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Natural sounds, including vocal communication sounds, contain critical information at mul-
tiple time scales. Two essential temporal modulation rates in speech have been argued
to be in the low gamma band (∼20–80 ms duration information) and the theta band
(∼150–300 ms), corresponding to segmental and diphonic versus syllabic modulation rates,
respectively. It has been hypothesized that auditory cortex implements temporal integration
using time constants closely related to these values. The neural correlates of a proposed
dual temporal window mechanism in human auditory cortex remain poorly understood.We
recorded MEG responses from participants listening to non-speech auditory stimuli with
different temporal structures, created by concatenating frequency-modulated segments of
varied segment durations. We show that such non-speech stimuli with temporal structure
matching speech-relevant scales (∼25 and ∼200 ms) elicit reliable phase tracking in the
corresponding associated oscillatory frequencies (low gamma and theta bands). In con-
trast, stimuli with non-matching temporal structure do not. Furthermore, the topography of
theta band phase tracking shows rightward lateralization while gamma band phase tracking
occurs bilaterally. The results support the hypothesis that there exists multi-time resolu-
tion processing in cortex on discontinuous scales and provide evidence for an asymmetric
organization of temporal analysis (asymmetrical sampling in time, AST). The data argue
for a mesoscopic-level neural mechanism underlying multi-time resolution processing: the
sliding and resetting of intrinsic temporal windows on privileged time scales.
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INTRODUCTION
Mapping from input sounds (such as speech) to stored repre-
sentations (such as words) involves the temporal analysis and
integration of information on distinct – and perhaps even non-
overlapping – timescales (Poeppel, 2003; Hickok and Poeppel,
2007; Poeppel et al., 2008). Multi-time resolution hypotheses of
different types have been proposed to resolve the tension between
information carried on different scales concurrently (Greenberg
and Ainsworth, 2006; Giraud and Poeppel, 2012a,b). A “calculated
simplification” is that the two main temporal scales in speech
sounds are ∼20–50 ms short scale and ∼150–300 ms long scale
signals, corresponding to segmental and syllabic rates respectively
(Poeppel, 2003; Greenberg and Ainsworth, 2006).

Historically, the analysis of speech was dominated by research
focusing on the rich spectral properties of the acoustic signal (see,
e.g. Liberman, 1996, for many important experimental examples).
That research forms the basis for much of our current understand-
ing of how speech perception may function and has yielded many
of the foundational insights into both the mental representation
of speech and its neurobiological foundations. A second strand of
research, somewhat more recent in its origin, has focused on the
temporal properties of speech signals. Even a cursory glance at the
acoustics of speech – whether as a waveform or as a spectrographic

representation – reveals that different types of information appear
to be carried on different timescales (for a review, see Rosen, 1992).
For example, if one analyzes the broadband amplitude envelope
of the signal (the type of information that the external ear actu-
ally receives, prior to the filterbank decomposition in the cochlea
and subsequent auditory nuclei), relatively low modulation fre-
quencies are visible in the signal (below 10 Hz, with peaks often
lying between 4 and 6 Hz), with the timescale highly reminis-
cent of mean syllable duration across languages (Greenberg and
Ainsworth, 2006; Pellegrino et al., 2011). By contrast, speech sig-
nals contain many rapid fluctuations that require decoding on a
much shorter 10-of-ms-scale (e.g., voice onset time, certain for-
mant transitions, onset bursts, etc.). The neural mechanisms for
such multi-time resolution processing in human auditory cortex
(and some possible hemispheric asymmetries) have been a focus
of much recent work.

One hypothesis that has been investigated in a series of recent
experiments suggests that the different integration time constants
are consequences of intrinsic neuronal oscillations at different
rates (Poeppel, 2003). In particular, it has been suggested that
oscillatory activity in the theta band correlates closely with tem-
poral “sampling” at the lower rates (relating, most probably, to
envelope processing) and that the low gamma band correlates
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with more rapid information extraction (Poeppel, 2003; Ghitza,
2011; Giraud and Poeppel, 2012a,b). In short, the argument is that
there is a close correspondence between neuronal oscillations and
the temporal parsing of an input stream and decoding of sensory
information. Recent neurophysiological experiments using mag-
netoencephalography (MEG), electroencephalography (EEG; e.g.
Abrams et al., 2008), as well as concurrent EEG and fMRI (e.g.
Giraud et al., 2007) have investigated some of these conjectures.

