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Context is critical for recognizing environments and for searching for objects within them:
contextual associations have been shown to modulate reaction time and object recognition
accuracy, as well as influence the distribution of eye movements and patterns of brain
activations. However, we have not yet systematically quantified the relationships between
objects and their scene environments. Here I seek to fill this gap by providing descriptive
statistics of object-scene relationships. A total of 48,167 objects were hand-labeled in
3499 scenes using the LabelMe tool (Russell et al., 2008). From these data, I computed a
variety of descriptive statistics at three different levels of analysis: the ensemble statistics
that describe the density and spatial distribution of unnamed “things” in the scene; the
bag of words level where scenes are described by the list of objects contained within
them; and the structural level where the spatial distribution and relationships between
the objects are measured. The utility of each level of description for scene categorization
was assessed through the use of linear classifiers, and the plausibility of each level
for modeling human scene categorization is discussed. Of the three levels, ensemble
statistics were found to be the most informative (per feature), and also best explained
human patterns of categorization errors. Although a bag of words classifier had similar
performance to human observers, it had a markedly different pattern of errors. However,
certain objects are more useful than others, and ceiling classification performance could
be achieved using only the 64 most informative objects. As object location tends not to
vary as a function of category, structural information provided little additional information.
Additionally, these data provide valuable information on natural scene redundancy that can
be exploited for machine vision, and can help the visual cognition community to design
experiments guided by statistics rather than intuition.
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INTRODUCTION
Imagine that you are attending a friend’s housewarming party.
Although you have never been in this house before, you are
not surprised to find a coffee table next to a sofa in the living
room, chairs surrounding the dining room table, or framed pic-
tures hanging on the walls. As a considerate guest, you help with
the cleanup afterwards; effortlessly finding the trash can under
the sink for disposing the waste, and the dishwasher next to the
cabinets to wash the dishes. Our interactions in the world are
facilitated by virtue of the fact that objects are not randomly
strewn about the world but follow some basic laws of where they
may be located, how large they are, and what other objects will
be found near them. Collectively, these regularities are known
as context. While context appears to be crucial for human scene
recognition and helpful for machine vision (see Bar, 2004; Oliva
and Torralba, 2007 for reviews), contextual relations between
scenes and their objects have not yet been systematically measured
and cataloged.

WHY MEASURE STATISTICS OF OBJECT CONTEXT?
The last two decades have seen a growing literature on the statis-
tics of natural images. Knowing about the input received by our
visual systems allows for a better understanding of visual coding

in the brain. We have a growing understanding of the statis-
tical regularities of natural scenes at the level of basic features
such as luminance, contrast, color and Fourier amplitude spectra,
as well as the relations between edges and contours (Olshausen
and Field, 1996; van Hateren and Ruderman, 1998; Fine and
MacLeod, 2001; Geisler et al., 2001; Schwartz and Simoncelli,
2001; Golz and MacLeod, 2002; Torralba and Oliva, 2003; Howe
and Purves, 2004). Mid-level regularities have been found for
scene textures (Torralba and Oliva, 2003) as well as scene scale
and depth (Ruderman, 1994; Torralba and Oliva, 2002). Higher-
level statistical regularities, such as object location (Karklin and
Lewicki, 2003), scene background to objects (Torralba and Sinha,
2001; Choi et al., 2010) and scene spatial structure (Schyns and
Oliva, 1994) have also been measured. The importance of this
work lies in the predictive power of image statistics for both
behavior and neural responses (Rao et al., 2002; for reviews,
see Simoncelli and Olshausen, 2001; Geisler, 2008). It has been
hypothesized that the visual system exploits statistical redundan-
cies in order to efficiently code a complex visual world (Attneave,
1954; Zetzsche et al., 1993; Barlow, 2001). Thus, knowing the sta-
tistical dependencies between objects and scenes can help us to
understand the types of compressed visual codes that allow us to
rapidly recognize our visual environments.
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Despite a large and growing literature on the effects of context
on object and scene recognition (Palmer, 1975; Friedman, 1979;
Biederman et al., 1982; Boyce et al., 1989; De Graef et al.,
1990; Henderson, 1992; Bar and Ullman, 1996; Hollingworth and
Henderson, 1998; Henderson et al., 1999; Davenport and Potter,
2004; Eckstein et al., 2006; Neider and Zelinsky, 2006; Auckland
et al., 2007; Becker et al., 2007; Davenport, 2007; Joubert et al.,
2007; Võ and Henderson, 2009; Mack and Palmeri, 2010), there
has yet to be a systematic quantification of scene-object rela-
tionships in the world. This is a critical step as recent work
has found that principles of attention and perception learned
from artificial laboratory stimuli have limited generalizability
to real-world stimuli (Neider and Zelinsky, 2008; Wolfe et al.,
2011a,b). Here I seek to fill this gap by providing both descrip-
tive statistics of contextual relations and inferential statistics to
show how much these types of context can contribute to scene
categorization.

Suppose you wanted to know whether object recognition ben-
efits from lawful scene context (e.g., Davenport and Potter, 2004).
Traditionally, one would approach the problem by embedding the
object of interest in normal a scene context (e.g., a “blender” in
a kitchen), or an abnormal scene context (e.g., a “blender” in a
bathroom), and then have human observers perform an object
categorization task on both types of stimuli. Similarly, what if you
wanted to study the degree to which an object evokes a particu-
lar scene context (e.g., Bar and Aminoff, 2003). Or perhaps you
are interested in how scenes are formed from diagnostic objects
(e.g., MacEvoy and Epstein, 2011). In each of these cases, how do
you choose the object and scene contexts that you will use? How
do we define diagnosticity for objects, and how do we measure
it? Are all abnormal contexts equally bad? In each of these cases,
these questions have been answered through introspection and
intuition. The aim of this work is to provide baseline statistics of
objects in scenes so that these types of questions can be answered
with quantitative measures.

THEORIES OF OBJECT CONTEXT
One of the first theories of object-scene context was known as
frame or schema theory (Bartlet, 1932; Minsky, 1975; Friedman,
1979; Biederman, 1981). According to this theory, scene cate-
gories can be represented in a mental structure containing learned
associations between the category and objects that are commonly
found in it. For example, a kitchen schema might activate repre-
sentations of objects such as “refrigerator,” “blender,” and “cutting
board.”

Biederman et al. (1982) argued that there are five object-
scene relationships that constitute well-formed visual scenes.
Scenes must obey the laws of physics, with objects supported by
a horizontal surface, and not occupying the same physical space
(interposition). Furthermore, the objects themselves have a cer-
tain likelihood of being in a particular scene context, as well as
some some probable position in it. Finally, every object is con-
strained to have a particular size relative to the other objects in
the scene. The first two relationships describe physical constraints
on the world, while the last three describe the semantic content
of the scene. These authors found that violations in any of these

relationships resulted in reaction time and accuracy deficits for
object recognition within a scene, that multiple violations made
performance worse, and that both types of relations (physical
and semantic) disrupted scene and object processing to similar
degrees.

Much of the experimental work on scene-object context has
focused on the likelihood contextual relation, often referred to
as consistency. It is generally accepted that a consistent object in
a scene facilitates object and scene recognition (Palmer, 1975;
Loftus and Mackworth, 1978; Boyce et al., 1989; De Graef et al.,
1990; Bar and Ullman, 1996; Hollingworth and Henderson,
1998; Davenport and Potter, 2004; Eckstein et al., 2006; Becker
et al., 2007; Joubert et al., 2007; Võ and Henderson, 2009,
2011; Mack and Palmeri, 2010). However, an open debate still
exists over whether this facilitation is perceptually or cogni-
tively based (Hollingworth and Henderson, 1998; Henderson and
Hollingworth, 1999; Bar, 2004). The details of this argument are
beyond the scope of this paper.

As there are no existing norms for object frequencies in scenes,
it is often left to the intuitions of the experimenters to determine
which objects are consistent or inconsistent in a scene category.
Two salient exceptions include Friedman (1979), who obtained
normative rankings by asking participants to brainstorm lists of
objects that have various probabilities of being in a particular
scene, and Henderson (1992), who provided a pilot experiment
where the object-scene pairs were verified by an independent
group of observers. However, in the absence of ground truth mea-
surements of object frequency, the notion of object consistency
seems to be better capturing object plausibility rather than object
probability. For example, in Davenport and Potter (2004), a “sand
castle” was chosen to be the consistent object for a beach scene.
While sand castle is a very plausible object in a beach scene, most
beaches are unlikely to have sand castles, making “sand castle”
a plausible, but low-probability object. By measuring contextual
statistics of objects and scenes, we can revisit the consistency effect
with experiments reflecting real-world probabilities rather than
intuitions.

There is also general agreement that context involves some
form of learned associations extracted from interactions in the
world. For example, in the phenomenon of contextual cueing
(Chun and Jiang, 1998), observers’ reaction times in repeated
visual search displays become more efficient over the course of an
experiment, suggesting that they implicitly learned the spatial lay-
out of the displays. Brockmole and Henderson (2006) have shown
that displaying a letter search array on a real-world scene and con-
sistently pairing the target location with a location in the scene
also produces contextual cueing. Furthermore, this result gen-
eralizes across different scenes in the same category (Brockmole
and Võ, 2010), suggesting that object-scene relationships can be
implicitly extracted and used for visual search. However, there
remain a number of open questions: how strong are the contex-
tual relations between objects and scenes? Does the strength of
the relations differ among different types of scenes (e.g., indoor,
natural landscapes, or urban environments)? Understanding and
characterizing these relationships will allow the formulation of
new experiments examining the extent to which human observers
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use various types of context for recognition, search and memory
of complex natural scenes.

USING CONTEXT FOR RAPID SCENE RECOGNITION
The mechanism behind the remarkable rapid scene categorization
performance of human observers has been a long-standing mys-
tery. How is a scene recognized as quickly as a single object when
scenes contain many objects? Biederman (1981) outlined three
paths by which an initial scene representation could be generated:
(1) by recognizing a prominent object that is diagnostic of the
scene’s category; (2) by perceiving and recognizing global, scene-
emergent features that were not defined; or (3) by recognizing and
spatially integrating a few contextually related objects.

Although global, scene-specific features have been shown to
be useful for scene categorization (Greene and Oliva, 2009),
observers are able to also report a few objects after a brief glance
at a scene (Fei-Fei et al., 2007). The first and third paths outlined
by Biederman have been sparsely explored, as what counts as a
“diagnostic” or “contextual” object is not immediately obvious.
In this work, I operationalize these concepts so we may begin to
test these hypotheses.

SCOPE OF THE CURRENT WORK
In this paper, I introduce a large scene database whose objects
and regions have been fully labeled using the LabelMe annotation
tool (Russell et al., 2008). The fully labeled data contain names,
sizes, locations, and 2D shapes for each object in each scene. In
this work, I will provide descriptive statistics on these data at
three levels of description: statistical ensembles, bag of words and
structural. At the ensemble level, I will examine the overall object
density and spatial distribution of unnamed objects and regions
across the scene categories. The bag of words level of description
uses the object labels to determine which objects occur in which
scene categories without regard to the spatial distribution of these
objects. The structural description will then examine the spatial
relations among objects across scene categories. For each level of
description, I will also describe how sufficient these statistics are
for predicting scene categories through use of a linear classifier,
and discuss how human observers may employ such strategies for
rapid scene recognition.

METHODS
SCENE DATABASE
The main scene database consists of 3499 full-color scene pho-
tographs from 16 basic-level categories. Eight of the basic-level
categories are indoor environments (bathroom, bedroom, confer-
ence room, corridor, dining room, kitchen, living room, and office).
These images were downloaded from the web. The remaining
scene categories were outdoor environments taken from Oliva
and Torralba (2001), with four categories representing urban
environments (skyscrapers, street scenes, city centers, and highways)
and four categories representing natural environments (coast,
open country, mountain, and forest). There were at least 94 images
in each of the 16 basic-level categories. The images varied in size
and were selected from a large lab database amassed from the
web, personal photographs and books. See Figure 1 for example
images from each basic-level category.

LABELING PROCEDURE
The image database1 was hand segmented and labeled using the
LabelMe Open Annotation Tool (http://labelme.csail.mit.edu,

Russell et al., 2008) by four observers (including the author) over
the period of several months. Observers were instructed to label
all regions and objects in each image and affix the best basic-level
name to each region as well as to label objects as individuals, size
permitting (e.g., annotate each apple in a bowl of apples except in
cases where apples were too small to create an accurate bounding
region). It was decided in advance that objects that could be seen
through windows would not be annotated, as these objects are not
located in the given scene environment. Similarly, objects whose
reflections appeared in mirrors were not annotated because this
would artificially inflate the count of this object in the scene.
Namable parts of objects that are not separable from the object
(e.g., the leg of a chair, or headlight of a car) were not labeled. For
the labelers, any visual, namable entity counted as an object, so
items such as “fog,” “cloud,” or “sand” were considered objects.
Although one typically thinks of “objects” as discrete entities that
do not comprise the structure of a scene, regions vary in their
“objectness.” In order to avoid idiosyncratic labeling strategies,
all regions were considered. In cases of occlusion, labelers were
instructed to interpolate object boundaries as to do otherwise
would increase the count of this type of object. Statistical analysis
on these annotations was performed in Matlab using the LabelMe
toolbox (Russell et al., 2008).

CLEANING THE DATABASE
As the LabelMe interface accepts any label typed by an observer,
the raw annotations contained numerous typos, misspellings and
synonyms. Raw labels were hand-corrected to ameliorate these
issues. These changes reduced the number of unique annotations
from 1767 to 617. Misspelled items accounted for 21% of the
changes (for example “automan” for “ottoman”). Plurals were
changed to singular, accounting for 15% of the changes. Labels
that were written at the subordinate level, including descriptions
of position information (“side view of car” or “slated wooden
panel”) were changed to the appropriate entry-level category.
These accounted for 40% of the changes. Furthermore, items
listed at the superordinate level were visually inspected and
assigned to the appropriate entry-level category, accounting for
3% of the changes. For example, “art” was a label that referred
to a “painting” in one image and a “sculpture” in another, and
“island” could refer to either a landmass in water or counter
space in the center of a kitchen. In cases where the entry-level
category of an object was questionable, attempts were made to
group objects by function. For example, “decoration” was chosen
as an entry-level as all objects under this label served a common
function (e.g., “decorative wall hanging” or “decorative fish”).
Object labels that were synonyms according to WordNet (Miller,
1995) were unified under one label (for example, “couch” and
“sofa”). Synonyms accounted for 16% of the changes. Labels that
encompassed multiple objects (for example, “basket of maga-
zines”) were included as the containing, or larger object only

1Upon publication, this database and Matlab structures containing statistical
data will be publically available for download on the author’s website.
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FIGURE 1 | Example images of each basic-level category. The top two rows are from indoor scene categories and the bottom two are from outdoor scene
categories. The top row of outdoor scenes is from natural landscape categories and the bottom row of outdoor scenes is from urban categories.

