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Human–robot interactions are often affected by error situations that are caused by either

the robot or the human. Therefore, robots would profit from the ability to recognize

when error situations occur. We investigated the verbal and non-verbal social signals that

humans show when error situations occur in human–robot interaction experiments. For

that, we analyzed 201 videos of five human–robot interaction user studies with varying

tasks from four independent projects. The analysis shows that there are two types of

error situations: social norm violations and technical failures. Social norm violations are

situations in which the robot does not adhere to the underlying social script of the

interaction. Technical failures are caused by technical shortcomings of the robot. The

results of the video analysis show that the study participants use many head movements

and very few gestures, but they often smile, when in an error situation with the robot.

Another result is that the participants sometimes stop moving at the beginning of error

situations. We also found that the participants talked more in the case of social norm

violations and less during technical failures. Finally, the participants use fewer non-verbal

social signals (for example smiling, nodding, and head shaking), when they are interacting

with the robot alone and no experimenter or other human is present. The results suggest

that participants do not see the robot as a social interaction partner with comparable

communication skills. Our findings have implications for builders and evaluators of

human–robot interaction systems. The builders need to consider including modules

for recognition and classification of head movements to the robot input channels. The

evaluators need to make sure that the presence of an experimenter does not skew the

results of their user studies.
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1. Introduction

The interaction between humans and robots is often affected
by problems that occur during such interactions. Human users
interact with robots based on their mental models, expectations,
and previous experiences. When problems occur, users are often
confused. Their expectations are violated and they do not know
how to react. In the worst case, such problems can even result
in a termination of the interaction (Scheutz et al., 2011). The
users, most likely, attribute the error to the robot, and these
problems are in fact often caused by the robot. Some examples
for occurring problems are insufficient or defective sensor data,
errors due to misinterpretation of sensor data from the robot’s
reasoning module, and general implementation errors (Goodrich
and Schultz, 2007). In some cases, however, an interruption of the
interaction may also be caused by the human, for example, if the
human interaction partner wants to perform a task that is not
within the capability of the robot. Irrespective of the origin, the
human interaction partner gets confused and the continuation of
the interaction is at stake.

Ample evidence for the occurrence of the above described
problems can be found in the data of human–robot interaction
(HRI) user studies, in which humans directly interact with robots.
The matter of interest in these studies is often an envisioned
flawless interaction. Therefore, data of problematic interactions
may get discarded from further analysis or the problem itself is
not part of the analysis. We argue that these data potentially bear
valuable insights and ideas for improving future HRI. We are
interested in the following questions: what are the social signals
that humans display in the event of these errors and what kind of
error situations do arise in human–robot interactions?

1.1. Social Signals
The term social signal is used to describe verbal and non-verbal
signals that humans use in a conversation to communicate their
intentions. Vinciarelli et al. (2009) argue that the ability to
recognize social signals is crucial to mastering social intelligence.
In their view, the recognition of social signals will be the next
step toward a more natural human-computer and human–robot
interaction. Ekman and Friesen (1969) define five classes of
human non-verbal behavior. Emblems are gestures that have a
meaning for members of a group, class, or culture, e.g., the
thumbs up sign that means positive agreement in many western
countries. Illustrators are gestures or movements that are directly
tied to speech and are used to illustrate what has been said
verbally, e.g., humans forming a triangle with their fingers
while speaking about a triangular-shaped object. Affect displays
are signals used to convey an emotional state, often by facial
expressions or body posture. Regulators are signals used to steer
the conversation with a conversation partner, e.g., to regulate
turn taking. Finally, adaptors are actions used on objects in the
environment or on oneself, e.g., lip biting or brushing back
hair. The social signals that we detected in our video analysis
are mostly affect displays, regulators, and adaptors (see Section
3). For annotating social signals, we are not following Ekman’s
taxonomy. Instead, we separate the signals into the body parts
that the participants in the HRI studies used to express the signal,

which makes it easier to annotate combinations of social signals
(see Section 2.4).

In recent years, more and more researchers worked on the
automatic recognition of social signals, an area that is called social
signal processing. Vinciarelli et al. (2012) give an overview of the
field. They classify social signals with a similar taxonomy that we
are using in the annotation scheme in Section 2.4. According to
Vinciarelli et al. (2009), human social signals come either from
physical appearance, gesture and posture, face and eyes behavior,
space and environment, or vocal behavior. The authors also
review early work from social signal processing. In human–robot
interaction, social signal processing also receives more attention
by researchers from different areas. Jang et al. (2013) present a
video analysis that is similar to our work. In the analysis, they
annotated recordings of six one-on-one teacher–student learning
sessions, in order to find the social signals with which students
signal their engagement in the interaction. The goal of this work
is to implement an engagement classifier for a robot teacher.
Tseng et al. (2014) present a robot that automatically recognizes
the spatial patterns of human groups by analysing their non-
verbal social signals in order to appropriately approach the group
and offer services.

