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Abnormalities in the dopamine system have long been implicated in explanations of
reinforcement learning and psychosis. The updated reward prediction error (RPE)—a
discrepancy between the predicted and actual rewards—is thought to be encoded by
dopaminergic neurons. Dysregulation of dopamine systems could alter the appraisal
of stimuli and eventually lead to schizophrenia. Accordingly, the measurement of RPE
provides a potential behavioral index for the evaluation of brain dopamine activity and
psychotic symptoms. Here, we assess two features potentially crucial to the RPE process,
namely belief formation and belief perseveration, via a probability learning task and
reinforcement-learning modeling. Forty-five patients with schizophrenia [26 high-psychosis
and 19 low-psychosis, based on their p1 and p3 scores in the positive-symptom subscales
of the Positive and Negative Syndrome Scale (PANSS)] and 24 controls were tested
in a feedback-based dynamic reward task for their RPE-related decision making. While
task scores across the three groups were similar, matching law analysis revealed that
the reward sensitivities of both psychosis groups were lower than that of controls.
Trial-by-trial data were further fit with a reinforcement learning model using the Bayesian
estimation approach. Model fitting results indicated that both psychosis groups tend
to update their reward values more rapidly than controls. Moreover, among the three
groups, high-psychosis patients had the lowest degree of choice perseveration. Lumping
patients’ data together, we also found that patients’ perseveration appears to be negatively
correlated (p = 0.09, trending toward significance) with their PANSS p1 + p3 scores.
Our method provides an alternative for investigating reward-related learning and decision
making in basic and clinical settings.

Keywords: Bayesian estimation method, dynamic reward task, matching law, psychosis, reinforcement learning

model, reward prediction error, schizophrenia

INTRODUCTION
Many everyday decisions are made on the basis of experience
but with incomplete knowledge or insufficient feedback. As such,
making appropriate decisions requires the ability to update infor-
mation about alternatives based on previous experiences. In
the past decades, the study of reward-based decision making
and action has attracted much attention. However, it remains
unclear how decisions are made in patients with mental dis-
orders. Interestingly, patients with schizophrenia (abbreviated
“SZ patients” hereafter) have been found to display abnormali-
ties in reward processing and deficits in reinforcement learning
(Waltz et al., 2007; Gold et al., 2008; Murray et al., 2008).
The Cognitive Neuroscience Treatment Research to Improve
Cognition in Schizophrenia (CNTRICS) initiative, funded by
the National Institute of Mental Health, U.S.A., selected “rein-
forcement learning” as one of the most promising functional
imaging biomarkers for immediate translational development for

use in research on long-term memory in SZ patients (Ragland
et al., 2012). In the reinforcement learning literature, the reward
prediction error (RPE)—a discrepancy between predicted and
actual reward—is thought to play an important role in the value-
updating process (Glimcher, 2011). Past studies have shown that
midbrain dopamine neurons encode RPE during reinforcement
learning (Schultz et al., 1997; Tobler et al., 2003; Bayer and
Glimcher, 2005; Niv, 2009). Reinforcement learning behavior
is also altered after the administration of dopaminergic drugs
(Pessiglione et al., 2006; Rutledge et al., 2009).

According to the dopamine hypothesis of schizophrenia,
psychotic symptoms, including hallucination and delusion,
are caused by hyperactivity of the dopaminergic system in
the midbrain (Carlsson and Carlsson, 1990; Seeman et al.,
2005). Emerging evidence indicates that the firing of midbrain
dopamine neurons appears to correlate with the history of reward
delivery and RPE signals (Hollerman and Schultz, 1998; Bayer and
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Glimcher, 2005). Neuroimaging studies have further suggested
that this RPE system might be disrupted in SZ patients or psy-
chosis (Juckel et al., 2006; Corlett et al., 2007; Frank, 2008; Gold
et al., 2008; Murray et al., 2008). These studies indicate that aber-
rant RPE processes encoded by dopamine neurons might link the
abnormal physiological activities and subjective psychotic expe-
riences reported by SZ patients (Fletcher and Frith, 2009; Corlett
et al., 2010). In another line of research, Kapur et al. proposed that
abnormalities in the dopamine system might alter the appraisal of
stimuli and lead eventually to psychotic symptoms (Kapur, 2003;
Kapur et al., 2005; Howes and Kapur, 2009; see also Miller, 1976).
Thus, considering dopamine’s role in RPE and in motivational
salience1, psychosis might result from the disturbances in RPE
signaling that are generated by the dopamine system, in which
inferences and beliefs about the real world cannot be properly
updated or corrected.

