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In two experiments, we examined the correspondence between the dynamics of
metacognitive judgments and classification accuracy when participants were asked to
learn category structures of different levels of complexity, i.e., to learn tasks of types
I, II, and III according to Shepard et al. (1961). The stimuli were simple geometrical
figures varying in the following three dimensions: color, shape, and size. In Experiment
1, we found moderate positive correlations between confidence and accuracy in task
type II and weaker correlation in task type I and III. Moreover, the trend analysis in the
backward learning curves revealed that there is a non-linear trend in accuracy for all
three task types, but the same trend was observed in confidence for the task type
I and II but not for task type III. In Experiment 2, we found that the feeling-of-warmth
judgments (FOWs) showed moderate positive correlation with accuracy in all task types.
Trend analysis revealed a similar non-linear component in accuracy and metacognitive
judgments in task type II and III but not in task type I. Our results suggest that FOWs are
a more sensitive measure of the progress of learning than confidence because FOWs
capture global knowledge about the category structure, while confidence judgments are
given at the level of an individual exemplar.
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INTRODUCTION

Metacognitive monitoring of remembering and text comprehension has been studied extensively
over recent decades (Dunlosky and Metcalfe, 2009). Less is known about the properties of
metacognitive judgments and the availability of different cues in other domains such as category
learning. Recently, Jacoby et al. (2010), Wahlheim et al. (2011), Wahlheim et al. (2012) performed a
series of studies on metacognition during the learning of natural concepts. They introduced a novel
metacognitive measure called category learning judgment (CLJ) that estimates learners’ sensitivity
to differences in classification difficulty among categories (families of birds). The results showed
that CLJs are higher in conditions that improved classification accuracy for studied and novel
exemplars. In particular, CLJs are higher in repeated testing than in repeated study conditions
(Jacoby et al., 2010) and in spaced relative to massed study (Wahlheim et al., 2011). Furthermore,
Wahlheim et al. (2012) found that CLJs are sensitive to repetitions but not to the variability
of exemplars, although both manipulations improved performance. These findings suggest that
participants are aware of the beneficial effects of repeated testing and of spaced learning but are also
less sensitive to the variability of exemplars. Interestingly, in the context of self-regulated learning,
when participants made a choice whether to receive more variability among exemplars from the
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same category or more repetitions of the same exemplars, they
consistently chose to receive more variability (Wahlheim and
DeSoto, 2016). However, their study choices were not related
to CLJs made after initial exposure to representative exemplars,
suggesting that their preferences were based on theoretical beliefs.

In previous studies (Jacoby et al., 2010; Wahlheim et al.,
2011, 2012), metacognitive judgments were provided after the
learning phase was over and before the transfer phase began.
However, it is of equal importance to establish how well
the dynamics of metacognitive judgments track the dynamics
of category learning. Recently, Doyle and Hourihan (2015)
investigated the dynamics of CLJs while participants learned
to classify exemplars forming natural categories. They found a
gradual increase in CLJs as a function of number of learning
blocks. This increase followed the same trend as categorization
accuracy. Interestingly, participants exhibited underconfidence
for categories with repeated exemplars, while there was no
systematic bias for categories with variable exemplars. Doyle and
Hourihan (2015) argued that underconfidence arises from the
feedback that participants received after each trial. Moreover,
they performed fine-grained analysis by computing trial-by-trial
differences in performance and CLJs. This analysis revealed that
a correct response is more likely to be followed by a correct
response rather than an incorrect response. The same analysis
for CLJs showed that the largest increase in CLJs occurred
when a correct trial followed an incorrect trial, and the largest
decrease in CLJs occurred when an incorrect trial followed a
correct trial. These findings suggest that, contrary to popular
belief, participants learn more from successful trials relative
to unsuccessful trials. Moreover, participants are aware of this
beneficial effect, implying that CLJs reflect actual learning of
category membership.

Although CLJs offer useful insights into learning of natural
categories, there are other contexts, such as rule-based category
learning, where a different type of metacognitive monitoring is
required. In that case, category membership is defined by logical
rules that sharply divide exemplars into two mutually exclusive
categories. Therefore, there is no variability across categories,
and knowledge of one category implies an equal understanding
of the other. In a classical study of Shepard et al. (1961),
participants were required to classify eight exemplars that vary
in three binary dimensions (e.g., color, shape, and size) into two
abstract categories. Category structures are defined according to
six logical rules of varying complexity. They are labeled type I
through type VI. A task type I involves a one-dimensional rule;
that is, exemplars are divided into categories based on values on a
single dimension, while other dimensions are irrelevant. A task
type II is known as an exclusive-or (XOR) logical rule where
correct classification depends on the combination of values from
two dimensions. Types III, IV, and V require a combination of
values in all three dimensions. However, each of these logical rules
can be described by a one-dimensional rule supplemented by the
exception to the rule. Finally, type VI also requires the integration
of information from all three dimensions, but it is not possible to
find simple rule-like regularities (Kurtz et al., 2013).

An analysis of error patterns and proportion of correct
responses in the data of Shepard et al. (1961) revealed that it is

possible to distinguish the four levels of difficulty. In particular,
they found that task type I was easiest to learn, followed by task
type II and then task type III. There was no difference in learning
difficulty between types III, IV, and V. Finally, type VI stands out
as the most difficult task. There are several theoretical accounts
of the Shepard et al. (1961) data, including implicit exemplar
learning (Kruschke, 1992), explicit generation of rules with
memorization of occasional exceptions to these rules (Nosofsky
et al., 1994b) and construction of mental models (Goodwin and
Johnson-Laird, 2011). Finally, there is a possibility that multiple
memory systems (explicit and implicit) work in parallel during
the learning of such tasks, as proposed by Ashby et al. (1998,
2011) in the COVIS model and by Erickson and Kruschke (1998)
in the ATRIUM model.

