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Medical Center, Harvard Medical School, Boston, MA, USA

Studying how humans eat in the context of a meal is important to understanding basic

mechanisms of food intake regulation and can help develop new interventions for the

promotion of healthy eating and prevention of obesity and eating disorders. While there

are a number of methodologies available for behavioral evaluation of a meal, there is a

need for new tools that can simplify data collection through automatic and online analysis.

Also, there are currently no methods that leverage technology to add a dimension

of interactivity to the meal table. In this study, we examined the feasibility of a new

technology for automatic detection and classification of bites during a laboratory meal.

We used a SUR40 multi-touch tabletop computer, powered by an infrared camera

behind the screen. Tags were attached to three plates, allowing their positions to be

tracked, and the saturation (a measure of the infrared intensity) in the surrounding region

was measured. A Kinect camera was used to record the meals for manual verification

and provide gesture detection for when the bites were taken. Bite detections triggered

classification of the source plate by the SUR40 based on saturation flux in the preceding

timewindow. Five healthy subjects (aged 20–40 years, one female) were tested, providing

a total sample of 320 bites. Sensitivity, defined as the number of correctly detected bites

out of the number of actual bites, was 67.5%. Classification accuracy, defined as the

number of correctly classified bites out of those detected, was 82.4%. Due to the poor

sensitivity, a second experiment was designed using a single plate and a Myo armband

containing a nine-axis accelerometer as an alternative method for bite detection. The

same subjects were tested (sample: 195 bites). Using a simple threshold on the pitch

reading of the magnetometer, the Myo data achieved 86.1% sensitivity vs. 60.5% with

the Kinect. Further, the precision of positive predictive value was 72.1% for the Myo vs.

42.8% for the Kinect. We conclude that the SUR40 + Myo combination is feasible for

automatic detection and classification of bites with adequate accuracy for a range of

applications.

Keywords: eating behavior, food choice, meal, automatic tracking, multi-touch computing, human-computer

interaction

INTRODUCTION

Selecting food from a range of options is a key characteristic of the way humans eat, particularly in
environments where food is abundant and easily available (Menzel and D’Aluisio, 2007). Deciding
what to eat represents a recurring dilemma and a common experience throughout an individual’s
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life (e.g., family meals, college dining halls, workplace cafeterias,
supermarkets, restaurants etc.). It has been estimated that an
average person in the United States makes 200–250 food-related
decisions per day (Wansink and Sobal, 2007) and purchases
food in supermarkets that carry, on average, ∼45,000 items
(Food Marketing Institute, 2014). Food choice and eating
behavior ultimately determine dietary patterns and nutritional
intake and thus influence the risk of chronic diseases such as
obesity, diabetes, cardiovascular disease, and certain cancers.
A better understanding of eating behavior and food choice
can bring new insights to stimulate the development of
novel therapies and public health interventions to facilitate
healthy eating.

Studying how people eat is not short of limitations and
challenges. In fact, eating is one of the most complex human
behaviors, and most methods of analysis that exist nowadays
are indirect and rely on self-report (e.g., questionnaires).
Quantitative approaches in the laboratory have largely focused on
themeal, the natural unit of eating in humans (Meiselman, 2000).
A better understanding of the behavioral dynamics of a meal can
provide ecologically relevant information: the interplay between
homeostasis, sensory aspects, reward and cognition. At a basic
level, the act of eating triggers a sequence of physiological and
behavioral events that ultimately lead to suppression of further
eating until the next episode (the so-called “satiety cascade”;
Blundell, 1991). Research here typically involves experimental
evaluation of food intake before and after single-course meals
(Blundell et al., 2009).

