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One of the oldest hypotheses in cognitive
psychology is that controlled informa-
tion integration1 is a serial, capacity-
constrained process that is delimited by
our working memory resources, and this
seems to be the most uncontroversial
aspect also of present-day dual-systems
theories (Evans, 2008). The process is typ-
ically conceived of as a sequential adjust-
ment of an estimate of a criterion (e.g.,
a probability), in view of successive con-
sideration of inputs to the judgment (i.e.,
cues or evidence). The “cognitive default”
seems to be to consider each attended cue
in isolation, taking its impact on the crite-
rion into account by adjusting a previous
estimate into a new estimate, until a stop-
ping rule applies (e.g., Juslin et al., 2008).

Considering each input in isolation,
without modifying the adjustments con-
tingently on other inputs to the judgment,
invites additive integration. The limits on
working memory moreover contribute to
an illusion of linearity. If people, when
pondering the relationship between vari-
ables X and Y, are constrained by working
memory to consider only two X–Y pairs,
the function induced can take no other
form than a line. As illustrated by many
scientific models, with computational aids
people can capture also non-additive and
non-linear relations. But without support,
this is rather taxing on working mem-
ory and additive integration, typically as a

1 Controlled processes refer to cognitive processes that
are slow, conscious, intentional, and constrained by
attention, in contrast to automatic processes that are
rapid, not constrained by attention, and can be trig-
gered also directly by stimulus properties (Schneider
and Shiffrin, 1977; see also Evans, 2008). The claims
about cognitive constraints discussed in this article
refer to controlled processes and automatic processes
may often better approximate Bayesian information
integration (see, e.g., Tenenbaum et al., 2011).

weighted average, seems to be the default
process (Juslin et al., 2009), and, even
more so, considering that additive integra-
tion is famously “robust” (Dawes, 1979),
allowing little marginal benefit from also
considering the putative configural effects
of cues. These cognitive constraints there-
fore define a point toward which our judg-
ments naturally gravitate.

This simplistic and probably not
overly controversial model of controlled
integration immediately has important
consequences for our abilities to make
judgments, some of which are well-known,
some of which may still need to be further
digested. At a general level, the most fun-
damental constraint on people’s ability to
comprehend and control their environ-
ment is this tendency to view it in terms of
an “additive caricature,” as if they “looked
at the world through a straw,” appreci-
ating each factor in isolation, but with
limited ability to capture the interactions
and dynamics of the entire system. In
more prosaic terms, a wealth of evidence
suggests that multiple-cue judgments are
typically well described by simple linear
additive models (Brehmer, 1994; Karelaia
and Hogarth, 2008), even if the task
departs from linearity and additivity.

There are important exceptions where
people transcend this imprisonment in a
linear additive mental universe also with-
out external computational aids, in par-
ticular, an ability to use a prior input to
“contextualize” the meaning of an imme-
diately following input. For example, for a
lottery, like a 0.10 chance of winning $100
and $0 otherwise, people have little dif-
ficulty with contextualizing the outcome
in view of the preceding probability; that
is, to discount the “appeal” of the positive
outcome of receiving $100 by the fact that

the probability of ever seeing it is low.
Likewise, people often have little difficulty
with understanding normalized probabil-
ity ratios and appreciate that, say, “30
chances in 100” and “300 chances in 1000”
describe comparable states of uncertainty,
something that again requires that one
input is contextualized by another2. These
exceptions are important, but seem to be
connected to specific judgment domains.

CONTROLLED INTEGRATION AND
PROBABILITY THEORY
This contrasts with the requirements for
multiplication implied by many rules
of probability theory. We have therefore
argued that additive combination may
be an important—and often neglected—
constraint on people’s ability to reason
with probability. Nilsson et al. (2009) pro-
posed that even a classic bias, like the con-
junction fallacy (Kahneman and Frederick,
2002), may not primarily be explained by
specific heuristics per se, like “represen-
tativeness,” as typically claimed (although
people sometimes use representativeness
to make these judgments), but by a ten-
dency to combine constituent probabilities
by additive combination (see also Nilsson
et al., 2013, 2014; Jenny et al., 2014). For
example, people may appreciate that a
description of “Linda” is likely if she is
a feminist and unlikely if she is a bank
teller (which might be mediated by “rep-
resentativeness”), but knowing no feminist
bank tellers they combine these assess-
ments as best they can, which typically
comes out as a weighted average (Nilsson
et al., 2009). The rate of conjunction errors

2 This ability is not perfect as illustrated by the
phenomenon of denominator neglect (Reyna and
Brainerd, 2008).
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indeed seems equally high regardless of
whether the representativeness heuristic is
applicable or not (Gavanski and Roskos-
Ewoldsen, 1991; Nilsson, 2008).