The aim of the current study is to examine the dynamics of
metacognitive monitoring during rule-based category learning,
which was not studied thus far. We used two types of
metacognitive judgments: confidence and feeling-of-warmth
judgments (FOWs). We investigated to what extent these
monitoring processes correspond with actual performance
during category learning of tasks labeled types I, II, and III
according to Shepard et al. (1961). Furthermore, we compared
confidence versus FOWs in their ability to track the dynamics of
category learning.

In experiment 1, participants gave confidence judgments after
each trial during their attempt to learn category structures.
Confidence judgments were used to study trial-by-trial
monitoring of classification accuracy of each exemplar during
learning. In experiment 2, we used the same categorization tasks,
but the participants were asked to give FOW judgments. FOW
judgments were used to examine monitoring of the acquisition
of the rule underlying category structures. More precisely,
participants judged how close they feel they are to the acquisition
of the appropriate categorization rule after each block of trials.
FOW judgments were originally developed by Metcalfe (1986) to
examine the dynamics of metacognitive judgments in problem
solving. In particular, she examined the cognitive processes
that lead to the production of correct or incorrect solutions in
problem solving. Metcalfe and Wiebe (1987) showed that FOW
judgments increased gradually in the course of solving algebra
or non-insight problems, suggesting that they are accessible to
metacognitive monitoring, while they did not increase gradually
during solving insight problems. Therefore, in solving algebra
and non-insight problems, participants reached a solution by the
gradual accumulation and combination of partial information
(Metcalfe and Wiebe, 1987; Ackerman, 2014).

Rationale for using FOW judgments in experiment 2
is that several theoretical accounts suggest that rule-based
category learning involves rule formation and hypothesis testing
(Nosofsky et al., 1994b; Ashby and Maddox, 2005, 2010). For
example, generating one-dimensional rules and searching for
exceptions to this rule as proposed by the RULEX model is
a gradual process requiring the integration of several steps
(Nosofsky et al., 1994b). We hypothesized that FOW judgments
can be applied to rule-based category learning as a measure of
metacognitive monitoring of approaching to the acquisition of
the appropriate classification rule. Similarly as CLJs, FOWs are
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measures of metacognitive monitoring at the global category
level.

Based on previous work, we expected to find the typical
order of classification accuracy with type I > type II > type
III (Shepard et al., 1961; Kurtz et al., 2013). In the same
way, we expected to find a similar pattern in metacognitive
judgments. With respect to the dynamics of learning, we expected
that metacognitive judgments would follow a similar trend as
classification accuracy (Doyle and Hourihan, 2015). Additionally,
we predicted that FOWs would be a more accurate measure
of classification performance relative to confidence judgments
because FOW judgments are based on more diagnostic cues to
classification performance. The reason for this is that FOWs
monitor a global level of knowledge about category structure.
They are given after participants receive feedback about a
complete set of exemplars. Consequently, when FOW is given,
participants have more information about each exemplar and
their relationships. However, confidence judgments are given
before feedback is received on each trial. Confidence is tied to a
particular exemplar and might be more sensitive to its incorrect
category representation.

EXPERIMENT 1

Method
Participants
Forty-four undergraduate psychology students from University
of Rijeka, Croatia, participated in the study in exchange for course
credits. All participants were tested individually in a quiet, dimly
lit room. One participant was removed from the analysis because
(s)he failed to learn task type I indicating the lack of motivation
to follow the instructions.

Materials
The participants learned three classification tasks labeled type
I, II, and III by Shepard et al. (1961). The stimuli were eight
geometrical figures varying along three binary dimensions: shape
(triangle/square), size (small/large), and color (black/white). The
underlying rule for task type I was one-dimensional simple
logical rule based on color (e.g., category A consisted of black
geometrical figures); the conjunctive two-dimensional rule based
on color and shape defined task type II (e.g., category A consisted
of black triangles AND white squares); and the complex three-
dimensional rule defined task type III (e.g., category A consisted
of black geometrical figures with the exception of the small black
square and including the small white triangle). We did not
include task type IV and V because previous work suggests that
they are of comparable difficulty to task type III. Additionally, we
excluded task type VI because it is the most difficult task and it
requires the rote memorization of exemplars. In other words, it is
not possible to verbalize a simple logical rule that can solve task
type VI.

Procedure
Every trial started with the presentation of the stimulus in the
center of the screen. The stimulus remained on the screen

until the participant made a response. Each of the eight stimuli
(geometrical figures) was presented once during a single block
or trial in a randomized order. Participants were instructed to
determine whether the presented stimulus (geometrical figure)
belonged to category A or B by pressing appropriate keys on
the computer keyboard. If they were not sure how to classify
an exemplar, they were instructed to guess its category. After
each classification, participants were asked to give confidence
judgments on a scale ranging from 50 (‘not confident at all’) to
100% (‘completely confident’) by pressing appropriate keys on
the computer keyboard. Each rating was followed by feedback
on classification accuracy. Learning continued until participants
reached 16 consecutive correct classifications within two blocks
or a maximum of 20 blocks (160 trials). Upon completion of the
classification task, subjects were asked to write the underlying
rule on a sheet of paper. The same procedure was repeated
for all tasks. Participants completed all three learning tasks.
The order of presentation of tasks was randomized across
participants.

