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Complexity has been shown to affect performance on artificial grammar learning (AGL)
tasks (categorization of test items as grammatical/ungrammatical according to the
implicitly trained grammar rules). However, previously published AGL experiments did
not utilize consistent measures to investigate the comprehensive effect of grammar
complexity on task performance. The present study focused on computerizing Bollt and
Jones’s (2000) technique of calculating topological entropy (TE), a quantitative measure
of AGL charts’ complexity, with the aim of examining associations between grammar
systems’ TE and learners’ AGL task performance. We surveyed the literature and
identified 56 previous AGL experiments based on 10 different grammars that met the
sampling criteria. Using the automated matrix-lift-action method, we assigned a TE value
for each of these 10 previously used AGL systems and examined its correlation with
learners’ task performance. The meta-regression analysis showed a significant correlation,
demonstrating that the complexity effect transcended the different settings and conditions
in which the categorization task was performed. The results reinforced the importance of
using this new automated tool to uniformly measure grammar systems’ complexity when
experimenting with and evaluating the findings of AGL studies.
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INTRODUCTION
Artificial grammar learning (AGL) refers to an experimental
approach that explores pattern recognition in a set of structured
sequences, typically comprising strings of alphabetical letters.
Such experiments include a training phase and a testing phase
(Reber, 1967, 1969). Studies on AGL have demonstrated that par-
ticipants are able to acquire the abstract representation or rule
underlying an artificial grammar system.

Researchers have utilized AGL tasks to explore the distinction
between explicit and implicit learning, to identify the representa-
tions acquired through learning, and as a model for the process
of language acquisition. AGL studies can be carried out either
explicitly, where the participant is informed during the train-
ing phase that the stimuli were constructed according to a set of
rules, or implicitly, where the participant is unaware of the fact
that certain rules underlie the stimuli (Reber, 1967; Lorsbach and
Worman, 1989; Gebauer and Mackintosh, 2007). Various theories
have been debated to explain what characterizes the learning pro-
cess and what is acquired during AGL training sessions, including
the probabilistic learning approach (Reber, 1967), the exemplar-
based learning approach (Brooks and Vokey, 1991), and a third
approach suggesting that learners’ acquisition of abstract rules
during the training phase enables them to judge the sequences
at the testing phase (Redington and Chater, 1996; Pothos, 2010).
The AGL paradigm has also been proposed as a model for lan-
guage or syntax acquisition, but questions remain as to how
broadly it applies to the tasks faced by language learners (Marcus

et al., 1995; Pena et al., 2002; Endress and Bonatti, 2007; Aslin and
Newport, 2008).

AGL experiments typically involve letter strings that are gen-
erated based on a grammar system and then are shown to the
learner during a training session. In studies of implicit learning,
learners are asked to memorize stimulus strings during this train-
ing phase (Dienes et al., 1991; Pavlidou et al., 2009), whereas in
explicit AGL tasks, learners are informed during training that the
stimuli were constructed according to a complex set of rules, and
they are asked to look for those rules (Kirkhart, 2001; Gebauer
and Mackintosh, 2007). In the testing phase, two types of strings,
grammatical and ungrammatical, are shown to learners. Learners
are asked to decide whether or not the strings are grammati-
cal, namely, whether they were constructed using the same set of
rules used to construct the strings shown in the training session
(Reber, 1967). Participants consistently score above chance on
such AGL tasks, even when they are unable to specifically extract
the underlying rule and regardless of whether learners were ini-
tially informed explicitly about strings’ rule-based construction
(Dulany et al., 1984; Dienes et al., 1991). This consistent find-
ing in the literature indicates that individuals are able to acquire
some awareness of the rule even without explicit exposure to the
rule’s existence (Servan-Schreiber and Anderson, 1990; Gebauer
and Mackintosh, 2007).

The standard AGL experiment is based on a grammar system,
with sequences of symbols presented as letter strings such as TTS
or VXVPS (Reber, 1967). For example, when using Reber’s (1967)
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grammar chart (see Grammar C in Figure 1), all sequences must
begin at the IN arrow and end at the OUT arrow. The path from
the IN arrow can be either from State 0 (S0) to State 1 (S1) or
from S0 to State 3 (S3). Therefore, the first symbol can only be a
T or a V. Moving on, if a sequence begins with a V, then the only
possible transitions are from S3 to itself (see curved arrow in the
figure), thereby adding an X, or else from S3 to S4, thereby adding
a V. If a second V is added after the X by moving to S4, then we
can next move in one of two directions: from S4 to S2, adding

a P, or from S4 to S5, adding an S and ending the sequence. In
contrast, from S4 the move back to S3 is illegal (ungrammatical);
therefore, adding a consecutive V is not an option. Thus, using
this chart, a sequence such as VXVS is grammatical, but creating
a sequence such as VXVV is ungrammatical (Pothos and Kirk,
2004).