Juslin et al. (2011) similarly argued that
base-rate neglect may be explained not
by use of specific heuristics per se, but
by additive combination of base-rates, hit-
rates, and false alarm rates, where the
weighting of the components is context-
dependent (and more often neglect false-
alarm rates than base-rates)3. Importantly,
the reliance on additive integration is by
no means arbitrary: to the extent that peo-
ple base their judgments on noisy input
(e.g., small samples), linear additive inte-
gration often yields as accurate judgments
as reliance on probability theory, possi-
bly explaining why the mind has evolved
with little appreciation for the integration
implied by probability theory (Juslin et al.,
2009).

A strong example of problems with
probability integration comes from stud-
ies of experienced bettors that have played
on soccer games at least a couple of times
each month for a period of 10 years
or more (Nilsson and Andersson, 2010;
Andersson and Nilsson, in press). They
were extremely accurate in their transla-
tion of odds into probabilities, including
that they aptly captured the profit mar-
gin introduced in the odds by the gam-
bling companies. Yet, when they assessed
the odds of an unlikely event A (i.e., an
outcome of a soccer game), the odds for
the conjunction of A and a likely event
B, and the odds of the conjunction of
A, B, and a third likely event C, their
probability assessments and their willing-
ness to pay for the bet, increased as likely
events were added to the conjunction
(the conjunction fallacy). This is pre-
dicted by a weighted average of the
components, but violates probability the-
ory. Exquisite assessment, but blatantly
“irrational” integration, also in experi-
enced and very motivated probability
reasoners.

3 A linear additive model captures many properties of
the data, such that people do appreciate the qualitative
effect of the base-rate, flexibly change their weighting
as a function of contextual cues, and that the judg-
ments are typically less extreme as compared to Bayes’
theorem, but until we have a theory of how contextual
cues affect the weight of the base-rate, we have lim-
ited ability to predict a priori how the base-rate will
be used in a specific situation.

BAYESIAN INFERENCE
Bayes’ theorem in its odds format is,

p (H|E) /p (−H|E)

= p (H) /p (−H) · p (E|H) /p (E| − H) (1)

where the left-hand side is the poste-
rior odds for hypothesis H given evidence
E, the first right-hand component is the
prior odds for hypothesis H, and the sec-
ond right-hand side is the likelihood ratio
for the evidence E, given that H is true
or false (i.e., −H). Equation (1) can be
used to adjust your subjective probability
that hypothesis H is true, in the light of
evidence E.

Although apparently simple, the adjust-
ment of the probability required in view of
the evidence depends not only on the evi-
dence attended at the moment, but on the
prior probability (e.g., when the likelihood
ratio is 2, you should adjust the prior proba-
bility of H upwards by 0.17 if the prior ratio
is 1, but upwards by 0.04 if the prior ratio is
10)4. People do appreciate that the posterior
probability is a positive function both of the
prior and the evidence, but the impact of
the prior is typically less than expected from
Bayes’ theorem (Koehler, 1996). If people,
as argued above, are spontaneously inclined
to adjust the probability of H (criterion)
in the light of the new evidence E (the
currently attended cue) independently of
the previous input (captured in the prior
probability), they will be affected by both
priors and evidence, but not as much as
with Equation (1), because they combine
them additively 5. This account explains
why people find this a difficult task, but
also suggests simplifying conditions and a
“cure” for base-rate neglect.

