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The capacity to sequence information is central to human performance. Sequencing

ability forms the foundation stone for higher order cognition related to language and

goal-directed planning. Information related to the order of items, their timing, chunking

and hierarchical organization are important aspects in sequencing. Past research on

sequencing has emphasized two distinct and independent dichotomies: implicit vs.

explicit and goal-directed vs. habits. We propose a theoretical framework unifying these

two streams. Our proposal relies on brain’s ability to implicitly extract statistical regularities

from the stream of stimuli and with attentional engagement organizing sequences

explicitly and hierarchically. Similarly, sequences that need to be assembled purposively

to accomplish a goal require engagement of attentional processes. With repetition,

these goal-directed plans become habits with concomitant disengagement of attention.

Thus, attention and awareness play a crucial role in the implicit-to-explicit transition as

well as in how goal-directed plans become automatic habits. Cortico-subcortical loops

basal ganglia-frontal cortex and hippocampus-frontal cortex loops mediate the transition

process. We show how the computational principles of model-free and model-based

learning paradigms, along with a pivotal role for attention and awareness, offer a unifying

framework for these two dichotomies. Based on this framework, we make testable

predictions related to the potential influence of response-to-stimulus interval (RSI) on

developing awareness in implicit learning tasks.

Keywords: implicit sequence learning, explicit sequence knowledge, habitual and goal-directed behavior, model-

free vs. model-based learning, hierarchical reinforcement learning

1. INTRODUCTION

Cognitive Sequencing can be viewed as the ability to perceive, represent and execute a set of
actions that follow a particular order. This ability underlies vast areas of human activity including,
statistical learning, artificial grammar learning, skill learning, planning, problem solving, speech
and language. Many human behaviors ranging from walking to complex decision making in
chess involve sequence processing (Clegg et al., 1998; Bapi et al., 2005). Such sequencing ability
often involves processing repeating patterns—learning while perceiving the recurrent stimuli or
actions and executing accordingly. Sequencing behavior has been studied in two contrasting
paradigms: goal-directed and habitual or under the popular rubric of response-outcome (R-O) and
stimulus-response (S-R) behavior. A similar dichotomy exists on the computational side under the
alias of model-based vs. model-free mechanisms. The model-based vs. model-free computational
paradigm has proved vital in designing algorithms for planning and learning in various intelligent
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system architectures—leading to the proposal of their
involvement in human behavior as well. In this article, we
use another dichotomy on the learning side: implicit vs. explicit
along with a pivotal role for attention and awareness to connect
these dichotomies and suggest a unified theoretical framework
targeted toward sequence acquisition and execution. In the
following, the three dichotomies will be described along with a
summary of the known neural bases of these.

1.1. Habitual vs. Goal-Directed Behavior
Existence of a combination of habitual and goal-directed
behaviors is shown in empirical studies on rats and humans. In
the experiments to study these behaviors two phenomena have
been used to differentiate: outcome devaluation—sensitivity to
devaluation of the goal and contingency degradation—sensitivity
to an omission schedule. Outcome devaluation is achieved by
satiating the rats on the rewarding goal; making the reward
less appealing whereas contingency degradation is achieved by
omitting a stimulus within a sequence of stimuli leading to
the goal. Results demonstrate that overtrained rats and humans
seem to be insensitive to both the phenomena. That is, even
though the outcome of following a path is devalued or a
stimulus in the sequence is omitted, habits lead rats to follow
the same path, thus relating overtraining to habitual or stimulus-
response (S-R) kind of control (Adams and Dickinson, 1981;
Killcross and Coutureau, 2003). On the other hand, moderately
trained rats have had little or no difficulty adapting to the new
schedule relating this behavior to a goal-directed or response-
outcome (R-O) kind of control (Dickinson, 1985; Balleine and
Dickinson, 1998; Tricomi et al., 2004; Balleine and O’Doherty,
2010; Dolan and Dayan, 2013). Based on this proposal of
two contrasting mechanisms, quite a few notable neuroimaging
studies have attempted establishing the neural substrate related
to the two modes of control. fMRI studies related to outcome
devaluation point to two sub areas of the ventromedial prefrontal
cortex (vmPFC)—medial orbito-frontal cortex (OFC) andmedial
prefrontal cortex (PFC) as well as one of the target areas of the
vmPFC structures in the human striatum, namely, the anterior
caudate nucleus, to be involved in goal-directed actions (Valentin
et al., 2007; Balleine and O’Doherty, 2010). Studies aimed at
finding the neural substrate for habitual behavior suggest an
involvement of the subcortical structure, dorsolateral striatum
(Hikosaka et al., 1999; Yin and Knowlton, 2006; Tricomi et al.,
2009).