(e.g., “basket,” 2% of changes). Labels that referred to object parts
that are not independent of the object whole (e.g., “chair leg” is
a part that is not removable from a chair without the chair losing
its function) were deleted. Parts that could refer to the whole
object (e.g., “back of chair” for a chair that was occluded except
for the back) were changed to the object’s name. These accounted
for 2% of the changes. Finally, there were 288 labels that were
simply called “object.” These referred to a variety of small objects
that could not be accurately identified from the small images, so
the label has not been changed. There were a total of 21 deletions.
The list of deletions can be found in Appendix C. A list of raw
and final labels can be found in Appendices A and B, respectively.

AUXILIARY DATASET
Although ∼3500 images is a relatively large database and near the
practical limit of what one can hand-annotate, a critical question
for the utility of these statistics is the degree to which they gen-
eralize to the population of all real-world environments. Indeed,
dataset bias is known to limit the knowledge gleaned from this

type of inquiry (Torralba and Efros, 2011). In order to address
this question, I compared the contextual statistics from the main
database with a completely independent labeled database. As
every database has independent bias, the extent to which statistics
measured in one database can be successfully applied to another
reflects the generalizability of the database.

I created an auxiliary set of images taken from the LabelMe
database and annotated by unknown observers. The dataset con-
sisted of 1220 images from the same 16 basic-level scene categories
that had at least 85% label coverage. There were 100 images
per category for bathroom, kitchen, living room, city, street, coast,
and forest, and 14–59 in the others, as LabelMe does not have
a sufficient number of fully labeled scenes for the other cate-
gories. These scenes were labeled by unknown observers without
the rules used by the four observers who annotated the main set.
As LabelMe allows users to upload their own photographs, this
dataset differs from the main dataset in that the depicted environ-
ments are less idealized and stylized and seem to come from users
snapping views of their own offices, kitchens and streets (see the
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Figure A1). This set was cleaned as described above. All analyses
were repeated on this additional set, and all differences between
the two databases are noted in Appendix D.

RESULTS
GENERAL FINDINGS
Quality of annotations
How much of each image was labeled? Although labelers were
instructed to label each pixel, some regions were too small to label,
or may have been overlooked. Here I examined the percentage of
image pixels assigned to a label. On average, 85.4% of an image’s
pixels were assigned to a label (standard deviation: 12.7%). Sixty
one percent of images had more than 90% of its pixels labeled. By
contrast, only 8.9% of images in the LabelMe database have this
level of annotation (Russell et al., 2008) making the main database
better suited to describing contextual statistics.

ENSEMBLE STATISTICS
Ensemble statistics are statistical summaries of a group of objects,
such as mean size (Ariely, 2001; Chong and Treisman, 2003,
2005), center of mass (Alvarez and Oliva, 2008), or mean orien-
tation (Parkes et al., 2001). Although most work in this area has
been on laboratory displays of simple shapes, human observers
can estimate ensemble statistics over more complicated sets of
features as well, such as the average emotion of a crowd of faces
(Haberman and Whitney, 2007). Recent work in visual cognition
has shown that the human visual system is adept at representing
such ensembles both rapidly and outside the focus of attention
(Ariely, 2001; Chong and Treisman, 2003, 2005; Alvarez and
Oliva, 2008, 2009; for a review see Alvarez, 2011). Although the
use of statistical ensembles has been posited as a potential mech-
anism for scene gist recognition (Haberman and Whitney, 2012),
there has been little work on what statistical ensembles might exist
in real-world images.

Here, I examined several summary statistics representing the
general density and location of objects in scene categories. The
utility of each measure for scene categorization is assessed both
individually and as a group using a linear classifier.

Object density and variety
The first ensemble statistic is simply the density of labeled objects
in each scene. The number of objects in a scene ranged from 1
to 88 (median: 11). Do all scene categories have a similar num-
ber of objects? To answer this question, I examined the number

of objects per scene as a function of basic- and superordinate-
level scene category labels. While human observers have no prob-
lems recognizing scenes with a variety of object densities (Potter,
1976; Wolfe et al., 2011a,b), classical visual search experiments
show clear performance costs as the number of objects in a display
increases (Biederman, 1988; Vickery et al., 2005). In order to
better understand how the number of objects in a scene affects
categorization performance in that scene, it is important to first
understand how scenes vary in terms of object density.

In this database, the mean object density ranged from 5.1
objects per mountain scene to 33.1 objects per kitchen (see
Table 1A). As shown in Figures 2A, 3, indoor scenes had a sig-
nificantly higher mean object density than outdoor scenes [23.45
and 11.44 objects per scene, respectively, t(14) = 4.14, p < 0.01],
and among the outdoor scenes, urban environments had a signif-
icantly higher average density than natural [16.43 vs. 6.46 objects
per scene, respectively, t(6) = 4.52, p < 0.01]. This indicates that
the degree of human intervention in an environment results in
more labeled regions and objects.

I also examined the number of unique objects in each scene:
the larger this number, the greater the heterogeneity and pos-
sibly the complexity of the scene. In the database, the number
of unique items in a scene ranged from 1 to 42 (median: 6).

FIGURE 2 | (A) Indoor scenes had more objects on average than outdoor
scenes (left). Among the outdoor scenes, urban scenes had a greater
number of objects than natural (right). (B) Indoor scenes had a greater
number of unique labels in each scene than outdoor. Among outdoor
categories, urban scenes had more unique objects than natural scenes.
Error bars reflect ± 1 SEM.

Table 1 | (A) The mean number of total labeled regions per scene for each of the basic-level scene categories; (B) the mean number of uniquely

labeled regions per scene.

Indoor Urban Natural

Bath Bed Conf. Corr. Dine Kit’ n. Liv. Off. Tall City Strt. High Cst. OpC Mntn. Frst.

(A) 20.2 18.3 25.8 15.6 22.6 33.1 24.8 27.1 12.3 20.0 20.1 13.3 5.5 7.4 5.1 7.8

(B) 14.7 12.5 8.6 7.9 12.2 19.5 15.2 15.9 5.0 9.0 8.4 7.7 4.4 7.7 3.2 4.5

Scene category abbreviations (left to right) are: bathroom, bedroom, conference room, corridor, dining room, kitchen, living room, office, tall building (skyscraper),

city, street, highway, coast, open country, mountain and forest. This convention will be followed for all tables in this article.
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FIGURE 3 | Object density as a function of superordinate-level scene category (indoor, urban, and natural). Image examples of the most and least dense
images are shown for illustration.

The number of unique regions in a scene varied from 19.5 in a
kitchen, to 3.2 in mountain scenes (see Table 1B). As with total
object density, there were more unique objects in indoor scenes
when compared with outdoor scenes [13.3 and 5.7 unique items
per scene, t(14) = 4.78, p < 0.001], and among outdoor scene
categories, more unique objects in urban scenes compared with
natural scenes [7.55 and 3.93 unique items per scene, t(6) = 3.76,
p < 0.01, see Figure 2B). Manufactured environments therefore
have both a greater number and greater variety of objects than
natural environments.

Mean and variance of object size
Human observers are able to quickly and accurately compute the
mean size of objects in laboratory displays (Ariely, 2001; Chong
and Treisman, 2003, 2005). Are statistical properties of object size
diagnostic of scene category? Although object size and density are
related, it is important to consider that the two-dimensional label-
ing of a three-dimensional scene results in overlapping polygons.
For example, a pillow on a bed will overlap with the bed, or a chair
in front of a table with overlap with the table. Thus, mean object
size is not trivially the inverse of object density.

For each scene, the size of each object was expressed as
percent of total image area. In general, labeled regions were
relatively small (the median mean object size was 17% of the
total image area). There was considerable range in mean object
size in our database, from a minuscule 0.05% of image area
to a nearly all-encompassing 99.4%. Among basic-level cate-
gories, living rooms had the smallest mean object size (5% of

image area) and mountains had the largest (43%), see Table 2.
Predictably, indoor scenes had a smaller mean object size
compared to outdoor scenes [7.5 vs. 24.4%, t(14) = 4.94, p <

0.001]. Among the outdoor superordinate-level categories, nat-
ural scenes trended toward having a larger mean object size
compared to urban [30.2 and 18.6%, respectively, t(6) = 2.28,
p = 0.063].

Next, I examined object size variance across basic- and
superordinate- level scene categories. For each scene, the size vari-
ance of all objects in the scene was computed. For each basic-level
category, I computed the mean of object size variance, finding
that living rooms had the smallest variance of object size, and
mountains had the largest. Overall, indoor scenes had smaller
variance of mean object size compared to outdoor [t(14) = 5.84,
p < 0.001], but no reliable difference was found between natural
and urban scenes [t(6) = 1.07, n.s.].

Center of mass
The previous ensemble statistics have shown us that, relative to
outdoor environments, indoor scenes have a higher density of
objects, and lower variance of object size. However, these do
not tell us anything about where these objects are located in the
scene. Previous work has shown that human observers are sensi-
tive to the center of mass of a group of objects and can accurately
compute this location even when attention is diverted elsewhere
(Alvarez and Oliva, 2008). Are there robust differences in the
locations of objects in different basic- and superordinate-level
scene categories?
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Table 2 | Mean (top) and standard deviation (bottom) of mean object size in percentage of total image area.

Indoor Urban Natural

Bath Bed Conf. Corr Dine Kiİn. Liv. Off. Tall City Strt High Cst. OpC Mn tn. Frst.

5.7 6.9 10.3 14.0 7.1 5.4 5.0 5.3 24.9 17.4 20.0 12.0 23.9 25.2 42.9 29.0

2.7 3.3 5.5 7.4 3.8 3.7 2.1 2.7 15.4 11.6 9.5 6.5 11.6 12.1 15.3 22.4

For each scene, the center of each object was computed as
(xMax-xMin, yMax-yMin) of the polygon vertices. The center of
mass for the scene was then computed as the mean of these val-
ues, weighted by the size of the object (as computed above). As
expected, there was a strong tendency for the objects to center
along the vertical axis (basic-level category centroids were located
between 46 and 53% of total horizontal extent), indicating that
objects were located with equal probabilities in the left and right
sides of a scene. I observed a certain degree of diversity in position
in the vertical axis, with basic-level category centroids occupy-
ing 35–75% of the vertical axis. This makes sense, as vertical
location is a possible cue for scene depth. In particular, outdoor
environments had a higher center of mass in the image plane
(65% of vertical axis) than indoor environments [47% of verti-
cal axis, t(14) = 4.09, p < 0.01], reflecting the presence of objects
such as skyscrapers, buildings and sky. However, no systematic
difference was found between the natural and urban outdoor
scenes [t(6)< 1, n.s.]. Therefore, vertical center of object mass may
contain diagnostic information for scene category.

Object spacing regularity
The center of object mass tells us about the general location
of objects in an image, but this statistic does not tell us about
the spacing of these objects. Objects that cluster together can be
perceptually grouped (Gestalt law of proximity), and may have
functional relations in a scene. Do scene categories vary in their
object spacing regularity?

For each scene, pairwise distances between each of the objects
in the scene were computed, using the (x,y) locations of each
object’s center of mass. Then for each scene, I computed the
variability of object spacing as the standard deviation of dis-
tances, normalized by the mean distance between each object.
Normalizing by the mean allows us to compare images that were
not the same size. A low degree of variability indicates a very
regular, grid-like spacing of objects while a high degree of vari-
ability suggests a more clustered spatial layout. While basic-level
categories varied in their degrees of spacing variability, no system-
atic differences were found between indoor and outdoor scenes
[t(14) = 1.04, n.s.] nor between the natural and urban outdoor
scenes [t(6) = 1.12, n.s.]. This seems to be partially due to the
fact that indoor scene categories were themselves quite variable:
bathroom scenes displayed the highest degree of object spacing
regularity of all 16 categories while living rooms displayed the
lowest.

Scene classification with an ensemble statistics model
To what extent do these ensemble statistics provide informa-
tion about the basic- and superordinate-level scene categories?
To examine this question, I expressed each image in the database

according to its object density, unique object density, mean object
size, object size variance, center of mass and variability of object
spacing. Using a support vector machine (SVM) classifier [linear
kernel, using LIBSVM, Chang and Lin (2011)], I tested basic- and
superordinate-level scene categorization. Each image was sep-
arately used as a test image after training with the remaining
3498 images in the database. This procedure was the same for all
SVM analyses in this manuscript. LIBSVM uses a one-against-one
multi-class classification, with all parameters remaining the same
for each classification task. All default parameters for LIBSVM
were employed. For the superordinate-level categorization task,
the classifier achieved an accuracy of 91% correct for natural,
63.4% for urban and 76.5% for indoor scenes (overall AUC: 0.83).
This overall level of performance is well above the chance level of
33% (binomial test, all p < 0.0001).

For the basic-level categorization task, mean performance was
61% correct (AUC = 0.77), well above the chance level of 6.25%.
Performance on each basic-level category ranged from 6% for
offices to 81% for living rooms. Binomial tests on the performance
of each basic-level category indicated that all categories except for
office were classified above chance (p < 0.01). Basic-level classifi-
cation performance did not differ significantly between outdoor
and indoor scene categories [65 and 47% correct, respectively,
t(14) = 1.7, p = 0.10], nor did basic-level categorization perfor-
mance differ among natural and urban scene categories [73 and
55% correct, respectively, t(6) = 1.8, p = 0.12]. Incorrectly clas-
sified offices were frequently classified as living rooms (67% of
mistakes), kitchens (13%), or bathrooms (10%), see Figure 4 for
full confusion matrix.