In a first MEG study aiming to link the modulation spectrum of
speech to neural signals (Luo and Poeppel, 2007), participants were
presented with naturally spoken sentences. An analysis based on
inter-trial coherence of single trials revealed that the phase pattern
of neural responses at a specific time scale tracked the stimu-
lus dynamics. In particular, the phase of the theta band response
showed both the requisite sensitivity and specificity to be inter-
preted as a neural marker for tracking details of the input signal;
moreover, this phase pattern correlated closely with speech intel-
ligibility. Given a standard interpretation of the theta band (∼3-
8 Hz), it was suggested that an incoming natural speech stream is
segmented and processed on the basis of a ∼200 ms sliding tempo-
ral window. In the context of speech, that would mean a parsing of
the acoustic signal at roughly a syllabic rate. In a follow-up study
using audiovisual movie clips, this data pattern was replicated and
extended to the multi-sensory case (Luo et al., 2010). Both of these
experimental results, building on coherence analyses of the neural
data, support the important role that low modulation frequency
brain information plays in perceptual analysis of speech and other
auditory signals.

However, how tightly these neurophysiological responses link
to intelligibility per se and to the representation of speech units
(versus features in the acoustics of speech) remains open and con-
troversial (e.g. Howard and Poeppel, 2010). For example, there
may exist attributes in the input signal that could be a prerequi-
site for recognition – although they are not in any obvious way
related to traditional component features of speech. In order to
obtain a more thorough perspective on the electrophysiological
brain responses underlying speech recognition, in particular in
the context of multi-time resolution hypotheses and the discon-
tinuous sampling of information, it is necessary to pursue at least
two further lines of investigation (among many other important
perspectives). First, it will be helpful to investigate non-speech
signals with respect to these kinds of neural responses. Insofar
as acoustics play a critical role, the robust and well-replicated
neural response profiles tested with speech will be able to be
investigated with analytic signals in which the acoustic structure is
fully controlled. Secondly, in the first set of experiments, the high
modulation frequency/short timescale responses have not been
consistently observed (Luo and Poeppel, 2007; Howard and Poep-
pel, 2010; Luo et al., 2010). Whereas low modulation frequency
information is highly robust, easy to replicate, and attested in other
techniques as well (e.g., Abrams et al., 2008; for the high sensitiv-
ity of human auditory cortex to low modulation frequencies, see
Wang et al., 2011; Overath et al., 2012), the putative responses asso-
ciated with rapid sampling, analysis, and decoding, in the gamma
band spectral domain, have been more elusive. One possible rea-
son for not finding short temporal window processing may lie
in the behavioral tasks employed in those studies (namely none),

such that coarse syllabic-level analysis was enough to achieve a
general perception of the sentence (cf. Shannon et al., 1995). A
second reason may lie in the acoustic structure of the materials
themselves, in which the contribution of rapidly modulated infor-
mation in the gamma bands was not highlighted in a way to elicit
the response in a differential manner.