An important milestone in this field was the development of
the Universal Eating Monitor (UEM) by Harry Kissileff (Kissileff
et al., 1980). Via continuous weighing of a single plate with
the use of a hidden scale, the UEM provides direct, accurate
information of what occurs during the meal (also called meal
microstructure or meal microanalysis), e.g., parameters such as
eating speed or bite size. Since its description, 35 years ago,
the UEM has been used in a number of applications related to
obesity and eating disorders, including the evaluation of new
medications (Kissileff et al., 1986; Laessle et al., 2007; Dovey et al.,
2009; Halford et al., 2010; Schulz and Laessle, 2012).

However, this and closely related methods (Ioakimidis et al.,
2009) do not allow the study of ad libitum eating when
multiple options of food are available, i.e., multiple plates.
More recently, there have been a few approaches to examine
this dimension, based on combinations of food weighing and
video recording (Allirot et al., 2012; Nornberg et al., 2014).
Other alternatives include virtual reality simulations (McBride
et al., 2013), or the use of food replicas (Bucher et al.,
2012). Despite remarkable progress in technology—in particular,
recent advances in wearable sensors, interactive platforms and
ubiquitous computing—applications to the study of eating
behavior remain largely underexplored, with some exceptions
in the realm of ingestive and bite sensors (Sazonov et al., 2009;
Fontana and Sazonov, 2013; Scisco et al., 2014). Detection of
bites with a wrist-worn gyroscope can achieve 95% accuracy for a
single-plate meal and 86% in free-living conditions (Dong et al.,
2012; Scisco et al., 2014) and can also be used to induce slower
eating rates (Scisco et al., 2011).

The existing methods to quantify eating behavior and food
choice in humans are useful and valid and have made significant
contributions to the field. However, there is still room for
improvement, particularly in laboratory studies that require
not only capturing but also manipulating complex aspects
of the meal, such as cognitive influences, situations, and
contexts. Importantly, there are no methods yet that allow
full automatization, online analysis and interactive capabilities.
Integrating contemporary technological advances into the field
can open new research directions and contribute to a better and
more precise understanding of how humans eat. The aim of
this study was to examine the feasibility of a new computerized
system that can be used in the context of a meal environment
to evaluate eating behavior and food choice in an automatic and
interactive manner.

OVERVIEW OF THE MULTI-TOUCH
SYSTEM AND APPLICATION TO THE CASE
OF A MEAL

The Samsung SUR40 is a tabletop computer running the
Microsoft Surface platform. It includes multi-touch capabilities
that are powered by an infrared camera behind the screen. The
Surface software development kit (SDK) provides access to the
raw image stream (a stream being a continuous inflow of data,
in this case image frames from the infrared camera) recorded
by this camera. We explored the possibility of leveraging this
raw image stream to perform automatic detection of intra-meal
eating behavior and food choice in a multi-plate format. The
advantages of such a methodology lie in the possibility for on-
screen feedback and interaction to be presented in response to
food choice and bite rate during a meal.

The process of automatic recognition of intra-meal food
choice was broken into two distinct phases: bite detection and
bite classification. Bite detection is the phase of recognizing when
a bite has been taken, regardless of the source plate. We explored
a number of methods to perform bite detection, using different
sensors and algorithms. Bite detection then triggers the process
of bite classification, using the SUR40 raw image stream to
determine the source plate of the bite. A three-plate experiment
was designed to test bite detection and classification together.
After analysis of the results of the three-plate experiment, we
decided to attempt to refine the bite detection methods in a
single-plate experiment, using a Myo armband with a nine-axis
accelerometer as an alternative approach.

EXPERIMENT 1: THREE-PLATE MEAL
(BITE CLASSIFICATION AND BITE
DETECTION TESTING)

Bite Classification
The Surface SDK provides functionality for recognizing 256
unique “byte tags,” black squares of a specified size with white
circles in specific patterns. These tags can be printed and attached
to the bottom of objects so that their position can be tracked while
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on the SUR40. This byte tag functionality was used to track the
position of the center of each plate.

