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Word problems (WPs) belong to the most difficult and complex problem types that pupils
encounter during their elementary-level mathematical development. In the classroom
setting, they are often viewed as merely arithmetic tasks; however, recent research
shows that a number of linguistic verbal components not directly related to arithmetic
contribute greatly to their difficulty. In this review, we will distinguish three components
of WP difficulty: (i) the linguistic complexity of the problem text itself, (ii) the numerical
complexity of the arithmetic problem, and (iii) the relation between the linguistic and
numerical complexity of a problem. We will discuss the impact of each of these factors
on WP difficulty and motivate the need for a high degree of control in stimuli design for
experiments that manipulate WP difficulty for a given age group.

Keywords: word problems, linguistics complexity, numerical complexity, text properties, difficulty

Word Problems

Introduction
Word problems (WPs) are part of the school curriculum and are taught at all levels of education. In
WPs, relevant information is presented in the form of a short narrative rather than in mathemat-
ical notation (Verschaffel et al., 2000). Sometimes WPs specifically encode a quantitative relation
between objects (Boonen et al., 2013). Many children from kindergarten through adulthood have
severe difficulties in solving WPs (Nesher and Teubal, 1975; Riley et al., 1983; Lewis and Mayer,
1987; Hegarty et al., 1992; Verschaffel et al., 1992). Both linguistic and numerical complexity con-
tributes to the difficulty in solving WPs. However, researchers have so far often focused on the one
or the other aspect, depending on which field they come from. Even within the respective fields,
linguistics, and numerical cognition, some aspects have been studied extensively, while others have
been (strangely) neglected. For instance, we will see that semantics and discourse structures have
been frequently studied in the context of WP complexity, but systematic syntactic manipulations
are scarce. As regards numerical cognition, number properties like parity and magnitude as well
as the type of mathematical reasoning have often been studied, but the type and the form of oper-
ations (e.g., carry-over effects) have not been investigated thoroughly in WPs, although they play
an important role in current numerical cognition research (Moeller et al., 2011; Nuerk et al., 2011,
2015).

In this review, as researchers from the field of linguistics and the field of numerical cogni-
tion we have collaborated to provide a systematic overview of linguistic and numerical aspects
relevant to solving WPs as well as their interaction. To capture a broad range of relevant facets
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in the review, we extended our view of the relevant literature
with systematic keyword searches in several databases (Web
of Science, Ebsco, Google Scholar, ScienceDirect) including the
following terms: WPs, story problems in combination with sit-
uational model, performance, consistency hypothesis, language
processing, relational terminology, semantic influence, reword-
ing, semantic cues, number size and type, working memory, text
comprehension, computational errors, operations, position of
unknown. In Table 1, we present selected linguistic, mathemat-
ical and general factors investigated in previous studies.

Individual Differences and Social Factors
Individual differences and social factors must be also consid-
ered in WP research (Fite, 2002). For example, in the PISA
studies—often measured with WPs—, mathematics literacy is
a commonly used notion (Stacey, 2012). “It is defined as an
individual’s capacity to identify and understand the role that
mathematics plays in the world, to make well-founded judg-
ments and to use and engage with mathematics in ways that meet
the needs of that” (OECD, 2010). Unsuccessful WP solvers can
experience negative social health and life outcome (Schley and
Fujita, 2014). Even beyond social consequences, numerous stud-
ies focused on individual differences and group differences, such

as students with and without learning disabilities (Kingsdorf and
Krawec, 2014), and children with and without developmental
disabilities (Neef et al., 2003). Hegarty et al. (1995) distinguished
domain-specific strategies that successful and unsuccessful prob-
lem solvers develop with practice and how these strategies
account for individual differences in performance. Different stu-
dents – e.g., individuals with calculation difficulty, or WP diffi-
culty (Powell and Fuchs, 2014) –may struggle with different types
of WPs. Besides domain-general capabilities like IQ, the role of
domain specific knowledge and processes were investigated to get
a complete account of problem solving, basic cognitive abilities;
visual, reading skills, mathematical skills, and metacognitive abil-
ities involved in the solution process. For example Boonen et al.
(2014) and Oostermeijer et al. (2014) explored the role of spatial
ability and reading comprehension inWP solving, since goodWP
solvers do not select numbers and relational keywords but create
a visual representation (Boonen et al., 2013).

Social factors like schooling, teachers and peers also deserve
consideration because the way of responding [e.g., De Corte et al.
(1988)], the scoring criteria, the presence of illustrations next
to the text [e.g., Berends and van Lieshout (2009)], or solution
models used by the teachers influenceWP performance consider-
ably. School WPs also support stereotypical thinking: WPs do not

TABLE 1 | Selected linguistic, mathematical, and general factors investigated in previous studies.

Linguistic factors Mathematical factors General factors

Structure
Structural complexity of basic quantitative
properties
(e.g., Number of letters, word and sentence length,
proportion of complex words)
(Searle et al., 1974; Nesher, 1976; Lepik, 1990)
Vocabulary level
(e.g., polysemous words, prepositional phrases,
passive voice, clause structure; Spanos et al.,
1988; Abedi et al., 1997; Abedi and Lord, 2001;
Shaftel et al., 2006; Martiniello, 2008)
Question wording/placing (Cummins et al., 1988)

Property of numbers
Single digit (Lean et al., 1990)
Multi digit (Haghverdi et al., 2012)
Type of number [e.g., fraction: (Raduan,
2010), decimal number: problem size, role of
number (De Corte et al., 1988)]
Number magnitude [e.g., range of number
smaller than 100: (Nesher, 1976)]

Skills and social aspects
Social consequences (Schley and Fujita, 2014)
Learning disabilities (Kingsdorf and Krawec, 2014)
Successful/unsuccessful problem solvers (Hegarty et al.,
1995)
Calculation/word problem (WP) difficulties
(Powell and Fuchs, 2014)
Children/adults (De Corte et al., 1990; Hegarty et al., 1992)

Required operation
Addition subtraction (De Corte and
Verschaffel, 1987)
Multiplication division (De Corte et al., 1988)
Given number (De Corte et al., 1990; Vicente
et al., 2007)