Further evidence correlating RPE with dopamine activity is
provided by two recent studies using decision-making tasks
and reinforcement-learning modeling in humans and in mice.
Motivated by an earlier work by Frank et al. (2004) of the role of
dopamine on RPE in Parkinson’s patients, Rutledge et al. (2009)
found that patients with Parkinson’s disease, which is character-
ized by a deficit in dopamine neurons in the midbrain, increased
their value-updating speed in a “dynamic foraging task” after
L-DOPA (which is a direct precursor to dopamine) manipula-
tion. Chen et al. (2012) reported that Akt1 (which is one of
the schizophrenia candidate genes and a downstream kinase for
dopamine D2 receptors) mutant mice exhibit, on average, higher
learning rates and lower degrees of exploitation than wild-type
control mice in a “dynamic foraging T-maze.” Both studies indi-
cate that the subjects give RPE signals greater weight and change
their beliefs more frequently when their dopamine activity is
increased.

The above studies suggest that through dopamine activity on
RPE signaling, reinforcement learning involves a balance between
updating (for belief formation) and exploitation (for belief per-
severation). To examine this topic more closely, in the present
study we recruited chronic SZ patients (and healthy controls) and
adopted a feedback-based, computerized version of the dynamic
reward task (DRT), modified from the “dynamic foraging task”
of Rutledge et al. (2009) and the “dynamic foraging T-maze” of
Chen et al. (2012). In this new version, subjects were instructed to
choose between two decks of cards on the computer screen; each
deck was assigned a different probability of reward. Importantly,
the ratio of reward probabilities associated with each of the decks
changed block by block without informing the subjects.

There are two advantages for using the DRT in this research.
First, in the DRT, as the higher reward probability deck is alter-
nated across blocks, it is necessary for subjects to have well-
functioning RPEs to perform well in the task. In other words,
the DRT is more sensitive for detecting abnormalities in RPEs
than traditional “static” tasks that do not have the feature of
changing reward probabilities. Second, probability learning also
involves the process of belief formation, which is the subjective

1But see a series of study by Berridge (2007, 2012) about the distinct roles of
dopamine on salience and on prediction error signals.

probability of specific events occurring. While both belief per-
severation and belief formation are not RPE per se, in the DRT
both processes can be inferred through RPE modeling. In partic-
ular, each individual data can be fit by a standard reinforcement
learning model (Sutton and Barto, 1998) to characterize the
reward learning process. Such a model allows one to (i) assess
the speed of the value-updating process on a trial-by-trial basis,
and (ii) evaluate each subject’s overall degree of exploitation. A
hierarchical Bayesian method that takes into account individual
differences both between and within groups was used to estimate
the parameters in the model.

We hypothesize that SZ patients exhibit higher learning rates
and reduced exploitation compared with healthy controls and
that these patterns are associated with the severity of the positive
psychotic symptoms of the SZ patients. Since RPE signaling via
dopamine plays a crucial role in reinforcement learning, we also
hypothesize that in this task SZ patients are less adept at allocating
their choice behavior in accord with the reward frequencies that
they have experienced.

MATERIALS AND METHODS
PARTICIPANTS
Forty-five DSM-IV diagnosed SZ patients and 24 healthy con-
trols aged between 18 and 65 years were recruited from the
National Taiwan University Hospital, Taipei, Taiwan. The recruit-
ment and experimental procedures followed ethical guidelines
and were approved by the Review Board of the institution.
Written informed consent was obtained from each participant
before the experiment. All patients were chronic SZ patients; they
were clinically stable, as determined by their psychiatrists, and
were being treated with antipsychotic drugs. Furthermore, these
SZ patients were free of mental retardation, epilepsy or other
brain damage, mood disorders, schizoaffective disorder, and alco-
hol and drug abuse. The psychopathological symptoms of the
patients were assessed by two well-trained psychiatrists using the
Positive and Negative Syndrome Scale (PANSS) for schizophrenia
(Kay et al., 1987).