In each frame, the grayscale saturation of the raw image was
calculated for a square with its top-left corner (or top-right
for left-handed eaters) at the detected position of the tag and
extending 2 inches beyond the border of the plate. The grayscale
saturation is a value ranging from 0 for pure black to 255 for pure
white, for each pixel and corresponds to the infrared intensity
captured by the camera. The calculated value was the average
saturation within the square region. It was observed that when a
bite is taken from a plate, there are two phases of distinct changes
in the saturation value. First, as the arm comes close to the screen
to take food from the plate, the saturation rises above baseline
as the arm causes a greater infrared reading. Then, as the arm
is raised up to take a bite, the saturation falls below baseline, as
the arm, when a little further from the screen, casts a shadow
compared to the baseline infrared levels of the lighting in the
room (bright white fluorescent bulbs directly overhead). These
stages are illustrated in Figure 1.

Thus, the prototype was designed around the hypothesis that
whenever a bite was detected, it could be attributed to the plate
which had the greatest overall flux (average of absolute value)
within a short window preceding the bite. The window used

FIGURE 1 | Comparison of saturation measurements with Kinect and

SUR40 videos. The blue line with diamond markers, which shows the most

fluctuation, corresponds to the central plate in the video frames. The frames

are labeled (A–C) corresponding to the times of the vertical markers in the

graph. Frame A takes place before the start of a bite—note that the saturation

remains steady while there is no interaction with the surface. Frame B takes

place as the food is being picked up with the fork. Note that the saturation has

reached a peak here, corresponding to the increase in brightness in the

bottom-right area around the plate, as visible in the SUR40 frame. Frame C

takes place as the food is being placed in the mouth. Note that there is a slight

shadow as compared to Frame A in the region to the bottom-right of the plate,

corresponding to the local minimum.

was 30 frames, or ∼0.5 s, as the SUR40 raw image stream has a
framerate of 60 fps (some jitter in the framerate means that 30
frames does not always equal exactly 0.5 s). Clear plastic plates
with a diameter of 10 inches were used, conferring the advantage
of additional flux changes being detectable when the hand is
directly over the plate or food is removed from the plate.

Bite Detection
The SUR40 was paired with a Kinect to provide video recording
of the experiments for manual verification of bites and also with
the hope that the Kinect could be used to detect the gesture
of a bite, while the SUR40 classifies the source plate. Microsoft
has developed proprietary algorithms for combining the color
and depth streams of the Kinect (image streams with color
frames, or grayscale frames representing the calculated distance
of each pixel from the Kinect, respectively) to provide “skeleton-
tracking,” the detection of various key points along the body.
Skeleton tracking is optimized for detecting poses in a standing
position, but the Kinect SDK also allows for a seated tracking
mode where only the points along the upper half of the body
are tracked. The seated mode was used for obvious reasons when
utilizing the skeleton-tracking feature during the experiments.
Initially, it was hoped that bite detection could be performed
by using a lower threshold on the distance between the position
of the hand and head points. However, it was found that the
detected hand point would undergo significant jitter between
frames when moved too close to the face, usually jumping away
from the face point and the actual hand position. Thus, it quickly
became apparent that the use of the skeleton-tracking feature
alone would not suffice to perform bite detection.

An alternative method was developed, combining the color
image stream and the skeleton stream. The shoulder-center and
head points of the skeleton stream were observed to be less jittery
than the hand point. These positions were used to extrapolate an
area of the color stream which should correspond to the region
surrounding the subject’s mouth. The subject was equipped with
a utensil of a high contrast color, i.e., a lime green plastic fork,
and in each frame, the program calculated the RGB distance of
each pixel to the target color of the utensil. In computing, colors
are defined by an RGB (red, green, blue) value, where any color
can be represented as a combination of different intensities of
red, green, and blue. The RGB distance is defined as the distance
between RGB values if they are mapped in Cartesian coordinates,
i.e., red, green, and blue are three orthogonal axes. Thus the RGB
distance is calculated as:

√

(R2−R1)
2
+(G2−G1)

2
+(B2−B1)

2

A lower threshold was set so that only pixels within a certain RGB
distance of the target color would be considered color-matched.

