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Ordinal understanding is involved in understanding social hierarchies, series of actions,
and everyday events. Moreover, an appreciation of numerical order is critical to under-
standing number at a highly abstract, conceptual level. In this paper, we review findings
concerning the development and expression of ordinal numerical knowledge in prever-
bal human infants in light of literature about the same cognitive abilities in non-human
animals. We attempt to reconcile seemingly contradictory evidence, provide new direc-
tions for prospective research, and evaluate the shared basis of ordinal knowledge among
non-verbal organisms. Our review of the research leads us to conclude that both infants
and non-human animals are adapted to respond to monotonic progressions in numerical
order, consonant with mathematical definitions of numerical order. Further, we suggest that
patterns in the way that infants and non-human animals process numerical order can be
accounted for by changes across development, the conditions under which representations
are generated, or both.
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INTRODUCTION
Mathematicians Frege (1879/1967) and Russell (1903/1996)
defined number as the class of all classes that shows a one-to-one
correspondence with a given class in an attempt to cast number
in terms of logic. Piaget (1941/1965) described number as the
property of a set that remains invariant when other perceptual
characteristics (e.g., color, size, and density) of the set change.
What both definitions mean is that “oneness” is the class of all
singletons, “twoness” the class of all doubles, and so forth. For
example, “threeness” characterizes the number of sides of a trian-
gle, leaves of a shamrock, and notes in a musical triplet. Describing
number in this way indicates that number is an abstraction – a
characteristic based on a single property of stimuli independent
of other properties – that conceptualizes a collection of discrete
things.

The aforementioned definitions of number rest on the obser-
vation that the natural world is filled with things that exist in
aggregates, collections, or sets (Mill, 1859; Conant, 1896). Car-
dinality answers questions about “how many” things are in a
collection, illustrating a set’s size. We know that infants as young as
6 months of age appreciate differences in the size of large sets when
there is at least 1:2 magnitude of difference between sets (e.g., 4 vs.
8, 8 vs. 16, 7 vs. 21, and 16 vs. 32; Xu and Spelke, 2000; Lipton and
Spelke, 2003, 2004; Xu, 2003; Wood and Spelke, 2005; Xu et al.,
2005; Cordes and Brannon, 2008a). Additionally, infants appreci-
ate differences in the size of small sets (e.g., 1 vs. 2 and 2 vs. 3), but
in contrast to large set discriminations, their ability to discrimi-
nate changes in the cardinality of small sets does not appear to be
ratio-dependent (Feigenson, 2005; Kobayashi et al., 2005; Cordes
and Brannon, 2009b). Furthermore, knowledge about numerical
cardinality is not restricted to humans. Non-human animals like
primates, birds, and fish discriminate between sets based on the

number of things that each collection contains (Emmerton, 1998;
Jordan and Brannon, 2006b; Jordan et al., 2008b; Tomonaga, 2008;
Merritt et al., 2009; Agrillo et al., 2010).

Collections possess only one size, but they can be arranged in
a variety of ways. The idea of arranging collections such that rela-
tions of order stand between the cardinality of sets concerns ordi-
nality1. Ordinality answers questions about “which one” the set
is relative to other sets. To recognize numerical ordinal relations,
an organism first must detect differences between the cardinality
of sets. Thus, cardinal and ordinal understandings about number
are intertwined. The ability to discriminate numerical cardinality,
however, does not imply an ordinal understanding of number. In
other words, being able to determine that various sets contain a
different number of things does not mean that one knows that one
set contains more or less items than another set.

Ordinality is an important aspect of numerical cognition. For
one, it concerns mathematical ideas. In mathematics, the inequali-
ties “greater than” and “less than” are example relations possessing
the four properties that must hold for order to exist2. The formal
counting system (counting 1, 2, 3, 4, etc.) is based on ordering

1There is another aspect of ordinality in which the quantitative attribute defining
order is time, not cardinality. Serial order involves the position or place of a single
thing within a sequence. For example, one would say that the black horse crossed
the finish line first, the brown horse second, and the white horse third. Indeed, first,
second, third, and so forth are called ordinal numbers in mathematics.
2For an order relation to exist, four properties must stand (Russell, 1903/1996;
Stevens, 1951): (1) irreflexivity (a 6= b, a 6= c, etc.), which means that no term is
related to itself; (2) asymmetry, which means that a series is unidirectional (if
a→ b then it does not hold that b→ a); (3) connectedness, which indicates that
the relation holds between all pairs in the series (if a→ b→ c→ d then a→ b,
a→ c, a→ d, b→ c, b→ d, and c→ d); and (4) transitivity, which relates to the
relationship that exists between trios in the series (if b→ c and c→ d then b→ d).
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successive sets of things so that any set paired with its nearest
neighbor leaves one member left over (Stevens, 1951). Further-
more, the ability to numerically order sets of things is a basic
skill linked to the mathematical skills of preschoolers, adoles-
cents, and adults (Halberda et al., 2008; Libertus et al., 2011;
Lyons and Beilock, 2011). Ordinality is also important because
a fully developed concept of number involves integrated cardi-
nal and ordinal knowledge that holds across sensory modalities
and research methods and allows organisms to perform math-
like operations. The aforementioned idea comes from the various
ways that researchers attempt to define a non-verbal concept of
number. Piaget (1941/1965) characterized the development of a
number concept as the synthesis of a child’s understanding about
the cardinal and ordinal aspects of number. Using the language
of mathematics, Gallistel, 1989, 1993 and Gallistel and Gelman
(1992) wrote that a concept of number is demonstrated when
one can perform operations that are isomorphic to arithmetic and
mathematical relations (e.g., >, <,=, and 6=). Other authors focus
on transfer of learning across modalities and methods (Davis and
Pérusse, 1988; Dehaene, 1997). For these reasons, investigating
the extent to which non-verbal organisms, both human infants
and non-human animals, appreciate numerical order is impor-
tant for assessing the richness of their conceptual knowledge about
number.

The goal of this paper is to integrate what we know about how
preverbal human infants process and represent numerical order
with literature about the same abilities in non-human animals3.

Our review revealed that both infants and non-human animals
are adapted to respond to monotonic progressions in numerical
order and positive mappings between number and other quan-
tities. There are, however, notable differences in the way that
human and non-human species process numerical order. These
differences could be accounted for by development, the condi-
tions under which representations were generated, or both of
the aforementioned. Our comparative examination among non-
verbal organisms provides information about when an apprecia-
tion of numerical order emerged in the phylogenetic scale, how it
increases in complexity with development, and the extent to which
it is independent of language.

NON-VERBAL SYSTEMS OF QUANTIFICATION
Before reviewing the literature, it is important to characterize
the cognitive mechanisms putatively responsible for process-
ing and representing the cardinality. Evidence from both non-
human animals and humans throughout the life span supports
the existence of two distinct systems for representing quantity:
an analog-magnitude system and an object-based individuation
system. Given it would be impossible to identify order among
quantities without the ability to track cardinality, one or both
systems are necessarily involved in the processing of numerical
order. In reviewing the literature, we aim to take a comparative
approach to determining the level of involvement of these two

3Note that we reviewed only evidence gathered from non-language-trained ani-
mals. We did so because researchers theorize that language promotes a kind of
flexible thinking that leads to the development of higher levels of conceptualization
(Kotovsky and Gentner, 1996; Hauser and Carey, 1998; Fabre-Thorpe, 2001).

systems in developmentally and evolutionarily early appreciations
of numerical ordering.