A second area of interest to HRI, is the generation of
social signals by robots. Bohus and Horvitz (2014) presented
a direction-giving robot that forecasts when the user wants to
conclude the conversation. This robot uses hesitations (e.g., the
robot says “so. . . ”) when it is not certain about the user state in
order to get more time to compute a correct forecast and also
to convey the uncertainty of the robot. Bohus and Horvitz did
not report an improvement in disengagement forecasts for their
robot which used hesitations. This might have been due to the
conservative strategy they were using in their study, which was
tuned to avoid false disengagements. Sato and Takeuchi (2014)
researched how the eye gaze behavior of a robot can be used to
control the turn taking in non-verbal human–robot interactions.
In their study, three humans played a game with a robot that
was programmed to look at the other players during the game.
The study shows that the robot’s gaze can influence who will
be the next speaker in the conversation. In another eye gaze
generation study, Stanton and Stevens (2014) found that robot
gaze positively influences the trust of experiment participants
who had to give answers to difficult questions in a game,
but negatively influences trust when answering easy questions.
However, robot gaze positively influences task performance for
easy questions, but negatively influences task performance for
difficult questions. Stanton and Stevens discuss that robot gaze
might put pressure on the experiment participants. Carter et al.
(2014) presented a study, in which participants repeatedly threw
a ball to a humanoid robot that attempted to catch the ball. In one
of the study conditions, when the robot did not catch the ball, it
generated social signals, e.g., it shrugged its shoulders. The study
results show that participants smile more when the robot displays
social signals and rate the robot as more engaging, responsive,
and human-like.

1.2. Error Situations
In the videos of the experiments that we annotated for this
work, we found two different kinds of error situations. On one
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hand, there were situations in which unusual robot behavior led
to a violation of a social norm; on the other hand, there were
error situations because of technical failures of the robot. In this
section, we will review related work on both of these areas to
define our notion of the term error situation.

We follow the definition of Sunstein (1996) that social norms
are “social attitudes of approval and disapproval, specifying what
ought to be done and what ought not to be done” (Sunstein,
1996, p. 914). Human interaction is defined by social norms.
For example, they define how one should ask for directions
on the street or how you should behave in a bar. Schank and
Abelson (1977) showed that everyday social interactions have
an underlying social script, a definition of interaction steps to
which humans usually obey. The order of these interaction
steps is guided by social signals. Loth et al. (2013) found that
customers use two combined non-verbal social signals to signal
bartenders that they would like to order a drink: they position
themselves directly at the bar counter and look at a member of
staff. We define a violation of a social norm as a deviation from
the social script or the usage of the wrong social signals. For
example, in our videos there are instances in which the robot
executed unexpected actions in the interaction (e.g., asking for
directions several times although the human already gave correct
instructions and the robot acknowledged the instructions) or
showed unusual social signals (e.g., not looking directly at the
person it is talking to).

The second class of error situations in our experiment videos
arises from technical failures of the robot. Interestingly, we can
resort to definitions of technical failures of humans interacting
withmachines, in order to classify these errors, since all robots we
observed are autonomous agents. Rasmussen (1982) defines two
kinds of human errors: execution failures happen when a person
carries out an appropriate action, but carries it out incorrectly,
and planning failures happen when a person correctly carries
out an action, but the action is inappropriate. To transfer these
definitions to autonomous robots and to make the definitions
clearer, consider the following two examples. The robot makes
an execution failure, when it picks up an object, but loses it while
grasping it; the robot has a planning failure, when the decision
mechanism of the robot decides to ask the human for directions,
although it already did so and the human correctly gave the
information. Execution failures are also called slips or lapses,
while planning failures are mistakes1.

To summarize these two definitions (further described in
Section 3), we found two types of error situations in the videos we
annotated. The robots either violated social norms by executing
interaction steps at the wrong time or by showing unusual social
signals, or they had obvious technical failures. It is interesting to
note that social norm violations often arise of planning failures by
the robot, while technical failures are usually execution failures.

Social neuroscientists have studied error situations and how
they are perceived by humans. Forbes and Grafman (2013) define
social neuroscience as “The systematic examination of how social
psychological phenomena can be informed by neuroscience
methodologies, and how our understanding of neural function

1A good depiction of human error types can be found at http://www.skybrary.aero/

index.php/Human_Error_Types.

can be informed by social psychological research” (Forbes and
Grafman, 2013, p. 1). In recent years, several neuroscientists
conducted studies to research the neural correlations when
humans observe error situations.

Berthoz et al. (2002) conducted a study to find the neural
systems that support processing of intentional and unintentional
social norm violations. They used event-related functional
magnetic resonance imaging (fMRI) to compare the neural
responses of humans listening to stories describing either
normal behavior, embarrassing anecdotes, or social norm
violations. Berthoz et al. found that the neural systems involved
in processing social norm violations are the same as systems
involved in representing mental states of others and in
responding to aversive emotional expressions. The authors
conclude that the findings have implications for understanding
the pathology of patients who exhibit social behavioral problems
associated with the identified neural systems.

de Bruijn et al. (2011) conducted a study to research whether
humans represent the task of a co-actor during error monitoring
in joint action. The authors showed through measurement of
electroencephalogram (EEG) signals and behavioral data that the
study participants show increased amplitudes on the response-
locked error-related negativity, an event-related brain potential
that is generated after an erroneous response (Falkenstein et al.,
1990), and longer reaction times following own errors in a social
go/no-go task. The findings show that people incorporate the
tasks of others into their own error monitoring and adjust their
own behavior during joint action.