Categorization
Semantic structure of arithmetic WPs (Riley et al., 1983)
Algebra textbook frequency
(Mayer, 1981)
Standard/non-standard WP
(Jimenez and Verschaffel, 2014)

Semantics
Linguistics verbal cues (van der Schoot et al., 2009)
Phrasing in cue words (LeBlanc and Weber-Russell,
1996)
Conceptual rewording (Vicente et al., 2007)
Semantic/Object relation (?)
Presence of distractor (Muth, 1992)

Mathematical solution strategy
Counting from larger number (De Corte and
Verschaffel, 1987)
Position of the unknown (Garcia et al., 2006)
Arithmetic fact retrieval
(Orrantia et al., 2010)
Number combination (Fuchs et al., 2009)
Situation/Mental arithmetic strategy (Brissiaud
and Sander, 2010)

Solution strategies
Algebra WP/arithmetic WP (Koedinger and Nathan, 2004)
WP solving theory-models (Kintsch and Greeno, 1985)
Translation strategies (Hegarty et al., 1995)
Spatial/visual representation (Boonen et al., 2013)
Situation model (Thevenot et al., 2007)

Relevance of information
(Terao et al., 2004)
Numerical processes and representation
(MacGregor and Price, 1999; Goebel et al.,
2014)

Other aspects
Pedagogical factors (Lean et al., 1990)
Socio-mathematics (Reusser, 1988)
Stereotypes thinking (Yee and Lee, 1997)
Real-word knowledge (Verschaffel et al., 1997)
Response mode (De Corte et al., 1988)

Consistency effect (Lewis and Mayer, 1987)
e.g., revisited: (Pape, 2003)

Computer tutors (Nathan et al., 1992)
Computer simulation (Dellarosa, 1986)

Basic linguistics influence on numerical cognition (Lachmair et al., 2014)

Working memory (Swanson et al., 1993)
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resemble problems in real-world situations (Yee and Lee, 1997).
In addition, there is a strong tendency among both students and
teachers to exclude real-world knowledge from their WP solution
(Verschaffel et al., 1997), which is consistent with the observation
that the problem solving process is also influenced by social cog-
nitive and epistemic behavior settings (Reusser, 1988). Linguistic
and pedagogical factors also affect children’s understanding of
arithmetic WPs (Lean et al., 1990). Students’ beliefs about what
doing and knowing mathematics means are rather different
from the ideals (Jimenez and Verschaffel, 2014) and shaped by
“socio-mathematical norms.” Resulting differences in motivation
seem to influence the strategies used to solve WPs (Gasco and
Villarroel, 2014). In sum, both individual differences and social
factors contribute toWP performance and deserve consideration.

Subcategories of Word Problems and
Solution Strategies
Several different types of WPs—e.g., in the underlying mathe-
matical structure or solvability— are often presented intermixed
in one study without acknowledging the problem type. This is
problematic. Different types of WPs are presented for various
student groups, in different schools or different age groups. For
example, Swanson et al. (2013) investigated the role of strategy
instruction and cognitive abilities on WP solving accuracy. The
mathematical WPs they used were: addition, subtraction, and
multiplication without any further description of the problem
type. However, the available literature has already shown that dif-
ferent categories of WPs may lead to different solution strategies
and different error types. For instance, different semantic prob-
lem types result in different errors (Vicente et al., 2007) and have
a different difficulty level (LeBlanc and Weber-Russell, 1996).
Obviously, different scientific studies reporting results for dif-
ferent student or age groups cannot be easily compared to one
another when they use different WP types; it cannot be deter-
mined whether differences should be attributed to group or study
manipulation or differences in the used stimulus material. In the
following, we outline the major distinctions discussed in the lit-
erature. Besides the difficulty level, WPs have been categorized
with regard to various other attributes. Based on standard alge-
bra text books, Mayer (1981) categorized WPs according to their
frequency. Riley et al. (1983) created four groups based on the
semantic structure of additive arithmetic WPs (change, compare,
combine, equalize) and 18 further subcategories. For instance, the
change problem –where there is a start, a change, and a result state
–can be subdivided into three subcategories depending on which
state is the unknown.

The mathematical content of WPs can also serve as a basis
for categorization. Algebra WPs typically require translation into
a mathematical formula, whereas arithmetic WPs are solvable
with simple arithmetic or even mental calculation. In contrast to
arithmetic WPs, algebraic reasoning WPs share the same numer-
als and signs (Powell and Fuchs, 2014) and the manipulation
of those numbers and signals differs based on the question or
expected outcome (Kieran, 1990). However, the distinction is
not that straightforward, as in some cases both methods can be
applied. For instance, in a study by Van Dooren et al. (2002),
future secondary school teachers preferred the use of algebra

even when an arithmetical solution seemed more evident, and
some future primary school teachers rather applied arithmetical
methods. Computer-aided environments have been introduced
for algebraic WPs (Reusser, 1993) to support learning on “getting
the formalism” and the “equation” (Nathan et al., 1992) and to
allow students to generate, manipulate, and understand abstract
formal expressions for WPs. However, solution approaches are
not easily dissociable between arithmetic and algebraic problems.
If a WP is intended to be solved with an equation, in some cases a
simple arithmetic approach is enough (Gasco et al., 2014). Under
some circumstances, it is even easier to solve WPs via alterna-
tive arithmetic strategies than by deriving algebraic equations. US
children perform better on a story problem if it is in a money
context and the numbers involve multiples of 25 (Koedinger and
Nathan, 2004). While the distinction between algebra and arith-
metic WPs is important for investigation and evaluation, in this
review we concentrate mainly on arithmetic WPs.

Standardized phrases and the idea that every problem is solv-
able are other important attributes of many, but not all WPs.
Textbooks generally suggest implicitly that every WP is solvable
and that every numerical information is relevant (Pape, 2003).
They usually provide standardized phrases and keywords that are
highly correlated with correct solutions (Hinsley et al., 1977; ?).
There are so-called non-standard WPs (Jimenez and Verschaffel,
2014) which can be non-solvable WPs or if they are solvable some
have multiple solutions and may contain irrelevant data. In the
recent literature, non-standard WPs are getting more and more
attention (Yeap et al., 2005; Csikos et al., 2011). Children give
a high level of incorrect answers to non-standard WPS because
these seem to contradict their mathematics-related beliefs learned
in the classroom. Reusser (1988) presented 97 first and second
graders with the following sentence: “There are 26 sheep and
10 goats on a ship. How old is the captain?” and 76 students
“solved” the problem using the numbers in the task. The rationale
behind such studies is that always-solvable textbook problems
with standardized phrases and including only relevant numerical
information are hardly ecologically valid. Real-life WPs are not
standardized, contain irrelevant information, and a solution may
not always exist.