The most prominent system for representing discrete quantity
is the analog-magnitude one. The analog-magnitude mechanism
supports continuity in the mode of processing because the system
handles both large and small values (Gallistel and Gelman, 2000;
Cordes et al., 2001). In analog-magnitude systems, discrete quan-
tities are encoded as continuous noisy magnitudes such that an
accumulator fills up in nearly equal increments for each entity
counted (Gibbon, 1977; Meck and Church, 1983; Church and
Meck, 1984; Gibbon and Meck, 1984). There is a scalar property to
the noise in the accumulator such that variability in how much the
accumulator fills up increases proportionally to the mean value in
the accumulator. This results in discriminations becoming less pre-
cise as the quantity increases. When detecting differences between
quantities, the measure of closeness between a current value and a
value stored in memory is the ratio between the values.

An accumulator with scalar noise coupled with ratio-based
comparisons is consonant with the observation that quantity
discriminations obey Weber’s law. Specifically, that the discrim-
inability of two objective values is dependent up on their ratio,
not their absolute difference. In particular, if values are encoded
and processed as noisy magnitudes then (a) the closer two values
are, the harder it is (and longer it takes) to determine which is the
larger or smaller one and (b) the larger two values are, the harder it
is (and longer it takes) to determine which is the larger or smaller
one. These response patterns have been named the numerical dis-
tance and size effects. Together the aforementioned effects create
the numerical ratio effect, the finding that discrimination ability
declines (and response latency increases) when the numerical ratio
between compared values approach a value of one (Dehaene et al.,
1998). In summary, the analog-magnitude system generates fuzzy,
approximate representations of both small and large quantities.

The second system proposed to account for how non-verbal
organisms processes and represent quantitative information is
based on precise or exact individuation of objects (Simon, 1997;
Leslie et al., 1998; Carey and Xu, 2001; Hyde and Wood, 2011).
Object-based individuation mechanisms draw upon theories of
visual object attention (FINST mechanism, Pylyshyn, 1989; object-
file model, Kahneman et al., 1992) and parallel individuation and
working memory storage for objects (Vogel et al., 2001; Feigen-
son, 2008). The idea is that temporary placeholders (object-files,
indexes, or unique mental symbols) are assigned in parallel to
each relevant object perceived by the visual system when organ-
isms scan an array. Object-based individuation systems attempt to
place currently perceived placeholders in one-to-one correspon-
dence with the placeholders from preceding scenes that are in
working memory.

In general, infants can hold an exact representation of no more
than three items in working memory. This limit is based on evi-
dence that infants can discriminate between small sets (Jordan and
Brannon, 2006a), but not discriminate small from large sets (Xu,
2003; see also Cordes and Brannon, 2008b; Cordes and Brannon,
2009a). For example, infants can resolve manual search problems
with no more than three items. When 14-month-olds watch an
experimenter place three balls in an opaque box and then remove
two balls, they search for the third ball in the box. When four balls
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are placed in the box and two balls are removed, infants do not
search for balls remaining in the box (Feigenson and Carey, 2003;
Feigenson and Halberda, 2004). In contrast, the limit for non-
human animals and human adults is slightly higher. Based on
empirical evidence about the limits of parallel individualization
and working memory capacity, human adults and non-human
animals can hold an exact representation of four or five items in
working memory (Feigenson, 2008; Wood et al., 2008). Object-
based individuation systems, thus, support discontinuity in the
mode of quantitative processing. The number of objects that can
be simultaneously tracked or held in working memory is limited
so the processing of large values must be left to a secondary system
(i.e., the analog-magnitude system).

ORDINAL BASIS OF RELATIVE QUANTITY JUDGMENT
Humans and non-human animals have access to two distinct sys-
tems for representing cardinality, but how do they make ordinal
judgments about these representations? Humans and non-human
animals encounter situations in their daily lives to which the use
of relative quantitative information would be advantageous (Gal-
listel, 1989; Hauser, 1997; Tomasello and Call, 1997; Wynn, 1998).
For example, infants may reach for the hand that contains the
greater number of cereal bits and animals may engage in aggressive
interactions only with conspecifics that possess a fewer num-
ber of allies than they do. Number, though, tends to vary with
other continuous quantities (e.g., surface area, density, volume,
brightness, inter-item distance, perimeter/contour length, etc.) in
systematic ways. For example, the amount of exposed Cheerio
surface increases as the number of Cheerios in your father’s hand
increases. Because a variety of quantitative information is available
in situations like these, an organism’s decisions may not be based
solely on number.

Number is naturally so tightly interwoven with other quanti-
tative properties that it is difficult for researchers to design exper-
imental tasks that isolate number. Early contributions to the lit-
erature, thus, focused on describing how preverbal human infants
and non-human animals processed ordinal relations about quan-
titative information without specifically isolating number’s con-
tribution using relative quantity judgments (RQJ). RQJ tasks rest
on an organism’s natural tendency to choose the greatest amount
of desirable things (or choose the least of undesirable things) if
they are capable of distinguishing between unequal quantities.
RQJ is described as the simplest quantitative skill because it does
not require the comprehension of precise or absolute number
(Davis and Pérusse, 1988). This means that reliably choosing the
most of something does not imply knowledge about how diver-
gent the collections are. RQJs are still an important ordinal skill
because they give animals the means to maximize food intake
(Davis, 1993). For these reasons, we look to the literature about
RQJ with discrete quantities to provide insight about the shared
basis of processing and representing ordinal relations that involve
number.

RELATIVE QUANTITY JUDGMENT IN INFANTS
Unlike non-human animals, human infants are not forced to for-
age for food for survival. Thus, very few studies have used RQJs
to investigate ordinal understandings in human infants. Evidence

from these studies, however, reveals that infants are capable of
making active responses to determine which of two locations con-
tains the greater amount of desirable items, whether they be toys
or food. These ordinal abilities, however, appear to be dictated by
the cardinal values of the sets under question.

An early experiment involving RQJ in infants showed that 14-
month-olds were able to identify the larger of two small sets of
non-visible discrete quantities (Sophian and Adams, 1987). Two
sets of toys (1 vs. 2) were shown to infants and then covered with
transparent boxes. Infants were then allowed to reach for the box
they desired. If the smaller set was chosen, contact with that set
was prevented and the infant was verbally encouraged to select
the larger set. The procedure was nearly identical during testing
except that opaque boxes were used to cover the two sets of toys and
insertion-deletion transformation problems (e.g., 1 vs. 1+ 1; and
3 vs. 2− 1) were also presented. Infants selected the set with the
most toys more often than chance, which demonstrated infants
were capable of making a judgment about the ordinal relation
between two small quantities, at least after training.