Radke et al. (2011) investigated brain activities in humans
when monitoring errors that only influenced themselves or also
had implications for others. They found in an fMRI study that
monitoring errors that have implication for others activates
the medial prefontal cortex, a part of the mentalizing system.
The authors conclude from the results that this for example
explains symptoms of patients with obsessive-compulsive
disorder, who have fears that their own actions will harm
others.

Ridderinkhof et al. (2004) conducted a meta-analysis of
primate and human studies as well as of human functional
neuroimaging literature. The analysis showed that the detection
of unfavorable outcomes, response errors, response conflict,
and decision uncertainty enhances brain activity in an extensive
part of the posterior medial frontal cortex. This indicates
that performance monitoring, including error monitoring, is
associated with this brain region. Koban et al. (2013) recently
showed in an event-related fMRI study that error monitoring is
integrated with the representation of pain of others. The results
of their study show that the same brain regions are involved
in error monitoring and empathy for pain and that the brain
activity in these regions is enhanced when the pain of the other
person is caused by oneself.

In this paper, we perform a systematic analysis of video data
from different HRI user studies. The first goal for this analysis
is to identify those situations in interactions between humans
and robots that lead to problems and create error situations.
Such problems include long dialogue pauses, repetitions in the
dialogue, misunderstandings, and even a complete abruption of
the interaction. In the next step, we categorize the detected error
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situations into problems resulting from social norm violations
and problems that occur due to a technical error. Based on this
categorization, we analyse the social signals that humans produce
during the problematic situation, in order to map situations
and social signals. We distinguish verbal and non-verbal social
signals, e.g., speech, gaze, head orientation, and body posture.

For the analysis, we use video data from a variety of HRI
user studies. The videos were taken from different projects,
providing us with a wide spectrum of robots, robot tasks,
and experimental settings. The JAMES project (Joint Action
for Multimodal Embodied Social Systems2) used a stationary
bartender robot with social skills, presenting humans with
socially appropriate interaction; the JAST project (Joint-Action
Science and Technology3) used a stationary robot that cooperates
with a human in an assembly task; the IURO project (Interactive
Urban Robot4) used a mobile, wheeled robot that autonomously
navigates through densely crowded inner-city environments and
actively asks information from pedestrians; and the RPBD project
(Robot Programming by Demonstration) used a NAO robot to
research kinesthetic robot teaching in an industrial environment.

In our data analysis, we peruse three goals: (1) provide a
ranked categorization of social signals including their frequency
of occurrence; (2) develop a mapping between error types and
social signals in order to understand if there are particular social
signals that are typically evoked either by social norm violation
or technical failure; and (3) explore the influence of independent
variables (e.g., presence of experimenter during the interaction,
single vs. group interaction) on the display of social signals.

2. Methods and Materials

Figure 1 shows the work flow of the method that we applied
in this paper. First, we executed five HRI user studies5, from
which we collected a video corpus of 201 interactions. We then
annotated the videos in two steps. We introduce the HRI user
studies in Section 2.1. Following that, we give an overview of
the video corpus in Section 2.2 and information on the study
participants in Section 2.3. Finally, we describe the annotation
process in more detail in Section 2.4.

2http://www.james-project.eu.
3http://www6.in.tum.de/Main/ResearchJast.
4http://www.iuro-project.eu/.
5To be clear: we did not carry out the user studies specifically for this paper. We

are revisiting the results from prior studies and analyse them from a different

viewpoint in this work.

2.1. Human–Robot Interaction Studies
Our video analysis of social signals in error situations is based on
videos from five human–robot interaction studies. These studies
were carried out as part of the projects JAMES, JAST, IURO, and
RPBD. Each of the studies had a different task for human and
robot, except for the two JAMES studies. This enables us to study
social signals in the context of a variety of tasks with robots that
have different appearances. We have three different humanoid
robots (Figure 2), from which one robot is stationary and two
robots are mobile. Furthermore, we have four different scenarios,
the bartender scenario from JAMES, the joint assembly scenario
from JAST, the direction asking scenario from IURO, and the
robot teaching scenario from RPBD.

All user studies have in common that the robots were able
to understand and produce speech, and that they had visual
perception modules for person tracking. The studies were carried
out either in Germany or Austria. A majority of the spoken
interactions were in German, for the rest human and robot
spoke English. We received ethical approval for all of the studies.
All study participants signed an informed consent and gave us
permission to use the videos taken from the studies for further
analysis. The JAMES studies complied to the ethics standards
of fortiss (2012, 2013). The JAST study complied to the ethics
standards of the Technical University of Munich (2010). The
IURO study complied to the Ethics standards of the University
of Salzburg (2015). The RPBD study complied to the Ethics
standards of the University of Salzburg (2014). For more details
on each of the studies, please refer to the publications that we cite
for each study in the respective section.

In the following sections we shortly introduce all four projects
and describe the user studies from which we used videos.
Figure 2 shows images of all four robots.