The above subcategories, which essentially characterize spe-
cific sets of WP properties, have a direct impact on human
performance in WP. For space limitations, we cannot discuss
the impact of all subcategories in detail, but we illustrate their
impact on performance and strategies with two examples: (i) dif-
ferent subcategories can result in different errors, and involve
different representations and processes. For example, a famil-
iar misconception is that multiplication (Vergnaud, 2009) always
makes the result larger (which is not true for n < 1), that division
makes the results smaller, and that division always involves divi-
sion of the larger number by the smaller, (ii) addition problems
are strongly influenced (De Corte and Verschaffel, 1987) by the
semantic structure (change, compare, combine). Carpenter et al.
(1981) reported that the dominant factor in determining the chil-
dren’s solution strategy was this semantic structure. For instance,
Change problems [cf. the classification of Riley et al. (1983)]
require the child to find the difference between the two num-
bers given in the problem; their nature influences the strategies
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children adopt. Riley et al. (1983) illustrates this with the follow-
ing examples: Change 2: “Joe had eight marbles. Then he gave five
marbles to Tom. Howmanymarbles does Joe have now?” Change
3: “Joe had three marbles. Then Tom gave him some more mar-
bles. Now Joe has eight marbles. How many marbles did Tom
give him?” Almost all the children used a subtraction strategy
(e.g., counting up) to solve Change 2. For Change 3 almost all
the children used an addition strategy (e.g., counting down). In
sum, the subcategories introduced in this section influence both
performance and the choice of solution strategies.

Indeed, solution strategies have systematically been in the
focus of WP research and addressed the following questions: how
do children and adults solve WPs? Why do they make differ-
ent errors and at which level of the solution process they do
so? Which kind of semantic representation do they create of the
WP? Which skills are necessary for the solution process? The
first theories on WP solution processes (Kintsch and Greeno,
1985) have drawn on the text comprehension theories of Mayer
(1982) and Van Dijk and Kintsch (1983). When solving prob-
lems, the solver first integrates the textual information into an
appropriate situation model or a mental representation of the
situation being described in the problem, which then forms the
basis for a solution strategy. This approach was further applied
by (Thevenot and Oakhill, 2005; Jimenez and Verschaffel, 2014;
Kingsdorf and Krawec, 2014). An important foundation of those
approaches is that solving WPs is not a simple translation of
problem sentences into equations (Paige and Simon, 1966). Often
both WPs and the corresponding numerical problems are done
without language translation (Schley and Fujita, 2014). Several
researchers have focused on abstraction as a reductive process
involved in the translation process in the WPs. Nathan et al.
(1992) argue that WPs solving is an exercise in text processing
required for understanding the problem (Cummins et al., 1988),
which is highly dependent upon language comprehension skills.
Successfully solving WPs has been argued to require at least three
distinct processes (Nesher and Teubal, 1975): (i) understanding
and constructing the relation between text and arithmetic task,
(ii) linguistic understanding of the WP itself, and (iii) solving the
arithmetic tasks. Typically only the latter process is assumed to
be shared with common arithmetic tasks. Many students can suc-
cessfully solve common arithmetic tasks and they show good text
comprehension skills. Yet they fail to solve WPs correctly. This
suggests that other factors like solution strategies and building
up a mental model of the task also play a major role for the WP
performance.

Linguistic Complexity and Linguistic
Studies

In linguistics, the notion of complexity is discussed under a range
of perspectives, with particularly fruitful definitions grounded
in research on language evolution (Nichols, 1990) and lan-
guage acquisition (Bulté and Housen, 2012). Following the latter,
it is useful to delineate linguistic complexity from proposi-
tional complexity (the amount of meaning to be expressed)
and discourse-interactional complexity (the interaction of

participants in discourse). This makes it possible to zoom in on
linguistic complexity as the degree to which a text at hand is elab-
orated and varied (Ellis, 2003, p. 340). Linguistic complexity can
be analyzed with respect to all aspects of the linguistic system:
from the words and their lexical and morphological aspects, via
the way these words can be combined in syntax to form sen-
tences, to the text structure, and overall discourse. Languages
differ with respect to where in the linguistic system complexi-
fication is supported. For example, English makes use of word
order to encode grammatical functions, whereas agglutinative
languages such as Hungarian or Turkish make use of a rich mor-
phological inventory for this and other uses. The implication of
linguistic encoding differences is twofold: first, the difficulty of
WPs is language-specific, thus linguistic manipulation leading to
increased WP complexity in one language may not have an effect
in another, more complex language. Second, the performance of
language learners onWPs presented in a foreign language may be
affected by the differences between the learner’s mother tongue
and the language of the problem presentation. In the following
two sections, we briefly summarize the main findings on aspects
of linguistic complexity that affect performance.

Structural Factors
Studies on the relation between linguistic structure and student
performance on WPs have considered complexity at the micro-
level of word and sentence forms as well as at the macro-level
of the discourse structure of the WP passage. Early approaches
addressed structural complexity in terms of basic quantitative
properties of the WP text, such as the number of letters, words,
sentences, mean word, and sentence length, or the proportion of
complex (long) words (Searle et al., 1974; Nesher, 1976; Lepik,
1990). More linguistically motivated variables have been inves-
tigated in the context of comprehension difficulties in WPs for
language learners, for the most part learners of English. At the
vocabulary level, comprehension difficulties which result in prob-
lem solving difficulties for English language learners may stem
from the presence of unfamiliar (low-frequency) words, polyse-
mous words, idiomatic or culturally specific lexical references. At
the sentence structure level, factors that have been shown to play
a role include noun phrase length, the number of prepositional
phrases and participial modifiers, the presence of passive voice
and complex clause structure such as relative, subordinate, com-
plement, adverbial, or conditional clauses (Spanos et al., 1988;
Abedi et al., 1997; Abedi and Lord, 2001; Shaftel et al., 2006;
Thevenot et al., 2007; Martiniello, 2008).