Some evidence has shown that dysregulation of dopamine is
linked to the positive symptoms of schizophrenia (Gradin et al.,
2011; see also Corlett et al., 2007; Murray et al., 2008).2 Following
Fletcher and Frith (2009) that RPE signaling in SZ patients is
associated with abnormal perceptions (i.e., hallucinations) and
abnormal beliefs (i.e., delusions), in this study we opted for SZ
patients’ score of the two positive-symptom subscales p1 “delu-
sion” and p3 “hallucinatory behavior” in the PANSS as an index
for the severity of their psychotic symptoms.3 A similar use of
these two subscales for indexing the psychiatric symptoms also
can be found in Gradin et al. (2011). Each item in the PANSS
is based on a 7-point scale. A rating of 2 means the symptom is
“minimal” and a patient’s behavior may be at the upper extreme

2See, however, evidence from other studies (e.g., Kasanova et al., 2011; Strauss
et al., 2011) showing that dysfunction of RPE signaling is more associated with
the negative symptoms of schizophrenia.
3Whether the positive- or negative-symptom subscales of the PANSS corre-
late more with the DRT-elicited RPE signaling will be briefly discussed in the
Discussion section.
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of being normal. A rating of 3 means “mild” that is indicative
of a symptom whose presence is clearly established but not pro-
nounced enough to interfere with day-to-day functioning (Kay
et al., 1987). It is thus reasonable to use a cut-off of 3 for the
splitting of the patient group. Specifically, for each SZ patient,
if either the p1 or p3 score was equal to or greater than 3, then
s/he was categorized into the high-psychosis group; otherwise,
s/he was categorized into the low-psychosis group. Among the 45
SZ patients that we recruited in this study, 26 were categorized as
high-psychosis patients, and the other 19 patients were in the low-
psychosis group. The control group included 24 healthy subjects
without any psychiatric DSM-IV axis-I or II disorders.

Demographic information for all participants is displayed
in Table 1, from which one sees that age and gender, but not
education level, were roughly matched across the three groups.
Moreover, all PANSS subscores for the high-psychosis group
were significantly higher than those for the low-psychosis group
(all ps < 0.05). To evaluate the impact of drug dosage on
SZ patients’ performance, we also computed the averaged daily
chlorpromazine-equivalent antipsychotic doses of the two psy-
chosis groups as described previously (Woods, 2003). We found
no significant difference [t(43) = 0.94, p = 0.35] between the
adjusted doses of the high-psychosis and low-psychosis groups
(M ± SD: 325.38 ± 243.61 vs. 267.11 ± 134.96 mg).

THE DYNAMIC REWARD TASK (DRT)
The DRT employed a trial-by-trial two-card scenario. The proce-
dure of an exemplary trial is illustrated in Figure 1. On each trial,
two cards, one drawn from deck A and the other from deck B,
were presented side by side on the computer screen without show-
ing the reward values until the subject made a choice between
them. Next, feedback of either 0 (no reward) or 1 (reward) point
was revealed to the subject in the center of the screen. The subject
was instructed to maximize the total point, and monetary reward

was given to him/her at the end of the experiment (one point =
one New Taiwan dollar, which is about 0.033 US dollars). The
ratio of reward probabilities of the two decks varied in a block
design, and changes in blocks were not signaled to the sub-
jects. Because the overall probabilities of reward assigned to the
two decks were set higher than other similar (animal) studies
of matching behavior and reinforcement learning (e.g., Corrado
et al., 2005; Lau and Glimcher, 2005), we did not “bait” a card
until the next time the subject chose it (i.e., the reward status of
the non-chosen card was redefined on each trial). Furthermore,
the DRT consisted of one training session and one testing session.

The training session
There were 40 trials in the training session. These trials were used
to allow subjects to familiarize themselves with the experimental
procedure and to learn that one of the two decks had a higher
reward probability. The reward probability ratio of the two decks
was 1:6, and the sum probability of gain across both cards was 0.6
(i.e., the two decks’ probabilities of obtaining 1 point were 0.0857
and 0.5143, respectively).

The testing session
The same procedure was used in the testing session; each subject
had to complete 480 trials, and was instructed to maximize the
final score. There were 6 test blocks that contained 70–90 trials
each, and the probabilistic structure was similar to that used in
Rutledge et al. (2009). The two decks’ gain ratios were 1:6, 6:1,
3:1, or 1:3; these ratios were constant within each block, and the
overall probability of gain was fixed at 0.6. As shown in Table 2,
two pseudorandom sequences4 of blocks were used in the testing
session, and each subject was randomly assigned to one of the

4There were a total of four sequences if we consider balancing the A, B decks
regarding the gain ratio assignment.

Table 1 | Demographic information of the high-psychosis, low-psychosis, and control groups.