What was the nature of the misclassifications? Twenty seven
percent of misclassified scenes were misclassified across the
indoor-outdoor superordinate distinction (i.e., a scene was
indoor and was classified as one of the outdoor categories).
This pattern is unlike human scene categorization, where mis-
takes are nearly always within the same superordinate-level cate-
gory (Renninger and Malik, 2004; Kadar and Ben-Shahar, 2012).
Although this classifier has remarkably high performance given
its simplicity, the pattern of performance suggests that human
observers use different or additional information for performing
rapid scene categorization.

How does each of the ensemble statistics contribute to classi-
fication performance? To address this question, I performed the
same SVM analysis as described above, using only one ensem-
ble statistic at a time. Basic-level categorization performance was
above chance for each of the ensemble statistics (binomial test,
all p < 0.001), and ranged from 10.2% for center of mass to
31.6% for spacing regularity. A one-way ANOVA on the accu-
racy of each classifier revealed significant differences in perfor-
mance (p < 0.001), suggesting that certain ensemble statistics
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FIGURE 4 | Confusion matrix for linear SVM classifier representing

ensemble statistics from 16 scene categories. Light colors along diagonal
show correct classifications while light colors on the off-diagonals
represent misclassifications. Data from main database using SVM with
linear kernel using leave-one-out cross validation.

are more useful than others for categorization. As shown in sec-
tion Object Spacing Regularity, the regularity of object spacing
did not differ reliably among superordinate level scene cate-
gories, even though it has the highest basic-level categorization
performance when tested alone, indicating that this feature car-
ries information about a scene’s basic-level category, but not
superordinate-level category.

In order to understand how the dimensionality of these fea-
tures affects classification performance, I ran classifiers trained
and tested on each combination of 2–6 ensemble statistics.
Classification performance grew linearly in this range (slope:
8.3% per feature, r2 = 0.98). Extrapolating, ceiling performance
could be expected with 11 ensemble features.

How well do ensemble statistics from the main database gen-
eralize to the auxiliary database? I trained a linear SVM on
ensemble statistics from the main database, and tested categoriza-
tion performance on the auxiliary database. Above-chance per-
formance of this classifier indicates shared information because
bias between the two databases should not be strongly corre-
lated. Indeed, basic-level categorization performance for a model
trained on the main database and tested on the auxiliary set
was 17% (AUC = 0.52), significantly above chance level (bino-
mial test, p < 0.001), indicating that ensemble statistics measured
from one database contain information about the pattern of
ensemble statistics in an independent database.

How does classifier performance compare to human perfor-
mance on a rapid scene categorization task? Here, I compared
the classifier to the human categorization data of Kadar and
Ben-Shahar (2012) who tested observers on 12 of the 16 cate-
gories in the current database. In their experiment, participants
were briefly shown two images and were then asked to deter-
mine whether the images were in the same category. Images
were presented for 27–1000 ms and followed by a 1/f noise mask.

The authors published confusion matrices for the scene categories
averaged over presentation time. Overall, sensitivity of the ensem-
ble statistics classifier was lower than that of the human observers
[mean A’ = 0.65 for classifier, 0.85 for participants t(22) = 7.7,
p < 0.0001]. When comparing the confusion matrices of the
classifier to those of the human observers, I found that although
the patterns of classifier confusion were not well correlated with
human error patterns at the basic-level (r = 0.04), error pat-
terns were quite similar when averaged over superordinate-level
categories (r = 0.79). Therefore, the ensemble classifier can pre-
dict human performance at rapid scene categorization at a coarse
level, adding support for the plausibility of such a coding scheme
as a mechanism for scene gist perception.

Together, these analyses show that simple ensemble statis-
tics, such as the number and location of nameless objects,
are sufficient for above-chance scene categorization at both the
basic and superordinate levels, and that the pattern of perfor-
mance mimics human categorization performance at a coarse
level.

Ensemble statistics discussion
In this section, I have described real-world images in terms of
very simple statistics that express the quantity and coarse spatial
distributions of “things” in a scene. These are of interest because
they are rapidly computed by human observers on laboratory dis-
plays (Parkes et al., 2001; Chong and Treisman, 2005; Haberman
and Whitney, 2007) and may explain aspects visual representa-
tions outside the fovea (Balas et al., 2009) or outside the focus of
attention (Alvarez and Oliva, 2008, 2009).

Descriptively, these results show that statistical ensembles vary
considerably with the degree of human manufacturing of an envi-
ronment. In particular, indoor scenes have more total objects, a
greater variety of objects, and a smaller average object size when
compared to outdoor scenes. This same trend holds for urban
scenes when compared to natural scenes, as urban scenes have a
higher degree of manufacture. Spatially, indoor scenes had a lower
center of mass compared to outdoor scenes. There are two reasons
for this. Outdoor scenes have more objects further off the ground
than indoor scenes (“sky,” “cloud,” “skyscraper,” “bird,” “tree”).
Also, outdoor scenes also have a larger mean depth than indoor
scenes (Torralba and Oliva, 2002). Objects receding in depth tend
to be located higher in the x-y image plane, leading to a higher
center of mass for outdoor scenes. Therefore, although scenes are
treated as a single class in the literature, this result suggests that
scenes are a heterogeneous set of entities, leaving open the possi-
bility that different environments may be processed differently by
the visual system.

Through the use of a linear classifier, I have shown that such
simple statistics carry sufficient information to categorize a scene
at both the basic- and superordinate- levels significantly above
chance, demonstrating for the first time that ensemble statis-
tics could be a plausible mechanism for scene gist recognition
in human observers. Although this classifier had lower perfor-
mance than the human observers from Kadar and Ben-Shahar
(2012), the patterns of errors made by this model were simi-
lar to those made by the human observers when averaged over
superordinate-level categories, suggesting that human observers
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may build an initial scene representation using ensemble-like fea-
tures. Of course, the majority of work on ensemble statistics has
been on very sparse laboratory displays. It remains to be seen
whether observers can accurately report statistical information
from complex, real-world images.

BAG OF WORDS MODELS
The statistical ensemble model considered all annotations to be
nameless “things.” However, the identity of these “things” is
critical to scene identity. In linguistics, models that consider sta-
tistical patterns of word use independent of syntactical relations
(so-called “bag of words” models) have been successful in docu-
ment classification and spam detection (Deerwester et al., 1990;
Blei et al., 2003). In computer vision, growing bodies of models
perform similar operations on visual “words” given by interest-
point or object detectors (Sivic and Zisserman, 2003; Fei-Fei and
Perona, 2005). Visual bag of words models have been very suc-
cessful for scene classification in recent years (Bosch et al., 2006;
Lazebnik et al., 2006; Li et al., 2010).

In the model considered here, a scene is represented as a list
of the objects contained in it. Measures such as object frequency
(overall as well as conditioned on scene category) and mutual
information between objects and scenes will be employed while
still ignoring the spatial relations existing between these objects
and regions. As before, I will examine the fidelity of a bag of words
model for predicting basic- and superordinate-level scene cate-
gories through the use of a linear classifier, and evaluate proposed
schemes by which human rapid scene categorization might occur
via object recognition.

Overall object frequency
Which objects are most common in the world? Just as cer-
tain words are more common than others in written text (“the”
is more common than “aardvark”), certain objects appear in
the world with greater frequency than others. Each of the 617
uniquely labeled regions in the database appeared between 1
and 3994 times in 1–2312 images. Nearly a quarter of the labels
(22.7%) appeared only once in the database while eight objects
(0.23%) appeared more than 1000 times. Overall, the frequency
of objects in the database is inversely proportional to the fre-
quency rank of the object, a relationship known in the linguistics
literature as Zipf ’s law (Li, 1992; see Figure 5).

The 10 most common objects are listed in Table 3 where I
list both the total counts for an object (right column), and the
number of scenes that contain at least one instance of that object
(middle column). It should be noted that these counts represent
a lower bound for the number of objects in the scenes. In scenes
where several exemplars of a small object were grouped together,
but too small to individuate (e.g., “apples” in a “bowl,” or “books”
on a “shelf”), it was typical for annotators to list these as a group
using the plural.

Object frequency
What are the most frequent objects in each scene category?
Knowing object frequency will allow us to find out how sensi-
tive human observers are to these frequencies, and thus better
understand the role of expectation in scene perception.

FIGURE 5 | Object frequency is inversely proportional to frequency

rank. This pattern does not strongly depend on how the database was
cleaned.

Table 3 | The 10 most common objects in the database.

Object name Nb scenes (%) Total counts

Sky 2312 (66) 2393

Tree 1377 (39) 3680

Building 1139 (33) 3994

Mountain 963 (28) 1615

Road 871 (25) 1064

Window 821 (23) 2981

Car 635 (18) 2943

Door 488 (14) 901

Ceiling 484 (14) 513

Plant 465 (13) 859

The middle column shows the number of scenes containing at least one exem-

plar of this object. The percentage of scenes with this object is shown in

parentheses. The right column shows the total number of these objects in the

database.

Table 4 shows the 10 most frequent objects in each basic-
level scene category. It is of note that there are relatively large
differences between basic-level scene categories in terms of the
frequency of the most typical objects: while “sofa” is an intuitively
important object for living rooms, it was present in only 86% of
living room scenes, while “faucet” was labeled in over 99% of
bathrooms.

What is the overall frequency-rank relationship for each of
the 16 scene categories? For each basic-level scene category, I
computed the number of objects that were present in at least
half of the images. Indoor scenes had a greater number of fre-
quent objects compared to outdoor scenes [7.1 vs. 3.9 objects,
t(14) = 3.1, p < 0.01]. Among the outdoor scenes, urban scenes
had a greater number of frequent objects compared to natu-
ral [5.3 vs. 2.5, t(6) = 4.0, p < 0.01]. Again, this pattern shows
that the degree of human manufacture affects the distribution of
object frequencies. To probe at a finer level of detail, I computed
the number of objects at frequency levels between 0.1 and 0.9.
Figure 6 shows the average of outdoor and indoor scenes (top, A)
and the average of natural and urban scenes (bottom, B). T-tests
performed at each threshold level showed that no statistical differ-
ence exists between the number of objects in outdoor and indoor

www.frontiersin.org October 2013 | Volume 4 | Article 777 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


Greene Statistics of high-level scene context

T
a
b

le
4

|
T

h
e

1
0

m
o

s
t

fr
e
q

u
e
n

t
o

b
je

c
ts

in
e
a
c
h

b
a
s
ic

-l
e
v
e
l

c
a
te

g
o

ry
a
lo

n
g

w
it

h
th

e
p

ro
p

o
rt

io
n

o
f

s
c
e
n

e
s

in
e
a
c
h

c
a
te

g
o

ry
th

a
t

c
o

n
ta

in
a
t

le
a
s
t

o
n

e
e
x
e
m

p
la

r
o

f
th

a
t

o
b

je
c
t.

In
d

o
o

r
U

rb
a
n

N
a
tu

ra
l

B
a
th

B
e
d

C
o

n
f.

C
o

rr
.

D
in

e
K

it
’İ
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FIGURE 6 | Object frequency at various thresholds. (A) Indoor scenes
have more frequent objects than outdoor scenes at frequencies ≤0.5 (left).
(B) Urban scene categories trend toward having more frequent objects
than natural scene categories.

scenes for frequency thresholds above 0.5 (Bonferroni corrected),
suggesting that although indoor scenes have more objects than
outdoor scenes, all scenes have similar numbers of very frequent
objects. Among the outdoor scene categories, natural and urban
scenes did not reliably differ.

Object diagnosticity
How important is an object to scene identity? Important objects
may frequently occur in scenes, but not all frequent objects
provide information about scene category. For example, some
objects, such as “tree” can occur in many environments, while
other objects such as “toilet” can only occur in a specific con-
text, such as a bathroom. To formalize this notion, I introduce
diagnosticity, which is the probability of a scene belonging to a
particular scene category conditioned on the presence of a par-
ticular object [p(scene|object)]. Although “chair” is a frequent
object in dining rooms, chairs are not diagnostic of dining rooms
because they are also found in bedrooms, conference rooms, offices,
etc. Similarly, there may be objects that are diagnostic that are
not frequent, and these might reflect object-scene pairs that have
been used in the object consistency literature (recall the example
of the “sand castle” on the beach). This measure is of particu-
lar interest as some models of human rapid scene categorization
posit that categorization can be mediated through the recognition
of one or more diagnostic objects (Friedman, 1979; Biederman,
1981).

Diagnosticity was measured for every object and scene cate-
gory in the database. However, this metric over-represents rare
objects. As nearly one quarter of labeled objects occurred only

once in the database, all of these objects have full diagnosticity
for the scene category they were found in. However, because they
are rare, these objects may not be informative. Therefore, I am
reporting the diagnosticity of objects with at least 10 instances in
the database. The most diagnostic objects for each scene category
are listed in Table 5.

In addition, I examined the number of completely diagnos-
tic objects (diagnosticity = 1) across scene categories. All objects
were included in this analysis. I found that indoor scenes tended
to have a higher number of completely diagnostic objects com-
pared to outdoor scenes [25.3 vs. 11.8, t(14) = 1.93, p = 0.07],
although both urban and natural scene categories had the same
number of completely diagnostic objects on average (11.8). Again,
this is not surprising as indoor scenes had more objects overall, as
well as more infrequent objects.

As noted in section Using Context for Rapid Scene
Recognition, the notion of diagnosticity can be used to test
hypotheses on the mechanisms of rapid scene categorization.
Biederman (1981) first posited that a scene might be recog-
nized through the recognition of a prominent, diagnostic object.
How diagnostic are the largest objects in the scene? For each
of the 3499 scenes, I examined the diagnosticity of the largest
object in that scene for the scene’s category. On average, the
largest object has a diagnosticity of 0.32 for the scene category
it is in (95% CI: 0.04–0.99). Thus, although knowing the iden-
tity of the largest object in the scene will allow you to guess
the scene category at an above-chance level, it does not reflect
the outstanding performance that human observers have with
rapid scene categorization. What if you know the identity of the
object nearest the center of the image? The mean diagnostic-
ity of the center object was 0.33 (95% CI: 0.03–1.00). Although
this is a little better than knowing the largest object [t(6996) =
2.3, p < 0.05], it seems unlikely that human scene gist per-
formance can be explained from recognizing the center object
alone.

Scene-object specificity
How many scene categories contain a particular object? Here, I
investigated the question by computing the number of scene cat-
egories in which each object is found. This measure is useful in
the design of experiments in object and scene perception, as it
allows experimenters to choose objects that are strongly tied to
only one scene category (for example, to study response bias, e.g.,
Castelhano and Henderson, 2008) or to use objects found in a
variety of scenes to de-couple object recognition from inferential
effects.