At the discourse structure level, specifically in terms of dis-
course ordering, the correspondence between the order in which
numerical data is presented in the WP and the order in which it
can be used to solve it has been shown to be a major predictive
variable. Order-consistent problems result in better performance
(Searle et al., 1974). Better performance has also been observed
for simpler question wording or placing the question before the
text results (Cummins et al., 1988).

Semantic Factors
A single factor that is straightforwardly related to WP difficulty
and that has been widely investigated is the presence or absence

Frontiers in Psychology | www.frontiersin.org 4 April 2015 | Volume 6 | Article 348

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Daroczy et al. Word problems: linguistic & numerical factors

of explicit verbal cues whose semantics hint at the expected
operation and thus directly lead toward the solution. Verbal
cues include words and phrases of different categories: con-
junctions (“and” for addition), adverbs (“left,” “more than,” “less
than” for subtraction), or determiners (“each” for multiplica-
tion). Eye tracking studies have shown that subjects tend to focus
on linguistic verbal cues and perform translation directly to the
mathematical operation (e.g., Hegarty et al., 1992; van der Schoot
et al., 2009).

Because verbal cues so often lead to default mathematical
interpretation (Nesher, 1976), even small differences in phrasing
incuewordscancausesignificantchangesinperformance(LeBlanc
and Weber-Russell, 1996). This is especially relevant for young
children (Lean et al., 1990), who in the course of development
connect words such as “join,” “add,” “get,” “find,” or “take away”
with concepts such as putting together, separating, giving away,
or losing. A problem can thus be reworded by adding verbal
clues which make the semantic relations more salient so that the
underlying mathematical relation is more explicit. For example,
the WP “There are five marbles. Two of them belong to Mary.
How many belong to John?” can be reworded as “There are five
marbles. Two of them belong to Mary. The rest belong to John.
How many belong to John?” [from Cummins (1991)]. This kind
of conceptual rewording has been shown to be useful to improve
children’sperformanceonWPs(Vicenteetal., 2007).Thuschanges
in wording can influence representation (De Corte et al., 1985).

Semantic or object relations between the objects described in
the problem also relate to difficulty. Division problems usually
involve functionally related objects (e.g., tulips–vases) and rarely
categorically related objects (e.g., tulips–daisies; ?). By contrast,
addition for the most part involves categorically related objects.
The correlation between object relations and mathematical
operations has been argued to reflect a structural correspondence
between semantic and mathematical relations (Bassok et al.,
1998). For this reason, the semantic structure properties of a WP
have been emphasized as a more important factor contributing
to difficulty than the syntactic structure (Yeap and Kaur, 2001;
?). Interestingly, an effect related to information load has been
observed; the presence of content irrelevant to the core solution,
i.e., the presence of numerical or linguistic distractors, results
in higher error rates (Muth, 1992). De Corte and Verschaffel
(1987) found that the semantic structure of WPs influences
children’s choice of mathematical solution strategy. In terms
of the broader task context, the required or expected way of
responding to the WP has a big influence, especially for the
domain of multiplication and division with rational numbers as
argued in De Corte et al. (1988); for example, whether students
are expected to answer the problem numerically or if they only
have to indicate the required operation, or whether they respond
in an open way or with multiple choice.

Numerical Complexity and Numerical
Studies

Arithmetic WPs have to be usually transformed mentally into an
arithmetic problem and usually require an arithmetic solution

(?). This means transforming word and numbers into the
appropriate operation (Neef et al., 2003). Since the arithmetic
problem has to be solved in the end, numerical representations
and arithmetic processes will also play an important role in
the solution process. In numerical cognition, different models
and representations have been proposed (e.g., Dehaene and
Cohen, 1995; Nuerk et al., 2011). However, the problem here is
that the literature on WP often seems (with some exceptions)
to be largely in a parallel research universe to the literature on
numerical cognition and arithmetic processes, so that standard
models of numerical cognition are hard to apply on the existing
literature. What is more, WP research on numerical factors is
also affected by the scoring criteria; in some studies on WP
solving, computational errors are neglected, because in many
studies researchers consider a solution as correct as long as the
solver has chosen the correct mathematical model (Verschaffel
and De Corte, 1990). This is not the case in behavioral numerical
cognition research, where the correct result is usually essential
and RTs, accuracies, error types, and solution types are analyzed
based on the arithmetic problem and result.

Numerical complexity can influence WP performance via at
least three routes (see Figure 1):

(1) Direct route: WPs with more complex arithmetic structure
are more difficult independent of linguistic complexity.

(2) Cognitive load: more complex arithmetic problems involve
a higher cognitive load. For instance, carry problems are
supposed to require more working memory resources. If
the linguistic properties are also complex and the built-
up of a mental model also requires more working memory
resources, high arithmetic, and linguistic complexities could
lead to over additive difficulties which could neither be
explained by main effects of linguistic or numerical difficulty.

(3) Solution strategies: multi-digit numbers are harder to process
than single-digit numbers (Nuerk et al., 2011; for a review)
and arithmetic complexity usually increases with numbers of
digits. Thevenot and Oakhill (2005) compared the influence
of processing three-digit numbers and two-digit numbers
on WP solution strategies. They showed that processing
numerically more complex three-digit numbers facilitated
alternative strategies by the participants. The authors sug-
gested that higher work load and working memory led to
this facilitation. For our review and the model in the revised
manuscript, the important point is that they resort to less
effortful strategies. Similar results were observed by Brissiaud
and Sander (2010), who manipulated the size and order of
the numbers and operation thus resulting in two different
solution strategies: (i) situation-strategy WPs that are easy to
solve with informal strategies, e.g., double-counting, derived
number fact, or trial-error strategy, (ii) mental arithmetic-
strategy WPs are “easy to solve with mental calculation,
but only when the relevant arithmetic knowledge is used.”
Number magnitude and order determined which strategy
was used most likely. In this review, we suggest that resort-
ing to alternative easier strategies is not restricted to number
magnitude, but could be used with any numerical variable
that allows simpler solutions. For instance, if a number
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FIGURE 1 | This figure describes a possible theoretical process model of
world problem solving based on this article and dissociating numerical
and linguistic factors: Three general aspects are distinguished for
predicting individual WP performance. Stimulus Attributes (WP difficulty),
individual attributes (capabilities), and environmental factors (e.g., teaching). WP
difficulty comprises linguistic factors (such as linguistic complexity of the WP
text, Section 2 of this article), numerical factors (such as numerical difficulty of
the numerical problem, Section 3), and their interaction (such as the relation
between text and arithmetic problem, Section 4). Individual Capabilities can refer
to linguistic and numerical capabilities and domain- general abilities such as
individual working memory capacity. Stimulus attributes and individual attributes
influence individual WP performance both directly and over two mediator
variables. One mediator variable refers to domain-general attributes, such as

