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People can often outperform statistical methods and machine learning algorithms in situ-
ations that involve making inferences about the relationship between causes and effects.
While people are remarkably good at causal reasoning in many situations, there are several
instances where they deviate from expected responses. This paper examines three situa-
tions where judgments related to causal inference problems produce unexpected results
and describes a quantum inference model based on the axiomatic principles of quantum
probability theory that can explain these effects. Two of the three phenomena arise from
the comparison of predictive judgments (i.e., the conditional probability of an effect given
a cause) with diagnostic judgments (i.e., the conditional probability of a cause given an
effect).The third phenomenon is a new finding examining order effects in predictive causal
judgments. The quantum inference model uses the notion of incompatibility among differ-
ent causes to account for all three phenomena. Psychologically, the model assumes that
individuals adopt different points of view when thinking about different causes.The model
provides good fits to the data and offers a coherent account for all three causal reasoning
effects thus proving to be a viable new candidate for modeling human judgment.
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1. INTRODUCTION
People can perform remarkably well at causal reasoning tasks that
prove to be extremely difficult for statistical methods and machine
learning algorithms. For example, Gopnik et al. (2001) demon-
strated that individuals can infer causal relationships even when
sample sizes are too small for statistical tests. Further, people can
infer hidden causal structures that are difficult for computer scien-
tists or statisticians to uncover (Kushnir et al., 2003). Even though
people can infer rich causal representations of the world based
on limited data, human causal reasoning is not infallible. Like
many other types of subjective probability judgments, judgments
about causal events often deviate from the normative rules of clas-
sic probability theory. This paper describes a quantum inference
model previously developed in Trueblood and Busemeyer (2011)
and demonstrates how it can account for judgment phenomena
in causal reasoning problems.

The quantum inference model provides a general framework
for updating probabilities about a hypothesis given a sequence
of information, and it was first developed to account for order
effects. One of the oldest and most reliable findings regarding
human inference is that the order in which evidence is presented
affects the final inference (Hogarth and Einhorn, 1992). For exam-
ple, a juror’s belief that a criminal suspect is guilty might depend
on the order of presentation of the prosecution and defense.
More generally, an order effect occurs when a judgment about
the probability of a hypothesis given a sequence of information A
followed by B, does not equal the probability of the same hypoth-
esis when the given information is reversed, B followed by A.
Because of the commutative nature of events in classical prob-
ability, order effects are difficult to explain using Bayesian models.

Classical probability theory requires p(A ∩ B | H ) = p(B ∩ A | H )
which according to Bayes rule implies p(H | A ∩ B) = p(H | B ∩ A)
(Trueblood and Busemeyer, 2011).

The quantum inference model is based on the axiomatic prin-
ciples of quantum probability theory. This theory is a general-
ized approach to probability that relaxes some of the axioms or
assumptions of standard probability theory in order to account
for violations of the latter. Quantum probability theory is one
of many generalized approaches to probability. Specifically, quan-
tum probability theory is a geometric approach using subspaces
and projections. Other generalized probability theories include
Dempster-Shafer belief function theory (Fagin and Halpern, 1991)
and intuitionist probability theory (Narens, 2003).

Models constructed from quantum probability theory do not
make assumptions about biological substrates. Rather, quantum
probability models provide an alternative mathematical approach
for generating theories of how an observer processes information.
The quantum approach has been used to account for a number
of phenomena in cognitive science including violations of ratio-
nal decision-making principles (Pothos and Busemeyer, 2009),
conjunction and disjunction fallacies (Busemeyer et al., 2011),
paradoxes of conceptual combination (Aerts, 2009), bistable per-
ception (Atmanspacher et al., 2004), and interference effects in
perception (Conte et al., 2009).

There are at least four reasons for considering a quantum
approach to human judgments: (1) human judgment is not a
simple read out from a pre-existing or recorded state, instead
it is constructed from the current context and question. Quan-
tum probability theory postulates that an individual’s belief state
is undetermined before measurement, and it is the process of
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imposing measurements that forces a resolution of the indetermi-
nacy. (2) Before measurement, cognition behaves more like a wave
than a particle allowing for individuals to feel a sense of ambiguity
about different belief states simultaneously. According to quantum
probability theory, beliefs remain in a superimposed state until a
final decision must be reached, which resolves the uncertainty and
produces a collapse of the wave to a specific position like a particle.
(3) Changes in context produced by one judgment can affect later
judgments. Quantum probability theory captures this phenome-
non though the notion of incompatibility allowing for one event
to disturb and generate uncertainty about another. (4) Cognitive
logic does not necessarily obey the rules of classic logic such as
the commutative and distributive axioms. Quantum logic is more
generalized than classic logic and can model human judgments
that do not obey Boolean logic.

1.1. QUANTUM INFERENCE MODEL
The quantum inference model was first developed to account for
order effects in a number of different problems including medical
diagnostic tasks and jury decision-making problems. The follow-
ing example of a medical inference task (Bergus et al., 1998) is one
of the problems accounted for by the model. Physicians (N = 315)
were initially informed about a particular woman’s health com-
plaint, and they were asked to estimate the likelihood that she
had an infection on the basis of (a) her medical history and find-
ings of the physical exam and (b) laboratory test results, presented
in different orders. For one order, the physicians’ initial estimate
started out at 0.67; after they had seen the patient’s history and
findings of the physical exam, the estimate increased to 0.78; and
then after they had also seen the lab test results, it decreased to
0.51. For the other order, the initial estimate again started at 0.67;
after they had seen the lab test results, the estimate decreased to
0.44; and then after they also had seen the history and findings of
the physical exam, it increased to 0.59. Because the final judgments
were significantly different (0.51 versus 0.59, p = 0.03), an order
effect is said to have occurred. Specifically, this type of order effect
is called a recency effect, because the same evidence had a larger
effect when it appeared at the end as opposed to the beginning of
the sequence.

The quantum inference model uses the concept of incompat-
ibility to account for order effects. The concept of compatibility
is one of the most important new ideas introduced to cognitive
science by quantum probability theory. Specifically, the model
assumes that different pieces of information can be incompat-
ible in the following sense: The set of feature patterns used to
evaluate one piece of information is not shared by the set used
to think of another so that no common set of features can be
used to evaluate both pieces of information. For example, a physi-
cian needs to use knowledge about one set of features concerning
a patient’s history and physical exam, and the physician needs
to use knowledge about another set of features concerning lab-
oratory tests, but knowledge about all of the combinations from
these two sets is not accessible to the physician. Psychologically,
this corresponds to adopting different perspectives when evaluat-
ing different pieces of information. For example, in the medical
inference task, we assume a physician has different representations
for beliefs depending on three different points of view: a point of

view determined by the woman’s initial health complaint, a point
of view determined by the medical history and findings of the
physical exam, and a point of view determined by the laboratory
test results.

