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Psychological research has increasingly recognized the importance of integrating

temporal dynamics into its theories, and innovations in longitudinal designs and analyses

have allowed such theories to be formalized and tested. However, psychological

researchers may be relatively unequipped to analyze such data, given its many

characteristics and the general complexities involved in longitudinal modeling. The

current paper introduces time series analysis to psychological research, an analytic

domain that has been essential for understanding and predicting the behavior of variables

across many diverse fields. First, the characteristics of time series data are discussed.

Second, different time series modeling techniques are surveyed that can address various

topics of interest to psychological researchers, including describing the pattern of change

in a variable, modeling seasonal effects, assessing the immediate and long-term impact

of a salient event, and forecasting future values. To illustrate these methods, an illustrative

example based on online job search behavior is used throughout the paper, and a

software tutorial in R for these analyses is provided in the Supplementary Materials.

Keywords: time series analysis, longitudinal data analysis, forecasting, regression analysis, ARIMA

Although time series analysis has been frequently used many disciplines, it has not been well-
integrated within psychological research. In part, constraints in data collection have often limited
longitudinal research to only a few time points. However, these practical limitations do not
eliminate the theoretical need for understanding patterns of change over long periods of time or
over many occasions. Psychological processes are inherently time-bound, and it can be argued that
no theory is truly time-independent (Zaheer et al., 1999). Further, its prolific use in economics,
engineering, and the natural sciences may perhaps be an indicator of its potential in our field, and
recent technological growth has already initiated shifts in data collection that proliferate time series
designs. For instance, online behaviors can now be quantified and tracked in real-time, leading to
an accessible and rich source of time series data (see Stanton and Rogelberg, 2001). As a leading
example, Ginsberg et al. (2009) developed methods of influenza tracking based on Google queries
whose efficiency surpassed conventional systems, such as those provided by the Center for Disease
Control and Prevention. Importantly, this work was based in prior research showing how search
engine queries correlated with virological and mortality data over multiple years (Polgreen et al.,
2008).

Furthermore, although experience sampling methods have been used for decades (Larson and
Csikszentmihalyi, 1983), nascent technologies such as smartphones allow this technique to be
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increasingly feasible and less intrusive to respondents, resulting
in a proliferation of time series data. As an example,
Killingsworth and Gibert (2010) presented an iPhone (Apple
Incorporated, Cupertino, California) application which tracks
various behaviors, cognitions, and affect over time. At the
time their study was published, their database contained
almost a quarter of a million psychological measurements
from individuals in 83 countries. Finally, due to the growing
synthesis between psychology and neuroscience (e.g., affective
neuroscience, social-cognitive neuroscience) the ability to
analyze neuroimaging data, which is strongly linked to time
series methods (e.g., Friston et al., 1995, 2000), is a powerful
methodological asset. Due to these overarching trends, we expect
that time series data will become increasingly prevalent and spur
the development of more time-sensitive psychological theory.
Mindful of the growing need to contribute to the methodological
toolkit of psychological researchers, the present article introduces
the use of time series analysis in order to describe and understand
the dynamics of psychological change over time.

In contrast to these current trends, we conducted a survey
of the existing psychological literature in order to quantify the
extent to which time series methods have already been used in
psychological science. Using the PsycINFO database, we searched
the publication histories of 15 prominent journals in psychology1

for the term “time series” in the abstract, keywords, and subject
terms. This search yielded a small sample of 36 empirical papers
that utilized time series modeling. Further investigation revealed
the presence of two general analytic goals: relating a time series to
other substantive variables (17 papers) and examining the effects
of a critical event or intervention (9 papers; the remaining papers
consisted of other goals). Thus, this review not only demonstrates
the relative scarcity of time series methods in psychological
research, but also that scholars have primarily used descriptive or
causal explanatory models for time series data analysis (Shmueli,
2010).

The prevalence of these types of models is typical of social
science, but in fields where time series analysis is most commonly
found (e.g., econometrics, finance, the atmospheric sciences),
forecasting is often the primary goal because it bears on
important practical decisions. As a result, the statistical time
series literature is dominated by models that are aimed toward
prediction, not explanation (Shmueli, 2010), and almost every
book on applied time series analysis is exclusively devoted to
forecasting methods (McCleary et al., 1980, p. 205). Although
there are many well-written texts on time series modeling for
economic and financial applications (e.g., Rothman, 1999; Mills
and Markellos, 2008), there is a lack of formal introductions
geared toward psychological issues (see West and Hepworth,
1991 for an exception). Thus, a psychologist looking to use these
methodologies may find themselves with resources that focus on
entirely different goals. The current paper attempts to amend

1These journals were: Psychological Review, Psychological Bulletin, Journal of

Personality and Social Psychology, Journal of Abnormal Psychology, Cognition,

American Psychologist, Journal of Applied Psychology, Psychological Science,

Perspectives on Psychological Science, Current Directions in Psychological Science,

Journal of Experimental Psychology: General, Cognitive Psychology, Trends in

Cognitive Sciences, Personnel Psychology, and Frontiers in Psychology.

this by providing an introduction to time series methodologies
that is oriented toward issues within psychological research. This
is accomplished by first introducing the basic characteristics
of time series data: the four components of variation (trend,
seasonality, cycles, and irregular variation), autocorrelation, and
stationarity. Then, various time series regression models are
explicated that can be used to achieve a wide range of goals,
such as describing the process of change through time, estimating
seasonal effects, and examining the effect of an intervention
or critical event. Not to overlook the potential importance
of forecasting for psychological research, the second half of
the paper discusses methods for modeling autocorrelation and
generating accurate predictions—viz., autoregressive integrative
moving average (ARIMA) modeling. The final section briefly
describes how regression techniques and ARIMA models can be
combined in a dynamic regressionmodel that can simultaneously
explain and forecast a time series variable. Thus, the current
paper seeks to provide an integrative resource for psychological
researchers interested in analyzing time series data which, given
the trends described above, are poised to become increasingly
prevalent.

The Current Illustrative Application

In order to better demonstrate how time series analysis can
accomplish the goals of psychological research, a running
practical example is presented throughout the current paper.
For this particular illustration, we focused on online job search
behaviors using data from Google Trends, which compiles the
frequency of online searches on Google over time. We were
particularly interested in the frequency of online job searches
in the United States2 and the impact of the 2008 economic
crisis on these rates. Our primary research hypothesis was that
this critical event resulted in a sharp increase in the series that
persisted over time. The monthly frequencies of these searches
from January 2004 to June 2011 were recorded, constituting a
data set of 90 total observations. Figure 1 displays a plot of this
original time series that will be referenced throughout the current
paper. Importantly, the values of the series do not represent the
raw number of Google searches, but have been normalized (0–
100) in order to yield a more tractable data set; each monthly
value represents its percentage relative to the maximum observed
value3.

A Note on Software Implementation

Conceptual expositions of new analytical methods can often be
undermined by the practical issue of software implementation
(Sharpe, 2013). To preempt this obstacle, for each analysis we

2The specific search term was, “jobs – Steve Jobs” which excluded the popular

search phrase “Steve Jobs” that would have otherwise unduly influenced the data.
3Thus, the highest value in the series must be set at 100—i.e., 100% of itself.

Furthermore, although measuring a variable in terms of percentages can be

misleading when assessing practical significance (e.g., a change from 1 to 4 yields

a 400% increase, but may not be a large change in practice), the presumably large

raw numbers of searches that include the term “jobs” entail that even a single point

increase or decrease in the data is notable.
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FIGURE 1 | A plot of the original Google job search time series and the

series after seasonal adjustment.

provide accompanying R code in the Supplementary Material,
along with an intuitive explanation of the meanings and rationale
behind the various commands and arguments. On account
of its versatility, the open-source statistical package R (R
Development Core Team, 2011) remains the software platform
of choice for performing time series analyses, and a number of
introductory texts are oriented solely toward this program, such
as Introductory Time Series with R (Cowpertwait and Metcalfe,
2009), Time Series Analysis with Applications in R (Cryer and
Chan, 2008), and Time Series Analysis and Its Applications with
R Examples (Shumway and Stoffer, 2006). In recent years, R
has become increasingly recognized within the psychological
sciences as well (Muenchen, 2013). We believe that psychological
researchers with even aminimal amount of experience with Rwill
find this tutorial both informative and accessible.

An Introduction to Time Series Data

Before introducing how time series analyses can be used in
psychological research, it is necessary to first explicate the
features that characterize time series data. At its simplest, a
time series is a set of time-ordered observations of a process
where the intervals between observations remain constant (e.g.,
weeks, months, years, and minor deviations in the intervals
are acceptable; McCleary et al., 1980, p. 21; Cowpertwait and
Metcalfe, 2009). Time series data is often distinguished from
other types of longitudinal data by the number and source of the
observations; a univariate time series containsmany observations
originating from a single source (e.g., an individual, a price
index), while other forms of longitudinal data often consist
of several observations from many sources (e.g., a group of
individuals). The length of time series can vary, but are generally
at least 20 observations long, and many models require at least

50 observations for accurate estimation (McCleary et al., 1980,
p. 20). More data is always preferable, but at the very least, a
time series should be long enough to capture the phenomena of
interest.

Due to its unique structure, a time series exhibits
characteristics that are either absent or less prominent in the
kinds of cross-sectional and longitudinal data typically collected
in psychological research. In the next sections, we review these
features that include autocorrelation and stationarity. However,
we begin by delineating the types of patterns that may be present
within a time series. That is, the variation or movement in a
series can be partitioned into four parts: the trend, seasonal,
cyclical, and irregular components (Persons, 1919).

The Four Components of Time Series
Trend
Trend refers to any systematic change in the level of a series—i.e.,
its long-term direction (McCleary et al., 1980, p. 31; Hyndman
and Athanasopoulos, 2014). Both the direction and slope (rate of
change) of a trend may remain constant or change throughout
the course of the series. Globally, the illustrative time series
shown in Figure 1 exhibits a positive trend: The level of the series
at the end is systematically higher than at its beginning. However,
there are sections in this particular series that do not exhibit
the same rate of increase. The beginning of the series displays
a slight negative trend, and starting approximately at 2006, the
series significantly rises until 2009, after which a small downward
trend may even be present.

Because a trend in the data represents a significant source of
variability, it must be accounted for when performing any time
series analysis. That is, it must be either (a) modeled explicitly
or (b) removed through mathematical transformations (i.e.,
detrending; McCleary et al., 1980, p. 32). The former approach
is taken when the trend is theoretically interesting—either on
its own or in relation to other variables. Conversely, removing
the trend (through methods discussed later) is performed when
this component is not pertinent to the goals of the analysis (e.g.,
strict forecasting). The decision of whether to model or remove
systematic components like a trend represents an important
aspect of time series analysis. The various characteristics of
time series data are either of theoretical interest—in which case
they should be modeled—or not, in which case they should be
removed so that the aspects that are of interest can be more easily
analyzed. Thus, it is incumbent upon the analyst to establish the
goals of the analysis and determine which components of a time
series are of interest and treat them accordingly. This topic will
be revisited throughout the forthcoming sections.

Seasonality
Unlike the trend component, the seasonal component of a series
is a repeating pattern of increase and decrease in the series that
occurs consistently throughout its duration. More specifically, it
can be defined as a cyclical or repeating pattern of movement
within a period of 1 year or less that is attributed to “seasonal”
factors—i.e., those related to an aspect of the calendar (e.g., the
months or quarters of a year or the days of a week; Cowpertwait
and Metcalfe, 2009, p. 6; Hyndman and Athanasopoulos, 2014).
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For instance, restaurant attendance may exhibit aweekly seasonal
pattern such that the weekends routinely display the highest
levels within the series across weeks (i.e., the time period), and
the first several weekdays are consistently the lowest. Retail sales
often display a monthly seasonal pattern, where each month
across yearly periods consistently exhibits the same relative
position to the others: viz., a spike in the series during the
holiday months and a marked decrease in the following months.
Importantly, the pattern represented by a seasonal effect remains
constant and occurs over the same duration on each occasion
(Hyndman and Athanasopoulos, 2014).

