
ORIGINAL RESEARCH ARTICLE
published: 03 December 2013

doi: 10.3389/fpsyg.2013.00898

Validating the PVL-Delta model for the Iowa gambling task
Helen Steingroever1*, Ruud Wetzels2,3 and Eric-Jan Wagenmakers1

1 Psychological Methods, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
2 Informatics Institute, University of Amsterdam, Amsterdam, Netherlands
3 Spinoza Centre for Neuroimaging, Amsterdam, Netherlands

Edited by:

Ching-Hung Lin, Kaohsiung Medical
University, Taiwan

Reviewed by:

Jan Glaescher, University of
Hamburg, Germany
Shunsuke Kobayashi, Fukushima
Medical University, Japan

*Correspondence:

Helen Steingroever, Psychological
Methods, Department of
Psychology, University of
Amsterdam, Weesperplein 4,
1018 XA Amsterdam, Netherlands
e-mail: helen.steingroever@
gmail.com

Decision-making deficits in clinical populations are often assessed with the Iowa gambling
task (IGT). Performance on this task is driven by latent psychological processes, the
assessment of which requires an analysis using cognitive models. Two popular examples
of such models are the Expectancy Valence (EV) and Prospect Valence Learning (PVL)
models. These models have recently been subjected to sophisticated procedures of model
checking, spawning a hybrid version of the EV and PVL models—the PVL-Delta model. In
order to test the validity of the PVL-Delta model we present a parameter space partitioning
(PSP) study and a test of selective influence. The PSP study allows one to assess the
choice patterns that the PVL-Delta model generates across its entire parameter space.
The PSP study revealed that the model accounts for empirical choice patterns featuring a
preference for the good decks or the decks with infrequent losses; however, the model
fails to account for empirical choice patterns featuring a preference for the bad decks. The
test of selective influence investigates the effectiveness of experimental manipulations
designed to target only a single model parameter. This test showed that the manipulations
were successful for all but one parameter. To conclude, despite a few shortcomings, the
PVL-Delta model seems to be a better IGT model than the popular EV and PVL models.
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1. INTRODUCTION
The Iowa gambling task (IGT; Bechara et al., 1994) is arguably the
most popular neuropsychological paradigm to assess decision-
making deficits in clinical populations. In order to isolate and
identify the psychological processes that drive performance on the
IGT, behavioral analyses of IGT data are insufficient. A promising
alternative analysis approach is to use cognitive process models.
The IGT imposes high demands on these models because it is
a complex task producing various types of choice patterns that
a good model should be able to generate (Steingroever et al.,
2013a,b). In addition, the models should also account for individ-
ual differences and for participants’ switch behavior on the task
(e.g., Zhao and Costello, 2007; Steingroever et al., 2013b). Despite
the high demands, some plausible and elegant IGT models have
been proposed. Two of the most frequently used representatives
include the Expectancy Valence model (EV; see Steingroever et al.,
2013b, for references), and the Prospect Valence Learning model
(PVL; see Steingroever et al., 2013b, for references and a detailed
description of the models). The parameters of these models cor-
respond to distinct psychological processes such as motivation,
learning/memory, and response consistency (Busemeyer et al.,
in press).

Since the development of the EV model in 2002,
reinforcement-learning (RL) models for IGT data have been
subjected to sophisticated procedures of model checking (e.g.,
Busemeyer and Stout, 2002; Yechiam and Busemeyer, 2005;
Yechiam and Ert, 2007; Ahn et al., 2008; Yechiam and Busemeyer,
2008; Fridberg et al., 2010; Steingroever et al., 2013b). These
model comparison efforts spawned a hybrid version of the

EV and PVL models—the PVL-Delta model (Ahn et al., 2008;
Fridberg et al., 2010; Steingroever et al., in press; see next section
for a detailed description of the PVL-Delta model and recent
model comparison efforts). This model seems to be promising
for IGT data because it can generate a variety of empirical choice
patterns better than its competitors (Steingroever et al., in press).

Whereas previous procedures of model checking focused
mostly on relative comparisons of different RL models for IGT
data, no efforts have been carried out to validate the PVL-Delta
model (i.e., assess its adequacy in isolation). Here, we focus on
two different ways of validating the PVL-Delta model: first, we
conduct a parameter space partitioning (PSP) study that sys-
tematically assesses which choice patterns the PVL-Delta model
generates across its entire parameter space. Thus, with this first
validity check we aim to answer the question: can the PVL-Delta
model generate typical empirical choice patterns over a wide
range of parameter settings? Second, we conduct a test of selec-
tive influence that investigates the effectiveness of experimental
manipulations designed to target only one of the model param-
eters. Thus, with this second validity check we aim to answer
the question: do the parameters of the PVL-Delta model indeed
correspond to the proposed psychological processes?

The outline of this article is as follows. In the first section, we
explain the IGT, outline the PVL-Delta model, and review previ-
ous efforts to compare RL models for IGT data. In the second and
third section, we present the PSP study and the test of selective
influence. In the last section, we summarize our findings and dis-
cuss their ramifications. To anticipate our results, our PSP study
shows that the PVL-Delta model can account for empirical choice
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patterns featuring a preference for the good decks or the decks
with infrequent losses; however, the model fails to account for
empirical choice patterns featuring a preference for the bad decks.
Our test of selective influence shows that the manipulations were
successful for all but one parameter.

2. THE IOWA GAMBLING TASK AND THE PVL-DELTA MODEL
2.1. THE IOWA GAMBLING TASK
In this section we describe the IGT (see also Steingroever
et al., 2013b, in press). The purpose of the IGT is to measure
decision-making deficits of clinical populations in an exper-
imental setting. In the traditional IGT, participants are ini-
tially given $2000 facsimile money and are presented with
four decks of cards. Participants are instructed to choose
cards in order to maximize their long-term net outcome
(Bechara et al., 1994, 1997). Unbeknownst to the partic-
ipants, the task typically contains 100 trials. After each
choice, participants receive feedback on the rewards and the
losses (if any) associated with that card, and the running
tally.

The task aims to determine whether participants learn to pre-
fer the good, safe decks over the bad, risky decks because this is the
only choice pattern that maximizes the long-term net outcomes.
The good, safe decks are typically labeled C and D, whereas the
bad, risky decks are labeled A and B. Table 1 presents the tradi-
tional payoff scheme as developed by Bechara et al. (1994). This
table illustrates that decks A and B yield high immediate, con-
stant rewards, but even higher unpredictable, occasional losses:
hence, the long-term net outcome is negative. Decks C and D,
on the other hand, yield low immediate, constant rewards, but
even lower unpredictable, occasional losses: hence, the long-term
net outcome is positive. In addition to the different payoff mag-
nitudes, the decks also differ in the frequency of losses: two
decks yield frequent losses (decks A and C) and two decks yield
infrequent losses (decks B and D).

2.2. THE PVL-DELTA MODEL
In this section, we describe the PVL-Delta model in detail. The
model formalizes participants’ performance on the IGT through
the interaction of four model parameters that represent distinct
psychological processes (Ahn et al., 2008; Fridberg et al., 2010;
Steingroever et al., in press).