2.1.1. JAMES, Stationary Robot Bartender
The goal of the JAMES project was to implement successful
joint action that is based on social interaction. The task of the
JAMES robot was that of a bartender. It had to take drink
orders from customers and to hand out the correct drinks
to the person who ordered it. Figure 2A shows the robot
interacting with a customer. The bartender robot consisted of
two industrial robot arms with humanoid hands, mounted in
a position to resemble human arms. Furthermore, the robot
has an animatronic talking head, the iCat (van Breemen, 2005),
which is capable of producing lip-synchronized speech as well as

FIGURE 1 | Chronological steps for the work we carried out in this paper. First, we executed five human–robot interaction user studies; second, we collected

the videos from these studies to form a video corpus; third, we annotated the videos in a two-step process.
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FIGURE 2 | The four robots used in the human–robot interaction studies. Pictures show interactions from the studies. (A) JAMES robot, (B) JAST robot, (C)

IURO robot, and (D) RPBD robot

expressing basic facial expressions such as smiling and frowning.
The robot was mounted behind a bar, which could be reached
by the robot arms. Furthermore, the robot was able to hand over
bottles to its customers.

The videos that we are using in this work are from two user
studies that were executed with the robot. Foster et al. (2012)
researched how the behavior of the robot has to change when
interacting with either single customers or groups of customers.
Giuliani et al. (2013) compared how user groups perceive the
robot when it shows only task-based actions or when it also uses
social actions. Both user studies used the same instructions for
the study participants, they were simply asked to walk up to the
robot and to order a drink. An experimenter was visible at all
times during both JAMES studies.

2.1.2. JAST, Stationary Robot with Assembly Task
The goal of the JAST project was to develop jointly-acting
autonomous systems that communicate andwork intelligently on
mutual tasks in dynamic unstructured environments. The task of
the JAST robot was to assemble target objects from a wooden toy
construction set together with a human partner. Figure 2B shows
the robot. It is the same robot system that was used in the JAMES
project. The robot had a table in front of it on which the different
assembly parts were laid out. It was able to recognize the objects
and to hand them over to the human.

The videos we are using in this work are from the user
study reported by Giuliani et al. (2010). The task of the study
participants and the robot was to jointly construct two target
objects. In the experiment, the authors compared two different

strategies for generating referring expressions to objects, a
traditional strategy that always generated the same expression
for the objects and an adaptive strategy that made use of the
situated context knowledge of the robot. The participants worked
together with the robot in one-on-one interactions. During the
study, participants were not able to see the experimenter, whowas
sitting behind a poster wall.

2.1.3. IURO, Mobile Robot Asking for Directions
The goal of the IURO project was to develop a robot that
navigates and interacts in densely populated, unknown human-
centred environments and retrieves information from human
partners in order to navigate to a given goal. The IURO robot
was developed to autonomously navigate in an unstructured
public-space environment and proactively approach pedestrians
to retrieve directions. Figure 2C shows the robot interacting
with a pedestrian in the city center of Munich, Germany.
The IURO robot was designed with anthropomorphic, but not
entirely humanoid appearance. A humanoid head is combined
with a functionally designed body. The head is able to produce
lip-synchronized speech and express basic facial expressions
(Ekman, 1992). Additionally, the robot has two arms, but no
hands (to avoid wrong expectations, since the robot is not able
to grasp objects). A pointing device for indicating directions is
mounted above the robot head.

The videos we used for annotating social signals in error
situations were taken from the field trial of the IURO robot in
which the final set-up of the robot was validated. To ensure
the final robot version running at the best possible set-up, the
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robot platform was subject to manifold evaluation on different
interaction aspects at different points in the project. For a detailed
overview on the evaluation set-ups, timeline, and results which
led to the final robot prototype, refer to Weiss et al. (2015). The
IURO robot interacted with single users and groups of users.
During the interactions, the experimenters were mostly, but not
always, visible to the participants.

2.1.4. RPBD, Mobile Robot with Kinesthetic Teaching
The videos of the last user study that we are evaluating for error
situations in this work, were taken from amaster’s thesis. The goal
of this master’s thesis was to determine user acceptance factors
of robots with different appearances. Specifically, the thesis
researches how kinesthetic teaching with an anthropomorphic
robot in an industrial context is perceived by users with different
backgrounds (programmers vs. naïve users).

The videos we are using in this work are from the user study
reported by Stadler et al. (2014). The authors implemented a
kinesthetic teaching approach on the humanoid robot platform
NAO. The robot was able to record and replay a behavior—
a pick-and-place task—taught by the participants. During the
experiment, human and robot had direct contact via kinesthetic
teaching. Furthermore, the robot was able to recognize and
produce speech, and had visual object recognition based on
landmark and color detection. Figure 2D shows an experiment
participant in interaction with the robot. All study participants
interacted alone with the robot, but an experimenter was visible
to them at all times.

2.2. Video Corpus
Our video corpus consists of 201 videos, fromwhich 129 are from
the two JAMES user studies, 34 are from the JAST user study, 27
are from the IURO user study, and 11 are from the RPBD user
study. We chose only those videos from all user studies that show
at least one error situation in which the robot either violated a
social norm or had a technical failure. Overall, the videos show
272 individual interactions between a single user or a group of
users. The difference between numbers of videos and numbers of
interactions is because the videos of the JAST and IURO studies
show more than one interaction. The interactions between the
study participants and the robots are on average 108.467 s long
(standard deviation 47.927 s). During the interactions, 578 error
situations occurred in total.