RESULTS AND DISCUSSION

Data were analyzed on three different levels. Firstly, we analyzed
mean performance when data are aggregated across all learning
blocks. Secondly, we analyzed trends in backward learning
curves. In addition, we performed trial-by-trial analysis similar
to Doyle and Hourihan (2015) that is presented in Supplemental
Material.

Due to substantial departures from sphericity, data were
analyzed using MANOVAs instead of ANOVAs with sphericity
corrections. We reported the results of the multivariate Pillai
test. In the same manner, the Pillai test was applied in post
hoc comparisons and trend analyses with Holm adjustment of
the p values as a protection against α-error. In all analyses, the
significance level was set at 0.05.

Mean Performance
We analyzed the number of learning blocks, accuracy, confidence
judgments, and log10 transformed response times using four
separate one-way MANOVAs with tasks (I, II, or III) as a repeated
measure factor. If a participant achieved maximal accuracy in two
consecutive blocks before the end of the session, we assumed that
(s)he would continue to do so in all subsequent blocks and filled
the empty cells accordingly (Nosofsky et al., 1994a). In the same
manner, we assumed that confidence would be maximal in all
subsequent blocks.

Number of Learning Blocks
One-way MANOVA (N = 43) revealed a significant main effect of
the task, [F(2,41)= 130.60, p < 0.001, η2

p = 0.86]. Task type I was
learned faster (M= 4.16, SE= 0.30) than task type II (M= 10.58,
SE= 0.92), F(1,42)= 43.00, p < 0.001, η2

p = 0.51, or task type III
(M = 15.86, SE = 0.74), F(1,42) = 260.39, p < 0.001, η2

p = 0.86.
Additionally, task type II was learned faster than task type III,
F(1,42)= 24.54, p < 0.001, η2

p = 0.37.
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Categorization Accuracy
One-way MANOVA (N = 43) revealed a significant main effect
of the task, F(2,41)= 107.59, p < 0.001, η2

p = 0.84. Accuracy was
higher in task type I (M = 97.37%, SE= 0.54) than in task type II
(M = 81.92%, SE = 2.39), F(1,42) = 41.35, p < 0.001, η2

p = 0.50,
or task type III (M = 75.16%, SE = 1.73), F(1,42) = 184.50,
p < 0.001, η2

p = 0.81. Additionally, accuracy was higher in task
type II than III, F(1,42) = 5.60, p = 0.023, η2

p = 0.12. This is
consistent with the order of tasks according to their difficulty (i.e.,
I > II > III) as observed in previous studies (Shepard et al., 1961;
Kurtz et al., 2013).

Confidence Judgments
One-way MANOVA (N = 43) revealed a significant main effect
of the task, F(2,41)= 62.33, p < 0.001, η2

p = 0.75. Confidence was
higher in task type I (M = 97.25%, SE= 0.55) than in task type II
(M = 86.11%, SE = 1.98), F(1,42) = 36.32, p < 0.001, η2

p = 0.46,
or task type III (M = 81.77%, SE = 1.54), F(1,42) = 113.82,
p < 0.001, η2

p = 0.73. Furthermore, confidence was higher in task
type II than III, F(1,42)= 4.36, p= 0.043, η2

p = 0.09. This analysis
confirms our hypothesis that confidence follows the same pattern
(i.e., I > II > III) as observed for accuracy.

Response Times
One-way MANOVA (N = 43) revealed a significant main effect
of the task, F(2,41)= 80.17, p < 0.001, η2

p = 0.80. Responses were
faster in task type I (M = 3.022, SE = 0.021) than in task type II
(M = 3.300, SE= 0.022), F(1,42)= 138.72, p < 0.001, η2

p = 0.77,
or task type III (M = 3.293, SE = 0.018), F(1,42) = 118.23,
p < 0.001, η2

p = 0.74. Furthermore, there was no statistically
significant difference in response times between task types II
and III, F(1,42) < 1, p > 0.50, η2

p < 0.01. Therefore, response
times were not able to distinguish between task types II and III,
although there are reliable differences between them observed in
accuracy and confidence judgments.

Backward Learning Curves
In order to investigate dynamics of category learning and
metacognitive judgments we constructed backward learning
curves (BLCs). This method of analysis solves the problem of
individual differences in learning that occur when averaging data
within blocks (Hayes, 1953; Smith and Ell, 2015). We took into
account last five learning blocks prior to the termination of the
learning session and aligned data of each participant accordingly.
The last block of all participants was labeled as Block 0, the
block that immediately precedes the last block was labeled as
Block −1 and so forth. Next, we checked for existence of linear
and non-linear trends in BLCs averaged across participants.
Of particular interest was the question whether metacognitive
judgments follow the same trend as accuracy.

Trends in BLCs
Several participants achieved maximal accuracy in less than five
blocks. For these participants, we filled missing cells by the
corresponding results observed in the last block available. We
analyzed accuracy and confidence using three 5 × 3 MANOVAs

with the block (−4, −3, −2, −1, 0) and the task (I, II, III) as
within-participant factors.

