
ORIGINAL RESEARCH ARTICLE
published: 21 March 2014

doi: 10.3389/fpsyg.2014.00239

Working memory capacity and fluid abilities: the more
difficult the item, the more more is better
Daniel R. Little1*, Stephan Lewandowsky2,3 and Stewart Craig3

1 Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia
2 School of Experimental Psychology, University of Bristol, Bristol, UK
3 School of Psychology, The University of Western Australia, Crawley, WA, Australia

Edited by:

Brett Hayes, The University of New
South Wales, Australia

Reviewed by:

Christian C. Luhmann, Stony Brook
University, USA
Mark Andrews, Nottingham Trent
University, UK
Emily M. Elliott, Louisiana State
University, USA

*Correspondence:

Daniel R. Little, Melbourne School of
Psychological Sciences, The
University of Melbourne, Parkville,
VIC 3010, Australia
e-mail: daniel.little@unimelb.edu.au;
URL: http://www.psych.unimelb.
edu.au/research/labs/knowlab/

The relationship between fluid intelligence and working memory is of fundamental
importance to understanding how capacity-limited structures such as working memory
interact with inference abilities to determine intelligent behavior. Recent evidence has
suggested that the relationship between a fluid abilities test, Raven’s Progressive
Matrices, and working memory capacity (WMC) may be invariant across difficulty levels
of the Raven’s items. We show that this invariance can only be observed if the overall
correlation between Raven’s and WMC is low. Simulations of Raven’s performance
revealed that as the overall correlation between Raven’s and WMC increases, the
item-wise point bi-serial correlations involving WMC are no longer constant but increase
considerably with item difficulty. The simulation results were confirmed by two studies
that used a composite measure of WMC, which yielded a higher correlation between
WMC and Raven’s than reported in previous studies. As expected, with the higher overall
correlation, there was a significant positive relationship between Raven’s item difficulty
and the extent of the item-wise correlation with WMC.
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INTRODUCTION
There is no doubt that working memory (WM), the architecture
responsible for manipulation and retention of information over
brief periods of time, is a core component of human cognition.
In particular, people’s working-memory capacity (WMC) shares
around 50% of the variance with general fluid intelligence (Kane
et al., 2005) and is also predictive of performance in numerous
reasoning tasks and other measures of higher cognitive ability.
However, there is some dispute about the exact nature of the
relationship between WMC and one important assay of fluid
intelligence, Raven’s Progressive Matrices (e.g., Raven et al., 2000).
Raven’s test has arguably gathered more attention in the cognitive
literature than any other psychometric assay of fluid intelligence,
largely because it is an induction task par excellence that can be
modeled computationally (see e.g., Carpenter et al., 1990; Verguts
et al., 2000; Rasmussen and Eliasmith, 2011). The relationship
between fluid intelligence and working memory is of fundamen-
tal importance to understanding how capacity-limited structures
such as working memory interact with inference abilities to
determine intelligent behavior.

Raven’s test is designed such that items differ considerably in
difficulty, with easy items—presented early in the test—solvable
by more than 90% of participants and the hardest items—
presented last—being solvable by fewer than 10% of participants.
In light of the typically strong correlation between measures of
WMC and overall performance on Raven’s, intuition might dic-
tate that this correlation should be greatest for the more difficult
items but nearly absent for the easy items—after all, if 90% of all
people succeed on the easy problems, then surely even a modest
WM capacity should suffice for those items, resulting in a low

or nil correlation with WMC. It is only as items become more
difficult that greater WMC is required for their solution, thus con-
tributing to a higher correlation between performance on those
items and WMC. Indeed, Carpenter et al. (1990) presented a
computational model of Raven’s performance that embodied this
intuition.

Carpenter et al.’s (1990) model assumes that people apply one
or more rules from a taxonomy of rule types to solve each Raven’s
problem. To illustrate, Figure 1 presents two sample Raven’s-like
problems created using different rules. The matrix in panel A con-
tains a pairwise incremental rule (i.e., the dots increase across
items from left to right) and a distribution of 3, Dis3, permutation
rule (i.e., objects with 1, 2, and 3 triangles are permuted across
rows and columns). The matrix in panel B contains a constant
rule (i.e., the center dot appears in all items) and a distribution of
2 (logical XOR or Dis2) rule (i.e., features which appear in the first
two objects do not appear in the third object and features which
appear only in one of the first two objects also appear in the third
object). Carpenter et al.’s rule taxonomy also included pairwise
feature decrements between objects, logical disjunction rules (OR
or addition) and logical conjunction rules (AND or subtraction).
Participants must infer these rules from the objects in the matrix
and then predict and select the missing lower right object in the
matrix from the set of possible response options.

In addition to rule type, problems in Raven’s also vary in the
number of rule tokens or combinations of single rules needed
to successfully solve the problem. Difficult problems are char-
acterized by the use of logical operations (e.g., XOR rules) and
multiple rule tokens. For example, the matrices in panels A and B
(see Figure 1) are typical of easy and difficult Raven’s items,
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FIGURE 1 | Two examples of matrices like those in the Raven’s test. (A) Example of an item containing a pairwise incremental rule and a distribution of
three permutation rule. (B) Example of an item containing a constant rule and a distribution of two (XOR) rule.

respectively. According to Carpenter et al.’s (1990) analysis, the
matrix in Panel A contains three rule tokens (i.e., the position of
the different numbers of triangles and the number of dots vary
across the rows, and the number of dots is constant down the
columns), and the matrix in panel B contains six rule tokens (e.g.,
the four arcs comprising the circle and the two diagonal internal
lines). In Carpenter et al. (1990), the total number of rule tokens
in a problem explained 57% of the variance in the accuracy rates,
and according to their analysis, problems containing distribution
of 2 (XOR) rules only appear at the end of the Raven’s test where
accuracy is the lowest.

Carpenter et al. (1990) compared two production system mod-
els that demonstrated the importance of the number and type
of rules, and WMC. Both of the models operated by finding
correspondences between the symbolically-coded features of the
items, transferring these correspondences to a working memory
buffer where any rule satisfied by the extracted correspondences
was invoked, using the instantiated rules to generate the missing
item, and finally, searching through the response options to find
the best match. One model (called FAIRAVEN) had no strate-
gic memory organization and did not have access to distribution
of 2 (XOR) rules; the other model (called BETTERAVEN) was
endowed with better control processes and contained access to
all of the rules types. The principles and assumptions used in
the development of FAIRAVEN and BETTERAVEN were con-
sonant with observed accuracy, response time, and eye fixation
data and the models were able to explain the performance of
median Raven’s performers and the very best Raven’s performers,
respectively.

