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The application of mixture models to flexibly estimate linear and nonlinear effects in the

SEM framework has received increasing attention (e.g., Jedidi et al., 1997b; Bauer, 2005;

Muthén and Asparouhov, 2009; Wall et al., 2012; Kelava and Brandt, 2014; Muthén and

Asparouhov, 2014). The advantage of mixture models is that unobserved subgroups

with class-specific relationships can be extracted (direct application), or that the mixtures

can be used as a statistical tool to approximate nonnormal (latent) distributions (indirect

application). Here, we provide a general standardization procedure for linear and

nonlinear interaction and quadratic effects in mixture models. The procedure can also

be applied to multiple group models or to single class models with nonlinear effects like

LMS (Klein and Moosbrugger, 2000). We show that it is necessary to take nonnormality

of the data into account for a correct standardization. We present an empirical example

from education science applying the proposed procedure.

Keywords: interaction effect, quadratic effect, nonlinear effect, mixture model, nonnormality, standardization

The estimation of nonlinear latent effects in the structural equation modeling (SEM) framework
has received increasing attention over the last three decades. Several approaches for the analysis of
nonlinear SEM have been published, which include among others the product indicator approaches
(e.g., Kenny and Judd, 1984; Bollen, 1995; Jaccard and Wan, 1995; Jöreskog and Yang, 1996; Ping,
1995, 1996; Wall and Amemiya, 2001; Marsh et al., 2004; Little et al., 2006; Marsh et al., 2006;
Kelava and Brandt, 2009), distribution analytic approaches (Klein and Moosbrugger, 2000; Klein
and Muthén, 2007), moment based approaches (Wall and Amemiya, 2000, 2003; Mooijaart and
Bentler, 2010), and Bayesian approaches (Arminger and Muthén, 1998; Lee, 2007; Kelava and
Nagengast, 2012; Kelava and Brandt, 2014).

A typical structural model for a latent criterion η and two latent predictor variables (ξ1, ξ2) that
includes one interaction effect and two quadratic effects is given by

η = α + γ1ξ1 + γ2ξ2 + γ3ξ1ξ2 + γ4ξ 21 + γ5ξ 22 + ζ (1)

where α is the latent intercept, the γ s are the latent regression coefficients, and ζ is the latent
residual.

In recent years, researchers have performed simulation studies to investigate the performance
of several approaches to estimate latent nonlinear effects with structural equation models (e.g.,
Moulder and Algina, 2002; Wall and Amemiya, 2003; Marsh et al., 2004; Klein and Muthén, 2007;
Cham et al., 2012; Brandt et al., 2014; Kelava et al., 2014). One of the main concerns in these
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studies was that nonlinear effects may be confounded with
nonnormal distributions of the variables, which may lead to
biased parameter or standard error estimates. For example, with
the latent moderated structural equation modeling approach
(LMS; Klein and Moosbrugger, 2000), it has been shown that
it provides most efficient estimates under the condition of
normally distributed predictors, but that this method produces
spurious effects when data are nonnormally distributed (Kelava
andNagengast, 2012).Within the widely used class of the product
indicator approaches, the unconstrained approach (Marsh et al.,
2004, 2006; Kelava and Brandt, 2009) has become most popular,
because it provides fairly robust parameter estimates (Marsh
et al., 2004; Kelava and Nagengast, 2012) and in contrast to
constrained approaches (Kenny and Judd, 1984; Jöreskog and
Yang, 1996) it is comparatively easy to implement. Nevertheless,
standard errors tend to be underestimated even in situations with
normally distributed data, which leads to inflated Type I error
rates (Kelava et al., 2011).

One conceptually different approach to modeling nonlinear
effects is the use of semiparametric mixture models (SEMM;
Arminger and Stein, 1997; Jedidi et al., 1997a,b; Dolan and van
der Maas, 1998; Arminger et al., 1999; Muthén, 2001; Bauer
and Curran, 2004; Bauer, 2005; Pek et al., 2009, 2011). Finite
mixtures of linear SEM are used to approximate the unknown
nonlinear relationship of the latent variables. While parametric
approaches specify the functional form of their relationship a
priori, the SEMM approach does not require assumptions about
the functional form. In addition, the SEMM approach does not
require the assumption of normally distributed latent variables
and disturbances inherent in conventional SEM, but allows
for flexible approximations of nonnormal distributions. Hence,
the SEMM approach is a flexible tool for predicting the latent
dependent variable if there is nonnormality and if obtaining a
strict parametric representation of the functional relation does
not have the highest priority (for a discussion see Bauer, 2005).

In general, mixture models can be applied with two different
objectives. First, they can be used to identify unobserved groups
within a heterogeneous population with linear and/or nonlinear
group-specific relationships between the variables. In this kind
of direct application, the mixture distributions are interpreted
as representing distinct subpopulations. Second, mixture models
can be used to approximate nonnormal distributions or
nonlinear relationships per se, without assuming meaningful
distinct subgroups in a population (McLachlan and Peel, 2000).
These applications are then called indirect (see Bauer, 2005,
for an application) and can be classified as a semiparametric
approach to SEM. They have the advantage that they can be
applied even when assumptions for traditional SEM are violated.

When a parametric representation of the nonlinear functional
relation is of interest and nonnormality is given, an alternative
is a recently proposed nonlinear structural equation mixture
modeling approach (NSEMM; Kelava et al., 2014). With the
NSEMM approach, nonnormality of the latent predictors can
be approximated by applying a mixture of normal distributions
(as an indirect application). Alternatively, the NSEMM approach
can be used in a direct application, where heterogeneous
subpopulations show different linear or nonlinear relations (e.g.,
interaction or quadratic effects) between latent variables.