Patients Controls

High psychosis Low psychosis

N = 26 N = 19 N = 24

Mean (SD) Mean (SD) Mean (SD)

Age 39.50 (11.70) 38.32 (12.87) 36.54 (10.10) F(2, 66) = 0.36 p = 0.70

Gender (M:F) 12:14 10:9 12:12

Education (year) 13.65 (1.90) 13.95 (2.17) 15.08 (2.84) F(2, 66) = 3.39 p = 0.04

Age of onset 24.73 (8.03) 24.26 (9.95) t(43) = 0.45 p = 0.66

MEDICATION (N)

Typical 4 1

Atypical 18 17

Combination 4 1

PANSS SCORE

Positive 13.69 (3.51) 8.63 (2.09) t(43) = 8.11 p < 0.01

Negative 16.12 (5.49) 12.84 (3.96) t(43) = 2.63 p = 0.01

General 29.46 (8.19) 22.37 (4.70) t(43) = 3.44 p < 0.01

p1 + p3 5.92 (1.70) 2.42 (0.69) t(43) = 8.48 p < 0.01

Total 63 (13.90) 46.95 (9.06) t(43) = 5.05 p < 0.01
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FIGURE 1 | Procedure of the dynamic reward task. Each trial began with
the presentation of the fixation cross (size 0.6◦ × 0.6◦ visual angle) for
500 ms. Subsequently, two identical cards (size 3.81◦ × 5.08◦ visual angle)
appeared on the two sides of the fixation cross until a participant chose one
card. After a card was chosen, the score of the chosen card (either 0 or 1;
size 1.27◦ × 1.53◦ visual angle) was presented in the center of the screen
until a participant pressed SPACE on the keyboard to end the trial and to
initiate the next trial.

Table 2 | Two sequences of probability assignment used in the testing

session.

Block 1 2 3 4 5 6

SEQUENCE #1

Deck A 45.00% 8.57% 45.00% 8.57% 51.43% 15.00%

Deck B 15.00% 51.43% 15.00% 51.43% 8.57% 45.00%

Trial number 70 80 90 90 80 70

SEQUENCE #2

Deck A 45.00% 8.57% 51.43% 15.00% 51.43% 15.00%

Deck B 15.00% 51.43% 8.57% 45.00% 8.57% 45.00%

Trial number 80 70 90 80 70 90

sequences. After the completion of one block, the deck with the
higher reward probability became the deck with the lower reward
probability, and another gain ratio was instated. Subjects were
told that the advantageous deck might not always be the same
deck and that they would receive monetary payment based on
their total points.

After completing all trials, each subject was asked two
multiple-choice questions concerning his/her choice strategy5 and

5The choice options are (1) Fixed on a deck, (2) Fixed on a deck and changed
to another deck sometimes, (3) Chose the two decks alternatively, (4) Chose
randomly, (5) None of the above.

how often the deck reward shifted6, and one fill-in question about
his/her prediction of the total score.

DATA ANALYSIS
Differences across the three groups were analyzed using either
ANOVA or a priori t-tests (whenever appropriate). A p-value
of <0.05 was considered statistically significant. Note that while
the summary statistics of total scores provide a first glimpse of
how group performance might differ, it says very little about the
reward sensitivity that is one of the key features testable by the
DRT design. In the literature, a so-called “(generalized) match-
ing law” has been used to quantify the sensitivity of performance
(of choosing the advantageous option) in reinforcement learn-
ing tasks. Accordingly, as a next-step analysis, we performed the
matching law analysis to assess the relationship between choice
allocation and reward received. Further, to help explain the task
performance in the DRT, it is desirable to fit the trial-by-trial
choice behavior with a standard reinforcement learning model.
We also computed the correlations of the estimated parameter
values and the PANSS p1 + p3 subscores using Pearson’s correla-
tion coefficient. The impact of the parameters in the model on the
overall performance was evaluated by simulation. We now briefly
describe the matching law and the reinforcement learning model.

Matching law
The matching law, first characterized by Herrnstein (1961) and
later generalized by Baum (1974), refers to the regularity in data
between choice behavior and reward received in reinforcement
learning initially observed in animal studies. In some perspective,
matching law plays a role similar to Weber’s law in psychophysics;
both are empirical “laws” that capture certain regularities of data.
To examine whether subjects in the three groups distributed their
choice frequencies between the two decks (denoted by CA and CB,
respectively) in agreement with the respective reward frequen-
cies received (RA and RB), we applied Equation (1), which is the
(generalized) matching law (Baum, 1974), for each block:

log2

(
CA

CB

)
= s log2

(
RA

RB

)
+ log2 k. (1)

The slope s is interpreted as the sensitivity of choice allocation
in response to reward frequency, and can be used to indicate the
overall consistency of choice behavior of choosing the advanta-
geous deck.