As shown in Figure 7, the majority of objects are closely tied
to one or two scene categories. The median number of scene cate-
gories containing an object was two. Forty eight percent of objects
were only found in one scene category, and of these, 53% had at
least two instances in the database, suggesting that this effect was
not solely driven by infrequent objects. In fact, 31 of the objects
found in only one scene category (5% of the total) had 10 or more
instances. These are listed in Table 6. On the other hand, there was
only one object present in all 16 categories (“wall”), and 19 (3%
of total) were present in at least nine of the 16 categories. These
are also listed in Table 6.
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Greene Statistics of high-level scene context

FIGURE 7 | A histogram of the number of basic-level scene categories

in which each of the 617 objects is found. The majority of objects are
associated with only one or two categories.

Table 6 | Objects with 10 or more database instances found in only

scene category (left), and objects found in at least nine of the 16

basic-level scene categories (right).

Objects in 1 category Objects in 9+ categories

Attic Pan Bench

Bath mat Podium Box

Bedspread Porch Chair

Cow Projection screen Clock

Cutting board Seagull Column

Desert Shower Decoration

Dish towel Shower curtain Door

File organizer Soap dish Lamp

Goose Spotlight Light

Hay bale Stove Person

Headboard Stove hood Plant

Kettle Toothbrush Poster

Keyboard Rock

Microphone Staircase

Mountain pass Statue

Mouse Table

Mouse pad Tree

Nightstand Wall

Oven Window

Object pairs and groups
While the previous statistics have examined relationships between
the scenes and single objects in them, it is also important to exam-
ine the relationships between multiple objects in a scene. Object
co-occurrence has been shown to guide visual search in natural-
istic scenes (Mack and Eckstein, 2011); interacting objects tend to
be perceptually grouped (Green and Hummel, 2006); object inter-
actions have been shown to increase activity in object-selective
cortex (Kim and Biederman, 2010); and scene identity can be pre-
dicted from pairs of objects in object-selective cortex (MacEvoy
and Epstein, 2011). How informative are groups of objects, and

how many objects do you need to be able to predict the scene’s
category?

First, I examined the frequency of co-occurrence of object
pairs in each basic-level scene category. The 10 most frequent
object pairs for each basic-level category are shown in Table 7.

As shown in Table 7, some object pairs are functionally related
(such as “faucet” and “sink” for bathroom), while many are not
(e.g., “sky” and “building” in skyscraper scenes). There are 20
object pairs in this table that are listed in multiple basic-level
categories. In fact, conference rooms and dining rooms share 8 of
the 10 most frequent object pairs. However, of these 20 object
pairs, only two are shared across superordinate-level categories
(“sky” + ”building” and “tree” + ”sky”). Both of these pairs
are shared across natural and urban scene categories. No object
pair in this group was observed in both indoor and outdoor
scenes. Therefore, although single objects may be found across
all superordinate categories, pairs of objects do not share this
property.

Next, I examined the 617 by 617 object co-occurrence matrix
collapsed over all scene categories. Overall, the object co-
occurrence matrix was sparse, with only 9% of possible object
pairings having been observed. Of the observed object pairings,
8% had a co-occurrence probability of 1, indicating that these
pairs of objects were always found together, and of these, 9%
(n = 254, 0.73% of total pairings) were for objects with more
than one instance in the database. Thus, requisite object pairs
are relatively rare in the world, and arbitrary pairs of objects are
generally not seen together.

What are the most frequent groups of n objects in each of
the basic-level scene categories? Table 8 shows the most frequent
groups of three, four, and five objects for each of the basic-
level scene categories. Larger groups are not shown because many
natural landscape images have fewer than 6 total objects.

How much information do these object groups provide about
scene categories? More specifically, are these groups of mul-
tiple objects more diagnostic of a scene category than single
objects? Here, I computed the diagnosticity [p(category|object)]
of the most frequent groups of one to five objects. As shown
in Figure 8, although the most common object in a scene cat-
egory has an average diagnosticity of only 0.35, diagnostic-
ity increases with increasing group size up to 0.78 for groups
of five. The diagnosticity of object groups did not reliably
differ across superordinate categories. This result gives some
insight into the third path to scene recognition proposed by
Biederman (1981), that scene recognition can arise through the
spatial integration of a few contextually-related objects. Although
this bag-of-words approach neglects the spatial relationships
between objects, this analysis places a lower bound on the
categorization performance that can be achieved by knowing
the identities of a few objects. In section Structural Statistics,
we will examine the effect of knowing coarse spatial relation-
ships.

Scene combinations
How many unique combinations of objects were observed in the
database? Do certain scene categories have more object combi-
nations than others? Let us first examine the theoretical limit:
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Table 8 | The most frequent groups of three, four, and five objects found in each of the 16 basic-level scene categories.

Category Three-objects Four-objects Five-objects

Bathroom Faucet, sink, towel Faucet, mirror, sink, towel Bath, faucet, mirror, sink, towel

Bedroom Bed, pillow, window Bed, ceiling, pillow, window Bed, ceiling, painting, pillow, window

Conference Ceiling, chair, table Ceiling, chair, light, table Ceiling, chair, light, table, window

Corridor Ceiling, floor, wall Ceiling, door, floor, wall Ceiling, door, floor, light, wall

Dining room Chair, table, window Bouquet, chair, table, window Bouquet, ceiling, chair, curtain, wine glass

Kitchen Cabinet, counter, plant Cabinet, counter, faucet, sink Cabinet, counter, faucet, sink, window

Living room Pillow, sofa, table Pillow, sofa, table, window Lamp, pillow, sofa, table, window

Office Book, chair, desk Chair, monitor, desk, window Chair, monitor, desk, whiteboard, window

Tail building Building, sky, skyscraper Building, sky, skyscraper, tree Building, road, sky, skyscraper, tree

Inside city Building, door, window Building, door, sky, window Building, door, road, sidewalk, window

Street Building, car, road Building, car, road, sky Building, car, road, sidewalk, sky

Highway Car, road, sky Car, road, sky, tree Car, road, sign, sky, tree

Coast Ocean, rock, sky Mountain, ocean, rock, sky Mountain, ocean, rock, sand, sky

Open country Field, sky, tree Field, mountain, sky, tree Building, field, mountain, river bank, sky

Mountain Mountain, sky, tree Ground, mountain, sky, tree Ground, mountain, road, sky, tree

Forest Bush, sky, tree Bush, river, rock, tree Bush, river, rock, sky, tree

FIGURE 8 | Diagnosticity of the most frequent object groups for scene

categories.

if all 617 objects in the database were independent, and could
occur with equal probability in all scenes, then there would be
2617 possible combinations of objects. Even if we examine only
the possible combinations of 6 objects (the median number of
unique objects in a scene from our database), this leaves us with
an astounding 7.5 × 1013 combinations!

In contrast, I observed only 2552 unique object combinations
in the 3499-scene database. In other words, 26% of scenes had
the exact same combination of objects as at least one other scene
in the database. However, this redundancy was not evenly dis-
tributed among the different basic-level scene categories. Ninety
nine percent of indoor scenes had unique object combinations
compared to only 68.6% of outdoor scenes [t(14) = 3.71, p <

0.01]. Among the outdoor scenes, 85.1% of urban scenes had a
unique object combination vs. 52.1% of natural scenes [t(6) =
2.89, p < 0.05]. Mountain scenes in particular had very high
redundancy in terms of unique object combinations, as only
33.7% of these scenes had a unique combination of objects.

Entropy
Information theory provides a formal means of expressing redun-
dancy between objects and scene categories. If all objects in the
database were independent and equally probable, then the redun-
dancy of the database could be expressed as log2(617) = 9.27
bits per object. However, object frequencies are not uniformly
distributed: objects such as “chair” and “sky” are much more fre-
quent than others such as “scaffolding” or “zebra” (section Object
Diagnosticity). Relative object frequencies can be accounted for
by computing the entropy of the database:

N = �p(o) log p(o)

Where p(o) refers to the observed probability of each object in
the database. In this instance, taking relative frequencies into
account reduces the number of bits per object needed to encode
the database to 6.25. Imagine that you are trying to guess an
object’s identity by playing the game “20 questions.” The rules
of this game stimulate that you may only ask questions whose
answer is “yes” or “no.” This entropy result tells us that you would
be able to correctly guess the object by asking, on average, 6 binary
questions.

Mutual information
How much information do objects and scenes provide about one
another? For example, how much evidence do you have about the
category dining room from the presence or absence of an object
such as a “chair?” To formalize this notion, I computed the mutual
information between all objects and their scene categories. While
diagnosticity tells us how likely an image is to belong to a particu-
lar scene category given the presence of a particular object, it does
not easily tell us which objects are important, as objects occurring
only once in the database are by definition completely diagnos-
tic of that category. Mutual information measures the degree of
dependence between objects and scenes and is therefore more
immune to the problem of small numbers. Formally, mutual
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information is computed as:

I(S, O) = H(S) − H(S|O)

Where H represents entropy. More specifically, the frequency of
each object O was computed for each scene category S. Thus, O
and S are binary variables (O = 1 if the object is found in the
image and 0 otherwise, S = 1 if the image belongs to the category
and 0 otherwise). Therefore, the mutual information is:

I(S, O) = −P(S)Log(P(S)) − P(∼S)Log(P(∼S) + P(O)(
(P(S|O)Log(P(S|O)) + P(∼S|O)LogP(∼S|O))

)

+P(∼O)
(
(P(S| ∼O)Log(P(S| ∼O))

+P(∼S| ∼O)Log(P(∼S| ∼O))
)

This form of mutual information is similar to that of Ullman
and colleagues in computing the information between image
fragments and object category (Ullman et al., 2002).

Table 9 lists the top 10 most informative objects for distin-
guishing between the 16 basic-level scene categories. An object
can share information with a scene category either because it its
presence provides strong evidence for a scene category or because
its presence provides good evidence against a scene category.
Thus, frequent objects that are never found in a scene category,
such as “sky” in most indoor scenes or “chair” in many outdoor
scenes, make the list.

In order to show the usefulness of objects that occur in the
scene category, Table 10 lists the 10 most informative objects for
each basic-level scene category, listing only those that are found
in the scene category.

Finally, Table 11 lists the 10 objects with the highest mutual
information over the entire database. These objects are the
most useful for distinguishing among the 16 basic-level scene
categories.

Scene classification with a bag of words model
Bag of words models consider a document to be represented by
the list of words found within it. While visual bag of words models
consider “words” output from object and feature detectors, the
model we will consider here involves, literally, the list of object
names within each scene. How sufficient is this representation for
basic- and superordinate-level scene categorization?

I also employed a linear SVM classifier trained on the raw
object occurrence matrix. Here, each scene is represented as a
617-object vector where each entry represents the count of each
object in that scene. The training and testing procedure was
identical to that of the ensemble statistics classifier. This clas-
sifier had 98% accuracy (AUC = 0.99) at superordinate-level
categorization and 92% accuracy (AUC = 0.96) at basic-level cat-
egorization; see Figure 9 for confusion matrix. A sign rank test
indicated that the classifier’s performance at superordinate-level
classification was superior to basic-level classification perfor-
mance (Z = 59, p < 0.001). There were no reliable differences
in the accuracy of indoor vs. outdoor classification [t(14) < 1],
nor urban vs. natural [t(6) < 1]. Forest images had the low-
est categorization performance (82%), and bathrooms had the
highest (99%). Thus, knowing all of the objects in a scene T
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Table 11 | Objects with the highest mutual information for all scene

categories.

Object name

Sky

Building

Chair

Road

Table

Ceiling

Tree

Car

Window

Pillow

FIGURE 9 | Confusion matrix for bag-of-words model. Data from main
database using SVM with linear kernel using leave-one-out cross validation.

is sufficient to categorize scene images at both basic- and
superordinate-levels.

To what extent is the higher performance of the bag-of-words
model compared to the ensemble statistics model due to the
higher dimensionality of this model? To answer this question, I
ran SVM analyses on sets of six objects, either by randomly sam-
pling from the 617 total objects, or by taking the objects with
the highest overall mutual information. For sets of randomly
selected objects, mean classification performance was 15.1% cor-
rect (95% CI: 13.9–16.1%), well below the 61% achieved by the
same number of ensemble features. When taking the six objects
with the highest overall mutual information (see Table 11), clas-
sification performance was 51.4%, only marginally worse than
that of the ensemble statistic model (binomial test, p = 0.051).
How many objects are necessary to reach ceiling performance? I
ran additional SVM analyses on sets of 2–512 objects, either by
randomly sampling objects or selecting objects with the highest
mutual information. As shown in Figure 10, ceiling performance
is reached with the 64 best objects. Therefore, although higher
performance was achieved using a bag-of-words approach, this
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FIGURE 10 | SVM classification performance as a function of the

number of objects used in a bag-of-words model. Blue points indicate
randomly sampled objects and red points indicate objects with the highest
mutual information. Error bars indicate 95% confidence intervals.

performance can be attributed to the larger dimensionality as the
features contained in the ensemble statistics model contained at
least as much information as a similar number of object features.

How does the performance of the bag of words model compare
to the human rapid scene categorization performance reported
in Kadar and Ben-Shahar (2012)? Overall sensitivity was sim-
ilar between the bag of words classifier and human observers
[A′ = 0.85 for both, t(22) < 1]. However, the patterns of errors
for the classifier and human observers were markedly dissimilar.
As with the ensemble statistics classifier, error patterns were not
well correlated at the basic-level (r = 0.04). However, error pat-
terns at the superordinate level actually showed opposite trends
from the human observers (r = −0.88), suggesting that the bag
of words representation, although similar in performance to
the human observers, is not similar to the human scene gist
representation.

Bag of words discussion
Here I have examined statistical regularities between object iden-
tities and scene categories, ignoring the spatial relationships
between these objects. The measures include object frequency,
object diagnosticity, the mutual information between an object
and its scene category and the number of scene categories each
object is found in. At this level of analysis, the relationships that
objects have to one another was also considered by examining the
co-occurrence frequencies of two or more objects.