Two more recent studies demonstrated that infants sponta-
neously make RQJs between sequentially presented, non-visible
amounts as early as 10-months of age (Feigenson et al., 2002;
Feigenson and Carey, 2005). Ten- and 12-month-olds were shown
two sets of crackers that were sequentially placed into two opaque
buckets. The infants were then allowed to crawl toward the bucket
that they desired on a single-trial. By only presenting a single-trial,
researchers were able to evaluate spontaneous ordinal judgments
in which training played no part. Both 10- and 12-month-old
infants chose the set with the most crackers for comparisons that
were defined by small quantities (1 vs. 2 and 2 vs. 3), but not
for comparisons in which one set was small and the other large
(1 vs. 4, 2 vs. 4, 3 vs. 4, and 3 vs. 6). This was the case even
though the ratio between quantities was the same for certain small
and large quantity comparisons (e.g., for a 1:2 ratio: success with
1 vs. 2, but failure with 2 vs. 4 and 3 vs. 6). Successful ordinal
comparison of small sets (<4 items) and failure when sets span
the small/large size divide suggests that the infants relied on an
object-based representation system that was capable of storing up
to three items. When ordinal comparisons crossed the small/large
boundary, incompatibility between representations of small (via
object-based individuation) and large sets (via analog-magnitude)
resulted in a failure to choose the larger set.

It is important to note that there is also evidence that suggests
that infants use analog-magnitude representation when making
judgments about ordinal relations. Using procedures similar to
Feigenson et al. (2002), a study found that 10- to 12-month-olds
were equally successful at choosing the larger amount of discrete
food items with a set that was below (1 vs. 2) and above (5 vs.
10) the capacity limit predicted by object-based individuation
models (Van Marle and Wynn, 2011). This result suggests that
an approximate representation system is at work when respond-
ing to quantitative order. Because only one large comparison was
presented, we do not know if RQJs involving large sets display a
ratio signature during infancy. Additional experiments are needed
to provide information about the conditions under which prever-
bal infants use analog-magnitudes when making decisions about
the ordinal relations that stand between large quantities.
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In sum, both object-based and analog-magnitude representa-
tions appear to play a role in RQJs during infancy. When choosing
between two small sets, like 1 vs. 2 pieces of cereal, or choos-
ing between two large sets, like 5 vs. 10 pieces of cereal, infants as
young as 10-months of age successfully reach for, and crawl toward,
the largest discrete amount. When ordinal comparisons cross the
small/large set size boundary, like choosing between 1 vs. 4 pieces
of cereal, incompatibility between representations generated via
object-based individuation and analog-magnitude systems results
in infants failing to choose the larger discrete amount.

RELATIVE QUANTITY JUDGMENT IN NON-HUMAN ANIMALS
A similar small/large set size distinction holds with the sponta-
neous judgments that non-human animals make about the ordinal
relations between quantities. Set size limits in keeping with a
limited capacity, exact object-based individuation system were
reported in rhesus monkeys (Hauser et al., 2000), salamanders
(Uller et al., 2003), and horses (Uller and Lewis, 2009) who chose
between two unequal sets of food items. Specifically, even when the
ratio between quantity pairs was equivalent across the small/large
quantity divide: (a) rhesus monkeys selected the larger of two sets
when at least one set contained four or fewer items (e.g., 2 vs. 3, 3
vs. 4), but failed otherwise (e.g., 4 vs. 6, 4 vs. 8); (b) salamanders
selected the larger of two sets when both sets contained three or
fewer items (1 vs. 2 and 2 vs. 3), but failed otherwise (3 vs. 4 and
4 vs. 6); and (c) horses selected the larger of two sets when both
sets contained three or fewer items (1 vs. 2 and 2 vs. 3), but failed
otherwise (4 vs. 6)4. Together, these findings point to the conclu-
sion that non-human animals can store and represent from three
to four objects when making ordinal decisions about quantities.

Furthermore, the existence of a phylogenetically shared analog-
magnitude system for processing and representing ordinal rela-
tions is supported by many studies. When apes and monkeys are
allowed to choose between sets of unequal discrete food and non-
food items, their responses are dependent on the ratio between
quantities (Call, 2000; Beran and Beran, 2004; Anderson et al.,
2005, 2007; Suda and Call, 2005; VanMarle et al., 2006; Beran,
2007; Hanus and Call, 2007; Stevens et al., 2007; Addessi et al.,
2008; Beran et al., 2008a,b; Tomonaga, 2008; Evans et al., 2009;
Schmitt and Fischer, 2011).

Evidence of ratio-dependent RQJs is not limited to non-human
primates. African elephants (Perdue et al.,2012),crows and African
gray parrots (Zorina and Smirnova, 1996; Al Ain et al., 2009; Bogale
et al., 2011), coyotes and dogs (Ward and Smuts, 2007; Baker
et al., 2011), bears (Vonk and Beran, 2012), sea lions (Abram-
son et al., 2011), salamanders (Krusche et al., 2010), and swordtail
fish (Buckingham et al., 2007) show ratio-dependent ordinal judg-
ments consistent with the predictions of analog-magnitude repre-
sentation5. It is important to note that a set size signature was not
found in these studies. This was the case even though some subjects
did not receive an extensive number of training or test trials (Ward

4The data from one report (Irie-Sugimoto et al., 2009) suggest that Asian elephants
possess either an exact representation system capable of holding up to six items or a
relatively precise analog-magnitude system that is similar to adult humans (e.g., 7:8
ratio; Halberda and Feigenson, 2008).
5Ibid footnote 4, p. 8.

and Smuts, 2007; Krusche et al., 2010; Baker et al., 2011) and some
subjects were experimentally naïve (Anderson et al., 2005, 2007;
Buckingham et al., 2007; Ward and Smuts, 2007; Krusche et al.,
2010; Abramson et al., 2011; Bogale et al., 2011).

Additional evidence supporting the involvement of analog-
magnitudes in ordinal quantity judgments is found when non-
human animals make RQJs with non-visual sets. Male beetles
choose to spend more time inspecting substrates on which the
most female beetles had been located, but only when there was at
least a three-fold ratio of difference between compared sets (i.e.,
succeeded with 1 vs. 3 and 1 vs. 4; failed with 2 vs. 4 and 1 vs. 2;
Carazo et al., 2009). In addition, a non-human primate selected
the largest quantity after hearing discrete food items dropped into
two opaque containers (all pairs from 1 to 5) even when item
presentation time was unconfounded with quantity. The sub-
ject’s responses were affected by the ratio between quantities when
making auditory RQJs (Beran, 2012)6. Overall, these tasks reveal
ratio-dependence, even for small sets, which is indicative of the
modality-independence of ordinal understanding7.

Similar to the findings from RQJs with human infants, a non-
human animal study (Hunt et al., 2008) indirectly suggests that
two core representation systems are at play during RQJs. Con-
sonant with the predictions of object-based individuation, robins
chose the larger of two sets of food items when both sets contained
four or fewer items (1 vs. 2, 2 vs. 3, and 3 vs. 4), but not when both
sets contained four or more items (4 vs. 5, 4 vs. 6, 6 vs. 8, and 8 vs.
10) even though the ratio between some quantity pairs was equiv-
alent across the small/large quantity divide. On the other hand, the
robins successfully chose the larger set for one quantity pair that
had a large ratio of difference (i.e., 1:2 ratio between 4 vs. 8), which
is suggestive of an analog-magnitude system at work. Thus, song-
birds respond to ordinal relations when both sets contain small
quantities or when there is a 1:2 ratio of difference between large
quantities. Because only one large comparison was presented, we
cannot say that the ordinal responses of robins showed a ratio
signature, though.