1.2. Model-Free vs. Model-Based Paradigm
In order to understand the learning process in goal-directed and
habitual paradigms, two contrasting computational theories have
been proposed. Goal-directed learning and control processes
have been related to a model-based system (Doya et al., 2002;
Khamassi and Humphries, 2012) whereas the habitual paradigm
to a model-free system (Dolan and Dayan, 2013). Typically, a
goal-directed system uses its view of the environment to evaluate
its current state and possible future states, selecting an action that
yields the highest reward. A model-based mechanism conceives
this as building a search tree leading toward goal states. Such a
system can be viewed as using the past experiences to understand

the environment and using this view of the environment to
predict the future.

In contrast, a habitual behavior can be viewed as a repetition
of action sequences based on past experience. Acquisition of a
habit can be viewed as learning a skill—correcting the residual
error in the action sequence leading to the goal. Typically skills
are acquired over time, are sensitive to the effectors used for
acquisition (Bapi et al., 2000) and there seems to be a network of
brain areas involved at various stages of skill learning (Hikosaka
et al., 1999). A model-free system conceives the residual error
as a sort of prediction error called the temporal difference
(TD) error (Sutton, 1988). Dopamine has been noted to be a
key neurotransmitter involved in encoding the prediction error
and thus leading to the view that dopamine plays a crucial
role in habit learning (Schultz et al., 1997). The influence of
dopamine is in no way limited to habitual behaviors. Role of
dopamine in functions mediated by the prefrontal cortex such as
working memory, along with the observation that there are wide
projections of dopamine to both the caudate and the putamen
and studies manipulating dopamine levels in the prefrontal
cortex affecting goal-directed behavior indicate its involvement
in the goal directed mechanism as well (see Dolan and Dayan,
2013 for a review).

Further work has been directed at establishing a connection
between the dichotomies—the behavioral dichotomy of goal-
directed vs. habitual and the computational dichotomy of model-
based vs. model-free. For example, Daw et al. (2005) suggested an
uncertainty based competition between the two behaviors—the
computationally simpler process at any point acting as a driver
process. Another interesting aspect of such a combination comes
from the hierarchical reinforcement learning (HRL) framework
(Sutton and Barto, 1998; Sutton et al., 1999; Botvinick et al., 2009;
Botvinick, 2012). An important aspect of acquisition of sequences
is the formation of chunks among the sequence of stimuli. The
striatum has been emphasized to be involved in the chunking
process, the chunks then selected and scaled by the output circuits
of the basal ganglia (Graybiel, 1998).