Previous AGL studies have come under heavy criticism for the
effect of grammar system complexity on learners’ performance
(Reber, 1967; Perruchet et al., 1998; Van den Bos and Poletiek,

FIGURE 1 | Charts of the 10 artificial grammars appearing in Table 1.
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Table 1 | Experimental AGL studies by grammar’s chart, TE value, and No. of stimuli and participants’ number, age, and task performance

accuracy.

Publication AGL grammar Participants

No. Researchers Year Chart TE No. of Sample/M N Accuracy

stimuli age in years in %

1. Scott and Dienes 2008 A: Reber1969 0.560 45 22 40 69.00
2. Kirkhart 2001 A: Reber1969 0.560 75 Students 12 61.40
3. Domangue et al. 2004 B: Mathews1989 0.578 88 Students 46 70.00
4. Reber 1967 C: Reber1967 0.602 28 Students 5 73.50
5. Reber 1967 C: Reber1967 0.602 28 Children 5 65.20
6. Zizak and Reber 2004 C: Reber1967 0.602 60 Students 30 62.00
7. Zizak and Reber 2004 C: Reber1967 0.602 60 Students 29 62.00
8. Zizak and Reber 2004 C: Reber1967 0.602 60 Students 25 58.00
9. Zizak and Reber 2004 C: Reber1967 0.602 60 Students 34 59.00
10. Servan-Schreiber and Anderson 1990 C: Reber1967 0.602 20 Students 9 68.90
11. Rosas et al. 2010 C: Reber1967 0.602 16 7.31 15 47.00
12. Poznanski and Tzelgov 2010 C: Reber1967 0.602 160 Students 12 67.50
13. Conway and Christiansen 2006 C: Reber1967 0.602 54 Students 10 62.00
14. Skosnik et al. 2002 D: Skosnik2002 0.603 50 Students 23 65.10
15. Skosnik et al. 2002 D: Skosnik2002 0.603 50 Students 23 57.40
16. Peigneux et al. 1999 E: Meulemans1997 0.686 51 63 17 56.13
17. Danion et al. 2001 E: Meulemans1997 0.686 51 33.7 14 74.80
18. Conway and Christiansen 2006 F: Conway2006 0.716 54 Students 10 66.00
19. Conway and Christiansen 2006 F: Conway2006 0.716 54 Students 10 58.00
20. Pavlidou et al. 2009 G: Knowlton1996 0.740 69 6.48 16 59.37
21. Knowlton and Squire 1996 G: Knowlton1996 0.740 46 63.8 18 63.50
22. Chang and Knowlton 2004 G: Knowlton1996 0.740 46 Students 30 62.50
23. Chang and Knowlton 2004 G: Knowlton1996 0.740 46 Students 35 64.70
24. Don et al. 2003 G: Knowlton1996 0.740 48 23 27 66.00
25. Pavlidou et al. 2010 G: Knowlton1996 0.740 8 9.3 16 55.00
26. Pavlidou and Williams 2010 G: Knowlton1996 0.740 8 Children up to 12 16 60.00
27. Pothos and Kirk 2004 G: Knowlton1996 0.740 69 Students 74 49.00
28. Pothos et al. 2006 G: Knowlton1996 0.740 60 Students 10 67.20
29. Pothos et al. 2006 G: Knowlton1996 0.740 60 Students 10 64.80
30. Horan et al. 2008 G: Knowlton1996 0.740 46 18–25 43 58.00
31. Pothos and Bailey 2000 G: Knowlton1996 0.740 69 Students 24 59.00
33. Pothos et al. 2006 H: Reber1978 0.761 60 Students 20 55.40
33. Pothos et al. 2006 H: Reber1978 0.761 60 Students 20 53.30
34. Pothos 2005 H: Reber1978 0.761 40 Students 16 61.87
35. Rüsseler et al. 2006 H: Reber1978 0.761 20 32.75 12 64.10
36. Perruchet and Pacteau 1990 H: Reber1978 0.761 20 Students 30 63.30
37. Reber and Perruchet 2003 H: Reber1978 0.761 20 Students 15 55.60
38. Reber and Perruchet 2003 H: Reber1978 0.761 20 Students 15 56.20
39. Reber and Perruchet 2003 H: Reber1978 0.761 20 Students 20 55.30
40. Smith et al. 2001 H: Reber1978 0.761 23 68.36 14 57.90
41. de Vries et al. 2009 H: Reber1978 0.761 100 22.6 20 66.40
42. Jamieson and Mewhort 2010 H: Reber1978 0.761 20 Students 39 60.00
43. Jamieson and Mewhort 2010 H: Reber1978 0.761 40 Students 47 63.00
44. Knowlton and Squire 1994 I: Brooks1991 0.856 16 62.4 6 62.50
45. Knowlton and Squire 1994 I: Brooks1991 0.856 16 64.9 11 60.90
46. Meulemans and Van der Linden 1997 I: Brooks1991 0.856 16 Students 20 55.60
47. Meulemans and Van der Linden 1997 I: Brooks1991 0.856 32 Students 20 54.10
48. Higham 1997b I: Brooks1991 0.856 32 Students 20 58.00
49. Gebauer and Mackintosh 2007 I: Brooks1991 0.856 60 11–32 103 66.42
50. Tunney 2005 I: Brooks1991 0.856 32 19.42 42 58.00
51. Newell and Bright 2003 I: Brooks1991 0.856 80 Students 30 51.30
52. Higham 1997a I: Brooks1991 0.856 48 Students 24 64.00
53. Higham 1997a I: Brooks1991 0.856 48 Students 40 50.00
54. Higham 1997a I: Brooks1991 0.856 48 Students 40 52.00
55. Witt and Vinter 2011a J: Witt2011 0.916 48 5–7 40 50.00
56. Witt and Vinter 2011b J: Witt2011 0.916 48 5–7 10 50.00