Categorization Accuracy
The 5 × 3 MANOVA (N = 43) revealed a significant main effect
of the block, F(4,39) = 64.84, p < 0.001, η2

p = 0.87, and the
main effect of the task, F(2,41) = 12.21, p < 0.001, η2

p = 0.37.
The block× task interaction was also significant, F(8,35) = 2.76,
p = 0.018, η2

p = 0.39. To examine trends in categorization
accuracy, we computed polynomial orthogonal contrasts over the
means in BLCs. The results of the trend analysis are displayed in
Supplementary Table S2.

Polynomial contrasts revealed that there was a statistically
significant linear component in all task types. There was no
significant quadratic component, but there was a significant
cubic component in all task types. These results suggest that
classification accuracy showed a trend with a steep increase in
Block −2 that reached a plateau over Blocks −1 and 0, as shown
in Figure 1. Importantly, a similar trend was observed for all
three task types. In addition, there was quartic trend in task types
I and II.

Confidence Judgments
The 5 × 3 MANOVA (N = 43) revealed a significant main
effect of the block, F(4,39) = 41.45, p < 0.001, η2

p = 0.81, but
there was no significant main effect of the task, F(2,41) = 0.72,
p= 0.491, η2

p = 0.03. The block× task interaction was significant,
F(8,35)= 4.96, p < 0.001, η2

p = 0.53. Trend analysis revealed that
there was a statistically significant linear component in all three
task types. However, in the task type I, there was also a significant
cubic trend similar to that observed in accuracy, but there were no
significant non-linear trends for task types II and III. This analysis
suggests that confidence judgments for task type I follow a non-
linear sigmoid-like trend similar to that observed in accuracy.
However, confidence in task type II and III follow a slower linear
trend, suggesting that participants are more cautious and that
they are not yet willing to give maximal confidence judgment in
the block where they achieved maximal accuracy.

Response Times
The 5 × 3 MANOVA (N = 43) revealed a significant main
effect of the block, F(4,39) = 13.99, p < 0.001, η2

p = 0.59,
and the main effect of the task, F(2,41) = 17.04, p < 0.001,
η2

p = 0.45. The block × task interaction was also significant,
F(8,35) = 5.64, p < 0.001, η2

p = 0.56. Table 1 showed that there
is a significant linear and cubic trend for task type I, suggesting
that the response became faster as participants reached the end of
the learning session. However, there was no evidence for any type
of trend in task types II and III because they were much more
difficult to learn and their response times were not indicative of
performance, as shown by the correlational analysis.

Trends in BLCs with Successful Participants
Participants who failed to learn one of the tasks introduce
additional noise in the data that might obscure existing trends or
artificially create non-existing trends. To address this problem,
we separately analyzed the dataset restricted to participants who
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FIGURE 1 | Mean accuracy (A), confidence judgments (B), and log10 transformed response times (C) in the last five learning blocks. Results are shown
separately for all participants (left column) and for participants who successfully learned all three tasks (right column). Blocks are counted relative to the end of the
learning session. Error bars represent 95% within-subjects confidence intervals computed following Cousineau (2005) and Morey (2008).

TABLE 1 | Correlations between performance measures observed in Experiment 1.

Learning Task

Type I Type II Type III

RT CONF RT CONF RT CONF

ACC −0.35 0.25 0.36∗ 0.41∗ 0.06 0.27

RT −0.32 −0.11 0.09

*p < 0.05. Statistical significance was assessed by t-test with 41◦ of freedom and Holm correction for multiple comparisons. NB, number of blocks; ACC, accuracy; RT,
response times; CONF, confidence.

successfully learned all three tasks. Twenty-one participants were
removed from the analysis. It should be noted that this analysis
cannot be performed on accuracy due to the lack of variability in
Blocks −1 and 0. However, visual inspection of Figure 1A (right
column) showed that non-linear sigmoid-like trend in accuracy
is present in all three task types.

Confidence Judgments
The 5 × 3 MANOVA (N = 22) revealed a significant main effect
of the block, F(4,18)= 45.29, p < 0.001, η2

p = 0.91, although there
was no main effect of the task, F(2,20) < 1, p > 0.50, η2

p < 0.01.

The block × task interaction was significant, F(8,14) = 5.01,
p = 0.004, η2

p = 0.74. Trend analysis (Supplementary Table S3)
showed that linear trends remained significant in all task types.
Also, in task type I, cubic trend remained significant although
quartic trend disappeared. Furthermore, there appeared evidence
for quartic trend in task type II. All other trends remained
non-significant.

Response Times
The 5 × 3 MANOVA (N = 22) revealed a significant main
effect of the block, F(4,18) = 9.17, p < 0.001, η2

p = 0.67,
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and a significant main effect of the task, F(2,20) = 29.62,
p < 0.001, η2

p = 0.75. The block× task interaction was marginally
significant, F(8,14) = 2.64, p = 0.054, η2

p = 0.60. Linear and
cubic trends remained significant in task type I. All other trends
remained non-significant (Supplementary Table S3).

This analysis showed that non-linear trends (cubic or quartic)
in confidence exist in the task type I and II although similar non-
linear trends in accuracy is observed in all three learning tasks.
Also, non-linear component in response times was observed in
the task type I suggesting sharp increase in speed of response as
participants approached criterion.

Correlations between Performance Measures
Table 1 displays Pearson’s correlation coefficients that were
computed for all performance measures when data are aggregated
across BLC blocks. There are no statistically significant
correlations between performance measures in task type I and III.
On the other hand, classification accuracy is positively correlated
with confidence judgments in the task type II. Lack of accuracy-
confidence correlation in the task type I might be due to the
restricted range in accuracy because all participants learned this
task.