cognitive load. Complex linguistic and numerical stimulus attributes can
increase cognitive load and the impact of increased complexity may be
overadditive, especially when the joint linguistic and numerical complexity
exceeds the cognitive load of an individual. On the other hand, those domain-
general attributes are influenced by individual capability. Cognitive load for an
individual with high linguistic or numerical abilities may be lower for the same
problem than for an individual with low linguistic or numerical abilities. The
second mediator variable refers to specific solution strategies. If specific solution
strategies can be applied to a particular WP problem, because the problem type
allows this and because the individual knows the strategy, solution strategies
can facilitate WP solving. Finally, environmental factors (e.g.: teaching, scoring
system. . . etc.) influence individual capabilities, solution strategies, and also
directly individual WP Performance.

bisection task were used in a text problem, we would also sug-
gest that participants resort to easier strategies (e.g., checking
the parities of the outer number), when the bisection prob-
lem gets more complex (e.g., larger interval, decade crossing
etc.).

Nevertheless, some distinctions of numerical processes can be
made in our review of the WP literature and are therefore pro-
posed as an initial step in this review. Note that in our view this
is not the end of the integration of numerical cognitive research
and WP research, but rather just a beginning. For an overview of
the investigation of specific numerical processes in current WP
research, we suggest categorizing them into five categories:

(i) the property of numbers (parity, single digit/multi digit,
problem size, ties, type of number, role of the number,
number magnitude),

(ii) required operation (type, number)
(iii) mathematical solution strategies (larger number, place, auto-

matic fact retrieval, position of the unknown),
(iv) relevance of the information.
(v) other numerical processes and representations

Number Properties
While some studies have shown an effect of numerical com-
plexity, from a numerical cognition view it is surprising that

actually the arithmetic complexity has rarely been systematically
considered as an isolated factor in WPs, although it is frequently
examined in other arithmetic problems or simply the descrip-
tion of numbers is missing, e.g., De Corte et al. (1990). For
instance, parity attributes are rarely considered in WPs, although
in children it influences task performance and strategy choice in
arithmetic tasks. For instance, in the number bisection task (Is
the middle number Y the exact mean of X and Z in X_Y_Z?),
parity influences performance. Trials with unequal parities of X
and Z are easier to solve than trials with equal parities (Nuerk
et al., 2002). We suggested that this is due to a change in strategy.
In trials with unequal parity (e.g., 21_25_28), it is impossible that
the middle number is the mean, because the mean of numbers
with unequal parity is not an integer number (and only integers
were used in the experiment). Therefore, participants may change
their strategy after they discovered unequal parities and may not
compute further to find out whether the middle number is really
the mean. A later fMRI study (Wood et al., 2008) corroborated
this assumption. In the easier unequal parity (“impossible”) con-
dition, we observed more activation in the right ventrolateral
prefrontal cortex, which is activated in cognitive set changes or
when participants generate alternative solutions for a task. Thus,
parity can influence performance and solution strategies in arith-
metic. This seems not only the case in the bisection task, which
is to our knowledge rarely used in WP research, but also in
standard operations like addition and subtraction. A review by
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Hines (2013) suggests that parity influences the difficulty of addi-
tion and subtraction, but not multiplication, and tasks containing
odd numbers are more difficult than with even ones. Such par-
ity effects have received little attention in WP research so far.
Furthermore, it seems that most WPs, especially for children,
contain single-digit numbers; e.g., each answer was in the range of
1–9, e.g., in Lean et al. (1990), or Powell and Fuchs (2014), only
few use multi-digit numbers (Haghverdi et al., 2012). In Nesher
(1976) the range of numbers is smaller than 100, contained
division two-digit numbers into one-digit number.

Explanations why the studies have chosen specific numbers,
e.g., mentioning problem size, are rare. De Corte et al. (1990)
and Orrantia et al. (2010) controlled for the number of sen-
tences; the size of the numbers given in the problems. In the
study of van der Schoot et al. (2009) the final answers were
between 14 and 40, included no fraction, no negative number,
no numerical value twice, and none of the possible answers
resulted in another. However, different types of numbers were
presented in WPs in some more studies: (i) fraction (Raduan,
2010), (ii) whole number, (iii) decimal number (Haghverdi et al.,
2012); and their effect has been rarely investigated. Koedinger
and Nathan (2004) found an effect for decimal numbers: “how-
ever we also observed a smaller situation facilitation effect
whereby story performance was better than word equation per-
formance under certain conditions: namely dealing with decimal
numbers.”