The quantum model is able to account for the medical infer-
ence data (Bergus et al., 1998) and also a similar type of data from
the domain of jury decision-making (Trueblood and Busemeyer,
2011). In these experiments, subjects read fictitious criminal cases
and made a sequence of three judgments for each case: one before
the presentation of any evidence, and two more judgments after
presentations of evidence by a prosecutor and a defense. For a
random half of the cases, the prosecution was presented before
the defense, and for the other half, the defense was presented first.

In one version of the experiment (N = 291) the strength of the
prosecution and defense was also manipulated. For example, sub-
jects might be asked to judge the probability that a defendant was
guilty based on a weak prosecution and a strong defense. Combin-
ing the order manipulation with two levels of strength (strong and
weak) allowed for eight different order conditions, and as far as
we know, this is the largest existing study of order effects on infer-
ence. Because of the many different conditions, this experiment
provided a rich testing ground for the quantum inference model.
Specifically, we compared the quantum inference model to two
previously proposed models of order effects from the judgment
and decision-making literature. All of the models had the same
number of parameters, and the quantum model provided the best
fits.

Because the quantum model provides a general way to calcu-
late probabilities in inference problems, it is natural to apply it
to situations involving causal reasoning. We begin by describing
two recently discovered phenomena in causal reasoning, and illus-
trate how the model can account for them. Then, we introduce an
a priori prediction about order effects which we test and confirm
through a new experimental study.

1.2. PREDICTIVE AND DIAGNOSTIC CAUSAL JUDGMENTS
There are two possible ways to frame a causal reasoning prob-
lem. As formalized by Fernbach et al. (2011), a predictive prob-
ability judgment is represented by the conditional probabil-
ity p(Effect | Cause) and a diagnostic probability judgment is
represented by the conditional probability p(Cause | Effect).

Fernbach et al. (2011) illustrate these two different framings
through an example about the transmission of a drug-addiction
between a mother and a child. More specifically, a predictive
causal reasoning problem could be formulated as “A mother has a
drug-addiction. How likely is it that her newborn baby has a drug-
addiction?” and a diagnostic causal reasoning problem could be
formulated as “A newborn baby has a drug-addiction. How likely
is it that the baby’s mother has a drug-addiction?”

One recently discovered finding arises from the comparison
of predictive and diagnostic judgments when there are strong and
weak alternative causes (Fernbach et al., 2011). The drug-addiction
scenario described above is an example of a weak alternative causes
scenario because there are few alternatives to a child being drug
addicted when the mother is not. On the other hand, a strong alter-
native causes scenario might be one involving the transmission of
dark skin from a mother to a child (Fernbach et al., 2011). In such
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a scenario, a father with dark skin provides a strong alternative to
a child having dark skin when the mother does not. The results
of experiment 1 by Fernbach et al. (2011) show that subjects are
sensitive to the strength of alternative causes when making proba-
bility judgments about diagnostic problems but not when making
probability judgments about predictive problems. As expected, the
probability judgments for diagnostic problems with strong alter-
native causes (e.g. “A newborn baby has dark skin. How likely is
it that the baby’s mother has dark skin?”) are significantly lower
than the probability judgments for diagnostic problems with weak
alternative causes (e.g. “A newborn baby has a drug-addiction.
How likely is it that the baby’s mother has a drug-addiction?”).
One might expect that predictive problems with strong alternative
causes should produce higher probability judgments than pre-
dictive problems with weak alternative causes because alternative
causes increase the likelihood that the effect was brought about by
different mechanisms (Fernbach et al., 2011). However, the exper-
imental data shows no significant difference between probability
judgments for the two types of predictive problems.

A second finding arises from the comparison of predictive and
diagnostic judgments in cases where there are full conditionals
and no-alternative conditionals (Fernbach et al., 2010). The term
full conditional is used to describe situations in which alternative
causes are implicit. For example, the following predictive question
is a full conditional used in experiment 1 of Fernbach et al. (2010):
“Ms. Y has depression. What is the likelihood she presents with
lethargy?” The term no-alternative conditional is used to describe
situations in which subjects are told that there are no-alternative
causes. For example, a no-alternative conditional for the same
depression problem might be “Ms. Y has depression. She has not
been diagnosed with any other medical or psychiatric disorder
that would cause lethargy. What is the likelihood she presents with
lethargy?” One might expect that the following two inequalities
should hold

p (Effect | Cause) > p (Effect | Cause, No Alternative Causes)
(1)

p (Cause | Effect) < p (Cause | Effect, No Alternative Causes) .
(2)

The first inequality is expected because alternative causes should
increase the likelihood of an effect. Even though alternative causes
are not specifically mentioned in a full conditional, the alterna-
tive causes are still present. Thus, the full conditional should be
judged as more likely than the no-alternative conditional in pre-
dictive problems. On the other hand, the second inequality is
expected because alternative causes compete to explain an effect.
Thus, the full conditional should be judged as less likely than
the no-alternative conditional in diagnostic problems. Experimen-
tal results from (Fernbach et al., 2010) show that the probability
judgments of subjects obey the second inequality relating to diag-
nostic reasoning problems but do not obey the first inequality
relating to predictive reasoning problems. In the predictive rea-
soning scenarios, subjects show no significant difference between
their probability judgments in full conditional and no-alternative
conditional problems.

The two judgment phenomena described here can both be
explained by the quantum inference model. Next, we describe the
model in the framework of causal reasoning and demonstrate how
it can account for the two findings.

2. THE QUANTUM INFERENCE MODEL OF CAUSAL
REASONING

The quantum inference model has been adopted for causal rea-
soning problems because it provides a general way for updating
probabilities about a hypothesis (e.g., the presence of an effect)
given a set of information (e.g., different causes for the effect).
The quantum model is not at odds with the causal model view set
forth by Fernbach et al. (2011) which posits that individuals adopt
a representation that approximates the structure of a system and
probability judgments arise from this representation. Fernbach
et al. (2011) formalize this idea using a causal Bayes net. While the
quantum model provides a new way for calculating probabilities,
quantum causal graphs can be constructed in a similar manner
to causal Bayes nets and could potentially be used as a way to
formalize the specific representation used by individuals.

For all of the applications discussed in this paper, the model
assumes there is a single effect which can exist (e) or not exist (e)
and one or more causes which are either present (p) or absent
(a). Based on this assumption there are four possible elementary
events that could occur when considering a single effect and a
single cause: the effect exists and the cause is present, the effect
exists and the cause is absent, the effect does not exist and the
cause is present, and the effect does not exist and the cause is
absent. In quantum probability theory, the sample space used in
classical probability theory is replaced by a Hilbert space (i.e., a
complex number vector space). In our framework, the four ele-
mentary events are used to define an orthonormal basis for a four
dimensional vector space V :

V = span
{ ∣∣e ∧ p

〉
, |e ∧ a 〉 ,

∣∣ē ∧ p
〉
, |ē ∧ a 〉} . (3)

Quantum probability postulates the existence of a unit length
state vector |ψ〉∈V representing an individual’s state of belief1.
The belief state |ψ 〉 can be expressed as a linear combination or
superposition of the four basis states:

|ψ〉 = ωe,p · |e ∧ p
〉+ωe,a · |e ∧ a〉+ωē,p · |ē ∧ p

〉+ωē,a · |ē ∧ a〉 .