EXPERIMENT 2

Experiment 1 revealed that the dynamics of confidence closely
corresponds with the dynamics of accuracy in task type I
and II but not in task type III. This finding suggests that
confidence judgments are less accurate in monitoring more
complex tasks that require a combination of information from
three dimensions. In Experiment 2, we sought to establish
whether different types of metacognitive judgment such as FOW
might be able to track the dynamics of category learning in task
type III.

Method
Participants
Thirty-eight undergraduate psychology students from the
University of Rijeka, Croatia, participated in an exchange
for course credits. All participants were tested individually.
Three participants were removed from the analysis due to the
equipment failure during the experimental session.

Materials
The stimuli and classification tasks were identical to those used in
Experiment 1.

Procedure
Category learning tasks were applied in the same way as in
Experiment 1, except that the participants were not required
to make confidence judgments after each response. Instead,
participants provided FOW judgments to assess their subjective
feeling of how close they believe they were to the discovery of
an appropriate classification rule. They were asked to indicate
their FOW judgments after each complete block of eight trials
on a 7-point scale ranging from 1 (meaning ‘not close at all

to the appropriate classification rule’) to 7 (meaning ‘completely
confident about the appropriate classification rule’). In addition,
after FOW judgments, participants were asked to write down the
underlying rule or to describe features characterizing categories
A and B on a sheet of paper.

RESULTS AND DISCUSSION

Mean Performance
Analysis was performed in the same way as in Experiment 1.
We analyzed the number of learning blocks, accuracy, FOW
judgments and log10 transformed response times in four separate
MANOVAs with the task (I, II, III) as a repeated measure factor.

Number of Learning Blocks
One-way MANOVA revealed a significant main effect of a
category learning task, F(2,33) = 109.40, p < 0.001, η2

p = 0.87.
The number of blocks was smaller in task type I (M = 4.43,
SE = 0.37) than task type II (M = 11.29, SE = 1.00),
F(1,34) = 57.43, p < 0.001, η2

p = 0.63, and task type III
(M = 15.71, SE = 0.74), F(1,34) = 202.86, p < 0.001, η2

p = 0.86.
Furthermore, the number of blocks was smaller in task type II
than III, F(1,34)= 17.03, p < 0.001, η2

p = 0.33.

Categorization Accuracy
One-way MANOVA (N = 35) revealed a significant main effect
of the task, F(2,33) = 73.95, p < 0.001, η2

p = 0.82. Accuracy was
higher in task type I (M = 97.23%, SE = 0.66) than task type II
(M = 79.04%, SE = 2.78), F(1,34) = 51.50, p < 0.001, η2

p = 0.60,
and task type III (M = 71.00%, SE = 2.50), F(1,34) = 125.42,
p < 0.001, η2

p = 0.79. Furthermore, accuracy was higher in task
type II than III, F(1,34) = 6.65, p = 0.014, η2

p = 0.16. This
confirms the typical pattern (I > II > III) observed in previous
studies and in Experiment 1.

FOW Judgments
One-way MANOVA (N = 35) revealed a significant main effect
of the task, F(2,33) = 92.27, p < 0.001, η2

p = 0.85. FOW was
higher in task type I (M = 6.79, SE = 0.05) than task type II
(M = 5.04, SE = 0.28), F(1,34) = 45.12, p < 0.001, η2

p = 0.57,
and task type III (M = 3.90, SE = 0.23), F(1,34) = 173.86,
p < 0.001, η2

p = 0.84. Furthermore, FOW was higher in task type
II than III, F(1,34) = 14.17, p < 0.001, η2

p = 0.29. This confirms
our hypothesis that FOW judgments follow the same pattern as
accuracy and that they are sensitive to the task difficulty.

Response Times
One-way MANOVA (N = 35) revealed a significant main effect
of the task, F(2,33)= 74.33, p < 0.001, η2

p = 0.82. Responses were
faster in task type I (M= 2.888, SE= 0.028) relative to task type II
(M = 3.209, SE= 0.030), F(1,34)= 152.41, p < 0.001, η2

p = 0.82,
or task type III (M = 3.184, SE = 0.027), F(1,34) = 73.91,
p < 0.001, η2

p = 0.68. Furthermore, there was no statistically
significant difference in response times between task types II and
III, F(1,34) < 1, p = 0.346, η2

p = 0.03. As in Experiment 1,
response times did not distinguish between task types II and III,
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FIGURE 2 | Mean accuracy (A), feeling-of-warmth judgments (B), and log10 transformed response times (C) in the last five learning blocks. Results are
shown separately for all participants (left column) and for participants who successfully learned all three tasks (right column). Blocks are counted relative to the end of
the learning session. Error bars represent 95% within-subjects confidence intervals computed following Cousineau (2005) and Morey (2008).

although there were clear differences between them observed in
accuracy and FOWs.

Backward Learning Curves
As in Experiment 1, we constructed BLCs and analyzed
trends in accuracy and FOWs as a function of learning
block.

Trends in BLCs
We analyzed accuracy and FOW judgments in the BLCs using
three separate 5 × 3 MANOVAs with the block (−4, −3, −2,
−1, 0) and the task (I, II, III) as within-participant factors. Means
and within-subjects confidence intervals across all conditions are
plotted in Figure 2.