2.3. Participants
The videos feature 137 unique study participants, who
interacted individually or in groups with the robots. Ninety-four
participants were male, 43 were female. Although all experiments
took place either in Germany or in Austria, the robot spoke in
German with 86 participants, and English with the other 51
participants.

2.4. Annotation
For data analysis, we annotated our video corpus using the video
coding tool ELAN (Wittenburg et al., 2006). Figure 3 shows an
example of an ELAN annotation of a video of one of the JAMES
user studies using our annotation format.

For annotating the videos, we followed a two-step process. In
the first step, we annotated all passages in the videos in which an
error in the interaction occurred. For example, when the robot
did not understand what a participant had said. We labeled these
instances as error situation. Since not every error situation is
easy to recognize, we coded the error situations in each video
file by two independent raters. Afterwards, we calculated the
percentage of overlap for the annotated error situations between
the two raters. For videos which had less than 75% coding
agreement, the two coders looked at the data material again,
discussed the differences and reached a consensus on the error
situations.

There were two main reasons why coding differed between
the two raters. On one hand, one coder annotated the data from
a more technical perspective, while the other coder considered
the material from a more social viewpoint. For example, if the
robot says that it did not understand the study participant it could
either mean that the speech recognition module failed (technical
perspective) or it could be considered as socially appropriate
(social perspective: people sometimes inquire when they do not
understand an utterance). From a technical perspective, the
utterance would likely be coded as an error situation, while
from a social perspective it might be considered as socially
acceptable and not an error situation. On the other hand, for
correctly identified error situations, the coders did not always
agree on when exactly the error situation begins or ends. For
example, in case of the bartender robot, one coder started
annotating the situation as soon as the robot hand moved toward
the bottles, whereas the other coder only started after it was
clear that the robot would actually grasp the wrong bottle. At
the end, the annotators agreed that all codings should be done
from the viewpoint of the study participant, which means that
in the example the error situation would start from where the
participant can see that the robot will grasp the wrong bottle.

In the second coding step, we annotated the actions the robot
performed during the error situations, together with the social
signals the study participants exhibited at the same time. For
annotation of the social signals we used the following five classes,
that we chose in order to be able also to annotate social signals
that occur in parallel:

• Speech: verbal utterances by the participants, including task-
related sentences for the task given in the user study, questions
that the participants ask to the robot, a group member or the
experimenter, and statements the participants make.

• Head movements: instances where the participant looks to the
robot, a groupmember, or the experimenter. Headmovements
can also be nodding, shaking, and tilting the head.

• Hand gestures: movements that participants make with their
hands, including pointing gestures, emblems, instances where
the participants manipulate an object, or when they touch
themselves on the body or in the face.

• Facial expressions: expressions as for example smiling that
can be observed on the participants’ faces. These also include
signals like rising the eyebrows or making a grimace.

• Body movements: all movements that the participants make
with their whole body, including leaning toward or away from

Frontiers in Psychology | www.frontiersin.org 6 July 2015 | Volume 6 | Article 931

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Giuliani et al. Social signals in HRI error situations

FIGURE 3 | Screenshot of an error situation in the ELAN annotation tool.

the robot,moving toward or away from the robot, and changes
in body posture.

We annotated the social signals that occur during the error
situations in our videos according to these five classes. In the next
section, we present the results of these annotations.

3. Results

Table 1 shows an overview of all annotated verbal and non-
verbal social signals that occurred during the error situations in
our study videos. In the category head movements we found
that participants often look back and forth between robot and
experimenter or a group member if present. Depending on the
study task, they also look back and forth between the robot
and objects in front of them. The participants also sometimes
nod, shake, or tilt their head. We annotated 947 items in the
speech category. We subdivided the speech utterances into task-
related sentences, sentences that the study participants said
to the robot to move the given task forward, statements that
participants made to comment on the situation to either the
robot or another human, questions that participants asked to the
robot or a human, audible laughter, and other utterances, for

example attempts to speak or hesitation sounds. One participant
whistled at the robot to get its attention. In the category facial

expressions, we found that participants often smiled in error
situations. Sometimes the participants grimaced, for example
when they showed a concerned look or pouted. Quite often,
the participants raised their eyebrows. When interacting with
the robot, we found that participants mostly stand still and
do not show much body movement. For the majority of body
movements, participants leaned toward or away from the robot,
less often they completely stepped away from the robot or
changed their posture. In comparison to other social signals,
we found only a few hand gestures. Participants often touched
themselves in the face or put their hands on the hips. If they
had an object in reach, they manipulated that object. Pointing
gestures and iconic gestures were quite rare, we annotated only 1
thumbs up gesture and 9 persons, who waved at the robot. Other
hand gestures include for example drumming with the fingers on
a surface, raising one or both hands, and making a fist with the
hand.