If we assume that increased WMC allows for an improved abil-
ity to maintain goals and retain intermediate results and rules
necessary to successfully solve the most difficult Raven’s items, the
implication of the modeling is that performance on more diffi-
cult items should be more highly correlated with WMC. However,
in subsequent tests of that hypothesis, several studies examined
the correlation between WMC and Raven’s performance across
ordinal item position. Because Raven’s is designed such that the
items increase in difficulty with order of presentation, the ordinal
item position acted as a proxy for item difficulty in these stud-
ies (and in our present study). Contrary to expectation, those
studies uniformly found that the role of WMC remained invari-
ant across ordinal item position. For example, Wiley et al. (2011)
correlated performance on a single measure of WMC with perfor-
mance on each of the 36 items of the Advanced version of Raven’s
test (RAPM; Raven et al., 1998) and found that this correlation
remained invariant across items 1. Wiley et al. used an opera-
tion span task (OSPAN from here on) to measure WMC. In the
OSPAN task, people are presented with a list of memoranda (e.g.,

1This invariant relationship was first noted by Unsworth and Engle (2005);
however, their study was subtly biased against finding an item-wise effect
because of the use of a shorter, non-standard time period for completion of
the test (30 instead of 40 min). This non-standard timing made it more likely
that performance on the most difficult items would be near the floor (because
most people ran out of time before solving those items), thereby necessitating
their removal and consequently reducing the power of the analysis. Hereafter,
we focus on Wiley et al.’s (2011) result which also showed a null effect but
used a standard 40 min presentation time.
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letters) for immediate serial recall, but study items are separated
by one or more arithmetic equations (e.g., “3 + 5 = 7”) that par-
ticipants have to evaluate and verify for correctness. Complex
span tasks such as OSPAN are a favored assay of WMC because
they combine simple memory storage with the simultaneous
processing demands that are characteristic of working memory.

The right-hand panel of Figure 2 shows the item-wise corre-
lations between OSPAN performance and performance on each
Raven’s item observed by Wiley et al. (2011); the accuracy for each
item is shown in the left-hand panel. (The white dots in the right
panel index items comprised of novel rule combinations and are
discussed further below). Although the pattern is quite noisy, it
suggests that there is no systematic relationship between ordinal
item difficulty (on the abscissa) and the correlation between per-
formance on those items and WMC (as measured by OSPAN).
This impression of an invariant relationship was statistically sup-
ported by the failure to find an increasing correlation between
OSPAN and the proportion correct within each quartile of the
Raven’s test.

Similar results have been presented elsewhere (Salthouse, 1993;
Unsworth and Engle, 2005). Those reports of invariant item-wise
correlations have been used to reject the model of Carpenter et al.
(1990), or indeed any other proposal that cites the ability to hold
rules and goals in working memory as underlying Raven’s perfor-
mance. The failure to find a selective involvement of WMC has
motivated alternative theorizing about the relationship between
the Raven’s test and WMC.

For example, Wiley et al. (2011) examined whether, irrespec-
tive of item difficulty, items that demanded novel rule combina-
tions might require greater working memory involvement. Recall
that the items in Raven’s are created using a limited number of
rules which are thus necessarily repeated across the test. If peo-
ple learn the rules that appear early in the Raven’s tests, then
these rules may interfere with rule induction when novel rules are
introduced. Consequently, Wiley et al. (2011) hypothesized that
the item-wise correlations between Raven’s and WMC should be
highest for items comprised of novel rules or novel rule combi-
nations (i.e., items 2, 10, 14, 16, 18, 21, 25, 28, 30, 31, and 35
shown with white circles in Figure 2). In support, using OSPAN
as a measure of WMC, Wiley et al. revealed the highest item corre-
lations for items requiring novel rules, which appear throughout

FIGURE 2 | Observed accuracy (left panel) and observed item-wise

point bi-serial correlations (right panel) in Wiley et al. (2011). White
circles indicate items containing “novel” rule combinations. Right panel
adapted from Wiley et al. (2011).

the Raven’s test (see Figure 2, right panel). On this view, it is
the novelty of a rule in the sequence of items that triggers a
greater involvement of WMC, but not the difficulty of that rule
per se. A related view holds that the variance shared by WMC
and Raven’s reflects attentional control mechanisms, which are
thought to be uniformly important across all of the Raven’s items
(Unsworth and Engle, 2005). There is empirical support from
other domains that working memory underwrites an ability to fil-
ter out distracting information (Conway et al., 2001; Kane et al.,
2001; Vogel et al., 2005).

The current state of affairs thus presents a conceptual puzzle:
On the one hand, intuition and at least one theory (Carpenter
et al., 1990) suggest that the importance of WMC should be
accentuated for the more difficult Raven’s items, for the simple
reason that the easiest items are—by design—solvable by most
participants and hence ought not to correlate much with WMC.
Such a result would be consistent with a model which assumes
that the easiest items incorporate relatively few rule tokens and are
solvable using rules available to all participants (e.g., Carpenter
et al., 1990).

On the other hand, the invariant item-wise correlation
observed by Wiley et al. (2011) is consonant with an atten-
tional view of working memory but runs counter to the model
of Carpenter et al. (1990). However, there are several reasons to
examine those reports further: First, the counter-intuitive nature
of those results deserves to be underscored—after all, how can
the correlation between WMC and performance be identical for
items that are solved by 90% and 10%, respectively, of partici-
pants? Second, and perhaps most important in the present con-
text, the acceptance of an invariant relationship between Raven’s
performance and WMC may have been premature. It must be rec-
ognized that the invariant relationship reflects a failure to reject
the null hypothesis, and the “noisiness” of the data is consider-
able (see right-hand panel of Figure 2). Moreover, existing studies
that produced an invariant item-wise correlation were limited by
the fact that only a single task (OSPAN) was used to measure
WMC—consequently, measurement error or “method variance”
from that single task might have masked a relationship between
WMC and the more difficult Raven’s items in Wiley et al. (2011).
In support of this claim, the correlation reported in that paper
(r ∼= 0.33) falls on the lower end of the range of correlations
between WMC and Raven’s identified in a recent meta-analysis
(i.e., 0.312–0.641; Ackerman et al., 2005). Finally, the analysis of
point-biserial correlations across items is problematic due to the
necessary heterogeneity that arises as accuracy decreases across
the Raven’s test.

In summary, we suggest that there are well-supported reasons
to suspect that the involvement of WMC in performance actu-
ally increases across item difficulty in the Raven’s test. Although
data to the contrary have been reported, those null effects are
based on seemingly noisy data and on limited measures of WMC.
We therefore suggest that the issue of how working memory
relates to Raven’s performance is best considered unresolved at
present.