The reinforcement learning model
Since our main goal is to disentangle the two components (i.e.,
belief formation and belief perseveration) from the DRT data,
we further fitted trial-by-trial choice data using a standard rein-
forcement learning (RL) model (also called Q-learning) under
the temporal difference learning framework (Watkins and Dayan,
1992; Sutton and Barto, 1998).7 This model comprises two parts,
the value-updating rule and the choice rule. The value-updating

6The choice options are (1) 0 times, (2) 1–3 times, (3) 4–10 times, (4) 11–20
times, (5) 21–30 times.
7It is granted that other computational models with more sophisticated
mechanisms (see Niv, 2009, for an introduction) may provide more detailed
explanations of probability-learning data. Given the simplicity of the DRT
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rule specifies how the expectation for one deck is updated on each
trial. We use deck A as an example:

QA (t + 1) = QA (t) + α (RA(t) − QA(t)) , (2)

where QA (t) is the expected value and RA(t) is the actual reward
on trial t. Note that RA(t) − QA(t) is the RPE, which represents
the discrepancy between the expected reward and the reward just
received on trial t. The key to maximizing the speed of learning
from the RPE for this value-updating rule is the parameter α,
which represents the learning rate that determines how quickly
the estimation of an expected value is updated from the trial-by-
trial feedback of the prediction error. At the beginning of the task,
the expected values of decks A and B were set to zero.

Reinforcement learning also requires a balance between explo-
ration (here, “inquiring” into the seemingly disadvantageous
option) and exploitation (here, “clinging” to the seemingly advan-
tageous option) (Daw et al., 2006). For the choice rule of the
model, it is common to assume that the probability of choosing
each deck is determined by the so-called “softmax” rule, a formu-
lation consistent with the ratio-scale representation derived from
Luce’s choice axiom (Luce, 1959) in the mathematical psychology
literature. This formulation takes a logistic form. Taking deck A
as an example, we have:

PA (t + 1) = eβQA(t)

eβQA(t) + eβQB(t)
, (3)

where the parameter β represents the choice perseveration, a term
referring to the tendency to take actions based on the expected
reward values. For our exemplary formulation in Equation (3),
a large value of β means that participants have a higher degree
of exploitation of the expected reward value of Deck A, and a
zero value of β indicates that participants choose the two decks
at random.

The parameters α and β in the RL model were estimated using
a hierarchical Bayesian estimation method, which was recently
advocated by some researchers (e.g., Lee, 2011) and has been
used for fitting of similar RL models (Wetzels et al., 2010). The
hierarchical layout of estimation followed closely the graphical
Bayesian modeling approach described in Lee and Wagenmakers
(2013). We used WinBUGS (Lunn et al., 2000) to approximate
the posterior distributions of parameters using the Markov Chain
Monte Carlo technique. Three chains were used, and each chain
contained 28,000 iterations. The first 8000 samples were deleted,
and we took samples at an interval of 5. Thus, a total of 12,000
samples were used for the estimate of each posterior parameter
distribution.

Parameters between any two groups were compared by com-
puting the difference between the values of the two posterior
distributions in each run obtained from the hierarchical Bayesian
estimation. By checking whether the probability of the poste-
rior distribution of differences is greater (or less) than zero, one

design (on unitary reward, with switches of reward probabilities of the two
decks across blocks), the standard RL model seemed adequate (as an approxi-
mation) to address the issue raised in this study. Thus we did not pursue other
models.

can evaluate the strength of evidence for differences in group-
mean parameters. Alternatively, one can use the Bayes factor
(BF), an odd ratio of marginal likelihood of the two models
(or hypotheses) of interest, to index the evidence strength of
the alternative hypothesis against the null hypothesis (Kass and
Raftery, 1995). A large BF value (>3) would (at least) “posi-
tively” favor the alternative hypothesis and a BF value between
1 and 3 would “weakly” favor the alternative hypothesis. To eval-
uate the differences of group-mean parameters, in this study we
also used a method based on the Savage-Dickey density ratio (see
Wagenmakers et al., 2010, for an introduction) to compute the BF
values.