Next, we performed a statistical analysis to compare the
differences in shown social signals for three dependent variables:
social norm violation vs. technical failure; experimenter visible
vs. experimenter not visible; and group interaction vs. single
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TABLE 1 | Counts for all annotated social signals in the categories head movements, speech, facial expressions, body movements, and hand gestures.

Head movements 1279 Speech 947 Facial expressions 484

Look at robot 434 Task-related sentence 487 Smile 314

Look at experimenter 230 Statement 170 Grimace 124

Look into a direction 230 Question 111 Raise eyebrows 46

Look at group member 151 Laugh 98

Tilt head 83 Correction 20

Look to object 72 Other 61

Nod 40

Shake head 39

Body movements 272 Hand gestures 248

Lean 191 Touch own body 45

Move 33 Manipulate object 61

Other 48 Pointing 21

Emblem 10

Other 111

user interaction. For that, we first performed an analysis of our
data and found that all variables are not normally distributed.
Therefore, we chose to compare the data populations with a
Wilcoxon–Mann–Whitney test. Furthermore, we extracted the
data for each error situation individually from the annotations
in order to be able to group them by the dependent variables. The
error situations had an average duration of 18.314 s (standard
deviation 20.861 s). These numbers indicate that many of the
error situations are either quite short or last very long. From the
578 annotated error situations, 427 are social norm violations and
151 are technical failures, in 420 error situations the experimenter
was visible and in 158 situations the experimenter was not visible,
and we annotated 257 group interactions and 321 single user
interactions.

Table 2 shows the result of theWilcoxon–Mann–Whitney test
for the dependent variable social norm violation vs. technical
failure. We only show the social signals for which we found
statistically significant results. The results show that study
participants more often smile and laugh audibly during technical
failures than during social norm violations. The participants
more often look back and forth between the robot head and
objects in front of them during social norm violations. In contrast
to that, they lookmore often to the experimenter during technical
failures. The other statistically significant differences we found
fall into the range of verbal social signals. During social norm
violations, the participants in general speak more, they say task-
related sentences to the robot and also repeat these sentences
more often than during technical failures. However, during
technical failures, the participants comment the situation more
often and make statements to group members.

Table 3 shows the result of theWilcoxon–Mann–Whitney test
for the dependent variable experimenter visible vs. experimenter
not visible. We only present the social signals for which we
found statistically significant results. The results show that the
study participants display much more non-verbal social signals

when the experimenter is visible, for example tilting the head,
making hesitation sounds, smiling, laughing audibly, nodding,
and leaning back. Overall, the participants also talk more when
the experimenter is visible, they say more task-related sentences
to the robot, make more statements, and ask more questions. In
contrast to that, the participants more often look back and forth
between robot hand, robot head, and objects in front of them
when the experimenter is not visible.

Finally, Table 4 shows the result of the Wilcoxon–Mann–
Whitney test for the dependent variable group interaction
vs. single user interaction. Similar to the variable experimenter
visible/not visible, we found that the participants show much
more non-verbal signals, when interacting in groups with the
robot. They laugh audibly, smile, and tilt their heads more
often, when in an error situation. The participants look more
often to the experimenter or a group member, when in a group
interaction, but they look more often back and forth between the
robot and an object, when they interact alone with the robot. We
also found that the participants say more task-related sentences
and make more statements commenting the situation when they
are in a group. However, the participants ask more questions to
the experimenter when they are in a single interaction with the
robot.

After the presentation of the results, we now discuss their
meaning and the implications for HRI in the following section.

4. Discussion

While annotating, we found that the difference in change
of behavior during error situations and non-error situations
is sometimes visible even in single user study instances. For
example, during one of the studies of the JAMES project (Giuliani
et al., 2013), one of the study participants had already ordered
a drink and watched a group member ordering his drink. The
bartender robot did not understand the other group member
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TABLE 2 | Social signals shown during social norm violations and technical failures.

Social signal Social norm violation Technical failure Wilcoxon–Mann–Whitney

Mean (std) Mean (std) p-value W

Laughter 0.10 (0.42) 0.33 (1.02) <0.0001 28346.0

Smile 0.46 (0.97) 0.69 (1.03) 0.0004 26997.5

Look to robot head 0.53 (1.39) 0.35 (1.64) 0.0009 36378.5

Look to object 0.17 (0.73) 0.03 (0.18) 0.0308 33934.0

Look to experimenter 0.27 (0.71) 0.54 (1.21) 0.0124 29161.5

Say task-related sent. 0.37 (0.70) 0.24 (1.00) 0.0012 36552.5

Repeat task-related sent. 0.36 (1.12) 0.26 (0.98) 0.0026 35808.5

Make statement to group 0.04 (0.27) 0.11 (0.41) 0.0079 30524.5

We annotated 427 social norm violations and 151 technical failures. We present for each social signal the mean number of occurrences per interaction and the standard deviation in

parenthesis. Higher results are marked in bold.

TABLE 3 | Social signals shown when the experimenter is visible during an interaction or not.