In the remainder of this article, we revisit this issue and resolve
it by presenting a simulation and a behavioral study that con-
verge on the conclusion that the role of WMC increases with item
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difficulty—as predicted by Carpenter et al. (1990) and contrary
to the null results reported to date. We first present a simulation
study which shows that item-specific correlations can be con-
stant across difficulty levels only if the absolute magnitude of
the overall correlation (i.e., across all items) between WMC and
Raven’s is fairly low: As the overall correlation between WMC and
Raven’s performance increases, the item-specific correlations can
no longer be constant but must also increase across item diffi-
culty. This is a necessary consequence of near ceiling performance
on the early items which declines as the items become more dif-
ficult combined with a high overall correlation between Raven’s
and WMC. Only participants with higher Raven’s scores (and by
implication of the high overall correlation, higher WMC scores)
will have correct responses toward the end of the test where
only a small percentage of participants respond correctly. We
then present a study that related WMC to Raven’s performance.
Unlike relevant precedents, this study used multiple measures
of WMC, thus yielding a composite latent variable less prone
to measurement error which was therefore expected to corre-
late more highly with Raven’s performance (cf. Ackerman et al.,
2005).

To foreshadow our results, as predicted from our simulations,
the behavioral study showed an increase in item-wise correlations
with WMC across item difficulty, contrary to the results reported
to date (we report a further study in the Supplementary Material
that replicated this basic finding). We conclude that the more
difficult Raven’s items indeed tax WMC more than the easier
items, resulting in an increasing correlation with item difficulty
that escapes detection only when the overall relationship between
Raven’s performance and measures of WMC is low. We buttress
our conclusions by using a randomization bootstrap of the data
to show that the emergence of an item-wise increase in correlation
was a necessary consequence of an increasing overall correlation
between WMC and Raven’s performance.

SIMULATION STUDY: THE RELATIONSHIP BETWEEN WMC
AND RAVEN’S PERFORMANCE
In this simulation, we aimed to elucidate the relationship between
the overall correlation, ρ, between WMC and Raven’s and the
item-wise point-biserial correlations. We systematically increased
the simulated overall correlation and examined the effect on the
item-wise correlation. If there is an invariant relationship between
WMC and Raven’s across items, then the simulated item-wise
correlations should not change with Raven’s item difficulty irre-
spective of the overall correlation. By contrast, if difficult Raven’s
items necessitate more WM, then there should be greater corre-
lations between WMC and the more difficult Raven’s items than
between WMC and easier items. To maintain parity with previ-
ous results, the simulations used the means, standard deviation,
minimum and maximum values and observed proportion correct
for each item reported by Wiley et al. (2011) for the OSPAN and
RAPM tests. We first illustrate that the ρ reported by Wiley et al.
(2011) does, in fact, lead to an invariant item-wise relationship
between WMC and Raven’s. We then illustrate that as ρ increases,
the item-wise correlations increase with increasing item difficulty.
That is, the slope of the item-wise correlation function increases
as ρ increases (see Figure 4).

METHOD
To capture the relationship between WMC and Raven’s on an
item-by-item basis, we made the following assumptions: First,
the entire sample of Raven’s scores and WMC scores were
generated from a bivariate normal distribution in which each
point in the distribution represented a single participant’s over-
all Raven’s and WMC scores. The bivariate normal distribution
had means (OSPAN = 0.61, RAPM = 0.55), standard devia-
tions (OSPAN = 0.15, RAPM = 0.16), and population correlation
(ρ = 0.3) that mirrored the values reported by Wiley et al. (2011).
For each simulation replication, 255 synthetic subjects were sam-
pled from this joint distribution, with the data truncated to fall
within the observed range to match Wiley et al.’s 2011 results as
closely as possible.

Across Raven’s items, accuracy is by design highest for items
which appear early on the Raven’s test and then decreases rapidly
with ordinal item position (left panel of Figure 2). This result
was embodied in our simulation by satisfying the following con-
straints: First, for each synthetic participant we generated a vector
representing item-wise performance where each item could either
be correct {1} or incorrect {0}. For each simulation replication, a
binary {0,1} matrix was then constructed with the items repre-
sented in columns and each subject summarized by a row that
represented item-by-item responses (see Figure 3E). The matrix
was generated using a sequential Monte Carlo method (Chen
et al., 2005) to satisfy the constraints that rows had to sum to the
sampled RAPM score for each participant and that columns had
to sum to the observed overall performance on each item. Thus,
the sums within each column followed the exact pattern shown
in the left panel of Figure 2 (replicated in panel D; Figure 3)
and the sums within each row were distributed with the mean
and standard deviation of RAPM scores observed by Wiley et al.
(2011).

Specifically, starting with the first column of the matrix, a
number of participant-cells, equal to the number of partici-
pants who responded correctly for that item, were randomly set
to unity with probabilities proportional to the sampled overall
proportion correct for that given subject (Figure 3B). The total
correct for the participant associated with any participant-cells
set to unity was decreased by 1, and the sampling scheme was
repeated on the next column and so on. That is, each synthetic
participant starts with total number correct as sampled from the
joint distribution between Raven’s and WMC (Figure 3A). On
each step of the sampling process, the probability of any par-
ticipant making a correct response is determined by the total
overall correct for that subject (panel C) and overall propor-
tion correct for that item (panel D). By definition, items with
higher accuracies are responded to correctly by more partic-
ipants. After sampling the correct responses for an item, any
participant who responded correctly to that item has the total
correct score decremented by one reflecting the number of cor-
rect responses remaining to be allocated for that participant.
Sampling in this manner results in random binary matrices
with specific row and column sums (panel E; cf. Ryser, 1963).
This data-generating model thus satisfied the two constraints
just noted; namely, item-specific accuracy and inter-individual
variability.
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FIGURE 3 | Data generation process used in the simulation study.

First, a pair of individual WMC and Raven’s scores are sampled from a
bivariate normal distribution (A). The sample shown in panel (B) is from
the current behavioral study. The Raven’s scores for each simulated
subject (C) and the accuracy on each Raven’s item (D) are used to

constrain the generation of a simulated binary vector of correct and
incorrect responses for each simulated subject. See text for details. The
columns of the simulated binary matrix (E) are correlated with the overall
WMC scores for each simulated subject (F) to produce an item-wise
correlation function (G).

Finally, point bi-serial correlations were computed between
the generated WMC scores for each subject (Figure 3F) and
each column of the simulated binary matrices to produce an
item-wise correlation function (panel G). It is important to note
that only the Raven’s scores for each participant and the over-
all accuracy on the Raven’s test contribute to the generation of
the binary matrices. The only link between WMC and Raven’s
is through the population correlation assumed in the bivariate
normal distribution.