The mixed use of single- and multi-digit numbers is problem-
atic because in the last 15 years, numerous numerical cognition
studies have shown that single-digit number processing can-
not easily be generalized to multi-digit number processing, e.g.,
Nuerk et al. (2001); for reviews see Nuerk and Willmes (2005)
and Nuerk et al. (2015). Nuerk et al. (2015) have identified 17
numerical effects linked to different numerical representation,
which are specific for multi-digit number processing and which
cannot be explained by single-digit number representations. Also
even the same effects are different for single- and multi-digit
numbers. For instance, Ashkenazi et al. (2009) have shown that
the distance effect for two-digit numbers differentiates between
dyscalculic and typically developing children. The sometimes
seemingly arbitrary mix of single-digit and multi-digit number
use in WP research is therefore not reasonable in our view given
the state of numerical cognition research and the major differ-
ences between processing those different number types. The role
of a number within an operation also influences WP complex-
ity (De Corte et al., 1988). For example, in the case of addition
the role means: addend, minuend or by multiplication: multipli-
cand, multiplier. One important finding from recent research on
multiplication WPs is that children’s performances are strongly
affected by the nature of the multiplier whether, e.g., it is an inte-
ger, decimal larger than 1 or a decimal smaller than 1. On the
other hand, the size of the multiplicand has little or no effect on
problem difficulty. De Corte et al. (1988) stated that “two mul-
tiplication problems with the same mathematical, semantic, and
surface structure but different in terms of the nature of the given
numbers can elicit very distinct levels of problems difficulty.”
Indeed, this corresponds to recent findings that relatedness and
consistency heavily influence the ease with which a multiplication

problem can be solved cf. for relatedness (Domahs et al., 2006,
2007) and for consistency Verguts and Fias (2005).

Despite the major role of number properties in numerical cog-
nition, number property has not been investigated extensively
in the WPs (Fuchs et al., 2009). Nevertheless, numbers seem
to play a major role. For instance, De Corte and Verschaffel
(1986) observed that in their eye tracking study there was a rela-
tively strong focus on the numbers in the problem. Twenty-five
percent of the total solution time was spent in the two small
number areas. However, major number properties of numerical
cognitions research such as number magnitude are rarely sys-
tematically considered in WP research. In our view, more dialog
between fields, – numerical cognition and WP research – seems
necessary.

Required Operation
Carrying out operations are necessary steps in solving arithmetic
WPs. Operations have been used extensively in WPs. Most errors
seem to originate from people’s failure to understand the language
of WPs, i.e., the linguistic embedding of the calculation prob-
lem (Schumacher and Fuchs, 2012), and arithmetic computation
errors themselves (Raduan, 2010; Kingsdorf and Krawec, 2014).
Some errors may result from correct calculation performed on
incorrect problem representation (Lewis and Mayer, 1987) and
different operations may lead to different solution strategies.
The most usual operation used in WP experiments are addition
and subtraction (Carpenter et al., 1984; De Corte et al., 1988;
Schumacher and Fuchs, 2012). Even the classification of Riley
et al. (1983) was made for elementary addition and subtraction.
Research in the 1980s and 1990s concentrated on how children
learn to do one step addition and subtraction problems involving
small whole numbers; see the review from Vicente et al. (2007).
Later, the focus was more on the multiplication WPs or mixed
WPs – e.g., Swanson (2004). Greer (1992) presented a frame-
work categorization of multiplication and division WPs on the
basis of the types of quantities involved (positive integers, frac-
tion, and decimals) as models of situation. The semantic problem
structure also influences the solution strategies for addition and
subtraction.

Choosing the correct operation strongly depends on the type
of the given numbers in the problem (De Corte et al., 1990). As
already shortly outlined in above subsection on problem types,
there is a huge body of research on what makes addition, subtrac-
tion, or multiplication problems difficult. Carry operations (e.g.,
28+ 47; the decade value 1 from the unit sum 15 has to be carried
over to the decade sum) have long been known to make multi-
digit addition more difficult in children and adults; see Nuerk
et al. (2015) for a review. However, solution strategies differ
between children and adults – eye movement data suggest that in
a choice reaction task elementary school children always compute
and search for the correct results, while adults seem to also decide
based on the rejection of the incorrect result. What is more, even
within the carry operations at least three different cognitive pro-
cesses can be identified for adults: unit sum calculation, carry
detection, and carry execution (Moeller et al., 2011). Inability to
execute one of these processes may lead to worse performance
in carry problems in particular. Carry addition problems seem to
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require larger working memory resources (Ashcraft, 1995; Furst
and Hitch, 2000). If cognitive load/working memory demand is
high, because both the linguistic and the numerical complexity
of the WP are large, this may lead to over additive problems in
the domain-general processing stages involved in WP solving —
see Figure 1, for an elaboration. For multiplication, we know that
relatedness, ties, whether a problem stems from the 0, 1, 2, 5, or 10
row (Josta et al., 2009), or consistency influence the difficulty of
a multiplication problem (Domahs et al., 2006, 2007). Although
such factors have been extensively studied in numerical cognition
research, they are – to the best of our knowledge – rarely consid-
ered in WP research. Since we know that these factors make the
arithmetic computation, which is part of the WP solution, this
lack of consideration is again problematic in our view.

Mathematical Solution Strategies
Mathematical solution strategy variations have been studied
extensively, and can be a function of linguistic factors like word-
ing, semantic categories and propositions. However, how indi-
viduals come up with mathematical solution strategies can be
also be influenced by numerical factors like number magni-
tude (Thevenot and Oakhill, 2005). Such variables, which are
independent of other factors, make WPs harder and/or influ-
ence numerical representations, have rarely been studied. The
position/place of the unknown variable has an effect on represen-
tation (Garcia et al., 2006). Even studies about working memory
also investigated the position of the unknown variable (Swanson,
2004). The strategy of counting on from larger is easier if the
bigger number is represented first (Wilkins et al., 2001). Even
for adults: 4 + 2 = 6, and 2 + 4 = 6, which are mathemati-
cally equivalent, may psychologically imply different meanings
(Kaput, 1979). The sequence of the numbers, e.g., whether a prob-
lem starts with the smaller or with the larger number (Verschaffel
and De Corte, 1990), the position of the numbers and partic-
ular words (Schumacher and Fuchs, 2012) influence children’s
solution of elementary addition and subtraction problems. For
example, in change problems children typically look for a specific
number to begin with, depending on task features, like the first
mentioned number (Lean et al., 1990; Wilkins et al., 2001), the
type of problem (start or change set), and the size of the numbers
(Verschaffel and De Corte, 1990).