AGL, artificial grammar learning. The different grammar charts (A through J) can be seen on Figure 1. TE, topological entropy. Number of stimuli = amount of test

items (strings). Students = university students. The 10 charts are presented in ascending order of complexity.
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2008), claiming that when the grammar system includes more
rules (arrows), uncertainty increases, and the grammar is harder
to acquire, and vice versa (Ziegler and Goswami, 2005). However,
complexity has not always been systematically defined by AGL
researchers, who have employed different ways to measure the
complexity of AGL stimuli’s structure.

Johnstone and Shanks (2001) suggested one method for mea-
suring complexity of a testing item, by calculating its “transition
rule strength” (TRS), which refers to the number of rules con-
stituting the grammar system. These rules are defined as (a) the
number of letters that can be added to a string at each node of
the grammar chart and (b) the number of letters that can ter-
minate a string. For example, using Brooks and Vokey’s (1991)
chart (see Grammar I in Figure 1), Johnstone and Shanks calcu-
lated a total of 17 transitions (arrows), including 3 nodes where
the same letter could be used more than once (S2, S3, S4) and
3 nodes where the string could end (S8, S9, S10). Johnstone and
Shanks (1999) asserted that more repetitions of a specific tran-
sition from one node to another (e.g., the transition from S7 to
S8, adding the letter R, in Grammar I) during the entire training
phase would lower that particular rule’s complexity. To calculate
this complexity measure for a particular item on a testing task
(where participants were asked to indicate if a given string was
grammatical), these researchers summed the number of times
each transition in the testing string had appeared across all of
the trained strings, and then they divided that sum by the num-
ber of letters forming that specific testing string. For example,
using Brooks and Vokey’s grammar (see Grammar I in Figure 1),
the testing string VXVRM contained the following six transi-
tions: V was selected at the transition from S1 to S3, X at the
transition from S3 to S6, V at the transition from S6 to S7, R
at the transition from S7 to S8, M at the transition from S8 to
S10, and the ending transition was at S10. In Johnstone and
Shanks’ (1999) training phase, these six transitions had appeared
64, 33, 17, 45, 19, and 39 times respectively, across 125 training
strings. The calculation of complexity for VXVRM was there-
fore (64 + 33 + 17 + 45 + 19 + 39) divided by 5 letters, totaling
43.4. They concluded that increasing the number of transitions
increased the string’s complexity (Johnstone and Shanks, 1999,
2001).

A second way to measure the complexity of a test item was
proposed by Perruchet et al. (1998), who noted that learning,
may be influenced by the number of “segments” to be acquired.
In other words, when presented with information that contains
multiple elements, segmentation into smaller units leaves larger
but fewer units or “chunks” to remember (e.g., 2-letter bigram
chunks or 3-letter trigram chunks). Moreover, a bigram that
repeats itself in the stimuli creates a simpler structure than one
composed of many unique bigrams (Van den Bos and Poletiek,
2008). For each test item (string), a “global chunk strength” value
can be calculated, comprising the average frequency at which all
of its bigrams and trigrams appeared during the training phase
(Knowlton and Squire, 1994, 1996). For example, in computing
the chunk strength of testing string MSXVVR, one must calcu-
late how frequently each of the following chunks appeared in
training—MS, SX, XV, VV, VR, MSX, SXV, XVV, and VVR—and
calculate their average (Pothos, 2010).