STANDARDIZATION OF SEM WITH
PARAMETRIC NONLINEAR EFFECTS

In general, as in manifest regression, it is common to use
standardized regression coefficients in SEM in order to make
effects comparable in their size and facilitate interpretation
of results. For linear SEM, Bollen (1989, p. 165) defines a
standardized coefficient γ ∗

i for a coefficient γi of a given predictor
ξi (cp. Equation 1) as

γ ∗
i : = γi

√

φii

φ00
(2)

where φii = Var(ξi) and φ00 = Var(η). Standardized
coefficients allow researchers to compare the effect sizes of
predictors independent of the scaling of the predictor and the
dependent variable. This argument also applies to interaction and
quadratic effects. First, effect sizes are comparable across different
studies. Second, simple slopes (see Aiken and West, 1991) based
on standardized effects may give additional information about
the importance of such nonlinear effects compared to simple
slopes for unstandardized coefficients because they are also
independent of the variables’ scaling. Third, the size of linear
effects depends on the means of the predictor variables when
nonlinearity is present in the data. In order to make linear
effects comparable in nonlinear models, researchers often center
predictors before analyzing data; however, in some situations
(e.g., in multiple group or latent class models; see below) this
a priori centering is not possible. In these cases, an appropriate
post-hoc standardization procedure is necessary that allows to
compare linear effects in a meaningful way.

For mixture SEM and nonlinear SEM as introduced above,
the standardization of parameter estimates needs some special
considerations. For example, product terms of latent variables
(e. g., ξ1ξ2 or ξ 21 ) have means and variances, which are not
zero and one, respectively, even if the original variables were
standard normally distributed (Bohrnstedt andGoldberger, 1969;
Friedrich, 1982). Therefore, standardization procedures for linear
SEM as produced by currently available software packages are not
suitable for nonliner SEM.

For nonlinear SEM, Wen et al. (2010) addressed the problem
of a correct standardization of the parameter estimates for
SEM with single latent interaction effects. They showed that
the standardized results (as given for linear SEM) provided by
software programs are incorrect, because they refer to falsely
standardized product variables. They provided formulas that
allow one to transform an incorrectly standardized solution
or an unstandardized solution to a correctly standardized
solution. Following Wen et al.’s (2010) notation, the correctly
standardized coefficients refer to an equation with correctly
standardized variables (Friedrich, 1982; Wen et al., 2010), which
is given as

η• = α• + γ •
1 ξ

•
1 + γ •

2 ξ
•
2 + γ •

3 ξ
•
1 ξ

•
2 + γ •

4 (ξ
•
1 )

2 + γ •
5 (ξ

•
2 )

2 + ζ •.
(3)

Note, that η•, ξ•1 , and ξ•2 are standardized variables with
zero means and unit variances. The product variables ξ•1 ξ

•
2 ,
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(ξ•1 )
2, and (ξ•2 )

2 are products of standardized variables,
but they are not standardized variables themselves (i.e.,
their means are not equal to zero and their variances are
not equal to one, in general). A regression equation with
standardized product variables of the form (ξ1ξ2)

∗ = (ξ1ξ2 −
E[ξ1ξ2])/sd(ξ1ξ2), which have zero mean and unit variance
would lead to an incorrectly standardized solution (as shown
by Wen et al., 2010). As a consequence, γ •

3 , γ
•
4 , and γ •

5 in
Equation (3) refer to the correctly standardized coefficients
for the nonlinear model and γ ∗

3 , γ
∗
4 , and γ ∗

5 refer to the
standardized coefficients provided by standard statistic software
that need additional corrections for interaction and quadratic
effects.

The applicability of the formulas presented by Wen et al.
(2010) suffers from three limitations. First, their standardization
is limited to approaches that explicitly estimate (co-)variances
of the latent product terms (e.g., the variance of ξ1ξ2 or the
covariance between ξ1ξ2 and ξ 21 ). These (co-)variances can be
retrieved from product indicator approaches or moment based
approaches (e.g., Wall and Amemiya, 2003). They cannot be
retrieved from distribution analytic approaches as LMS (Klein
and Moosbrugger, 2000)—which is implemented as a standard
estimator for nonlinear effects in Mplus (Muthén and Muthén,
1998–2012)—or QML (Klein and Muthén, 2007), because no
(co-)variances of the latent product terms are estimated. As
a consequence, neither a transformation from an incorrectly
standardized solution provided by software programs (see
Equation 12 in Wen et al., 2010) nor from an unstandardized
solution (see Equation 11 and Supplementary Material (A.1) in
Wen et al., 2010) is possible based on the formulas provided by
Wen et al. (2010).

Second, the same is true for semiparametric approaches using
mixtures of normal distributions to account for nonlinearity or
nonnormality of the latent predictors (Jedidi et al., 1997b; Kelava
and Nagengast, 2012; Kelava et al., 2014). In these approaches,
the latent predictors’ (nonnormal) distribution is approximated
by a mixture of normal distributions with class-specific means
and covariances. They have been shown to produce robust
parameter estimates and are based on a latent class framework.
The approaches do not provide estimates for the (co-)variances
of the overall marginal distribution of the product terms and
can be classified as distribution analytic approaches. Hence, the
standardization procedure provided byWen et al. (2010) can also
not be used for this class of approaches.

Third, the procedure is restricted to models with centered
latent predictor variables (see Wen et al., 2010, p. 4). This is
problematic in situations where the means of the latent predictor
variables have a substantive meaning. This can be the case
in situations where multiple group models are estimated with
known groups (Jöreskog, 1971; Sörbom, 1974) or latent classes
where classmembership is unknown a priori (Jedidi et al., 1997b).
Then, typically the means are not restricted to be zero, but are
estimated freely because they may contain information about
the dissimilarities between the (a priori known or unknown)
groups. If in fact nonlinearity is present in the data, the size
of the linear effects depends on the means of the variables
(e.g., Echambadi and Hess, 2007). Hence, the interpretation and

the standardization of the linear effects need to be conducted
with regard to the means of the variables involved in these
situations.

SCOPE OF THE ARTICLE

In this article, we will provide the following extensions to
previous work on the standardization of linear and nonlinear
effects in SEM including latent mixtures: In the next section, we
generalize the standardization procedure for nonlinear effects in
SEM for (latent) class models with uncentered latent predictor
variables. In situations with normally distributed data, this
generalization allows for standardized parameter estimates of
distribution analytic approaches, for example, LMS in Mplus,
which do not provide explicit estimates of the (co-)variances
of the latent product terms as compared to product indicator
approaches. Furthermore, this generalization allows one to
standardize (linear and nonlinear) group-specific regression
coefficients for multiple group and latent class models in a direct
application of mixture models.