In the MEG experiment described here, listeners were presented
with non-speech signals with varied temporal structures, and the
recorded MEG responses were analyzed using a phase tracking
coherence method, as employed in our previous studies, to exam-
ine the neuronal segmentation of auditory signals at different time
scales. Three hypotheses were investigated. First, does the neuronal
phase response lock to and follow stimulus dynamics in a way sim-
ilar to speech signals? Although there exists tantalizing evidence
for such time scales from fMRI and MEG during exposure to sim-
ilar non-speech materials (Giraud et al., 2000; Boemio et al., 2005;
Overath et al., 2008; Ding and Simon, 2009), it is not clearly estab-
lished that the auditory system will lock to these rates in a similar
manner when investigated with MEG. Second, if any auditory edge
(i.e., occurring at any time scale) is sufficient to cause a phase reset-
ting – that is to say acoustic discontinuities or transients occurring
on any timescale are the triggering events for phase resetting –
then the three stimulus types employed here should elicit a similar
response profile – and the notion of different temporal windows
loses its appeal. Alternatively, if acoustic discontinuities or edges
reveal a grouping into different bands of neural response frequen-
cies or oscillations, such a result would offer support for temporal
windows that do not sample the space uniformly. Third, it has been
suggested in previous work using various non-invasive approaches
that there is an asymmetry with respect to the temporal sampling
properties. These non-speech signals may further elucidate poten-
tial functional asymmetries of this type and provide potential
explanations for why certain domains of perceptual experience
appear to be lateralized in human auditory cortex. Anticipating
what we describe here, the results show that stimuli with matching
temporal structure to these two timescales (∼25 and ∼200 ms)
successfully elicited reliable phase tracking at the corresponding
cortical rhythms, whereas stimuli without the matching temporal
property did not. Such observations are more consistent with the
model that there exist non-overlapping sampling rates in auditory
cortex.

MATERIALS AND METHODS
PARTICIPANTS
Twelve right-handed subjects (four female), all from the Univer-
sity of Maryland College Park undergraduate and graduate stu-
dent population, with normal hearing, provided written informed
consent before participating in the experiment.

STIMULI
Figure 1 illustrates the experimental materials. Three types of
5-s duration auditory stimuli were created by concatenating indi-
vidual frequency-modulated segments with mean segment dura-
tion of 25, 80, and 200 ms, respectively (sampling frequency of
44.1 kHz). The segment duration values were selected to be well
aligned with low gamma, high alpha, and theta band frequen-
cies of the neuronal oscillations potentially subserving the cortical
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FIGURE 1 | Non-speech stimuli with varying temporal structure.

Upper and middle panels: spectrograms and spectra of the three
stimulus types with different temporal segment length (mean 25, 80,

and 200 ms) and one noise control stimulus. Lower panel: segment
length distribution for the three stimuli (blue: ∼25 ms; black: ∼80 ms;
red: ∼200 ms).

analysis of such input signals. For each of the individual frequency-
modulated segments, the starting frequency and ending frequency
was randomly drawn from a uniform distribution of 1000–3,000
and 1,500–4,500 Hz, respectively, so that all of the individual
frequency-modulated segments could be swept up or down, or
kept flat. For each of the three stimuli with different mean seg-
ment durations (25, 80, 200 ms), the durations of each segment
within the sound were drawn from a Gaussian distribution with
a standard deviation equal to 0.2 of the corresponding mean seg-
ment duration (as shown graphically at the bottom of Figure 1).
A single 5-s control white noise stimulus was constructed, with
the power above 5,000 Hz filtered out. Each of these four stim-
uli were presented 21 times, pseudorandomly interleaved across
conditions, at a comfortable loudness level (∼70 dB SPL), and
subjects were instructed to passively listen to the stimuli and
keep alert.

MEG DATA ACQUISITION
The MEG data were acquired in the Cognitive Neuroscience of
Language Laboratory at the University of Maryland College Park.
Neuromagnetic signals were recorded continuously with a 157
channel whole-head MEG system (5 cm baseline axial gradiome-
ter SQUID-based sensors; KIT, Kanazawa, Japan) in a magneti-
cally shielded room, using a sampling rate of 1000 Hz, a 60 Hz

notch filter, and an online 100 Hz analog low-pass filter, with no
high-pass filtering (recording bandwidth DC-100 Hz).