Across 10,000 simulation replications, WMC scores and
RAPM scores were sampled anew for each simulated participant
according to a specified population correlation with the total
RAPM score, each time drawing a new set of data from the bivari-
ate normal distribution. We examined the relationship between
ρ and the item-wise correlation function across several simu-
lated conditions in which we increased ρ from 0.1 to 0.3, 0.5,

0.7, 0.8, and 0.9 to explore the entire range of positive correlation
values.

RESULTS
As shown in the upper middle panel of Figure 4, with ρ = 0.3,
the simulation reproduced the point-biserial item-wise corre-
lations observed by Wiley et al. (2011); the 95% confidence
region of the simulation (computed by finding 1.96 times the
standard deviation of the point bi-serial correlations for each
item across all 10,000 simulated replications) comfortably strad-
dled the observed values. This simulation result confirmed that
our data-generating model was able to capture the basic results
observed by Wiley et al. (2011) at the level of overall item accuracy
and item-wise correlations with WMC.

Now consider the pattern across levels of ρ shown in
Figure 4: When ρ was moderate or large, the influence of
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FIGURE 4 | Simulation results for point bi-serial correlations

between WMC and the Raven’s items for population correlations

of 0.10, 0.30, 0.50, 0.70, 0.80, and 0.90, respectively. Simulations
involved 10,000 replications each, and the shaded areas represent

the 95% confidence regions for the mean simulated correlations
(the solid line). The upper center panel matches the overall
correlation and item-wise results in Wiley et al. (2011) shown by the
dotted line.

WMC increased with item difficulty—in line with the model
of Carpenter et al. (1990) and contrary to previously reported
invariant item-wise correlations. The slopes of the simulated
item-wise correlations were 0.0002, 0.0006, 0.0009, 0.0013,
0.0015, and 0.0016 for ρ = 0.1, 0.3, 0.5, 0.7, 0.8, and 0.9,
respectively.

This result has an intuitive interpretation that arises natu-
rally from consideration of how the point-biserial correlations
are related to the overall correlation: as the overall correlation
with WMC and Raven’s increases, participants with higher WMC
scores also tend to have higher Raven’s scores (i.e., they answer
more Raven’s items correctly) and participants with lower WMC
tend to have lower Raven’s scores. However, the pattern of cor-
relations across all of the items is constrained by the decreasing
accuracy across items. High overall accuracy lowers the item-wise
correlation for the early items (i.e., the point bi-serial correla-
tion must be near zero if nearly everyone gets the item correct)
resulting in an increasing slope across the entire test. For the
later more difficult items, the participants who respond cor-
rectly have to come from the pool of participants who have
higher Raven’s scores and higher WMC. Consequently, with a
high overall correlation between WMC and Raven’s, the point-
biserial correlation between WMC and the most difficult Raven’s

items that have the lowest accuracy, must be higher than the
point-biserial correlation between WMC and the easiest Raven’s
items.

By this reasoning, the simulations predict that if the overall
correlation between Raven’s and WMC is high and accuracy on
the first few items is high, then not only will the item-wise cor-
relations be highest for items near the end of the test, but the
item-wise correlations will be near zero for items near the begin-
ning of the test because, regardless of WMC, everyone gets these
items correct. Consequently, with a high overall correlation and
high accuracy, the slope of the item-wise correlation function
should be positive2.

2Of course, a floor effect for the most difficult items would cause the item-
wise correlations to be near zero at the end of the Raven’s test, which would
result in an inverted U-shaped item-wise function if the overall correlation
was high—as we indeed observed in the simulation. However, in Wiley et al.
(2011) and in our behavioral study, all of the items excepting the final item
had performance well above zero. We recognize that describing the item-wise
correlation function as “increasing” is contingent on the absence of a floor
effect for the final Raven’s items. However, regardless of whether the function
is increasing or U-shaped, our interpretation of the relationship between the
overall and item-wise correlation is unchanged (i.e., the item-wise correlation
is increasingly less invariant with an increasing overall correlation).
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DISCUSSION
The simulation results suggest that the rather low correlation
between OSPAN and RAPM (r = 0.33) observed by Wiley et al.
(2011) may have obscured a pattern that would have emerged
had the overall correlation been greater. It is important to note
that this argument can have force only if the correlation between
WMC and RAPM can legitimately be expected to be greater: If
the true value of that correlation were in the vicinity of the value
observed by Wiley et al. (2011), then any argument about the
possible effects of a greater overall correlation would be moot.
Fortunately, it is known that WMC, when measured more accu-
rately with multiple tasks to permit latent-variable analysis (e.g.,
Kane et al., 2005), correlates more highly with tests of fluid ability
than observed by Wiley et al. (2011).

We now report a study that used multiple tasks to measure
WMC, thus reducing the task-specific variance and measure-
ment error that beset a single-task measure such as OSPAN. We
expected the correlation between WMC and RAPM performance
to be greater than in relevant previous studies, and on the basis of
our simulation results, we expected an effect of item difficulty to
emerge.

BEHAVIORAL STUDY
In this study, we tested the primary prediction suggested by our
simulations: If the overall correlation between WMC and Raven’s
is increased, does this produce an increasing item-wise corre-
lation? Like (Wiley et al., 2011), we use the Raven’s Advanced
Progressive Matrices (RAPM); however, we do not rely on a single
measure of WMC, but use multiple tasks and derive a compos-
ite latent measure of working memory. To increase generality,
we replicated this study, which used the RAPM, using a differ-
ent version of Raven’s, the Standard Progressive Matrices (RSPM).
The results of this replication are reported in the Supplementary
Material.

To foreshadow, the results indicate that with a high overall
correlation between WMC and RAPM, the slope of the item-
wise correlation function significantly increases as the items
become more difficult. We additionally show that this result gen-
eralizes to a further item-wise analysis of the number of rule
tokens.However, we find no relationship between item novelty
and WMC in contrast to Wiley et al. (2011).

METHOD
Participants
The participants were 130 volunteers (95 females; mean age
21.12) from the University of Western Australia campus com-
munity. Participants received either partial course credit for an
undergraduate psychology course or $20 for two 1-hour sessions.

Procedure
In the first session of the study, participants completed a bat-
tery of four WMC tasks from the WMC battery presented by
Lewandowsky et al. (2010). The battery of four WMC tasks pre-
sented by Lewandowsky et al. (2010) was written in MATLAB
with the aid of the Psychophysics toolbox (Brainard, 1997; Pelli,
1997). Full details for these tasks can be found in Lewandowsky
et al. (2010), and we survey them only briefly here.

