus 
multilocularis, and Schistosoma mansoni, which share a same 
14-mer peptide (FLASYTANLAAFMI) with the NMDA 2A 
protein against a mathematical expectation practically equal to 
0 (that is, 20−14).

Looking deeper in Table 1, it can be seen that: among viruses, 
human immunodeficiency virus 1 has a remarkable level of 
heptapeptide sharing with the NMDA 2A molecule, for a total 
of nine matches; in bacterial and protozoan groups, clostridial 
species and Toxoplasma gondii show an impressive hexapeptide 
overlap to the glutamate ionotropic receptor; heptapeptides from 
the fungi Coccidioides immitis and Cryptococcus neoformans are 
widely represented in NMDA 2A, and cestodes and trematodes, 
of which only the common 14-mer peptide is reported in Table 1, 
have an intensive heptapeptide overlap to the human receptor 
(not shown).

In the end, Table  1 shows that numerous infectious agents 
share an unexpected high number of heptapeptide sequences 
with NMDA 2A, thus supporting the possibility of immune 
cross-reactions between pathogens and NMDA 2A. Examples of 

potential cross-reactivity are represented by two heptapeptides, 
MVSDKGN and VSDKGNL, which are shared by NMDA 2A 
with Clostridium difficile and Clostridium bolteae, respectively 
(Table  1). The two heptapeptides are also present in a NMDA 
2A-derived epitope MVSDKGNLMY (39). Hence, it is logical to 
presume that an immune reaction following C. difficile infection 
may occur at level of MVSDKGN and cross-react with the NMDA 
2A molecule too, thus possibly contributing to neurological dis-
turbances in the elderly, by being C. difficile infection a burden 
associated with aging (40). In other words, such a cross-reaction 
might represent a possible link to the neurodegenerative diseases 
that canonically characterize elderly subjects. Likewise, a cross-
reaction against the NMDA 2A VSDKGNL peptide following 
C. bolteae infection might contribute to autistic disorders. Indeed, 
since 1998, Bolte (41) suggested a role of clostridial infections in 
autism. Accordingly, C. bolteae appears to characterize the gastro-
intestinal microbiome in children with autism spectrum disorder 
(42), so to be dubbed as an “autism-associated bacterium” (25). 
In this regard, the wide heptapeptide platform shared between 
NMDA 2A and Clostridium sp. assumes a special relevance. In syn-
thesis, from a logical point of view, the peptide sharing illustrated 
in Table 1 suggests the possibility of immune cross-reactivity as a 
link between the NMDA 2A and infections. Actually, by consid-
ering that a minimal immune determinant may be represented by 
a pentapeptide (43), the number of potential cross-reactions that 
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FiGUre 1 | nMda 2a gene expression in the human brain. (a) Expression of NMDA 2A across 384 human tissues; (B) NMDA 2A expression level in the top 
ten tissues (ranked on y axis on the left). Number of analyzed samples for each tissue on the right. Data obtained using Affimetrix GeneChip®Human Genome U133 
Plus 2.0 Array; figure modified from the original drawing; data and figure were generously provided by GENEINVESTIGATOR (http://genevisible.com) (38).
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can derive from the peptide sharing reported in Table 1 is higher 
as revealed by IEDB analysis (data not shown).

Mapping nMda 2a Gene expression  
in the Brain
As a successive step, correlations with neuropsychiatric altera-
tions were searched by analyzing NMDA 2A gene expression. 
Figure 1 shows that using microarray technology, a powerful tool 
for investigating differential gene expression (44), a comparative 
quantification of NMDA 2A gene expression across human tis-
sues can be obtained (38).

Specifically, Figure  1A shows the gene expression profile of 
NMDA 2A across 384 human tissues, with the brain present-
ing the highest expression level (Figure  1B). The top NMDA 
2A-expressing brain areas correspond, in the order, to: primary 
visual cortex, posterior cingulate, superior frontal gyrus, hip-
pocampus, frontal pole, Brodmann area 46, middle temporal 
gyrus, prefrontal cortex, and entorhinal cortex. In essence, 
Figure 1B is the graphical representation of the brain NMDA 2A 
signature profile.

In light of Figure 1, it appears logical to presume that anti-
pathogen immune responses cross-reacting with NMDA 2A 
might have the brain as a predestined “battlefield” and the 
language-associated areas as preferred sites of cross-reactivity, 
with consequential deterioration of speech and language. 
Indeed, primary visual cortex is associated, when lesioned, 
with alexia without agraphia (45); middle temporal gyrus or 
Brodmann area 21 is key in processing of text and speech as 
well as in processing complex sounds (46); hippocampus is 
involved in the integration of multiple sources of information 
implicated in language processing (47); posterior cingulate 

(Brodmann areas 23 and 31) plays a role in semantic retrieval 
and processing (48); superior frontal gyrus, frontal pole 
(Brodmann area 10), and the dorsolateral prefrontal cortex 
(DLPFC) are roughly equivalent to Brodmann areas 9 and 46 
and appear to participate in complex language processes such 
as syntactic processing, metaphor comprehension, generating 
sentences, and so forth (49); and alterations of entorhinal cor-
tex, a portion of the temporal lobe that channels inputs from 
neocortex to the hippocampus, are accompanied by semantic 
dementia (50).

disCUssion

Neurodegenerative disorders may be characterized by manifesta-
tions more or less severe, ranging from cognitive decline to brain 
atrophy (4, 5). A rule almost constant of brain disorders  –  in 
autism and schizophrenia as well as in aging and in various 
forms of frontotemporal neurodegeneration – is represented by 
the presence of a progressive dissolution of language and speech 
(1–3). Although numerous factors – from genetic mutations to 
infections and NMDA immunoreactivity – have been studied in 
relationship to neurodegenerative processes, clear-cut molecular 
determinants and mechanisms remain to be established. Likewise, 
the links between neurodegenerative diseases and language dis-
turbances are unknown.

Given the new attention called to a possible immune context 
(16) and the re-emergence of neuroinfectiology (51), this study 
aimed at analyzing the connection between infectious pathogens 
and anti-NMDA receptor antibodies. The language-associated 
NMDA 2A subunit (7, 8) was used as a molecular model, and 
data were obtained that support the possibility of anti-NMDA 2A 
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cross-reactions triggered by infectious pathogens (Table 1) and 
allocated in the brain (Figure 1).

Indeed, Table 1 and Figure 1 seem to indicate that the “what, 
how, and where” of neuropsychiatric alterations and associated 
language deterioration at least in part might reside in: the peptide 
sharing between pathogens and the language-associated protein 
NMDA 2A; the consequent potential immune cross-reactivity 
between pathogens and NMDA 2A; and the high level of NMDA 
2A expression in brain areas hosting cognitive, behavioral, and 
language functions.

In synthesis, the present study supports the hypothesis that 
infections might play a key role in neuropathology through the 
language-associated protein NMDA 2A, and invite to expand 
research on immune cross-reactivity between pathogens and 
brain antigens. Of special relevance, such a research platform 
might open the way to preventive and therapeutic protocols to 

alleviate the devastating burden of neurodegenerative disorders. 
Of not less importance, the data appear to provide a molecular 
platform to correlate the heterogeneity of mental disorders and 
the multitude of viral and bacterial CNS diseases.
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