Although its underlying pattern remains fixed, the magnitude
of a seasonal effect may vary across periods. Seasonal effects
can also be embedded within overarching trends. Along with a
marked trend, the series in Figure 1 exhibits noticeable seasonal
fluctuations as well; at the beginning of each year (i.e., after
the holiday months), online job searches spike and then fall
significantly in February. After February, they continue to rise
until about July or August, after which the series significantly
drops for the remainder of the year, representing the effects of
seasonal employment. Notice the consistency of both the form
(i.e., pattern of increase and decrease) and magnitude of this
seasonal effect. The fact that online job search behavior exhibits
seasonal patterns supports the idea that this behavior (and this
example in particular) is representative of job search behavior in
general. In the United States, thousands of individuals engage in
seasonal work which results in higher unemployment rates in the
beginning of each year and in the later summer months (e.g., July
and August; The United States Department of Labor, Bureau of
Labor Statistics, 2014), manifesting in a similar seasonal pattern
of job search behavior.

One may be interested in the presence of seasonal effects,
but once identified, this source of variation is often removed
from the time series through a procedure known as seasonal
adjustment (Cowpertwait and Metcalfe, 2009, p. 21). This is
in keeping with the aforementioned theme: Once a systematic
component has been identified, it must either be modeled or
removed. The popularity of seasonal adjustment is due to the
characteristics of seasonal effects delineated above: Unlike other
more dynamic components of a time series, seasonal patterns
remain consistent across periods and are generally similar in
magnitude (Hyndman and Athanasopoulos, 2014). Their effects
may also obscure other important features of time series—e.g., a
previously unnoticed trend or cycles described in the following
section. Put simply, “seasonal adjustment is done to simplify
data so that they may be more easily interpreted...without a
significant loss of information” (Bell and Hillmer, 1984, p. 301).
Unemployment rates are often seasonally adjusted to remove the
fluctuations due to the effects of weather, harvests, and school
schedules that remain more or less constant across years. In
our data, the seasonal effects of job search behavior are not
of direct theoretical interest relative to other features of the
data, such as the underlying trend and the impact of the 2008
economic crisis. Thus, we may prefer to work with the simpler
seasonally adjusted series. The lower panel of Figure 1 displays
the original Google time series after seasonal adjustment, and
the Supplementary Material contains a description of how to

implement this procedure in R. It can be seen that the trend is
made notably clearer after removing the seasonal effects. Despite
the spike at the very end, the suspected downward trend in the
later part of the series is much more evident. This insight will
prove to be important when selecting an appropriate time series
model in the upcoming sections.

Cycles
A cyclical component in a time series is conceptually similar to a
seasonal component: It is a pattern of fluctuation (i.e., increase
or decrease) that reoccurs across periods of time. However,
unlike seasonal effects whose duration is fixed across occurrences
and are associated with some aspect of the calendar (e.g., days,
months), the patterns represented by cyclical effects are not of
fixed duration (i.e., their length often varies from cycle to cycle)
and are not attributable to any naturally-occurring time periods
(Hyndman and Athanasopoulos, 2014). Put simply, cycles are
any non-seasonal component that varies in a recognizable pattern
(e.g., business cycles; Hyndman and Athanasopoulos, 2014). In
contrast to seasonal effects, cycles generally occur over a period
lasting longer than 2 years (although they may be shorter),
and the magnitude of cyclical effects is generally more variable
than that of seasonal effects (Hyndman and Athanasopoulos,
2014). Furthermore, just as the previous two components—trend
and seasonality—can be present with or without the other, a
cyclical component may be present with any combination of
the other two. For instance, a trend with an intrinsic seasonal
effect can be embedded within a greater cyclical pattern that
occurs over a period of several years. Alternatively, a cyclical
effect may be present without either of these two systematic
components.

In the 7 years that constitute the time series of Figure 1,
there do not appear to be any cyclical effects. This is expected,
as there are no strong theoretical reasons to believe that online
or job search behavior is significantly influenced by factors that
consistently manifest across a period of over one year. We
have significant a priori reasons to believe that causal factors
related to seasonality exist (e.g., searching for work after seasonal
employment), but the same does not hold true for long-term
cycles, and the time series is sufficiently long enough to capture
any potential cyclical behavior.

Irregular Variation (Randomness)
While the previous three components represented three
systematic types of time series variability (i.e., signal; Hyndman
and Athanasopoulos, 2014), the irregular component represents
statistical noise and is analogous to the error terms included in
various types of statistical models (e.g., the random component
in generalized linear modeling). It constitutes any remaining
variation in a time series after these three systematic components
have been partitioned out. In time series parlance, when this
component is completely random (i.e., not autocorrelated), it is
referred to as white noise, which plays an important role in both
the theory and practice of time series modeling. Time series are
assumed to be in part driven by a white noise process (explicated
in a future section), and white noise is vital for judging the
adequacy of a time series model. After a model has been fit to
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the data, the residuals form a time series of their own, called the
residual error series. If the statistical model has been successful
in accounting for all the patterns in the data (e.g., systematic
components such as trend and seasonality), the residual error
series should be nothing more than unrelated white noise error
terms with a mean of zero and some constant variance. In
other words, the model should be successful in extracting all
the signal present in the data with only randomness left over
(Cowpertwait and Metcalfe, 2009, p. 68). This is analogous to
evaluating the residuals of linear regression, which should be
normally distributed around a mean of zero.

Time Series Decomposition
To visually examine a series in an exploratory fashion, time series
are often formally partitioned into each of these components
through a procedure referred to as time series decomposition.
Figure 2 displays the original Google time series (top panel)
decomposed into its constituent parts. This figure depicts what
is referred to as classical decomposition, when a time series
is conceived of comprising three components: a trend-cycle,
seasonal, and random component. (Here, the trend and cycle
are combined because the duration of each cycle is unknown;
Hyndman and Athanasopoulos, 2014). The classic additive
decomposition model (Cowpertwait and Metcalfe, 2009, p. 19)
describes each value of the time series as the sum of these three
components:

yt = Tt + St + Et. (1)

The additive decomposition model is most appropriate when
the magnitude of the trend-cycle and seasonal components
remain constant over the course of the series. However, when
the magnitude of these components varies but still appears
proportional over time (i.e., it changes by a multiplicative
factor), the series may be better represented by the multiplicative

decomposition model, where each observation is the product of
the trend-cycle, seasonal, and random components:

yt = Tt × St × Et. (2)

In either decomposition model, each component is sequentially
estimated and then removed until only the stochastic error
component remains (the bottom panel of Figure 2). The primary
purpose of time series decomposition is to provide the analyst
with a better understanding of the underlying behavior and
patterns of the time series which can be valuable in determining
the goals of the analysis. Decomposition models can be used
to generate forecasts by adding or multiplying future estimates
of the seasonal and trend-cycle components (Hyndman and
Athanasopoulos, 2014). However, such models are beyond the
scope of this present paper, and the ARIMA forecasting models
discussed later are generally superior4.

Autocorrelation
In psychological research, the current state of a variable may
partially depend on prior states. That is, many psychological
variables exhibit autocorrelation: when a variable is correlated
with itself across different time points (also referred to as serial
dependence). Time series designs capture the effect of previous
states and incorporate this potentially significant source of
variance within their corresponding statistical models. Although

4In addition to the two classical models (additive and multiplicative) described

above, there are further techniques for time series decomposition that lie beyond

the scope of this introduction (e.g., STL or X-12-ARIMA decomposition). These

overcome the known shortcomings of classical decomposition (e.g., the first and

last several estimates of the trend component are not calculated; Hyndman and

Athanasopoulos, 2014) which still remains the most commonly used method for

time series decomposition. For information regarding these alternative methods

the reader is directed to Cowpertwait and Metcalfe (2009, pp. 19–22) and

Hyndman and Athanasopoulos (2014, chap. 6).

FIGURE 2 | The original time series decomposed into its trend, seasonal, and irregular (i.e., random) components. Cyclical effects are not present within

this series.
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the main features of many time series are its systematic
components such as trend and seasonality, a large portion of time
series methodology is aimed at explaining the autocorrelation in
the data (Dettling, 2013, p. 2).

The importance of accounting for autocorrelation should not
be overlooked; it is ubiquitous in social science phenomena
(Kerlinger, 1973; Jones et al., 1977; Hartmann et al., 1980;
Hays, 1981). In a review of 44 behavioral research studies
with a total of 248 independent sets of repeated measures
data, Busk and Marascuilo (1988) found that 80% of the
calculated autocorrelations ranged from 0.1 to 0.49, and 40%
exceeded 0.25. More specific to the psychological sciences, it has
been proposed that state-related constructs at the individual-
level, such as emotions and arousal, are often contingent on
prior states (Wood and Brown, 1994). Using autocorrelation
analysis, Fairbairn and Sayette (2013) found that alcohol use
reduces emotional inertia, the extent to which prior affective
states determine current emotions. Through this, they were
able to marshal support for the theory of alcohol myopia,
the intuitive but largely untested idea that alcohol allows a
greater enjoyment of the present, and thus formally uncovered
an affective motivation for alcohol use (and misuse). Further,
using time series methods, Fuller et al. (2003) found that job
stress in the present day was negatively related to the degree of
stress in the preceding day. Accounting for autocorrelation can
therefore reveal new information on the phenomenon of interest,
as the Fuller et al. (2003) analysis led to the counterintuitive
finding that lower stress was observed after prior levels had been
high.

Statistically, autocorrelation simply represents the Pearson
correlation for a variable with itself at a previous time period,
referred to as the lag of the autocorrelation. For instance,
the lag-1 autocorrelation of a time series is the correlation of
each value with the immediately preceding observation; a lag-2
autocorrelation is the correlation with the value that occurred
two observations before. The autocorrelation with respect to
any lag can be computed (e.g., a lag-20 autocorrelation),
and intuitively, the strength of the autocorrelation generally
diminishes as the length of the lag increases (i.e., as the values
become further removed in time).

Strong positive autocorrelation in a time series manifests
graphically by “runs” of values that are either above or below
the average value of the time series. Such time series are
sometimes called “persistent” because when the series is above
(or below) the mean value it tends to remain that way for several
periods. Conversely, negative autocorrelation is characterized
by the absence of runs—i.e., when positive values tend to
follow negative values (and vice versa). Figure 3 contains two
plots of time series intended to give the reader an intuitive
understanding of the presence of autocorrelation: The series in
the top panel exhibits positive autocorrelation, while the center
panel illustrates negative autocorrelation. It is important to note
that the autocorrelation in these series is not obscured by other
components and that in real time series, visual analysis alone may
not be sufficient to detect autocorrelation.

In time series analysis, the autocorrelation coefficient
across many lags is called the autocorrelation function
(ACF) and plays a significant role in model selection and

FIGURE 3 | Two example time series displaying exaggerated positive (top panel) and negative (center panel) autocorrelation. The bottom panel depicts

the ACF of the Google job search time series after seasonal adjustment.
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evaluation (as discussed later). A plot of the ACF of the
Google job search time series after seasonal adjustment
is presented in the bottom panel of Figure 3. In an ACF
plot, the y-axis displays the strength of the autocorrelation
(ranging from positive to negative 1), and the x-axis
represents the length of the lags: from lag-0 (which will
always be 1) to much higher lags (here, lag-19). The dotted
horizontal line indicates the p < 0.05 criterion for statistical
significance.