Memory Updating (MU)
The MU task required participants to (a) store a series of num-
bers in memory, (b) mentally update these numbers based on a
series of arithmetic operations, and (c) recall the updated num-
bers. On each trial, three to five frames containing random digits
were presented on the screen. Following memorization, successive
arithmetic operations, (e.g., “+4” or “−3”) were presented in the
frames, one at a time for a random number of steps before final
recall was cued. The key dependent variable is the proportion of
updated digits recalled correctly.

Operation Span (OSPAN) and Sentence Span (SS)
On each OSPAN trial, a series of arithmetic equations were
presented (e.g., 4 + 3 = 7), each of which was followed by a
consonant for memorization. Participants judged the equation
for correctness and recalled the consonants immediately after
list presentation in the original order. The SS task was identi-
cal to the OSPAN, except that instead of judging correctness of
an equation, participants judged the meaningfulness of sentences
(cf. Daneman and Carpenter, 1980). For OSPAN and SS, the
key dependent variable is the proportion of consonants recalled
correctly.

Spatial Short-Term Memory (SSTM)
The SSTM task was adapted from Oberauer (1993) and involved
memorization of the spatial location of circles presented, one-
by-one, in various locations in a 10 × 10 grid. Participants used
the mouse to indicate the memorized location of the dots in any
order by clicking in the corresponding grid cells. For this task,
participants are given a score based on how similar their recalled
pattern was to the to-be-memorized pattern (see Lewandowsky
et al., 2010).

Fluid intelligence tests (RAPM)
In the second session, participants completed Sets I and II of the
1962 Raven’s Advanced Progressive Matrices. As recommended
by Raven et al. (1998), RAPM Set I was included to familiarize
participants with the matrices. Participants had 5 min to complete
the 12 items in Set I before being given the standard 40 min to
complete the 36 items in Set II. We only report the results for the
last 36 items (Set II).

RESULTS AND DISCUSSION
Data from two participants who failed to complete all tasks were
removed from the analysis, and data from two further partici-
pants were removed for having WMC and Raven’s scores less than
three standards deviations below the mean, respectively. The final
analyses thus used a sample size of N = 126. Descriptive statistics
for the four WMC tasks and RAPM are shown in Table 1. The top
left panel of Figure 5 shows average performance on the RAPM
items from Set II. The pattern conformed to expectation in that
accuracy decreased with ordinal item position.

For the correlational analyses, we computed a composite mea-
sure of WMC by first converting each participant’s score on each
WM task into a z-score, and then computing that person’s aver-
age z-score across the four tasks (zWMC). The overall correlation
between zWMC and the total RAPM score was moderately large,
r = 0.56, p < 0.001.
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The top right panel of Figure 5 shows the point bi-serial cor-
relations between WMC and performance broken down across
Raven’s items, together with the best-fitting regression line. The
slope of the regression line (0.004) was significantly greater than
zero, t(34) = 2.87, p < 0.01, r2 = 0.20. This slope is greater than
the slopes predicted from our simulation because overall accu-
racy across all of the items is higher in our study than in Wiley
et al. (2011). Due to the near ceiling accuracy for the first few
items in our study, the item-wise correlation for these items is
closer to zero, which consequently results in an increased slope.
Our data confirm that when there is at least a moderate corre-
lation between WMC and Raven’s performance, the item-wise
correlations increase with item difficulty, exactly as expected from

Table 1 | Means, standard deviations, skewness, and kurtosis for the

operation span task (OSPAN), sentence span task (SS), spatial

short-term memory task (SSTM), memory updating task (MU), and

Raven’s Advanced Progressive Matrices (RAPM).

Measure M SD Skewness Kurtosis

OSPAN 0.71 0.14 −0.99 4.07

SS 0.70 0.15 −0.70 3.30

SSTM 0.84 0.06 −0.14 2.37

MU 0.66 0.18 −0.34 2.48

RAPM 24.47 5.37 −0.34 2.90

the simulation results. As shown in the Supplementary Material,
we also replicate this effect using a different Raven’s test (i.e.,
the Standard Progressive Matrices) and a different sample of
participants.

Operation span
To provide further empirical confirmation that a reduction in
the overall correlation between WMC and RAPM attenuates
the item-wise effect, we examined the correlation between the
OSPAN subtask and RAPM. For this task, the overall correla-
tion with Raven’s was much lower, r = 0.36, p < 0.001. The slope
of the regression line was not significantly greater than zero,
t(34) = 1.39, p > 0.05, r2 = 0.05. This result replicates the null
slope found by Wiley et al. (2011), and is explained by the low
overall correlation between OSPAN and Raven’s as predicted by
our simulations.

Multilevel analysis
To further analyze the relationship between zWMC, item diffi-
culty and novelty, and performance on Raven’s, we conducted
a multilevel logistic regression (Gelman and Hill, 2007), which
circumvents problems due to items with very high or very low
accuracy by relying on the logistic (or inverse-logit) function to
model the accuracy proportions for each item. There are a num-
ber of different possible models based on various combinations
of WMC, ordinal item position (as a proxy for difficulty), item

FIGURE 5 | Top left: Performance on Raven’s advanced progressive matrices
items. Top right: Observed correlations between working memory capacity
(zWMC; based on a battery of four tasks) and performance on each Raven’s
item. The solid line represents the best-fitting regression line (intercept 0.13,
slope 0.005). Bottom panels: Results from a bootstrapping analysis resulting

in correlations of 0.52, 0.23, and 0.09, respectively, between WMC and
overall Raven’s performance. All bootstrap results are based on 10,000
replications and the shaded areas represent the 95% confidence regions for
the bootstrapped means. The framed bottom-left panel matches the overall
correlation and item-wise results in the top right panel.
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novelty (cf. Wiley et al., 2011), and their various interactions
that might explain the RAPM accuracy data; however, given our
theoretical focus on the effects of item difficulty and the results of
the simulation study, we examined only two models in detail: The
first model includes WMC, ordinal item position, and the inter-
action between these variables. The second model includes these
three effects plus the effect of item novelty. For both models, we
systematically tested alternative random-effect models (i.e., let-
ting one or more of intercept, ordinal item position, and novelty
vary randomly across participants) and determined the “best”
model using BIC.

The logistic regression assumes that the predictors are lin-
early related to the logit transformation of the dependent variable;
consequently, we examined the relationship between each vari-
able and accuracy using a White test for non-linearity (Lee
et al., 1993). Ordinal item position showed a demonstrable non-
linear relationship with accuracy χ2(2) = 61.12, p < 0.001. A
Box–Tidwell analysis indicated that the non-linearity could be
removed by raising ordinal item position to a power of 1.704,
χ2(2) = 4.29, p = 0.12 (see Box and Tidwell, 1962). None of
the other variables showed any non-linear relationship with the
largest χ2 being for zWMC (χ2(2) = 2.86, p = 0.24).