(4)

The weights such as ωe,p are called probability amplitudes and
determine the belief about a particular elementary event such
as e∧p. The belief state vector can be represented by the four
amplitudes when the basis for V is treated as the standard basis

1The use of Dirac, or Bra-ket, notation is in keeping with the standard notation
used in quantum mechanics. For the purposes of this paper, |ψ〉 corresponds to a
column vector whereas 〈ψ | corresponds to a row vector. Following the convention
in physics, we use ψ to denote amplitudes which are basis dependent and |ψ〉 to
denote an abstract vector which is coordinate free.
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for C4:

ψ =

⎡
⎢⎢⎣
ωe,p

ωe,a

ωe,p

ωe,a

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

amplitude for effect exists and cause is present
amplitude for effect exists and cause is absent

amplitude for effect does not exist and cause is present
amplitude for effect does not exist and cause is absent

⎤
⎥⎥⎦ .

(5)

Quantum events are defined geometrically as subspaces (e.g., a line
or a plane) within this four dimensional space. For example, the
event corresponding to the “effect exists” is defined as the subspace
Le = span{|e ∧ p〉,|e ∧ a〉}. Quantum probabilities are computed
by projecting |ψ〉 onto subspaces representing events. Projectors
for general events are defined in terms of the projectors for ele-
mentary events. For example, the projectors for the elementary
events e∧p and e∧a are

P
(
e, p

) =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , P (e, a) =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , (6)

and the projector for the event the “effect exists” corresponds to
the sum of the two projectors: P(e) = P(e,p) + P(e,a). To calculate
the probability of this event, the state vector |ψ〉 is projected onto
Le by the projector Pe:

P (e) ψ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ωe,p

ωe,a

ωe,p

ωe,a

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
ωe,p

ωe,a

0
0

⎤
⎥⎥⎦ . (7)

The probability of the event Le is equal to the squared length of
this projection:

p (Le) = ‖P (e) ψ‖2 = ∥∥ωe,p
∥∥2 + ∥∥ωe,a

∥∥2
. (8)

One of the important differences between quantum probabil-
ity theory and classical probability theory occurs when multiple
events are considered. When multiple events are involved, quan-
tum theory allows for these events to be incompatible. Intuitively,
compatibility means that two events X and Y can be accessed
simultaneously without interfering with each other. On the other
hand, if X and Y are incompatible, they cannot be accessed simul-
taneously. From a cognitive standpoint, this implies that the two
events are processed serially and one interferes with the other.
Mathematically, at set of incompatible elementary events are rep-
resented by different bases for the same vector subspace. In the case
of more general events, consider the event X represented by the
subspace Lx with basis |x1〉, . . ., |xn〉 and the event Y represented
by the subspace Ly with basis |y1〉, . . ., |yn〉. If the two events are
incompatible, then the |xi〉 basis is a unitary transformation of
the |yi〉 basis. If X and Y are compatible, then there is one basis

representation for both events. In this case, quantum probability
theory reduces to classic probability theory.

For the purposes of this paper, we assume that the effect is com-
patible with the causes and multiple causes are incompatible with
each other. To formalize this notion, consider a single effect and a
single cause (for clarity, call this cause“cause 1”). The basis defined
in equation 3 can be used to represent beliefs about the effect and
“cause 1.” Now, suppose the same effect is considered in terms of
a different cause (call this cause “cause 2”). Because “cause 1” and
“cause 2” are incompatible, the four basis elements defined above
for “cause 1” cannot be used to describe the relationship between
the effect and “cause 2.” This is because incompatible events are
represented mathematically by different bases for the same vector
space. Thus, a unitary transformation U is applied to the “cause
1” basis to “rotate” it to the “cause 2” basis. The transformation
must be unitary to preserve the orthonormal nature of the basis
elements. The result of the unitary transformation is a new set of
basis elements for V that represents an individual’s point of view
associated with “cause 2”:

V = span
{

U |e ∧ p
〉
, U |e ∧ a〉 , U |ē ∧ p

〉
, U |ē ∧ a〉} . (9)

As a point of comparison, a classical probability model for a sin-
gle effect and two causes would use an eight dimensional sample
space because there are two outcomes (e or ē) for the effect and
two outcomes (p or a) for each cause. By allowing the causes to be
incompatible, the eight dimensional space needed for the classi-
cal model is reduced to a four dimensional space in the quantum
model. This reduction in dimension becomes even more dramatic
when a single effect and n different causes are considered. In this
case, the dimension of the sample space for the classical model
would be 2n+1 whereas the quantum model with n incompatible
causes continues to use only four dimensions. The vector space
V of the quantum model remains four dimensional because the
n different causes are accounted for by n different bases for V
rather than an increase in the dimension of V 2. Psychologically,
the n different bases correspond to different points of view used
when thinking about the existence of an effect and the presence or
absence of a cause. Formally, there exists a set of unitary operators
used to transform one set of basis vectors to another. This is anal-
ogous to rotating the axes in multidimensional scaling (Shepard,
1962; Carroll and Chang, 1970) or multivariate signal detection
theory (Rotello et al., 2004; Lu and Dosher, 2008).

In the model, unitary transformations correspond to an indi-
vidual’s shifts in perspective and relate one point of view (i.e.,
basis) to another. So far, incompatible events have been described
as defining different basis for V. An equivalent way of viewing
incompatible events is to fix a basis for V such as the basis given
in equation 3 and to transform the state vector |ψ〉 by a unitary
operator whenever an incompatible event is being considered. In

2It should be noted, that the quantum inference model is not restricted to assuming
that all causes are incompatible. If there are n causes for an effect, then it is possible
to allow some of the causes to be compatible and others to be incompatible. In this
case, the dimension of the vector space V would be between four and 2n+1. Further,
if there were multiple effects, the model could be extended to allow for incompat-
ibility among effects. Because the current paper only considers a single effect and
two possible causes, these modifications were not necessary.
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other words, one can either “rotate” the vector space and leave the
state vector fixed or one can “rotate” the state vector and leave the
space fixed. In the applications below, the belief state is “rotated”
and the basis is fixed.

2.1. CONSTRUCTION OF UNITARY MATRICES
Any unitary matrix can be constructed from the matrix expo-
nential function U = e−iφH where H is a Hermitian matrix. (A
Hermitian matrix is equal to its own conjugate transpose.) Thus, to
construct the unitary operators for the quantum inference model,
a Hermitian matrix H first needs to be defined. Following True-
blood and Busemeyer (2011), it is assumed that H is constructed
from two components, H = H 1 + H 2.

We begin by describing the construction of a Hermitian matrix
for a simple two dimensional problem and extend this to define
H 1. Suppose that we have a vector space spanned by two basis
vectors |e∧p〉 and |e∧a〉. In our original vector space, this is the
subspace corresponding to the event the “effect exists.” Also, we
assume that this new space can be viewed from different perspec-
tives and define the unitary matrix Uj to transform one perspec-
tive into another. This unitary matrix is constructed from a two
dimensional Hermitian matrix W.