Social signal Exp. visible Exp. not visible Wilcoxon–Mann–Whitney

Mean (SD) Mean (SD) p-Value W

Tilt head 0.16 (0.52) 0.05 (0.29) 0.0048 30636.0

Make sound 0.08 (0.50) 0.09 (0.33) 0.0468 34547.5

Smile 0.56 (1.00) 0.41 (0.95) 0.0342 30063.5

Laughter 0.22 (0.74) 0.01 (0.08) < 0.0001 28720.0

Raise eyebrows 0.06 (0.29) 0.14 (0.43) 0.0038 35322.0

Nod 0.08 (0.32) 0.02 (0.14) 0.0345 31748.5

Lean back 0.07 (0.28) 0.01 (0.08) 0.0038 31255.5

Attempt to take object 0.00 (0.00) 0.07 (0.80) 0.0212 33600.0

Look to experimenter 0.43 (1.00) 0.08 (0.32) <0.0001 27085.5

Look to group 0.35 (0.91) 0.00 (0.00) < 0.0001 26860.0

Look to object 0.02 (0.15) 0.44 (1.15) < 0.0001 39812.5

Look to robot hand 0.14 (0.88) 0.63 (1.76) < 0.0001 38557.5

Look to robot head 0.19 (1.00) 1.27 (2.07) < 0.0001 46870.5

Say task-related sent. 0.32 (0.85) 0.39 (0.63) 0.0159 36427.5

Make statement to robot 0.09 (0.51) 0.01 (0.11) 0.0397 31933.0

Make statement to group 0.09 (0.36) 0.00 (0.00) 0.0011 31047.0

Make statement 0.13 (0.47) 0.03 (0.16) 0.0044 30840.0

Question to experimenter 0.11 (0.43) 0.01 (0.11) 0.0016 30748.0

Question to group 0.04 (0.26) 0.00 (0.00) 0.0255 32153.0

Question to robot 0.05 (0.36) 0.00 (0.00) 0.0255 32153.0

The experimenter was visible in 420 and not visible in 158 situations. We present for each social signal the mean number of occurrences per interaction and the standard deviation in

parenthesis. Higher results are marked in bold.

and repeatedly kept asking for the order. Because of this,
the participant repeatedly had to smile and even sometimes
laughed audibly. He furthermore kept looking back and forth
between the other group member and the robot. This behavior
changed completely as soon as the experimenter resolved the
situation by declaring that there was an error with the system.
Following this statement, the experiment participant did not
smile any more and kept looking to the experimenter, although
the robot kept asking for the order. This instance clearly
shows how the behavior of the participant changed in seconds
when coming from a social norm violation to a technical
failure.

The counts of social signals in our annotations, that we show
in Table 1, reveal three interesting results: firstly, there were
many examples for error situations in which participants kept
looking back and forth between robot and a group member, or
robot and experimenter, or robot and objects in front of them.
This is an indicator that the experiment participants are quite
literally “looking” for a solution to resolve the error situation.
The recognition and analysis of headmovements are typically not
part of the input modalities of human–robot interaction systems.
Our results suggest that developers of input modalities for HRI
systems should also look into expanding into this direction.
Secondly, we found that participants do not use many hand
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TABLE 4 | Social signals shown during single user and group interactions.

Social signal Group Single user Wilcoxon–Mann–Whitney

Mean (SD) Mean (SD) p-Values W

Tilt head 0.20 (0.57) 0.07 (0.37) 0.0002 45010.5

Smile 0.71 (1.14) 0.37 (0.82) <0.0001 48209.0

Laughter 0.30 (0.86) 0.05 (0.35) < 0.0001 47453.5

Change posture 0.02 (0.15) 0.08 (0.36) 0.0337 39755.0

Look to experimenter 0.44 (1.03) 0.26 (0.73) 0.0030 45377.0

Look to group 0.57 (1.11) 0.00 (0.00) <0.0001 54088.5

Look to object 0.03 (0.20) 0.21 (0.83) 0.0002 37957.5

Look to robot head 0.18 (1.19) 0.73 (1.60) <0.0001 31272.5

Say task-related sent. 0.46 (1.03) 0.24 (0.51) 0.0075 45263.5

Rephrase task-related sent. 0.22 (0.94) 0.04 (0.28) 0.0006 43924.5

Make statement to group 0.14 (0.45) 0.00 (0.00) < 0.0001 45582.0

Make statement to robot 0.14 (0.64) 0.01 (0.11) 0.0002 43800.0

Make statement 0.06 (0.38) 0.13 (0.44) 0.0068 38765.5

Attempt to speak 0.05 (0.23) 0.01 (0.11) 0.0226 42502.0

Question to experimenter 0.05 (0.25) 0.12 (0.44) 0.0456 39535.5

Question to group 0.06 (0.32) 0.00 (0.00) <0.0001 43335.0

We annotated 257 group interactions and 321 single user interactions. We present for each social signal the mean number of occurrences per interaction and the standard deviation in

parenthesis. Higher results are marked in bold.

gestures during error situations. Furthermore, the majority of
hand gestures do not fall into the categories that typically are
studied in gesture communication.We found only a few pointing
gestures and emblems, which questions the importance of these
gesture categories for human–robot interaction. Also, we argue
that the hand gestures that fall into the categories touch own body,
manipulate object, and other, are not used by the participants
to communicate their intentions. Thirdly, the participants often
smiled during error situations, more often when they experienced
technical failures and less often during a social norm violation.
Work by Hoque et al. (2012) shows that humans smile in
frustrating situations. They recorded the faces of participants
who filled out a web form that was designed to elicit frustration.
90% of the participants smiled in these frustrating situations. We
have no subjective data that could tell us whether the participants
experienced frustration during the error situations with our
robots. However, our video analysis indicates that they were
frustrated, even more in the case of technical failures than when
experiencing a social norm violation.