1.3. Implicit and Explicit learning
For the past three decades, there has been significant interest
in sequence learning. A large body of experimental evidence
suggests that there is an important distinction between implicit
and explicit learning (see for example Howard andHoward, 1992;
Shea et al., 2001 studies). Howard and Howard (1992) used a
typical serial reaction time (SRT) task (Nissen and Bullemer,
1987), where the stimuli appeared in one of the four locations
on the screen, and a key was associated with each location.
The participants’ job was to press the key as soon as possible.
The stimuli were presented in a sequential order. With practice,
participants exhibited response time benefits by responding
faster for the sequence. However, their performance dropped to
chance-level when they were asked to predict the next possible
location of the stimulus suggesting that the participants might
have learned the sequence of responses in an implicit manner
and thus can not predict the next move explicitly. Another
example is the study by Shea et al. (2001), where participants
were given a standing platform task and were asked to mimic
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the movements of the line presented on a screen. The order of
the stimuli was designed in such a way that the middle segment
was always fixed whereas the first and the last segments varied
but participants were not told about the stimulus order. It was
found that the performance of the middle segment improves over
time. During the recognition phase participants fail to recognize
the repeated segment, pointing to the possibility that they may
have acquired this via implicit learning. A recent study done
with a variant of SRT task called oculomotor serial response time
(SORT) task also suggests that motor sequence can be learned
implicitly in the saccadic system (Kinder et al., 2008) as well
and does not pose attentional demands when the SORT task is
performed under dual-task condition (Shukla, 2012). Another
way of differentiating implicit vs. explicit learning would be to see
whether an explicit instruction was given about the presence of a
sequence prior to the task. An instruction specifying the presence
of a sequence in the task would, in turn, drive attentional
learning. Without such explicit prior knowledge, however, it
may take more number of trials for the subjects to become
aware of the presence of a sequence—requiring them to engage
their attention toward the sequence, turning the concomitant
learning and execution explicit. Apart from these studies, there is
a large body of clinical literature which confirms the distinction
of implicit and explicit learning. Most of the clinical evidence
comes from the artificial grammar learning (AGL) paradigm,
where patients learned to decide whether the string of letters
followed grammatical rules or not. Healthy participants were
found to learn to categorize grammatical and ungrammatical
strings without being able to verbalize the grammatical rules.
Evidence from amnesic patients points toward implicit learning
being intact in patients even though their explicit learning was
severely impaired (Knowlton et al., 1992; Knowlton and Squire,
1996; Gooding et al., 2000; Van Tilborg et al., 2011). Willingham
et al. (2002) suggested that activation in the left prefrontal cortex
was a prerequisite for such awareness along with activation of
the anterior striatum (Jueptner et al., 1997a,b). Results of the
positron emission tomography (PET) study of Grafton et al.
(1995) when participants performed a motor sequence learning
task under implicit or explicit learning task conditions suggest
that the motor cortex and supplementary motor areas were
activated for implicit learning whereas the right premotor cortex,
the dorsolateral cingulate, anterior cingulate, parietal cortex and
also the lateral temporal cortex were associated with explicit
procedural memories (Gazzaniga, 2004; Destrebecqz et al., 2005).

It has been established that the brain areas involved in
working memory and attentional processing are more active
during explicit learning as compared to implicit learning.
Further, the findings of functional magnetic resonance imaging
(fMRI) studies suggest that the prefrontal and anterior cingulate
cortex and early visual areas are involved in both implicit and
explicit learning (Aizenstein et al., 2004). However, there is a
greater prefrontal activation in case of explicit processing than
implicit which is consistent with the findings from attention
literature suggesting that prefrontal activation is associated with
controlled and effortful processing (Aizenstein et al., 2004).
However, the neural bases of implicit and explicit learning are
still inconclusive. For example, Schendan et al. (2003) used fMRI

to differentiate brain activation involved in implicit and explicit
processing. Their finding suggests that the same brain areas
are activated in both types of processing. More specifically, the
medial temporal lobe (MTL) is involved in both implicit and
explicit learning when a higher order sequence was given to
the participants. Furthermore, Pammi et al. (2012) observed a
shift in fronto-parietal activation from anterior to posterior areas
during complex sequence learning, indicating a shift in control of
sequence reproduction with help of a chunking mechanism.

In this section we discussed the three dichotomies that have
stayed mostly distinct in the literature. While there have been
many significant attempts at combining goal-directed behavior
with model-based mechanism and habitual behavior with model-
Free mechanism, we attempt to add the third implicit vs. explicit
dichotomy to devise a unifying framework explaining both
learning and execution.