Then, we derive formulas for the indirect application of
semiparametric latent mixture SEM, which may or may not
include nonlinear effects (Jedidi et al., 1997b; Bauer, 2005;
Kelava and Nagengast, 2012; Kelava et al., 2014). The formulas
we present are general in the sense that they can be applied
to all mixture models including nonlinear effects, (e.g., to
Growth Curve Mixture Models with interaction effects; Wen
et al., 2014), or to multiple sample analyses with nonlinear
effects when class membership is known a priori. The formulas
provided can be used to standardize (non-)linear effects in
situations with nonnormally distributed data (e.g., when applying
the NSEMM approach). After the formal presentation, the
proposed procedures are illustrated using data from education
science.

STANDARDIZATION PROCEDURES

Standardization of the Direct Application of
a Mixture Model
For multiple class models with known or unknown class
membership, the structural model specified in Equation (1)
extends to

ηg = αg + γ1,gξ1,g + γ2,gξ2,g + γ3,gξ1,gξ2,g
+γ4,gξ 21,g + γ5,gξ 22,g + ζg, (4)

with g = 1, . . . ,G (latent) classes. In this model, each regression
coefficient may be class-specific. The latent residual is distributed
as ζg ∼ N(0, ψg) and the latent predictors are distributed as
(ξ1,g, ξ2,g)

′ ∼ N(κg,8g) with class-specific parameters.
If the estimated parameters in the measurement model are

allowed to differ across classes in addition to the proposed
relaxation of the parameters in the structural model, the
interpretation of the latent constructs is class-specific. To ensure
that the latent constructs have the same meaning across classes,
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it is necessary to set the parameters of the measurement model
equal across classes (intercepts, factor loadings and residual
variances for strict measurement invariance, or intercepts and
factor loadings for strong invariance, Meredith, 1993).

The standardization of the model given in Equation (4) is
conducted within each class, such that the effect sizes can be
calculated for each latent class separately. It is based on the
correct within class standardization of ηg , which is given by

η•g =
ηg − E[ηg]

sd(ηg)
=
ηg − κ0,g
√

φ00,g
(5)

with the class-specific (conditional) expectation κ0,g and variance
φ00,g of ηg . For the structural model given in Equation (4), the
class-specific (conditional) expectation κ0,g is given by

κ0,g = αg + γ1,gE[ξ1,g]+ γ2,gE[ξ2,g]+ γ3,gE[ξ1,gξ2,g]
+ γ4,gE[ξ 21,g]+ γ5,gE[ξ 22,g]+ E[ζg]

= αg + γ1,gκ1,g + γ2,gκ2,g + γ3,gκ3,g + γ4,gκ4,g + γ5,gκ5,g
(6)

with class-specific means κ1,g, κ2,g of the latent predictors
ξ1,g, ξ2,g . We assume that the latent residual term ζg has an
expected value of zero within each class g. The expected values
of the latent product terms are

κ3,g = κ1,gκ2,g + φ12,g κ4,g = κ21,g + φ11,g κ5,g = κ22,g + φ22,g
(7)

with class-specific variances φ11,g, φ22,g of the predictors
ξ1,g, ξ2,g , and covariance φ12,g . Note that these equations do not
depend on any distributional assumption. The model implied
variance φ00,g of ηg is given in Supplementary Material A.
Extending Equation (5) results in

η•g =
ηg − κ0,g
√

φ00,g

=
αg+γ1,gξ1,g+γ2,gξ2,g+γ3,gξ1,gξ2,g+γ4,gξ 21,g+γ5,gξ 22,g+ζg

√

φ00,g

−
αg + γ1,gκ1,g + γ2,gκ2,g + γ3,gκ3,g + γ4,gκ4,g + γ5,gκ5,g

√

φ00,g

= γ1,g
ξ1,g − κ1,g

√

φ00,g
+ γ2,g

ξ2,g − κ2,g
√

φ00,g
+ γ3,g

ξ1,gξ2,g − κ3,g
√

φ00,g

+ γ4,g
ξ 21,g − κ4,g

√

φ00,g
+ γ5,g

ξ 22,g − κ5,g
√

φ00,g
+

ζg
√

φ00,g
. (8)

Replacing the predictor variables (ξ1,g, ξ2,g)
′ by their

standardized versions ξ1,g = ξ•1,g
√

φ11,g + κ1,g and

ξ2,g = ξ•2,g
√

φ22,g + κ2,g results in

η•g = γ1,g
(ξ•1,g

√

φ11,g + κ1,g)− κ1,g
√

φ00,g

+ γ2,g
(ξ•2,g

√

φ22,g + κ2,g)− κ2,g
√

φ00,g

+ γ3,g
(ξ•1,g

√

φ11,g + κ1,g)(ξ•2,g
√

φ22,g + κ2,g)− κ3,g
√

φ00,g

+ γ4,g
(ξ•1,g

√

φ11,g + κ1,g)2 − κ4,g
√

φ00,g

+ γ5,g
(ξ•2,g

√

φ22,g + κ2,g)2 − κ5,g
√

φ00,g
+

ζg
√

φ00,g
. (9)

Standard algebra, some rearrangements, and substituting
Equation (7) into Equation (9) leads to

η•g = (γ1,g + γ3,gκ2,g + 2γ5,gκ1,g)

√

φ11,g

φ00,g
ξ•1,g

+ (γ2,g + γ3,gκ1,g + 2γ5,gκ2,g)

√

φ22,g

φ00,g
ξ•2,g

+ γ3,g

√

φ11,gφ22,g

φ00,g
ξ•1,gξ

•
2,g + γ4,g

φ11,g
√

φ00,g
(ξ•1,g)

2

+ γ5,g
φ22,g

√

φ00,g
(ξ•2,g)

2

−
γ3,gφ12,g + γ4,gφ11,g + γ5,gφ22,g

√

φ00,g
+

ζg
√

φ00,g
. (10)

From this, the correctly standardized regression coefficients (see
Equation 3) can be defined as:

γ •
1,g : = (γ1,g + γ3,gκ2,g + 2γ4,gκ1,g)

√

φ11,g

φ00,g
(11)

γ •
2,g : = (γ2,g + γ3,gκ1,g + 2γ5,gκ2,g)

√

φ22,g

φ00,g
(12)

γ •
3,g : = γ3,g

√

φ11,gφ22,g

φ00,g
(13)

γ •
4,g : = γ4,g

φ11,g
√

φ00,g
(14)

γ •
5,g : = γ5,g

φ22,g
√

φ00,g
. (15)

An extension tomore than two predictor variables andmore than
one dependent variable is straightforward.