Categorization Accuracy
The 5 × 3 MANOVA (N = 35) revealed a significant main
effect of the block, F(4,31) = 33.97, p < 0.001, η2

p = 0.81, and
a significant main effect of the task, F(2,33) = 11.67, p < 0.001,
η2

p = 0.41. The block × task interaction was not significant,
F(8,27) = 1.98, p = 0.089, η2

p = 0.40. Trend analysis revealed a
significant linear component in all three tasks (Supplementary
Table S4). Furthermore, task type I showed a significant cubic

and quartic component, while task types II and III showed
a significant cubic component. Replicating the pattern from
Experiment 1, trend analysis suggests that in all task types, there
is evidence of a non-linear trend near the end of learning.

FOW Judgments
The 5 × 3 MANOVA (N = 35) revealed a significant main
effect of the block, F(4,31) = 19.51, p < 0.001, η2

p = 0.72, and
a significant main effect of the task, F(2,33) = 29.28, p < 0.001,
η2

p = 0.64. The block × task interaction was not significant,
F(8,27) = 1.69, p = 0.148, η2

p = 0.33. Trend analysis revealed
statistically significant linear component, and lack of quadratic
component in all three task types (Supplementary Table S4). In
addition, there was a significant cubic component in task type II.
There was no evidence for quartic trend in neither of task types.

Response Times
The 5 × 3 MANOVA (N = 35) revealed a significant main
effect of the block, F(4,31) = 11.18, p < 0.001, η2

p = 0.59, and
a significant main effect of the task, F(2,33) = 50.69, p < 0.001,
η2

p = 0.75. The block × task interaction was not significant,
F(8,27) = 1.89, p = 0.104, η2

p = 0.36. Trend analysis revealed
that there is a significant linear trend in task type I and III.
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Also, there is a quartic trend in task type I. All other trends were
non-significant.

Trends in BLCs with Successful Participants
As in Experiment 1, we performed separate analysis on the
dataset restricted to participants who successfully learned all
three tasks (Supplementary Table S5). Thirteen participants were
removed from the analysis. Again, this analysis could not be
performed on accuracy due to the lack of variability in Blocks−1
and 0. However, visual inspection of Figure 2A (right column)
showed that non-linear sigmoid-like trend in accuracy is present
in all three task types because there is an abrupt rise in accuracy
between Blocks−2 and−1.

FOW Judgments
The 5 × 3 MANOVA (N = 22) revealed a significant main
effect of the block, F(4,18) = 32.71, p < 0.001, η2

p = 0.88, and
a significant main effect of the task, F(2,20) = 11.63, p < 0.001,
η2

p = 0.54. The block × task interaction was also significant,
F(8,14) = 7.16, p < 0.001, η2

p = 0.80. Linear trend remained
significant in all three task types. In task type II, cubic trend
also remained significant. Furthermore, a significant quartic
trend emerged in task type III. All other trends remained non-
significant.

Response Times
The 5 × 3 MANOVA (N = 22) revealed a significant main
effect of the block, F(4,18) = 14.35, p < 0.001, η2

p = 0.76, and
a significant main effect of the task, F(2,20) = 36.70, p < 0.001,
η2

p = 0.79. The block × task interaction was not significant,
F(8,14) = 1.47, p = 0.252, η2

p = 0.46. Linear trend in task type
I and III remained significant as well as quartic trend in task type
I. All other trends remained non-significant.

The analysis suggests that the dynamics of FOW judgments
is well aligned with the dynamics of accuracy in task type II and
III but not in task type I. The lack of non-linear trend in task
type I is related to the fact that FOW judgments are already high
at Block −4 and there is no much opportunity to exhibit non-
linear transition to maximal response. However, non-linear trend
in task type I is observed in response times that exhibited sharp
reduction between Blocks−2 and−1.

Correlations between Performance Measures
Table 2 displays Pearson’s correlation coefficients, calculated for
all performance measures in all tasks when data are aggregated
across BLC blocks. There is a moderate negative correlation
between RT and accuracy and between RT and FOW judgments
in task type I. On the other hand, these correlations are positive in
task type III suggesting qualitative differences between the tasks.
Task type I is easy to learn and when participants identify single
relevant dimension, they become faster, more accurate and give
higher FOW judgments. Task type III requires more cognitive
effort that is reflected in slower response times for participants
who learned it and who also gave higher FOW judgments.
Importantly, correlation between accuracy and FOW judgments
was positive and high in all task types. It is interesting to note that,
when compared to accuracy-confidence correlations observed

in Experiment 1, the associations between accuracy and FOW
judgment in Experiment 2 are generally stronger. Below, we
provide quantitative assessment of this difference in the separate
section Comparison between Experiments.

Comparison between Experiments
Although suggestive, qualitative differences between trends in
BLCs provide only indirect evidence that FOW judgments follow
dynamics of learning more closely than confidence judgments. In
order to provide more direct test, we computed Fisher’s z-test for
the comparison between two Pearson’s coefficients of correlation
found in two independent samples. With Fisher’s z-test, we
compared the size of the accuracy-confidence correlation (r1)
found in Experiment 1 with the size of accuracy-FOW correlation
(r2) found in Experiment 2. Also, we computed 95% confidence
intervals around the difference between correlations as proposed
by Zou (2007).