Arithmetic fact retrieval is a well researched ubiquitous strat-
egy in numerical cognition but less so in the domain of WPs.
Orrantia et al. (2010) found that arithmetic fact retrieval is not
limited to simple addition, but also possible in other tasks, such
as single-digit arithmetic WPs. Fuchs et al. (2009) investigated
so called “Number combination.” This means simple arithmetic
problems that can be solved via counting or decomposition
strategies or committed to long term memory for automatic
retrieval. Here, arithmetic fact retrieval had to be differentiated
from other strategies on three levels: operational, items difficulty,
and individual differences. These numerical factors influence
solution strategies in arithmetic andWPs as well. Decomposition
and counting require more working memory and therefore leave
less resources for the built-up and maintenance of a text situa-
tions model. However, both individual and stimulus differences
should also be considered. For instance, Grabner et al. (2009)

showed in an fMRI study that not only problem but also individ-
ual strategy choice contributed to fact retrieval processes when
solving multiplications.

Information Relevance and Step-Wise
Problem Processing
One relatively extensively studied factor in WPs is the relevance
of the information. Individuals have to extract the relevant infor-
mation from the text in order to carry out the correct solution.
Secondary information distracts people from recognizing the
underlying mathematical relations (Schley and Fujita, 2014). This
extra information may also be presented in the form of an extra
number or an extra operational step – one-step (i.e., one cal-
culation step has to be performed) and two-step problems (i.e.,
two calculation steps have to be performed). Problem complexity
increases with the addition of steps (Terao et al., 2004), as well as
the addition of irrelevant information to the problem (Kingsdorf
and Krawec, 2014) Presence of extraneous information and the
need for an extra step reduced the accuracy of the students’ solu-
tions, because students believe that all of the numbers in a WP
should be used. All other factors being kept constant, two-step
problems are much more error-prone than one-step problems
(Muth, 1992). However, it cannot be concluded that the reason
for two-step problems being more difficult is arithmetic com-
plexity, because in two-step problems, the WP has also become
more difficult linguistically as it usually contains more phrases
and semantic distractors.

Other Numerical Processes and
Representation
Several other numerical processes and representations have not
been investigated inWPs. For instance, as shortly outlined above,
one major factor in simple calculation problems, which can be
studied in isolation, is the presence or absence of a carry oper-
ation. Children and adults take longer and commit more errors
when computing the solution to a sum for which adding the
units leads to a change in the number of 10s (e.g., 14 + 9 = 23;
Furst and Hitch, 2000; Deschuyteneer et al., 2005) than when it
does not (e.g., 11 + 12 = 23). This effect is known as the carry
effect; in carry problems, a one needs to be carried from the unit
slot to the decade slot. The carry effect is influenced by various
processes, but even by language structure (Goebel et al., 2014).
Language influences on the difficulty of the numerical compu-
tations within a WP have to our knowledge not been studied.
Other central topics of numerical cognition such as, e.g., num-
ber and symbol sense contribute to WP solving are also open
questions (MacGregor and Price, 1999). We have chosen some
selected variables/factors, which have been investigated in theWP
research.

Connecting Linguistic and
Mathematical Factors

There are so many linguistic influences on numerical cogni-
tion and arithmetic that this justifies a special issue like this.
For instance, number word structure seems to play an essential
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role. Children growing up with regular number word struc-
ture usually perform better in variety of numerical tasks from
basic verbal counting up to arithmetic, e.g., Miller et al. (1995)
or Dowker et al. (2008). In addition, the consistency of the
order of the number word system and the Arabic number influ-
ences transcoding (Zuber et al., 2009; Pixner et al., 2011a; Imbo
et al., 2014) number comparison (Nuerk et al., 2005; Pixner
et al., 2011b; Klein et al., 2013; Moeller et al., 2014) calculation
(Goebel et al., 2014); see also (Brysbaert et al., 1998; Colomé
et al., 2010). In addition, reading direction influences numerical
processes like the SNARC effect (Shaki et al., 2009; Fischer and
Shaki, 2014); see Goebel et al. (2011) for reviews. Finally, gram-
matical and syntactic properties of elementary number words
influence early number acquisition (Sarnecka, 2013) and spatial-
numerical representations (Roettger and Domahs, 2015). The
linguistic influence on numerical cognition is hardly debatable
any more. In fact, Lachmair et al. (2014) argue for a connection of
language and words, O´Neill (2013) states that the link between
language and mathematics might originate from the same roots,
and “required abilities are not that split up as we think,” and
MacGregor and Price (1999) also argue that between language
and mathematics in WPs there is deep connection: “that the
cognitive ability that drives symbol processing is the connection
between language and maths.” Nevertheless, systematic variation
of both linguistic and numerical factors inWPs is scarce – though
Bassok et al. (1998) already found that semantic relations between
objects in the text of mathematical WPs were highly positively
correlated with arithmetic operations that took these objects as
arguments. Neural correlates of visualization and verbalization
during arithmetic WP study also suggest that mental arithmetic
in WPs is influenced by language processing (Zarnhofer et al.,
2013).

Word problems require some connection between linguistic
and mathematical understanding by the very nature of the task,
because at least children do not have a repertoire of “highly
automatized schemata” for representing the different problem
types (Garcia et al., 2006). Therefore, it is not surprising that
children make more errors when solving WPs compared to
number problems (Geary, 1996; Koedinger and Nathan, 2004).
Children are able to solve several types of addition and subtrac-
tion problems before they start formal schooling (De Corte and
Verschaffel, 1987; Lean et al., 1990), and understand numerical
concepts before seeingWPs in their curricula (Garcia et al., 2006).
Therefore, most studies implicitly assume that problem solvers
always have the necessary basic arithmetic skills, even in the case
of children. This may lead to the misconception that numbers
may play a lesser role than they actually do and factors other than
computational skills are a major source of difficulty with WPs
(Nesher, 1976; Reusser, 1993). In this aspect, it is also impor-
tant to note that difficulties in solving WPs have been reported
that could be neither attributed to the lack of general reading
comprehension skills nor to the lack of general mathematical
skills (Hegarty et al., 1995). Nevertheless, linguistics and numer-
ical factors are usually not independently manipulated in WPs
and not even dissociated by other means (e.g., regressions). What
is more, their interaction is rarely studied [for an exception, see
Verschaffel and De Corte (1990)].