Note that the formulations for the class-specific nonlinear
effects in Equations (13–15) are similar to those given in Equation
(10) and the discussion section by Wen et al. (2010). In contrast
to the procedure suggested by Wen et al. (2010), we do not
need an estimate for the (co-)variances of the product terms,
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but provide a formula for the model implied variance of ηg in
Supplementary Material A. The procedure suggested here only
requires information about the means and (co-)variances of the
latent predictors (ξ1,g, ξ2,g)

′, and the assumption of normally
distributed predictors within each class. Setting G = 1 allows
one to use the formulas for the LMS approach as well as all
other approaches for the estimation of latent interaction and
quadratic effects under the assumption of normally distributed
predictors (for nonnormally distributed predictors, see the next
section). The formulas are presented here for the transformation
of the unstandardized coefficients because software programs
(e.g., Mplus; Muthén and Muthén, 1998–2012) typically only
provide unstandardized results for nonlinear models, especially
when latent classes are extracted.

The standardized coefficients for the linear effects γ •
1,g and

γ •
2,g depend on the class-specific means of the latent predictor

variables (see also Moosbrugger et al., 1997). In general, linear
effects are not independent of data transformations if nonlinear
effects are present in the data. Hence, an interpretation of the
linear effects as substantive effects should only be conducted
when the predictors have a physicallymeaningful scale. Typically,
these effects can only be interpretedmeaningfully in combination
with the nonlinear effects, in the sense of simple slopes (see
Aiken and West, 1991). With the standardization proposed
here, the linear effects are interpreted as the standardized
linear relationship for subjects with an average value in the
respective predictor variable. As a consequence, these effects can
be interpreted in the same way as if the predictor variables had
been centered prior to analysis. For the special case with zero
means of the predictor variables, that is for κ1,g = κ2,g = 0,
and G = 1, the formulas simplify to those provided by Wen et al.
(2010), but note that centering the predictor variables is arbitrary
and hence, the size of the (un-)standardized linear effects is
arbitrary too.

If data are nonnormally distributed, it needs to be taken
into account for the standardization because the variances
and covariances between the latent product variables (and
consequently the explained variance of the dependent variable)
depend on the predictor variables’ distribution. In the next
section, we consider this by using a mixture model to
approximate nonnormal distributions.

Standardization for the Indirect Application
of a Mixture Model
For the indirect application of the mixture model, the
standardization is carried out across the mixture components.
The restrictions imposed on the parameters constrain some or
all parameters to be the same across classes except for the means
and (co-)variances of the latent predictors. More specifically,
for the NSEMM approach, all parameters except for the means
and (co-)variances of the latent predictors are constrained across
classes. This allows for a straightforward interpretation of the
regression coefficients while the latent predictors’ distribution
can be approximated by the mixture model. In other indirect
applications of SEMM approaches (e.g., Bauer, 2005) linear
class-specific regression coefficients are used to approximate

curvilinear relationships with unknown functional form. For
such applications, a standardization cannot be conducted from a
conceptual point because a standardized effect necessarily refers
to a specific parametric effect with an a priori defined functional
relationship between the variables.

In the NSEMM approach, the measurement model is
restricted to be equal across classes and the structural model from
Equation (4) is constrained such that

ηg = α + γ1ξ1,g + γ2ξ2,g + γ3ξ1,gξ2,g + γ4ξ 21,g + γ5ξ 22,g + ζg
(16)

with the latent residual distributed as ζg ∼ N(0, ψ). The latent
predictors are distributed as ξ g = (ξ1,g, ξ2,g)

′ ∼ N(κg,8g)
within each class. The overall distribution of ξ g is a nonnormal
mixture distribution (see Haas et al., 2009) with mean vector

κ =
G

∑

g=1

πgκg (17)

and covariance matrix

8 =
G

∑

g=1

πg(8g + κgκ
′
g)− κκ ′. (18)

The standardized coefficients are defined analogously to
Equations (11–15) without the class-specificity:

γ •
1 : = (γ1 + γ3κ2 + 2γ4κ1)

√

φ11

φ00
(19)

γ •
2 : = (γ2 + γ3κ1 + 2γ5κ2)

√

φ22

φ00
(20)

γ •
3 : = γ3

√

φ11φ22

φ00
(21)

γ •
4 : = γ4

φ11√
φ00

(22)

γ •
5 : = γ5

φ22√
φ00

. (23)

The means and the (co-)variances of the latent predictors are
the elements of the mean vector and the covariance matrix in
Equations (17) and (18) (see Supplementary Material A for the
general formulas for the moments of mixture variables). An
extension to more than two predictor variables and more than
one dependent variable again is straightforward.

The model implied variance φ00 of ηg again is given in
Supplementary Material A. Note that for the derivation of
this variance we do not assume that the predictor variables
are normally distributed. As a consequence, third and fourth
moments of the variables need to be taken into account for the
calculation of the model implied variance of ηg . Here, we suggest
to use themoments of themixture distributions that approximate
the nonnormality of the latent predictors as an estimate for these
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higher order moments. The derivation of the model implied
variance of the latent dependent variable shows that it is essential
to take nonnormality of the predictor variables into account
when standardizing linear and nonlinear effects.

Standardization in Multiple Group Models
with Observed Groups
In applications of multiple group models, class-specific
regression coefficients are not always standardized using
the within-class means and variances. However, they can be
standardized using the pooled means and variances across
groups, or they can be standardized using those of a reference
group. If researchers want to use pooled parameters in order
to have a common reference system for different subgroups,
the means and variances of an indirect application of a mixture
model (given in Equations (19–23)) can be used instead of those
for a within group standardization based on the formulas given
in Equations (11–15).