Any two dimensional Hermitian matrix can be described as a
linear combination of the Pauli matrices:

σx =
[

0 1
1 0

]
; σy =

[
0 −i
i 0

]
; σz =

[
1 0
0 −1

]
. (10)

We let W be defined as

W = αx · σx + αy · σy + αz · σz . (11)

Now, we can write the corresponding unitary matrix as

Uj = e−iφj W = e−iφj(αx ·σx +αy ·σy +αz ·σz). (12)

where we assume that (α2
x + α2

y + α2
z )

1
2 = 1. By applying Euler’s

formula we can rewrite the unitary matrix as

Uj = cos
(
φj

) · I − isin
(
φj

) · (
αx · σx + αy · σy + αz · σz

)
(13)

where I is the 2 × 2 identity matrix. (Euler’s formula states that
eiφ= cos(φ) + isin(φ).) Equation 13 can be written as the matrix

Uj =
[

cos
(
φj

) − i · αz · sin
(
φj

) − (
i · αx + αy

) · sin
(
φj

)
− (

i · αx − αy
) · sin

(
φj

)
cos

(
φj

) + i · αz · sin
(
φj

)] .

(14)

From equation 14, the unitary matrix Uj produces a rotation of
degree φj around the unit length vector (αx,αy,αz,). (Please see
Sakurai, 1994 for more details.) The Hermitian matrix W is said
to be a generator for Uj because for small values of φj, the unitary
matrix is approximately equal to 1 − iφjW. (Please see Nielsen and
Chuang, 2000, Chapter 4 for more details.)

After applying the matrix Uj, the probability that e ∧ p is true
is periodic in the variable φj. If we want to ensure that p is favored

throughout the presentation of the cause, then we must maintain
a probability greater than 0.5 for p over a. In the model, the proba-
bility for p over a is maximized whenever αy = 0 and αx =αz> 0.
By setting αy = 0, we avoid reversing the preference for p across
time. The condition that αx =αz> 0 restricts probabilities for p
to oscillate back and forth from 0.5 to 1.0 across time. Because the
vector (αx, αy, αz) has unit length, we must set αx = αz = 1√

2
.

Now, define W as

W = 1√
2

[
1 1
1 −1

]
(15)

and the 2 × 2 unitary matrix as

Uj = exp

{
−iφj

1√
2

[
1 1
1 −1

]}
. (16)

In the full four dimensional model, we specify the matrix H 1 in
terms of the matrix W. Specifically, we assume that H 1 is the tensor
product given by

H1 =
[

1 0
0 1

]
⊗ W =

[
1 0
0 1

]
⊗ 1√

2

[
1 1
1 −1

]

= 1√
2

⎡
⎢⎢⎣

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎤
⎥⎥⎦ . (17)

A unitary matrix with H 1 as a generator transforms the ampli-
tudes toward the presence of causes by rotating the probability
amplitudes to favor events involving the “cause is present.” In
other words, the corresponding unitary matrix strengthens the
amplitudes corresponding to p and weakens the amplitudes cor-
responding to a. Further, the unitary matrix corresponding to H 1

strengthens and weakens the amplitudes for causes to the greatest
extent possible. This results from the fact that the matrix W was
designed to maximize the probability of one type of information
over another.

Next, we turn to the construction of the H 2 component of the
Hermitian matrix H. As with H 1, we begin by defining a Her-
mitian matrix for a two dimensional space and then extend this
to the four dimensional case. Consider the vector space spanned
by the basis vectors |e∧p〉 and |ē ∧ p〉. This is the subspace of the
full four dimensional vector space corresponding to the presence
of a cause. We proceed exactly as before and define a Hermitian
matrix V as a linear combination of Pauli matrices. Because we
wish to maintain an overall probability greater than 0.5 for the
existence or non-existence of an effect across time, we set αy = 0
and αx = αz = 1√

2
. Thus, we have V =W.

In order to easily write H 2 in terms of V, we rearrange the
coordinate vector given in equation 5 so that

ψ =

⎡
⎢⎢⎣
ωe,p

ωe,p

ωe,a

ωe,a

⎤
⎥⎥⎦ . (18)
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Now we have

H2 =
[

1 0
0 1

]
⊗ V =

[
1 0
0 1

]
⊗ 1√

2

[
1 1
1 −1

]

= 1√
2

⎡
⎢⎢⎣

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎤
⎥⎥⎦ . (19)

Because we want to combine H 1 and H 2, we will need to use the
same arrangement of coordinates for both matrices. To define H 2

in terms of the coordinates given in equation 5, we first switch row
two with row three and column two with column three. Next, we
switch row two with row four and column two with column four.
The resulting matrix is

H2 = 1√
2

⎡
⎢⎢⎣

1 0 1 0
0 −1 0 1
1 0 −1 0
0 1 0 1

⎤
⎥⎥⎦ . (20)

The Hermitian matrix H 2 evolves an individual’s beliefs about an
effect and the presence or absence of a cause. Specifically, it results
in transforming amplitudes toward the event the “effect exists and
cause is present” and toward the event the “effect does not exist
and cause is absent.” As in the case of H 1, the unitary matrix cor-
responding to H 2 evolves the amplitudes to the greatest extent
possible.

Now, we define the Hermitian matrix H as

H = 1√
2

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1 0 1 0
0 −1 0 1
1 0 −1 0
0 1 0 1

⎤
⎥⎥⎦

⎞
⎟⎟⎠

= 1√
2

⎡
⎢⎢⎣

2 1 1 0
1 −2 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎥⎦ . (21)

In the sum H 1 + H 2, the H 2 matrix affects the relation between
causes and effects and the H 1 matrix biases the amplitudes toward
the presence of causes. Both matrices are necessary components
of H. The Hermitian matrix, H, was previously developed for psy-
chological applications involving four dimensional vector spaces
(Pothos and Busemeyer, 2009) and is identical to the one used in
Trueblood and Busemeyer (2011). The parameter φ determines
the degree of rotation and is used as a free parameter in the model.
A different parameter value of φ is used for different causes. For
more details about the derivation of the unitary operators, please
see Pothos and Busemeyer (2009) and Trueblood and Busemeyer
(2011).

3. MODELING THE PREDICTIVE AND DIAGNOSTIC
PHENOMENA

Now that we have introduced the model, we illustrate how it can
be applied to the two findings by Fernbach et al. (2010, 2011)
concerning predictive and diagnostic judgments.

3.1. PREDICTIVE AND DIAGNOSTIC JUDGMENTS WITH STRONG AND
WEAK ALTERNATIVE CAUSES

In experiment 1 conducted by Fernbach et al. (2011), 180 subjects
provided probability judgments for predictive and diagnostic rea-
soning problems with strong and weak alternatives causes. In the
experiment, twenty different question categories were used. These
categories ranged from mothers and newborn babies to oxygen
tanks and scuba divers. For each question category, there were
two types of causes – one with strong alternatives and one with
weak alternatives. In analyzing the data, Fernbach et al. (2011)
averaged over the different categories. Because a large number
of categories were used, any differences in the events themselves
should average out.