The threshold was set such that only the fork was capable of
triggering color-matched pixels to be detected (for the lime green
color we used, an RGB distance threshold of 30 was able to do so
reliably). The number of color-matched pixels in the frame was
then tallied, and if this sum exceeded a certain threshold, then
a bite detection was triggered. After the threshold was initially
exceeded, further bite detections could not be triggered until a
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certain number of frames after the number of color-matched
pixels fell back below the threshold.

The Kinect runs at a speed of 30 fps, and a minimum
separation between bites of 10 frames was used, or 1/3 s. While
it would be unreasonable to assume that a subject would take
many bites in such quick succession, the rationale for choosing
such a low threshold was, initially, to prioritize sensitivity (i.e.,
not missing any bites) over reduction of false positives.

During pilot testing, it was quickly apparent that this
color-matching method was more reliable than the pure
skeleton-tracking-based approach. However, upon observation
of some initial recordings, it was discovered that many bites
still went undetected, because with certain rotations of the hand
while bringing the fork to the mouth, there was not enough
surface area of the fork exposed to the Kinect for the green pixels
to be detected. The less surface area facing the Kinect, the greater
the chance that what was visible of the fork in the frame would
be obscured by reflections from the lighting in the room. Thus,
the use of the green fork was abandoned in favor of a green
wristband. The wristband provided the advantage of having
more consistent visibility regardless of the rotation of the hand.
If it resulted in reliable bite detection, it would also confer the
advantage of being able to run experiments with finger foods or
sandwiches.

Manual Verification
Bite detections were scored as true positive (TP), false negative
(FN), or false positive (FP). Bites were considered TP when the
system recorded a bite detection (or FN if it failed to record one)
within the duration of the arm being raised or lowered in taking
a bite. Any detections falling outside these visually verified time
windows, or duplicate detections within a single window, were
marked as FP.

Given that bites are events which occur at arbitrary points
along a continuous timeline, they cannot be considered as
discrete points which can be classified in a binary manner
as bite/not-bite; as such, there is no way to quantify true
negatives. The accuracy of bite detection can thus be gauged
using the measures of sensitivity/recall, i.e., TP/(TP+FN), and
precision/positive-predictive-value, i.e., TP/(TP+FP), but not
specificity. Classification accuracy is then determined as the
percentage of correctly classified bites out of the total number
of TPs.

Subjects and Experimental Procedures
Five healthy, lean subjects were tested during a lunch-time meal
under at least 6 h of fasting. The subjects were aged 20–40, one
female, and were volunteers recruited from local campuses of the
Boston area. They signed an informed consent which explained
that the experiment was to test a system for automatic food choice
tracking during a meal. Study procedures were approved by the
Institutional Review Board of Beth Israel Deaconess Medical
Center. The three plates used in the meal were assigned to salad,
fruit, or entrée (chicken and rice, or tofu and black beans for the 1
vegetarian subject). Each was filled with an excess of its respective
dish to ensure that it did not run out before the subject reached
satiation. The program settings were adjusted to associate the
correct byte tag with each plate. Subjects were also given a water
bottle, placed on the left side of the table. Drinking events were
not automatically tracked. All subjects were right-handed, so the
green wristband was placed on the right wrist. See Figure 2 for
a mock-up of the experimental setup. They were instructed to
focus only on eating and were required to turn off their mobile
phones at the beginning of the session. Participants were asked to
only take bites with their right hand and only with the provided
utensils, and use their left hand to use napkin, drink water and

FIGURE 2 | Mockup of the experimental setup, shown with only one plate. The distance of the Kinect to the subject varied across our tests. To perform

skeleton tracking, it must be placed further from the subject. Otherwise, when used for manual verification purposes or to monitor the position of the green wristband,

it can be placed closer to the subject to capture more detail.
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perform other non-eating movements. Additionally, they were
asked not to move the plates as much as possible, and to refrain
from mixing foods from multiple plates in one bite.