The decision whether a standardization should be conducted
using the within variances or the pooled variances should be
based on the comparisons that the user wants tomake. If different
groups within a study are compared to each other (e.g., female
and male students) then a pooled variance is meaningful because
differences across groups (e.g., means) are maintained and
represented in the standardized results. The frame of reference
is defined by the pooled means and variances. As a consequence,
standardized coefficients refer to a common metric in the study.

If estimates are compared across studies for specific subgroups
(e.g., female students across different studies in a meta analysis)
then a within standardization is meaningful because the frame
of reference is then defined by group-specific parameters. The
pooled variances could lead to wrong interpretations because
they are influenced by the group proportions in each study;
if these proportions are different across studies (e.g., 10%
females in one study and 80% in another study) a comparison
of standardized effects based on the pooled variance can be
misleading (this will be the case when, e.g., the variances of
male and female students are clearly different because the
weighted sums of the means and variances depend on the group
proportions).

In Supplementary Material B, we illustrate the two
standardization procedures with a fictitious data set on
shoe size and body height.

EMPIRICAL EXAMPLE

In this section, we illustrate the standardization procedure for
direct and indirect applications of nonlinear structural equation
mixturemodels with an example based on data from the Program
for International Student Assessment 2009 (PISA; Organisation
for Economic Co-Operation and Development, 2010), which is
publicly available under http://pisa2009.acer.edu.au/downloads.
php. The sample was an Australian subsample of N = 1092
students who took part in a reading test. Students’ attitude toward
reading (Att) and their reported online activities (Online; i.e.,
read emails or chat online) were selected as predictors of reading
skills (Read). For simplicity, we neglected the clustered data

structure due to the schools that had only a minor impact on the
reading skills outcome (ICC = 0.15)1.

In addition to the linear effects, we also tested the nonlinear
structure between the variables and included one interaction and
two quadratic effects in each model to increase the predictive
power of the model. We assumed that students with a positive
attitude toward reading (i.e., students with high values in Att)
benefit more in terms of their reading skills from engaging
in online reading activities. We operationalized this hypothesis
with an interaction between Att and Online. Furthermore, we
formulated quadratic effects for both latent predictor variables
based on recommendations by Ganzach (1997) and Klein et al.
(2009) because quadratic effects should be included into an
interaction model in order to avoid spurious interaction effects.
We also based this decision on the assumption that a positive
reading attitude and online activities do not linearly increase
reading skills; instead, we assumed that there may be a saturation
effect which was operationalized by a negative quadratic effect.

In addition to the structural model, we included different
assumptions with regard to observed or unobserved groups.
First, we were interested if different latent classes with distinct
linear and nonlinear effects could be extracted from the data.
This may offer insights about how reading skills may be class-
specific and therefore if different subpopulations need to be
assumed. This model is a direct application of a mixture model
[Model (a)]. Second, in Model (b), we tested whether the latent
predictors were nonnormally distributed, while we assumed a
global relationship between the variables for all students. This
model is an indirect application of a mixture model and allows
for an unbiased estimation of the latent nonlinear effects if
nonnormality is present in the data. Third, we tested whether
gender effects could be identified in the data [Model (c)].
Previous research has indicated that attitudes toward reading
as well as reading skills differ for girls and for boys (Schiefele,
2009; Wigfield and Cambria, 2010). Here, we also tested whether
the relationships between these variables differ across girls and
boys (for the gender specific relationship between interest and
achievement, see Schiefele et al., 1992).

Model Formulation
Measurement Model

Between 7 and 11 items were aggregated into three indicators for
each latent variable (i.e., item parcels) for didactic purposes2. The
measurement models were given by

y = τ + 3(Att,Online,Read)′ + ǫ, (24)

with an intercept vector τ , a factor loading matrix 3 and a
residual vector ǫ. The factor loading matrix 3 was formulated
with a simple structure (i.e., each item loaded only on one latent
variable). The residual variables ǫ were assumed to be mutually
uncorrelated and normally distributed with zero mean vector

1A latent multilevel model that included a latent random intercept variable for

reading skills did not substantively change the parameter estimates presented here.
2Reading skills: average of items R06, R102, R219, R220, R414, R447, R452, and

R458. Attitude toward reading: items ST24Q01–ST24Q11. Online activities: items

ST26Q01–ST26Q07.
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and (diagonal) covariance matrix 2. For the identification of the
model, the intercept and the factor loading of the first indicator
of each latent variable were fixed to zero and one, respectively.

Structural Models

We specified three different types of structural models: (a) a
direct application of a mixture model with varying regression
coefficients across classes and (b) an indirect application with
fixed regression coefficients across classes. Each of these models
(a) and (b) were specified with two or three latent classes. Finally,
Model (c) was a multiple group model with gender as a grouping
variable and varying regression coefficients across groups. For
comparison, a single class model was analyzed, too.

More specifically, Model (a) was specified as

Readg = αg + γ1,gAttg + γ2,gOnlineg + γ3,gAttg · Onlineg
+ γ4,gAtt2g + γ5,gOnline2g + ζg, (25)

with a normally distributed residual ζg ∼ N(0, ψg) and
predictors (Attg,Onlineg)

′ ∼ N(κg,8g) within each latent
class g.

Model (b) was specified for the indirect application as

Readg = α + γ1Attg + γ2Onlineg + γ3Attg · Onlineg
+ γ4Att2g + γ5Online2g + ζg, (26)

with a normally distributed residual ζg ∼ N(0, ψ) and predictors
(Attg,Onlineg)

′ ∼ N(κg,8g) within each latent class g. The
latent classes in this model were used to approximate the
potentially nonnormal distribution of the latent variables Att and
Online.

Model (c) was specified as a multiple group model with
gender as a grouping variable, such that reading skills were
predicted separately for male and female students, whereby the
measurement model was invariant across groups. The structural
model was formulated according to Equation (25).

All models were estimated in Mplus (Muthén and Muthén,
1998–2012).

Results
Model Selection

The model fit indices for the three models with different class
solutions are presented in Table 1. For the direct application, the
two class solution was selected as the final model because the BIC
value was smaller compared to the three class solution. For the
indirect application, the two class solution provided the best fit.
The larger fit indices for the single class solution indicated the
necessity to account for nonnormality in the data when analyzing
nonlinear effects (for details see Kelava et al., 2014).