2. COMPUTATIONAL EQUIVALENTS

In this section we present how explicit learning and goal directed
behavior can be related to a model-based mechanism whereas
implicit learning and habitual behavior can be related to a model-
free system. Indeed, there have been previous such attempts at
bringing together the contrasting paradigms (Doya et al., 2002;
Daw et al., 2005; Dezfouli and Balleine, 2012; Dolan and Dayan,
2013; Dezfouli et al., 2014; Cushman and Morris, 2015).

2.1. Goal Directed Behavior As
Model-Based Mechanism
A goal directed behavior can be viewed as keeping the end-point
(goal) inmind and selecting the ensuing actions accordingly. This
kind of learning and control can be explained by a simple markov
decision process (MDP) framework. Typically, an agent estimates
its environment and calculates the value of its current state and
possible future states. This estimation can be described by the
Bellman equations:

V(sn) =
∑

T(sn, a, sn+1)[R(sn, a, sn+1)+ γV(sn+1)] (1)

Here, T(sn, a, sn+1) is the transition probability: the probability
of the agent landing in state sn+1 if it takes an action a from state
sn. R(sn, a, sn+1) denotes the reward the agent gets on taking an
action a from state sn and lands in state sn+1, γ the discount factor
enabling the agent to select higher-reward-giving actions first.
Such a system can be viewed as building a search tree and looking
forward into the future, estimating values of the future states and
selecting the maximum valued one (denoted as V∗(sn)).

V∗(sn) = max
a

∑
T(sn, a, sn+1)[R(sn, a, sn+1)+ γV(sn+1)] (2)

This kind of behavior requires the agent to know the transition
probabilities along with the reward function. While these
values are not directly available in the environment, the agent
builds these gradually over time while interacting with the
environment—learning the transition probabilities iteratively.
These values, in effect, form a model of the environment, hence
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deriving its name. Rewards in all the future states are estimated
by propagating back the rewards from the final goal state. The
transition probabilities can be initially equal for all actions and
subsequently getting refined with experience.

2.2. Habitual Behaviors As Model-Free
System
Habitual behavior can be viewed as a typical S-R behavior, where
the end-goal does not influence the current action selection
directly. Instead, previous experiences of being in a particular
state are cached (Daw et al., 2005). This can be conveyed
by a model-free system through the well established temporal
difference (TD) learning. TD learning follows the following
update rules.

pk = R(sn, a, sn+1)+ γV(sn+1); (3)

V(sn) = (1− α)V(sn)+ (α)pk

V(sn) = V(sn)+ α(V(sn)− pk) (4)

Here α is the learning rate. pk encodes a sample evaluation of
state sn when the agent enters state sn for the kth time in the
form of a sum of two terms—the first term indicating reward
the agent would receive from the current state and the second
term computing discounted value of the next state sn+1 that it
would enter, the value being returned is the agent’s version of the
value function V(·). The last term of Equation (4) refers to the
prediction error signal. The definition of terms such as R(·) and
V(·) are as defined earlier in Bellman equations. This system can
be viewed as looking into the past—making a small adjustment
to optimize performance and taking the next action. There is no
explicit model of the system, the agent learns on-line—learning
while performing.

Our proposed architecture attempts a combination of the two
contrasting paradigms. We suggest that implicit learning and
control can be viewed in a similar way as habitual behavior and
in turn both can be modeled using a model-free computational
system. Similarly, explicit learning and control seem to have
similar requirements as goal-directed behavior and in turn
both can be understood as using a model-based computational
system. We aim to exploit the hierarchical reinforcement
learning architecture and chunking phenomenon to propose how
these contrasting dichotomies can be combined into a unified
framework in the next section.

3. UNIFIED THEORETICAL FRAMEWORK

In a model-based mechanism—searching in a tree of possible
states—as one looks further ahead into the future, the search
tree starts expanding exponentially, making such a search
computationally infeasible. Whereas in case of a model-free
mechanism, the system has to be in the exact same state as
it was before to enable an update in its policy. To make such
an update account for something substantial, there have to be
enough samples of a particular state which might take a larger
number of trials exploring the entire state space. The respective
inefficiency of the individual systems (Keramati et al., 2011) and

the evidence of existence of both as part of a continuum allow us
to formulate a hybrid scheme combining both the computational
mechanisms to explain sequence acquisition and execution in the
brain.