Exponentiating ordinal item position to correct for non-
linearity, our first model is given by the following equation:

yij = β0 + βzzi + βψψ
λ
j + β(z×ψ)zi × ψλj + (

Si + eij
)

(1)

where yij is a binary response variable indicating whether partici-
pant i made a correct (1) or incorrect (0) response on item j, zi is
the zWMC score for participant i, ψj is the ordinal item position
of item j, λ equals 1.704 (as indicated by the above Box–Tidwell
analysis), Si is the set of subject random effects and eij is an error
term. The linearization of the item effect has no bearing on our
interpretation of the results as item position is only an ordinal
proxy for difficulty. Consequently, regardless of how that variable
is transformed it retains the ordinal association with the unknown
scale of actual difficulty.

We tested this model using only the intercept as a random
effect (e.g., Model 1, see Table 2), the intercept plus ψλ as ran-
dom (Model 2), and intercept, ψλ and novelty all as random
(Model 3). Comparison of the BICs pointed to the model in
which only the intercept varied randomly as being preferable (i.e.,
Model 1). This model revealed significant effects of zWMC (p <
0.001), ordinal item position (ψλ, p < 0.001), and the critical
zWMC × ordinal item position interaction (p < 0.01). The latter
interaction confirms that WMC played an increasingly important
role as item difficulty increased, precisely paralleling our initial
correlation-slope analysis3.

To test whether item novelty affected accuracy, we added the
rule novelty of each item (κ , as defined in Wiley et al., 2011) as a
fixed factor as follows:

yij = β0 + βzzi + βψψ
λ
j + β(z×ψ)zi × ψλj + βκκ + (

Si + eij
)
(2)

As shown in Table 2 (see Model 4), the novelty effect was not sig-
nificant (p = 0.39). Contrary to Wiley et al.’s (2011) conjecture,
increased WMC was not related to better performance on items
with novel rule combinations. Indeed, this is evident if once com-
pares the item-wise correlations from our study (see Figure 5)

3While the exponentiation demonstrably resolves the non-linearity, it raises
the potential concern that exponentiating might add undue extra leverage to
the later items on the test. To address this question, we conducted a lever-
age analysis by removing each (exponentiated) item in turn and determining
the extent to which the parameter estimate for the crucial zWMC ×ψλ inter-
action changes. This leverage analysis showed that there is no correlation
between an item’s ordinal position and the magnitude of the effect that its
removal has on the estimate of the interaction (r = −0.13, p = 0.44). In other
words, the amount of leverage that each item has does not increase with an
item’s difficulty. This confirms that our transformation of the independent
variable did not inadvertently imbue items of greater difficulty with greater
leverage (although it must be noted that even that, by itself, would not cre-
ate an interaction with WMC; increasing leverage may be a potential problem
but in the absence of an explanation that also invokes WMC it is by itself
insufficient to generate the interaction.)

Table 2 | Estimated parameters (and standard errors) of mixed effects modeling of the RAPM behavioral study.

Parameters Model 1 Model 2 Model 3 Model 4

FIXED

Intercept (β0) 2.93 (0.11) 2.98 (0.12) 2.98 (0.12) 2.91 (0.11)

zWMC (βz ) 0.53 (0.14) 0.53 (0.15) 0.53 (0.15) 0.52 (0.14)

Ordinal item position (βψ ) −0.01 (0.0003) −0.01 (0.0004) −0.01 (0.0005) −0.01 (0.0003)

zWMC × Ordinal item position (βz×ψ ) 0.001 (0.0005) 0.001 (0.0005) 0.001 (0.0005) 0.001 (0.0005)

Novelty βκ 0.08 (0.09)

RANDOM

Intercept s0 0.67 (0.59) −0.05 (0.06) −0.06 (0.06) −0.14 (0.06)

Ordinal item position sψ 0.0001 (0.0001) 0.0001 (0.0001)

Novelty sκ 0.003 (0.006)

EVALUATION

df 5 7 10 6

BIC 4089 4097 4121 4097

All significant coefficients are in bold font. 0 = intercept, z = zWMC, ψ = ordinal item position, κ = item novelty, df = degrees of freedom, BIC = Bayesian

Information Criterion.
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with the item-wise correlations shown in Figure 2. This is per-
haps unsurprising given that others have also failed to replicate
the novelty effect (Harrison et al., 2011).

Having once more confirmed the principal result predicted
from our simulation, we now turn to several other analyses which
further elucidate the relationship between WMC and Raven’s.

Bootstrapping analysis
Our simulation study began from the overall correlation between
Raven’s and WMC and simulated binary matrices to examine
what happened to the simulated item-wise correlation function
when the overall correlation was increased or decreased. Having
collected data that confirmed the expectations of our simulation,
we next conducted a bootstrapping analysis in which we begin
from the observed binary matrices and then simulate the effect of
decreasing the overall correlation to examine the resulting effect
on the item-wise correlation function.

In other words, to confirm that the magnitude of the over-
all correlation was responsible for the emergence of an item-
difficulty effect in our study, we conducted bootstrapping analyses
based on the observed subject × item (126 × 36) response
matrix (with rows ordered according to the observed zWMC).
Specifically, the overall correlation between zWMC and Raven’s
was gradually reduced by generating new zWMC scores for each
participant and examining the effect of that manipulation on the
item-wise correlations. In terms of the our simulation reported
at the outset, we were effectively replacing the simulated binary
matrices (Figure 3E) with our observed binary matrices and
reducing the overall correlation between WMC and Raven’s while
maintaining observed accuracy for each item and the observed
Raven’s scores for each participant. Thus, the bootstrapping anal-
ysis can be thought of as the converse of the simulation procedure.

We created three conditions, each involving 10,000 bootstrap-
ping runs. For each run, a new vector of zWMC scores was ran-
domly derived from the observed values according to: zWMCn =
ν × zWMC + ε where ε ∼ N

(
0,

√(
1 − ν2

))
and ν varied across

conditions. This new vector contained zWMC scores which were
derived from the observed zWMC scores but had a reduced corre-
lation with the observed Raven’s scores. The rows of the observed
binary response matrix were then re-sorted according to the new
vector zWMCn yielding another bootstrapped replication with
a specified correlation between zWMC and RAPM that main-
tained the overall item-wise error rate and overall Raven’s correct
for each participant observed in the study. Item-wise correlations
were then computed between the bootstrapped replication and
the actual zWMC scores.