More compelling evidence in support of the two-system view
is provided in recent empirical work investigating the social judg-
ments of gregarious fish that prefer to join large rather than small
groups (Bisazza et al., 2010; Agrillo et al., 2012). When guppies
and mosquitofish made RQJs between two large shoals (>3 mem-
bers), choices were dependent upon the ratio between shoal sizes.
In contrast, when both shoals contained four or fewer members
(1 vs. 2, 1 vs. 3, 1 vs. 4, 2 vs. 3, and 3 vs. 4), their choices were more
accurate and consistent with object-based representation (Bisazza
et al., 2010; Agrillo et al., 2012). Notably, the ability to appreciate
ordinal relations with analog-magnitude representation showed

6Beran (2012) also reported that the chimpanzee continued to make the ordinal
response when one set in the pair was made visible, which resulted in the ratio-
dependency disappearing. This finding is consistent with the claim that the object
individuation system is used only for representing visual sets (vanMarle and Wynn,
2009).
7Lion prides were more likely to approach the location of playback roars from a
single rather than three intruders regardless of the number of defending adults in
their own pride (McComb et al., 1994). Because no other numerical comparisons
were tested, though, it is impossible to ascertain whether the data are consistent with
an analog-magnitude or object-based individuation mode of representation.
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developmental progression in guppies (Bisazza et al., 2010). New-
born guppies chose to spend more time near the larger of two
small shoals, which illustrates that the exact, object-based repre-
sentation system is at work at birth. Their ability to make RQJs
between larger shoals (>4 members) emerged with increasing age
and social experience, suggesting that analog-magnitudes are less
salient early in development.

In sum, these findings illustrate that the ordination of quantities
is modality-independent and extends across animal taxa. Both core
representation systems are involved when non-human animals
make ordinal judgments. When non-human animals are given
a single opportunity to select the larger of two desirable discrete
quantities, they do so by creating: (a) exact object-based represen-
tations if both sets are small, (b) approximate analog-magnitudes
if both sets are large, and (c) both kinds of representations if one
set is small and the other is large, which results in incompatibil-
ity. When making repeated ordinal judgments about quantities,
non-human animals are largely dependent on analog-magnitude
representation of both small and large discrete quantities. In other
words,non-human animals show ratio-dependent responses with-
out a set size signature when making repeated ordinal judgments
about quantities.

CONCLUSIONS ABOUT RELATIVE QUANTITY JUDGMENT
When it is advantageous to choose the larger set of discrete things,
infants and non-human animals do so, within the limits of their
representation systems. Infants and non-human animals travel to,
and reach for, the largest collection of desirable items, whether
they be food, toys, or social partners. Some animals are even able
to do so solely from the sound of items dropping into containers.
Ordinal choices occur via an approximate analog-magnitude rep-
resentation when the ratio between compared sets is large enough
and via an exact object-based representation system when the sets
being compared are both small. Furthermore, the ordinal quan-
tity judgments of both infants and non-human animals indicate
an interaction between these two core systems of representation.

Evidence of both systems at work is most prominent in single-
trial investigations of spontaneous ordinal judgments in both
human infants and non-human animals. Under this constraint,
infants and non-human animals reveal ordinal competence when
both to-be-compared sets are small or both are large (provided
a favorable ratio). In contrast, when ordinal comparisons cross
the small/large size boundary, incompatibility between represen-
tations of small (via object-based individuation) and large sets
(via analog-magnitude) results in a failure to choose the larger
quantity. This pattern mirrors how infants discriminate cardinal
number. In particular, young infants can tell that two numerical
sets are different in size when both sets are small or when both
sets are large (Jordan and Brannon, 2006a; Cordes and Brannon,
2009a), but fail to do so when one set is small and the other is
large (e.g., 2 vs. 4; Xu, 2003; Wood and Spelke, 2005; Cordes and
Brannon, 2009a).

The ordinal quantity judgments of infants show a three-item
limit for object-based representation, which is consistent with the
literature about the detection of differences in the numerical size
of sets during infancy. Non-human animals, even those that are
newly born (Bisazza et al., 2010), show a more flexible three- to

four-item limit when making RQJs. Note that the limit for adult
humans is closer to no more than four or five objects for exact,
object-based individuation (Feigenson, 2008; Wood et al., 2008).
Together, this information reveals a dichotomy in the development
of the exact object-based representation system across human and
non-human animals. Humans experience expansions in work-
ing memory from infancy to adulthood, which co-occur with an
increase in the capacity limit of the object-based representation
system. In contrast, one study (Bisazza et al., 2010) suggests that
non-human animals are endowed with a larger, but fixed-capacity
object-based individuation system at the time of birth. Future
research should investigate if non-human animals experience sim-
ilar developmental expansions in their working memory or if their
object-based representations are fixed throughout development.

Even so, at least one non-human species shows developmen-
tal advancement in the analog-magnitude system (Bisazza et al.,
2010). The findings showed that newly born guppies are less likely
(or not able) to use analog-magnitudes when deciding to affili-
ate with the larger of two shoals. This phenomenon mirrors the
increase in precision seen in analog-magnitude representations
across human development. The ratio that must exist for humans
to discriminate that the size of two large sets differs decreases
from a threefold magnitude of difference (e.g., 4 vs. 12) at birth to
a twofold magnitude of difference (e.g., 4 vs. 8) at 6 months of age
to a 1.5 ratio (e.g., 4 vs. 6) around 10 months of age to a 1.14 ratio
(7 vs. 8) in adulthood (Xu and Spelke, 2000; Lipton and Spelke,
2003, 2004; Xu, 2003; Wood and Spelke, 2005; Xu et al., 2005;
Xu and Arriaga, 2007; Cordes and Brannon, 2008a; Halberda and
Feigenson, 2008; Izard et al., 2009).

When given repeated trials, though, the RQJs of non-human
animals are almost entirely ratio-dependent. This pattern points to
an analog-magnitude base for representing discrete quantity when
given more than a single opportunity make choices. In this case,
analog-magnitude representation holds across the small/large set
size divide even for experimentally naïve subjects given a low num-
ber of reinforced trials. For example, experimentally naïve dogs
were presented with eight pairs of discrete quantities (1 vs. 4, 1 vs.
3, 2 vs. 5, 1 vs. 2, 2 vs. 4, 3 vs. 5, 2 vs. 3, and 3 vs. 4) only once, but
still their responses showed a ratio signature (Ward and Smuts,
2007). Further, analog-magnitude representation when making
RQJs mirrors the pattern found when non-human animals dis-
criminate that two numerical sets are the same (or different) in
size (Boysen and Berntson, 1989; Emmerton, 1998; Jordan and
Brannon, 2006b; Jordan et al., 2008a; Tomonaga, 2008; Merritt
et al., 2009; Agrillo et al., 2010). The parallel that exists between
cardination and ordination means that repeated assessments about
whether two quantities are different or the same in size are gov-
erned by the same representation systems as repeated assessments
about whether one numerical set is larger or smaller than another
set. Unfortunately, only one infant study has broached the topic of
large set RQJs (Van Marle and Wynn, 2011) so it remains to be seen
whether the same pattern holds for our youngest counterparts.