A third means of measuring the complexity of AGL stimuli,
the “exemplar” view, derives from information theory. Jamieson
and Mewhort (2005) proposed that intact stimuli are stored in
memory, and that classification or recognition is determined
by the degree of similarity between a stimulus and the stored
exemplars. They explored the effect of redundancy on implicit
learning, Jamieson and Mewhort quantified the structure in indi-
vidual stimuli (local redundancy) as well as the structure in
the grammatical rules from which the exemplars were derived
(grammatical redundancy). The two kinds of redundancy were
found to be correlated, where local redundancy increased with
grammatical redundancy. However, when separated experimen-
tally, performance was predicted by local redundancy but not by
grammatical redundancy.

We assert that these varying measures of complexity adopted
by prior researchers may preclude reliable comparison and inter-
pretation of the mixed findings yielded by previous AGL research.
In the current article, we propose Bollt and Jones’s (2000) topo-
logical entropy (TE) measure of complexity as the tool of choice
to enable quantitative standardization of the different grammati-
cal charts on which all AGL system stimuli are based. Each AGL
chart consists of nodes (states) and arrows showing the tran-
sitions’ directional flow. Bollt and Jones (2000) developed the
concept of TE by showing that each chart can be represented
by a transition matrix (also known as Markov matrix), which is
a mathematical way of representing all possible transitions in a
given chart. Raising the number of transitions (arrows) increases
TE, thus increasing uncertainty, and vice versa. The TE measure
is also sensitive to the size of the matrix that represents a given
chart and to the presence of short- and long-distance dependen-
cies, and it is also correlated with the number of elements required
to determine the current state in the chart. The formal calculation
of TE as presented in definition eight in Bollt and Jones (2000) is
described below:

h
(∑

M

)
= lim

n→∞

[
ln

(
wn

(∑
M

))
n

]

In this formula, h
(∑

M

)
, which is the TE of

∑
M , is defined to

be the limit of the logarithm of the number of words of length
n, divided by n, as n goes to infinity. More specifically, M is a
transition matrix of a Markov representation (defined by the AGL
chart), and

∑
M is the set of all possible sequences defined by M.

Also, wn
(∑

M

)
is the number of sub-sequences of length n that

are contained in
∑

M , and n is the length of a single sequence.
Note that although the length of a single sequence is one of the
parameters in the formula, the TE formula has no dependency
on length. The formula is not meant to calculate the results for a
specific sequence, but rather to give a global index that measures
the complexity of the chart. Bollt and Jones (2000) also presented
a useful technique for calculating the TE of a given transition
matrix of a Markov representation. Theorem 6 in Bollt and Jones
(2000) states that if ρ(M) is the largest non-negative eigenvalue
of the matrix M, then h

(∑
M

) = ln ρ(M).
Computing TE directly from the formula can be very difficult.

Bollt and Jones (2000) explained that in complex cases when an
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element appears more than once, a simple matrix cannot rep-
resent the chart. Figure 2 presents examples of a simple and a
complex chart. When constructing the complex chart, knowing
which letter in the sequence precedes A is the key to identify-
ing at which A we are positioned. Bollt and Jones (2000) defined
this as a system with memory (of the previous element or ele-
ments). However, a Markov matrix representation is restricted
because the system it represents must be memoryless; that is,
the transition to the next element must depend only on the cur-
rent element without needing any reference to prior or ensuing
transitions. For that reason, Bollt and Jones (2000) developed
the concept of “lift action,” defined as a change in the dimen-
sion of the matrix required to build a memoryless system. Bollt
and Jones presented a calculation of the lift action for the com-
plex chart in Figure 2. They used the letter m to define the basic
number of elements (excluding repeated elements), which in the
case of Figure 2’s complex chart would be m = 4 (a, b, c, and d).
They used the letter k to define the minimum number of ele-
ments required in order to know one’s present position in the
chart. In the complex chart (Figure 2), k would equal 2, indicat-
ing that at least two transitions are required to know at which A
in the chart we are positioned. In order to make a lift, Bollt and
Jones defined mk new elements based on the original elements.
The new elements will be all the possible sequences in length k
of the m original elements. In the present example, the mini-
mum number of transitions required to identify at which A we
are located is two (i.e., the number of basic elements that every
new element will contain after the lift action is k = 2). The num-
ber of new elements will be mk, namely 16: aa = 1, ab = 2, ac =
3, ad = 4, ba = 5 . . . The matrix will now be at size mk × mk

(16 = 42 in the current example, i.e., the matrix will have 16 × 16
options), which will include all possible transitions according
to the chart’s arrows, where each transition is represented by
two elements.