Stationarity
Definition and Purpose
A complication with time series data is that its mean,
variance, or autocorrelation structure can vary over time. A
time series is said to be stationary when these properties
remain constant (Cryer and Chan, 2008, p. 16). Thus, there
are many ways in which a series can be non-stationary
(e.g., an increasing variance over time), but it can only be
stationary in one-way (viz., when all of these features do not
change).

Stationarity is a pivotal concept in time series analysis because
descriptive statistics of a series (e.g., its mean and variance)
are only accurate population estimates if they remain constant
throughout the series (Cowpertwait and Metcalfe, 2009, pp.
31–32). With a stationary series, it will not matter when the
variable is observed: “The properties of one section of the data
are much like those of any other” (Chatfield, 2004, p. 13). As
a result, a stationary series is easy to predict: Its future values
will be similar to those in the past (Nua, 2014). As a result,
stationarity is the most important assumption when making
predictions based on past observations (Cryer and Chan, 2008,
p. 16), and many times series models assume the series already
is or can be transformed to stationarity (e.g., the broad class of
ARIMA models discussed later).

In general, a stationary time series will have no predictable
patterns in the long-term; plots will show the series to be
roughly horizontal with some constant variance (Hyndman and
Athanasopoulos, 2014). A stationary time series is illustrated
in Figure 4, which is a stationary white noise series (i.e., a
series of uncorrelated terms). The series hovers around the
same general region (i.e., its mean) with a consistent variance
around this value. Despite the observations having a constant
mean, variance, and autocorrelation, notice how such a process
can generate outliers (e.g., the low extreme value after t =

60), as well as runs of values that are both above or below
the mean. Thus, stationarity does not preclude these temporary
and fluctuating behaviors of the series, although any systematic
patterns would.

However, many time series in real life are dominated by trends
and seasonal effects that preclude stationarity. A series with a
trend cannot be stationary because, by definition, a trend is when
the mean level of the series changes over time. Seasonal effects
also preclude stationarity, as they are reoccurring patterns of
change in the mean of the series within a fixed time period
(e.g., a year). Thus, trend and seasonality are the two time
series components that must be addressed in order to achieve
stationarity.

FIGURE 4 | An example of a stationary time series (specifically, a series

of uncorrelated white noise terms). The mean, variance, and

autocorrelation are all constant over time, and the series displays no

systematic patterns, such as trends or cycles.

Transforming a Series to Stationarity
When a time series is not stationary, it can be made so after
accounting for these systematic components within the model
or through mathematical transformations. The procedure of
seasonal adjustment described above is a method that removes
the systematic seasonal effects on the mean level of the series.

The most important method of stationarizing the mean of a
series is through a process called differencing, which can be used
to remove any trend in the series which is not of interest. In the
simplest case of a linear trend, the slope (i.e., the change from one
period to the next) remains relatively constant over time. In such
a case, the difference between each time period and its preceding
one (referred to as the first differences) are approximately equal.
Thus, one can effectively “detrend” the series by transforming
the original series into a series of first differences (Meko, 2013;
Hyndman and Athanasopoulos, 2014). The underlying logic is
that forecasting the change in a series from one period to the next
is just as useful in practice as predicting the original series values.

However, when the time series exhibits a trend that itself
changes (i.e., a non-constant slope), then even transforming a
series into a series of its first differences may not render it
completely stationary. This is because when the slope itself is
changing (e.g., an exponential trend), the difference between
periods will be unequal. In such cases, taking the first differences
of the already differenced series (referred to as the second
differences) will often stationarize the series. This is because each
successive differencing has the effect of reducing the overall
variance of the series (Anderson, 1976), as deviations from the
mean level are increasingly reduced through this subtractive
process. The second differences (i.e., the first differences of the
already differenced series) will therefore further stabilize the
mean. There are general guidelines on how many orders of
differencing are necessary to stationarize a series. For instance,
the first or second differences will nearly always stationarize the
mean, and in practice it is almost never necessary to go beyond
second differencing (Cryer and Chan, 2008; Hyndman and
Athanasopoulos, 2014). However, for series that exhibit higher-
degree polynomial trends, the order of differencing required to
stationarize the series is typically equal to that degree (e.g., two
orders of differencing for an approximately quadratic trend, three
orders for a cubic trend; Cowpertwait and Metcalfe, 2009, p. 93).
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A common mistake in time series modeling to
“overdifference” the series, when more orders of differencing
than are required to achieve stationarity are performed.
This can complicate the process of building an adequate
and parsimonious model (see McCleary et al., 1980, p. 97).
Fortunately, overdifferencing is relatively easy to identify;
differencing a series with a trend will have the effect of reducing
the variance of the series, but an unnecessary degree of
differencing will increase its variance (Anderson, 1976). Thus,
the optimal order of differencing is that which results in the
lowest variance of the series.

If the variance of a times series is not constant over time, a
common method of making the variance stationary is through
a logarithmic transformation of the series (Cowpertwait and
Metcalfe, 2009, pp. 109–112; Hyndman and Athanasopoulos,
2014). Taking the logarithm has the practical effect of reducing
each value at an exponential rate. That is, the larger the value, the
more its value is reduced. Thus, this transformation stabilizes the
differences across values (i.e., its variance) which is also why it
is frequently used to mitigate the effect of outliers (e.g., Aguinis
et al., 2013). It is important to remember that if one applies a
transformation, any forecasts generated by the selected model
will be in these transformed units. However, once the model
is fitted and the parameters estimated, one can reverse these
transformations to obtain forecasts in its original metric.

Finally, there are also formal statistical tests for stationarity,
termed unit root tests. A very popular procedure is the augmented
Dickey–Fuller test (ADF; Said and Dickey, 1984) which tests the
null hypothesis that the series is non-stationary. Thus, rejection
of the null provides evidence for a stationary series. Table 1
below contains information regarding the ADF test, as well
as descriptions of other various statistical tests frequently used
in time series analysis that will be discussed in the remainder
of the paper. By using the ADF test in conjunction with the
transformations described above (or the modeling procedures
delineated below), an analyst can ensure that a series conforms
to stationarity.

Time Series Modeling: Regression
Methods

The statistical time series literature is dominated by
methodologies aimed at forecasting the behavior of a time
series (Shmueli, 2010). Yet, as the survey in the introduction
illustrated, psychological researchers are primarily interested
in other applications, such as describing and accounting for an
underlying trend, linking explanatory variables to the criterion
of interest, and assessing the impact of critical events. Thus,
psychological researchers will primarily use descriptive or
explanatory models, as opposed to predictive models aimed
solely at generating accurate forecasts. In time series analysis,
each of the aforementioned goals can be accomplished through
the use of regression methods in a manner very similar to the
analysis of cross-sectional data. After having explicated the basic
properties of time series data, we now discuss these specific
modeling approaches that are able fulfill these purposes. The
next four sections begin by first providing an overview of each
type of regression model, how psychological research stands to
gain from the use of these methods, and their corresponding
statistical models. We include mathematical treatments, but also
provide conceptual explanations so that they may be understood
in an accessible and intuitive manner. Additionally, Figure 5
presents a flowchart depicting different time series models and
which approaches are best for addressing the various goals of
psychological research. As the current paper continues, the
reader will come to understand the meaning and structure
of these models and their relation to substantive research
questions.

It is important to keep in mind that time series often exhibit
strong autocorrelation which often manifests in correlated
residuals after a regression model has been fit. This violates the
standard assumption of independent (i.e., uncorrelated) errors.
In the section that follows these regression approaches, we
describe how the remaining autocorrelation can be included
in the model by building a dynamic regression model that

TABLE 1 | Common tests in time series analysis.

Test name Null hypothesis Primary use in modeling

Augmented Dickey–Fuller (ADF) The series is non-stationary;

rejection implies a stationary

series.

A series must be stationary before any AR or MA terms are added to account for its

autocorrelation. The ADF test identifies if a series needs to be made stationary through

differencing, or, after an order of differencing has been applied, if the series has indeed

become stationary.

Durbin–Watson The residuals from a

regression model do not

have a lag-1 autocorrelation;

rejection implies lag-1

autocorrelated errors.

A Durbin–Watson test can assess if the residuals of a regression model are autocorrelated.

When this is the case, including ARIMA terms or using generalized least squares

estimation can account for this autocorrelation.

Ljung–Box The errors are uncorrelated;

rejection implies correlated

errors.

After fitting an ARIMA or dynamic regression model to a series, the Ljung–Box test

identifies if the model has been successful in extracting all the autocorrelation.

There are other tests for stationarity, such as the Phillips–Perron and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests which can sometimes yield contrary results. The ADF test was

chosen as the focus of this paper due to its popularity and reliability. For information regarding the others, see Cowpertwait and Metcalfe (2009, pp. 214–215) and Hyndman and

Athanasopoulos (2014).
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FIGURE 5 | A flowchart depicting various time series modeling approaches and how they are suited to address various goals in psychological

research.

includes ARIMA terms5. That is, a regression model can be
first fit to the data for explanatory or descriptive modeling,
and ARIMA terms can be fit to the residuals in order to

5Importantly, the current paper discusses dynamic models that specify time as the

regressor (either as a linear or polynomial function). For modeling substantive

predictors, more sophisticated techniques are necessary, and the reader is directed

to Pankratz (1991) for a description of this method.

account for any remaining autocorrelation and improve forecasts
(Hyndman and Athanasopoulos, 2014). However, we begin

by introducing regression methods separate from ARIMA
modeling, temporarily setting aside the issue of autocorrelation.

This is done in order to better focus on the implementation

of these models, but also because violating this assumption
has minimal effects on the substance of the analysis: The
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parameter estimates remain unbiased and can still be used for
prediction. Its forecasts will not be “wrong,” but inefficient—
i.e., ignoring the information represented by the autocorrelation
that could be used to obtain better predictions (Hyndman and
Athanasopoulos, 2014). Additionally, generalized least squares
estimation (as opposed to ordinary least squares) takes into
account the effects of autocorrelation which otherwise lead
to underestimated standard errors (Cowpertwait and Metcalfe,
2009, p. 98). This estimation procedure was used for each of the
regression models below. For further information on regression
methods for time series, the reader is directed to Hyndman
and Athanasopoulos (2014, chaps. 4, 5) and McCleary et al.
(1980), which are very accessible introductions to the topic, as
well as Cowpertwait and Metcalfe (2009, chap. 5) and Cryer
and Chan (2008, chaps. 3, 11) for more mathematically-oriented
treatments.

Modeling Trends through Regression
Modeling an observed trend in a time series through regression
is appropriate when the trend is deterministic—i.e., the trend is
due to the constant, deterministic effects of a few causal forces
(McCleary et al., 1980, p. 34). As a result, a deterministic trend
is generally stable across time. Expecting any trend to continue
indefinitely is often unrealistic, but for a deterministic trend,
linear extrapolation can provide accurate forecasts for several
periods ahead, as forecasting generally assumes that trends
will continue and change relatively slowly (Cowpertwait and
Metcalfe, 2009, p. 6). Thus, when the trend is deterministic, it is
desirable to use a regressionmodel that includes the hypothesized
causal factors as predictors (Cowpertwait and Metcalfe, 2009, p.
91; McCleary et al., 1980, p. 34).