The program was then launched and recording started
(Kinect color video stream, Surface raw image stream, calculated
saturation for each plate and the green pixels detected per frame
were all logged). Plates were placed on the screen one by one.
A display on the screen was used to confirm that each plate was
properly detected and that the regions where saturation is tallied
were well spaced apart. The display also showed the Kinect feed
and was used to confirm that skeleton-tracking had been initiated
successfully.

This display was then hidden, and the subject was instructed to
eat as naturalistically as possible until satiated. The testing room
was quiet and distraction-free, and the subject was left alone for
the duration of the meal. When finished, the subject pressed a
button to close the program and end the recording.

Results
Manual verification using the Kinect videos counted 320 total
bites across the subjects. The number of bites falling into
each category is shown in Tables 1, 2. The resulting measures
of overall accuracy were 67.5% sensitivity/recall and 64.1%
precision/PPV for bite detection. Bite classification accuracy
came out to 82.4%. These are the values calculated using the total
number of bites in each category across subjects, rather than the
mean value of the results within each subject’s experiment (also
shown in Tables).

The sensitivity and precision varied greatly from subject to
subject, with some (e.g., subject 5) having their bites detected
consistently and with low FPs, and others showing very poor
performance on sensitivity (e.g., subject 2) or precision (e.g.,
subject 3). This inconsistency is reflected in the high ratio of
the standard deviation for each measure. It may have resulted
from differences in the gesture used by each subject to take a
bite, variations in the contrast of the wristband to the subject’s
clothing, or differences in the skeleton tracking performance
for each individual. Overall, the bite detection performance
(sensitivity in particular) was less than desired.

However, the bite classification performance was more
satisfactory, as well as consistent across subjects. Figure 3

illustrates how the saturation flux of each plate works as an
excellent classification mechanism; the fluxes stay within a
baseline range for the most part, but before each bite, the flux
associated with the correct plate has points very obviously above
and below the normal baseline.

EXPERIMENT 2: SINGLE-PLATE MEAL
(BITE DETECTION TESTING)

An Alternative Method for Bite Detection
After the less than optimal sensitivity performance in the three
plate experiment, we decided to perform another experiment
using only a single plate in order to focus exclusively on bite
detection performance. Additional logging was added of the
detected shoulder-center and head positions, in order gain better

insight into the performance issues, as only the analyzed green
pixel detection was logged in the prior experiment.

Not convinced that this insight would necessarily help us
adjust the settings to gain better performance from the Kinect,
we also implemented an alternative detection method. The
Thalmic Labs Myo armband is a consumer device designed
to perform gesture detection of a limited number of gestures,
primarily through electromyography, but also using a nine-axis
accelerometer. We used the Myo for its convenient access to this
nine-axis data, as opposed to the gesture recognition provided by
its SDK.

A nine-axis accelerometer consists of an accelerometer that
measures acceleration in three axes, a gyroscope that measures
the rotation around those three axes, and a magnetometer, which
measures orientation in 3 axes relative to magnetic north but is
calibrated to output data relative to the main axes of the Myo.
These are referred to as pitch, roll, and yaw (see Figure 4). The
pitch in particular is useful, as it essentially represents a measure
of the incline of the arm relative to a flat surface.

During a bite gesture, the pitch will always increase as the arm
is raised to the mouth and decrease as the arm is lowered to the
plate. Thus, we hypothesized that a simple upper threshold on
the pitch could be used to trigger bite detection. The application
was programmed to log all nine axes of data so we could search
for other potential correlations that might be useful for bite

FIGURE 3 | Graph of the flux for each plate. The manually-verified time of

actual bites taken are marked by the vertical lines of the same color, with a

marker included below each line as well, to clarify when viewing in grayscale.