In task type I, difference between correlation coefficients
(r1 = 0.25 vs. r2 = 0.50) was not significant, d = −0.25, 95%
CI = [−0.62, 0.15], z = −1.24, p = 0.215. However, in task type
II, accuracy-confidence correlation was significantly lower than
accuracy-FOW correlation (r1 = 0.41 vs. r2 = 0.74), d = −0.33,
95% CI = [−0.64, −0.03], z = −2.17, p = 0.030. In task
type III, again accuracy-confidence correlation was significantly
lower than accuracy-FOW correlation (r1 = 0.27 vs. r2 = 0.68),
d=−0.41, 95% CI= [−0.75,−0.06], z=−2.33, p= 0.020. These
comparisons suggest that FOW judgments are more sensitive
than confidence to classification accuracy in the task types II and
III. It is interesting to note that these are the same tasks where
non-linear trends are observed in FOW judgments.

Furthermore, we examined the differences between accuracy-
confidence and accuracy-FOW correlations across blocks in the
BLCs. Results of these comparisons are displayed in Table 3. In
task type I, there was a significant difference between correlations
in Block −4 only. As already noted, task type I might be too
easy to learn and there is not enough opportunity for a difference
between confidence and FOW to emerge. Also, it should be noted
that it was not possible to compute correlation in Block−1 and 0
because there was no variability in accuracy. More importantly, in
task type II, significantly higher accuracy-judgment correlations
are observed in the last three blocks, that is, near the end of
learning. The same pattern was also observed in the task type III.
Differences between correlations in Blocks−2,−1, and 0 suggest
that FOW judgments are better aligned with changes in accuracy
that occurred when participants learned the task. Therefore,
accuracy-FOW correlations are higher than accuracy-confidence
correlations because FOW judgments capture the moment when
the task is learned. On the other hand, it seems that confidence
judgments require additional positive feedback in the last blocks
and consequently fail to align with accuracy.

GENERAL DISCUSSION

In the present study, we employed two distinct metacognitive
judgments that addressed category learning from different
perspectives. In Experiment 1, we used confidence judgments
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TABLE 2 | Correlations between performance measures observed in Experiment 2.

Learning Task

Type I Type II Type III

RT FOW RT FOW RT FOW

ACC −0.35∗ 0.50∗ 0.16 0.74∗ 0.48∗ 0.68∗

RT −0.43∗ −0.03 0.37∗

*p < 0.05. Statistical significance was assessed by t-test with 33◦ of freedom and Holm correction for multiple comparisons. NB, number of blocks; ACC, accuracy; RT,
response times; FOW, feeling-of-warmth judgments.

TABLE 3 | Differences between the accuracy-judgment correlations observed in Experiment 1 and 2 across learning blocks.

Task Block r1 (41) r2 (33) d 95% CI z p

Type I −4 0.12 0.62 −0.50 [0.85, −0.11] −2.55 0.011

−3 0.43 0.64 −0.21 [−0.53, 0.12] −1.26 0.209

−2 0.30 0.53 −0.23 [−0.59, 0.15] −1.18 0.237

−1 – – – – – –

0 – – – – – –

Type II −4 0.37 0.63 −0.26 [−0.60, 0.09] −1.49 0.137

−3 0.42 0.42 0 [−0.37, 0.39] <0.10 >0.50

−2 0.30 0.66 −0.36 [−0.70, −0.01] −2.04 0.042

−1 0.42 0.78 −0.36 [−0.66, −0.08] −2.52 0.012

0 0.62 0.90 −0.28 [−0.51, −0.10] −3.15 0.002

Type III −4 0.37 0.40 −0.03 [−0.41, 0.37] −0.15 >0.50

−3 0.54 0.60 −0.06 [−0.37, 0.26] −0.38 >0.50

−2 0.17 0.58 −0.41 [−0.77, −0.02] −2.07 0.039

−1 0.13 0.65 −0.52 [−0.87, −0.14] −2.72 0.007

0 0.29 0.86 −0.57 [−0.88, −0.29] −4.19 <0.001

Significant effects are highlighted by bold typeface. r1 (r2), accuracy-judgment correlation observed in Experiment 1 (2); d, difference between r1 and r2; CI, confidence
interval around the difference (following Zou, 2007); z, Fisher’s z-test.

after the classification of each exemplar. In this condition,
participants are encouraged to think about each exemplar as
an isolated item without considering its relationship with other
items. In Experiment 2, participants gave FOW judgments after
a block of trials. In this case, participants are encouraged to
think about exemplars as a group of items that are united by a
rule. An analysis of the mean performance showed that in both
experiments, accuracy followed the same pattern, I > II > III,
that is commonly observed in studies using the tasks introduced
by Shepard et al. (1961). Confidence and FOW judgments also
showed the same pattern, suggesting that both metacognitive
measures are sensitive to task difficulty. On average, confidence
judgments were higher than actual performance in task type II
and III but not in task type I, where almost perfect alignment
between confidence and accuracy was achieved. This is not
surprising because task type I is easy to master by identifying a
single relevant dimension, which is also easy to monitor.

We studied dynamics of category learning and metacognitive
judgments by constructing BLCs and analyzing their trends.
This analysis revealed a dissociation between the dynamics of
classification accuracy and confidence judgments in Experiment
1. In particular, we computed polynomial orthogonal contrasts
to show that classification accuracy follows a non-linear trend
in all three task types. However, confidence judgments follow

a non-linear trend only in task type I and II, while task type
III follows a linear trend. It seems that participants were more
cautious in judging their performance in task type III near the
end of learning. The reason for this caution is the fact that
in the starting block, participants greatly overestimated their
performance. Massive negative feedback due to the large number
of error forced them to reconsider their estimates in later blocks.