To model data from this experiment, the quantum inference
model assumes that equal weight is initially placed on the four
elementary events defining the belief state in a manner similar to
setting a uniform prior in a Bayesian model:

ψ0 =

⎡
⎢⎢⎣
ωe,p

ωe,a

ωe,p

ωe,a

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

√
.25√
.25√
.25√
.25

⎤
⎥⎥⎦ . (22)

The original version of the quantum inference model (Trueblood
and Busemeyer, 2011) was applied to inference problems involving
a single hypothesis and two pieces of evidence. In this setting, it
was assumed an individual adopted three different points of view
throughout the inference problem: a point of view determined by
the initial description of the problem, a point of view determined
by the first piece of evidence, and a point of view determined
by the second piece of evidence. A “rotation” of the belief state
occurred whenever there was a shift in perspective. In an analo-
gous manner, we assume here that there is a change in perspective
(i.e.,“rotation”) between the initial point of view, the point of view
associated with one of the causes, and the point of view associated
with the other cause.

For predictive problems, the initial belief state is revised after an
individual learns about the presence of a cause. Psychologically, the
new information about the cause results in the individual shifting
his or her perspective of the four elementary events. Mathemati-
cally, the initial belief state |ψ0〉 changes to a new state by using a
unitary operator to “rotate” the initial belief state: U |ψ0〉. Because
the individual learns the cause is present, the new state is then
projected onto the “cause is present” subspace and is normalized
to ensure that the length of the new belief state equals one:

|ψ1 〉 =
(
P

(
e, p

) + P
(
ē, p

))
U |ψ0

〉
∥∥ (

P
(
e, p

) + P
(
ē, p

))
U |ψ0

〉 ∥∥ . (23)

The predictive probability is calculated by projecting the revised
belief state onto the“effect exists”subspace and finding the squared
length of the projection:

p (Effect | Cause) = ‖ P (e) |ψ1〉 ‖2. (24)

For diagnostic problems, the initial belief state is revised after an
individual learns the effect exists. In this case, the initial belief

Frontiers in Psychology | Cognitive Science May 2012 | Volume 3 | Article 138 | 6

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


Trueblood and Busemeyer Quantum causal reasoning

state |ψ0〉 does not need to be transformed by a unitary operator
before it is projected onto the “effect exists” subspace. Because
we are concerned with only a single effect, there is no need to
change perspective between the initial belief state and the belief
state associated with the knowledge that the effect is present3. In
other words, the initial basis was chosen to describe a single effect
being considered in the problem. Thus, the initial state is projected
directly onto this subspace and is normalized resulting in a new
belief state:

ψ1 =

⎡
⎢⎢⎣
ωe,p

ωe,a

ωe,p

ωe,a

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

√
.5√
.5

0
0

⎤
⎥⎥⎦ . (25)

The diagnostic probability is calculated by projecting the revised
belief state onto the “cause is present” subspace and finding the
squared length of the projection. However, before projection, |ψ1〉
is transformed by a unitary operator to account for the assumed
incompatibility between the individual’s current point of view and
the point of view associated with the cause:

p (Cause | Effect) = ‖ P (c)U |ψ1〉 ‖2. (26)

Because different causes are used in the weak and strong alternative
causes problems (e.g. “A mother has a drug-addiction” versus “A
mother has dark skin”), different parameter values of φ are used.
Specifically, one value of φ is used to account for causes where the
alternatives are weak and another value of φ is used to account
for causes where the alternatives are strong. Equivalently, differ-
ent causes are incompatible and thus different unitary operators
are needed to “rotate” the state vector. All of the calculations pre-
sented here and for the other effects discussed below are also given
in appendix B.

The important difference between predictive and diagnos-
tic calculations is the ordering of projections and rotations. In
the predictive case, the initial belief state is first rotated by the
U matrix and then projected onto the “cause is present” sub-
space. In the diagnostic case, the initial state is first projected
onto the “effect exists” subspace and then rotated by the U
matrix. The model predicts that strong and weak alternative
causes do not affect predictive judgments because the differ-
ences between these two situations, which are incorporated in the
rotations, are wiped out by subsequent projections. This is not
the case for diagnostic judgments because rotations occur after
projections.

The model was fit to the mean judgments for the following
four situations: predictive with weak alternative causes, predictive
with strong alternative causes, diagnostic with weak alternative
causes, and diagnostic with strong alternative causes. The model
used two free parameters associated with the two different types of
alternative causes (i.e., strong and weak) to model the four judg-
ments. The model was fit by minimizing the sum of the squared

3If there was more than one effect under consideration, then it might be neces-
sary to consider the effects as incompatible. In this case, there would be changes of
perspective (i.e.,“rotations”) between the different effects and the initial belief state.

error (SSE) between the experimental data and model predictions.
The best fit parameters were φ1 = − 3.74 for strong alternative
causes andφ2 = 0.48 for the weak alternative causes. Table 1 shows
the experimental results and the best fitting model predictions.
The mean squared error (MSE) for the model fit was less than
0.0005.

Next we show that the same quantum principles also account
for the differences between predictive and diagnostic judgments
in the more complex paradigm involving the no-alternative
conditions.

3.2. PREDICTIVE AND DIAGNOSTIC JUDGMENTS WITH FULL AND
NO-ALTERNATIVE CONDITIONALS

In experiment 1 conducted by Fernbach et al. (2010), 265 mental
health practitioners provided probability judgments for predictive
and diagnostic reasoning problems with full and no-alternative
conditionals related to a scenario about a woman experiencing
lethargy given she was diagnosed with depression.

To model this data, many of the same steps described above
are used. Specifically, the probabilities for predictive and diag-
nostic reasoning problems with full conditionals are calculated
in the exact same manner as above in equations 24 and 26
respectively.

To calculate the probabilities for predictive and diagnostic rea-
soning problems with no-alternative conditionals, it is assumed
that an individual considers two causes when producing judg-
ments. The first cause is the one explicitly given in the problem
(i.e., the woman has been diagnosed with depression). The second
cause is implicitly defined in the problem through the statement
that there are no-alternative causes (i.e., the woman has not been
diagnosed with any other medical or psychiatric disorders that
cause lethargy). In keeping with the assumption that all causes are
incompatible, these two causes are treated as such. Thus, two dif-
ferent unitary operators, U 1 and U 2 associated with the explicit
present cause and the implicit absent cause respectively, are used
when revising the belief state.

For predictive problems with the no-alternative conditional,
the initial belief state given in equation 22 is first revised after an
individual processes information about the presence of the explicit
cause. The explicit cause is assumed to be processed first because it
is more readily available. The initial state vector is updated accord-
ing to equation 23 where U is defined as U 1. Next, the new state
vector |ψ1〉 is revised after the individual processes the informa-
tion about the absence of the implicit cause. Because the two causes
are incompatible, the current belief state |ψ1〉 is changed to a new

Table 1 | Model fits for predictive and diagnostic judgments with

strong and weak alternative causes.