We often observed in the experiment videos that the
participants kept standing still without moving at the beginning
of an error situation. In psychology literature, this is referred to
as “freezing.” It is known that humans stop moving in certain
situations. For example, Witchel et al. (2014) showed that the
absence of non-instrumental movements can be a sign for the
engagement of humans withmedia. It is also known that humans,
as well as animals, freeze as a response to fear or stress (Hagenaars
et al., 2014). We argue that the participants in our videos shortly
freeze as response to the stress induced by the error situation and
the presence of the experimenter. In future work, we will analyse
how often, how long, and in which situations the participants
kept standing still in our studies.

Our statistical evaluation of the error situations ordered by
situation type in Table 2 has to be interpreted with the tasks
of the annotated user studies in mind. Of course, the users
say more task-related sentences during social norm violations,
because they want to solve the given task during the study. For
example, many of the task-related sentences are said when the
robot does not understand the participant so that the participant
has to repeat the sentence. This indicates that speech is the
most influential channel to resolve an error situation. However,
it is interesting to see that the participants significantly talk less
during technical failures.

We believe that the study participants are able to recognize if
an error situation is purely technical and, therefore, stop saying
task-related sentences to the robot. As we mentioned above, our
results also show that the participants smile more often during
technical failures, which may be elicited by the frustration they
experience (Hoque et al., 2012). The participants also look more
often to the experimenter. This suggests that they are looking for
guidance from an authority figure during a situation they did not
experience before (Smith et al., 2014).

Finally, the results of the statistical analysis in Tables 3, 4 in
our opinion contain the most interesting result of our analysis.
The participants show far more non-verbal signals, when they are
in a group and/or can see the experimenter. This suggests that
participants do not see the robot as an interaction partner that
can interpret the same signals as a human. This is also supported
by the fact that the participants make more statements about
the error situation when they interact in a group with the robot
or when the experimenter is visible. Of course, we also have to
mention that some of the results for the conditions experimenter
visible vs. experimenter not visible and group interaction vs. single
user interaction are not surprising. For example, the participants
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look less often to the experimenter when he/she is not visible,
although they still attempt to look at him/her. This serves as a
good test for the validity of our annotations.

5. Conclusion

Our video analysis of social signals in error situations during
human–robot interaction experiments shows three main results.
(1) The participants use head movements as a social signal to
indicate when an error situation occurs. The participants do not
usemany hand gestures during these situations. Furthermore, the
participants often smile during error situations, which could be
an indication for experienced frustration. (2) The participants
try to resolve social norm violations through speech. They
can recognize technical failures of the robot, but they look
for guidance by the experimenter in these situations. (3) The
participants see the robot as an interaction partner that cannot
interpret non-verbal social signals, such as smiling, laughing,
nodding, shaking and tilting the head.

These findings have implications for the design and
evaluation of HRI systems. HRI system builders should
consider implementing modules for the automatic detection and
interpretation of head movements, especially as an indicator
for user engagement or confusion. This modality is not often
used as an input channel for robots, but would be fairly
easy to implement with modern sensors and image processing
technology. It is known that humans use body posture to
communicate their intentions (Bull, 1987; Clark, 2003). There
is, however, not much work on the interpretation of head
movements in particular. The importance of head movements
is also supported by research from the cognitive sciences and
neuropsychology that shows that head movements play a vital
role in recognizing faces (O’Toole et al., 2002), especially for
patients with congenital prosopagnosia, a condition that makes
it difficult for an individual to recognize someone from his or her
face (Longmore and Tree, 2013).

Evaluators of HRI systems should not discard the data of study
trials in which errors occurred, because this data can contain

valuable information, as our results show. Our analysis design
also shows that the analysis of data from different HRI studies
is possible and produces valuable results, when the study data
can be coded in abstract categories. Furthermore, when designing
the evaluation, one needs to thoroughly consider whether the
experimenter or other humans should be present during the
study or not, especially whenmeasuring the social signals of study
participants toward the robot. Our data clearly shows that the
presence of other humans during an HRI study influences the
social signals that the participants show. This is also supported by
research in psychology, which has shown that study participants
change their behavior when they are aware of being recorded
(Laurier and Philo, 2006).

In future work, we plan to analyse parts of our video corpus
in more detail. Specifically, we will execute a linguistic analysis
of the task-related sentences, statements, and questions that the
study participants said during the experiment. Furthermore, we
will analyse the temporal connection between robot actions and
the onset of the reactions of the participants during the error

situations. As mentioned in the discussion, we will measure,
how often and how long the participants freeze when they
experience error situations. Finally, we plan to implement an
automatic head movement analysis that interprets the head
movements of humans, which is based on the findings of our
analysis.
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