The first model assumption is that after choosing a card
from deck k ∈ {1, 2, 3, 4} on trial t, participants evaluate the
net outcome associated with the just-chosen card by means of

a non-linear utility function from Prospect theory (Tversky and
Kahneman, 1992)—the Prospect Utility function:

uk(t) =
{

X(t)A if X(t) ≥ 0
−w · |X(t)|A if X(t) < 0.

(1)

Here X(t) represents the net outcome on trial t, that is, the
sum of the experienced reward and loss (i.e., X(t) = W(t) −
|L(t)|). The Prospect Utility function contains the first two model
parameters—the shape parameter A ∈ [0, 1], that determines the
shape of the utility function, and the loss aversion parameter
w ∈ [0, 5]. As A approaches zero, the shape of the utility func-
tion approaches a step function. The implication of such a step
function is that given a positive net outcome X(t), all utilities are
similar because they approach one, and given a negative net out-
come X(t), all utilities are also similar because they approach −w.
On the other hand, as A approaches one, the subjective utility
uk(t) increases in direct proportion to the net outcome, X(t).
A value of w larger than one indicates a larger impact of nega-
tive net outcomes than positive net outcomes on the subjective
utility, whereas a value of w approaching one indicates identical
impact of negative net outcomes and positive net outcomes. As w
approaches zero, the model predicts that negative net outcomes
will be neglected.

The PVL-Delta model further assumes that, after having
formed the utility of the just chosen deck through Equation 1,
decision makers update their expected utility of the just cho-
sen deck, while keeping the expected utilities of the remaining
decks unchanged. This updating process is described by the Delta
learning rule:

Evk(t) = Evk(t − 1) + a · (uk(t) − Evk(t − 1)). (2)

The Delta learning rule states that the expected utility of the cho-
sen deck k is adjusted upward if the experienced utility uk(t)
is higher than expected. If the experienced utility uk(t) is lower
than expected, the expected utility of deck k is adjusted down-
ward1. This updating process is influenced by the third model
parameter—the updating parameter a ∈ [0, 1]. This parameter
quantifies the memory for rewards and losses. A value of a close
to zero indicates slow forgetting and weak recency effects, whereas
a value of a close to one indicates rapid forgetting and strong
recency effects.

1We initialized the expectancies of each deck k to zero, Evk(0) = 0.

Table 1 | Payoff scheme of the traditional IGT as developed by Bechara et al. (1994).

Deck A Deck B Deck C Deck D

Bad deck with Bad deck with Good deck with Good deck with

frequent losses infrequent losses frequent losses infrequent losses

Reward/trial 100 100 50 50

Number of losses/10 cards 5 1 5 1

Loss/10 cards −1250 −1250 −250 −250

Net outcome/10 cards −250 −250 250 250
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In the next step, the model assumes that the expected utilities
of each deck guide participants’ choices on the next trial t + 1.
This assumption is formalized by the softmax choice rule, also
known as the ratio-of-strength choice rule. The PVL-Delta model
uses this rule to compute the probability of choosing each deck on
each trial (Luce, 1959; Equation 3). This rule contains a sensitivity
parameter θ that indexes the extent to which trial-by-trial choices
match the expected deck utilities. Values of θ close to zero indicate
random choice behavior (i.e., strong exploration), whereas large
values of θ indicate choice behavior that is strongly determined by
the expected utilities (i.e., strong exploitation).

P[Sk(t + 1)] = eθ·Evk(t)∑4
j = 1 eθ·Evj(t)

(3)

The PVL-Delta model assumes a trial-independent sensitivity
parameter θ, which depends on the final model parameter: the
response consistency c ∈ [0, 5] (Equation 4). Small values of c
cause a random choice pattern, whereas large values of c cause
a deterministic choice pattern.

θ = 3c − 1 (4)

In sum, the PVL-Delta model has four parameters: (1) The shape
parameter A, which determines the shape of the utility function,
(2) the loss aversion parameter w, which quantifies the weight
of net losses over net rewards, (3) the updating parameter a,
which determines the memory for past expectancies, and (4) the
response consistency parameter c, which determines the amount
of exploitation vs. exploration.

2.3. PREVIOUS COMPARISONS OF RL MODELS
This section reviews previous model comparison studies. These
studies compared the EV model, PVL model, and alternative
RL models using a large variety of methods, for instance: the
post hoc fit criterion (i.e., Busemeyer and Stout, 2002; Yechiam
and Busemeyer, 2005; Yechiam and Ert, 2007; Ahn et al., 2008;
Yechiam and Busemeyer, 2008; Fridberg et al., 2010), 2 the sim-
ulation method (i.e., Ahn et al., 2008; Fridberg et al., 2010;
Steingroever et al., in press; Worthy et al., 2013), tests of gener-
alizability (i.e., Yechiam and Busemeyer, 2005; Yechiam and Ert,
2007; Ahn et al., 2008; Yechiam and Busemeyer, 2008), tests of
parameter consistency (i.e., Yechiam and Busemeyer, 2008), and
PSP (i.e., Steingroever et al., 2013b)3.

The above model comparison studies revealed many positive
properties of RL models: first, RL models predict the choices on
the next trial better than a Bernoulli baseline model (Busemeyer
and Stout, 2002; Yechiam and Busemeyer, 2005; Yechiam and
Ert, 2007; Ahn et al., 2008; Yechiam and Busemeyer, 2008,

2The post hoc fit criterion is also known as the one-step-ahead prediction
method.
3Note that the PSP study of Steingroever et al. (2013b) did not focus on the
PVL-Delta model, but on the EV model, the PVL model, and another hybrid
model: the EV model with the Prospect Utility function.

Fridberg et al., 2010) 4. Second, parameters from the RL models
estimated from one RL task can be used to predict performance
on a different RL task (Yechiam and Busemeyer, 2005; Yechiam
and Ert, 2007; Ahn et al., 2008; Yechiam and Busemeyer, 2008).
Third, the loss aversion parameter and the updating parameter
of the EV model are stable across different tasks (Yechiam and
Busemeyer, 2008). Fourth, the estimated model parameters can
be used to improve the prediction of group membership (i.e.,
chronic cannabis users vs. healthy controls; Fridberg et al., 2010).

These positive properties confirm that cognitive modeling
analyses are indeed useful to learn more about the psychological
processes that drive performance on the IGT. However, previous
model comparison studies also revealed that, even though the
EV and PVL models are frequently used, they fail to outperform
their competitors consistently. It appears that the performance
of the RL models depends on the data set and the method used
to assess model performance (i.e., fit performance vs. simulation
performance; see Steingroever et al., in press, for a more detailed
discussion on previous comparisons of RL models).

Instead of accepting the EV and PVL models as default models
to describe IGT data, there is growing evidence that the PVL-
Delta model may be a promising alternative IGT model: first, Ahn
et al. (2008) showed that the PVL-Delta model results in the best
simulation performance (i.e., prediction of the entire sequence of
choices on the IGT under a new, unobserved payoff sequence)
among the EV model, PVL model, and any combination of the
components of the two models. Second, Fridberg et al. (2010)
showed that, in two data sets, the PVL-Delta model outperforms
the EV model in terms of post hoc fit and simulation performance.
Third, Steingroever et al. (in press) showed that, among the EV,
PVL, and PVL-Delta models, the PVL-Delta model is the only
model that adequately generated the choice patterns shown by
seven IGT data sets.