RESULTS
BEHAVIORAL DATA
Analysis of the behavioral data from the DRT revealed that most
subjects in each of the three groups chose the higher reward
probability deck more than 50% of the time in the training ses-
sion (high-psychosis: 26 of 26; low-psychosis: 18 of 19; control:
22 of 24), and all subjects correctly identified the advantageous
deck. For the testing session, we observed that SZ patients in the
high- and low-psychosis groups generally showed more varia-
tion in choice behavior across trials than the control group. To
illustrate, we depicted (in black) in Figure 2A the time courses
of observed choice behaviors for one subject from each of the
three groups. For each exemplary subject, we also display the
predicted curve (gray) computed from the best-fitting RL model
for comparison. Visual inspection suggests that the patterns of
the observed and predicted curves were rather consistent in each
case.

The time course of the group-level choice behavior of each of
the three groups under each of the two probability-assignment
sequences is shown in Figure 2B, from which it is evident that
subjects’ average choice behavior in each block was largely consis-
tent with the scheduled probability assignment of reward to that
block. The average total scores among the three groups were not
significantly different [F(2, 66) = 0.97, p = 0.38; high-psychosis:
M = 168.2, SD = 16.5; low-psychosis: M = 171.7, SD = 14.9;
control: M = 174.5, SD = 16.1].

Regarding the questionnaires requested for all subjects after
the testing session, we found that the answers from the three
groups were not different for the first two questions (namely, the
choice strategy and how often the deck reward shifted). For the
third question (namely, the prediction of the total score), how-
ever, the average predicted scores among the three groups were
significantly different [F(2, 66) = 4.34, p = 0.02; high-psychosis:
M = 127.4, SD = 78.9; low-psychosis: M = 155.1, SD = 77.1;
control: M = 91.7, SD = 55.0]. Comparing the average predicted
and actual scores for each subject, we found that there was a
trend of underestimation of performance in all three groups.
Especially, for the controls and the high-psychosis group the
differences were statistically significant [t(23) = 8.7, p < 0.001
and t(25) = 2.63, p = 0.01, respectively], indicating that subjects
underestimated the potential reward points they would obtain.
It remains an open question whether this pattern is typical to
this kind of task and/or reflects certain characteristic of the
groups.
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FIGURE 2 | Behavioral performance in the dynamic reward task. (A)

An illustration of the time course of the observed (black) and predicted
(gray; drawn based on the best-fitting RL model) choice behavior for
one subject from each of the three groups (from top to bottom panels:
healthy control, low-psychosis, and high-psychosis groups) in the testing
session. Each of the curves was smoothed with a 10-trial moving

average. The horizontal thin dashed line shows the average choice
within each block for that subject. (B) The time course of the average
choice pattern for each of the three groups in each of the two
sequences (#1 and #2) of probability assignment used in the testing
session. The numbers above each block indicate the ratio of assigned
reward probability.

MATCHING LAW ANALYSIS
As mentioned previously, the matching law is more appropriate
for uncovering the possible difference of group performance in
terms of reward sensitivity. Using least-squares regression, we fit

Equation (1) to data from the steady states of the DRT, defined as
Trials 21–70 in each block. The blocks in which subjects gained
no reward for either of the two decks (i.e., RA or RB = 0) were
excluded from analysis.
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As depicted in Figure 3A, the matching law analysis showed
that the estimated values (± standard errors) of reward sensi-
tivity s for the control, low-psychosis, and high-psychosis groups
were 0.37 (± 0.02), 0.32 (± 0.02), and 0.31 (± 0.03), respectively,
indicating an “undermatching” pattern in all three groups. One-
tailed a priori t-tests revealed that the values of reward sensitivity
for the low- and high-psychosis groups were both significantly
lower than that for the control group [t(188) = 1.7, p = 0.05, and
t(219) = 1.9, p = 0.03, respectively], indicating that SZ patients
were less adept at allocating their choice behavior in accord with
the reward frequencies that they had experienced. Furthermore,
the R2 values for the control, low-psychosis, and high-psychosis
groups were 0.80, 0.70, and 0.54, respectively, indicating a gradual
decline in the correlation of choice behavior with reward fre-
quency that was dependent on the severity of positive psychotic
symptoms.