Deterministic trends stand in contrast to stochastic trends,
those that arise simply from the random movement of
the variable over time (long runs of similar values due to
autocorrelation; Cowpertwait and Metcalfe, 2009, p. 91). As a
result, stochastic trends often exhibit frequent and inexplicable
changes in both slope and direction. When the trend is deemed
to be stochastic, it is often removed through differencing. There
are also methods for forecasting using stochastic trends (e.g.,
random walk and exponential smoothing models) discussed in
Cowpertwait and Metcalfe (2009, chaps. 3, 4) and Hyndman and
Athanasopoulos (2014, chap. 7). However, the reader should be
aware that these are predictive models only, as there is nothing
about a stochastic trend that can be explained through external,
theoretically interesting factors (i.e., it is a trend attributable to
randomness). Therefore, attempting to model it deterministically
as a function of time or other substantive variables via regression
can lead to spurious relationships (Kuljanin et al., 2011) and
inaccurate forecasts, as the trend is unlikely to remain stable over
time.

Returning to the example Google time series of Figure 1, the
evident trend in the seasonally adjusted series might appear to
be stochastic: It is not constant but changes at several points
within the series. However, we have strong theoretical reasons
for modeling it deterministically, as the 2008 economic crisis
is one causal factor that likely had a profound impact on the
series. Thus, this theoretical rationale implies that the otherwise

inexplicable changes in its trend are due to systematic forces that
can be appropriately modeled within an explanatory approach
(i.e., as a deterministic function of predictors).

The Linear Regression Model
As noted in the literature review, psychological researchers are
often directly interested in describing an underlying trend. For
example, Fuller et al. (2003) examined the strain of university
employees using a time series design. They found that each self-
report item displayed the same deterministic trend: Globally,
strain increased over time even though the perceived severity
of the stressful events did not increase. Levels of strain also
decreased at spring break and after finals week, during which
mood and job satisfaction also exhibited rising levels. This
finding cohered with prior theory on the accumulating nature
of stress and the importance of regular strain relief (e.g.,
Bolger et al., 1989; Carayon, 1995). Furthermore, Wagner et al.
(1988) examined the trend in employee productivity after the
implementation of an incentive-based wage system. In addition
to discovering an immediate increase in productivity, it was
found that productivity increased over time as well (i.e., a
continuing deterministic trend). This trend gradually diminished
over time, but was still present at the end of the study period—
nearly 6 years after the intervention first occurred.

By visually examining a time series, an analyst can describe
how a trend changes as function of time. However, one can
formally assess the behavior of a trend by regressing the series on
a variable that represents time (e.g., 1–50 for 50 equally-spaced
observations). In the simplest case, the trend can be modeled
as a linear function of time, which is conceptually identical to a
regressionmodel for cross-sectional data using a single predictor:

yt = b0 + b1t+ εt, (3)

where the coefficient b1 estimates the amount of change in the
time series associated with a one-unit increase in time, t is the
time variable, and εt is random error. The constant, b0, estimates
the level of the series when t = 0.

If a deterministic trend is fully accounted for by a linear
regression model, the residual error series (i.e., the collection
of residuals which themselves form a time series) will not
contain any remaining trend component; that is, this non-
stationary behavior of the series will have been accounted for
Cowpertwait and Metcalfe (2009), (p. 121). Returning to our
empirical example, the linear regression model displayed in
Equation (3) was fit to the seasonally adjusted Google job search
data. This is displayed in the top left panel of Figure 6. The
regression line of best-fit is superimposed, and the residual
error series is shown in the panel directly to the right. Here,
time is a significant predictor (b1 = 0.32, p < 0.001), and
the model accounts for 67% of the seasonally-adjusted series
variance (R2 = 0.67, p < 0.001). However, the residual error
series displays a notable amount of remaining trend that has
been left unaccounted for; the first half of the error series has
a striking downward trend that begins to rise at around 2007.
This is because the regression line is constrained to linearity
and therefore systematically underestimates and overestimates
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FIGURE 6 | Three different regression models with time as the regressor and their associated residual error series.

the values of the series when the trend exhibits runs of high
and low values, respectively. Importantly, the forecasts from
the simple linear model will most likely be very poor as well.
Although there is a spike at the end of the series, the linear
model predicts that values further ahead in time will be even
higher. By contrast, we actually expect these values to decrease,
similar to how there was a decreasing trend in 2008 right after the
first spike. Thus, despite accounting for a considerable amount
of variance and serving as a general approximation of the series

trend, the linear model is insufficient in several systematic ways,
manifesting in inaccurate forecasts and a significant remaining

trend in the residual error series. A method for improving this

model is to add in a higher-order polynomial term; modeling the
trend as quadratic, cubic, or an even higher-order function may

lead to a better-fitting model, but the analyst must be vigilant

of overfitting the series—i.e., including so many parameters that
the statistical noise becomes modeled. Thus, striking a balance
between parsimony and explanatory capability should always
be a consideration when modeling time series (and statistical
modeling in general). Although a simple linear regression on
time is often adequate to approximate a trend (Cowpertwait and
Metcalfe, 2009, p. 5), in this particular instance a higher-order
term may provide a better fit to the complex deterministic trend
seen within this series.

Polynomial Regression Models
When describing the trend in the Google data earlier, it was
noted that the series began to display a rising trend approximately
a third of the way into the series, implying that a quadratic
regression model (i.e., a single bend) may yield a good fit to
the data. Furthermore, our initial hypothesis was that job search
behavior proceeded at a generally constant rate and then spiked
once the economic crisis began—also implying a quadratic trend.
In some time series, the trend over time will be non-linear, and
the predictor terms can be specified to reflect such higher-order
terms (quadratic, cubic, etc.). Just like when modeling cross-
sectional data, non-linear terms can be incorporated into the
statistical model by squaring the predictor (here, time)6 :

yt = b0 + b1t+ b2t
2
+ εt. (4)

The center panels in Figure 6 show the quadratic model and its
residual error series. In line with the initial hypothesis, both the
quadratic term (b2 = 0.003, p < 0.001) and linear term (b1 =

0.32, p < 0.001) were statistically significant. Thus, modeling the
trend as a quadratic function of time explained an additional 4%
of the series variance relative to the more parsimonious linear

6Just like in traditional regression, the parent term t is centered before creating the

polynomial term in order to mitigate collinearity.
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model (R2 = 0.71, p < 0.001). However, examination of this
series and its residuals shows that it is not as different from the
linear model than was expected; although the first half of the
residual error series has a more stable mean level, there are still
noticeable trends in the first half of the residual error series, and
the forecasts implied by this model are even higher than those of
the linear model. Therefore, a cubic trend may provide an even
better fit, as there are two apparent bends in the series:

yt = b0 + b1t+ b2t
2
+ b3t

3
+εt. (5)

After fitting this model to the Google data, 87% of the series
variance is accounted for (R2 = 0.87 p < 0.001), and all three
coefficients are statistically significant: b1 = 0.69, p < 0.001,
b2 = 0.003, p = 0.05, and b3 = −0.0003, p < 0.001.
Furthermore, the forecasts implied by the model are much more
realistic. Ultimately, it is unlikely that this model will provide
accurate forecasts many periods into the future (as is often the
case for regression models; Cowpertwait andMetcalfe, 2009, p. 6;
Hyndman andAthanasopoulos, 2014). It is more likely that either
(a) a negative trend will return the series back to more moderate
levels or (b) the series will simply continue at a generally high
level. Furthermore, relative to the linear model, the residual
error series of this model appears much closer to stationarity
(e.g., Figure 4), as the initial downward trend of the time series
is captured. Therefore, modeling the series as a cubic function
of time is the most successful in terms of accounting for the
trend, and adding an even higher-order polynomial term has little
remaining variance to explain (<15%) and would likely lead to
an overfitted model. Thus, relative to the two previous models,
the cubic model strikes a balance between relative parsimony and
descriptive capability. However, any forecasts from this model
could be improved upon by removing the remaining trend and
including other terms that account for any autocorrelation in
the data, topics discussed in an upcoming section on ARIMA
modeling.

Interrupted Time Series Analysis
Overview
Although we are interested in describing the underlying trend
within the Google time series as a function of time, we are
also interested in the effect of a critical event, represented by
the following question: “Did the 2008 economic crisis result in
elevated rates job search behaviors?” In psychological science,
many research questions center on the impact of an event,
whether it be a relationship change, job transition, or major
stressor or uplift (Kanner et al., 1981; Dalal et al., 2014). In
the survey of how time series analysis had been previously
used in psychological research, examining the impact of an
event was one of its most common uses. In time series
methodology, questions regarding the impact of events can be
analyzed through interrupted time series analysis (or intervention
analysis; Glass et al., 1975), in which the time series observations
are “interrupted” by an intervention, treatment, or incident
occurring at a known point in time (Cook and Campbell, 1979).

In both academic and applied settings, psychological
researchers are often constrained to correlational, cross-sectional

data. As a result, researchers rarely have the ability to implement
control groups within their study designs and are less capable of
drawing conclusions regarding causality. In the majority of cases,
it is the theory itself that provides the rationale for drawing causal
inferences (Shmueli, 2010, p. 290). In contrast, an interrupted
time series is the strongest quasi-experimental design to evaluate
the longitudinal impact of an event (Wagner et al., 2002, p. 299).
In a review of previous research on the efficacy of interventions,
Beer and Walton (1987) stated, “much of the research overlooks
time and is not sufficiently longitudinal. By assessing the events
and their impact at only one nearly contemporaneous moment,
the research cannot discuss how permanent the changes are” (p.
343). Interrupted time series analysis ameliorates this problem
by taking multiple measurements both before and after the event,
thereby allowing the analyst to examine the pre- and post-event
trend.

Collecting data at multiple time points also offers advantages
relative to cross-sectional comparisons based on pre- and post-
event means. A longitudinal interrupted time series design allows
the analyst to control for the trend prior to the event, which
may turn out to be the cause of any alleged intervention effect.
For instance, in the field of industrial/organizational psychology,
Pearce et al. (1985) found a positive trend in four measures
of organizational performance over the course of the 4 years
under study. However, after incorporating the effects of the pre-
event trend in the analysis, neither the implementation of the
policy nor the first year of merit-based rewards yielded any
additional effects. That is, the post-event trends were almost
totally attributable to the pre-event behavior of the series. Thus,
a time series design and analysis yielded an entirely different and
more parsimonious conclusion that might have otherwise been
drawn. In contrast,Wagner et al. (1988) was able to show that that
for non-managerial employees, an incentive-based wage system
substantially increased employee productivity in both its baseline
level and post-intervention slope (the baseline level jumped over
100%). Thus, interrupted time series analysis is an ideal method
for examining the impacts of such events and can be generalized
to other criteria of interest.

Modeling an Interrupted Time Series
Statistical modeling of an interrupted time series can be
accomplished through segmented regression analysis (Wagner
et al., 2002, p. 300). Here, the time series is partitioned into two
parts: the pre- and post-event segments whose levels (intercepts)
and trends (slopes) are both estimated. A change in these
parameters represents an effect of the event: A significant change
in the level of the series indicates an immediate change, and a
change in trend reflects a more gradual change in the outcome
(and of course, both are possible; Wagner et al., 2002, p. 300).
The formal model reflects these four parameters of interest:

yt = b0 + b1 × t+ b2 × eventt + b3 × t after event+ εt (6)

Here, b0 represents the pre-event baseline level, t is the
predictor time (in our example, coded 1–90), and its coefficient,
b1,estimates the trend prior to the event (Wagner et al., 2002, p.
31). The dummy variable eventt codes for whether or not each
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time point occurred before or after the event (0 for all points
prior to the event; 1 for all points after). Its coefficient, b2, assesses
the post-event baseline level (intercept). The variable t after event
represents how many units after the event the observation took
place (0 for all points prior to the event; 1, 2, 3 . . . for subsequent
time points), and its coefficient, b3, estimates the change in trend
over the two segments. Therefore, the sum of the pre-event trend
(b1) and its estimated change (b3) yields the post-event slope
(Wagner et al., 2002, p. 301).