Even though the PVL-Delta model has recently come to the
fore as a promising model for IGT data, it has not yet been suf-
ficiently validated. Our goal here is to pursue two methods of
validating the PVL-Delta model: a PSP study and a test of selective
influence.

3. PARAMETER SPACE PARTITIONING
3.1. METHODS
We performed a PSP study to evaluate the flexibility of the PVL-
Delta model (Pitt et al., 2006, Pitt et al., 2008; see also Steingroever
et al., 2013b, who performed a PSP study of the EV model, PVL
model, and another hybrid model: the EV model with Prospect
Utility function). The PSP method systematically assesses the
choice patterns predicted by the PVL-Delta model across its entire
parameter space. A model is overly flexible when it can gener-
ate not only all choice patterns that are observed empirically,
but also choice patterns that are logically possible, but never
observed. Instead, one should prefer a less flexible, parsimonious
model that—ideally—only generates choice patterns that are also
frequently observed in experiments (Pitt et al., 2006, 2008).

4The Bernoulli baseline model assumes that a participant’s probability of
choosing a given deck on a given trial equals the overall proportion of choices
the participant actually made from that deck.
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Note that PSP is a global method (i.e., the full range of param-
eter values is considered), whereas the other methods that were
used to compare RL models are local (i.e., assessment at a partic-
ular point in the model’s parameter space; for instance, post hoc fit
criterion, simulation method, tests of generalizability, and tests of
parameter consistency). The advantage of global methods is that
they enable one to assess the full range of choice patterns a model
can generate, whereas the results of local methods always depend
on the idiosyncrasies of any single data set (Pitt et al., 2006, 2008).

Pitt et al. (2006) describe a new search algorithm to implement
PSP. In our implementation we did not use their sophisticated
search algorithm, but followed the conceptual idea of PSP, and
used a grid search that works as follows (see also Steingroever
et al., 2013b): for each parameter of the PVL-Delta model, we
chose 60 values that were equally spaced over the corresponding
parameter range. Each combination of these parameter values was
used to generate data for 100 synthetic participants completing a
100-trial IGT. For all analyses in this paper, we scaled the tradi-
tional payoffs of the IGT as presented in Table 1 by dividing by
100 (cf. Ahn et al., 2011).

The generated data were used to analyze which choice patterns
the PVL-Delta model can generate across its entire parameter
space. Such analysis naturally requires a definition of choice
patterns. Here we used two different definitions—the “broad def-
inition of choice patterns” and the “restricted definition of choice
patterns.” These definitions are the same as used by Steingroever
et al. (2013b).

3.1.1. Broad definition of choice patterns
The “broad definition of choice patterns” is intended to provide
a general idea of which choice patterns the PVL-Delta model
can generate. Following Steingroever et al. (2013b), we defined
five possible choice patterns: (1) Preference for the good decks
over bad decks (i.e., {C, D} � {A, B}), (2) preference for the bad
decks over good decks (i.e., {A, B} � {C, D}), (3) preference for
the decks with infrequent losses over decks with frequent losses
(i.e., {B, D} � {A, C}), (4) preference for the decks with frequent
losses over decks with infrequent losses (i.e., {A, C} � {B, D}),
and (5) remaining choice patterns. For each parameter combi-
nation, we computed the proportion of choices from each deck

averaged across all 100 trials and all 100 repeated data generations.
These average choice proportions were then sorted to determine
the generated rank order of deck preferences for each parameter
combination. Finally, we computed the proportion of the entire
parameter space occupied by each of the defined choice patterns.
Even though we defined five possible types of choice patterns, we
assume based on the theory underlying the IGT (Bechara et al.,
1994, 1997) and our IGT review (Steingroever et al., 2013a) that
a good model for IGT data should only generate the first three
types of choice patterns.

3.1.2. Restricted definition of choice patterns
Note that the broad definition of choice patterns only consid-
ers the rank order of the overall proportions of choices from
each deck averaged over 100 repeated data generations with
the same parameter combination. This means that it does not
matter whether the PVL-Delta model generated, for example, a
very strong or a very weak preference for the good decks over
the bad decks. Both generated choice patterns are classified as
the choice pattern “good decks over bad decks” (i.e., {C, D} �
{A, B}). To go beyond this coarse classification, we also analyzed
the model’s behavior when confronted with pronounced deck
preferences. To get an indication of pronounced deck preferences
shown by healthy participants on the IGT, we used Steingroever
et al. (2013b)’s definition of pronounced deck preferences: specif-
ically, Steingroever et al. (2013b) searched their IGT data pool
(N = 394; Steingroever et al., 2013a) for healthy participants
that chose at least 65% cards from either the good decks (i.e.,
(C + D) ≥ 0.65), the bad decks (i.e., (A + B) ≥ 0.65), or the
decks with infrequent losses (i.e., (B + D) ≥ 0.65). By using the
0.65-criterion, Steingroever et al. (2013b) included healthy par-
ticipants with pronounced deck preferences and excluded healthy
participants with random choice behaviors. For each of these
three groups, Steingroever et al. (2013b) computed the mean pro-
portions of choices from each deck (as shown in Table 2). For
instance, participants classified to the group “pronounced pref-
erence for the good decks” chose on average 36 cards from deck
C and 40 cards from deck D. Note that 53.6% of all participants
in the Steingroever et al. (2013a) data pool showed a pronounced
deck preference by making at least 65% choices from the two most

Table 2 | Mean proportions of choices from each deck and mean proportions of switches during the last 50 trials of healthy participants

showing a pronounced deck preference [see Table 4 in Steingroever et al. (2013b)].

Choice pattern N Deck A Deck B Deck C Deck D Switches during

[sd] [sd] [sd] [sd] the last 50 trials

[25%, 75% quantile]

(min, max)

(C + D) ≥ 0.65 54 0.10 [0.05] 0.14 [0.05] 0.36 [0.17] 0.40 [0.14] 0.35 [0.08, 0.52]

(0.00, 0.96)

(A + B) ≥ 0.65 18 0.25 [0.07] 0.52 [0.11] 0.11 [0.05] 0.12 [0.06] 0.43 [0.31, 0.58]

(0.10, 0.86)

(B + D) ≥ 0.65 139 0.12 [0.05] 0.37 [0.12] 0.13 [0.05] 0.39 [0.12] 0.47 [0.28, 0.66]

(0.02, 1.00)

Healthy participants are selected from the Steingroever et al. (2013a) data pool (N = 394).
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preferred decks. This empirical popularity of pronounced deck
preferences underscores how important it is that a RL model for
the IGT is able to produce such choice patterns.

Table 2 thus provides an indication of pronounced deck pref-
erences shown by healthy participants on the IGT. We used
the mean proportion of choices from these three constructed
groups for our second, restricted definition of choice patterns.
Specifically, we define a pronounced preference for the good
decks as at least 36 and 40 choices from decks C and D, respec-
tively; we define a pronounced preference for the bad decks as
at least 25 and 52 choices from decks A and B, respectively;
and we define a pronounced preference for the decks with infre-
quent losses as at least 37 and 39 choices from decks B and
D, respectively. Based on our simulations, we then determined
the proportion of the parameter space of the PVL-Delta model
that produced choice patterns that satisfy this second, restricted
definition.