Object frequencies are not equivalent to object “consistency”
as used in the visual cognition literature, which tends to be a
Boolean variable (a “blender” in a kitchen is consistent, a “fire
hydrant” in a kitchen is inconsistent). Here, object frequencies are
continuous and range from 0 (no observed instances of this object
for this scene category) to 1 (each scene in this category contains
this object). This continuous scale allows the design of new exper-
iments, allowing researchers to ask questions about the perceptual
processing or memory differences that might exist for objects
that are present in nearly all scene exemplars (frequency = ∼1)
vs. objects that are present in only about half of the exem-
plars (frequency = 0.5), vs. objects that are plausible but rare
(frequency <0.2).

The bag of words level of analysis shows additional ways that
scene categories differ. The ensemble level of analysis showed
large differences between superordinate-level categories in terms
of the amount of unnamed objects in scenes: indoor scenes hav-
ing more than outdoor, and urban having more than natural.
At this level of analysis, I found that objects strongly segregate
themselves into different basic level scene categories—any given
object was only found in a small number of scene categories, and
when an object is found in multiple basic-level categories, these
categories do not cross superordinate classes. A classifier given
all object identities achieved near-ceiling performance at both
superordinate- and basic-level scene classifications. Thus, knowl-
edge of either a scene’s category or an object’s identity gives a
great deal of information about the other, and full knowledge of
all objects in a scene is sufficient for scene categorization.

Additionally, ceiling performance can be achieved with fewer
objects, provided you have the “best” objects (i.e., the objects
with the highest mutual information for distinguishing scene cat-
egories). Here, I demonstrated that ceiling performance could
be reached with the 64 most informative objects. This is of
use to those in the computer vision community who perform
scene classification using hundreds of off-the-shelf object detec-
tors (e.g., Li et al., 2010). By choosing objects that are informative,
rather than frequent, these systems could be made far more
efficient.

The results of the linear SVM classifier suggest that if one
knows the identities of all of the objects in a scene, one will know
the category of the scene. Although this has been posited as a
possible route to scene understanding (Biederman, 1981), behav-
ioral evidence suggests that human observers do not apprehend
all of a scene’s objects in a single glance (Fei-Fei et al., 2007;
Greene and Oliva, 2009). Similarly, although the bag of words
classifier had similar overall performance to human observers,
it had markedly different patterns of errors, suggesting a repre-
sentation different from humans. How many objects do people
understand in a glance at a scene? This is a notoriously difficult
problem as conceptual short term memory is relatively fragile
(Potter, 1976), human observers can inflate performance through
elaborate rehearsal or guessing strategies (Liu and Jiang, 2005),
and observers can demonstrate sensitivity (in the form of nega-
tive priming) to objects that they cannot overtly name (VanRullen
and Koch, 2003). The most stringent tests estimate that observers
can only accurately report one object from a scene after a 250 ms
masked display (Liu and Jiang, 2005).

Can scene recognition proceed from the recognition of just
one object? When examining some plausible scenarios, such as
perceiving the largest, or the most centered object, diagnosticity
for the scene category is around 0.33, far below the performance
of human observers in rapid scene classification. Of course, diag-
nosticity increases with increasing numbers of objects (section
Object Pairs and Groups). However, classification performance
for smaller numbers of objects, even the most informative objects,
lagged behind that of the ensemble statistics model, suggesting
that individual objects may not make the best features for human
scene understanding and categorization.

While the bag of words level of analysis is a powerful and
popular computer vision model of objects in scenes, the spatial
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relationships between objects and regions are also critical to scene
identity. I explore this level of analysis in the next session.

STRUCTURAL STATISTICS
The third level of object-scene relationships I will explore is aimed
toward obtaining a “syntax” of visual scenes that includes the
nature of the spatial relations between objects. Just as the rela-
tions between object parts are key to the object identity (e.g., a
key difference between a pail and a mug is the placement of the
handle, Biederman, 1987), the relations between objects may pro-
vide additional information into scene identity. The spatial layout
of a scene is created in part by the relative positioning of the
objects within it, and regularities in layout allow a scene to be
identified under highly degraded conditions, such as under sparse
contours (Biederman, 1981) or blur (Oliva and Torralba, 2007)
where object identities cannot be recovered. Indeed, two of the
three pathways to scene gist outlined by Biederman (1981) can
come from structural relations.

Here, I will examine the locations of objects in scenes, as well as
the distances between objects and the spatial distributions of the
important diagnostic and informative objects. As with the other
two levels of analysis, I will examine the extent to which these
structural statistics can be used to classify scenes at the basic- and
superordinate- levels.

Object position specificity
One basic structural description is the position specificity of
individual objects. In other words, how stereotyped are the x-y
locations of the objects in the database? Figure 11 shows a heat
map of the spatial locations of the 10 most common objects in
the database. Some regions, such as “ceiling,” are tightly bound
to a particular image location while others, such as “plant” or
“building,” can be found throughout the image plane. To quan-
tify this notion, I examined the variance in x-y position for each
object center across the database as well as the position variance
of objects in each of the basic-level scene categories.

Table 12 shows the 10 objects with the most position vari-
ance as well as the 10 objects with the least position variance in
the database. Unsurprisingly, objects with a great deal of position
specificity (low variance in x-y position) are often objects that
make up the spatial boundaries of a scene (such as “carpet” and
“sky”).

For basic-level scene categories, bedrooms had the most posi-
tion variance while open country scenes had the least. Overall,
indoor scenes tended to have more position variance compared
to outdoor scenes [t(14) = 2.98, p < 0.01]. However, among the
outdoor scenes, no distinct pattern emerged [t(6) < 1].

Are objects found in different locations when they are found
in different scene categories? If this is the case, then position can
provide diagnostic scene information. Here, I took the 17 objects
that had at least 10 instances in indoor categories and at least
10 instances in outdoor scene categories (“bench,” “box,” “chair,”
“clock,” “column,” “door,” “light,” “person,” “plant,” “poster,”
“railing,” “sign,” “staircase,” “statue,” “trash can,” “wall,” and
“window”) and examined image locations for the object when
found outdoors and compared it to the locations where the object
was found indoors. For each of these objects at each pixel location,

FIGURE 11 | Spatial distribution of the 10 most common objects in the

database. The pixels included in the segmentation mask for each instance
of an object were summed to show the most frequent locations of objects.

Table 12 | The 10 objects with the least position variance (most static)

and with the most position variance (least static).

Most static Least static

Carpet Molding

Desert Leaves

Ceiling Dock

Exit sign Dome

Bath mat Pan

Bedspread Basket

Ocean Grill

Fan Lighthouse

Bed Calendar

Sky Toy

The search for these objects was constrained to objects with at least 10

instances in the database.

I subtracted the number of instances the object was found in that
location in an outdoor scene from the number of times the object
was found in that location in an indoor scene. Significance was
determined by Bonferroni corrected t-tests. Only three objects
(“door,” “window,” and “plant”) had different location patterns
in indoor scenes compared to outdoor scenes. Figure 12 shows
that these objects are found in higher positions in the image
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FIGURE 12 | Heat maps of the locations of doors (left), plants

(center), and windows (right), conditioned on whether the object

was found in an outdoor or indoor scene. Warmer colors indicate

locations that are more probable in an indoor scene while cooler
colors indicate locations that are more probable for the object in an
outdoor scene.

plane when found indoors compared to where they are found
outdoors. Therefore, most objects are found in similar scene
locations regardless of category, so position information gener-
ally does not add additional information beyond that of object
identity. Additionally, these small differences may reflect both dif-
ferences in the structure of these environments (such as depth
differences, as discussed in section Center of Mass), as well as
differing strategies of photographers for capturing the relevant
information in different environments. Our knowledge of the
three-dimensional world tells us that a “door” is located in a
“wall,” and just above the “floor.” Therefore, these differences
reflect statistics of photographs, as well as statistics of the external
world.

Spatial distribution of diagnostic and informative objects
Where are the most informative regions of a scene? Photographers
tend to center pictures on objects of interest (Tatler et al., 2005),
and objects in LabelMe tend to be labeled from the center out
(Elazary and Itti, 2008). Do these centered objects have the high-
est diagnosticity or mutual information for their scene category?

For each of the 16 scene categories, I plotted all pixels associ-
ated with that most informative object or the object with the high-
est diagnosticity for the scene category. As shown in Figure 13,
diagnostic objects tend to be centered overall, while informative
objects tend to be centered lower in the image. This is not just due
to spatial regression to the center, as random selections of objects
do not display this behavior.

This analysis formalizes the notion of center-bias in pho-
tographs, demonstrating that photographs tend to be centered
on scene regions that contain highly diagnostic objects. Highly
informative regions, on the other hand, tend to cluster near the
bottom of the image. This analysis also shows key differences
between the notions of mutual information and diagnosticity.
Many of the most informative objects are structural or bound-
ary elements of a scene that can coarsely distinguish between
categories, but are not necessarily the most important or inter-
esting objects in a scene (see section Mutual Information and
Table 11). For example, although “carpet” is highly informative
because it distinguishes between outdoor and indoor environ-
ments, it is not a terribly interesting region. As it is known that
the central fixation bias of human observers persists even when
important features are moved to the periphery (Tatler, 2007),
this finding is unlikely to provide additional insight into human
scene perception mechanisms. However, researchers in computer

FIGURE 13 | Spatial distribution of the most informative objects for all

scene categories (top), most diagnostic object for each scene category

(middle) and a random object for each scene (bottom).

vision might find greater scene classification efficiency in apply-
ing object detectors from the center out rather than in a sliding
window.

Scene classification with a structural model
How much information do object locations provide about scene
categories? To answer this question, I divided all of the 3499 scene
images into quadrants and computed the number of times each
object was found in each quadrant for each image. Thus, com-
pared to the bag of words model, each object is represented four
times, once in each of the four quadrant locations. This matrix
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was fed into a linear SVM classifier with the same training and
testing procedures outlined earlier. Superordinate and basic-level
categorizations were assessed. Any increase in performance above
the bag of words level can be taken as evidence for the utility of
spatial object information for scene categorization.

Overall, this classifier had 98% accuracy (AUC = 0.99) at
superordinate-level scene categorization (not significantly dif-
ferent from the 98% correct performance of the bag-of-words
model, Z < 1) and 89.6% accuracy (AUC = 0.95) at basic-level
categorization (significantly lower than the 92% correct from
the bag-of-words model, Z = 3.7, p < 0.001). There was no reli-
able difference in basic-level categorization accuracy for indoor
(90.8% correct) vs. outdoor (89.4% correct) scenes [t(14) < 1],
nor between urban and natural scene categories [t(6) < 1].
Performance by category was similar to the bag of words
classifier—best performance was achieved by bathroom (98%, tied
with corridor and coast), while the classifier had the poorest per-
formance on open country images (75%). These open country
images were frequently confused with mountains (38.2%), forests
(34.3%), and highways (14.7%).

Altogether, adding coarse spatial information to the bag of
words classifier did not result in higher classification perfor-
mance. This is not very surprising as the bag of words classifier
was at near ceiling performance, as the majority of objects were
only found in one or two scene categories (section Scene-Object
Specificity), and even objects found in multiple scene categories
were generally found in similar locations regardless of category
(section Object Position Specificity). The lower performance for
basic-level classification is likely due to an increased number
of features (617 vs. 2468) with the same number of training
examples.

Structural discussion
In this section, I have described scenes in terms of objects
and their locations in the image plane. First, I described the
location variability of each object, showing that objects that
describe a scene’s boundaries, such as “floor” or “sky” show
less position variance than non-structural objects. Interestingly,
most objects are found in similar locations in all scene cate-
gories. Of the objects found frequently in both outdoor and
indoor scene environments, only “door,” “window,” and “plant”
showed different patterns. For each of these cases, the object
is found higher in the image plane in indoor scenes relative
to outdoor scenes. This makes sense as the spatial enclosure
of indoor scenes allows objects to be found in these locations.
However, knowing an object’s position in the x-y image plane
does not provide much additional information over knowing its
identity.

Next, I demonstrated that the center bias of photographs
shows up in this database as a tendency for the most diag-
nostic and informative objects to be located near the center of
the image. This may reflect the photographer’s inherit sensitiv-
ity to object diagnosticity, and desire to convey the maximum
amount of information about an environment in a single view-
point. However, as informative objects tend to be large structural
areas of a scene, diagnostic objects were more centered in the
image.

Of course, both of these measures reflect statistical regular-
ities of photographs rather than statistical regularities of the
world. Although I have shown a tendency of photographers to
photograph a “door” higher in the image plane in an indoor envi-
ronment, we know that doors in the world are located above the
“ground,” and within “walls” in all environments. Similarly, “cen-
ter bias” has no meaning in the immersive, three-dimensional
real world. Despite these limitations, statistics of photographs
provide insight into how human observers choose to represent
information from the real world when forced to choose a single
view.

A linear classifier trained on the bag of words model with
coarse spatial location information did not outperform the pure
bag of words model, and in fact, fared a little worse in basic-level
categorization. There are two reasons for this: (1) most objects are
only found in one or two scene categories (section Scene-Object
Specificity), so the position of these objects is not going to provide
additional category-related information; and (2) of the objects
that are found in several scene categories, the majority are found
in similar locations regardless of category (section Object Position
Specificity).

This does not mean that structural information does not
contribute unique scene information, however. One limitation
of measuring structural relationships on scene photographs is
that we lose the three spatial dimensions that are available in
the world. The third dimension would allow the disambigua-
tion of a variety of object relationships, including containment,
support and adjacency. Indeed, these types of object relations
can be easily extracted using 3D models (Fisher and Hanrahan,
2010). Additionally, object pairs and groups may have spatial
arrangements that are diagnostic for scene category and a more
sophisticated learning approach could glean these from the data.
For example, although both dining rooms and conference rooms
tend to have centrally located “table” and “chairs,” and may also
contain a “telephone,” the presence of telephone on top of the
table is diagnostic of conference room. On the other hand, a struc-
tural description on a scene may not be a good model for human
scene gist as it has been shown that human scene classification
performance can be well explained as the perception of a set of
unbound features (Evans and Treisman, 2005). Similarly, elec-
trophysiological markers structural scene processing occur later
than markers of semantic processing (Võ and Wolfe, 2013). Taken
together, these suggest that the first scene representation may
include little structural information.

As ensemble statistics had better classification performance,
feature-for-feature, compared to individual objects, a structural
model that coarsely localizes these types of features may prove to
be more fruitful for future work.