In sum, we can conclude that ordinal quantity judgments are
an evolutionarily ancient, developmentally early, non-linguistic
capacity in the phylum Chordata that spans a species’ social system
and ecological niche. Although providing evidence of primitive
ordinal understanding in non-verbal organisms, it should be noted
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that the RQJ paradigm fails to disentangle number from other
quantitative information like surface area, presentation time, vol-
ume, and hedonic value8. For this reason, it is unclear whether
infants and non-human animals in these studies relied upon num-
ber, continuous quantity,or both number and continuous quantity
when making their judgments. In fact, follow-up experiments
to these studies and control trials within some studies suggest
that non-numerical quantities dictated responding in some infant
(Feigenson et al., 2002) and non-human animal studies (Zorina
and Smirnova, 1996; Stevens et al., 2007; Tomonaga, 2008; Krusche
et al., 2010; Vonk and Beran, 2012; but, see, Hauser et al., 2000;
Beran, 2007; Bogale et al., 2011). As such, these studies provide
indirect evidence suggestive of evolutionarily and developmen-
tally early appreciations of number-related ordinal relations. They
do not, however, distinguish number as the driving force behind
successful ordinal judgments. If and under what conditions pre-
verbal human infants and non-human animals store and compare
exact object-files, approximate analog-magnitudes, or both kinds
of representations about numerical information in the absence of
covarying cues from continuous quantity is the matter that we
consider in the next sections.

UNDERSTANDING NUMERICAL ORDER IN THE ABSENCE OF
NON-NUMERICAL CUES
Why do scientists attempt to understand the unique influence of
number on the behavior of non-verbal organisms, particularly if
number varies systematically and reliably with other quantitative
properties (e.g., as the number of my allies increases so does the
overall loudness of their vocalizations)? Some researchers argue
that the origins of quantitative competence are rooted in discrete
number, whereas, others argue for non-numerical origins in which
initial representations are amount-based (for reviews, see, Mix
et al., 2002; Henik et al., 2012). For this reason, attempts must
be made to capture the potential differences that exist when non-
verbal organisms order sets of things based on number and when
they order using a host of non-numerical quantitative cues. Sur-
prisingly, developmental investigations of this sort have provided
a range of conflicting results making it unclear whether or when
infants are truly capable of understanding numerical order uncon-
founded with continuous quantities. In contrast, non-human ani-
mal studies reveal a robust pattern of successful ordination. In this
review, we attempt to shed light on the apparent inconsistencies
within and between the two bodies of literature.

Ordinal numerical knowledge in preverbal infants is typically
assessed via looking-time measures in which infants are exposed to
numerical sequences. Infants are habituated to sequentially pre-
sented sets of items that illustrate an ordinal direction (e.g., 1
→ 2→ 3, if the arrow denotes “comes before”) and then tested
with novel sequences that illustrated a reversal in ordinal direction
(e.g., 6→ 5→ 4). Infants can be said to recognize order among
numerical sets if they look longer at sequences that do not obey

8Hedonic value refers to the idea that differences in affective and appetitive responses
account for subjects responding in an ordinal manner. For example, choosing and
receiving the largest quantity when presented with two vs. three food items induces
more salivation and satiation and elicits a stronger affective response than choosing
and receiving the smaller quantity.

the ordinal rule that they viewed during habituation or familiariza-
tion. To study how non-human organisms process and represent
numerical order, researchers turned to mathematical definitions
of an order relation (Green and Stromer, 1993). In this para-
digm, sequential responses that illustrate a direction of order are
established (e.g., 1→ 2→ 3, if the arrow denotes “responded to
before”). If organisms apply the learned sequential response to
numerically novel sequences (e.g., 4→ 5→ 6) in the absence of
reinforcement then the inference is that they appreciate ordinality.

Regardless of experimental paradigm, this line of research nec-
essarily prevents continuous quantity from influencing an organ-
ism’s responses so that number’s unique contribution can be
evaluated. In the experiments we review, the effects of cumulative
area, item perimeter or contour length, and array density or inter-
item distance are controlled (except where otherwise noted). Thus,
the sets that infants and non-human animals view are numerical
sets for which cardinality is the only property relevant to be dis-
criminated, and the order that exists among these sets is a function
of progressions in cardinality9.

ORDINAL NUMERICAL KNOWLEDGE IN INFANCY
There are only a handful of studies looking at ordinal numerical
knowledge in infancy. This is likely because the earliest investiga-
tions did not show ordinal competence in infants. Cooper (1984)
reported that 10- to 12-month-old infants did not detect ordi-
nal relations between quantity sequences in which number was
confounded with other quantitative properties (e.g., surface area).
Infants habituated with ascending (1→ 2; 2→ 3; and 3→ 4) or
descending (4→ 3; 3→ 2; and 2→ 1) two-set sequences failed
to dishabituate to reversed order novel test sequences even though
continuous extent was confounded with number. Similarly,Strauss
and Curtis (1984) reported that 16- to 18-month-olds did not rec-
ognize ordinal relations between two simultaneously presented
numerical sets. Using a simple discrimination procedure, infants
were reinforced for selecting the larger or smaller number of dots
with a single training pair (1 vs. 2, 2 vs. 4, or 3 vs. 4). Then,
transfer of the learned ordinal response was assessed by present-
ing the infants with two numerically novel pairings (pairs from 1
to 5). Although most infants learned to select the larger or smaller
numerical set with the original training pair, only a minority of
infants continued to make the correct ordinal response with novel
numerical pairings. These failures suggested that infants as old as
1.5 years of age did not appreciate ordinal relations.

Given the lack of promise, very little work was done in this area
of inquiry for nearly 20 years until the work of Brannon (2002) and
Suanda et al. (2008), which capitalized on new knowledge about
the ratio-dependency of cardinality discrimination during infancy.
In their studies, 9- and 11-month-old infants were habituated to
three-set numerical sequences presented sequentially in monot-
onically ascending (1→ 2→ 4; 2→ 4→ 8; and 4→ 8→ 16)
or descending order (16→ 8→ 4; 8→ 4→ 2; and 4→ 2→ 1).

9Compare this to assessments of serial order. Subjects respond or are habituated to
arbitrary stimuli in an experimenter-specified sequential order (if the letters denote
different colored boxes,Y→B→G→R→O). Alternatively, in the transitive infer-
ence paradigm, subjects are trained to select the positive stimulus in a pair across an
overlapping series of stimuli (Y+/B−, B+/G−, G+/R−, and R+/O−).
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Once habituated, a numerically novel ascending and descend-
ing sequence was presented (3→ 6→ 12 and 12→ 6→ 3) to
test whether a monotonic reversal of ordinal direction would be
detected. The 11-month-olds looked longer at, and dishabituated
to, the reversed order test sequence. That is, if they were habituated
with ascending sequences, they looked longer at the descending
sequence during the test phase and vice versa (Brannon, 2002;
Suanda et al., 2008). This was the case even when sequences were
modified to ensure that absolute set sizes did not serve as a reliable
cue for discrimination (Suanda et al., 2008). In contrast, the 9-
month-olds looked equally long at ascending and descending test
sequences, revealing no evidence of an ordinal appreciation. Based
on these findings, the authors concluded that an understanding of
numerical order develops between 9 and 11 months of age10.