FIGURE 4 | Illustration of how pitch, yaw and roll are measured in

relation to the orientation of the Myo Armband. Pitch, yaw, and roll are

orthogonally independent; thus pitch will reflect the elevation of the arm,

regardless of the orientation of the hand, i.e., the hand does not need to

remain palm down as shown in the sketch. (Source: http://developerblog.myo.

com/gui-without-g-going-beyond-screen-myotm-armband/).
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TABLE 1 | Three-plate experiment bite detection results.

Subject TP FN FP Total Detections =

TP + FP

Total Actual Bites =

TP + FN

Sensitivity (Recall) =

TP/(TP+FN)

Precision (PPV) =

TP/(TP+FP)

1 62 11 27 89 73 0.849 0.697

2 21 60 5 26 81 0.259 0.808

3 31 8 52 83 39 0.795 0.373

4 56 24 32 88 80 0.700 0.636

5 46 1 5 51 47 0.979 0.90w

Total 216 104 121 337 320 0.675 0.641

Mean 43.2 20.8 24.2 67.4 64 0.716 0.683

St. Dev. 15.3 21.0 17.8 25.0 17.57 0.246 0.180

TABLE 2 | Three-plate experiment bite classification results.

Subject Correctly

Classified

Misclassified Total = TP

from Detection

Accuracy =

Correctly

Classified/Total

1 50 12 62 0.806

2 18 3 21 0.857

3 31 0 31 1.00

4 49 7 56 0.875

5 30 16 46 0.652

Total 178 38 216 0.824

Mean 35.6 7.60 43.2 0.838

St. Dev. 12.2 5.82 15.3 0.113

detection. Bite detection with the Myo was also restricted to the
same number of minimum frames between bite detections as
the Kinect, with retriggering also suppressed until after the pitch
measurement fell back below threshold.

Subjects and Experimental Procedures
In the single-plate experiment, the same five subjects were tested
at lunch-time under similar conditions. Subjects wore the green
wristband from the previous experiment on their right wrist, and
the Myo on their right forearm. Byte tags were not necessary and
saturation data was not logged for this experiment. In addition
to the Myo nine-axis data, the Kinect skeleton tracking data for
the head and shoulder-center joint positions was logged in these
sessions, as opposed to only the calculated green pixel count.
The program display was used to verify that Myo data was being
received and that the Kinect had initiated skeleton tracking. The
display was then hidden as before. A single plate was placed in
front of the subject on the surface, containing the same food and
amount as the subject’s entrée plate in the three-plate experiment.
The subject was given the same instructions as the previous
session.

Results
Manual verification of the videos found a total of 195 bites across
the subjects. As presented in Table 3, The Kinect had an overall
sensitivity of 60.5% and precision of 42.8%, compared to 86.2 and

72.1% for the Myo. The Myo results were obtained using a pitch
threshold of 0.25.

The Myo showed significantly better performance than the
Kinect. Figure 5 illustrates how cleanly the pitch peaks line up to
the manually recorded time of bites. Other axes of the nine-axis
data were examined, and while some possessed certain visually
noticeable correlations, they were all much noisier than the pitch
data. Thus, the pitch was verified to be not only the most intuitive
measure, but the easiest to analyze.

Examination of the Kinect logs revealed that there were
significant amounts of jitter in the detected shoulder-center and
positions. This jitter was not as bad as that of the hand point,
as described in our initial exploration of skeleton-tracking based
bite detection. However, the jitter of the shoulder-center and
points was still major enough to make them unsuitable reference
points.

While the Myo bite detection was generally good across
subjects, it performed very poorly for Subject 2, with only
43.8% sensitivity. Examination of the videos revealed that while
other subjects tended to remain mostly stationary in their torso
position, raising the fork up all the way to their mouth, Subject 2
generally moved their head downwards most of the way to meet
the fork, thus raising their arm far less and leading to a lower
pitch peak for each bite.