DATA ANALYSIS
In order to inspect the temporal waveforms, using a canonical
event-related field analysis, raw MEG data, after noise reduction,
were first smoothed using a 20-point moving average, epoched
from −0.5 to 5s relative to sound stimulus onset, and then baseline
corrected (0.5 s prestimulus interval). To extract auditory corti-
cal responses, we selected 20 channels with a maximum M100
response elicited by a 1-kHz pure tone presented to each partici-
pant in a pretest. We then calculated the root mean square of the
MEG responses across the 20 auditory channels per subject for the
four types of auditory stimuli (∼25, ∼80, ∼200 ms, and noise) to
visualize the aggregate auditory response across subjects.

The main data analysis builds on the inter-trial phase coherence
methods developed in Luo and Poeppel (2007), Luo et al. (2010),
and Howard and Poeppel (2010). The spectrogram of each sin-
gle trial response (21 trials per stimulus) was calculated using
a 500 ms time window in steps of 100 ms for each of the 157
MEG recording channels, and the calculated phase and power as
a function of frequency and time were stored for further analysis.
The “cross-trial phase coherence (Cphase)” and “cross-trial power
coherence (Cpower)” as a function of frequency, which quantifies
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the reliability of phase and power temporal patterns across trials
for each specific stimulus condition in each frequency band, were
calculated as:
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where θnij and Anij are the phase and amplitude at the frequency
bin i and temporal bin j in trial n, respectively. Cphase is in the
range of [0 1]. Note that larger Cphase value corresponds to strong
cross-trial phase coherence, indicating that the sound stimuli with
specific temporal structure elicit highly replicable phase pattern
responses in each presentation trial, in other words, suggesting
a reliable temporal segmentation of incoming sound. The corre-
sponding frequency range (frequency bin i) in the Cphase value
represents the approximate window length of the temporal seg-
mentation process. By comparing the Cphase values at certain
frequency bin (for example, theta band, ∼5 Hz) across differ-
ent sound stimuli with varying temporal structures (∼25, ∼80,
∼200 ms, and noise), we can examine which stimuli elicit the most
reliable temporal segmentation in terms of the ∼200 ms window
length (the corresponding period of ∼5 Hz).

We subsequently focused only on the Cphase and Cpower
within three frequency ranges of interest (theta: 4∼8 Hz; alpha:
10∼14 Hz; low gamma: 38∼42 Hz), which were chosen based on
the corresponding mean temporal segment durations of the three
stimulus types (200, 80, 25 ms). For each subject, the average
Cphase and Cpower values within each of the three frequency
ranges were calculated for all four stimulus conditions (200, 80,
25 ms, noise) and for all 157 channels, resulting in a 157 × 3 × 4
(channel × frequency × stimulus) dataset. The “phase coherence
distribution maps” in each of the three frequency ranges and for
each of the four stimulus conditions can then be constructed in
terms of the corresponding Cphase values of all 157 channels, and
therefore there were 12 (3 × 4) phase coherence distribution maps
for each subject.

To get a rough estimate of large-scale brain activity at each
of the three frequencies of interest, and for all the four stimu-
lus conditions, we first averaged the performance (Cphase and
Cpower separately) of all 157 MEG channels in each subject, and
compared the mean values across the four stimulus conditions
and three frequency ranges. Next, because of the apparent differ-
ent distribution map for the different frequency ranges, we did a
more detailed analysis for each frequency of interest, by selecting
50 channels for the three frequency ranges separately. For each
subject, we averaged the “phase coherence distribution maps” for
the same frequency range across all the four stimuli conditions, to
eliminate any possible channel selection bias introduced by certain
stimulus, and then selected the 50 channels with maximum values

to stand for the represented channels for that frequency range. For
each of the three frequency of interest in each subject, the per-
formance of the selected 50 channels was then compared across
stimulus conditions.

To characterize the Cphase distribution map, we calculated the
Cphase values within each of the three frequency ranges of interest
(theta: 4∼8 Hz; alpha: 10∼14 Hz; low gamma: 38∼42 Hz) for all
157 channels and for all four stimulus conditions (200, 80, 25 ms,
noise), and examined the corresponding Cphase distribution map
for different frequency bands under different stimulus types. Fur-
thermore, to investigate the lateralization of Cphase distribution,
for each of three frequency bands, we divided the 157 channels
into LH channels and RH channels, and averaged Cphase values
within same hemisphere channels, for each of the four stimulus
types, separately for each subject.