3.1.3. Switch behavior
Finally, a good RL model for the IGT should also capture the
switches participants make on the IGT (Zhao and Costello, 2007).
Steingroever et al. (2013b) therefore determined the mean pro-
portion of switches during the last 50 trials for the three groups
of healthy participants showing pronounced decks preferences
(revisited here in the last column of Table 2). The table con-
tains for each of the three groups of healthy participants with
pronounced choice patterns the mean proportion of switches
during the last 50 trials and statistics quantifying the distribu-
tion of switch proportions (i.e., the interquartile range and the
minimum and maximum switch proportions during the last 50
trials). This information is visualized by the boxplots shown in the
left column of Figure 1. From Table 2 and Figure 1 it is evident
that, in general, in all three groups participants switch frequently.
However, the interquartile ranges and the minimum and maxi-
mum proportion of switches during the last 50 trials also indicate
that there is large variability in the proportion of switches, such
that the switch behavior of healthy participants varies between no
switches at all to switches on every trial. This tendency to switch
frequently, but also the large individual differences in the switch
behavior of healthy participants are illustrated by Figures 2, 4, 6
(see also Figures 3, 7, 10 in Steingroever et al., 2013b) which
show the trial-by-trial choices (i.e., deck selection profiles) of
representative healthy participants with a pronounced preference
for the good decks, bad decks, and decks with infrequent losses,
respectively5.

We investigated whether the PVL-Delta model captures the
empirical switch behavior by comparing the empirical and gen-
erated mean proportions of switches during the last 50 trials.
Specifically, the generated mean proportions of switches were
obtained by determining the mean proportions of switches dur-
ing the last 50 trials for all parameter combinations that produced
pronounced deck preferences. The code for the PSP study is
available on www.helensteingroever.com.

5See Steingroever et al. (2013b) for the deck selection profiles of all healthy
participants that showed a pronounced deck preference (i.e., at least 65%
choices from the two most preferred decks).

FIGURE 1 | Boxplots of observed and generated proportions of

switches during the last 50 trials, given a pronounced deck preference.

Each row presents the results for different pronounced choice patterns:
First row: Pronounced preference for the good decks; Second row:

Pronounced preference for the bad decks; Third row: Pronounced
preference for the decks with infrequent losses. The first column presents
the switches of 211 healthy participants selected from the Steingroever
et al. (2013a) data pool (cf. Table 2). The second column presents the
switches generated by the PVL-Delta model (cf. Table 4).

3.2. RESULTS
3.2.1. Broad definition of choice patterns
Table 3 presents the proportion of the parameter space of the
PVL-Delta model occupied by each of the five different types
of choice patterns. From this table, it is evident that the PVL-
Delta model can generate all five different types of choice patterns.
However, if we consider its partitioned parameter space more
closely, we detect substantial differences between the popular-
ity of the different choice patterns: the choice pattern “good
decks over bad decks” is the most central to the model’s over-
all performance, as this choice pattern occupies the largest part
of the model’s parameter space. The second and third largest
part of its parameter space are occupied by the choice patterns
“remaining” and “infrequent losses over frequent losses.” It is
thus evident that choice patterns that are typically shown by
healthy participants—the choice patterns “good decks over bad
decks” and “infrequent losses over frequent losses” (Steingroever
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FIGURE 2 | Deck selection profiles of four healthy participants showing

a pronounced preference for the good decks. The filled dots indicate the
occurrence of rewards and losses together; the empty dots indicate the
occurrence of only rewards.

Table 3 | Proportions of choice patterns generated by the PVL-Delta

model.

Choice pattern Proportion of

all choice patterns

Good � bad decks {C, D} � {A, B} 0.596

Bad � good decks {A, B} � {C, D} 0.006

Infr. � frequent losses {B, D} � {A, C} 0.118

Frequent � infr. losses {A, C} � {B, D} 0.005

Remaining 0.274

et al., 2013a)—occupy a major part of the model’s parameter
space.

Table 3 also shows that the choice pattern “bad decks over
good decks” is only generated over a minor part of the model’s
parameter space. We have therefore grounds to conclude that this
choice pattern is uncharacteristic of the PVL-Delta model, and
is thus almost irrelevant to its overall performance (Pitt et al.,
2006). This finding is important because the choice pattern “bad
decks over good decks” is considered characteristic for partici-
pants with decision-making deficits (e.g., patients with lesions to
the ventromedial prefrontal cortex; Bechara et al., 1994, 1997).
These patients are thought to display decision-making deficits on
the IGT because their inability to foresee the long-term conse-
quences of their choice behavior leads them to only focus on the
immediate rewards.

3.2.2. Restricted definition of choice patterns
Table 4 presents the proportion of all choice patterns generated
by the PVL-Delta model that satisfy the restricted definition of
choice patterns. The table also presents the mean and standard

FIGURE 3 | Deck selection profiles of four synthetic participants

showing a pronounced preference for the good decks (generated by

the PVL-Delta model; A = 0.88, w = 0.68, a = 0.25, c = 1.27).

deviation of the parameter combinations that generated these
pronounced deck preferences. The table shows that only minor
parts of the parameter space of the PVL-Delta model are occu-
pied by the three types of pronounced choice patterns, even
though these patterns are frequently observed in experiments.
For instance, 139 healthy participants from the Steingroever et al.
(2013a) data pool (35.3%) show a pronounced preference for the
decks with infrequent losses (i.e., (B + D) ≥ 0.65). However, the
PVL-Delta model only generates this choice pattern over 1.6% of
its parameter space.

3.2.3. Switch behavior
In addition to the generated choice proportions, we also deter-
mined the generated proportion of switches during the last 50
trials for all parameter combination that satisfy the restricted defi-
nition of choice patterns (Columns 2−6 of Table 4). We averaged
these generated switch proportions separately for each of the three
types of pronounced deck preferences (last column of Table 4).
The table also contains statistics quantifying the distribution of
the generated switch proportions, that is, the interquartile range
and the minimum and maximum proportion of switches dur-
ing the last 50 trials. This information is visualized by the right
column of Figure 1.

When comparing the generated and observed mean propor-
tion of switches during the last 50 trials given pronounced deck
preferences, it is apparent that the PVL-Delta model underes-
timates the observed switch proportions, that is, the generated
mean proportion of switches equals or falls below 0.07 for all gen-
erated pronounced choice patterns, whereas the observed mean
proportion of switches equals or exceeds 0.35 for all observed
pronounced choice patterns (Tables 2, 4). In addition, for all
three types of pronounced choice patterns, the interquartile range
of the observed proportion of switches exceeds the interquartile
range of the model-generated proportion of switches (Figure 1,
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Table 4 | Proportion of choice patterns generated by the PVL-Delta model that satisfy the restricted definition of choice patterns.