GENERAL DISCUSSION
In this work, I have provided a set of real world image statis-
tics at the level of labeled objects, and assessed the utility of
these measurements for scene categorization. By understanding
the regularities of natural images, we can design experiments to
understand how these redundancies are exploited by the human
visual system to efficiently recognize environments and search for
objects in those environments.
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CATEGORY INFORMATION COMES FROM DIFFERENT LEVELS OF
ANALYSIS
I have examined scene-object relationships at three levels of anal-
ysis: the ensemble level, the bag of words level, and the structural
level. Statistics measured at each level of analysis contained suf-
ficient information to categorize scene environments into basic-
and superordinate-level categories. Although we intuitively know
that kitchens and offices differ in terms of the objects found in
them, this work also demonstrates that scene categories differ in
terms of the amount and types of “things” found in them (ensem-
ble statistics), and to a certain degree in the spatial distribution of
their objects (structural statistics).

Additionally, quantitative analysis of objects in scenes allows
us to test the plausibility of hypotheses on the role of object
perception in rapid scene categorization. Biederman (1981) sug-
gested that scenes might be recognized by first recognizing a
single, prominent object in the scene. In section Object Pairs
and Groups, I demonstrated that knowledge of either the largest
object or the most centered object was insufficient to reproduce
the high classification performance of human observers. Adding
additional objects increases the diagnosticity for the scene, so
a path for future work will be to examine how small groups
of objects might be rapidly perceived to give rise to scene gist.
Classification performance using a few objects as features lagged
behind classification performance of ensemble statistics, suggest-
ing that the coarse object information provided by the ensem-
bles was more informative about scene category than individual
objects.

NOT ALL SCENE CATEGORIES ARE CREATED EQUALLY
Similarly, scene categories in different superordinate categories
(indoor vs. outdoor, or natural vs. urban) differ markedly from
one another at each level of analysis. Compared to outdoor scene
categories, indoor environments have a higher object density as
well as greater object variety.

The identities of the objects found in scenes also differs
between superordinates, as very few objects were found in both
indoor and outdoor scenes. The majority of objects in the
database were found in only one or two scene categories, so know-
ing that an object is present in a scene provides considerable
information about the scene environment. However, when con-
sidering the few objects that are found in many scene categories
(such as “door,” “window,” or “trash can”), object position in
the image can (but tends not to) differ by superordinate cate-
gory, thus giving little additional predictive information about the
scene category above that of the object identity.

Why do these indoor scene categories differ from the outdoor
scene categories? One limitation of this database is that the indoor
scene categories reflect small-scale indoor environments in the
home and workplace. Perhaps larger indoor environments such
as department store or warehouse would show patterns more sim-
ilar to the outdoor environments, as larger environments mean
that more objects will be too small to individually label, leading
to a smaller number of measured objects.

Interestingly, categorization accuracy for all superordinate-
level categories was found to be similar for each of the clas-
sifiers considered here. This was unexpected, as indoor scene

categorization is often considered to be a harder problem than
outdoor scene categorization (Quattoni and Torralba, 2009).
This result suggests that machine vision systems performing
indoor scene categorization can be improved in at least two
ways: first, the use of “objectness” detectors (Alexe et al., 2012)
could be employed to understand object density and other
ensemble statistics that are somewhat diagnostic of scene cate-
gories, and second, to use object detectors for the objects that
provide the most mutual information for distinguishing scene
categories.

ARE ALL OBJECT TYPES CREATED EQUALLY?
Throughout this paper, I have treated each annotated label equally
for the purposes of statistical analysis. “Sky” is just as much of an
object as “book” in the database, even though it is not tangible
and has no clear boundaries in the world. Although defining what
counts as an object is a notoriously difficult problem (for a review
see Feldman, 2003), one might want to consider sub-types of
objects. For example, one might distinguish between object labels
that refer to count nouns vs. mass nouns (Burge, 1972; Adelson,
2001; Huntley-Fenner et al., 2002; Prasada et al., 2002). Count
nouns are labeled objects that are discrete and countable (“mug,”
“building,” “car,” “book”) while mass nouns are regions with no
fixed units or boundaries (“field,” “water,” “smoke,” “sky”). This
distinction appears to be a fundamental difference in object rep-
resentation that is present from a very early age (Huntley-Fenner
et al., 2002). Alternatively, some of the annotated labels reflect
background or boundary elements of a scene, such as “ground,”
“sky,” “wall,” or “ceiling.” As a well-accepted definition of a visual
scene includes the lawful arrangement of objects on a background
(Henderson and Hollingworth, 1999), it is possible that these
labeled regions have a different perceptual status than other labels
such as “bowl” or “book.” Indeed, objects that make up scene
boundaries have the highest mutual information for distinguish-
ing between scene categories (see Table 11). However, a glance at
the labels in Appendix B will convince the reader that it is very
easy to find unclear cases.

GENERALIZABILITY AND DATABASE BIAS
How generalizable are these findings? In other words, how much
do they say about the distribution of objects in the world, and
how much do they say about the idiosyncrasies of this partic-
ular database? Although the eight-category database from Oliva
and Torralba (2001) used in the main database is a standard scene
classification set in computer vision, more modern work has crit-
icized this database for relying too heavily on the Corel Stock
Photo collection (Torralba and Efros, 2011), which may repre-
sent only over-stylized representations of scenes. Similarly, the
indoor images largely consist of highly idealized environments
from real estate websites. Do these generalize to more everyday
environments? In order to address this question, I have computed
all statistics on a separate auxiliary database, and I have shown
the similarities and differences between the two datasets whenever
possible in Appendix D. Assuming that the bias in these datasets is
independent, their degree of overlap reflects the generalizability of
these statistics (Torralba and Efros, 2011; Khosla et al., 2012). This
assumption is likely to be optimistic, however, as both datasets are
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part of the larger set of scenes that people find remarkable enough
to photograph and share on the web in the first place.

The two datasets examined in this work showed consider-
able but not perfect overlap. It is likely that the noted differ-
ences between natural landscapes and indoor environments are
robust to dataset bias, but perhaps not the differences between
urban and indoor scenes. The auxiliary set showed that the
differences in these superordinates is driven primarily by natu-
ral landscape images, as this database contained very complex
urban environments whose images had object density similar
to indoor environments. Both datasets showed remarkable over-
lap in object frequency and mutual information, making these
measures generally useful for the design of new experiments on
object-scene context. Similarly, the measured entropy was very
similar between the two datasets, suggesting that this statistic is
robust to any dataset bias. The specificity of objects to a particu-
lar scene category was also observed in both sets. However, other
measurements should be taken with more caution. The main
dataset showed more redundancy (scenes having the same com-
bination of objects) than the auxiliary set, and this manifested
itself in higher classifier performance across the board. Appendix
D contains more details on the specific differences in the findings
between the two data sets.

Future investigations will continue to validate the generaliz-
ability of these data via comparison to other annotated databases
such as SUn (Xiao et al., 2010), or through modeling the bias
directly (Khosla et al., 2012). Separately, one can see how these
statistics match the intuitions of human observers, although
observers’ intuitions should not necessarily be counted as ground
truth, because we are insensitive to statistical base rates in some
domains (Tversky and Kahneman, 1974).

THE UTILITY OF OBJECT CONTEXT STATISTICS
Although it is generally recognized that lawful contextual rela-
tionships facilitate scene and object recognition, work in this area

has been limited because these contextual relationships have not
been fully characterized and quantified. Previous work has char-
acterized contextual relationships as merely being the intuitive
plausibility of an object for a given scene environment. Many of
the scene-object pairs in these experiments include informative
but rare objects, such as a “moose” in a forest. Although a moose
is more likely to be found in a forest when compared to other
types of environments, the vast majority of forest images will not
include a “moose.” By measuring object frequency, diagnosticity
and mutual information, experimenters will be able to determine
the perceptual and memory consequences of these relationships
individually. Furthermore, current experiments treat contextual
relationships as binary—an object is either contextually related to
an environment or it is not. However, the statistics measured here
are continuous, allowing for more subtle questions to be asked.

More broadly, it has been argued that we cannot yet perform
well-controlled studies on natural scene images because it is too
difficult to understand or control the stimuli (Rust and Movshon,
2005). The results presented here take a necessary step toward this
goal by characterizing complex scene stimuli in terms of quanti-
fied object-scene relationships. At all levels of analysis, real-world
scene images show remarkable redundancy that can be utilized
by the brain to represent the world efficiently. Therefore, mea-
suring these statistics allows us to better understand and control
our stimuli and to move forward into more real-world vision
research.
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APPENDIX A: RAW LABELS (SIC)
<blank>, “?object,” abinet, adding machine, advert, aerial, aerial
building, air conditining, air conditioner, air conditioning, air
conditioning occluded, air filter, air vent, airco, airplane, alarm,
alarm clock, alarmclock, alcove, all, American flag, animal, ani-
mal seal, animals, antique bureau, apple, apples, arcade, arcade
occluded, arch, arches, archway, arearug, arid ground, arm chair,
armchair, armchair back, armchair part, amchair top, armoir,
art, art piece, art?, artichokes, ashtray ash tray, attic, automan,
avenue, awning, awning crop, awning occluded, awning tidy up,
back of chair, back wall, backpack, badge, bag, balcany occluded,
balcony, balcony crop, balcony occluded, bale, balustrade, band-
stand, banister, bank, bar, barbeque, barrier occluded, base board,
basket, basket food, basket fruits, basket of fruit, basket of mag-
azines, basket of towels, basket table, basket of brushes, baskets,
bath, bath faucet, bath mat, bath tub, bath robe, bathtub, bath-
tub plug, beach, beam, bed, bed part, bed posts, bed skirt,
bedskirt, bedspread, bell, bell pepper, bell tower, bench, bench
occluded, bib, biclist occluded, bicycle, bicycle occluded, bicy-
clist, bicyclists, bidet, bidet faucet, bilding, bin, bin occluded,
binder binders, bird, bird figurine, bird occluded, birdcade, black-
board, blancket, blanket, blender, blind, blinds, block, block of
cheese, blocks, bluildings, boad, board, board games, boarder,
boat, boat crop, boat cropped, boat decoration, boat occluded,
boats, book, book case, book shelf, book shelves, bookcase, books,
books on shelf, bookshelf, bookshelves, boooks, boot, boots, bor-
der, bottl;e, bottle, bottle top, bottles, bottom bunk, bottom of
chair, bottom of chairs, bouldings, bouldings occluded, bouquet,
bouquet flowers, bowel, bowl, bowl of apples, bowl of fruit, bowl
of popcorn, bowl of strawberries, bowl of vegitables, bowl with
food, bowl with fruit, bowl with vegis, bowls, box, box con-
tants, box occluded, box?, boxes, braided garlic, branch, branches,
branchs, brand name, brand name crop, brand name occluded,
bread, bread tray, brick fireplace, brick wall, bridge, bridge crop,
bridge handrail, bridge occluded, briefcase, broom, brushes,
brush, brushes, bucket, buffet, buggy, buiding, buiding occluded,
buidings occluded, buildig occluded, buildin, buildin occluded,
building, building aerial, building crop, building façade, build-
ing occluded, building occluded, building skyscraper, buildingl
occluded, buildings, buildings crop, buildings occluded, buildings
occludeds, buildingsoccluded, buildins, buildins occluded, build-
intgs occluded, buildling, buildlings occluded, bulletin board,
buoy, bus, bus stop, bus occluded, bus stop, bus stop occluded,
bushes, business card, bus occluded, cabin, cabin occluded, cab-
inet, cabinet door, cabinet dresser, cabinets, cabinets, cabintet
shelf, cake, cake dish, cake stand, calander, calendar, calender,
can, canal water, candel, candle, candle holder, candle stand, can-
dle stick, candles, canister, canister with brushes, canister with
utencils, canisters, cannon, canoe, canopy, cans, captus, captus
crop, car, car crop, car side, car az90deg, car crop, car frontal,
car frontal occluded, car occluded, car ocluded, car rear, car rear
az90deg, car rear occluded, car rear side, car rear side crop, car
rear side crop, car side, car side az0deg, car side az180deg, car
side crop, car side occlude, car side occluded, car side rear, car
side rear crop, car sides, car_back, car_front, car_left, car_right,
car_top_back, car_top_fornt, car_top_front, card, carpet, carpet
floor, carrots, cars, cars occluded, cars side, cars side crop, cars