A first example of a simplify-
ing condition is natural frequencies
(Gigerenzer and Hoffrage, 1995). If
the base-rate problem immediately
conveys the number of people with, say,

4 With prior odds 1 and likelihood ratio 2, the pos-
terior odds is 2 (Equation 1); an adjustment from a
prior probability of 0.5 to a posterior probability of
0.67. With prior odds 10, the corresponding adjust-
ment will be from 0.91 to 0.95.
5 More specifically, when the base-rate is extreme, as
in the “mammography problem” (e.g., Gigerenzer
and Hoffrage, 1995) people will “underuse” the base-
rate, but in problems with ambiguous base-rate, like
in the urn problems studied by Edwards (1982),
they will “overuse” the base-rate and thus appear
“conservative.”

a positive mammography test and the
number of such people with breast can-
cer, people can “contextualize” the second
number in terms of the first and directly
appreciate that among positive tests, the
proportion of breast cancer is low. In
belief revision tasks, where the belief is
repeatedly updated in the face of evi-
dence, it has long been known that people
successively average the “old” and “new”
data (e.g., Shanteau, 1972; Lopes, 1985;
Hogarth and Einhorn, 1992; McKenzie,
1994). An exception is when prior and evi-
dence are presented in contextual and tem-
poral contiguity, where people have some
ability to “contextualize” their, presum-
ably also here linear, weighting of the evi-
dence in view of the prior, better emulating
Bayesian integration (Shanteau, 1975).

The “cure” to base-rate neglect sug-
gested by this view is, of course, to replace
multiplicative integration with additive
integration. An immediate implication is
that people should have very little problem
with certain kinds of “Bayesian updating;”
for example, with updating their prior
belief about the mean in a population after
observing a new sample from the popula-
tion. “Bayesian updating” here amounts to
a (sample-size) weighted average between
the “prior mean” and the “sample mean,”
a task that people should be able to learn
quite easily.

An example directly related to Bayes’
theorem is provided in Juslin et al.
(2011). In Experiment 1, each participant
responded to 30 medical diagnosis tasks, in
one of three formats: (i) standard probabil-
ity, The base-rate, hit-rate, and false alarm
rate were stated as probabilities6; (ii) odds,
The same problem expressed in prior odds
and likelihood ratios (Equation 1); (iii)
Log odds, The same problems expressed as
log odds, implying that one simply adds
the log prior odds to the log likelihood
odds to arrive at the log posterior odds.
These are three ways to represent the same
problems, but the first two formats require
multiplication, the last one additive

6 Here is an example of a medical diagnosis task: The
probability that a person randomly selected from the
population of all Swedes has the disease is 2%. The
probability of receiving a positive test result given
that one has the disease is 96%. The probability of
receiving a positive test result if one does not have
the disease is 8%. What is the probability that a ran-
domly selected person with a positive test result has
the disease? Correct answer: 20%.
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FIGURE 1 | Median performance in Experiment 1 in terms of Mean Absolute Error (MAE) between the judgment and Bayes’ theorem. (A) Metric
instruction; (B) computational instruction. Adapted from Juslin et al. (2011) with permission.

integration. Fifteen participants received
Metric instruction, explaining and exem-
plifying the range and sign of the metric
used, but with no guidance on how the
integration should be made. The other
15, in addition, received Computational
instructions on how to solve the problems,
explaining how the components should
be integrated according to Bayes’ theorem
with numerical examples.

The performance is summarized in
Figure 1. Already with a Metric instruc-
tion, the log-odds format produced judg-
ments closer to Bayes’ theorem than the
standard probability format. With com-
putational instruction, the standard prob-
ability format produced poor perfor-
mance and participants were still better
described by an additive than a multiplica-
tive (Bayesian) model. With log odds and
computational instruction, performance
was in perfect agreement with Bayes’ the-
orem. People can thus flawlessly perform
Bayesian calculation when the integra-
tion is additive, but when the format
requires multiplication they are inept also
after explicit instruction, still approximat-
ing Bayes’ theorem as best they can by a
linear additive combination.

CONCLUSIONS
A caveat is that although these results
demonstrate limits on computational abil-
ity, admittedly they do not address the
important issue of computational insight:
the understanding of what needs to be

computed in the first place. Research
has emphasized conditions that foster
computational insight by highlighting
subset relations that are important in
Bayesian reasoning problems (e.g., Barbey
and Sloman, 2007), perhaps at the neglect
of the “old-school” information process-
ing constraints on people’s computational
abilities discussed here. The “cure” sug-
gested here is drastic in the sense that it
requires people to think of uncertainty in
an unfamiliar log odds format, and the
extent to which they can learn to do this
is an open question. The dilemma might
well be that the probability format is more
easily translated into action, because prob-
abilities can be used directly to fraction-
wise “contextualize” (discount) decision
outcomes, but for reasoning about uncer-
tainty people are better off with formats
that allow additive integration.
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