Judgment type Alternative strength

Weak Strong

Data Model Data Model

Diagnostic 0.817 0.803 0.585 0.561

Predictive 0.696 0.723 0.753 0.773
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state by the unitary operator U 2. The new state is then projected
onto the “cause is absent” subspace and normalized:

|ψ2 〉 = (P (e, a)+ P (ē, a))U2 |ψ1〉
‖ (P (e, a)+ P (ē, a))U2 |ψ1〉 ‖ . (27)

The predictive probability is then calculated by projecting the
revised belief state onto to the “effect exists” subspace and finding
the squared length of the projection:

p (Effect | Cause, No Alternative Causes) = ‖ P (e) |ψ2〉 ‖2. (28)

For diagnostic problems with the no-alternative conditional, the
initial belief state given in equation 22 is revised to the state
given in equation 25 after an individual learns the effect exists.
Next, the state undergoes revision when the individual considers
information about the implicit cause being absent:

|ψ2 〉 = (P (e, a)+ P (ē, a)) U2|ψ1〉
‖ (P (e, a)+ P (ē, a)) U2|ψ1〉 ‖ . (29)

The diagnostic probability is calculated by projecting the belief
state |ψ2〉 onto to the “cause is present” subspace and finding
the squared length of the projection. However, before projection,
|ψ2〉 is transformed by the unitary operator U 1 to account for the
assumed incompatibility between the individual’s current point of
view and the point of view associated with the explicit cause:

p (Cause | Effect, No Alternative Causes) = ‖P (c) U1|ψ2〉‖2.

(30)

The model was fit to the mean judgments for the following
four situations: predictive with full conditional, predictive with
no-alternative conditional, diagnostic with full conditional, and
diagnostic with no-alternative conditional. The model used two
free parameters associated with the two unitary operators used
for the two different types of causes (i.e., explicit and implicit).
The model was fit by minimizing the sum of the squared error
(SSE) between the experimental data and model predictions. The
best fit parameters were φ1 = − 2.35 for the explicit cause and
φ2 = − 3.81 for the implicit cause. Table 2 shows the experimen-
tal results and the best fitting model predictions. The MSE for the
model fit was less than 0.0003.

In summary, the quantum model uses the same principles
to provide accurate fits to the results from both experiments.

Table 2 | Model fits for predictive and diagnostic judgments with full

and no-alternative conditionals.

Judgment type Conditional type

Full No-alternative

Data Model Data Model

Diagnostic 0.59 0.58 0.67 0.65

Predictive 0.69 0.67 0.68 0.69

However, two parameters were used to fit four data points in each
study. Obviously a stronger test of the assumptions underlying
the quantum model is required before this account becomes very
convincing.

4. ORDER EFFECTS IN CAUSAL REASONING
So far, the quantum inference model has been based on
the assumption that causes are incompatible. This is the key
assumption required to account for the findings. The current study
was designed to gather experimental support for this assump-
tion. If all events are compatible, then quantum probability theory
reduces to classic probability theory. In particular, the events obey
the commutative property of Boolean algebra. In a simple Bayesian
inference model, the commutative nature of events implies order
effects do not occur (Trueblood and Busemeyer, 2011). However,
incompatible events do not have to obey the commutative prop-
erty and can produce order effects. Thus, the quantum inference
model with incompatible causes makes an a priori prediction that
order effects exist in causal reasoning. The present study tests this
prediction.

Subjects in the study were 113 undergraduate students at Indi-
ana University who received experimental credit for introductory
psychology courses. Each of the subjects completed a computer-
controlled experiment where they read ten different randomized
scenarios involving an effect and two causes with one the causes
being present and the other cause being absent. For example,
subjects might be asked about the likelihood that a high school
cafeteria will serve healthier food next month (the effect) given
the food budget remains the same (the absent cause) and a
group of parents working to fight childhood obesity contacted
the school about including healthier menu options (the present
cause). All ten scenarios used in the experiment are given in
appendix A.

The participants reported the likelihood of the effect on a 0–100
scale before reading either cause, after reading one of the causes,
and again after reading the remaining cause. For a random half of
the scenarios, subjects judged the present cause before the absent
cause. For the remaining half of the scenarios, the subjects judged
the absent cause before the present cause. The data was analyzed
by collapsing across all ten scenarios. Figure 1 shows the aver-
age probability judgments collapsed across the scenarios for the
different orderings of the causes. A two sample t-test showed a
significant recency effect (t = 9.6408, df = 1128, p< 0.0001). This
implies that the second cause influenced subjects’ beliefs more
than the first cause. One might think that order effects are due
to memory recall failures; however, memory recall is uncorre-
lated with order effects in sequential judgments (Hastie and Park,
1986).

The quantum model accounts for the order effect data in a
manner similar to its account of predictive judgments with no-
alternative conditionals. Specifically, there are two incompatible
causes with one being present and the other being absent. Two
different unitary operators, U 1 and U 2, are associated with the
two causes respectively.

To start, the initial belief state is based on the probability judg-
ments provided by subjects before either cause was presented. The
mean probability of the effect given no causal information was
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FIGURE 1 | Average probability judgments collapsed across 10

scenarios for two orderings of present and absent causes. The
judgments exhibit a significant recency effect as illustrated by the crossing
of the two curves on the graph. Error bars show the 95% confidence
interval.

0.403. Thus, the initial state is defined as

ψ0 =

⎡
⎢⎢⎣
ωe,p

ωe,a

ωe,p

ωe,a

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
0.403

2√
0.403

2√
0.597

2√
0.597

2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (31)

When modeling judgments for the present cause followed by judg-
ments for the absent cause, the initial belief state is first revised to
accommodate the information about the present cause. Specifi-
cally, the initial state vector is updated according to equation 23
where U is defined as U 1. The probability of the effect given the
present cause is calculated as in equation 24. Next, the new state
vector |ψ1〉 is revised after the individual processes the informa-
tion about the absent cause. This updating occurs according to
equation 27. The final probability of the effect given the present
cause followed by the absent cause is calculated as in equation 28.
To model the judgments for the reverse order of causes, absent
cause followed by present cause, a similar set of steps are followed
except that the roles of U 1 and U 2 were reversed (U 2 was applied
first and U 1 second). It should be noted that the quantum model
can produce both primacy and recency effects, and that these two
effects oscillate across different values for the phi parameters.

The model was fit to the following four data points: p(Effect |
Present Cause), p(Effect | Present Cause, Absent Cause), p(Effect |

Absent Cause), p(Effect | Absent Cause, Present Cause). The model
used two free parameters associated with the two unitary opera-
tors used for the two different types of causes (i.e., present and
absent). The model was fit by minimizing the sum of the squared
error (SSE) between the experimental data and model predictions.
The best fit parameters were φ1 = 3.67 for the present cause and
φ2 = − 1.57 for the absent cause. Table 3 shows the experimental
results and the best fitting model predictions. The MSE for the
model fit was less than 0.0002.