Finally, comparing different frequency ranges using spectrogram-
based analysis in terms of fixed time windows may introduce dif-
ferent sensitivities to the different temporal properties of responses
at different frequency ranges. For example, the employed 500 ms
time window in steps of 100 ms sliding length, although appro-
priate for theta and alpha band, may not optimally capture the
dynamics of phase and power response pattern in the gamma fre-
quency range. Given this concern, we also did a control analysis
in the gamma band (38∼42 Hz) using an induced wavelet transfer
method (Complex Gaussian Wavelet) to determine the cross-trial
phase and power coherence for each stimulus condition across all
157 channels.

RESULTS
We hypothesize that the two putative cortical temporal integration
windows are neurally manifested in the phase pattern of the corre-
sponding cortical rhythms. Moreover, a phase tracking mechanism
might be closely related to the two intrinsic temporal windows and
thus would be difficult to elicit at other oscillation frequencies.
If two such intrinsic cortical temporal windows – manifested as
oscillations – exist (Poeppel, 2003; Giraud et al., 2007; Giraud and
Poeppel, 2012a,b), the stimuli with mean segment lengths of 25
and 200 ms should elicit reliable phase tracking at the correspond-
ing cortical rhythms (∼40 and ∼5 Hz, respectively), because of
the close match between the stimulus temporal structure and the
intrinsic cortical temporal window. In contrast, the stimuli with
∼80 ms segment structure should, by extension, not elicit reliable
phase tracking at the corresponding rhythms (∼12.5 Hz). Put dif-
ferently, if all edges/acoustic discontinuities of a stimulus train are
“equal,” the response profile was predicted to be uniform for all
three stimulus types; however, if there are preferences for certain
temporal windows, then not all acoustic edges should be effective,
only those edges aligning with the privileged windows (e.g., theta,
gamma).

EVENT-RELATED MEG AUDITORY RESPONSE
As illustrated in upper panel of Figure 2, all four stimuli (∼25,
∼80, ∼200 ms, and noise) elicited typical auditory responses with
a peak latency of around 150 ms, and then remained at a sustained
level during the sound presentation. Note that these waveforms
represent aggregate responses (RMS, root mean square) across
20 auditory channels per subject and thus are all positive values.
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The contour map (Figure 2, lower right panel) corresponding
to the MEG response pattern at ∼150 ms window after sound
onset, shows a relatively typical auditory topography. The evoked
response around 150 ms after sound onset did not show any signif-
icant difference across the four types of stimuli [repeated measures
one-way ANOVA, F(3, 33) = 2.32, p = 0.093].

Two temporally structured stimuli elicited stronger cross-trial
phase coherence at corresponding frequency bands.

CROSS-TRIAL PHASE COHERENCE
The cross-trial phase coherence was calculated at the three
stimulus-relevant frequency ranges (low gamma: 38∼42 Hz;
alpha: 10∼14 Hz; theta: 4∼8 Hz) corresponding to the three stim-
uli (∼25, ∼80, and ∼200 ms). As a control, a noise stimulus
containing no apparent temporal structure was used. As illus-
trated in second and third row panels of Figure 3, the results
show that phase tracking at the time scales investigated was not
accompanied by power tracking (Figure 3, middle panels) or
stimulus-elicited power increase in the corresponding frequency
ranges (Figure 3, lower panels), arguing against an “acoustics-

only” interpretation. In contrast, compelling effects are observed
in the phase patterns. As shown in the upper row of Figure 3, the
results show phase tracking for both 50 selected auditory channels
[two-way repeated measures ANOVA, stimulus × frequency inter-
action, F(6, 66 = 5.93, p < 0.001], and all 157 recorded channels
F(6, 66) = 3.42, p = 0.005. Specifically, in the gamma frequency
range, the ∼25 ms stimulus (blue) elicited the most reliable phase
pattern among the four stimulus conditions. In the theta frequency
range, the ∼200 ms stimulus (red) elicited the most reliable phase
pattern. However, the ∼80 ms stimulus (green) that has matching
temporal structure to the alpha frequency range (∼12.5 Hz) did
not drive phase tracking efficiently. In addition, the noise stimulus
that does not contain any explicit temporal structure did not drive
phase tracking in any of the three frequency ranges tested here.