Choice pattern Proportion A [sd] w [sd] a [sd] c [sd] Switches during

of all choice the last 50 trials

patterns [25%, 75% quantile]

(min, max)

C ≥ 0.36, D ≥ 0.40 0.0084 0.66 [0.21] 0.62 [0.38] 0.30 [0.21] 3.49 [0.98] 0.0571

[0.0014, 0.0558]

(0.00, 0.5724)

A ≥ 0.25, B ≥ 0.52 0.0000028 0.92 [0.09] 0.02 [0.03] 0.06 [0.03] 3.07 [0.40] 0.0043

[0.0003, 0.0055]

(0.00, 0.0210)

B ≥ 0.37, D ≥ 0.39 0.0162 0.27 [0.24] 0.34 [0.39] 0.43 [0.27] 2.80 [0.88] 0.0705

[0.0034, 0.0918]

(0.00, 0.6450)

Note that this definition is only based on the mean proportion of choices of the two strongest preferred decks (first column). For the selected choice patterns, the

corresponding mean and standard deviation of the model parameters, and the mean proportion of switches during the last 50 trials are presented.

FIGURE 4 | Deck selection profiles of four healthy participants showing

a pronounced preference for the bad decks.

Tables 2, 4). However, the largest generated switch proportion
given a pronounced preference for the good decks and the decks
with infrequent losses, respectively, lie within the correspond-
ing interquartile ranges of the observed switch proportions. This
suggests that for a few parameter combinations, the PVL-Delta
model meets both empirical regularities—pronounced deck pref-
erences and a tendency to switch frequently.

To illustrate the differences and commonalities between the
data and the predictions, we plot in Figures 2–7 observed and
generated deck selection profiles. Figures 2, 4, 6 show the deck
selection profiles of representative healthy participants with a pro-
nounced preference for the good decks, bad decks, and decks
with infrequent losses, respectively. Figures 3, 5, 7 show the
deck selection profiles that were generated with those parameter

FIGURE 5 | Deck selection profiles of four synthetic participants

showing a pronounced preference for the bad decks (generated by the

PVL-Delta model; A = 1.00, w = 0.08, a = 0.05, c = 2.71).

combinations that resulted in a pronounced preference for the
good decks, bad decks, and decks with infrequent losses, respec-
tively, and the maximum number of switches during the last
50 trials. From the figures it is evident that there are large
discrepancies between the observed and generated deck selec-
tion profiles in the case of the pronounced preference for the
bad decks: The PVL-Delta model generates a few switches in
the beginning of the IGT and then exploitation of a single
deck, even though healthy participants keep switching across the
entire IGT. However, the observed and generated deck selec-
tion profiles look very similar in the case of the pronounced
preference for the good decks and the decks with infrequent
losses.
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FIGURE 6 | Deck selection profiles of four healthy participants showing

a pronounced preference for the decks with infrequent losses.

To conclude, many healthy participants from the Steingroever
et al. (2013a) data pool (53.6%) showed pronounced deck pref-
erences, that is, a pronounced preference for the good decks
((C + D) ≥ 0.65), a pronounced preference for the bad decks
((A + B) ≥ 0.65), or a pronounced preference for the decks
with infrequent losses ((B + D) ≥ 0.65) (Table 2). This empir-
ical popularity of pronounced deck preferences is only partly
reflected by the PVL-Delta model; the model produces choice
patterns that satisfy the restricted definition of choice patterns
only within minor parts of its parameter space (Table 4). In addi-
tion, healthy participants in general show many switches during
the last 50 trials. However, the PVL-Delta model in general pre-
dicts that participants who show pronounced deck preferences
switch rarely during the last 50 trials; all generated mean pro-
portion of switches during the last 50 trials equal or fall below
0.07 whereas the observed mean proportions of switches lie
around 0.40. But compared to the popular EV and PVL mod-
els (Steingroever et al., 2013b), the PVL-Delta model performs
better: the PVL-Delta model generates higher mean proportions
of switches than its two competitors for almost all pronounced
choice patterns; the only exception is that the EV model gener-
ates a higher mean proportion of switches for the choice pattern
featuring a pronounced preference for the bad decks than the
PVL-Delta model.

Moreover, healthy participants show large individual
differences in the proportion of switches during the last 50 trials,
such that their switch behavior varies between no switches at
all to switches on every trial. However, the PVL-Delta model
tends to generate very few switches, given pronounced deck
preferences, and fails to generate large proportion of switches
(i.e., switch proportions higher than 0.65). But compared to the
popular EV and PVL models (Steingroever et al., 2013b), the
PVL-Delta model again performs better because the EV and PVL

FIGURE 7 | Deck selection profiles of four synthetic participants

showing a pronounced preference for the decks with infrequent losses

(generated by the PVL-Delta model; A = 0.00, w = 0.00, a = 0.42,

c = 1.19).

model’s failure to generate large proportions of switches, given a
pronounced choice pattern, is even stronger: Given a pronounced
choice pattern, the EV and PVL models fail to generate switch
proportions higher than 0.35 and 0.46, respectively. Despite these
discrepancies between the empirical and the generated switch
behavior, we showed that—given a pronounced preference for
the good decks or the decks with infrequent losses and those
parameter combinations that yielded the maximum number
of switches during the last 50 trials—the PVL-Delta model can
produce choice patterns that strongly resemble the empirical
choice patterns of healthy participants.

4. TEST OF SELECTIVE INFLUENCE
In this section we investigate whether the parameters of the
PVL-Delta model indeed correspond to distinct psychological
processes. We will therefore carry out a test of selective influ-
ence for the PVL-Delta model. This means that we fit the model
to data collected from the standard IGT, but also from condi-
tions that were designed to affect selectively one of the model
parameters. These data were collected by Wetzels et al. (2010),
and their experiment was originally designed as a test of selective
influence for the EV model. However, the experimental manip-
ulations that were intended to affect the parameters of the EV
model should also be reflected by the parameters of the PVL-
Delta model because of the high similarity between the two
models.

4.1. METHODS
We fit the PVL-Delta model separately to four data sets reported
by Wetzels et al. (2010). Specifically, Wetzels et al. (2010) con-
ducted an experiment with a standard condition and three addi-
tional conditions that were designed to affect selectively one of the
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model parameters: 6 In the “standard condition”, 19 participants
completed a 150-trial IGT under the standard administration.
In the “rewards condition”, 20 participants completed a 150-trial
IGT under the instruction to pay more attention to rewards and to
consider losses as less important. We expected this manipulation
to decrease the loss aversion parameter w.

In the “updating condition”, 19 participants completed a 150-
trial IGT under the standard administration. However, each
choice was followed by a on-screen presentation of five num-
bers that the participants had to remember because, after the next
choice, participants were asked about the relative position of one
of the numbers. We expected this manipulation to increase the
updating parameter a.

In the “consistency condition”, 16 participants completed a
150-trial IGT under the standard administration. However, they
were told that after every 10 trials the payoff schemes for the decks
could have changed. We expected this manipulation to decrease
the consistency parameter c.

To fit the PVL-Delta model, we used a Bayesian hierarchical
approach detailed in the next section. This estimation proce-
dure has been consistently shown to outperform alternatives
such as maximum likelihood estimation and Bayesian individual
estimation (Ahn et al., 2011; Wetzels et al., 2010).