DISCUSSION

The bite classification accuracy came out to 82.4% in the three-
plate experiment and in the single-plate experiment, the Myo
showed 86.2% sensitivity and 72.1% precision. The combined
results of the two experiments suggest that bite classification by
the SUR40 combined with bite detection by the Myo can be
used as a first-of-its-kind system for automatic, online analysis
of intra-meal food choice with interactivity possibilities. It is
appreciated that a completely ideal system would have even
greater sensitivity, precision, and classification accuracy, but we
believe the obtained levels should be adequate for a wide range
of applications, especially given that there are no other published
methods offering the same capabilities. The closest alternatives
are the experimental restaurant system (Allirot et al., 2012) or the
Intelligent Buffet (Nornberg et al., 2014), but thesemethodologies
still rely on manual coding of bites and do not offer a fully
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TABLE 3 | Single plate experiment bite detection results.

Subject Kinect Myo

TP FN FP Recall Precision TP FN FP Recall Precision

1 19 18 25 0.514 0.432 35 2 4 0.946 0.897

2 16 16 25 0.500 0.390 14 18 3 0.438 0.824

3 10 24 25 0.294 0.286 30 4 23 0.882 0.566

4 33 19 71 0.635 0.317 49 3 34 0.942 0.590

5 40 0 12 1.00 0.769 40 0 1 1.00 0.976

Total 118 77 158 0.605 0.428 168 27 65 0.862 0.721

Mean 23.6 15.4 31.6 0.588 0.439 33.6 5.4 13 0.842 0.771

St. Dev. 11.1 8.14 20.3 0.233 0.173 11.6 6.44 13.2 0.205 0.164

FIGURE 5 | Graph of pitch readings along with vertical markers of

manually verified bite times.

programmable and interactive meal table environment. Better
sensitivity, in the order of 94%, can be obtained for bite counting
via tracking of wrist motion but limited to a single-plate meal,
and 86% for the case of uncontrolled free-living conditions (Dong
et al., 2012). Our performance data is in the range of this second
scenario.

The feature of automatic, online analysis running on a full
Windows operating system opens up an almost unlimited range
of possibilities for intra-meal experiments studying the effects of
feedback or interactions based on the subject’s eating behavior.
From a programming perspective, it would be fairly trivial to
integrate feedback such as bite counters and visualizations of bite
rate to be displayed directly on the tabletop, allowing the subject
to remain more naturally engaged in the meal than if they had to
consult a separate screen or device. More complicated feedback
such as intake estimates for calories or macronutrients would
require more programming but still be quite straightforward to
integrate into the system.

Many types of interactions could also be introduced.
Experimental manipulations such as stimuli or tests could
be introduced to the meal, with high temporal resolution.
These could take place at set intervals (enabling the study of
contextual influences) or be triggered by the online analysis
(for instance, after a certain number of bites or above a
certain bite rate). These manipulations would make it possible
to study a wide range of questions for which there are
currently no available methodologies. There is also great
promise in terms of development of therapeutic interventions.
Potential interventions could range from more passive, e.g.,

simple visual or auditory feedback, to extremely engaging,
e.g., gamification (the process of introducing game mechanics
to motivate certain behaviors, i.e., objectives and rewards
associated with optimal eating behaviors). Whether passive or
engaging, interventions could also occupy a spectrum from very
minimal (i.e., non-intrusive feedback, simple reward system) to
completely changing the eating experience (i.e., immersive video
or music feedback, gamification with a strong narrative aspect).
An additional application could be the design of computerized
neuropsychological tasks requiring ingestion or selection of
certain foods as part of performance. Altogether, the combination
of online tracking, a fully programmable environment and
interactivity can open a whole new way of designing experiments
at the intersection of human-computer interactions and human-
food interactions.

We believe that the breadth of new potential applications,
combined with the relatively naturalistic eating experience, is a
worthwhile trade-off for the less-than-perfect level of accuracy.
In consumer research or applications, the accuracy may well
be sufficient. In scientific studies requiring higher degrees of
accuracy, manual verification can be used instead to obtain
the final results. However, beyond the capability of interactions
during the experiment, the automation could still be quite
valuable for screening purposes or when quick decisions are
needed during the course of an experiment. When running an
experiment with a very large subject pool, the automatic analysis
could be used as a preliminary way to observe trends in the data
before undertaking the time- and labor-intensive task of manual
verification on that scale.