In general, when elements in the chart are repeated more often,
a larger sequence of elements needs to be remembered in order
to determine one’s current state in the chart, thereby increasing
memory load. Hence, these types of charts cannot be represented
in a simple way. Bollt and Jones (2000) demonstrated that a
chart’s TE is easily extracted as the natural logarithm of the largest
positive real eigenvalue of the matrix; however, in a large matrix
the eigenvalue must be calculated by a computer. Thus, Bollt
and Jones’s method for calculating TE is much more practical

Simple More complex

a b

d c

A b

d c

A

FIGURE 2 | A simple grammar chart and a more complex grammar

chart.

than computing TE directly from the formula, as explained in
Appendix A in Supplementary Material.

In the current article, we expanded on Bollt and Jones’s (2000)
matrix-lift-action method by suggesting a novel technique for
automating the full process of determining a specific gram-
mar’s complexity level. As explained in detail in Appendix B in
Supplementary Material, we extended the code used in Bailey
and Pothos’s (2008) StimSelect software to uniformly calculate
grammatical complexity for various AGL charts used in many
prior research studies, thus enabling meta-analysis of learner per-
formance in previous investigations of artificial grammar tasks
based on different grammars. Once the level of complexity of each
prior grammar chart was assessed, the following question was
addressed: Did ____er TE values correlate with greater learner
success (identifying grammatical/ungrammatical strings above
chance level—over 50%) in AGL studies? We also examined the
effect of age in AGL task performance, to determine if age differ-
ences between children and adults would transcend the effects of
grammatical complexity.

MATERIALS AND METHODS
META-ANALYSIS LITERATURE SURVEY
To systematically locate the maximum possible number of charts
representing AGL systems that appeared in previously published
experimental research, we conducted a comprehensive review of
the AGL empirical literature. We used different databases to find
the articles: Google, Google Scholar, ProQuest, PubMed, and APA
PsycNET. The keywords selected for the literature review were:
artificial grammar learning, topological entropy, and explicit and
implicit learning. We looked only for studies written in English or
translated into English. We searched for articles written after 1967
(following Reber’s first article from that year). We included mostly
journal articles but also a few book chapters. Inclusion criteria for
the literature we identified were as follows:

1. Articles that did not include an experiment, such as review
articles, were excluded. Review articles usually present other
researchers’ studies or do not present experiments at all (e.g.,
Reber, 1989; Cleeremans et al., 1998).

2. We excluded studies that did not include and describe a visual
chart of the finite state grammar used (e.g., Saffran et al., 1996,
1997). Thus, auditory-based AGL studies (e.g., Andrade and
Baddeley, 2011; Rohrmeier et al., 2011) were not included
because many did not include a chart, and their findings
were inconclusive as to associations between the visual and
auditory paradigms.

3. Studies that developed stimuli from a combination of two or
more different finite state grammars were also excluded, as we
were unable to determine to which of the charts the results
could be attributed (e.g., Knowlton and Squire, 1994; Reber
and Squire, 1999; Van den Bos and Poletiek, 2008).

4. In articles including more than one experiment, one of which
was the classic version of the AGL task and the other a
manipulation of the stimuli, only the classic version was
included. For example, we excluded Jamieson and Mewhort’s
(2010) manipulated version, which included blanks between
the letters which the participants were requested to fill. In
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Evans et al. (2009), we excluded the second version of the
experiment that required participants to choose an ice cream
flavor according to the sequences they learned in the training
phase. We only used the version that implemented the classic
AGL task to avoid confounding variables related to changes in
procedures.

5. In articles examining special populations, for example per-
sons with dyslexia (Rüsseler et al., 2006), Williams’ Syndrome
(Don et al., 2003), or other atypically developing individuals,
we included only the results of the control group because the
present study explored typical populations only.

6. In multisession AGL articles (e.g., Reber, 1967; de Vries et al.,
2010), only the results of the first session were included
to avoid confounding variables related to multisession
procedures.

7. With respect to articles that utilized both explicit and implicit
instructions (Gebauer and Mackintosh, 2007; Scott and
Dienes, 2008), only the results of the implicit stimuli were
used to avoid inconsistencies between the results of these two
methods. Furthermore, as relatively fewer studies involved
explicit learning, comparison was impossible.