To assess whether the chains of all parameters had converged
successfully from their starting values to their stationary distribu-
tions, we visually inspected the Hamiltonian Monte Carlo (HMC)
chains and used the R̂ statistic (Gelman and Rubin, 1992). The
R̂ statistic is a formal diagnostic measure of convergence that
compares the between-chain variability to the within-chain vari-
ability. Values close to 1.0 indicate convergence to the stationary
distribution, whereas values greater than 1.1 indicate inadequate
convergence.

To assess model performance in absolute terms, we used two
different methods: the post hoc absolute fit method and the sim-
ulation method (see also Steingroever et al., in press). These
two methods allow us to assess the model’s ability to fit and
generate the choice patterns present in each of the four condi-
tions. Our implementation of both methods relies on visually
contrasting—separately for each deck as a function of 15 bins
each containing 10 trials—the observed mean choice proportions
from the experiment against the mean choice probabilities from
the model.

Both methods start by sampling parameter values from the
joint posterior distributions over the individual-level parameters
(hereafter individual-level joint posteriors). In the case of the post
hoc absolute fit method, the model is provided with the sampled
parameter values, but also with the actual choices and payoffs
of each participant. The post hoc absolute fit method computes
the probability of choosing each deck on the next trial based
on the information on the observed choices and payoffs up to

6Note that we use the data sets that Wetzels et al. (2010) obtained after having
eliminated two sources of contamination. Specifically, Wetzels et al. (2010)
removed participants for whom one or more of the maximum likelihood
point estimates were located on the boundary of the parameter space, and
participants for whom the Bernoulli baseline model outperformed the EV
model.

and including the current trial. The simulation method, on the
other hand, is only provided with the sampled parameter values,
and relies on generating choices for another sequence of pay-
offs that could have been observed7. In particular, on each trial,
the simulation method generates a choice based on the predicted
choice probabilities. For both methods and for each participant,
we repeated the process of obtaining the predicted choice prob-
abilities 100 times to account for uncertainty in the individual-
level joint posteriors (for detailed recipes see Steingroever et al.,
in press)8.

To investigate the effect of the experimental manipulations, we
visually compared the posterior distributions of the group-level
parameters of all four conditions.

4.1.1. Bayesian hierarchical estimation procedure
To fit the PVL-Delta model to the data of the four experimental
conditions, we used a Bayesian hierarchical estimation procedure
(see Wetzels et al. (2010) for the same model specification in
the case of the EV model). The Bayesian graphical PVL-Delta
model for a hierarchical analysis is shown in Figure 8. This figure
shows that the graphical model consists of two plates: The inner
plate expresses the replications of the choices on t = 1, . . . , T tri-
als of the IGT, and the outer plate expresses the replications for
i = 1, . . . , N participants. For the sake of clarity, we omitted the
notation that indexes the deck number k. The quantities Wi, t

(rewards of participant i on trial t), Li, t (losses of participant i
on trial t), and Chi, t + 1 (choice of participant i on trial t + 1) can
directly be obtained from the data. The quantities ui, t , Evi, t + 1,
and θi are deterministic because they can be calculated from
Equations 1, 2, and 4. All individual-level parameters zi, that is,
{Ai, wi, ai, ci}, are also deterministic because instead of modeling
the individual-level parameters directly, we modeled their respec-
tive probit transformations z′

i , that is, {A′
i, w′

i, a′
i, c′

i}. This means
that the parameters z′

i lie on the probit scale covering the entire
real line. The probit transformation is the inverse of the cumula-
tive standard normal distribution function. The parameters z′

i are
assumed to be drawn from group-level normal distributions with
mean μz′ and standard deviation σz′ . Only after the analysis was
complete, we transformed the parameters μz′ and z′

i back to the
original scale.

The model specification requires a definition of priors for the
group-level means and standard deviations. We assigned a nor-
mal prior to the group-level means, μz′ ∼ N(0, 1), and a uniform
prior to the group-level standard deviations, σz′ ∼ U(0, 1.5).

We implemented the PVL-Delta model in Stan (Hoffman
and Gelman, 2011; Stan Development Team, 2013a,b). The
code to fit the PVL-Delta model in Stan is available on http://
www.helensteingroever.com. To confirm that we correctly imple-
mented the PVL-Delta model, we ran several parameter-recovery

7Note that we used the same payoff schedule as in the corresponding
experiment.
8For completeness, we also produced predicted choices based on the joint pos-
terior of the group-level parameters (hereafter group-level joint posterior);
that is, we generated data with 1000 parameter values that were randomly
drawn from the group-level joint posterior. There are slight differences
between the two types of posterior predictives, but the general conclusions
are the same (see Appendix for further details).
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FIGURE 8 | Bayesian graphical PVL-Delta model for a hierarchical analysis. �() is the cumulative standard normal distribution function.

studies. The results of two such studies are presented in the
Appendix.

For each parameter, we ran three HMC chains simultane-
ously. The fitting procedure consisted of two steps: First, we
initialized all chains with randomly generated starting values.
We collected 1000 samples of each chain after having discarded
the first 9000 samples of each chain as burn-in. However, this
procedure did not result in successful convergence of the HMC
chains of all parameters: for instance, for some parameters,
two chains may appear to have converged to their stationary
distributions and looked like “hairy caterpillars” that are ran-
domly intermixed, whereas the third chain behaved differently
and producing an inferior goodness of fit (GOF). Therefore,
in a second step, we again ran three HCM chains for each
parameter, but this time, we initialized all chains with parame-
ter values close to the mean of the HCM chain that produced
the best GOF in the first step. However, even this procedure
resulted in convergence problems for a few participants (e.g.,
bimodal posterior distributions). We therefore excluded partic-
ipants with such convergence issues and repeated the first and
second step. This explains why the sample sizes presented in
Table 5 are slightly smaller than those reported by Wetzels et al.
(2010).

Table 5 also presents, for each data set separately, the number
of burn-in samples and posterior samples that we collected for
each chain. These specifications differ across data sets to ensure
that all chains reached convergence. We based our inferences on
these posterior samples.

Table 5 | Sample size of the four data sets and number of burn-in

samples and posterior samples that we collected for each chain.

Experimental Sample Burn-in Posterior

condition size samples samples

Standard 17 37,000 3000

Rewards 19 30,000 3000

Update 16 23,000 1500

Consistency 15 18,000 2000

4.2. RESULTS
In this section, we discuss the results of the test of selective influ-
ence. We first focus on the behavioral level by describing the
choice patterns observed in the four experimental conditions.
Second, we focus on the level of the cognitive modeling analy-
ses; we describe tests confirming that the posterior distributions
converged successfully from their starting values to their station-
ary distributions. In addition, we show that the PVL-Delta model
results in a satisfactory fit performance and simulation perfor-
mance for the four conditions. Finally, we visually compare the
posterior distributions of the group-level parameters of all four
conditions to draw inferences about the effect of the experimental
manipulations.

4.2.1. Behavioral data
The mean proportion of choices from each deck within 15 blocks
each containing 10 trials as observed in the four experimental
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conditions reported by Wetzels et al. (2010) are presented in the
first column of Figure 9. In the standard condition, participants
learned to prefer good deck C over all remaining decks; however,
participants failed to learn that deck D is also a good deck.