In an attempt to formulate a unifying computational theory,
we add the learning factor—implicit learning conceived as
model-free learning whereas explicit learning conceived as
model-based. One such idea in computational theories that
suits our needs is the hierarchical reinforcement learning (HRL)
framework (Sutton and Barto, 1998; Sutton et al., 1999). TheHRL
framework gives an additional power to the agent: the ability to
select an “option” along with a primitive action for the next step.
An option is a set of sequential actions (a motor program) leading
to a subgoal. The agent is allowed to have separate policies for
different options—on selection of an option, the agent follows
that option’s policy; irrespective of what the “external” policy for
the primitive actions is.

We propose that learning within an option—the policy of the
primitive actions within an option occurs in a model-free way.
Themost granular set of actions a human performs are learned by
a habitual mechanism and implicitly. As one moves to learning of
a less granular set of actions the roles start to change—a habitual
model-free learning gradually transforms to a goal-directed one.
At some point, one becomes aware of the recurring patterns
being experienced and the attentional processes thereafter enable
a shift from implicit state to explicit learning. Indeed, in the serial
reaction time studies, it has been observed that as the subjects
became aware of the recurring pattern or sequence, their learning
might have moved from implicit to explicit state. We attribute
this conversion to explicit learning to the formation of explicit
motor programs or chunks. Chunks are formed when the subject
becomes aware of the sequential pattern and implicit, model-free
learning then turns into an explicit and model-based learning
process. One interesting theory that can be used to explain the
chunking process is the average reward Reinforcement Learning
model (Dezfouli and Balleine, 2012).

As depicted in Figure 1, a similar analogy can be applied in
control or performance of sequences with a change in direction
in the process described above. The most abstract, top level
goals are executed explicitly in a goal-directed way using model-
based mechanism, the goal directed mechanisms gradually
relinquishing control as the type of actions proceed downward in
the hierarchy. At the finest chunk-level, subject loses awareness of
the most primitive actions executed and those are then executed
entirely in a habitual, model-free, implicit manner.

In neural terms, the ventromedial prefrontal cortex (vmPFC)
along with the caudate nuclei may be involved in the
goal-directed part, the dorsolateral striatum and dorsolateral
prefrontal cortex (DLPFC) may be engaged in the habitual part—
dopamine providing the prediction error signal while the anterior
regions of the striatum and left prefrontal and medial frontal
cortex playing a role in attentional processes. Gershman and Niv
(2010) suggested a role for the hippocampus in task structure
estimation which could be extended to estimating the world
model and hence the transition probabilities required for the
model-based system. Neural correlates for the options framework
are detailed in Figure 1.
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FIGURE 1 | Actor critic architecture for learning and execution. Input from the environment passes to the goal-directed mechanism to select a chunk. Action

selection at the upper-level is enabled by engagement of attention in a goal-directed, model-based manner whereas at a lower level (without attentional engagement)

this process implements habitual and model-free system. Action selection within a chunk occurs on a habitual, model-free basis. Neural correlates of various

components of this framework are suggested here. Based on Botvinick et al. (2009). vmPFC, Ventromedial PreFrontal Cortex; DLS, DorsoLateral Striatum; VS, Ventral

Striatum; DA, Dopaminergic error signal; HT+, Hypothalamus; DLPFC, DorsoLateral PreFrontal Cortex; OFC, OrbitoFrontal Cortex; MTL, Medial Temporal Lobe.

In this section we presented our unifying framework for
combining the three dichotomies. In the subsequent section
we attempt to specify the roles of response-to-stimulus
interval (RSI) [or more generally, inter-stimulus interval
(ISI)] and prior information along with the pivotal role of
attention in switching between the two contrasting mechanisms
in the explicit vs. implicit and goal-directed vs. habitual
dichotomies.