8. For a few AGL charts (e.g., Gebauer and Mackintosh, 2007),
calculating the TE according to Bollt and Jones’s (2000)
matrix-lift-action technique was beyond our ability, because
we could not find a memoryless system for these charts, even
after doing a lift with k = 10. We do not know the impli-
cations of excluding these extremely complex charts from
our meta-analysis. Inasmuch as we could not evaluate them
according to the currently proposed theory, we could not draw
conclusions about how such complexity levels may influence
participants’ task performance.

9. Articles with different kinds of visual stimuli (e.g., letters,
shapes, colors) were included in the analysis because Pothos
et al. (2006) showed that the type of visual stimuli pre-
sented to participants demonstrated no significant effects on
performance.

Based on these inclusion criteria, we located 56 experiments
deriving from 38 publications as presented in Table 1, referring
to 10 different grammatical charts (see Figure 1).

PROCEDURE
As described in detail in Appendix B in Supplementary Material,
we selected and developed software to fully automate TE calcu-
lation from a given AGL chart. We selected Bailey and Pothos’s
(2008) StimSelect software package to provide a fast, easy way for
presenting AGL charts in a computerized manner and to provide
commands for extracting grammatical sequences out of charts.
Bollt and Jones (2000) claimed that if there is a transition matrix
representing an AGL chart, then the chart’s TE will be the nat-
ural logarithm of that matrix’s largest non-negative eigenvalue.
As detailed in Appendix B in Supplementary Material, we next
wrote code extension to recover the Markov transition matrix
representing the chart with the correct lift size; thus, after eas-
ily finding the eigenvalue we calculated the TE value. Appendix
C in Supplementary Material presents an illustration of calculat-
ing TE for Reber’s (1967) grammatical chart, according to Bollt

and Jones’s (2000) matrix-lift-action method using Bailey and
Pothos’s (2008) StimSelect software and our code extension.

DATA ANALYSIS
To examine the hypothesis that learners’ accuracy of test perfor-
mance in each experiment would be associated with the complex-
ity level of that study’s AGL chart, we first calculated the TE for
each of the 10 grammar charts and then we arranged all the pub-
lications into Table 1 by grouping them according to chart. To
compare learners’ performance to each chart’s TE values, we per-
formed two Pearson correlations. One correlation was at the chart
level: For each of the 10 AGL charts, we computed the correlation
between TE and the mean accuracy level obtained by partici-
pants for all experiments based on that particular chart. The
other correlation was at the study level, using accuracy data from
the separate studies. In addition, we conducted a meta regres-
sion analysis of effect sizes, to examine whether sample size and
percentage of success would predict the chart’s complexity level
and the participants’ mean performance accuracy. In this regres-
sion, the weight of each study equaled the inverse of the variance
(i.e., high variance received low weight, and vice versa). Finally, to
examine age effects, we conducted analysis of variance (ANOVA)
with age as an independent variable and then conducted the same
analysis with TE entered as a covariate to determine whether
age effects would be evident beyond the effects of grammatical
complexity.

RESULTS
The findings of the present meta-analysis demonstrate, for the
first time, that the complexity effect remains across the differ-
ent settings and conditions in which the categorization task takes
place. The descriptive statistics in Table 1 reveal that the TE value
has a short range from 0.56 (low complexity) to 0.916 (high com-
plexity), with learners’ performance accuracy ranging from 47 to
75%. Yet, there is a highly significant negative Pearson correlation
between the TE values and performance on AGL tasks. Specific
examples of experiments’ outcomes seem to suggest that the com-
plexity of the AGL system as measured by TE may be related
to participants’ performance on the categorization task (into
grammatical vs. ungrammatical categories) at the testing phase,
indicating that learners may have been affected by the gram-
mar system’s difficulty. For example, in the experiments described
in Witt and Vinter (2011a) and Newell and Bright (2003), the
TE values were very high (0.916 for Grammar J and 0.856 for
Grammar I, respectively, as seen on Table 1), indicating exceed-
ingly complex grammars, and participants’ task performance was
only at or slightly above chance level (50 and 53.1% accuracy,
respectively). In contrast, in studies with low TE values, the high
percentage of participants’ correct responses may be explained by
the grammar’s simplicity. To illustrate, the TEs of the grammar
systems were only 0.56 in Scott and Dienes (2008; Grammar A)
and 0.578 in Domangue et al. (2004; Grammar B), and partici-
pants in these studies achieved impressively high percentages of
accurate responses: 69 and 70%, respectively.