In this analysis, we did not evaluate whether the direct or
the indirect application [Model (a) or Model (b)] was more
appropriate because the application of either model should be
based on theory. While Model (a) aims to extract subgroups
with homogeneous patterns, Model (b) fits a model for all
subjects and only accounts for nonnormality by the latent class
model. Thus, the latent classes are not interpreted as subgroups.
Figure 1 illustrates the differences between Model (a) and (b).

TABLE 1 | Model fit indices for the three models.

Number of classes AIC BIC Adjusted BIC

DIRECT APPLICATION [MODEL (A)]

2 9,899 10,133 9,984

3 9,889 10,188 9,998

INDIRECT APPLICATION [MODEL (B)]

1 10,094 10,264 10,156

2 10,046 10,246 10,119

3 10,118 10,348 10,202

MULTIPLE GROUP MODEL [MODEL (C)]

2 11,516 11,751 11,601

The subgroups in Model (a) were distinguished especially by
their reading skills and attitudes. The second class consisted of
a very homogeneous group of subjects with high reading skills
and attitudes (see estimates in Table 3, C = 2). In Model (b)
differences in the subgroups were related only to high or low
reading attitudes. This implies that the bettermodel fit for the two
class solution compared to the single class solution was caused by
the nonnormality of the reading attitudes in this example.

Parameter Estimates for Model (a)

The results of the two class solution of Model (a), which is the
direct application of a mixture model with class-specific (non)-
linear effects, are presented in Table 2. None of the nonlinear
effects were significant, each of these effects were close to zero
and had a standardized absolute effect size between 0.029 and
0.104. The only significant linear effects were γ1,1 and γ2,1 in
class 1; however, the effect sizes of the linear effects in the two
groups were different with γ̂ •

1,1 = 0.122 and γ̂ •
2,1 = 0.116

in class 1, and γ̂ •
1,2 = 0.384 and γ̂ •

2,2 = 0.229 in class 2
(although this difference was not significant with p = 0.202
and p = 0.768, respectively). This indicated nonlinearity in the
data, which was accounted for by the two classes (see details
for modeling semiparametric curvilinear relationships with class-
specific linear effects in Bauer, 2005). The explained variance
was smaller in class 1 with 6% compared to class 2 with 24%
(1− 0.942 = 0.058 in class 1 and 1− 0.756 = 0.244 in class 2).

Parameter Estimates for Model (b)

The results for the two class solution of Model (b), which is the
indirect application of a mixture model with (non)-linear effects,
are presented in Table 3. In this model, the online activities had
a significant negative quadratic effect on reading skills with an
effect size of γ̂ •

5 = −0.085. The standardized linear effect for
reading attitude was strong with γ̂ •

1 = 0.514. This effect can
be interpreted as the effect for subjects with an average level
of reading attitude. The standardized multivariate relationship
between reading attitude, online activities, and reading skills are
illustrated in Figure 2. The nonlinear relationship between online
activities and reading skills modeled a saturation effect; that is,
for subjects with standardized online activities between –3 and 0,
a positive relation with reading skills was observed. For subjects
with standardized online activities between 0 and 3, the reading
skills only changed marginally. The explained variance in the
model was 35% (1− 0.647).
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FIGURE 1 | Scatter plots of the estimated factor scores based on the two class solutions of Model (a) (left panels) and Model (b) (right panels) for

reading attitude and reading skills (upper panels) and online activities and reading skills (lower panels). The model based relationships between the

variables are indicated with solid lines, class membership is indicated by black or gray dots.

The nonnormal distribution of the latent predictor variables is
illustrated in Figure 3. The nonnormality was mostly caused by
reading attitudes (see class-specific means in Table 3).

Parameter Estimates for Model (c)

The results for Model (c), the multiple group model with
(non)-linear effects, are presented in Table 4. We calculated two
versions of standardized effects. The first version (θ̂•) refers
to a within class standardization with class-specific means and
variances3. The second version (θ̂◦) refers to pooled means and
variances across groups (based on Equations 17 and 18). The
results for female and male students were fairly similar for most
parameters. The standardized regression coefficients were also
fairly similar to those in Model (b) presented above. In both
groups, the online activities had a negative quadratic effect on
reading skills with standardized effect sizes of γ̂ •

5,1= −0.141 and

3For a visualization of standardized group differences in an empirical data set see

Figure 4.

γ̂ •
5,2 = −0.111 for female and male students, respectively, using

the within class variances. The standardized quadratic effects
of online activities based on the pooled variances only differed
marginally from them with γ̂ ◦

5,1 = −0.181 and γ̂ ◦
5,2 = −0.089.

The explained variances (based on the pooled variances) were
fairly similar for female and male students with 42% (1 − 0.582)
and 39% (1− 0.606), respectively.

The two groups differed mainly in the dispersion of online
activities, where male students had a larger variability in their
activities compared to female students (with φ22,1 = 0.256 and
φ22,2 = 0.435) and in the average reading attitudes which were
higher for females than for males (κ1,1 = 2.875 vs. κ1,2 = 2.505)
with a standardized difference of κ◦1,1 − κ◦1,2 = 0.532 based
on the pooled means and variances. The standardization of the
linear effects further showed that the standardized relationships
were fairly similar across groups, despite the rather different
unstandardized effects. By comparing the standardized effects,
more meaningful differences can be seen because standardized
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TABLE 2 | Unstandardized and standardized parameter estimates,

standard errors, t- and p-values for the direct application of a nonlinear

model with two latent classes.