Importantly, this analysis requires that the time of event
occurrence be specified a priori, otherwise a researcher may
search the series in an “exploratory” fashion and discover a time
point that yields a notable effect, resulting in potentially spurious
results (McCleary et al., 1980, p. 143). In our example, the event
of interest was the economic crisis of 2008. However, as is often
the case when analyzing large-scale social phenomena, it was
not a discrete, singular incident, but rather unfolded over time.
Thus, no exact point in time can perfectly represent its moment of
occurrence. In other topics of psychological research, the event of
interest is a unique post-event time may be identified. Although
interrupted time series analysis requires that events be discrete,
this conceptual problem can be easily managed in practice;
selecting a point of demarcation that generally reflects when the
event occurred will still allow the statistical model to assess the
impact of the event on the level and trend of the series. Therefore,
due to prior theory and for simplicity, we specified the pre- and
post-crisis segments to be separated at January 2008, representing
the beginning of the economic crisis and acknowledging that this
demarcation was imperfect, but one that would still allow the
substantive research question of interest to be answered.

Although not utilized in our analysis, when analyzing an
interrupted time series using segmented regression one has
the option of actually specifying the post-event segment after
the actual event occurred. The rationale behind this is to
accommodate the time it takes for the causal effect of the
event itself manifest in the time series—the equilibration period
(see Mitchell and James, 2001, p. 539; Wagner et al., 2002, p.
300). Although an equilibration period is likely a component
of all causal phenomena (i.e., causal effects probably never
fully manifest at once), two prior reviews have illustrated that
researchers account for it only infrequently, both theoretically

and empirically (Kelly and McGrath, 1988; Mitchell and James,
2001). Statistically, this is accomplished through the segmented
regression model above, but simply coding the event as occurring
later in the series. Comparing models with different post-event
start times can also allow competitive tests of the equilibration
period.

Empirical Example
For our working example, a segmented regression model was
fit to the seasonally adjusted Google time series: A linear trend
estimated the first segment and a quadratic trend was fit to the
second due to the noted curvilinear form of the second half of
the series. Thus, a new variable and coefficient were added to the
formal model to account for this non-linearity: t after event2 and
b4, respectively. The results of the analysis indicated that there
was a practically significant effect of the crisis: The parameter
representing an immediate change in the post-event level was
b2 = 8.66, p < 0.001. Although the level (i.e., intercept) differed
across segments, the post-crisis trend appears to be the most
notable change in the series. That is, the real effect of the crisis
unfolded over time rather than having an immediately abrupt
impact. This is reflected in the other coefficients of the model:
The pre-crisis trend was estimated to be near zero (b1 = −0.03,
p = 0.44), and the post-crisis trend terms were b3 = 0.70,
p < 0.001 for the linear component, and b4 = −0.02, p <

0.001 for the quadratic term, indicating that there was a marked
change in trend, but also that it was concave (i.e., on the whole,
slowly decreasing over time). Graphically the model seems to
capture the underlying trend of both segments exceptionally well
(R2 = 0.87, p < 0.001), as the residual error series has almost
reached stationarity (ADF = −3.38, p = 0.06). Both are shown
in Figure 7 below.

Estimating Seasonal Effects
Overview
Up until now, we have chosen to remove any seasonal effects
by working with the seasonally adjusted time series in order
to more fully investigate a trend of substantive interest. This
was consistent with the following adage of time series modeling:
When a systematic trend or seasonal pattern is present, it
must either be modeled or removed. However, psychological

FIGURE 7 | A segmented regression model used to assess the effect of the 2008 economic crisis on the time series and its associated residual error

series.
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researchers may also be interested in the presence and nature
of a seasonal effect, and seasonal adjustment would only serve
to remove this component of interest. Seasonality was defined
earlier as any regular pattern of fluctuation (i.e., movement up
or down in the level of the series) associated with some aspect
of the calendar. For instance, although online job searchers
exhibited an underlying trend in our data across years, they also
display the same pattern of movement within each year (i.e.,
across months; see Figure 1). Following the need for more time-
based theory and empirical research, seasonal effects are also
increasingly recognized as significant for psychological science.
In a recent conceptual review Dalal et al. (2014) noted that,
“mood cycles. . . are likely to occur simultaneously over the course
of a day (relatively short term) and over the course of a year (long
term)” (p. 1401). Relatedly, Larsen and Kasimatis (1990) used
time series methods to examine the stability of mood fluctuations
across individuals. They uncovered a regular weekly fluctuation
that was stronger for introverted individuals than for extraverts
(due to the latter’s sensation-seeking behavior that resulted in
greater mood variability).

Furthermore, many systems of interest exhibit rhythmicity.
This can be readily observed across a broad spectrum of
phenomena that are of interest to psychological researchers. At
the individual level, there is a long history in biopsychology
exploring the cyclical pattern of human behavior as a function of
biological processes. Prior research has consistently shown that
humans possess many common physiological and behavioral
cycles that range from 90-min to 365-days (Aschoff, 1984;
Almagor and Ehrlich, 1990) and may affect important
psychological outcomes. For instance, circadian rhythms
are particularly well-known and are associated with physical,
mental, and behavioral changes within a 24-h period (McGrath
and Rotchford, 1983). It has been suggested that peak motivation
levels may occur at specific points in the day (George and Jones,
2000), and longer cyclical fluctuations of emotion, sensitivity,
intelligence, and physical characteristics over days and weeks
have been identified (for a review, see Conroy and Mills, 1970;
Luce, 1970; Almagor and Ehrlich, 1990). Such cycles have been
found to affect intelligence test performance and other physical
and cognitive tasks (e.g., Latman, 1977; Kumari and Corr, 1996).

Regression with Seasonal Indicators
As previously stated, when seasonal effects are theoretically
important, seasonal adjustment is undesirable because it removes
the time series component pertinent to the research question
at large. An alternative is to qualitatively describe the seasonal
pattern or formally specify a regression model that includes a
variable which estimates the effect of each season. If a simple
linear approximation is used for the trend, the formal model can
be expressed as:

yt = b0t + b1 + · · · + bS + εt, (7)

where b0 is now the estimate of the linear relationship between
the dependent variable and time, and the coefficients b1:S are
estimates of the S seasonal effects (e.g., S = 12 for yearly data;
Cowpertwait and Metcalfe, 2009, p. 100). Put more intuitively,

this model can still be conceived of as a linear model but with a
different estimated intercept for each season that represents its
effect (Notice that the b1:S parameters are not coefficients but
constants).

As an example, the model above was fit to the original, non-
seasonally adjusted Google data. Although modeling the series
as a linear function of time was found to produce inaccurate
forecasts, it can be used when estimating seasonal effects because
this component of the model does not affect the estimates of the
seasonal effects. For our data, the estimates of eachmonthly effect
were: b1 = 67.51, b2 = 59.43, b3 = 60.11, b4 = 60.66, b5 =

63.59, b6 = 66.77, b7 = 63.70, b8 = 62.38, b9 = 60.49, b10 =

56.88, b11 = 52.13, b12 = 45.66 (Each effect was statistically
significant at p < 0.001). The pattern of these intercepts mirrors
the pattern of movement qualitatively described in the discussion
on the seasonal component: Online job search behaviors begin at
its highest levels in January (b1 = 67.51), likely due to the end of
holiday employment, and then dropped significantly in February
(b2 = 59.43). Subsequently, its level continued to rise during the
next 4 months until June (b6 = 66.77), after which the series
decreased each successive month until reaching its lowest point
in December (b12 = 45.66).

Harmonic Seasonal Models
Another approach tomodeling seasonal effects is to fit a harmonic
seasonal model that uses sine and cosine functions to describe the
pattern of fluctuations seen across periods. Seasonal effects often
vary in a smooth, continuous fashion, and instead of estimating
a discrete intercept for each season, this approach can provide
a more realistic model of seasonal change (see Cowpertwait and
Metcalfe, 2009, pp. 101–108). Formally, the model is:

yt = mt +

S/2
∑

i=1

[

sisin(2πit/S)+ cicos(2πit/S)
]

+ εt, (8)

where mt is the estimate of the trend at t (approximated as a
linear or polynomial function of time), si and ci are the unknown
parameters of interest, S is the number of seasons within the
time period (e.g., 12 months for a yearly period), i is an index
that ranges from 1 to S/2, and t is a variable that is coded to
represent time (e.g., 1:90 for 90 equally-spaced observations).
Although this model is complex, it can be conceived as including
a predictor for each season that contains a sine and/or cosine
term. For yearly data, this means that six s and six c coefficients
estimate the seasonal pattern (S/2 coefficients for each parameter
type). Importantly, after this initial model is estimated, the
coefficients that are not statistically significant can be dropped,
which often results in fewer parameters relative to the seasonal
indicator model introduced first (Cowpertwait and Metcalfe,
2009, p. 104). For our data, the above model was fit using
a linear approximation for the trend, and five of the original
twelve seasonal coefficients were statistically significant and thus
retained: c1 = −5.08, p < 0.001, s2 = 2.85, p = 0.005,
s3 = 2.68, p = 0.009, c3 = −2.25, p = 0.03, c5 = −2.97,
p = 0.004. This model also explained a substantial amount of the
series variance (R2 = 0.75, p < 0.001). Pre-made and annotated
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R code for this analysis can be found in the Supplementary
Material.

Time Series Forecasting: ARIMA (p, d, q)
Modeling

In the preceding section, a number of descriptive and explanatory
regression models were introduced that addressed various topics
relevant to psychological research. First, we sought to determine
how the trend in the series could be best described as a function
of time. Three models were fit to the data, and modeling the
trend as a cubic function provided the best fit: It was the
most parsimonious model that explained a very large amount
of variation in the series, it did not systematically over or
underestimate many successive observations, and any potential
forecasts were clearly superior relative to those of the simpler
linear and quadratic models. In the subsequent section, a
segmented regression analysis was conducted in order to examine
the impact of the 2008 economic crisis on job search behavior. It
was found that there was both a significant immediate increase
in the baseline level of the series (intercept) and a concomitant
increase in its trend (i.e., slope) that gradually decreased over
time. Finally, the seasonal effects of online search behavior were
estimated and mirrored the pattern of job employment rates
described in a prior section.

From these analyses, it can be seen that the main features of
many times series are the trend and seasonal components that
must either be modeled as deterministic functions of predictors
or removed from the series. However, as previously described,
another critical feature in time series data is its autocorrelation,
and a large portion of time series methodology is aimed at
explaining this component (Dettling, 2013, p. 2). Primarily,
accounting for autocorrelation entails fitting an ARIMA model
to the original series, or adding ARIMA terms to a previously
fit regression model; ARIMA models are the most general class
of models that seek to explain the autocorrelation frequently
found in time series data (Hyndman and Athanasopoulos, 2014).
Without these terms, a regression model will ignore the pattern
of autocorrelation among the residuals and produce less accurate
forecasts (Hyndman and Athanasopoulos, 2014). Therefore,
ARIMA models are predictive forecasting models. Time series
models that include both regression and ARIMA terms are
referred to as dynamicmodels and may be a primary type of time
series models used by psychological researchers.