Recent experiments, however, indicate that ordinal number
understanding may be present earlier than the 9- to 11-month age
range that was initially reported. Using methods similar to Bran-
non (2002), infants as young as 7-months of age detected changes
in ordinal relations when sequences contained only large values
(Picozzi et al., 2010). When habituated to numerical sequences
that ascended (6→ 12→ 24; 9→ 18→ 36; and 12→ 24→ 48)
or descended (48→ 24→ 12; 36→ 18→ 9; and 24→ 12→ 6),
7-month-old infants looked longer at novel numerical sequences
that illustrated a reversed monotonic ordinal direction com-
pared to a non-reversed one (4→ 8→ 16 and 16→ 8→ 4). In
contrast to Brannon (2002), all sequences contained only large
numerical values instead of a mixture of large and small values.
Similarly, a study of cross-dimensional transfer of ordinal under-
standing also provides evidence to suggest that infants appreciate
numerical ordinality between large sets earlier than 11-months
of age (de Hevia and Spelke, 2010; Lourenco and Longo, 2010).
Eight-month-old infants were habituated to a five-set numerical
sequence that monotonically ascended (4→ 8→ 16→ 32→ 64)
or descended (64→ 32→ 16→ 8→ 4) and then tested with novel
five-item line length sequences that had a reversed and non-
reversed direction of order. Infants looked longer at line length test
sequences that illustrated a reversed ordinal direction (de Hevia
and Spelke, 2010). Importantly, to distinguish between the ordinal
direction of line length sequences during testing, infants needed
to encode the ordinal direction of the numerical sequences during
habituation.

Why did the 9-month-olds fail to detect ordinal reversals in
one study (Brannon, 2002) yet 9- and 7-month-olds succeeded in
another study (de Hevia and Spelke, 2010; Picozzi et al., 2010)?
Set cardinality is the additional factor responsible for this diver-
gent pattern of results. That is, numerical order is processed and
represented at a younger age when numerical sequences contain
only large values exclusively represented via the analog-magnitude
system. In the most recent studies revealing early ordinal compe-
tence (de Hevia and Spelke, 2010; Picozzi et al., 2010), infants were
presented exclusively with large sets (>3 items). In contrast, small

10Evidence from Suanda et al. (2008) indicates that 9-month-olds detect ordi-
nal direction changes in sequences that have multiple redundant cues (i.e., when
cumulative item area, individual item size, and the number of items were posi-
tively correlated within sequences), but not when number is the sole cue to ordinal
direction.

sets were either exclusively presented or mixed in with large sets in
those studies in which all age groups (Cooper, 1984; Strauss and
Curtis, 1984) or the youngest age groups (Brannon, 2002; Suanda
et al., 2008) failed to detect a reversal in numerical order. These
findings indicate that representations from the two core systems
are incompatible such that infants fail to recognize changes in
ordinal direction when sets within sequences span the small/large
set size divide because both core systems are engaged.

Not only are infants tuned to detect cross-dimensional ordi-
nal mappings between number and other quantities, they are also
adapted to detect ones that mirror the way number covaries with
other quantitative attributes in the natural world. In additional
experiments, de Hevia and Spelke (2010) found that 8-month-olds
who were familiarized with number-line pairs that illustrated pos-
itive ordinal interrelations (smaller set sizes paired with shorter
line lengths and larger set sizes paired with longer lines) readily
learned these relationships and discriminated between novel stim-
uli revealing positive (i.e., consistent) and inverse (reverse) pair-
ings of this relationship. In contrast, infants familiarized to inverse
ordinal interrelations (small lines paired with large set sizes and
vice versa) failed to learn the relationship, showing no difference
in the time they looked at positive and inverse ordinal interrela-
tions during the test phase. These experiments provide additional
evidence that infants appreciate the ordinal relationships that exist
between numerical stimuli, even as young as 8 months provided
set sizes are large. But further, these data show that early recogni-
tion of ordinality must be consistent with how quantities covary in
the real world, suggesting that there is something privileged about
the inherent ordering of these quanties, at least in the preverbal
mind.

Additionally, there is one more study using a unique design
that reveals early detection of numerical ordinality discrimination
across small and large sets alike prior to 11 months. In Lourenco
and Longo’s (2010) associative learning task, 9-month-olds were
habituated to two numerical pairs (2 vs. 4, 3 vs. 6, or 5 vs. 10)
for which the relative magnitude of numerical pairs was tied to
the color/pattern information of sets. For example, items in the
smaller numerical set were always white with black dots, whereas,
items in the larger numerical set were always black with white
stripes. In the test phase, the numerical pair not presented dur-
ing habituation was shown with a reversed relative magnitude
color/pattern mapping (i.e., items in the smaller set were black
with white stripes and items in the larger set were white with
black dots). The results revealed that infants looked longer at the
reversed number-color/pattern mapping during the test phase. In
other words, they expected numerically novel pairs to follow the
ordinal rule that they experienced during habituation.

Similarly, a second experiment examining cross-dimensional
transfer of ordinal interrelations indicated that young infants
process and abstract numerical order across small and large sets
(Lourenco and Longo, 2010). Nine-month-olds were habituated
to numerical pairs for which there was a systematic mapping
between the relative magnitude and color/pattern information.
For example, if infants were habituated to a display in which the
numerically smaller set was white with black dots (and the larger
set was black with white stripes), then during test, holding set
size constant, the set with a smaller cumulative area was depicted
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as white/black dots (consistent ordinal direction) or alternatively,
depicted as black/white stripes (reversed ordinal direction). The
findings showed that 9-month old infants detected reversals in
ordinal direction across the dimensions of space and time. Again,
cross-dimensional detection of monotonic reversals in ordinal
direction could only occur if infants detected ordinal direction
in the numerical sequence. These findings demonstrate ordinal
numerical competence in 9-month-olds despite set sizes crossing
the small/large set size boundary, which contrasts with the find-
ings of Brannon (2002) and Suanda et al. (2008). We explore one
explanation for this discrepancy in the conclusion section.

ORDINAL NUMERICAL KNOWLEDGE IN NON-HUMAN ANIMALS11

Like human infants, the behavior of non-human primates
reveals that they understand ordinal relations among numeri-
cal sequences. Rhesus monkeys were trained to touch two-set
numerical sequences in ascending (1→ 2; 1→ 3; 1→ 4; 2→ 3;
2→ 4; and 3→ 4) or descending monotonic order (Brannon
and Terrace, 1998, 2000; Brannon et al., 2006)12. Intermixed
with trials of the training sequences were non-differentially rein-
forced trials of numerically novel test sequences (all possible
pairing of 5–9 elements). Monkeys responded in the appropri-
ate order to the numerically novel sequences more often than
predicted by chance, which showed that they abstracted ordinal
relations. A subsequent experiment showed that learning how
to sequentially respond in ascending order to two-set numeri-
cal sequences (all possible pairs from 1 to 9 elements) resulted
in two of the rhesus monkeys understanding ordinal relations
between novel two-set sequences that had values well outside
the originally learned range (i.e., all possible pairs of 10, 15,
20, and 30 elements; Cantlon and Brannon, 2006). In contrast,
researchers were unable to train a rhesus monkey to sequentially
respond in an arbitrary non-monotonic order (3→ 1→ 4→ 2;
Brannon and Terrace, 2000), suggesting that responding relied
upon the ordinal relationships inherent in the numerical stimuli.
Together, findings reveal that rhesus monkeys understand ordi-
nal relations between numerical sets and they can apply their
learned ordinal understanding across a wide range of numerical
values.