θ̂ SE θ̂• t p

P(C = 1) 0.626

P(C = 2) 0.374

C = 1

γ1,1 0.309 0.144 0.122 2.152 0.031

γ2,1 0.305 0.148 0.116 2.065 0.039

γ3,1 −0.042 0.030 −0.079 −1.423 0.155

γ4,1 −0.029 0.027 −0.058 −1.094 0.274

γ5,1 −0.026 0.024 −0.046 −1.066 0.287

κ1,1 2.341 0.037 0.000 62.662 < 0.001

κ2,1 3.272 0.029 0.000 110.979 < 0.001

α1 −0.147 0.294 0.000 −0.500 0.617

φ11,1 0.344 0.026 1.000 13.202 < 0.001

φ21,1 0.063 0.016 0.195 3.843 < 0.001

φ22,1 0.302 0.044 1.000 6.805 < 0.001

ψ1 0.028 0.003 0.942 9.845 < 0.001

C = 2

γ1,2 −0.045 0.178 0.384 −0.254 0.799

γ2,2 −0.252 0.288 0.229 −0.875 0.381

γ3,2 0.009 0.034 0.029 0.268 0.789

γ4,2 0.009 0.024 0.033 0.395 0.693

γ5,2 0.036 0.040 0.104 0.898 0.369

κ1,2 3.276 0.043 0.000 76.413 < 0.001

κ2,2 3.514 0.033 0.000 104.996 < 0.001

α2 1.471 0.578 0.000 2.544 0.011

φ11,2 0.188 0.020 1.000 9.230 < 0.001

φ21,2 0.016 0.015 0.096 1.057 0.290

φ22,2 0.149 0.022 1.000 6.643 < 0.001

ψ2 0.002 0.001 0.756 2.273 0.023

θ̂ , unstandardized parameter estimates; SE, estimated standard errors; θ̂•, standardized
parameter estimates; t, t-values based on standard errors; p, p-values for the t-values.

effects refer to the effects of an average member of the respective
group. In contrast, the unstandardized effects are complicated
to compare, because the predictors’ means in the two subgroups
were different.

The interpretation of the two standardizations based on
either within class parameters or pooled parameters refer to two
different frames of reference. For example, the linear effect of
reading attitude on reading skills, γ •

1,1 = 0.527, based on the
within class means and variances is the standardized effect for
female students with average reading attitude in this group (i.e.,
κ1,1 = 2.875). This standardized parameter can be used to
compare the effect to other studies in which effects for female
students are examined. The standardized effect, γ ◦

1,1 = 0.474,
based on the pooledmeans and variances refers to female subjects
with average reading skills referring to the complete sample
(i.e., κ1 = 0.5κ1,1 + 0.5κ1,2 = 2.690). This effect can be
used to meaningfully compare the groups within this study: for
subjects with the same average reading skills (of κ1 = 2.690)
the standardized effect is 0.474 for female and 0.587 for male
students.

TABLE 3 | Unstandardized and standardized parameter estimates,

standard errors, t- and p-values for the indirect application of a nonlinear

model with two latent classes.

θ̂ SE θ̂• t p

P(C = 1) 0.606

P(C = 2) 0.394

γ1 0.025 0.078 0.514 0.324 0.746

γ2 0.450 0.145 0.137 3.107 0.002

γ3 0.010 0.023 0.018 0.413 0.679

γ4 0.017 0.012 0.041 1.344 0.179

γ5 −0.063 0.025 −0.085 −2.510 0.012

κ1 2.691 0.023 0.000 117.042 < 0.001

κ2 3.362 0.021 0.000 161.332 < 0.001

α −0.157 0.243 0.000 −0.647 0.517

φ11 0.488 0.023 1.000 21.682 < 0.001

φ21 0.102 0.013 0.277 7.856 < 0.001

φ22 0.274 0.046 1.000 6.132 < 0.001

ψ 0.027 0.002 0.649 11.205 < 0.001

C = 1

κ1,1 2.273 0.228 0.000 9.982 < 0.001

κ2,1 3.274 0.091 0.000 35.906 < 0.001

φ11,1 0.272 0.097 1.000 2.819 0.005

φ21,1 0.063 0.050 0.214 1.270 0.204

φ22,1 0.318 0.049 1.000 6.445 < 0.001

C = 2

κ1,2 3.333 0.207 0.000 16.119 < 0.001

κ2,2 3.498 0.055 0.000 63.662 < 0.001

φ11,2 0.140 0.068 1.000 2.053 0.040

φ21,2 0.017 0.023 0.108 0.721 0.471

φ22,2 0.177 0.046 1.000 3.834 < 0.001

θ̂ , unstandardized parameter estimates; SE, estimated standard errors; θ̂•, standardized
parameter estimates; t, t-values based on standard errors; p, p-values for the t-values.

Figure 4 illustrates the relationships between the variables
using simple slopes based on standardized effects using the
pooled means and variances.

The standardization of the linear and nonlinear regression
coefficients in this example allows us to compare the effect
sizes between different models and subgroups. Furthermore, it
allows researchers to compare the results here to other samples
where, for example, the means of the latent variables are different
and therefore the unstandardized coefficients could not be
meaningfully compared. In addition, the percentage of variance
explained for the latent criterion could be calculated (1 − ψ•

g ),
which could not have been done in a straightforward manner
without the derivation of the model implied variance of ηg .

DISCUSSION

In this article, we provided a standardization procedure for linear
and nonlinear SEM including traditional parametric nonlinear
SEM (e.g., LMS; Klein and Moosbrugger, 2000), semiparametric
SEMM (e.g., Jedidi et al., 1997b), and recently proposed mixture
approaches for nonnormal variables (e.g., NSEMM; Kelava and
Nagengast, 2012; Kelava et al., 2014).
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FIGURE 2 | Standardized multivariate relationship between reading

attitude, online activities and reading skills.

FIGURE 3 | Nonnormal bivariate distribution of the latent predictors.

The formulas provided are more general than those provided
by Wen et al. (2010) because they do not need the strong
assumption of centered and normally distributed latent predictor
variables. Although the formulas provided here refer to
Equations (4) and (16) with a single dependent variable and
two predictor variables, an extension to more variables is
straightforward and can be inferred directly from the formulas.
These formulas are useful in at least three situations.

First, they are useful when the product indicator approaches
are not used and a standardization of a nonlinear model is

TABLE 4 | Unstandardized and standardized parameter estimates,

standard errors, t- and p-values for the direct application of a nonlinear

model with two observed classes (Gender).