FITTING OF THE REINFORCEMENT LEARNING MODEL
For the learning rate α, the posterior sample means and their
95% credible intervals (CI) for the control, low-psychosis, and

high-psychosis groups were 0.71 (CI = (0.56, 0.84)), 0.85 (CI =
(0.68, 0.94)), and 0.86 (CI = (0.74, 0.94)), respectively (see
Figure 3B). The posterior distribution of group mean differences
of the parameter α between the control group and the high-
psychosis (low-psychosis, respectively) group showed a 0.039
(0.093, respectively) probability of being greater than zero, pro-
viding marginal to moderate evidence favoring the claim that the
learning rate of the control group was lower than those of both
SZ groups. This conclusion is also supported by the Bayesian
hypothesis test; we obtained BF = 2.95 (BF = 1.66, respectively),
slightly in favor of the evidence that the learning rate in the high-
psychosis (low-psychosis, respectively) group is larger than that
in the control group.

For the choice perseveration β, the posterior sample mean for
the control group was 4.11 (CI = (3.15, 5.17)), which was simi-
lar to that for the low-psychosis group 4.16 (CI = (2.98, 5.47)).
The two estimated values, however, were much larger than the
estimate of 2.91 for the high-psychosis group (CI = (2.09, 3.83))
(see Figure 3C). The posterior distribution of group mean
differences of the parameter β between the high-psychosis group

FIGURE 3 | Results of the matching law analysis and RL model fitting.

(A) Estimated values of reward sensitivity s in the matching law for the
control, low-psychosis, and high-psychosis groups (from left to right panels).

Group-level posterior distributions of the (B) learning rate α and (C) choice
perseveration β for the control (dashed curve), low-psychosis (solid, thin
curve), and high-psychosis (solid, thick curve) groups.
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and the control (low-psychosis, respectively) group indicated a
0.034 (0.055, respectively) probability of being greater than zero,
providing moderate evidence favoring the claim that the high-
psychosis group exhibited a lower degree of choice perseveration
(or exploitation) than the control and low-psychosis groups. The
Bayes factor BF = 2.11 (BF = 2.22, respectively) for testing the
hypothesis that choice perseveration is higher in the control (low-
psychosis, respectively) group than in the high-psychosis group
also supported the claim.

The distinction of estimates of choice perseveration between
the two SZ groups was further evaluated by correlating all
patients’ estimated parameter values of perseveration with their
PANSS p1 + p3 scores, with the units of the different medication
dosages normalized in analysis. We found a (partial) correlation
of −0.26, which was marginally significant (p = 0.09), indicat-
ing that our assessment of the SZ patients’ degree of exploitation
may, to some extent, reflect the severity of their positive psy-
chotic symptoms. On the other hand, no significant correlation
(r = −0.04, p = 0.79) was found between the estimated values
of the learning rate and the PANSS p1 + p3 scores, indicating
that our hypothesis about the association between the learning
rate and the severity of the positive psychotic symptoms of the SZ
patients is not supported.

SIMULATION: THE IMPACT OF THE PARAMETERS IN THE RL MODEL ON
THE PERFORMANCE
As mentioned earlier, reinforcement learning requires a balance
between updating (for belief formation) and exploitation (for
belief perseveration). Indeed, high learning rates do not imply
optimal task performances. To illustrate this point, we performed
a simulation to evaluate how the two parameters α and β in the
RL model affect performance in the DRT. In the simulation, we
paired the α-values (from 0.05 to 1, in an increment of 0.05) with
the β-values (from 0.5 to 10, in an increment of 0.5) such that
there were a total of 400 pairs in the setting. We then inserted
each pair of parameter values into the model to simulate the
data. We repeated the procedure 100 times. Figure 4 displays the
simulated average total scores, with the standard deviations rang-
ing from 9.59 to 15.63, obtained from each of the 400 pairs of
parameters. The result indicates that optimal performance (in
terms of maximizing the total point) occurs when the α-value
is about 0.35. Performance decreases as the α-value moves away
from 0.35. Thus, changing beliefs too fast (after experiencing a
limited number of trials) might not be a good strategy for rein-
forcement learning. Further, Figure 4 shows that the optimality
of performance is modulated by the β-value that more perse-
veration results in better performance. We found that when the
α-value is within the range of 0.2–0.45, most of the high scores
occur when the β-value is above 7. In our experiment, the aver-
aged estimated values of α (and β, respectively) for both SZ
patients and controls were all larger than 0.35 (and smaller than 7,
respectively) (see the three filled circles in the figure), indicating
deviations from optimal performance. In particular, compared
with the control group, the α-values for both high- and low-
psychosis SZ patients were less optimal, and the β-value for the
high-psychosis group was relatively far away from the optimal
value.