Trend analysis in Experiment 2 showed that accuracy and
FOW judgments followed non-linear trends in task type II
and III but not in task type I. A non-linear trend in task
type III suggests that FOW judgments more accurately tracks
classification performance near the end of learning relative
to confidence in this most difficult task. In particular, FOW
judgments better capture the transition to perfect performance
because they reached a plateau in the last two blocks in the similar
way as classification accuracy did. On the other hand, it seems
that FOW judgments are not particularly suited for tracking
performance in easy task such as type I.

We also examined correlations between accuracy and
metacognitive judgments. In general, accuracy-FOW correlations
(r2) observed in Experiment 2 were higher relative to accuracy-
confidence correlations (r1) observed in Experiment 1 across all
task types. When we directly compared the size of correlations in
Experiment 1 and 2, we found that r2 were significantly higher
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than r1 in task types II and III. Moreover, when correlations
were compared across blocks in BLCs, we found that association
between accuracy and FOW is stronger than association between
accuracy and confidence in Blocks −2, −1 and 0, that is, near
the end of learning. Such finding suggests that FOW judgments
are more sensitive to transition in accuracy that occurred when
participants approached criterion level of performance. In other
words, FOWs are a better measure of success in category learning.

Comparisons between accuracy-confidence and accuracy-
FOW correlations also corroborate trend analysis in BLCs
because advantage of FOWs over confidence is seen in the
same tasks where FOW judgments exhibited non-linear trends
similar to those observed in accuracy. Therefore, correlations and
trends in BLCs provide complementary view on the dynamics
of category learning and metacognitive judgments. On the
other hand, lack of difference between r1 and r2 as well as
inconsistencies between correlational and trend analysis found in
task type I1 can be explained by the ceiling effect, that is, accuracy
in both experiments and FOW judgments in the Experiment 2
exhibited low variability in this task. In other words, task type I is
easy to learn and participants are aware of this fact irrespective of
the type of judgment they provided.

What is the explanation for better tracking of classification
performance by FOW judgments compared to confidence
judgments? Following the cue-utilization view of metacognitive
monitoring (Koriat, 1997), the crucial question is on which cues
or sources of information these two types of judgments are
based. Many findings in the domain of metamemory show that
differences in the accuracy of metacognitive judgments (their
correlation with memory performance) depend on the validity
of those cues (for example, a delayed JOL effect, Dunlosky and
Nelson, 1992, 1994; see also: Koriat, 1997, 2007). Accordingly,
the discrepancy between FOWs and confidence given during
category learning observed in this study should also arise from
the validity of cues on which these judgments are based.

Confidence judgments are given for each particular item
before feedback. Therefore, incorrectly formed hypotheses about
the category membership of that item should result in a
discrepancy between classification accuracy and confidence.
Confidence judgments primarily reflect the memory for category
membership of a particular exemplar based on experience with
previous correct and incorrect classifications of that item.

However, FOWs are based on immediate feedback about the
classification accuracy of all eight items in the previous learning
block. To the extent that the number of correct and incorrect
classifications reflect the level of acquisition of the appropriate
rule, it is expected that the FOWs will also be in line with
the degree of acquisition of the rule. Therefore, FOWs monitor
integrated knowledge about category structure. They are a form
of summary representation of the category similar to the CLJs.
Thus, FOWs are based on cues that are more diagnostic for actual
classification performance.

1In Experiment 1, there was no accuracy-confidence correlation although there
was clear non-linear trend in confidence that matched with non-linear trend in
accuracy. In Experiment 2, there was positive accuracy-FOW correlation although
there was no evidence for non-linear trend in FOW judgments.

Alternative explanation of better alignment of FOWs with
classification accuracy is that FOWs possess unique features that
sets them apart from other types of judgments either global
or local. In particular, FOWs are prospective judgments that
encourage participants to think about the rule formation and
hypothesis testing. Future studies should address the question to
what degree are the results of Experiment 2 specific to FOWs.
In other words, could these results be generalized to other
types of global metacognitive judgments? To this end, a new
metacognitive judgment should be devised where participants
are asked to assess the level of acquired knowledge after each
block of trials, that is, to give a form of global judgment
about their knowledge of category structure. In the case that
our global/local interpretation is correct, we would expect that
category knowledge judgments will exhibit similar dynamics as
it was observed with FOWs in Experiment 2. On the other
hand, if FOWs are indeed unique metacognitive judgments, we
would expect that category knowledge judgments will exhibit
similar dynamics as it was found for averaged local confidence in
Experiment 1.

Previous studies on the metacognitive monitoring of category
learning employed CLJs (Jacoby et al., 2010; Wahlheim et al.,
2011, 2012; Doyle and Hourihan, 2015; Wahlheim and DeSoto,
2016). The CLJs estimate the probability of correct classification
of novel exemplars from the same category. When participants
learned natural categories, it was found that CLJs were sensitive
to the repetition of items during study but not sensitive to the
variability of exemplars within the categories, although both
factors affected actual performance. Furthermore, it was found
that the dynamics of CLJs closely follow the progress of category
learning (Doyle and Hourihan, 2015). Our study complements
these findings by showing that, in the tasks where category
membership is defined by logical rules, confidence and FOW
judgments are also useful measures of the awareness of the
progress of learning. Moreover, we found that FOW judgments
better capture the dynamics of accuracy than confidence.
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