The existence of order effects provides support for the quan-
tum inference model with incompatible causes. More importantly,
the model has introduced a new direction for empirical study not
considered before in causal reasoning.

5. ALTERNATIVE MODELS
Two other models of inference are worth mentioning. The first
model is a causal Bayes net discussed in Fernbach et al. (2011).
This model assumes that the relationship between causes and
effects can be represented by a directed graph and probabilities
are calculated from this structure. The second model is the belief-
adjustment model developed by Hogarth and Einhorn (1992).
This is an arithmetic model which assumes that beliefs are deter-
mined through an anchoring and adjustment process. While both
models provide insights into the process of updating beliefs, nei-
ther model can provide an adequate account for all three causal
reasoning phenomena.

5.1. CAUSAL BAYES NET
Fernbach et al. (2011) present a causal Bayes net as a possible
account of predictive and diagnostic judgments with strong and
weak alternative causes. In this model, the predictive probability
of an effect given a cause is calculated using the noisy-or equation:

p (Effect | Cause) = Wc + Wa − Wc Wa (32)

where Wc = p(Effect | Cause, No-Alternative Causes) is the causal
power for the cause and Wa = p(Effect | No Causes) is the strength
of alternative causes. The diagnostic probability of a cause given
an effect is calculated by considering the complement:

p (Cause | Effect) = 1 − p (No Cause|Effect) (33)

By applying Bayes’ rule to the complement defined in equation 33,
the diagnostic probability is given by

p (Cause | Effect) = 1 − (1 − Pc )
Wa

Pc Wc + Wa − Pc Wc Wa
(34)

where Pc = p(Cause).

Table 3 | Model fits for order effects in predictive judgments.

Judgment order After 1st judgment After 2nd judgment

Data Model Data Model

Present, absent 0.631 0.655 0.472 0.477

Absent, present 0.318 0.318 0.602 0.591
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Fernbach et al. (2011) successfully applied this model to their
data on predictive and diagnostic judgments with strong and
weak alternative causes from experiment 1. However, they ulti-
mately reject the model based on later experiments. Also, the
model has not formally been applied to their findings with full and
no-alternative conditionals (Fernbach et al., 2010). As such, it is
unknown whether the model can provide a mathematical account
of these data. Further, it is doubtful the model can account for
order effects. Most Bayesian models have difficulty accounting for
order effects due to the commutativity of events (Trueblood and
Busemeyer, 2011). To model order effects, the model would need
to introduce presentation order as another piece of information.
In most experimental studies of order effects, order of presenta-
tion is randomly determined. Thus, order information is often
irrelevant.

5.2. BELIEF-ADJUSTMENT MODEL
The second model worth noting is the belief-adjustment model
originally developed to account for order effects (Hogarth and Ein-
horn, 1992). This model assumes that individuals update beliefs
through a series of anchoring and adjustment steps. In the model,
the degree of belief for an event Bk is a combination of the previous
belief about the event and a weighting of the current information:

Bk = Bk−1 + wk · (s (xk)− R) . (35)

In the above equation, s(xk) is the strength of the current informa-
tion, R is a reference point, and 0<wk< 1 is an adjustment weight.
By making assumptions about the encoding of information, the
model can be reformulated as either an adding or averaging model
(Hogarth and Einhorn, 1992). For the purposes of this paper, we
will focus on the adding version of the model because we pre-
viously demonstrated that the adding model is superior to the
averaging model in accounting for order effects (Trueblood and
Busemeyer, 2011).

According to Hogarth and Einhorn (1992), the adding model
arises when information is encoded in an absolute manner. It is
assumed that R = 0 and − 1 ≤ s(xk) ≤ 1. Further,Hogarth and Ein-
horn (1992) made the assumption that the adjustment weight wk

depends on the state of the current belief and the sign of the dif-
ference s(xk) − R. Specifically, if s(xk) ≤ R then wk = Bk−1, and if
s(xk)>R then wk = 1 − Bk−1. Using these constraints, the adding
model is given by

Bk =
{

Bk−1 + Bk−1 · s (xk) , if s (xk) ≤ 0
Bk−1 + (

1 − Bk−1
) · s (xk) , if s (xk) > 0

(36)

Order effects arise from the model through the combination of the
strength parameters and adjustment weights. The model requires
as many strength parameters as pieces of information in the task.
For example, the model would require two free parameters to fit the
data from the order effects experiment discussed above. This is the
same number of parameters used by the quantum inference model.

In previous work examining order effects (Trueblood and Buse-
meyer, 2011), the quantum model provided better fits to experi-
mental data than the adding model. We also showed the quantum
model more readily generalized across different response scales

and populations through cross-validation. Further, the quantum
model, unlike the adding model, made correct a priori predic-
tions about probability judgments in jury decision-making tasks
involving irrefutable evidence.

While the adding model can produce order effects, the model
cannot provide an adequate account for predictive and diagnostic
judgments with strong and weak alternative causes. According to
the model, a predictive judgment is given by

p (Effect | Cause) = BE = B0 + (1 − B0) · s (Cause) . (37)

where it is assumed s(Cause) >0 and B0 is the prior belief in
the effect. In order to account for the lack of a significant dif-
ference between predictive judgments involving strong and weak
alternative causes, the model requires the strength of causes with
strong alternatives to be equal to the strength of causes with weak
alternatives. When considering causes such as “A mother has a
drug-addiction” and “A mother has dark skin,” this assumption
seems unlikely.

Now consider the findings with full and no-alternative con-
ditionals. According to the model, a predictive judgment with a
no-alternative conditional is given by

p (Effect | Cause, No Alternative Causes)

= BE + BE · s (Alternative Causes) (38)

where BE is given in equation 37 and s(Alternative Causes) is
assumed to be negative because the alternative causes are absent.
Thus to account for the experimental finding that predictive judg-
ments with full and no-alternative conditionals are the same, the
model requires

BE = BE + BE · s (Alternative Causes) (39)

implying that s(Alternative Causes) = 0. It seems unlikely that
information such as “[a patient] has not been diagnosed with any
other medical or psychiatric disorder that would cause lethargy”
would have a strength rating of zero. Thus, the adding model also
fails to provide an adequate account of predictive judgments with
full and no-alternative conditionals.

6. DISCUSSION
This paper illustrates that the quantum inference model can
account for data from three different causal reasoning experi-
ments. The quantum model is the first model that has been able
to provide a unified account for all three effects. Previous models
such as the causal Bayes net discussed in Fernbach et al. (2011)
and the belief-adjustment model developed by Hogarth and Ein-
horn (1992) can only account for a subset of the findings. Further,
the quantum model has previously been used to account for order
effect data in a number of different inference tasks (Trueblood and
Busemeyer, 2011) illustrating the generalizability of the model to
a large range of phenomena.