Furthermore, it is important to note that these findings
represent the first stage of development of this methodology. The
algorithms for bite detection and classification that were used are
simplistic, and use of more advanced techniques such as machine
learning and computer vision algorithms can only improve the
accuracy in future iterations.

As more subjects are studied, it will also be possible to refine
the method to account for different styles of taking bites. As
was discussed in the single-plate experiment, the sensitivity was
extremely low for Subject 2, as they lowered their head and torso
to meet the fork much more than the other subjects. To improve
future performance in such cases, subjects could be instructed to
focus on raising the fork all the way up, without bringing their
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head down to meet it, though this would interfere with the aim
of having the subjects eat as naturalistically as possible. Another
alternative is to exclude subjects who lean down too much when
taking their bites. However, the best possible solution could be to
develop a calibration procedure where the subject would be asked
to take a few bites to first verify the ideal pitch threshold for their
individual bite gesture style, before proceeding with automated
detection.

Even though the method we describe has major advantages
for automatic detection of eating behavior in terms of food
choice and bite rate, a limitation is the lack of estimation of
bite weight. This parameter can be detected with the use of
so-called mechanistic approaches, which monitor weight and
provide a measure of gram per minute (Blundell et al., 2009).
In our case, the estimation is an event over time, but the bite
size can only be estimated through a division of total amount
of food taken divided by the amount of bites. This might not be
entirely optimal, as it has been shown that throughout the course
of a meal there is a gradual decrease in the bite size that reflects
changes in subjective appetite. Even though we did not explore
the following idea, it will be possible, in the future, to design
methodologies that integrate new technologies for continuous
monitoring of food volume and weight contained in plates.

Another limitation that we should acknowledge is that our
method is designed for laboratory studies and thus it does not
allow for tracking of eating behavior in free-living conditions.
For such applications the use of portable technologies such as
bite counting or ingestion sensing devices seem more suitable
(Sazonov et al., 2009; Fontana and Sazonov, 2013; Scisco et al.,
2014). Other disadvantages of our methodology are limited
tabletop computer size, high cost (at least $7000 for the tabletop
computer), and factors which may interfere with natural eating
behavior. Both the use of the armband and other technology, as
well as the fact that the objective of the study was explained in
the informed consent could have caused subjects to modify their
eating behavior. Eating under observation is known to reduce
food intake in laboratory studies when subjects are aware that
they are being observed and is a general limitation in the field
(Robinson et al., 2015). In our case, the technologies used may
have heightened this awareness. A strategy to account for this
effect in the future would be within-subject experimental designs
with multiple conditions in randomized order.

Here subjects were instructed to eat only during the sessions,
using solid foods that were easy to grasp with a fork, and clear

plastic plates with fixed dimensions to fit comfortably within the
tabletop dimensions. While we were successful in implementing
the technology capacity to automatically track meal behavior in
this context, future studies should also evaluate how this system
could perform in other scenarios, e.g., with a variety of foods, a
range of containers and utensils or when eating occurs together
with other behaviors, including social interactions.

Lastly, the methodology we describe here was developed on a
SUR40 platform, a multi-touch computer that was discontinued
from the market in 2013. However, other brands of Microsoft
Surface tabletop computers now exist, including ones much
larger than the SUR40, which could enable our methodology to
be expanded to more plates or even multiple subjects in a social
eating context.

CONCLUSION

In this study, we developed a new methodology, providing, for
the first time, automatic and online detection and analysis of
eating behavior and food choice during a meal. This method
uses the combination of orientation data provided by a Myo
armband and analysis of the raw image stream from a SUR40
computer. While the system does not currently achieve perfect
accuracy, its promise lies in the wide range of potential
applications, given the system’s capability of online analysis and
interactivity.
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