4. ROLE OF
RESPONSE-TO-STIMULUS-INTERVAL
(RSI) AND PRIOR INFORMATION IN THE
UNIFIED FRAMEWORK

A model-based search leading to explicit learning is typically
slower—subject is required to deliberate over possible choices
leading to the goal. In contrast, subject does not need to think

while performing an action habitually or learning implicitly—a
model-free mechanism does not deliberate, it performs an action
based on an already available “cache” of previous experiences
and updates the cache as it proceeds further. Based on this,
we propose that response-to-stimulus interval (RSI) [or more
generally, inter-stimulus interval (ISI)] plays a key role in
serial reaction time (SRT) experiments. Larger RSIs allow the
subject enough time to form a model of the system, deliberate
over the actions and hence this kind of learning and control
corresponds to a model-based (explicit) system. On the other
hand smaller RSIs do not allow the subject to form an explicit
model and as is well known from the literature of serial reaction
time experiments, subjects do remain sensitive to (implicitly
acquire) the underlying sequential regularities (Robertson, 2007).
This sort of implicit learning can be explained with temporal
difference (TD) learning, where the error signal leads to an
adjustment in action selection keeping the general habitual
control the same.
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Further, knowledge (prior information) about the existence
of sequential regularities in the SRT task leads to the learning
and control being explicit and model-based. This can be said to
engage attentional processes in our proposal. With attentional
engagement, habitual control ceases to exercise control over
behavior. While we propose attention-mediated arbitration
between model-based and model-free systems, Lee et al. (2014)
suggest that such mediation is driven by estimates of reliability
of prediction of the two models. Emerging awareness of the
presence of a sequence plays a similar role in mediating learning
as explicit attentional processes. The complete architecture is
depicted in Figure 2.

Our proposal relies heavily on the hierarchical chunking
mechanism and engagement or disengagement of attention to the
underlying repeating pattern or sequence. While learning which
begins implicitly and in a model-free manner, eventually as the
formation of chunks proceeds up the hierarchy, at some point,
the size of chunk—defined in terms of the time it takes to execute
the set of actions within the chunk, crosses a threshold thus
engaging the attentional resources of the subject. At this point
explicit model-based learning starts taking control. Similarly,
during control (or execution) of a sequence, the top most
selection of chunks happens via a goal-directed, model-based

mechanism, on proceeding down the chunk hierarchy after the
point of crossing some chunk size threshold, the subject no longer
pays attention to the execution—it goes on in a habitual, model-
free manner. Learning or execution of a set of actions within
a chunk proceeds in a habitual, model-free fashion, – which at
“attentive” level in the hierarchy can be explained by a habitual
control of goal selection as suggested by Cushman and Morris
(2015).

Attention engagement or disengagement occurs when the
chunk size is equivalent to a certain temporal window. Such
a temporal window includes the RSI for a typical SRT task.
For instance, larger RSIs need fewer physical actions to reach
the threshold size of the temporal window during bottom-
up learning and hence cause attentional engagement toward
the underlying sequential pattern sooner than in case of a
trial with smaller RSIs. Based on this proposal, it will be
interesting to empirically investigate the impact of varying the
size of temporal window and studying resultant influence on
the awareness levels of the presence of an underlying sequence
in the standard SRT task. According to our proposal, implicit
(associative) learning in the lower-level of the hierarchy proceeds
without engagement of attention. Further we propose that as
the response-stimulus interval (RSI) increases the width of the

FIGURE 2 | Role of temporal window in engagement/disengagement of attention during learning and execution. The left panel refers to sequence

execution (performance) where the flow is from top-to-bottom, attention gets gradually disengaged as you go down the hierarchy. The right panel shows the

acquisition (learning) of sequences where the flow is from bottom-to-top, attention gets gradually engaged as you go up the hierarchy. The temporal window

determines when to switch between the two mechanisms. For example, for an action worth 1 unit of time with the temporal window size of 5 units with RSI of 3 units;

a two-action chunk would lead to attention engagement/disengagement. Lesser RSI would require more number of actions chunked together to engage/disengage

attention toward the underlying task.
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temporal window available for integration of information related
to the previous response and the subsequent stimulus increases.
Thus, increasing the temporal window allows deliberative
and reflective (analytical) processes to kick in, enabling a
transition to explict (awareness-driven) top-down mechanisms.
This prediction can be verified experimentally and seems to be
supported by preliminary evidence from the work of Cleermans
et al. (see Cleeremans 2014).