Ordinal understanding of this type is not restricted to the
genus Macaca or even to non-human primates. Replications with
other species reveal that a hamadryas baboon and squirrel monkey
(Smith et al., 2003), one of three capuchin monkeys (Judge et al.,
2005), and pigeons (Scarf et al., 2011) gain an understanding of
ordinal numerical relations from learning to sequentially respond
in an ascending manner to numerical sequences. In addition, two
bottlenose dolphins gained an understanding about ordinal rela-
tions between simultaneously presented numerical pairs (Jaakkola
et al., 2005). In particular, they generalized the ordinal rule“choose
the least” from training sets (2 vs. 6, 1 vs. 3, 3 vs. 7, 1 vs. 8, 3 vs. 7,

11There is a large body of evidence showing that non-human animals can be trained
to order symbolic representatives of quantity (Boysen et al., 1993; Boysen and
Berntson, 1995; Harris et al., 2007, 2010; Beran et al., 2008c). For the purposes of this
review, however, we focus on appreciations of number-related ordinal relationships
that are independent of linguistic or symbolic systems.
12These tasks followed training to touch the full sequence in ascending (e.g.,
1→ 2→ 3→ 4) or descending order (e.g., 4→ 3→ 2→ 1).

2 vs. 4, and 4 vs. 7) to new pairings (all possible pairs from 1 to 8
items). Together, these findings reveal that ordinal understanding
about number spans Old and New world monkeys and the class
Mammalia and Aves.

Importantly, the findings indicate that analog-magnitude rep-
resentations of number governed the ordinal responses of non-
human animals. Accuracy and/or response time conformed to
Weber’s law for most monkeys, pigeons, and dolphins (Brannon
and Terrace, 1998; Smith et al., 2003; Jaakkola et al., 2005; Bran-
non et al., 2006; Cantlon and Brannon, 2006; Scarf et al., 2011) in
support of analog-magnitude numerical representation. In partic-
ular, response accuracy declined and response time increased as the
ratio between the numerical values being compared approached
a value of one. In contrast to the human infant literature, there
was no evidence that ordinal knowledge was limited to sets with
no more than three or four items, which suggests that object-
based representation systems were not involved. There also was no
evidence that ordinal knowledge was disrupted by the employ-
ment of two distinct systems of representation for number as
ratio-dependent responding held across all cardinal values, which
implicates the analog-magnitude system. Although some ani-
mal subjects were experimentally sophisticated in discriminating
between large and small numerical values (Brannon and Terrace,
1998; Brannon et al., 2006; Cantlon and Brannon, 2006), others
were not (Smith et al., 2003; Jaakkola et al., 2005; Judge et al.,
2005; Scarf et al., 2011). Experimental history, therefore, does not
offer a satisfactory explanation for not finding evidence of set size
limits. Instead, the findings suggest that non-human animals are
less likely to engage an object-based individuation system when
tracking numerical order.

CONCLUSIONS ABOUT ORDINAL NUMERICAL KNOWLEDGE
The empirical evidence indicates that both non-human ani-
mals and preverbal infants are capable of detecting changes in
numerical order. Comparative analysis, however, indicates that
the representation systems that infants and non-human animals
rely on to detect numerical order differ. Monkeys, birds, and
dolphins respond according to numerical order, and the pri-
mary representations that they form when doing so are fuzzy,
analog-magnitudes. Further, their ordinal responses are depen-
dent on the ratio between numerical sets, not the size of sets.
Analog-magnitude representation when responding sequentially
to numerical order is in keeping with the representations that
non-human animals generate when determining that numerical
sets differ in size (Boysen and Berntson, 1989; Emmerton, 1998;
Jordan and Brannon, 2006b; Jordan et al., 2008a; Tomonaga, 2008;
Merritt et al., 2009; Agrillo et al., 2010). This indicates that the same
analog-magnitude system is used to represent numerical infor-
mation for cardination and ordination; indeed, cardination must
occur for ordination to occur.

On the other hand, two core representation systems – an object-
based individuation system that processes small sets exactly (<4
items) and an analog-magnitude system that processes large sets
approximately (>3 items) – are involved when human infants
recognize numerical order. This is illustrated in the finding that
infants younger than 11-months of age appear unable to process
and represent numerical order with numerical sequences that cross
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the small/large set size boundary. The same processing incompati-
bility exists when infants discriminate differences in the number of
things that sets contain (Xu, 2003; Wood and Spelke, 2005; Cordes
and Brannon, 2009a). This again speaks to the idea that cardina-
tion via object-based or analog-magnitude representation must
occur for infants to detect order among numerical sets.

We provide two non-mutually exclusive explanations to
account for the divergent pattern between human infants and non-
human animals. First, the divergent pattern may arise because
associative learning paradigms activate a continuous, broadly
applicable system for understanding small and large numeri-
cal values (i.e., analog-magnitudes). When non-human animals
are repeatedly reinforced for touching numerical sets in a pro-
gressing order, they rely on analog-magnitude representations to
abstract ordinal relationships. On the other hand, when infants
are familiarized or habituated to numerical sets (passive viewing
conditions), they rely on both core systems. Consistent with the
animal literature, infant looking-time patterns did not point to a
small/large set size boundary in one study employing associative
learning to investigate ordinal knowledge (Lourenco and Longo,
2010). Infants could predict a set’s ordinal class (“larger than” and
“smaller than”) from the color and patterning of the elements in
sets (e.g., the larger set black rectangles with white dots vs. smaller
set white rectangles with black stripes). There was no disruption
from activating both core systems – infants succeeded in detecting
numerical ordinal relations between small and large sets (e.g., 2
vs. 4 and 3 vs. 6). Although this study does not inform us about
the presence of ratio-based responding, at the very least this study
suggests that it is easier for infants to construct and compare rep-
resentations from the two core systems when associative learning
is involved.

A second explanation for the divergent pattern of results
obtained between infants and non-human animals is a devel-
opmental one. The evidence suggests a developmental progres-
sion in the ability of infants to process and compare sets when
making numerical ordinal judgments. This is illustrated in the
finding that infants are not able to process and represent numer-
ical order with sequences that contain both large and small sets
until 11-months of age. Although differences across human and
non-human species have been investigated, changes across devel-
opment within non-human animal species have not been thor-
oughly examined. Therefore it remains to be seen whether this
developmental pattern is uniquely human or whether a similar
developmental trajectory is mirrored in non-human animals. It is
known that guppies show an ontogenetic progression from rely-
ing on object-based individuation to relying on both object-based
individuation and approximate-magnitude systems when making
RQJs (Bisazza et al., 2010). So it may be that non-human animals
show a similar progression from greater reliance upon the object
individuation system early in development (as has been observed
in human infants) to later fluency with integrating representations
across the analog-magnitude and parallel individuation systems
when number is the only relevant cue. Attempts should be made
to investigate developmental patterns in the way that non-human
animals understand numerical order to determine if representa-
tions of small sets are similarly granted a privileged status early

in the development of non-human species (Buhusi and Cordes,
2011).