In addition, highly significant negative Pearson correlations
emerged between TE values and performance on AGL tasks, both
at the chart level using the averaged accuracies for all experiments
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Table 2 | Studies’ distribution by participants’ age.

Publication AGL graph Population mean age TE Accuracy (%)

year

Scott and Dienes 2008 Reber1969 22 0.56 69.00
Kirkhart 2001 Reber1969 Students 0.56 61.40
Domangue et al. 2004 Mathews et al., 1989 Students 0.578 70.00
Reber 1967 Reber1967 Students 0.602 73.50
Reber 1967 Reber1967 Children 0.602 65.20
Zizak and Reber 2004 Reber1967 Students 0.602 62.00
Rosas et al. 2010 Reber1967 7.31 0.602 47.00
Zizak and Reber 2004 Reber1967 Students 0.602 62.00
Zizak and Reber 2004 Reber1967 Students 0.602 58.00
Zizak and Reber 2004 Reber1967 Students 0.602 59.00
Servan-Schreiber and Anderson 1990 Reber1967 Students 0.602 68.90
Poznanski and Tzelgov 2010 Reber1967 Students 0.602 67.50
Conway and Christiansen 2006 Reber1967 Students 0.602 62.00
Skosnik et al. 2002 Skosnik2002 Students 0.603 65.10
Skosnik et al. 2002 Skosnik2002 Students 0.603 57.40
Peigneux et al. 1999 Meulemans1997 63 0.686 56.13
Danion et al. 2001 Meulemans1997 33.7 0.686 74.80
Conway and Christiansen 2006 Conway2006 Students 0.716 66.00
Conway and Christiansen 2006 Conway2006 Students 0.716 58.00
Knowlton and Squire 1996 Konwlton1996 63.8 0.74 63.50
Pavlidou et al. 2009 Konwlton1996 6.48 0.74 59.37
Chang and Knowlton 2004 Konwlton1996 Students 0.74 62.50
Pavlidou et al. 2010 Konwlton1996 9.3 0.74 55.00
Chang and Knowlton 2004 Konwlton1996 Students 0.74 64.70
Pavlidou and Williams 2010 Konwlton1996 Children up to 12 0.74 60.00
Don et al. 2003 Konwlton1996 23 0.74 66.00
Pothos and Kirk 2004 Konwlton1996 Students 0.74 49.00
Pothos et al. 2006 Konwlton1996 Students 0.74 67.20
Pothos et al. 2006 Konwlton1996 Students 0.74 64.80
Horan et al. 2008 Konwlton1996 18–25 0.74 58.00
Pothos and Bailey 2000 Konwlton1996 Students 0.74 59.00
Pothos et al. 2006 Reber1978 Students 0.761 55.40
Pothos et al. 2006 Reber1978 Students 0.761 53.30
Pothos 2005 Reber1978 Students 0.761 61.87
Rüsseler et al. 2006 Reber1978 32.75 0.761 64.10
Perruchet and Pacteau 1990 Reber1978 Students 0.761 63.30
Reber and Perruchet 2003 Reber1978 Students 0.761 55.60
Reber and Perruchet 2003 Reber1978 Students 0.761 56.20
Reber and Perruchet 2003 Reber1978 Students 0.761 55.30
Smith et al. 2001 Reber1978 68.36 0.761 57.90
de Vries et al. 2009 Reber1978 22.6 0.761 66.40
Jamieson and Mewhort 2010 Reber1978 Students 0.761 60.00
Jamieson and Mewhort 2010 Reber1978 Students 0.761 63.00
Knowlton and Squire 1994 Brooks1991 62.4 0.856 62.50
Gebauer and Mackintosh 2007 Brooks1991 11–32 0.856 66.42
Knowlton and Squire 1994 Brooks1991 64.9 0.856 60.90
Meulemans and Van der Linden 1997 Brooks1991 Students 0.856 55.60
Meulemans and Van der Linden 1997 Brooks1991 Students 0.856 54.10
Higham 1997b Brooks1991 Students 0.856 58.00
Tunney 2005 Brooks1991 19.42 0.856 58.00
Newell and Bright 2003 Brooks1991 Students 0.856 51.30
Higham 1997a Brooks1991 Students 0.856 64.00
Higham 1997a Brooks1991 Students 0.856 50.00
Higham 1997a Brooks1991 Students 0.856 52.00
Witt and Vinter 2011a Witt2011 5–7 0.916 50.00
Witt and Vinter 2011b Witt2011 5–7 0.916 50.00
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using a particular chart (r = −0.40, N = 56, p = 0.002), and at
the study level, using accuracy data from the separate studies (r =
−0.85, N = 10, p = 0.002). However, the outcomes of the meta
regression analysis yielded a much lower, albeit significant, corre-
lation between the grammatical complexity level and participants’
mean performance accuracy in past studies: The Pearson corre-
lation for accuracy vs. TE on corrected data was R = −0.316,
N = 56, p = 0.013. In addition, the meta regression performed
for performance accuracy included two independent variables:
TE values, and number of stimuli (the amount of test items or
strings). The general model was significant, R = 0.327, N = 56,
p = 0.0001, and a significant negative effect of TE emerged on
accuracy, p = 0.0001, whereas no significant effect emerged for
number of stimuli on accuracy, p > 0.05.