Such a hierarchical chunking mechanism for behavior
generation has been suggested by Albus (1991), albeit from
intelligent control architecture perspective. According to Albus
(1991), a hierarchy producing intelligent behaviors comprises
seven levels covering at the lowest level, the finest reflex actions,
and spanning all the way up to long term planning of goals.
At each higher level, the goals expand in scope and planning
horizons expand in space and time. In neural terms, the motor
neuron, spinal motor centers and cerebellum, the red nucleus,
substantia nigra and the primary motor cortex, basal ganglia
and prefrontal cortex and finally the temporal, limbic and
frontal cortical areas get involved in increasing order of the
hierarchy.

5. COMPARISON WITH OTHER DUAL
SYSTEM THEORIES

Many dual system theories related to goal-directed vs. habitual
behavior or implicit vs. explicit learning have been proposed
in the recent past. For example, Keele et al. (2003) suggest
a dual system where implicit learning is typically limited to
a single dimensional or a unimodal system whereas explicit
learning involves inputs from other dimensions as well. Our
model incorporates this duality in a different sense and does
not distinguish the dichotomy between different modalities.
Inputs from multiple modalities are treated as actions in an
abstract sense and when a bunch of such actions crosses the
threshold (acquisition or execution time), this would lead to
attentional modulation (engagement in the case of acquisition
or disengagement in the case of performance). A similar idea
has been discussed by Cleeremans (2006) who suggested that
a representation obtained from exposure to a sequence may
become explicit when strength of activation reaches a critical
level. Formation of the chunks is, however, assumed to be
driven by bottom-up, unconscious processes. These chunks
become available later for conscious processing (Perruchet and
Pacton, 2006). We concur with the suggestions of Keele et al.
(2003) on the neural correlates of implicit and explicit learning;
learning in the dorsal system being implicit whereas that in
the ventral system may be related to explicit or implicit modes.
However, we emphasize that the ventral system—when learning
is not characterized as a uni- or multi-dimensional dichotomy—
would be more related to explicit learning. Daltrozzo and
Conway (2014) discuss three levels of processing: an abstract
level storage for higher level goals, followed by an intermediate
level encoding of the actions required to reach the goal and a
low level acquiring highly specific information related to the
exact stimulus and associated final motor action (Clegg et al.,

1998). Our model reflects such a hierarchy by breaking down
the actions into a finer set of sub-actions—where the top most
abstract actions or goals are decided by a goal-directed, model-
based system whereas the more concrete actions are executed
by a habitual, model-free system. Walk and Conway (2011)
suggest a cascading account where two mechanisms interact with
each other in a hierarchical manner—concrete information being
encoded in a modality specific format followed by encoding
of more domain-general representations. We incorporate such
an interleaving phenomenon by suggesting that the actions
within a chunk are carried out in a habitual, attention-free
manner; the selection of such a chunk being goal-directed and
attention-mediated. Thiessen et al. (2013) discuss a dual system
involving an extraction and integration framework for general
statistical learning. The extraction framework is implicated
in conditional statistical learning—formation of chunks or
associations between events occurring together. On the other
hand, the integration framework is implicated in distributional
statistical learning—generalization of the task at hand. We can
relate the extraction framework to the implicit, habitual process
and the integration framework to a goal-directed mechanism
that involves creation of the model of environment using
information from potentially multiple sources. Batterink et al.
(2015) present evidence suggesting that though there does not
seem to be an explicit recognition of statistical regularities,
the reaction time task, which is deemed 50% more sensitive
to statistical learning, suggests that there is in fact some
statistical structure of the presented stimuli learned implicitly.
Our framework agrees with the conclusion that implicit and
explicit statistical learning occur in parallel, attention deciding
the driver process. A similar account has been suggested by
Dale et al. (2012) who state that the system initially learns
a readiness response to the task in an associative fashion
mapping the stimulus to a response and then undergoes a
rapid transition into a “predictive mode” as task regularities
are decoded. Reber (2013) suggests a role for the hippocampal-
medial temporal lobe (MTL) loop in explicit memory whereas
implicit memory is said to be distributed in the cortical
areas. However, evidence from studies with Parkinsons patients
suggests an important role for the basal ganglia in acquiring
such implicit knowledge. We posit a similar role for the
basal ganglia and corticostriatal loops in implicit learning; the
knowledge that follows this learning may be stored throughout
the cortex while keeping the role of MTL and hippocampus
intact.