FIGURE 4 | Impacts of parameters α and β on the total score of the

dynamic reward task. The averaged estimated parameters and the total
score of controls and both SZ groups are marked by the three filled circles.
We also mark the position of the maximal point obtained from the
simulation. The respective coordinate values of α, β, and total score are
indicated in parentheses in the figure legend.

DISCUSSION
In this study, we developed a computerized version of the DRT
and accompanied it with a standard RL model to examine the
relationship between the RPE process and the psychotic symp-
toms (as revealed by the scores of the p1 “delusion” and p3
“hallucinatory behavior” subscales in the PANSS) of SZ patients.
In particular, the implicit switching of the reward probabilities
associated with each of the decks in the experimental sequence
allows one to test whether and how efficiently the subjects learn
to adjust their decisions based on feedback. Matching law analy-
sis revealed that both psychosis groups exhibited reduced reward
sensitivity than healthy controls. We further fit the DRT data with
a standard RL model and found that, on average, SZ patients had
higher learning rates than healthy controls and that the degree of
perseveration in choice appeared to be negatively correlated (p =
0.09, trending toward significance) with the severity of positive
psychotic symptoms.

Whether positive or negative symptoms of schizophrenia are
more related to the dysfunction of RPE signaling is still under
debate in the literature (Corlett et al., 2007; Murray et al., 2008;
Kasanova et al., 2011; Strauss et al., 2011; Deserno et al., 2013).
To take a glimpse of this issue, we also correlated SZ patients’
scores on the negative-symptom subscales of the PANSS with
their estimated parameter values in the RL model. We found
no significant results for any of the parameters (the correla-
tion was 0.02 (p = 0.92) for the learning rate parameter and
was −0.13 (p = 0.40) for the choice perseveration parameter),
suggesting that for the DRT in which the decision-making pro-
cess involves unitary reward but not punishment, dysfunction of
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RPE signaling is more associated with the positive symptoms of
psychosis.

The use of the DRT provides several advantages. Especially, the
task is simple and can be completed within 20 min, and thus has
the potential to be conducted in clinical groups. Further, the task
can be easily adapted for combination with a variety of cogni-
tive and imaging technologies, such as fMRI, PET, ERP, and MEG.
We also have shown that through matching law analysis as well as
fitting to trial-by-trial DRT data with a standard RL model, sen-
sitivity and reward learning can be estimated. Importantly, both
learning rate and choice perseveration, which usually cannot be
inferred from conventional analyses of behavioral data, can be
extracted (here, using the Bayesian estimation approach). These
new measures might be a starting point for future studies aiming
to develop sensitive markers that predict early on the progression
of the disease and the response to treatment. Thus, accompanied
by computational analyses, the DRT provides an alternative for
studying reward-related learning and decision making in basic
and clinical sciences.

RL models have been increasingly applied to study reward-
based learning in humans, non-human primates, and mice
(Juckel et al., 2006; Rutledge et al., 2009; Chen et al., 2012).
During reinforcement learning, the firing of dopaminergic neu-
rons has been found to correlate with the characteristics of
prediction errors postulated in the RL models (Schultz et al.,
1997; Montague et al., 2004; Glimcher, 2011), supporting the
dopamine reward prediction error hypothesis (Glimcher, 2011).
In the present study, we recapitulated the dynamics of RPE
from the DRT data of SZ patients through fitting of a stan-
dard RL model, and our findings suggest (though indirectly) that
abnormal RPE processes tend to correlate with sub-optimal per-
formances in reinforcement learning that might be related to
psychotic experiences and aberrant dopamine activities.

Finally, since all SZ patients in our study were on antipsychotic
medication, some of our findings should be interpreted with
caution. Our experimental design only ruled out the dosage dif-
ference of antipsychotic medication between the high- and low-
psychosis groups (see the last paragraph in section Participants).
For those SZ patients we also found no association between the
adjusted drug dose and any of the two parameters in the RL
model (the correlation was 0.12 (p = 0.42) for the learning rate
parameter and was -0.1 (p = 0.53) for the choice perseveration
parameter). Still, it is plausible that medication is a confounding
factor that could also explain the performance difference between
the SZ patients and controls. Thus, it will be highly interesting to
recruit SZ patients who have not started antipsychotic treatment
to perform the DRT and compare the results with their perfor-
mance after beginning medication. Future research along this line
would be timely and worthwhile.
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