Although not strongly emphasized within psychological
science, forecasting is an important aspect of scientific
verification (Popper, 1968). Standard cross-sectional and
longitudinal models are generally used in an explanatory fashion
(e.g., estimating the relationships among constructs and testing
null hypotheses), but they are quite capable of prediction as
well. Because of the ostensible movement to more time-based
empirical research and theory, predicting future values will likely
become a more important aspect of statistical modeling, as it can
validate psychological theory (Weiss and Cropanzano, 1996) and
computational models (Tobias, 2009) that specify effects over
time.

At the outset, it is helpful to note that the regression and
ARIMA modeling approaches are not substantially different:
They both formalize the variation in the time series variable
as a function of predictors and some stochastic noise (i.e., the
error term). The only practical difference is that while regression
models are generally built from prior research or theory, ARIMA
models are developed empirically from the data (as will be seen
presently; McCleary et al., 1980, p. 20). In describing ARIMA
modeling, the following sections take the form of those discussing
regression methods: Conceptual and mathematical treatments
are provided in complement in order to provide the reader with
a more holistic understanding of these methodologies.

Introduction
The first step in ARIMA modeling is to visually examine a
plot of the series’ ACF (autocorrelation function) to see if there
is any autocorrelation present that can be used to improve
the regression model—or else the analyst may end up adding
unnecessary terms. The ACF for the Google data is shown in
Figure 3. Again, we will work with the seasonally adjusted series
for simplicity. More formally, if a regression model has been
fit, the Durbin–Watson test can be used to assess if there is
autocorrelation among the residuals and if ARIMA terms can be
included to improve its forecasts. The Durbin–Watson test tests
the null hypothesis that there is no lag-1 autocorrelation present
in the residuals. Thus, a rejection of the null means that ARIMA
terms can be included (the Ljung–Box test described below can
also be used; Hyndman and Athanasopoulos, 2014).

Although the modeling techniques described in the present
and following sections can be applied to any one of these models,
due to space constraints we continue the tutorial on time series
modeling using the cubic model of the first section. A model
with only one predictor (viz., time) will allow more focus on
the additional model terms that will be added to account for the
autocorrelation in the data.

I(d): integrated
Overview
ARIMA is an acronym formed by the three constituent parts of
these models. The AR(p) and MA(q) components are predictors
that explain the autocorrelation. In contrast, the integrated (I[d])
portion of ARIMA models does not add predictors to the
forecasting equation. Rather, it indicates the order of differencing
that has been applied to the time series in order to remove
any trend in the data and render it stationary. Before any AR
or MA terms can be included, the series must be stationary.
Thus, ARIMA models allow non-stationary series to be modeled
due to this “integrated” component (an advantage over simpler
ARMA models that do not include such terms; Cowpertwait
and Metcalfe, 2009, p. 137). A time series that has been made
stationary by taking the d difference of the original series is
notated as I(d). For instance, an I(1) model indicates that the
series that has been made stationary by taking its first differences,
I(2), by the second differences (i.e., the first differences of
the first differences), etc. Thus, the order of integrated terms
in an ARIMA model merely specifies how many iterations
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of differencing were performed in order to make the series
stationary so that AR and MA terms may be included.

Identifying the Order of Differencing
Identifying the appropriate order of differencing to stationarize
the series is the first and perhaps most important step in
selecting an ARIMA model (Nua, 2014). It is also relatively
straightforward. As stated previously, the order of differencing
rarely needs to be greater than two in order to stationarize the
series. Therefore, in practice the choice comes down to whether
the series is transformed into either its first or second differences,
the optimal choice being the order of differencing that results in
the lowest series variance (and does not result in an increase in
variance that characterizes overdifferencing).

AR(p): Autoregressive Terms
Overview
The first part of an ARIMA model is the AR(p) component,
which stands for autoregressive. As correlation is to regression,
autocorrelation is to autoregression. That is, in regression,
variables that are correlated with the criterion can be used for
prediction, and the model specifies the criterion as a function
of the predictors. Similarly, with a variable that is autocorrelated
(i.e., correlated with itself across time periods), past values can
serve as predictors, and the values of the time series are modeled
as a function of previous values (thus, autoregression). In other
words, an ARIMA (p, d, q) model with p AR terms is simply a
linear regression of the time series values against the preceding
p observations. Thus, an ARIMA(1, d, q) model includes one
predictor, the observation immediately preceding the current
value, and an ARIMA(2, d, q) model includes two predictors,
the first and second preceding observations. The number of these
autoregressive terms is called the order of the AR component of
the ARIMAmodel. The following equation uses one AR term (an
AR[1] model) in which the preceding value in the time series is
used as a regressor:

yt = φ(yt−1)+ εt, (9)

where φ is the autoregressive coefficient (interpretable as a
regression coefficient), and yt−1 is the immediately preceding
observation. More generally, a model with AR(p) terms is
expressed as:

yt = φ1

(

yt−1

)

+ φ2

(

yt−2

)

+ · · · + φp

(

yt−p

)

+ εt. (10)

Selecting the Number of Autoregressive Terms
The number of autoregressive terms required depends on how
many lagged observations explain a significant amount of unique
autocorrelation in the time series. Again, an analogy can be made
to multiple linear regression: Each predictor should account
for a significant amount of variance after controlling for the
others. However, a significant autocorrelation at higher lags
may be attributable to an autocorrelation at a lower lag. For
instance, if a strong autocorrelation exists at lag-1, then a
significant lag-3 autocorrelation (i.e., a correlation of time t
with t-3) may be a result of t being correlated with t-1, t-
1 with t-2, and t-2 with t-3 (and so forth). That is, a strong

autocorrelation at an early lag can “persist” throughout the
time series, inducing significant autocorrelations at higher lags.
Therefore, instead of inspecting the ACF which displays zero-
order autocorrelations, a plot of the partial autocorrelation
function (PACF) across different lags is the primary method
in determining which prior observations explain a significant
amount of unique autocorrelation, and accordingly, how many
AR terms (i.e., lagged observations as predictors) should be
included. Put simply, the PACF displays the autocorrelation
of each lag after controlling for the autocorrelation due to all
preceding lags (McCleary et al., 1980, p. 75). A conventional rule
is that if there is a sharp drop in the PACF after p lags, then the
previous p-values are responsible for the autocorrelation in the
series, and the model should include p autoregressive terms (the
partial autocorrelation coefficient typically being the value of the
autoregressive coefficient, φ; Cowpertwait and Metcalfe, 2009, p.
81). Additionally, the ACF of such a series will gradually decay
(i.e., reduce) toward zero as the lag increases.

Applying this knowledge to the empirical example, Figure 3
depicted the ACF of the seasonally adjusted Google time series,
and Figure 8 displays its PACF. Here, only one lagged partial
autocorrelation is statistically significant (lag-6), despite over a
dozen autocorrelations in the ACF reaching significance. Thus,
it is probable that early lags—and the lag-6 in particular—
are responsible for the chain of autocorrelation that persists
throughout the series. Although the series is considerably non-
stationary (i.e., there is a marked trend and seasonal component),
if the series was already stationary, then a model with a single
AR term (an AR[1] model) would likely provide the best fit,
given a single significant partial autocorrelation at lag-6. The ACF
in Figure 3 also displays the characteristics of an AR(1) series:
It has many significant autocorrelations that gradually reduce
toward zero. This coheres with the notion that one AR term
is often sufficient for a residual time series (Cowpertwait and
Metcalfe, 2009, p. 121). However, if the pattern of autocorrelation
is more complex, then additional AR terms may be required.
Importantly, if a particular number of AR terms have been
successful in explaining the autocorrelation of a stationary series,
the residual error series should appear as entirely random white
noise (as in Figure 4).

MA(q): Moving Average Terms
Overview
In the preceding section, it was shown that one can account for
the autocorrelation in the data by regressing on prior values in
the series (AR terms). However, sometimes the autocorrelation
is more easily explained by the inclusion of MA terms; the use
of MA terms to explain the autocorrelation—either on their own
or in combination with AR components—can result in greater
parameter parsimony (i.e., fewer parameters), relative to relying
solely on AR terms (Cowpertwait and Metcalfe, 2009, p. 127).
As noted above, ARIMA models assume that any systematic
components have either been modeled or removed and that
the time series is stationary—i.e., a stochastic process. In time
series theory, the values of stochastic processes are determined
by two forces: prior values, described in the preceding section,
and random shocks (i.e., errors; McCleary et al., 1980, pp. 18–19).
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FIGURE 8 | A plot of the partial autocorrelation function (PACF) of the

seasonally adjusted time series of Google job searches.

Random shocks are the myriad variables that vary across time
and interact with such complexity that their behavior is ostensibly
random (e.g., white noise; McCleary et al., 1980, p. 40). Each
shock can be conceived of as an unobserved value at each point in
time that influences each observed value of the time series. Thus,
autocorrelation in the data may be explained by the persistence
of prior values (or outputs, as in AR terms) or, alternatively,
the lingering effects of prior unobserved shocks (i.e., the inputs,
in MA terms). Therefore, if prior random shocks are related
to the value of the series, then these can be included in the
prediction equation to explain the autocorrelation and improve
the efficiency of the forecasts generated by the model. In other
words, just as AR terms can be conceived as a linear regression on
previous time series values, MA terms are conceptually a linear
regression of the current value of the series against prior random
shocks. For instance, an MA(1) model can be expressed as:

yt = θ (εt−1) + εt, (11)

where εtis the value of the random shock at time t, εt−1 is
the value of the previous random shock, and θ is its coefficient
(again, interpretable as a regression coefficient). More generally,
the order of MA terms is conventionally denoted as q, and an
MA(q) model can be expressed as:

yt = θ1 (εt−1) + θ2 (εt−2) + · · · + θq
(

εt−q

)

+ εt. (12)

Selecting the Number of MA Terms
Selecting the number of MA terms in the model is conceptually
similar to the process of identifying the number of AR
terms: One examines plots of the autocorrelation (ACF) and
partial autocorrelation functions (PACF) and then specifies an
appropriate model. However, while the number of AR terms
could be identified by the PACF of the series (more specifically,
the point at which the PACF dropped), the number of appropriate
MA terms is usually identified by the ACF. Specifically, if the ACF
is non-zero for the first q lags and then drops toward zero, then q
MA terms should be included in themodel (McCleary et al., 1980,
p. 79). All successive lags of the ACF are expected to be zero, and
the PACF of such a series will be gradually decaying (McCleary

FIGURE 9 | ACF and PACF of the cubic model residuals used to

determine the number of AR and MA terms in an ARIMA model.

FIGURE 10 | Forecasts from the dynamic regression model compared

to the observed values. The blue line represents the forecasts, and the red

dotted line indicates the observed values. The darker gray region denotes the

80% confidence region, the lighter gray, 90%.

et al., 1980, p. 79). Thus, relative to AR terms, the roles of the ACF
and PACF are essentially reversed when determining the number
of MA terms. Furthermore, in practice most social processes can
be sufficiently modeled by a single MA term; models of order
q = 2 are less common, and higher-order models are extremely
rare (McCleary et al., 1980, p. 63).

Model Building and Further Notes on ARIMA (p,
d, q) Models
The components of ARIMA models—autoregressive, integrated,
andmoving average—are aimed at explaining the autocorrelation
in a series that is either stationary or can be made so through
differencing (i.e., I[d] integrated terms). Though already stated,
the importance of the following point warrants reiteration:
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After a successful ARIMA(p, d, q) model has been fit to the
autocorrelated data, the residual error series should be a white
noise series. That is, after a good-fitting model has been specified,
the residual error series should not display any significant
autocorrelations, have a mean of zero, and some constant
variance; i.e., there should be no remaining signal that can be
used to improve the model’s forecasts. Thus, after specifying a
particular model, visual inspection of the ACF and PACF of
the error series is critical in order to assess model adequacy
(McCleary et al., 1980, p. 93). All autocorrelations are expected
to be zero with 5% expected to be statistically significant due to
sampling error.