6. CONCLUSION AND FUTURE WORK

Sequencing is a fundamental ability that underlies a host of
human capacities, especially those related to higher cognitive
functions. In this perspective, we suggest a theoretical framework
for acquisition and control of hierarchical sequences. We
bring together two hitherto unconnected streams of thought
in this domain into one framework—the goal-directed and
habitual axis on the one hand and the explicit and implicit
sequencing paradigms on the other, with the help of model-based
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and model-free computational paradigms. We suggest that
attentional engagement and disengagement allow the switching
between these dichotomies. While goal-directed and habitual
behaviors are related to performance of sequences, explicit
and implicit paradigms relate to learning and acquisition of
sequences. The unified computational framework proposes how
the bidirectional flow in this hierarchy implements these two
dichotomies. We discuss the neural correlates in light of this
synthesis.

One aspect of applicability of our proposed framework
could be skill learning. It is well known that skill learning
proceeds from initially being slow, attentive and error-prone to
finally being fast, automatic and error-free (Fitts and Posner,
1967). Thus, it appears that sequential skill learning starts
being explicit and proceeds to be implicit from the point of
view of attentional demands. At first sight, this seems to be
at odds with the proposed unified framework here where the
hierarchy seems to have been set up to proceed from implicit
to explicit learning. However, the phase-wise progression of skill
learning is consistent with the framework as per the following
discussion.

It is pointed out that different aspects of skill are learned in
parallel in different systems—while improvements in reaction
time are mediated by implicit system, increasing knowledge
of the sequential regularities accrues in the explicit system
(Hikosaka et al., 1999; Bapi et al., 2000). The proposed unitary
network is consistent with these parallel processes, the implicit
processes operating from bottom-up and the explicit system
in a top-down fashion. Key factor is the engagement and
disengagement of attentional system as demarcated in Figure 1.
One might wonder how this approach can be applied to research
in non-human animals, where explicit mechanisms are difficult
to be realized. Historically, while SRT research identifying
implicit vs. explicit learning systems are largely based on human
experiments, that of goal-directed and habitual research is based
on animal experiments. The proposed framework is equally
applicable for human and non-human participants. What is
proposed here is that the lower-level system operates based on
associative processes that allow the system to learn implicitly,
respond reactively and the computations at this level are
compatible with a model-free framework. On the other hand,
the upper-level system is based on predictive processes that allow
the system to prepare anticipatory responses that sometime cause

errors. Error-evaluation while learning and error-monitoring
during control are part of this system that learns using explicit
processes, enables goal-directed control of actions and the
computations at this level are compatible with a model-based
framework. Level of attentional engagement distinguishes these
two levels as shown in Figure 2. Of course, non-human animals
can not give verbal reports of their knowledge. The explicit
system in the case of pre-verbal infants and non-human animals
needs to be understood in the lines of predictive systems that
can elicit anticipatory, predictive responses and learn rules and
transfer them to novel tasks (Marcus et al., 1999; Murphy et al.,
2008).

Finally based on this theoretical proposal, we make
predictions as to how implicit-to-explicit transition might
happen in serial reaction time tasks when response-to-stimulus
interval (RSI) is systematically manipulated. The mathematical
formulation of such a unified mechanism is yet to be established,
along with a formalization of the attentional window and its
relation to RSI.
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