Comparing different frequency ranges using spectrogram-
based analyses in terms of fixed time windows may introduce
differential sensitivities to the different temporal properties of
responses at different frequency ranges. For example, the employed
500 ms time window, in steps of 100 ms sliding length, although
appropriate for the theta and alpha bands, may not optimally

FIGURE 2 | Upper panel: grand average (root mean square,

RMS) of MEG temporal waveforms in auditory channels (20

auditory channels per subject) elicited by the four types of

sounds (black bar). Time 0 indicates the onset of sound stimuli.

Lower panel, left: RMS of MEG auditory response waveform in the
first 200 ms time window. Lower panel, right: Grand average of
corresponding contour maps in the window of ∼150 ms (dotted
rectangle) after sound onset.
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FIGURE 3 | Cross-trial phase and power coherence. Grand average of
cross-trial phase and power coherence for all 157 MEG channels (left column)
and for 50 frequency-dependent selected channels (right column). Upper
panel: Cross-trial phase coherence at three different frequency bands
(gamma: 38–42 Hz, alpha: 10–14 Hz, and theta: 4–6 Hz) for each of the four
stimulus types (mean segment lengths of 25, 80, 200 ms, and noise). For the

gamma and theta frequency bands, the matching stimulus (25 and 200 ms
stimulus, respectively) elicits the strongest cross-trial phase coherence.
Middle panel: cross-trial power coherence at three different frequency bands
for each of the four stimulus types. Lower panel: power before (baseline) and
after (signal) stimulus presentation at different frequency bands. Error bars
represents standard error across 12 subjects.

capture the dynamics of phase and power response patterns in
gamma frequency. Given this concern, we performed a control
analysis in the gamma band (38∼42 Hz) using the induced wavelet
transfer method (Complex Gaussian Wavelet), to determine the
cross-trial phase and power coherence for each stimulus condi-
tion across all 157 channels. As was the case for the other analysis
approach, stimuli with ∼25 ms mean segment duration elicited the
strongest cross-trial phase coherence in the gamma band among
the four stimulus conditions (one-way repeated ANOVA, F(3,
33) = 3.22, p = 0.035).

CROSS-TRIAL PHASE COHERENCE (CPHASE) DISTRIBUTION MAP
We characterized the cortical spatial distribution of the two tem-
poral scale/phase patterns by studying the “Cphase distribution
map” in the frequency ranges of interest. As illustrated in Figure 4,
the theta phase tracking, or the ∼200 ms time scale, mainly
reflected an auditory cortical pattern (cf. Luo and Poeppel, 2007;
Howard and Poeppel, 2010). A trend toward rightward lateral-
ization for all of stimulus types with different temporal structure

(Figure 4, lower panel) was observed, in which the matching stim-
ulus (200 ms) elicited the strongest Cphase values. Gamma phase
tracking, on the other hand, shows a more distributed bilateral
pattern (Figure 4, upper row) and the matching stimulus (25 ms)
resulted in the strongest Cphase topography among all stimulus
types. Since the alpha rhythm did not show improved phase track-
ing with the corresponding stimulus (Figure 3), its phase tracking
topography is much weaker than the other two distribution maps.

RIGHT HEMISPHERE LATERALIZATION OF THETA BAND CPHASE
DISTRIBUTION MAP
To characterize the potential hemispheric lateralization of the
Cphase distribution maps, we compared the Cphase values
between left hemisphere (LH) and right hemisphere (RH) chan-
nels, for each of the four stimuli. As illustrated in Figure 5, gamma
phase tracking shows no significant difference in Cphase between
LH and RH (Figure 5, upper panel, left) for the matching ∼25 ms
stimulus (paired t -test, df = 11, p = 0.79), consistent with the cor-
responding bilateral Cphase distribution map. Interestingly, theta
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FIGURE 4 | Cross-trial phase coherence (Cphase) distribution maps.