With regard to the issue of age, we first grouped the surveyed
studies according to child vs. adult participants in the different
experiments, and we examined the TE values and performance
levels (Table 2). Descriptive findings for children may add data
about this pattern of relations between task performance and
grammar complexity. To illustrate, Witt and Vinter (2011a,b)
found that 5- to 7-year-olds were not successful AGL learners
inasmuch as their performance rates were at guessing level (50%
and less); however, these children were using the chart with the
highest complexity that we measured (Grammar J: TE = 0.916).
Conversely, Reber (1967) reported a higher percentage of cor-
rect responses in children (65.2%) when using one of the least
complex charts that we measured (Grammar C: TE = 0.602).
These discrepancies indicate that part of the reason why chil-
dren score lower than adults on AGL tasks may be linked to the
complexity level of the tested AGL system. We next conducted an
ANOVA for performance accuracy, with age (children vs. adults)
as the independent variable, and a significant age effect emerged,
F(1, 36) = 4.01, p = 0.05. However, when the grammatical chart’s
TE value study was entered as a covariate in an ANCOVA, the age
effect was no longer significant, F(1, 35) = 2.5, p = 0.12, indicat-
ing that the complexity of the AGL charts used in experimental
studies might be a confounding variable with participants’ age.
Thus, although it was reasonable to assume that children’s lower
accuracy in AGL tasks compared to adults should be attributed to
their younger age, the ANCOVA suggests that charts’ complexity
is a better predictor of accuracy than age.

DISCUSSION
The present study has enhanced the usefulness and practicality of
TE, the AGL complexity measure introduced by Bollt and Jones
(2000), by automating the process of obtaining TE values from
memoryless charts. This new matrix-lift-action method enables
uniform comparisons among different experimental research
publications that previously utilized varying charts for AGL test-
ing. By reviewing previously published AGL experiments, this
study redefines the significance of TE as a measure of grammar
complexity and provides researchers with an efficient means for
calculating the complexity of a given AGL system. Furthermore,
the current meta-analysis documenting diverse charts’ range of
TE values pinpoints complexity level as an important mea-
surement to be taken into account by future researchers when
designing and selecting their experimental AGL stimuli.

The current findings validate and extend the existing literature
investigating learners’ performance on tasks of varying complex-
ity. Evidence is available demonstrating that higher TE values
coincide with poorer ability to categorize test items as grammat-
ical or ungrammatical, and vice versa (e.g., Van den Bos and
Poletiek, 2008); however, such research tested the same group
of participants on AGL systems of different levels of difficulty.
The current study adopted a broader approach by systematically
surveying the literature to locate previous AGL experiments that
were carried out under different conditions, and by using meta-
regression analysis to establish that the TE measure significantly
correlates with performance across AGL tasks. Future researchers
use the matrix-lift-action method to compare implicit vs. explicit
learning conditions as well as different complexity levels in studies
with children. Other complexity measures (such as the redun-
dancy method, TRS, and the bigram/ trigram method) which
refer to the other components of the AGL task might also play
a role. It is recommended that future studies examine the cor-
relation of these metrics with respect to the performance data,
comparing TE with them.

CONCLUDING REMARKS
Complexity has been previously shown to affect performance on
artificial grammar learning (AGL) tasks. Yet, past AGL studies
did not employ consistent measures to examine the comprehen-
sive effect of grammar complexity on task performance. In the
present study we computerized Bollt and Jones’s (2000) technique
of calculating topological entropy (TE), a quantitative measure
of AGL charts’ complexity, with the aim of examining associ-
ations between grammar systems’ TE and learners’ AGL task
performance. The results of the meta-regression analysis indicate
that the complexity effect transcended the different settings and
conditions in which the categorization task was performed. The
results reinforced the significance of utilizing this new automated
tool to uniformly measure grammar systems’ complexity when
experimenting with and evaluating the findings of AGL studies.
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