Furthermore, just as there are formal methods to test that a
series is stationary before fitting an ARIMAmodel, there are also
statistical tests for the presence of autocorrelation after the model
has been fit. The Ljung–Box test (Ljung and Box, 1978) is one
commonly-applied method in which the null hypothesis is that
the errors are uncorrelated across many lags (Cryer and Chan,
2008, p. 184; Hyndman and Athanasopoulos, 2014). Thus, failing
to reject the null provides evidence that the model has succeeded
in explaining the remaining autocorrelation in the data.

If both formal and informal methods indicate that the residual
error series is not a series of white noise terms (i.e., there is
remaining autocorrelation), then the analyst must reassess the
pattern of autocorrelation and re-specify a new model. Thus,
in contrast to regression approaches, ARIMA modeling is an
exploratory, iterative process in which the data is examined,
models are specified, checked for adequacy, and then re-specified
as needed. However, selecting the most appropriate order of AR,
I, and MA terms can prove to be a difficult process (Hyndman
and Athanasopoulos, 2014). Fortunately, model comparison
can be easily performed by comparing the Akaike information
criterion (AIC) across models (Akaike, 1974)7. This statistic is
based on the fit of a model and its number of parameters,
and models with lower values should be selected. Generally,
models within two AIC values are considered comparable, a
difference of 4–7 points indicates considerable support for the
better-fitting model, and a difference of 10 points or greater
signifies full support of that model (Burnham and Anderson,
2004, p. 271). Additionally, the “forecast” R package (Hyndman,
2014) contains a function to automatically derive the best-
fitting ARIMA model based on the AIC or other fit criteria (see
Hyndman and Khandakar, 2008). This procedure is discussed in
the Supplementary Material.

Furthermore, a particular pattern of autocorrelation can often
be explained by either AR or MA terms. Generally, AR terms
are preferable to MA terms because their interpretation of
these parameters is more straightforward (e.g., the regression
coefficient associated with a previous time series value rather
than a coefficient associated with an unobserved random shock).
However, a more central concern is parameter parsimony; if a
model using MA terms (or a combination of AR and MA terms)
can explain the autocorrelation with fewer parameters than one

7The use of additional fit indices, such as the AIC c (a variant of the AIC for small

samples) and Bayesian information criterion (BIC) is also recommended, but we

focus on the AIC here for simplicity.

that relies solely on AR terms, then these models are generally
preferable.

Finally, although a mixed ARIMA model containing both
AR and MA terms can result in greater parameter parsimony
(Cowpertwait and Metcalfe, 2009, p. 127), in practice, non-
mixed models (i.e., those with either with AR or MA terms
alone) should always be ruled out prior to fitting these more
complex models (McCleary et al., 1980, p. 66). Unnecessary
model complexity (i.e., redundant parameters) may not become
evident at all during the process of model checking, while the
inadequacy of simpler models is often easily identified (e.g.,
noticeable remaining autocorrelation in the ACF plot).

Fitting a Dynamic Regression Model with
ARIMA Terms

In this final section, we illustrate how a predictive ARIMA
approach to time series modeling can be combined with
regression methods through specification of a dynamic
regression model. These models can be fit to the data in order
to generate accurate forecasts, as well as explain or examine
an underlying trend or seasonal effect (as opposed to their
removal). We then analyze the predictions from this model and
discuss methods of assessing forecast accuracy. For simplicity,
we continue with the regression model that modeled the series as
a cubic function of time.

Preliminaries
When the predictor is time, one should begin specification of a
dynamic regression model by first examining the residual error
series after the regression model has been fit. This is done in
order to first detect if there is any autocorrelation in the model
residuals that would warrant the inclusion of ARIMA terms. The
residual error series are of interest because a dynamic regression
model can be thought of as a hybrid model that includes
a correction for autocorrelated errors. That is, whatever the
regression model does not account for (trend, autocorrelation,
etc.) can be supplemented by ARIMAmodeling. Analytically, this
is performed by re-specifying the initial regression model as an
ARIMA model with regressors (sometimes called an “ARIMAX”
model, the “X” denoting external predictors) and selecting the
appropriate order of ARIMA terms that fit the autocorrelation
structure in the residuals (Nua, 2014).

Identifying the Order of Differencing: I(d) Terms
As noted previously, the residual error series of the
cubic regression model exhibited a remaining trend and
autocorrelation (see Figure 6). A significant Durbin–Watson
test formally confirms this is the case (i.e., the error terms are
not uncorrelated; DW = 0.47, p < 0.001). Thus, ARIMA terms
are necessary to (a) stationarize the series (I[d] terms) and (b)
generate more accurate forecasts (AR[p] and/or MA[q] terms).
As stated above, the conventional first step when formulating
an ARIMA is determining the number of I(d) terms (i.e., order
of differencing) required to remove any remaining trend and
render the series stationary. We note that, in this case, the
systematic seasonal effects have already been removed through

Frontiers in Psychology | www.frontiersin.org 18 June 2015 | Volume 6 | Article 727

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Jebb et al. Time series analysis

seasonal adjustment. It was previously noted that in practice,
removing a trend is accomplished almost always by taking
either the first or second differences—whichever transformation
results in the lowest variance and avoids overdifferencing
(i.e., an increase in the series variance). Because the residual
trend does not have a markedly changing slope, it is likely that
only one order of differencing will be required. The results
indicate that this is indeed the case: After first differencing,
the series variance is reduced from 13.56 to 6.45, and an
augmented Dickey–Fuller test rejects the null hypothesis of a
non-stationary series (ADF = −4.50, p < 0.01). Taking the
second differences also results in stationarity (i.e., the trend is
removed), but leads to an overdifferenced series with a variance
that is inflated to a level higher than the original error series
(s2 = 14.90).

Identification of AR(p) and MA(q) Terms
After the order of I(d) terms has been identified (here, 1), the next
step is to determine whether the pattern of autocorrelation can
be better explained by AR terms, MA terms, or a combination
of both. As noted, AR terms are often preferred to MA terms
because their interpretation is more straightforward, and simpler
models with either AR or MA terms are preferable to mixed
models. We therefore begin by examining plots of the ACF and
PACF for the residual error series shown Figure 9 in order to see
if they display either an AR or MA “signature” (e.g., drop-offs or
slow decays).

From Figure 9, we can see that there are many high
autocorrelations in the ACF plot that slowly decay, indicative
that AR terms are probably most suitable (A sharp drop in the
ACF would indicate that the autocorrelation is probably better
explained by MA terms). As stated earlier, the PACF gives the
autocorrelation for a lag after controlling for all earlier lags;
a significant drop in the PACF at a particular lag indicates
that this lagged value is largely responsible for the large zero-
order autocorrelations in the ACF. Based on this PACF, the
number of terms to include is less clear; aside from the lag-0
autocorrelation, there is no perceptible drop-off in the PACF,
and there are no strong partial autocorrelations to attribute the
persistence of the autocorrelation seen in the ACF. However,
we know that there is autocorrelation in the model residuals,
and that either one or two AR terms are typically sufficient for
accounting for any autocorrelation (Cowpertwait and Metcalfe,
2009, p. 121). Therefore, we suspect that a single AR term
can account for it. After fitting an ARIMA (1, 1, 0) model, a
failure to reject the null hypothesis in a Ljung–Box test indicated
that the model residuals were indistinguishable from a random
white noise series (χ2

= 0.005, p = 0.94), and less than 5%
of the autocorrelations in the ACF were statistically significant
(The AIC of this model was 419.80). For illustrative purposes,
several other models were fit to the data that either included
additional AR or MA terms, or a combination of both. Their
relative fit was analyzed and the results are shown in Table 2.
As can be seen, the ARIMA (1, 1, 0) model provided a level of
fit that exceeded all of the other models (i.e., the smallest AIC
difference among models was 4, showing considerable support).
Thus, this model parsimoniously accounted for the systematic

TABLE 2 | Comparison of different ARIMA models.

Model Residual analysis AIC

ARIMA(1, 1, 0): one AR

term

Ljung–Box test:

χ2
= 0.005, p = 0.94

419.80

ARIMA(0, 1, 1): one MA

term

Ljung–Box test:

χ2
= 0.01, p = 0.92

423.84

ARIMA(1, 1, 1): a mixed

model

Ljung–Box test:

χ2
= 0.02, p = 0.89

425.84

ARIMA(2, 1, 0): two AR

terms

Ljung–Box test:

χ2
= 0.61, p = 0.43

448.79

ARIMA(0, 1, 2): two MA

terms

Ljung–Box test:

χ2
= 0.02, p = 0.89

425.84

ACF plots for all models showed that <5% of autocorrelations reached statistical

significance.

trend through a combination of regression modeling and first
differencing and successfully extracted all the autocorrelation
(i.e., signal) from the data in order to achieve more efficient
forecasts.

Forecasting Methods and Diagnostics
Because forecasts into the future cannot be directly assessed for
accuracy until the actual values are observed, it is important
that the analyst establish the adequacy of the model prior to
forecasting. To do this, the analyst can partition the data into
two parts: the estimation period, comprising about 80% of the
initial observations and used to estimate the model parameters,
and the validation period, usually about 20% of the data and
used to ensure that the model predictions are accurate. These
percentages may shift depending on the length of the series
(see Nua, 2014), but the size of the validation period should at
least equal the number of periods ahead the analyst wishes to
forecast (Hyndman and Athanasopoulos, 2014). The predictions
generated by the model are then compared to the observed
data in the validation period to assess their accuracy. Evaluating
forecast accuracy is accomplished by examining the residuals
for any systematic patterns of misspecification. Forecasts should
ideally be located within the 95% confidence limits, and formal
statistics can be calculated from the model residuals in order
to evaluate its adequacy. A popular and intuitive statistic is the
mean absolute error (MAE): the average absolute deviation from
the predicted values. However, this value cannot be used to
compare models, as it is scale-dependent (e.g., a residual with
an absolute value of 10 is much less egregious when forecasting
from a series whose mean is 10,000 relative to a series with
a mean of 10). Another statistic, the mean absolute percentage
error (MAPE) is useful for comparing across models and is
defined as the average percentage that the forecasts deviated from
the observed values. Other methods and statistics, such as the
root mean squared error (RMSE) and the mean absolute scaled
error (MASE) can aid model evaluation and selection and are
accessibly discussed by Hyndman and Athanasopoulos (2014,
chap. 2). Once a forecasting model has been deemed sufficiently
accurate through these methods, forecasts into the future can
then be calculated with relative confidence.
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TABLE 3 | Steps for specifying an ARIMA forecasting model.

Specific steps Intended purpose Procedure

Step 1. Confirm the

presence of

autocorrelation.

If there is autocorrelation in the data, then an ARIMA

model can be used for forecasting or ARIMA terms

can be included within an existing regression model

to improve its forecast accuracy (i.e., a dynamic

regression/ARIMAX model).

• Examine a plot of the ACF for any large autocorrelations across different lags. In a

white noise series, 5% of autocorrelations are expected to reach statistical

significance, so one must look at strength of the autocorrelation in addition to

statistical significance for the best diagnosis.

• If a regression model has been fit to the data, one can formally test for a lag-1

autocorrelation in the residuals by conducting a Durbin–Watson or Ljung–Box test

(see Table 1).

Step 2. Determine if the

series is stationary.