The three bootstrapping analyses used ν = 0.95, 0.50, and
0.20, respectively, which yielded actual correlations zWMC ×
RAPM of 0.53, 0.23, and 0.09 (left, center, and right panel in bot-
tom row of Figure 5, respectively). These actual correlations span
a large range of possible overall correlations between WMC and
Raven’s. The bottom left panel provides an idea of the variability
expected when the population correlation is approximately equal
to that observed in the study. The remaining two panels show that
as the population correlation decreases, so does the slope of the
item-wise correlations. The center panel roughly corresponds to
the correlation observed by Wiley et al. (2011) and confirms that

the effect of item-difficulty is sufficiently small under those cir-
cumstances to escape statistical detection when statistical power
is insufficient.

Rule token analyses
We also examined whether the increasing item-wise correla-
tions held corollary implications for a pattern of effects based
on Carpenter et al. (1990)’s classification of the rules associ-
ated with the different Raven’s problems. Recall that Carpenter
et al. accounted for differences in Raven’s performance by assum-
ing differential access to different types of rules (e.g., pairwise,
Dis3, Dis2, and Addition and Subtraction) and the ability to
manipulate different numbers of rule tokens. People who perform
poorly at Raven’s were hypothesized to have less capacity for the
manipulation and storage of rule tokens.

In contrast to the expectation that WMC should be correlated
more highly with problems requiring more rule “tokens” to solve,
Wiley et al. (2011) found that the correlation between WMC
and performance did not increase with an increasing number of
tokens (r = 0.25, 0.24, 0.33, and 0.21, for items involving 1, 2, 3,
and 4 tokens, respectively). To examine the relationship between
rule tokens and WMC in the current study, we conducted a multi-
level logistic regression examining the interaction between WMC
and the number of rule tokens using the following model:

yij = β0 + βz zWMCi + βN Nγ

j + βz×N zWMCi × Nγ

j + (
S0 + eij

)
(3)

where βN Nγ

j is the number of rule tokens for each item j
raised to the power of γ = 2.32, which is the exponent returned
by the Box–Tidwell analysis to correct a non-linear relation-
ship between the number of rule tokens and logit-transformed
accuracy (χ2 = 19.79, p < 0.001). No other variables showed a
significant non-linear relationship. Finally, we compared a model
which included only the intercept as a random effect against
a second model which included both the intercept and num-
ber of tokens as random effects; the BICs were 3118 and 3131,
respectively. Consequently, we only report the results of the
intercept-only random effects model.

This analysis necessarily relies on a subset of the data because
Carpenter et al.’s (1990) derivation of the number of rule
tokens excluded several items for technical reasons. Our analysis
revealed a significant negative coefficient for the number of tokens
[standard error shown in parentheses, βN = −0.10(0.005), p <
0.001], indicating that accuracy decreases with the number of
tokens. More importantly, there was a significant coefficient for
the zWMC × number of tokens interaction [βz×N = 0.02(0.007),
p < 0.01], which further qualified the individual contribution of
WMC [βz = 0.54(0.12), p < 0.001]. The intercept coefficient was
also significant [βN = 2.08(0.09), p < 0.001]. This indicates that
higher WMC helps you more when there are more tokens, which
is in accord with our previous analyses and with Carpenter et al.’s
(1990) theoretical proposal.

GENERAL DISCUSSION
The simulation results and behavioral data converge on the
same conclusion: When there is a moderate to strong overall
correlation between WMC and performance on the Raven’s test of
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fluid abilities, then the role of WMC becomes increasingly more
important as item difficulty increases. The simulation reported at
the outset demonstrated that under simple yet reasonable data
generating assumptions, the increasing item-wise correlation is
inevitable if the overall correlation is high. This prediction was
confirmed using a behavioral study (and replicated using a differ-
ent measure of Raven’s, see Supplementary material). Why, then,
have previous experiments investigating this issue failed to detect
this modulating role of item-difficulty?

RELATIONSHIP TO PREVIOUS FINDINGS
Our simulation, multilevel logistic regression, and the bootstrap-
ping analyses suggest that other studies failed to find an effect of
item difficulty because in their cases the overall correlation involv-
ing WMC was insufficient in magnitude. One apparent exception
to this analysis involves the results of Salthouse (1993), who also
reported a non-significant item-wise slope despite showing a high
overall correlation between WMC (measured by OSPAN and
SSspan) and Raven’s, r = 0.59. However, we suggest that this high
overall correlation may have been artifactual. Salthouse (1993)
tested a large sample of participants from across four age groups
(students with a mean age of 20 and adults with ages ranged
20–39, 40–59, and 60–79). The correlation was reported by com-
bining data across all samples, thereby confounding between-
group and within-group variability. Indeed, as Salthouse (1993)
reported, the average overall Raven’s score decreased with the
age of the participants. Likewise, WMC was also negatively and
highly correlated with age (r = −0.54). Consequently, the true
correlation between WMC and Raven’s performance—that is,
the remaining correlation when between-group differences are
removed—is likely to have been much lower. In support of our
claim, Salthouse (2000)’s reanalysis of Salthouse (1993) revealed
unique variance associated with the more difficult items; that is,
unique variance remained in the relationship between age and the
hardest Raven’s problems after controlling for variance in the easi-
est items. Although not reported at the level of detail necessary to
determine whether the itemwise correlation increases with item
difficulty, this analysis is consistent with this notion.

It must be underscored that we reported two independent
replications of a significant item-difficulty effect using two vari-
ants of the Raven’s test, each of which subsumed a null (RAPM)
or reduced (RSPM, see Supplementary Material) effect of item
difficulty when WMC was measured using a less optimal mea-
sure of WMC. That is, we replicated existing null results when we
did not remove “method variance” from our assay of WMC while
simultaneously showing that acceptance of the that null result was
ill-advised because it is rejected when a composite measure of
WMC is used that at least partially controls for method variance.

Finally, we reiterate that the appropriate analysis for this data
is the multilevel level logistic regression. We have explored the
item-wise correlation due to the precedents set by Wiley et al.
(2011) and Unsworth and Engle (2005) but note that this analysis
is inherently problematic due to ceiling effects at the beginning of
the test and floor effects at the end of the test. On the basis of those
problems, one may be tempted to speculate that the magnitude
of the overall correlation only affects the problematic item-wise
correlation analysis but not the multilevel modeling. In other
words, it may be ok to use a single measure of WMC if one applies

the appropriate multilevel logistic analysis. We examined this by
rerunning the multilevel regression using our best fitting model
(Model 1, see Equation 1), but substituting OSPAN for zWMC.
In this analysis, the OSPAN × ordinal item position interaction
was not significant (p = 0.09) indicating that even with the mul-
tilevel regression, the use of a single measure of WMC would hide
the underlying relationship between WMC and Ravens.