side occluded, cars sides, cart, case, cassettes, castle, cat, cd,
cd’s, cdoor, cds, ceiing light, ceililng, ceiling, ceiling fan, ceiling
lamp, ceiling lamps, ceiling light, ceiling molding, ceiling tile,
ceiling vent, ceiling lamp, ceilng light, celing, cell phone, cen-
terpiece, centra reservation, central reservation, ceramic rooster,
certain, certificate, chair, chair back, chair bottom, chair crop,
chair leg, chair legs, chair occluded, chair part, chair seat, chair
top, chair wheel, chairs, chaise lounge, chandalier, chandelier,
chandelier, chandlier, changing table, channel, char, cheese, chess
board, chessboard, chest, chiar, child walking, chimney, china,
china cabinet, china hutch, china plate, cigarettes, city, cliff,
clip board, clock, clock occluded, closet, closets, cloth, clothes,
clothes hamper, cloths, cloud, clouds, coaster, coat, coat rack,
coatrack, coffee maker, coffee pot, coffee table, column, col-
umn, column occluded, columns, comforter, computer, computer
monitor, computer screen, computer tower, computers, confer-
ence table, cooler, copier, cords, couch, counter, counter top,
counter, cove, covered balcony, covered balcony occluded, cow,
cows, cpboard, crane, crane occluded, crib, cross, crosswalk, cub-
bord, cubby, cubical, cubicle, culumn, cup, cup and saucer, cup
holders, cup with flower, cupbard, cupboard, cups, curb, cur-
tain, curtain rod, curtains, cushion, cutting board, cutting board
island, cutting board with vegitables, cyclist, dam, decoration,
decorations, decorative ball, decorative balls, decorative boat, dec-
orative bowl, decorative box, decorative fish, decorative kimono,
decorative mask, decorative mirror frame, decorative molding,
decorative object, decorative objects, decorative pillow, decorative
plat, decorative plate, decorative pots, decorative tree, decorative
urn, decorative wall hanging, decoratvie plate, deoderant, derer
ground, desert, desert field, desert ground, desk, desk calendar,
desk calender, desk divider, desk lamp, desk mat, desk organizer,
desk separator, desks, digital watch, dining table, disc, dish, dish
rack, dish towel, dish towels, dishes, dishrack, dishwaher, dish-
washer, disks, display case, display stand, dock, dog, dog crop,
doily, doll, dolphin, dome, dome crop, dome occluded, door,
door crop, door entrance, door frame, door knob, door mat,
door occluded, door_, doorframe, doorpart, doors, doorway,
double door, double door crop, double door occluded, double
window occluded, drape, drapes, drawer, drawer nob, drawers,
drawyers, dresser, dressing screen, dressor, dried flowers, dried
plant, drinking fountain, driver, dry earase board, dry earaser,
dry erase board, dryer, dune, eagle, egg crate, eggplant, eilling
lamp, electric mixer, electrical outlet, elevator door, elf, embank-
ment, emplem, enclave, end board, end table, entertainment
center, entrance, entrance occluded, entry, entry-phone, entry-
way, envelope, envelopes, equipement, esplanade, estate, exit sign,
external driver, external drivers, eye, falg, fall branch, fan, faucet,
faucit, faucst, fax machine, fence, fence crop, fence occluded,
fences crops, fern, ferns, field, field desert, field flowers, field
grass, figurine, figurines, file, file box, file cabinet, file cabinets,
file organizer, files, filing cabinet, fining cabinet_, filing cabi-
nets, fire, fire alarm, fire escape, fire extinguisher, fire hydrant,
fire place, fire sprinkler, firehose, fireplace, fireplace screen, fire-
wood, fish tank, flag, fip flop, fllor, flock, floor, floor carpet, floor
marble, floor, carpet; floor_, floral centerpiece, flower, flower
arrangement, flower in vase, flower pot, flowers, flowers in pot,
flowers in vase, flute, flyer, flyers, fog banck, fog bank, folder,
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folders, food, food on plate, foot board, footboard, footbridge,
footrest, forest, forest mountain, fork, forks, fountain, fountain
crop, fountain occluded, fp screen, frame, framed mirror, framed
picture, frozen over river, fruit, fruit bowl, fruit in bowl, fruit
plate, fruit stand, fruits, fruits bowl, fruits plate, frying pan,
funicular (railway), garage, garage door, garage door occluded,
garages, garden, garland, garlic, garment bag, gas pump, gas sta-
tion, gate occluded, glass, glass bowl, glass cupboard, glass door,
glass doors, glass piece, glass shelf, glass table, glass wall, glasses,
globe, goblet, goblets, goose, goose occluded, gooses, grandfa-
ther clock, grapes, grass, grass field, green field, green peppers,
greenhouse, grill, grille, grille occluded, groound, groun grass,
ground grass crop, ground snow-covered, groung grass, hair, hair
brush, hall, hand rail, hand towel, hand vaccum, handle, handrail,
hanger, hanging bird, hanging fish, hanging hat, hanging instru-
ment, hanging lamp, hanging light, hanging monitor, hanging
pan, hanging pans, hanging patches, hanging pitcher, hanging
plant, hanging plate, hanging pot, hanging pot rack, hanging rack,
hanging rug, hanging toy, hanging utencils, hanging utensils,
hanging utentcil rack, hanging wall flower, harbor, hat, hay bale,
head board, head stand, headboard, headphones, hearth, heater,
hedge, highway, hill, hill urban, hills, hold back, hood, horse, hot
pad, house, house occluded, house crop, house in ruins, house
occluded, houses, houses crop, houses crops, houses occluded,
houses occludeds, human, hung out, hutch, hydrant, ice bucket,
idol, ilver ware, image frame, in box, industry, inset ceiling light,
inset ceiling lights, instrument, intercom, ipod, iron, island, isle,
jar, jars, jet, jetski, jetty, jewelry box, joist, joists, jug, junk, ket-
tle, key board, key board shelf, key pad, keyboard, kiosk, kite,
Kleenex, Kleenex box, knife, knife holder, knife holdrer, knife set,
knives, knobs, ladder, ladle, lake, lake water, laminating machine,
lamp, lamp part, lamp shade, lamps, lampshade, land, lap top,
laptop, large bowl, large window, lava, leaf, leaves, leaves tree,
ledge, lemon, letter bin, lettuce, lichen, light, light fixture, light
switch, lighter, lighthose, lighthouse, lights, lignthouse, line per-
sons, liquor bottle, litter bin, litter bin crop, little bear, lodge, loft,
logs, lotion, lots of chairs, lower cabinets, machine, machines,
magazine, magazine holder, magazine rack, magazines, magnifier,
magnifying glass, mailbox, mailboxes, make up case, man, man-
hole, mantle, map, markers, massage table, massager, mast, mat,
matt, mattress, message board, message board_, metal door, metal
door occluded, metal shutters crop, microphone, microwave,
might stand table, mill, mini blinds, mirror, mirror extender,
misc., mixer, molding, monitor, monitor stand, monitor_display,
monitors, monitpr, monkey, monkey occluded, monolith, mono-
lith crop, monument, moon, motorbikde occluded, motorbike,
motorbike crop, motorbike occluded, motorbike side, motorbike
side crop, motorbike side occluded, motorbikes side, motor-
clyclist, motorcyclist, motorcyclist crop, mountain, mountain
pass, mountains, mountainside, mountan, mouse, mouse pad,
mouse stand, moutain, mouth, movie screen, muffin, mug, mugs,
napkin, napkin in glass, napkins, neck pillow, news stand, news-
stand, newspaper, night stand, night stand cabinet, night stand
dresser, night stand part, night stand table, nightstand, notebook,
notebooks, nothing, notice, nozzle, nutcracker, obelisk, object,
object, objetc, objectds, objects, occluded, occluded sky, ocean,
ocean water, oject, onion, orange, ottamon, ottoman, ounter

top, outlet, overhead projector, pad, paht, pail, painting, paint-
ings, paitings, pallet, palm tree, palm pilot, palm tree, palm tree
crop, palm tree cropped palm tree occlude, palm tree occluded,
palm tree trunk, palm trees, palms trees, pan, pane, pane crop,
pane occluded, panel, panelling, panels, pants, paper, paper filer,
paper roll, paper sheet, paper towel, paper towel holder, paper
towels, paper weight, papers, park, parking lot, parking meter,
parking place, parquing door, parquing meter, marquing meter
occluded, pass window, passway, pasta, path, pbject, pear, pears,
pedestal, pedestel, pedestrian street, pen, pen box, pen holde,
pen holder, pen set, pencil, pencil cup, pencils, pens, people,
people riding, people sitting, people walking, pepper mill, pep-
per shaker, perkalator, person standing occluded, person, person
standing, person walking, person boy, person boy standing, per-
son crop, person cyclist, person in line, person man back crop,
person man sitting, person man standing, person man walking,
person man walking occluded, person occluded, person riding,
person setanding, person sitting, person sitting cropped, per-
son sitting occluded, person skiing, person skiing crop, person
skiing occluded, person stading, person stangig, person stand-
ing crop, person standing kid, person standing occluded, person
sweping, person swiming, person swimming, person waling, per-
son walkin, person walking, person walking crop, person walking
occluded, person walking ocluded, person wallking, person wise,
person wise back, person wise back occluded, person wise back-
occluded, person wise crop, person wise in profile, person wise
occluded, person woman, person woman sitting, person woman
standing, person woman walking, person working, persons row-
ing, persons standing, persons walking, peson standing, peson
walking, pesrson walking, pestal and mortar, pet bowl, phone,
photocopier, piano, picture, picture frame, pictures, pie, pig
statue, pillar, pillow, pillows, pipe, pitcher, placard, place mat,
place matt, placemat, plain, plams trees, plan pot, plank, plank
occluded, plank, plant, plant box, plant box occluded, plant crop,
plant fern, plant grapevine, plant in stand, plant in vase, plant
occluded, plant pot, plant pot occluded, plant stand, plant tree,
plants, plants fern, plants ferns, plaque, plate, plate and bowl,
plate of fruit, plates, platform, platter, plug, plumbing, pneumatic
tire, podium, pole, pole crop, pole occluded, poles, pond, porch,
porch occluded, portfolio, portico, post it note, post it notes,
poster, poster board, poster crop, poster occluded, posters pole,
pot, pot holder, pot plant, pot plant crop, pot plant occluded,
pots, potted flowers, potted plant, power cord, pperson driving
occluded, precipice, printer, prjection screen, prjector, projection
screen, projector, prson standing, prson walking, puddle, puffy
object, pulley, purse, pylon, pylon occluded, qall, quay, quilt, rack,
rack of fruit, radiator, radio, radio alarm clock, rail, railing, rail-
ings, raill, railroad track, railway, rainbow, range hood, recycling
bins, red light, ree, reflection, refridgerator, refrigerator, refuge,
remote, remote control, revolving doors, rig, river, river bed,
river side, river water, riverside, rives water, road, road highway,
road traffic, roads, roamn shade, roasting pan, robe, rock, rock
cropped, rocke wall, rocks, rocky ground, rocky hill, rocky moun-
tain, rocky mountains, rocky moutain, rocky plain, roks, rolling
pin, roman shade, roof, roof occluded, room label, rooster, rooster
figurine, rootes, round table, row of chairs, row of desks, rubber
duckie, rug, ruin, runner, s, sack, sailboat, sailing boat, sair railing,
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salt shaker, sand, sand beach, sands, caofa, satellite dish, sauce
pot, saucer and bowl, scaffolding, scaffolding crop, scale, scanner,
sconce, screen, scrub brush, scrubland, sculpture, sculpture crop,
sculpture occluded, sculpyure, sea, sea water, sea beach, sea water,
seagull, seashell, serving tray, sewer, shade, shades, shadow, sham-
poo, shedders, sheep, shelf, shell-bowl of popuri, shelves, ship,
ship occluded, shop window, shop window crop, shop window
occluded, shower, shower curtain, shower curtain rod, shower
door, shower faucet, shower head, shower nozzle, shrub, shrub
cropped, shrubs, shrubs crop, shrubs occluded, shudder, shutter,
side, side rail, side tabel, side table, side walk, sideboard, sidetable,
sidewalk, sidewalk café, sig, sign, sign crop, sign occluded, signes,
signs, siky, silver ware, silverware, sing, sink, sink faucet, site
office, sk, skier, skier crop, skly, sky, sky light, sky occluded,
sky sunset, skyscraper occluded, skyscrape, skyscraper, skyscraper
building, askyscraper crop, skyscraper occluded, skyscraperoc-
cluded, skyscrapers, skyscrapers occluded, skyscrapr occluded,
skyscrapre occluded, skyscrpaer occluded, skyscrper occluded,
skysscraper occluded, slated wooden panel, sled, sleepers, sleeping
robe, sliding door, sliding door crop, sliding glass door, slipper,
slippers, slope, sloped ceiling, small bowl, small plate, small rug,
small table, small table part, small vase, smoke alarm, smoke
detector, snow, snow covered, snow covered ground, snow cov-
ered mountain pass, snow covered plain, snow covered road, snow
covered valley, snow land, snowly mountain, snowy covered field,
snowy ground, snowy hill, snowy mountain, snowy mountain
pass, snowy plain, snowy road, snowy trees, soap, soap bars, soap
bottle, soap box, soap dish, soap dispenser, soap holder, soap on a
rope, soaps, socket, sofa, sofa bed, sofa part, soil, soldier, sonwy
mountain, sown field, space heater, spatulas, speacker, speaker,
spice jar, spice rack, sping, sponge, spoon, spotlight, spray bottle,
sprinkler, ssnowy mountain, stacj of papers, stack of books, stack
of papers, stack of plates, staicase, stained-glass window, stain-
less steel back splash, stainless steel splash guard, stainless steel
wall, stair board, stair railing, staircase, staircase occluded, stairs,
stairway, stake, stand, stand occluded, stands, stapler, starage rack,
starfish, station, statue, streetlight, step, steps, stero, stick, sticker,
sticks, stone, stone ball, stone ball crop, stone occluded, stone
vase with flowers, stones, stones wall, stool, storage box, storage
rack, stov, stove, stove gaurd, stove hood, stove nob, stove sheild,
stove top, streelight, street, street light, street lighting, street mar-
ket, streetcar, streetlamp, streetlight, streetlight crop, streetlight
occluded, streetlights, streetlilght, string, stump of tree, subway,
suitcase, sun, sun occluded, sunflower field, sunflowers field, sun-
flowers field, sunset, supermarket, supplies, support beam, tabel
occluded, table, table cloth, table lamp, table leg, table occluded,
table part, table runner, table top, table with tablecloth, tablecloth
runner, tableland, tables, tank, tanker occluded, tapestry, tea cup
and saucer, tea kettle, tea pot, teapot, teddy bear, telephone, tele-
phone booth, telephone box, telephone box occluded, television,
television cabinet, television case, television screen, television
stand, tence, terotauuko, terrace, terrace occluded, text, thermos,
thermostat, tile, tile ?, tiled wall, tissue, tissue box, tissues, toast,
toaster, toaster oven, toilet, toilet brush, toilet brush stand, toi-
let paper, toilet paper holder, toilet paper roll, toll gate, tomatoes,
toolbox, tooth brush holder, tooth brushes, toothbruch holder,
toothbrush, toothbrush in cup, toothbrush in jar, toothbrushes,

toothpaste, tootlbrush, top bunk, top chair, top of chair, top wall,
torch, towel, towel hanger, towel rack, towels, tower, tower crop,
tower occluded, town, toy, toys, tp roll, track, track lighting, trac-
tor, traffic lights, traffic light, traffic light frontal, traffic light side,
traffic lights, traffic lights crop, traffic sign, trafficlights, trash,
trash can, trash compactor, tray, tray table, tray with supplies,
trays, tree, tree crop, tree cropped, tree cut down, tree in pot,
tree leaves, tree occluded, tree top, tree trunk, tree trunk crop,
tree trunk cropped, tree trunk fallen, tree trunk occluded, tree
trunks, trees, trees cropped, trees occluded, trees occludeds, trees
top, trophy, trres, truck, truck crop, truck frontal, truck frontal
occluded, truck occluded, truck rear, truck rear occluded, truck
side, truck side occluded, trucks occluded, truk, truk occluded,
truk side occluded, trumpet, trunk, trunk tree fall, tub, tube,
tuck occluded, tumbledown building, tunnel, tv, tv stand, type-
writer, umbrella occluded, umbrellas, undergroth, undergrowth,
urban plain, urban valley, urbanization, urinal, urn, utencil, uten-
cil holder, utencil rack, utensil, utensils, valance, valley, van,
van crop, van frontal, van occluded, van rear, van rear side,
van side, van side crop, van side occluded, vanity, varehouse,
vase, vase with flowers, vase with leaves, vase with plant, vases,
vault, VCR, vegetable, vegetables, vegetation, vegitable, vegita-
bles, vegitables in bowl, vegitables on a plate, vehicles, vent, vents,
verge, vertical blinds, verticle blinds, viewpoint, vineyard, vol-
cano, votive, wakk, wal, wall, wall boarder, wall border, wall clock,
wall hang, wall hanging, wall lamp, wall light, wall mount, wall
occluded, wall outlet, wall outlets, wall stitch, walls, wardrobe,
wardrobe part, wash cloth, washcloths, washing machine, waste
basket, water, water bottle, water bottles, water cooler, water fall,
water fountain, water ocean, water pond, water river, water sea,
waterfall, watering can, watermelon, wathervane, wave splash,
waves, web cam, webcam, wheat field, wheelbarrow, wheelchair,
wheels, white board, white out, whiteboard, whte board, widnow
ledge, wind chime, windex, window, window ceiling, window
crop, window frame, window ledge, window occluded, win-
dow pane, window seat, window shade, window shades, window
shop, window shudders, window shutter, window sill, windows,
windwo, wine bottle, wine cupboard, wine glas, wine glass, wine
glasses, wine rack, wineglasses, wineglass, wineglasses, wire, wire
rack, woman, woman walking, wood, wood beam, wood post,
wooden ship, workstation, x, xx, xxx, zebra, zebra crossing,
zebras.