The quantum inference model uses the concept of incompati-
bility to account for both the three causal reasoning phenomena
presented in this paper and the order effect phenomena discussed
in Trueblood and Busemeyer (2011). It might be the case that
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humans can adopt either compatible or incompatible represen-
tations and are not constrained to use one or the other. In the
case where individuals use a compatible representation, judgments
should agree with the laws of classical probability theory. For
common situations where circumstances are clear, it seems rea-
sonable that individuals would adopt a compatible representation.
For example, consider an electric kettle that only operates when
it is plugged in (cause 1) and when it is switched on (cause 2).
Because people have a great deal of experience with plugging in
and switching on electronic appliances, they can form a compatible
representation of these two causes.

However, for situations involving deeply uncertain events that
have never before been experienced, perhaps incompatible repre-
sentations are used. In this way, an incompatible representation is
only adopted for causes that do not have the advantage of a wealth
of past experience. For example, in the order effects experiment
discussed in the previous section, it is doubtful that the subjects
had prior experience considering a high school’s food budget and
an activist group fighting childhood obesity. Thus, these two causes

are represented as incompatible because they cannot be accessed
simultaneously without interfering with each other. In general,
incompatibility offers an efficient and practical way for a cognitive
system to deal with a large variety of information.

While the present paper does not want to conclude that the
quantum inference model is true, the evidence presented here
makes a convincing case for considering the quantum model to
be a viable new candidate for modeling human causal reasoning.
Using the same underlying principles, the model provided accu-
rate fits to the data from experiments by Fernbach et al. (2010,
2011). More importantly, the model made an a priori predic-
tion that order effects would occur in causal reasoning problems.
The existence of order effects is a strong indicator that events
should be treated as incompatible. As the key assumption of the
model is the incompatibility of causes, the empirical finding of
order effects is quite noteworthy. Future work will test the model
with larger data sets, examine model complexity, and explore
the model’s predictions regarding the occurrence of primacy and
recency effects.
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APPENDIX
STIMULI FOR ORDER EFFECTS EXPERIMENT
Scenario 1
• Initial Description: Mary is an average 33-year old American

woman.
• Effect: How likely is it that Mary will weigh less in 1 month?
• Absent cause: Mary does not make any changes to her diet over

the course of the month.
• Present cause: Mary recently began an exercise program where

she works out for 4 h every week.

Scenario 2
• Initial Description: The Central High School football team won

less than half of their games last season.
• Effect: How likely is it that the Central High School football

team will have a winning season next year?
• Absent Cause: The football team uses the same plays this coming

seasoning as they have in the past.
• Present Cause: The football team increases their weekly practice

time.

Scenario 3
• Initial Description: Sara is a 40-year old American woman who

has a generalized anxiety disorder.
• Effect: How likely is it that Sara will be less anxious within

3-months?
• Absent cause: Sara does not change her level of exercise over the

3-month period.
• Present cause: Sara meets with a psychologist every week.

Scenario 4
• Initial Description: Jane has two exams 1 week from today, one

in her advanced physics course and one in her statistics course.
• Effect: How likely is it that Jane will do well on both exams next

week?
• Absent cause: Jane does not make any changes to the amount of

time she studies at home over the coming week.
• Present cause: Jane has been going to office hours for both classes

for the last 3 weeks.

Scenario 5
• Initial Description: A soda company owns a popular caffeine

free drink.
• Effect: How likely is it that sales of the caffeine free drink will

increase next year?
• Absent cause: The advertising budget for the caffeine free drink

for the coming year is the same as last year.
• Present cause: The soda company lowers the price of the caffeine

free drink.

Scenario 6
• Initial Description: Paul is an average high school junior.
• Effect: How likely is it that Paul will be accepted into a top 50

college in 1 year?
• Absent cause: Paul does not make any changes to his extracur-

ricular activities over the course of the year.
• Present cause: Paul improves his grades in all of his academic

classes.

Scenario 7
• Initial Description: H. G. Industries is a manufacturing com-

pany.
• Effect: How likely is it that the output of H. G. Industries will

increase over the course of a year?
• Absent Cause: H. G. Industries does not make any changes to

their production line technology.
• Present Cause: H. G. Industries increases the number of

employes working for the company.

Scenario 8
• Initial description: Liz is a 20-year old college sophomore who

has a 3.0 GPA.
• Effect: How likely is it that Liz will earn an A in social psychology

this semester?
• Absent Cause: Liz does not make any changes to her study habits

this semester.
• Present Cause: Liz hopes to study social work in graduate school.

Scenario 9
• Initial description: L.Z. Inc. has a manufacturing plant that has

been dumping waste in nearby Lake Lime for several years.
• Effect: How likely is it that L.Z. Inc. will start an initiative to

clean up Lake Lime this year?
• Absent cause: L.Z. Inc. is using the same manufacturing process

this year that it has in the past.
• Present cause: L.Z. Inc. has met with several environmental

groups recently.

Scenario 10
• Initial description: A high school cafeteria serves lunch to stu-

dents, and sets its upcoming menus at the beginning of each
month.

• Effect: How likely is it that the cafeteria will serve healthier foods
next month?

• Absent cause: The food budget for the coming month is the
same as last month.

• Present cause: A group of parents are working to fight childhood
obesity and have spoken to the school about including healthier
options on their menus.

CALCULATIONS FOR THE QUANTUM MODEL
For all of the calculations, it is assumed that there is an initial belief
state |ψ0〉. To calculate probabilities for predictive judgments with
a single present cause, the initial belief state is revised according to

|ψ1〉 =
(
P(e, p)+ P(ē, p)

)
U |ψ0〉∥∥ (

P
(
e, p

) + P
(
ē, p

))
U |ψ0〉

∥∥ .

This new state is then projected onto the “effect exists” subspace:

p (Effect|Cause) = ‖ P (e) |ψ1〉 ‖2.

If there is an additional absent cause, the |ψ1〉 belief state is updated
according to

|ψ2 〉 = (P (e, a)+ P (ē, a))U2 |ψ1 〉
‖(P (e, a)+ P (ē, a))U2 |ψ1 〉‖
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The probability is calculated by projecting this new state onto the
“effect exists” space:

p (Effect | Cause, No Alternative Causes) = ‖ P (e) | ψ2〉 ‖2.

For diagnostic judgments, the initial state is first revised by pro-
jecting it onto the “effect exists” subspace so that |ψ1〉 = P(e)|ψ0〉.
To calculate the probability of a present cause given the effect, the
new belief state is revised and projected onto the “cause is present”
subspace:

p (Cause | Effect) = ‖ P (c)U |ψ1〉 ‖2.

If there is an additional absent cause, the |ψ1〉 belief state is updated
according to

|ψ2 〉 = (P (e, a)+ P (ē, a))U2 |ψ1 〉
‖ (P (e, a)+ P (ē, a))U2 |ψ1 〉 ‖ .

The probability is calculated by revising this new state and
projecting onto the “cause is present” subspace:

p(Cause | Effect, No Alternative Causes) = ‖ P (c)U1 |ψ2 〉 ‖2.
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