In the rewards condition (i.e., participants were instructed
to pay more attention to rewards and to consider losses as less
important), participants learned to prefer bad deck B over all
remaining decks. Note that even though bad decks A and B both
yield high immediate rewards on every trial, participants did not
learn to select deck A more often than good decks C and D. This
may suggest that the experimental manipulation was only partly
successful.

In the updating condition (i.e., each choice was followed by
a on-screen presentation of five numbers that participants had
to remember because, after the next choice, they were asked
about the relative position of one of the numbers), participants

show a very weak learning curve; they only learned to avoid
deck A.

In the consistency condition (i.e., participants were told that
after every 10 trials the payoff schemes for the decks could have
changed), participants—in contrast to the intention of the exper-
imental manipulation—did not evenly explore all decks across the
entire 100 trials. Instead participants learned to prefer decks B and
C over the remaining decks. It seems that participants prefer bad
deck B because it yields high immediate rewards on the majority
of the trials; however, participants prefer good deck C because it
never yields a net loss and is therefore a safe option.

4.2.2. Convergence checks
Visual inspection of the HMC chains and consideration of the
R̂ statistics for all parameters (all parameters had R̂ values
below 1.045) suggest that all chains have converged successfully.

FIGURE 9 | Observed choice behavior and assessment of absolute

model performance. The first column shows the mean proportion of choices
from each deck within 15 blocks as observed in the four experimental
conditions reported by Wetzels et al. (2010). Each block contains 10 trials. The

second and third column show the fit performance and simulation
performance, respectively, for each of the four conditions. Fit performance
and simulation performance are based on random draws from the
individual-level joint posteriors.
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To illustrate how we visually assessed convergence, we show
the chains of one individual-level parameter in the Appendix.
From the figure it is evident that the chains have converged
successfully from their starting values to their stationary dis-
tribution, looking like “hairy caterpillars” that are randomly
intermixed.

4.2.3. Absolute model performance
To assess the absolute model performance of the PVL-Delta
model with respect to the four experimental conditions, the sec-
ond and third column of Figure 9 show the fit performance
and simulation performance, respectively. Fit performance and
simulation performance are based on random draws from the
individual-level joint posterior. From the second column of the
figure it is evident that the PVL-Delta model provides a good fit
to the data of all four conditions (i.e., the model makes accu-
rate one-step-ahead predictions when provided with access to the
observed sequence of choices and payoffs). In addition, the third
column of Figure 9 illustrates that the PVL-Delta model ade-
quately generates the choice pattern shown by the standard and
update conditions. In the case of the rewards and consistency con-
ditions, the simulation performance of the PVL-Delta model is
acceptable; the model correctly predicts the most preferred deck,
but fails to account for the rank order of the remaining three
decks: in the reward condition, the model predicts that deck D
is preferred over decks A and C even though the participants
chose these three decks about equally often. In the consistency
condition, the model predicts that deck D is preferred over deck
C even though the participants showed the reverse pattern. To
sum up, the PVL-Delta model captures the global patterns in
the data providing an acceptable fit and simulation performance
with respect to the four data sets at hand; this allows us to
meaningfully compare the group-level parameters of the four
conditions.

4.2.4. Test of selective influence
Figure 10 presents the posterior distributions of the group-level
parameters of all four conditions. It is evident that the experi-
mental manipulation is successfully reflected in the loss aversion
parameter and the consistency parameter: first, compared to par-
ticipants that received the standard instruction, participants who
were instructed to focus on rewards (i.e., the rewards condition)
had lower values for the loss aversion parameter indicating that
they were indeed more reward-seeking. Second, fitting the PVL-
Delta model to data of participants that were told that after every
10 trials the payoff schemes for the decks could have changed
(i.e., the consistency condition) resulted in a smaller consistency
parameter (i.e., a more random choice behavior) than fitting the
PVL-Delta model to data of participants that received the stan-
dard instructions. However, in the update condition is no clear
effect on the updating parameter. Yet, it is evident that the consis-
tency parameter in the update condition is noticeably lower than
in the standard condition (i.e., a more random choice behavior);
this is consistent with the choice pattern shown by the update
condition; participants only learned to avoid deck A, but show
a completely indistinguishable preference for the remaining three
decks.

FIGURE 10 | Posterior distributions for the group-level parameters of

the PVL-Delta model in the four experimental conditions.

5. DISCUSSION
In this article, we conducted two tests to validate the PVL-Delta
model: a parameter space partitioning study and a test of selec-
tive influence. Applying PSP to the PVL-Delta model, we have
obtained a deeper understanding of the model’s behavior. We
used two different definitions of choice patterns; the broad def-
inition allowed us to get an indication of how central each of the
choice patterns are to the model’s overall performance, and the
restricted definition allowed us to assess the model’s data-fitting
potential when confronted with data featuring pronounced deck
preferences.

Using the broad definition of choice patterns, the PSP study
revealed that the PVL-Delta model can generate all typical empir-
ical choice patterns. However, the PVL-Delta model generates the
choice pattern featuring a preference for the bad decks only over
a minor part of its parameter space suggesting that this choice
pattern is virtually irrelevant to the model’s overall performance.

Using the restricted definition of choice patterns, the PSP
study revealed that the PVL-Delta model can still generate all
pronounced empirical choice patterns over a minor part of its
parameter space. But for these pronounced choice patterns, the
PVL-Delta model generally underestimates the empirical switch
proportions during the last 50 trials. In particular, given pro-
nounced preferences for the bad decks, the PVL-Delta model
fails to account for the empirical switch behavior. This fail-
ure seems to be caused by the Prospect Utility function of
the PVL-Delta model: in a previous PSP study, Steingroever
et al. (2013b) showed that this failure is also present in the
PVL and EV-PU model (i.e., models with the Prospect Utility
function), but not in the EV model (i.e., a model without the
Prospect Utility function). However, in the case of the other
two pronounced choice patterns—the choice patterns favor-
ing decks with high expected value or low loss frequency—
we showed that the PVL-Delta model provides a good

Frontiers in Psychology | Decision Neuroscience December 2013 | Volume 4 | Article 898 | 12

http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive


Steingroever et al. Validating the PVL-Delta model

account for the empirical switch behavior for some parameter
combinations.

The results of the PSP study for the PVL-Delta model and the
earlier PSP studies for the EV and PVL models (Steingroever et al.,
2013b) suggest that the PVL-Delta model outperforms its two
competitors. The EV model fails to generate a pronounced pref-
erence for the decks with infrequent losses; the PVL model is able
to generate pronounced decks preferences, but underestimates
the switch proportions even more strongly than the PVL-Delta
model. This superiority of the PVL-Delta model is in line with
the posterior predictive checks reported by Steingroever et al.
(in press).

An important advantage of PSP is that it is a global analysis
technique augmenting local methods that have previously been
used to compare RL models (Pitt et al., 2006, 2008). Whereas local
methods, such as the post hoc fit criterion or the generalization
criterion, evaluate a model’s performance at a single point of a
model’s parameter space, global methods such as PSP help us to
determine the full range of choice patterns that a model can gen-
erate by varying its parameter values (see also Vanpaemel, 2009).
This means that we can obtain a global perspective on the data-
fitting potential of the PVL-Delta model. Thus, if researches wish
to apply the PVL-Delta model to IGT data, they can decide based
on the behavioral results whether it is appropriate to apply the
PVL-Delta model or not.