Grand average of Cphase distribution maps for gamma (upper panels), alpha
(middle panels), and theta (lower panels) for the four stimulus types (25, 80,
200 ms, noise) from left to right. All maps are plotted on the same scale from

0.03 to 0.07 (green to red). Note that for gamma and theta bands (upper and
lower rows), the ∼25 and the ∼200 ms stimuli respectively elicited strongest
phase coherence among all four stimulus conditions, whereas for the alpha
band (middle row), the ∼80 ms stimulus shows no notable difference.

phase tracking shows significantly larger Cphase values in RH
than in LH channels (Figure 5, lower panel) for the ∼200 ms
stimulus (paired one-tailed t -test, df = 11, p = 0.04). This finding
is reflected in the corresponding theta Cphase distribution map,
indicating a clear auditory cortex origin with RH lateralization.

The results are consistent with previous data using fMRI and
MEG (Boemio et al., 2005; Luo and Poeppel, 2007) and reminis-
cent of patterns with similar lateralization (Giraud et al., 2007;
Abrams et al., 2008). The weak alpha phase tracking did not reveal
hemispheric lateralization effects (Figure 5, middle panel) for the
matching ∼80 ms stimuli (paired t -test, df = 11, p = 0.94).

DISCUSSION
In this MEG experiment, we deployed non-speech stimuli with
specified temporal structures to explore the neural correlates of
processing over the different time scales. Three related hypotheses
were investigated. First, we found that our analytic non-speech
stimuli elicited neuronal phase tracking in the same manner as
has been demonstrated repeatedly for speech signals. Second, we
determined that temporal structure is neurally reflected in a non-
uniform manner, in that neuronal oscillations phase-lock (and
“sample”) auditory stimuli over distinct time scales (∼25 and
∼200 ms). Third, the two cortical temporal scales – a longer one
(associated preferentially with RH mechanisms) and a shorter one
(represented more bilaterally) – undergo pure phase regularization
and resetting to process and track incoming stimulus temporal
transients, in an asymmetric manner.

The present results are consistent with our previous findings
(Boemio et al., 2005; Luo and Poeppel, 2007) and support some
current conjectures about functional anatomy and lateralization
(Poeppel, 2003; Giraud et al., 2007; Hickok and Poeppel, 2007;

Giraud and Poeppel, 2012a,b). Importantly, the data presented
here reveal a potential mechanism underlying multi-time resolu-
tion processing: the sliding and resetting of intrinsic temporal win-
dows. We provide a way to extract appropriate temporal processing
information from the recorded brain signals that is also naturally
linked to recent findings in neuronal interactions through phase
synchronization (Womelsdorf et al., 2007).

Influential psychophysical research has shown that modulation
frequencies below approximately 16 Hz suffice to yield intelligible
speech, even when relatively few spectral bands are used (that is
to say, the spectral composition of the stimulus is impoverished),
and even when the carrier is noise rather than the fine struc-
ture associated with the original speech stimulus (Drullman et al.,
1994a,b; Shannon et al., 1995; Kanedera et al., 1999; Elliott and
Theunissen, 2009). Both behavioral and neurobiological imaging
data (Ahissar et al., 2001; Luo and Poeppel, 2007) demonstrate
compellingly that the integrity of the low modulation frequency
speech envelope is required for successful intelligibility. More col-
loquially, the rate of syllables is a critical determinant of spoken
language recognition. Zion-Golumbic et al. (in press) provide a
recent perspective on the role of the speech envelope for parsing
the signal and outline the role in attentional processes as well as for
predictive processing, facilitated at this longer timescale. Ghitza
(2011) describes a computational model that outlines the steps
by which these rates lead to the parsing and decoding of speech
input.