Lest one wonder why the Raven’s test, one of many assays
of fluid intelligence, is worthy of study it must be recalled that
the Raven’s test is a rule induction task par excellence; con-
sequently, understanding the relationship between WMC and
Raven’s should inform theories of the relationship between
WMC and other induction tasks, such as category learning (e.g.,
Lewandowsky, 2011; Craig and Lewandowsky, 2012; Sewell and
Lewandowsky, 2012), theories of rule-based categorization (Fific
et al., 2010; Nosofsky and Little, 2010; Little et al., 2011, 2013;
Little, 2012), and theories of individual differences in catego-
rization (Yang and Lewandowsky, 2004; Little and Lewandowsky,
2009; Sewell and Lewandowsky, 2011). Ultimately, understanding
the relationship between Raven’s and WMC has implications for
how to formalize capacity limitations in complex inferential tasks
in theories of human intelligence.

TOWARD A COMPUTATIONAL MODEL OF RAVEN’S AND WMC
Our work presents a novel account of the relationship between
WMC and Raven’s that simultaneously predicts when one should
expect to see a positive item-wise relationship and when that rela-
tionship should be absent. On the surface, this may appear to
be merely a statistical issue, but given the intense psychological
attention and interpretation this issue has received, its resolu-
tion has considerable psychological implications. In particular,
our research limits reliance on a result which has been a substan-
tial barrier to theorizing in this domain. Previously, any model
hoping to account for the relationship between WMC and Raven’s
also would have to explain the invariant relationship across item
difficulty. The present result shows that this is not the case and
provides tight constraints on quantitative models of WMC and
Raven’s. We now know that any model attempting to explain the
relationship between the two has to predict that high WMC will
allow you to do well on hard items in a manner that increases
the slope of the item-wise correlation function with the overall
correlation.

Our results are compatible with theoretical analyses of Raven’s
performance that appeal to working memory as a repository
for rules and intermediate results (e.g., Carpenter et al., 1990).
Although those theoretical views have fallen out of favor, largely
due to the apparent absence of a modulating effect of item dif-
ficulty on the relation between WMC and Raven’s performance,
our results suggest that abandoning those approaches may have
been premature.

Although Carpenter et al. (1990) provided a computational
theory compatible with the current results, other models may
also be able to predict the present pattern (e.g., Rasmussen and
Eliasmith, 2011; Little et al., 2012). For one, Verguts et al. (2000)’s
suggestion that high performers on Raven’s sample rule tokens
faster than poor performers on Raven’s should also predict that
WMC has an increasing influence as the items increase in diffi-
culty. In a fixed period of time, faster sampling would result in
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a greater number of rule samples. In this model, WMC could
be represented by the number of samples that can be held in
WM at any one time. A similar proposal was recently suggested
by Rasmussen and Eliasmith (2011). If early Raven’s items only
require a few tokens to solve, then a limited number of samples
would suffice, but for more difficult Raven’s items, a larger num-
ber of samples would increase the probability making a correct
response on these items. Such theories highlight the key role of
WM in Raven’s as a repository for rule tokens or samples and pre-
dict an increasing influence of WMC as Raven’s items increase in
difficulty.

A synthesis of these two accounts is possible by extending a
recent Bayesian model of Raven’s proposed by Little et al. (2012).
The model considers rule induction in Raven’s as Bayesian infer-
ence in which a set of rules with some prior probability, most
likely determined by the relative complexity of each rule, are
evaluated based on their ability to have plausibly generated the
features of the items shown in the matrix. The rules are then
used to predict the missing object in accord with their poste-
rior probability. This model accurately predicts correct and error
responses for both RSPM and RAPM. Two natural modifications
of this model could potentially link theoretical accounts based on
the capacity of working memory (e.g., Carpenter et al., 1990) to
accounts based on learning which rules are relevant in a given test
(e.g., Verguts et al., 2000). First, rather than assuming a complete
representation of the prior probabilities of each rule, an approx-
imate prior could be used in which each rule is represented by
a number of samples, proportional to observed WMC. For any
given problem, the samples would be updated using importance
sampling to form an approximate posterior over the rules (see
e.g., Shi et al., 2010).

The second modification is to allow the samples to be updated
across items using particle filter sampling (Doucet et al., 2001).
In the particle filter model, a set of particles representing possible
rules applied to some feature are drawn in proportion to their
prior probabilities. Initially, their prior probability is inversely
proportional to complexity, but as one progresses through the
Raven’s items, probabilities are updated in proportion to how suc-
cessful the rule has been previously. Particles representing rules
are maintained if they work for the objects in the first two rows
and columns, but are replaced with new samples from the prior if
they do not. Using the updated set of particles, the missing object
is predicted by applying the rules to the features in the third row
and column, combining all features into a predicted object, and
finding the object in the response set with the highest predicted
probability. This framework not only captures the idea that work-
ing memory allows for the storage and manipulation of rules,
but also the idea that better performance on Raven’s is related
to learning the set of rules likely to apply across items. A par-
ticle filter model of Raven’s would view both Carpenter et al.’s
and Verguts and De Beock’s accounts as consonant and provide
an integration of both ideas. We leave this as a goal for future
research.

One further unresolved question not addressed by the cur-
rent study is what makes a Raven’s item difficult? Here, in line
with all relevant precendents, we use item order as a proxy for
item difficulty. This operational definition has been embedded,
by design, in the Raven’s test, and we adopted it here because our

focus is not aimed at discovering what makes an item difficult.
We were concerned with the relationship between items of known
variation in difficulty and WMC—and the universally accepted
operationalization of difficulty as item number was sufficient to
resolve this question. However, we regard the analysis and expla-
nation of item difficulty to be an important conceptual issue that
requires further thought and is awaiting resolution.

CONCLUSION
In summary, the present research elucidates the relationship
between WMC, a core construct in human cognition that
accounts for 50% of the variance in fluid abilities, and Raven’s
Progressive Matrices, a paramount inductive test and one of the
most popular assays of fluid intelligence. We have demonstrated
that higher WMC is associated with better performance on more
difficult Raven’s items. This relationship is only detectable when
the overall relationship between WMC and Raven’s is high. Our
results provide a new challenge for theories of the relationship
between WMC and Raven’s: namely, any computational the-
ory must predict the tight coupling between WMC and Raven’s
overall, and WMC and each of the items on the Raven’s test.
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