The PSP results of this paper should be interpreted with care.
PSP gives an indication of how central choice patterns are to
the overall performance of the model. However, it is prema-
ture to conclude that the PVL-Delta model cannot generate the
choice pattern “bad decks over goods decks” at all, soley because
the model generates this choice pattern over a small part of the
parameter space. Instead, we can only conclude that this choice
pattern is not central to the model’s overall performance.

It should also be noted that the inferences drawn from the
PSP study strongly depend on our definitions of choice patterns.
The restricted definition of choice patterns was based on IGT per-
formance of healthy participants (Steingroever et al., 2013b). We
could thus detect inconsistencies between the empirical popular-
ity of each pronounced choice pattern in the Steingroever et al.
(2013a) data pool and the frequency predicted by the PVL-Delta
model. It is troubling that the PVL-Delta model fails to generate
a pronounced preference for the bad decks with many switches.
But it should be acknowledged that this choice pattern is not cen-
tral in healthy participants’ IGT performance: in the Steingroever
et al. (2013a) data pool, only 5% (N = 18) of the healthy par-
ticipants showed this choice pattern (Table 2). Still, this choice
pattern is assumed to be characteristic for patients with decision-
making deficits (Bechara et al., 1994, 1997), but a better empirical
foundation (e.g., a literature review on the IGT performance of
clinical groups) is required to accurately judge the gravity of the
PVL-Delta model’s failure to generate a pronounced preference
for the bad decks with many switches.

The test of selective influence revealed that the experimen-
tal manipulations had a noticeable effect on the loss aversion
parameter and consistency parameter, but not on the updating
parameter. However, it is premature to conclude that the updat-
ing parameter does not correspond to memory processes. It may

be that the experimental manipulation did not work out properly.
In addition, one should bear in mind that every data set is char-
acterized by its own idiosyncrasies. IGT data generally are highly
idiosyncratic—possibly because the IGT is a very complex task
(Steingroever et al., 2013a). In order to be able to draw more accu-
rate conclusions on whether the parameters represent distinct
psychological processes, independent repetitions of the test of
selective influence and even different experimental manipulations
are necessary.

The results of this article confirm that the PVL-Delta model
is an attractive alternative to the popular EV and PVL mod-
els. However, the PVL-Delta model is also characterized by a
few shortcomings because it underrepresents the choice pattern
featuring a preference for the bad decks. Nevertheless, we recom-
mend that researchers use the PVL-Delta model to disentangle
psychological processes underlying IGT performance, provided
that they rigorously assess absolute model performance before
interpreting the model parameters (Steingroever et al., in press).
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APPENDIX
In this appendix, we present how we visually assessed conver-
gence, additional absolute model performance checks and the
results of two parameter-recovery studies that confirm that we
correctly implemented the PVL-Delta model. For the parameter-
recovery studies, we used two synthetic data sets that were gener-
ated with the PVL-Delta model. The data-generating parameters
correspond to the medians of the individual-level joint posteri-
ors that were obtained by fitting the PVL-Delta model to two real
data sets.

Figure A1 shows the HMC chains of one individual-level
parameter. From the figure it is evident that the chains have con-
verged successfully from their starting values to their stationary
distribution, looking like “hairy caterpillars” that are randomly
intermixed. We inspected this type of plot for every parameter to
visually assess convergence in addition to the formal diagnostic
measure of convergence R̂.

Figure A2 presents the fit performance and simulation perfor-
mance of the PVL-Delta model that was obtained with random
draws from the joint posterior distributions over the group-
level parameters (hereafter group-level joint posteriors). Note
that Figure 9 presents the fit performance and simulation per-
formance based on the individual-level joint posteriors. A com-
parison of both figures reveals that the fit performance based

FIGURE A1 | HCM chains of the individual-level consistency parameter

c of the third participant in the consistency condition. In addition to the
formal diagnostic measure of convergence R̂, we inspected this type of plot
for every parameter to visually assess convergence.

on the group-level joint posteriors (Figure A2) closely matches
the fit performance based on the individual-level joint posteriors
(Figure 9). However, there are a few discrepancies in the case of
the simulation performance: from Figures 9, A2 it is evident that
the simulation performance based on the group-level joint poste-
riors is more extreme, that is, the most preferred deck is preferred
even stronger, whereas the least preferred deck is avoided even
stronger. However, it is evident that in general Figure A2 mirrors
the conclusion drawn from Figure 9.

Figure A3 presents the results of the first recovery study. This
data set contains 18 synthetic participants. The figure contains
four panels; each panel illustrates the recovery of one of the four
model parameters. In each panel, the mode of the group-level
posterior is represented by the dotted line, whereas the solid line
represents the true group-level parameter. In addition, the pan-
els can also be used to assess the individual-level recovery: the
unfilled dots represent the modes of the individual-level poste-
riors, whereas the filled dots represent the true individual-level
parameters.

Note that the individual-level posterior distributions are not
sorted by the subject ID; in order to visualize the degree of
individual differences in each model parameter, we sorted the
individual-level posterior distributions by the true individual-
level parameters.

From Figure A3 it is evident that the group-level updat-
ing parameter is slightly underestimated, but the remaining
group-level parameters are recovered very accurately. However,
the recovery of the individual-level parameters is less accu-
rate. Especially in the case of the shape parameter, most of
the individual-level modes differ from the true individual-level
parameters by regressing to the mode of the group-level parame-
ter (i.e., shrinkage); small deviations are noticeable in the case of
the individual-level loss aversion parameters and the individual-
level updating parameter. Yet, in the case of the consistency
parameter, most individual-level parameters are recovered very
accurately.

Figure A4 presents the results of the second recovery study.
This data set contains 30 synthetic participants. It is evident that
all group-level parameters are recovered very accurately. However,
the recovery of the individual-level parameters is less accurate.
Especially in the case of the individual-level shape parameters
and the individual-level loss aversion parameters, it is evident
that the individual-level modes differ from the true individual-
level parameters. Yet, the recovery of the individual-level updating
parameters and the individual-level consistency parameters is
adequate.
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FIGURE A2 | Observed choice behavior and assessment of

absolute model performance. The first column shows the mean
proportion of choices from each deck within 15 blocks as
observed in the four experimental conditions reported by Wetzels
et al. (2010). Each block contains 10 trials. The second and third

column show the fit performance and simulation performance,
respectively, for each of the four conditions. Fit performance and
simulation performance are based on random draws from the Fit
performance and simulation performance are based -level joint
posteriors.
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FIGURE A3 | Recovery of individual and group-level parameters of the

PVL-Delta model. Data of 18 participants completing a 100-trial IGT. The
dotted lines represent the modes of the group-level posteriors and the
unfilled dots the modes of the group-level posterior.

FIGURE A4 | Recovery of individual and group-level parameters of

the PVL-Delta model. Data of 30 participants completing a 100-trial IGT.
The dotted lines represent the modes of the group-level posteriors and
the unfilled dots the modes of the individual-level posteriors.
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