Despite the differences in the way that infants and non-human
animals process and represent numerical order, both preverbal
infants and non-verbal organisms understand numerical order in
a way that follows the patterns that exist in the natural world.
Two sorts of evidence support this claim. First, in nearly all stud-
ies reviewed, non-verbal subjects acquired an ordinal rule with
one set or series of numerical values and readily apply that rule
to novel numerical values without further feedback or train-
ing (e.g., Brannon and Terrace, 2000; Brannon, 2002; Cantlon
and Brannon, 2006; Picozzi et al., 2010). In other words, infants
and animals abstracted ordinal relationships. This generalization
of ordinal knowledge reveals that non-verbal organisms appre-
ciate the intrinsic ordinal relationship amongst cardinal values
(e.g., 4 < 8 < 12), an ability which goes above and beyond the
sequential ordering of numerical sets within the sequence (e.g.,
4→ 8→ 12).

Second, non-human animals and infants are less apt to acquire
numerical sequences that violate this inherent order, even with
repeated trials. This is exemplified in the finding that non-human
primates cannot learn to arbitrarily order numerical sets (e.g.,
3→ 1→ 4→ 2; Brannon and Terrace, 2000) and infants do not
detect inverse number-line length ordinal interrelations (e.g., small
numerical sets paired with long lines; de Hevia and Spelke, 2010).
This suggests that non-verbal subjects rely upon the “less than”
and “greater than” relationships inherent to numerical sequences
when abstracting numerical ordinality. In sum, evidence strongly
suggests that responding across these tasks was not the result of
arbitrary sequence learning, but a function of the numerical values
presented.

Interestingly, these findings can be juxtaposed against exper-
iments that show that non-human animals and human infants
detect serial order; that is, they readily learn arbitrary order-
ings of non-quantitative things. For example, non-human animals
learn to select the yellow box followed by the blue box followed
by the green box, etc. (Gillan, 1981; Boysen et al., 1993; Ter-
race, 1993; Beran et al., 2004; Merritt et al., 2007). Even infants
as young as 4-months of age detect changes in the serial order
of moving and sounding objects (Gulya et al., 1998; Lewkow-
icz, 2004; Lewkowicz and Berent, 2009)13. Furthermore, children
and non-human animals learn non-monotonic quantitative ser-
ial orderings (e.g., medium box→medium-small box→ large
box→ small box→medium-large box) more poorly than monot-
onic ones (Terrace and McGonigle, 1994; Ohshiba, 1997; Kundey
et al., 2010). The intrinsic order of numerical quantities is salient.
Although both infants and animals are capable of learning arbi-
trary sequences, they are less apt (or possibly unable) to do so
when the sequences violate numerical ordering. This pattern not
only speaks to the shared evolutionary basis of ordinal under-
standing about number and quantities, but also tells us that
numerical order holds a privileged status above mere sequence
learning.

13Ibid footnote 9, p. 9.
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DISCUSSION
From free-ranging dogs deciding whether to retreat from a rival
pack (Bonanni et al., 2011) to young human infants reaching for
the most bits of cereal (Feigenson et al., 2002), tasks requiring
ordination of quantities provide a wealth of evidence showing
that both preverbal human infants and non-human animals are
sensitive to ordinal relationships. Single-trial experiments assess-
ing spontaneous ordination reveal a robust set size signature in
both non-human animals (but, see, Krusche et al., 2010) and pre-
verbal infants. On the other hand, when non-human animals are
given repeated attempts to order quantities, set size limitations
diminish, and analog-magnitude representations play a primary
role. As such, non-verbal understanding about number-related
order depends upon both object-based individuation and analog-
magnitude systems. Whether a similar pattern holds for repeated
trials in RQJ tasks with infants remains an open question ripe for
investigation.

Given that number is naturally confounded with other quan-
titative variables in RQJ tasks, these types of experiments cannot
distinguish whether this non-linguistic sensitivity to ordinality is
based upon number, surface area, volume, hedonic value, and/or
a combination of these quantities. Our examination of numeric
appreciations of ordinality (i.e., when non-numerical quantities
like surface area, contour length, inter-element distance, and den-
sity are prevented from systematically covarying with the cardinal-
ity of sets) reveals less similarity between infants and non-human
animals. When sequential responses to numerical order are rein-
forced, the representations that non-human animals form are not
limited by set size, but are ratio-dependent (Brannon and Terrace,
1998, 2000; Smith et al., 2003; Judge et al., 2005; Brannon et al.,
2006; Cantlon and Brannon, 2006; Scarf et al., 2011).

In contrast, the ability of young human infants (under
9 months) to detect changes in numerical order primarily con-
tinues to reveal a set size signature. It is not until the end of
the first year of life (∼11 months) that infants reliably detect
changes in numerical order regardless of the size of the sets
involved (Brannon, 2002). Thus, evidence suggests that the ability
to integrate numerical representations generated from the exact
(object individuation) and approximate (analog-magnitude) sys-
tems increases across development in human infancy. More work
is needed to clarify this discrepant pattern of findings across
infants and non-human animals, though. Specifically, whether
methodological differences (employing associative learning vs.
passive observation) may account for these observed differences
remains to be determined. That associative learning activates a
continuous, broadly applicable system for understanding small
and large numerical values (i.e., analog-magnitudes) is a com-
pelling idea. For one, it could inform the creation of educational
tools and efforts designed to stimulate an infant’s understanding
of number. Further, more work is needed to determine whether
the developmental trajectory, an increased ability to integrate

numerical representations generated from the exact and approx-
imate systems, is mirrored in the lives of non-human animals.
Discovering that the cognitive development of non-human ani-
mals follows the trajectory shown by human infants would pro-
vide strong evidence to support a shared evolutionary basis of
numerical cognition.

Even after our review, many questions remain about the evo-
lutionary origins and adaptive significance of ordinal knowledge
and its relation to other cognitive abilities. Surprisingly, although
human infants appear capable of detecting ordinal relationships
across small and large sets by around 11 months of age (Brannon,
2002), they continue to fail to discriminate changes in set cardinal-
ity crossing the small/large set size boundary as late as 23 months
of age (i.e., they fail to discriminate a set of two from four; Barner
et al., 2007). What is it about ordinality that allows infants to
overcome the set size limitations imposed by the employment of
two distinct representational systems? One way to shed light on
this question is to evaluate the role of individual differences (in
terms of plasticity and stability over time) in the development of
ordinal abilities. For example, early understandings of numerical
order may be correlated with, or predicative of, greater precision
in analog-magnitude representations, an ability to detect all kinds
of order in the world, and/or mathematical skills. Future research
should explore these possibilities. Similar questions may also be
addressed with non-human species to shed light on when and
why such abilities have emerged and if they are immune to set size
limitations early in development.

In conclusion, evaluating the shared basis of ordinal numer-
ical knowledge helps us construct a complete picture about the
development and evolution of numerical cognition. Although
much has been learned about the signatures of numerical ordi-
nal behavior in both human infants and non-human animals,
open questions remain. A stronger parallel between infant and
animal paradigms will provide greater insight into the devel-
opmental and evolutionary origins of these sophisticated abil-
ities. Ordinal knowledge about number is an evolutionarily
ancient, developmentally early, non-linguistic capacity that spans
a species’ social system and ecological niche. Because developmen-
tal psychology is about comparison and comparative psychology
is about development, our fields must continue to track age-
related changes in the way that all species understand numerical
order.
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