Lexical Consistency Effect
One of the few frequently studied factors examining the relation
between text and arithmetic problems is lexical inconsistency.
Some WPs contain linguistic markers as “less” or “more.” In the
direct translation strategy (Hegarty et al., 1995) students sim-
ply associate “less” with subtraction and “more” with addition.
They search for linguistic markers and keywords. In the problem
model strategy, they construct amental model of the problem and
plan their solution on the basis of this model. Successful learn-
ers are more likely to employ the problem model strategy; they
focus more on variables names and relational terms and success-
ful problem solvers re-read the text less frequently (Pape, 2003)
in the eye-tracking studies. Unsuccessful learners, on the other
hand, seem to rely on the direct translation strategy; they focus
on numerals and on relational terms, and linguistics marked-
ness in the (Hegarty et al., 1992) eyetracking study. This leads
to wrong solutions in lexically inconsistent texts, where “more”
is associated with subtraction and “less” with addition. To give
an example for lexical inconsistency, consider the following WP
adapted from Boonen et al. (2013) “At the grocery store, a bottle
of olive oil costs 7 €. That is 2 € more than at the supermarket.
How much will [a bottle of olive oil] cost in the supermarket?”
The anticipated difficulty in comprehension and finding the cor-
rect solution is due to the fact that the adverb “more” evokes the
concept of addition, but the correct solution is not 7 + 2 but
7− 2, given the way the text is organized. Verschaffel et al. (1992)
found such a reaction time consistency effect for children but not
for adults. Nesher (1976) and Lean et al. (1990) obtained similar
results in experiments with groups of non-disadvantaged chil-
dren and students, showing that linguistic semantic consistency
with respect to the required mathematical operation is an impor-
tant determinant of task difficulty. Inconsistent language results
in a high error rate and longer response time (Hegarty et al.,
1992), even in Verschaffel (1994) retelling one-step compared
WPs showed a strong evidence for the consistency hypothesis.
Students made ∼13% more reversal errors on inconsistent than
on consistent language problems and the difficulty of compre-
hending inconsistent-language problems were increased when
the correct arithmetic operation was an increase. However, the
literature is inconsistent if the consistency effect is present in
both students and children. Children find it easier to convert the
relation term “more than” into subtraction operation than the
relational term “less than” into an addition operation (Lewis and
Mayer, 1987; Verschaffel et al., 1992; Pape, 2003; van der Schoot
et al., 2009).

When neither reading comprehension nor arithmetic skills
alone can explain failure to solve WPs, a possible explanation
is that linguistic complexity and numerical complexity rely on
the same resources (e.g., working memory). The premise is
that there is not an absolute atomic concept of difficulty for
WPs. Rather; there are multiple linguistic and numerical fac-
tors which contribute to a problem’s complexity. It is a com-
bination of these factors that might make a problem additively
more or less difficult because they exert demands on more gen-
eral resources like working memory. Generally, problem solving
performance is related to the ability of reducing the accessi-
bility of no target and irrelevant information in the memory

Frontiers in Psychology | www.frontiersin.org 9 April 2015 | Volume 6 | Article 348

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Daroczy et al. Word problems: linguistic & numerical factors

(Passolunghi and Siegel, 2001). Working memory contributes to
early arithmetic performance, and studies also show that this
extends to WP solving (Lee et al., 2004) due to semantic mem-
ory representation “less than” which is more complex than “more
than.” Changes in the structure of the text has more demand on
the working. It has been suggested thatWPs in general are related
to workingmemory (Swanson et al., 1993). This will probably also
be influenced by instruction specifying how participants have to
solve a WP, and the method of evaluation, and scoring system. In
Van Dijk and Kintsch’s (1983) model of reading comprehension,
working memory is used to keep a number of text propositions
active simultaneously. In particular, working memory has been
related to each single component mentioned above, such as text-
problem relation, the linguistic complexity, and the arithmetic
complexity.

Future Direction, Open Questions

Word problem difficulty is influenced by the complexity of lin-
guistic factors, numerical factors, and their interrelation. To
better understand the difficulty of WPs, it would be desirable
to manipulate such variables and their interaction following the
principle of isolated variation. To support a systematic investiga-
tion, the variables to be manipulated also need to be discussed
against the backdrop of the relevant conceptual and empirical
issues in the underlying fields, linguistics, and numerical cogni-
tion. This has too rarely been the case in the past. For instance,
in the earlier studies on algebra WPs, the linguistic cues are of
mixed categories (adverbs, verbs, nouns, etc.) and the effect of
the complexity of syntactic structures is not taken into account.
Similarly, numerical complexity like basic number properties
(e.g., magnitude, place-value processing for multi-digit numbers)
or the complexity of underlying arithmetic computations (e.g.,
carry effects for addition, relatedness, or consistency effects for
multiplication) are often neglected. WP research would be well
advised to take into account the foundational categories, prop-
erties and findings of both numerical cognition and linguistics
when it examines which WPs are difficult for which groups and
why. Not only the main effects of numerical and linguistic com-
plexity should be studied, but also their interaction. To make

the relevant aspects explicit, Figure 1 sketches an overall process
model of WP solving.

The joint investigation of linguistic and numerical processes
also needs to take into account joint moderator variables such
as working memory in order to explore the possible interactions
between them. Since working memory affects all components of
complexity of a WP, the difficulties triggered may not be sim-
ply additive, but also interactive. The resolution of linguistic and
numerical difficulties may rely on the same processing stages
and resources (Sternberg, 1969). To investigate this, more col-
laboration between linguists and numerical cognition researchers
would be desirable.

Finally, we suggest a differential-psychological approach to
WP research. Different students may have a problem with dif-
ferent types of WPs. Linguistically rather weak students may
have problems with linguistically complex WPs, and arithmeti-
cally rather weak students with arithmetically complex problems.
Undifferentiated presentation of WPs in experiments will not
provide sufficient information about which skills and processes
an individual child should practice. Only with such differen-
tiation on an item level (as regards linguistic and numerical
complexity and their interrelation) and on an individual level
(as regards linguistic and numerical skills and general cognitive
abilities) will it be possible to understand why a particular child
has its individual difficulties with particular WP types. Such an
understanding, however, is essential to promote tailored learning
of one of the most difficult arithmetic problem types that students
encounter in school.
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