APPENDIX B: FINAL REGION LABELS
Adding machine, advert, air conditioner, air filter, airplane,
alarmclock, alcove, antenna, apple, arcade, arch, armchair, arti-
chokes, ashtray, attic, awning, backpack, bag, balcony, bandstand,
barbecue, base board, basket, bath, bath mat, bath plug, bathrobe,
beach, beam, bed, bed posts, bedskirt, bedspread, bell, bell pep-
per, bench, bicycle, bidet, binder, bird, birdcage, blanket, blender,
block, board games, boat, book, bookshelf, boot, bottle, bouquet,
bowl, box, braided garlic, branch, bread, bridge, briefcase, broom,
bucket, buffalo, buffet, buggy, building, bulletin board, buoy, bus,
bus stop, bush, business cards, cabin, cabinet, cactus, cake, cake
dish, cake stand, calendar, can, canal water, candle, candle holder,
canister, cannon, canoe, canopy, car, card, carpet, carrots, case,
cassettes, castle, cat, cave, cds, ceiling, ceiling fan, ceiling tile, cell
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telephone, centerpiece, certificate, chair, chaise lounge, chande-
lier, changing table, chart, cheese, chessboard, chest, chimney,
china, china hutch, cigarettes, city, cliff, clip board, clock, closet,
cloth, clothes, clothes hamper, cloud, coaster, coat, coat rack,
coffee maker, coffee table, column, computer, computer moni-
tor, cooler, counter, cow, crane, crib, cross, crosswalk, cubicle,
cup, curb, curtain, curtain rod, cutting board, dam, decoration,
deer, deodorant, desert, desk, desk divider, desk mat, desk orga-
nizer, dish, dish towel, dishrack, dishwasher, display case, dock,
dog, doily, doll, dolphin, dome, door, door mat, drawer, dresser,
dressing screen, drinking fountain, dryer, dune, eagle, egg crate,
eggplant, electric mixer, electrical outlet, elevator door, emblem,
end table, entertainment center, entrance, envelope, equipment,
eraser, esplanade, estate, exit sign, external hard drive, fan, faucet,
fax machine, fence, fern, field, file, file organizer, filing cabi-
net, fire, fire alarm, fire escape, fire extinguisher, fire hydrant,
fire sprinkler, firehose, fireplace, fireplace screen, firewood, fish
tank, flag, flock, floor, flower pot, flowers, fog, food, footboard,
footrest, forest, fork, fountain, frame, fruit, fruit bowl, fruit stand,
frying pan, garage, garage door, garden, garden, garland, garlic,
garment bag, gas pump, gas station, gate, glass, glasses, globe,
goblet, goose, grandfather clock, grapes, grass, greenhouse, grill,
ground, hair brush, hall, hanger, harbor, hat, hay bale, headboard,
headphones, hearth, heater, hedge, hill, horse, house, instrument,
intercom, ipod, iron, island, jar, jetski, jetty, jewelry box, jug,
kettle, keyboard, kiosk, kite, knife, knife set, knob, ladder, ladle,
lake, laminating machine, lamp, lamp shade, land, laptop, lava,
leaves, ledge, lemon, lettuce, lichen, light, light switch, lighter,
lighthouse, lodge, loft, lotion, machine, magazine, magazine rack,
magnifying glass, mailbox, make up case, manhole, mantle, map,
markers, massage table, massager, mast, mat, mattress, median,
microphone, microwave, mirror, mirror extender, molding, mon-
itor stand, monkey, monolith, monument, moon, motorcycle,
mountain, mountain pass, mouse, mouse pad, muffin, mug,
napkin, news stand, newspaper, nightstand, notebook, nozzle,
nutcracker, obelisk, object, ocean, onion, orange, ottoman, oven,
overhead projector, painting, pallet, palm pilot, pan, panel, pants,
paper, paper, roll, paper towels, paper towels holder, paper weight,
park, parking lot, parking meter, parking place, pasta, path, pear,
pedestal, pen, pen holder, pen set, pencil, pencil cup, pepper
shaker, person, pestle and mortar, pet bowl, photocopier, piano,
picture, pie, pillow, pipe, pitcher, placard, placemat, plank, plant,
plant pot, plaque, plate, plateau, platform, platter, plumbing,
podium, pole, pond, porch, portfolio, post it note, poster, pot, pot
holder, pot rack, power cord, printer, projection screen, projec-
tor, puddle, pulley, purse, pylon, quay, quilt, rack, radiator, radio,
railing, railroad track, railway, rainbow, recycling bins, reflection,
refrigerator, remote control, river, river bank, road, rock, rolling
pin, roof, room label, roots, rubber duckie, rug, ruin, salt shaker,
sand satellite dish, scaffolding, scale, scanner, sconce, scrub brush,
seagull, sealion, seashell, sewer, shadow, shampoo, sheep, shelf,
shelves, shoe, shop window, shower, shower curtain, shower door,
shower head, shutters, sideboard, sidewalk, sidewalk café, sign,
silverware, sink, site office, sky, sky light, skyscraper, sled, slid-
ing door, slippers, slope, smoke detector, snow, soap, soap dish,
soap dispenser, soap on a rope, sofa, soil, space heater, spatu-
las, speaker, splash guard, sponge, spoon, spotlight, spray bottle,

sprinkler, stained glass window, staircase, stake, stand, stapler,
starfish, station, statue, step, stereo, stick, sticker, stool, stove,
stove hood, stove top, street market, streetcar, streetlight, string,
stump of tree, subway, suitcase, sun, supermarket, table, table
runner, tablecloth, tank, tapestry, teapot, teddy bear, telephone,
telephone booth, television, television stand, terrace, thermos,
thermostat, tile, tire, tissue, toast, toaster, toilet, toilet brush, toilet
brush stand, toilet paper, toilet paper holder, toll gate, toma-
toes, toolbox, toothbrush, toothbrush holder, toothpaste, torch,
towel, towel rack, tower, toy, tractor, traffic light, trash, trash
can, trash compactor, tray, tray table, tree, trophy, truck, trum-
pet, trunk, tunnel, typewriter, umbrella, urinal, urn, utensils,
utensils rack, vacuum, valley, van, vanity, vase, vault, VCR, veg-
etable, vent, verge, vineyard, volcano, wall, wall hanging, wall
mount, wardrobe, warehouse, washing machine, watch, water,
water bottle, water buffalo, water cooler, water fountain, water-
fall, watering can, water cooler, water fountain, waterfall, watering
can, watermelon, wave, weathervane, webcam, wheel, wheelbar-
row, wheelchair, white out, whiteboard, wind chime, windex,
windmill, window, window frame, window ledge, window seat,
window shade, window sill, wine bottle, wine glass, wine rack,
wire, wood, wood post, zebra.

APPENDIX C: LABELS THAT WERE DELETED (SIC)
Bottom of chair, box contants, chair leg, chair wheel, eye, hold
back, junk, lamp part, misc., mouth, nothing, occluded, precipice,
side, sping, supplies, table leg, terotauuko, viewpoint, xx, xxx.

APPENDIX D: AUXILIARY DATA SET
(a) Object density

Unique object density for the auxiliary set was highly corre-
lated with the main data set (r = 0.82). While natural land-
scapes in the auxiliary set had fewer objects when compared
to urban scenes [t(6) = 3.46, p < 0.05], there was no reliable
difference in object density in this database between indoor
and outdoor environments [t(14) < 1], as urban scene images
in this database were more complex than urban images in the
main set.

(b) Classification using ensemble statistics
For the auxiliary set, images could be classified at the super-
ordinate level with 85% accuracy (AUC = 0.86). Likewise,
basic-level categorization could be done on this data set with
33% accuracy (AUC = 0.61). Although the categorization
performance is significantly above the chance level of 6.3%,
it is lower than the 61% achieved by the main database
(Z = 13.8, p < 0.0001). To what extent is this lower perfor-
mance due to the smaller size of the database? I sampled 5000
sets of 1220 images from the main database and tested clas-
sification performance on these sets, and found a median
basic-level classification accuracy of 51% (95% confidence
interval: 48–54%). Thus, although database size explains
some of the performance difference, the higher classification
performance on the main dataset may reflect homogeneity
in the images that might not be reflected in the real world.
This does not diminish from the main point of this analysis:
that simple ensemble statistics of objects in scenes provides
above-chance information about scene categories.
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FIGURE A1 | Example images from the auxiliary database.

(c) Ten most frequent objects in auxiliary set
(In descending order of frequency). Wall, sky, floor, window,
tree, road, building, lamp, door, table.

(d) Overlap between frequent objects in main database vs. auxil-
iary database
How did the object frequencies measured in the main
database compare to the object frequencies in the auxil-
iary set? For each basic-level scene category, I computed
the overlap between the 10 most frequent objects in both
databases. Overall, there was 69% overlap, ranging from 50%
(conference room) to 90% (bathroom).

(e) Object diagnosticity
To compare object diagnosticity between the main and auxil-
iary datasets, I computed the overlap of the 10 most diagnos-
tic objects in both sets. 34% of the 10 most diagnostic objects
in the main set were in the 10 most diagnostic objects in the
auxiliary set.
The 10 most diagnostic objects in each basic-level cate-
gory: (In descending order of diagnosticity). Bathroom: sink,
shower, shower door, soap, toilet lid, toilet paper, towel rack,

toilet, towel, bath. Bedroom: bed, nightstand, dresser, pillow,
painting, telephone, closet, fan, clock, picture. Conference
room: board, object, laptop, bottle, ground, bench, bicycle,
speaker, chair, table. Corridor: entryway, light, light switch,
bench, door handle, door, poster, ceiling, trash can, umbrella.
Dining room: plate, dish, flower, vase, fireplace, tray, radia-
tor, armchair, knife, bowl. Kitchen: cutlery, dish towel, stove
hood, oven, coffee maker, stove, dishwasher, refrigerator,
microwave, blender. Living room: sofa, fireplace, magazine,
television stand, television, pillow, carpet, armchair, furni-
ture, vase. Office: mousepad, keyboard, computer monitor,
computer, desk, mug, mouse, pen, speaker, can. Tallbuilding:
skyscraper, river, bus, building, statue, roof, fire hydrant,
streetlight, pole, chimney. City: umbrella, house, balcony,
parking meter, street, motorcycle, traffic light, wheel, van,
awning. Street: hedge, wire, manhole, headlight, shutters,
windshield, tail light, truck, van, license plate. Highway:
bridge, median, tail light, fence, grass, road, cloud, truck, car,
skyscraper. Coast: beach, ocean, sand, boat, cliff, rock, water,
sky, cloud, mountain. Open country: field, hill, grass, cloud,
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bush, bison, house, sky, mountain, snow. Mountain: bison,
snow, mountain, forest, hill, cloud, water, house, rock, sky.
Forest: path, tree trunk, forest, foliage, river, snow, ground,
tree, rock, grass.
The smaller degree of overlap for diagnosticity, compared to
frequency (section Object Frequency) or mutual information
(section Mutual Information) is likely due to the fact that the
auxiliary set is much smaller, so there are fewer objects with
at least 10 instances in this dataset.

(f) Scene-object specificity
Forty six percent of objects were found in only one cate-
gory, and of these, 43% had more than one instance in the
database. A total of 19 objects (3.6%) were found in nine
or more scene categories. Comparing these 19 objects to the
19 objects from the main database found in nine or more
categories, 13 objects were found in both. These are: “box,”
“chair,” “clock,” “door,” “lamp,” “light,” “person,” “plant,”
“poster,” “table,” “tree,” “wall,” “window.”

(g) Number of unique combinations
In the 1220 image auxiliary set, 1108 images had unique
object combinations (9% redundancy).

(h) Entropy

The entropy of the auxiliary set was 6.15 bits per object.

(i) Mutual information
Fifty four percent of the 10 most informative objects for each
scene category were shared between the main database and
the auxiliary set, and six of the 10 objects with the high-
est overall mutual information for all scene categories were
shared between the two data sets.

(j) Classification using bag of words model
Ninety seven percent accuracy (AUC = 0.97) at
superordinate-level categorization (not significantly
different from main set performance: Z = 1.2, p = 0.23) and
80.2% basic-level categorization accuracy (AUC=0.88). This
was significantly lower performance compared to the main
dataset (Z = 14, p < 0.001). As the two data sets contained
different objects, it is not possible to train on one and test on
the other as in the previous section.

(k) Classification using structural model
The auxiliary set achieved 77.5% correct at basic-level catego-
rization (significantly lower than main dataset: Z = 13, p <

0.001) and 97% correct at superordinate-level categorization
(similar to performance on main data set: Z < 1).
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