θ̂ SE θ̂• θ̂◦ t p

P(C = 1) 0.500

P(C = 2) 0.500

C = 1 (FEMALE SUBJECTS)

γ1,1 −0.037 0.110 0.527 0.474 −0.341 0.733

γ2,1 0.721 0.240 0.116 0.146 3.004 0.003

γ3,1 0.021 0.032 0.037 0.042 0.651 0.515

γ4,1 0.020 0.015 0.049 0.047 1.346 0.178

γ5,1 −0.108 0.039 −0.141 −0.181 −2.746 0.006

κ1,1 2.875 0.031 0.000 0.266 92.081 < 0.001

κ2,1 3.409 0.026 0.000 0.080 130.436 < 0.001

α1 −0.525 0.425 0.000 0.000 −1.236 0.217

φ11,1 0.479 0.029 1.000 0.991 16.702 < 0.001

φ21,1 0.055 0.019 0.157 0.327 2.914 0.004

φ22,1 0.256 0.042 1.000 0.736 6.039 < 0.001

ψ1 0.025 0.003 0.647 0.582 9.858 < 0.001

C = 2 (MALE SUBJECTS)

γ1,2 0.078 0.098 0.521 0.587 0.798 0.425

γ2,2 0.429 0.122 0.183 0.145 3.525 < 0.001

γ3,2 −0.008 0.024 −0.016 −0.016 −0.343 0.731

γ4,2 0.023 0.018 0.047 0.054 1.241 0.215

γ5,2 −0.053 0.020 −0.111 −0.089 −2.626 0.009

κ1,2 2.505 0.031 0.000 −0.266 81.114 < 0.001

κ2,2 3.315 0.032 0.000 −0.080 103.651 < 0.001

α2 −0.207 0.235 0.000 0.000 −0.880 0.379

φ11,2 0.419 0.027 1.000 0.867 15.569 < 0.001

φ21,2 0.135 0.021 0.316 0.803 6.442 < 0.001

φ22,2 0.435 0.056 1.000 1.251 7.720 < 0.001

ψ2 0.026 0.003 0.606 0.606 9.192 < 0.001

θ̂ , unstandardized parameter estimates; SE, estimated standard errors; θ̂•, standardized
parameter estimates based on within class variances; θ̂◦, standardized parameter

estimates based on pooled variances; t, t-values based on standard errors; p, p-values

for the t-values.

needed. For example, this is the case when popular commercial
latent variable modeling software like Mplus (Muthén and
Muthén, 1998–2012) is applied to examine nonlinear interaction
or quadratic effects (with the XWITH command). Since estimates
for the variances of the latent product terms (e.g., ξ1ξ2) are not
needed, the proposed standardization procedure can be applied
to all approaches for the estimation of nonlinear interaction and
quadratic effects (e.g., the LMS approach Klein andMoosbrugger,
2000, the QML approach; Klein and Muthén, 2007, or the
NSEMM approach Kelava et al., 2014).

Second, the formulas are also useful when standardizing linear
as well as nonlinear effects in cases when centering the observed
variables does not imply centered latent variables (e.g., in latent
mixture models or in multiple group SEM). In these situations,
the class- or group-specific means contain information about the
dissimilarity of the latent subpopulations that are extracted or are
specified in the case of observed groups. This aspect needs to
be taken into account during the standardization procedure. In
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FIGURE 4 | Simple slopes for female (black lines) and male students

(gray lines) based on a standardization using the pooled variances. The

relationship for online activities and reading skills were estimated for low,

average, and high reading attitudes.

the presence of nonlinearity, the linear effects are not invariant
against a transformation of data (Moosbrugger et al., 1997). The
standardization as proposed here allows researchers to interpret
the effect size of a linear effect for subjects with an average
value in the respective predictor variable. Researchers have
previously proposed centering variables in interaction models so
that an interpretation of the linear effects is meaningful (i.e., the
sample mean in the respective predictor variable). In the case of
latent mixture models or in multiple group SEM, centering the
observed variables does not lead to centered predictor variables
within each group and hence, centering is notmeaningful in these
scenarios. The standardization procedure presented in this paper
allows researchers to refer to effects of centered variables. Thus,
results from multiple group/class models can be compared to
results from single group models with centered variables.

Third, the formulas are additionally useful for standardization
in cases when the variables are nonnormally distributed. Several
simulation studies have shown that nonnormality of the variables
may introduce a bias in the parameter estimation of the
nonlinear effects (Marsh et al., 2004; Cham et al., 2012;
Kelava and Nagengast, 2012; Brandt et al., 2014; Kelava et al.,
2014) particularly for distribution analytic approaches (e.g.,
LMS or QML). This bias is due to a misspecified mean and
covariance structure when data are nonnormal because the

estimates are derived under the assumption of normality of
the latent predictor variables and measurement error variables.
Hence, considering nonnormal latent distributions (e.g., by using
mixture distributions) is essential for an unbiased estimation
of nonlinear effects. In this article, we showed that it is again
necessary to take the nonnormality of the variables into account
for a correct standardization.

In practical applications of multiple group models, it is
sometimes desirable to standardize effects with a pooled variance
estimate or the variance of a reference group instead of within
class variances. The procedure proposed here allows for all of
these cases by using the respective variances derived for the direct
and the indirect application of mixture models. We illustrated
this with an empirical example from education science. It is
obvious that the standardization depends on a reliable estimate
for the class-specific variances and therefore classes (or observed
groups) should not be too small.

From a substantive user’s perspective, the formulas can
be applied by simple algebra after parameter estimates were
obtained. The standardization procedure is implemented in the
package nlsem for the R system for statistical computing (R
Core Team, 2015), which is freely available at http://CRAN.
r-project.org/package=nlsem. The package can also be used to
standardize effects estimated with Mplus.

Besides the desirable properties of the proposed
standardization procedure, it is important to note that there
are still situations of nonlinear SEM that are not covered by
this procedure. For example, semiparametric spline models
for latent variables (Yang and Dunson, 2010; Kelava and
Brandt, 2014) require separate procedures that account for the
specific structure of these regression functions. Furthermore,
the proposed procedure can be extended for multilevel data
structures. In cases where multilevel nonlinear structural
equation models are given (e.g., Leite and Zuo, 2011; Nagengast
et al., 2013; Kelava and Brandt, 2014), adapted procedures are
needed that still offer interpretable results. Future work is needed
to address these remaining issues.
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