Before AR or MA terms can be included in the model

to account for the autocorrelation, the series must be

stationary (i.e., a constant mean, variance, and

autocorrelation).

• Examine a plot of the series for systematic changes in its mean level (i.e., trend or

seasonal effects) and variance.

• Conduct an ADF test to formally test for stationarity.

Step 3. Transform the

series to stationarity.

AR and MA terms assume a stationary series, and

this assumption must be met before modeling the

autocorrelation.

• If the variance is not constant over time, taking the natural logarithm of the series

can stabilize it.

• Seasonal effects can be removed through seasonal adjustment.

• A trend component can be removed through differencing and nearly always

through either its first or second differences (I[1] or I[2] terms in an ARIMA model,

respectively). Each successive order of differencing should further remove the trend

and reduce the overall series variance. (But be careful to avoid overdifferencing the

series, indicated by an increase in its variance.)

• Confirm the series is stationary by performing an ADF test.

Step 3. Partition the

data into estimation

validation periods.

Before a forecasting model is used, its accuracy

should be assessed. This entails conserving some

data in the latter portion of the series to compare to

the predictions generated by the model (the

validation period). However, the majority of the data

should still be used for parameter estimation.

• As a general rule, the first 80% of the series can be used to estimate the

parameters and the remaining 20% to assess the accuracy of the model predictions.

• For longer series, a larger percentage can be used for the validation period, and its

size should be at least as large as the number of periods forecasted ahead.

Step 4. Examine the

ACF and PACF, and fit

a parsimonious ARIMA

model.

Examining the ACF and PACF of a series can

indicate how many AR and MA terms will be required

to explain the series autocorrelation.

• A pattern of autocorrelation that is best explained by AR terms has a steadily

decaying ACF and a PACF that drops after p lags. If this is the case, then p AR

terms will generally be required.

• If the autocorrelation displays an MA signature (a drop-off in the ACF after q lags

and a gradually decaying PACF) then a model with q MA terms will likely provide the

best fit to the data.

• Ordinarily, only one or two AR or MA terms are required for explaining a series’

autocorrelation.

Step 5. Examine model

sufficiency.

A successful model will have extracted all of the

autocorrelation from the data after being fit.

Noticeable remaining autocorrelation indicates that

the model can be improved.

• Examine a plot of the model residuals which should appear as random white noise.

• Conduct a Ljung–Box test on the residuals to formally assess if the autocorrelations

are significantly different than those expected from a white noise series.

Step 6. Re-specify the

model if necessary and

use the AIC to

compare models.

An initial model may not successfully explain all the

autocorrelation present in the data. Alternatively, a

model may successfully account for the

autocorrelation but be needlessly complex (i.e., more

AR or MA terms than is necessary). Thus, ARIMA

modeling is an iterative, exploratory process where

multiple models are specified and then compared.

• Sometimes a mixed model can explain the autocorrelation using less parameters.

Alternatively, a simpler model may also fit the data well. These models can be

specified and checked for adequacy (Step 5).

• Among the fitted models, compare the AIC which evaluates the fit of the model

and includes penalties for model complexity. Models with a smaller AIC value

indicate a superior relative fit.

• As a rule of thumb, models within two AIC points are comparable, a difference of

4–7 points indicates considerable support, and a difference of 10 points or greater

signifies full support.

Step 7. Generate

predictions and

compare to

observations in the

validation period.

Once a model has been chosen, comparing the

model predictions within the validation period allows

the analyst to determine if the model produces

accurate forecasts during the time periods that have

been observed. This provides evidence that it will

provide accurate future forecasts whose precision

cannot be immediately evaluated.

• After estimating model parameters from the first portion of the data, use the

remaining observations to compare to the predicted values given by the model.

• Observed values should ideally be located within the 95% confidence limits of the

forecasts.

• Calculate statistics that quantify its accuracy, such as the MAE and MAPE.

Step 8. Generate

forecasts into the

future.

After a good-fitting model has been selected and

checked for forecasting accuracy, it can be used to

generate forecasts into the future.

• Determine how many periods ahead into the future to forecast.

• ARIMA models can provide accurate forecasts several periods into the future, but

long-term forecasting is inherently more uncertain.

ACF, Autocorrelation function; PACF, Partial autocorrelation function; ADF, augmented Dickey–Fuller; AIC, Akaike information criterion.
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Because we have the benefit of hindsight in our example, all
observations were used for estimation, and six forecasts were
generated for the remainder of the 2011 year and compared to
the actual observed values. The point forecasts (blue line), 80%,
and 95% confidence limits are displayed in Figure 10 juxtaposed

against the actual values in red. As can be seen, this forecasting
model is generally successful: Each observed value lies within the
80% limits, and the residuals have a low mean absolute error
(MAE= 2.03) relative to the series mean (M= 75.47), as well as a
low mean absolute percentage error (MAPE = 2.33). Additional

TABLE 4 | Glossary of time series terms.

Term Description Relevance to time series analysis

Trend The overarching long-term change in the mean

level of a time series.

Trends often represent time series effects that are theoretically interesting,

such as the result of a critical event or the effect of other variables.

Importantly, trends may be either deterministic or stochastic. Deterministic

trends are those due to the constant effects of a few causal forces. As a

result, they are generally stable across time and are suitable to be modeled

through regression. In contrast, stochastic trends arise simply by chance

and are consequently not suitably modeled through regression methods.

Seasonality A pattern of rises and falls in the mean level of

a series that consistently occurs across time

periods.

Seasonal effects may be substantively interesting (in which case they should

be estimated) or they may obscure other more important components, such

as a trend (in which case they should be removed).

Cycles Any repeating pattern in the mean level of a

series whose duration is not fixed or known

and generally occurs over a period of 2 or more

years.

Cycles may also represent patterns of interest. However, cycles are more

difficult to identify and generally require longer series to be adequately

captured.

Autocorrelation When current observations exhibit a

dependence upon prior states, manifesting

statistically as a correlation between lagged

observations.

The presence of autocorrelation means that there is signal in the data that

can be modeled by AR or MA terms to generate more accurate forecasts.

Stationarity When the mean, variance, and autocorrelation

of a series are constant across time.

Descriptive statistics of a time series are only meaningful when it is

stationary. Furthermore, before a time series can be modeled by AR or MA

terms it must be made stationary.

Seasonal adjustment A process of estimating the seasonal effects

and removing them from the series.

Seasonal adjustment can remove a source of variation that is not interesting

from a theoretical perspective so that the elements of a time series that are

of interest can be more clearly analyzed (e.g., a trend).

Differencing The process of transforming the values of a

series into a series of the differences between

observations adjacent in time.

Differencing removes the trend from a time series and thus helps to make

the mean of a time series stationary.

Autocorrelation function (ACF) A measure of linear association (correlation)

between the current time series values with its

past series values.

The ACF allows the analyst to see if there is any autocorrelation in the data

and at what lags it manifests. It is essential in identifying the appropriate

number of AR and MA terms to explain the pattern of the residuals. It is also

valuable for determining if there is any remaining autocorrelation after an

ARIMA model has been fit (i.e., model diagnostics).

Partial autocorrelation function (PACF) A measure of linear association (correlation)

between the current time series values with its

past series values after controlling for the

intervening observations.

The PACF is useful for identifying the number of AR or MA terms that will

explain the autocorrelation in the data.

Integrated (I) In an ARIMA model, the number of times the

series has been differenced in order to make it

stationary.

Stationarity is an assumption that must be met before any AR or MA terms

can be included in a model. In an ARIMA model, the Integrated component

allows the inclusion of series that are non-stationary in the mean.

Autoregressive (AR) When a variable is regressed on its prior values

in order to account for autocorrelation.

AR terms are able to account for autocorrelation in the data to improve

forecasts.

Moving average (MA) When a variable is regressed on past random

shocks (error terms) in order to account for

autocorrelation.

MA terms are able to account for autocorrelation in the data to improve

forecasts.

Dynamic regression (ARIMAX) A time series model that includes both

regression and ARIMA terms.

A model that includes both explanatory variables and AR or MA terms be

used to simultaneously model an underlying trend and generate accurate

forecasts.
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statistics verified the accuracy of these predictions, and the full
results of the analysis can be obtained from the first author.

As a final note on ARIMA modeling, if the sole goal of
the analysis is to produce accurate forecasts, then the seasonal
and trend components represent a priori barriers to this goal
and should be removed through seasonal adjustment and the
I(d) terms of an appropriate ARIMA model, respectively. Such
predictive models are often easier to implement, as there are
no systematic components of interest to describe or estimate;
they are simply removed through transformations in order to
achieve a stationary series. Finally, we close this section with two
tables. The first, Table 3, compiles the general steps involved in
ARIMA time series modeling described above, from selecting the
optimal order of ARIMA terms to assessing forecast accuracy.
The second, Table 4, provides a reference for the various time
series terms introduced in the current paper.

Addendum: Further Time Series
Techniques and Resources

Finally, because time series analysis contains a wide range
of analytic techniques, there was not room to cover them
all here (or in any introductory article for that matter). For
a discussion of computing correlations between time series
(i.e., the cross-correlation function), the reader is directed to
McCleary et al. (1980). For a general introduction to regression
modeling, Cowpertwait and Metcalfe (2009) and Ostrom (1990)
have excellent discussions, the latter describing the process of
identifying lagged effects. For a highly accessible exposition
of identifying and cycles or seasonal effects within the data
through periodogram and spectral analysis, the reader should
consult Warner (1998), a social scientist-based text which also
describes cross-spectral analysis, a method for assessing how
well cycles within two series align. For regression modeling
using other time series as substantive predictors, the analyst
can use transfer function or dynamic regression modeling and
is referred to Pankratz (1991) and Shumway and Stoffer (2006)
for further reading. For additional information on forecasting
with ARIMA models and other methods, we refer the reader
to Hyndman and Athanasopoulos (2014) and McCleary et al.
(1980). Finally, multivariate time series analysis can model
reciprocal causal relations among time series in a modeling
technique called vector ARMA models, and for discussions

we recommend Liu (1986), Wei (2006), and the introduction
in Pankratz (1991, chap. 10). Future work should attempt
to incorporate these analytic frameworks within psychological
research, as the analysis of time series brings in a host of
complex issues (e.g., detecting cycles, guarding against spurious
regression and correlation) that must be handled appropriately
for proper data analysis and the development of psychological
theory.

Conclusion

Time series analysis has proved to be integral formany disciplines
over many decades. As time series data becomes more accessible

to psychologists, these methods will be increasingly central to
addressing substantive research questions in psychology as well.
Indeed, we believe that such shifts have already started and that
at an introduction to time series data is substantially important.
By integrating time-series methodologies within psychological
research, scholars will be impelled to think about how variables
at various psychological levels may exhibit trends, cyclical
or seasonal patterns, or a dependence on prior states (i.e.,
autocorrelation). Furthermore, when examining the influence of
salient events or “shocks,” essential questions, such as “What
was the pre-event trend?” and “How long did its effects endure,
and what was its trajectory?” will become natural extensions. In
other words, researchers will think in an increasingly longitudinal
manner and will possess the necessary statistical knowledge
to answer any resulting research questions—the importance of
which was demonstrated above.

The ultimate goal of this introductory paper is to foster such
fruitful lines of conceptualizing research. Themore proximal goal
is to provide an accessible yet comprehensive exposition of a
number of time series modeling techniques fit for addressing a
wide range of research questions. These models were based in
descriptive, explanatory, and predictive frameworks—all three
of which are necessary to accommodate the complex, dynamic
nature of psychological theory and its data.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fpsyg.
2015.00727/abstract
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