In complementary fashion to the delta–theta, longer timescale
phenomena, it is clear that the rapidly modulated information
contained in speech signals is important for decoding the input.
Acoustic features such as burst duration, voice onset time, fre-
quency excursion of formants, and other short duration signal
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FIGURE 5 | Cphase hemispheric lateralization. Grand average of Cphase
across left hemisphere (LH) channels and right hemisphere (RH) channels at
different frequency bands for four different stimulus types. Error bars
represents standard error across 12 subjects. Right contour maps: Grand

average of “Cphase distribution maps” in the gamma (upper), alpha (middle),
and theta (lower) frequency bands for the corresponding matching stimulus
(25, 80, and 200 ms respectively). All maps are plotted on the same scale
(0.03–0.07 green to red).

attributes – often infelicitously summarized as the fine structure –
play a critical role in the correct analysis of naturalistic spo-
ken language. The seminal work of Fletcher (1953), Liberman
(1996), Stevens (2000), and many others underscores the pro-
found relevance of short duration, high modulation frequency
acoustic cues.

Although a clear oversimplification, one useful subdivision is,
therefore, between information carried at a time scale of roughly
150–300 ms (corresponding, roughly, to syllable duration) and
information at a time scale in the 10 s of milliseconds (corre-
sponding, roughly, to local short duration acoustic features). Both

sources of information are likely crucial for recognition in ecologi-
cal contexts. Indeed, recent models of speech perception argue that
the syllabic scale, low temporal modulation frequency information
may serve to parse the signal into manageable chunks whereas the
shorter duration and higher modulation frequency information is
likely used to decode the signal (Ghitza, 2011; Giraud and Poep-
pel, 2012a,b). Interestingly, such dual discrete temporal processing
has also been suggested in visual perception (VanRullen and Koch,
2003; Holcombe,2009). But both types of data are necessary for the
brain to link the incoming acoustic information to stored mental
representations, or, in short, words.
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If such models are on the right track, evidence for phase track-
ing at both rates is necessary. In two of our recent MEG studies
linking the modulation spectrum of speech to neural oscillations
(Luo and Poeppel, 2007; Luo et al., 2010), the results, building
on coherence analyses of the neural data, support the impor-
tant role that low modulation frequency brain information plays
in perceptual analysis of speech signals. A further experiment
with naturalistic speech, now using a rather difference approach,
namely mutual information analyses, provided more data for the
generalization that the delta and theta bands in the neurophys-
iological response to speech play a privileged role (Cogan and
Poeppel, 2011). Critically, there is consistent evidence for the posi-
tion that intact information at these time scales is essential for
successful intelligibility (Ahissar et al., 2001; Luo and Poeppel,
2007).

However, based on these data, some critical questions remained
unanswered. Because in these studies few effects were visible in the
gamma range, it has not been clear to what extent phase coher-
ence analyses for speech would reflect higher-frequency, gamma
band effects. At least for non-speech signals with the requisite
structure, we can answer that question in the affirmative. Second,
it had not been established to what extent the observed effects
reflected speech-driven or acoustics-driven effects. Some data sug-
gest the latter interpretation. One experiment, using speech as

stimuli, highlights the issue: if listeners are presented with back-
ward speech (with only a medium amount of exposure and no
demonstrable intelligibility), the phase pattern of the theta band
response still shows the characteristic response profile driven by
theta phase (Howard and Poeppel, 2010). This finding argues
that what the neuronal phase pattern is tracking does depend
on acoustics of speech but does not depend on comprehension
per se. The “onsets of reversed syllables” may be the causal fac-
tor in the acoustics. However, on a purely acoustic view, many
(or any) auditory edges should lead to the response profile typi-
cally observed in such phase tracking experiments. What we find
is that auditory edges, or acoustic discontinuities yielding phase
resetting, are critical precursors. But, crucially, we show that not all
edges are created equal. Information, and in this case edges distrib-
uted within two distinct time windows, are privileged, suggesting
that the auditory worlds is “sampled” using two discontinuous
temporal integration windows.
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