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Gait disorders are major causes of falls in patients with neurological diseases.
Understanding these disorders allows prevention and better insights into underlying
diseases. InertiaLocoGraphy (ILG) –the quantification of gait by using inertial
measurement units (IMUs) –shows great potential to address this public health
challenge, but protocols vary widely and normative values of gait parameters are still
unavailable. This systematic review critically compares ILG protocols, questions features
extracted from inertial signals and proposes a semeiological analysis of clinimetric
characteristics for use in neurological clinical routine. For this systematic review,
PubMed, Cochrane and EMBASE were searched for articles assessing gait quality by
using IMUs that were published from January 1, 2014 to August 31, 2016. ILG was used
to assess gait in a wide range of neurological disorders – including Parkinson disease,
mild cognitive impairment, Alzheimer disease, cerebral palsy, and cerebellar atrophy –
as well as in the faller or frail older population and in people presenting rheumatological
pathologies. However, results have not yet been driving changes in clinical practice.
One reason could be that studies mainly aimed at comparing pathological gait to
healthy gait, but there is stronger need for semiological descriptions of gait perturbation,
severity or prognostic assessment. Furthermore, protocols used to assess gait using
IMUs are too many. Likely, outcomes are highly heterogeneous and difficult to compare
across large panels of studies. Therefore, homogenization is needed to foster the use
of ILG to assess gait quality in neurological routine practice. The pros and cons of each
protocol are emphasized so that a compromise can be reached. As well, analysis of
seven complementary clinical criteria (springiness, sturdiness, smoothness, steadiness,
stability, symmetry, synchronization) is advocated.
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INTRODUCTION

Walking is a complex activity and a permanent decision-
making process that can be altered in a variety of neurological
pathologies. Gait disorders can lead to impaired mobility,
disability, fear of falling or falls, which can result in reduced
quality of life and increased risk of death (Wilson et al., 2002;
Jørstad et al., 2005; Snijders et al., 2007). Assessment of walking
impairments could help predict falls (Barrois et al., 2017) which
could be an argument for prevention and correction measures.

3D Inertial Measurement Units (IMUs), also called wearable
inertial sensors, are widely used for assessing gait characteristics
in both healthy people and those with abnormalities. Compared
to other types of non-invasive sensors used to assess gait (video
motion analysis or mat), 3D IMUs are small and light. Thus, gait
evaluation with use of 3D IMUs, or InertiaLocoGraphy (ILG),
suits both hour-long ambulatory measurements and evaluation
in point-of-care environments (Maetzler et al., 2013; Del Din
et al., 2016b). Nevertheless, recent studies have often focused on
one pathology only, limiting the possibility to ponder the role of
pathologies, when several could explain the clinical presentation.
In addition, most studies have been restricted by their limited
follow-up. Thus, endpoints are mainly descriptive and do not
provide prognostic information. Therefore, a comprehensive
overview of existing results is needed to delve further into
the clinimetric characteristics of IMUs. Such a review was
successfully performed for Parkinson’s disease (Maetzler et al.,
2013, 2016; Hubble et al., 2015) and this article aims at
including other neurological conditions that present altered
gait.

Protocols designed to assess gait using IMUs are many,
and the plethora of quantified outcomes is an obstacle for a
comprehensive overview of pathological gaits, which can be
highly confusing for the clinician (Graham et al., 2008; Lord
et al., 2013). According to a recent panoramic review, only 6%
of sensors (including IMUs and magnetometers) used to assess
Parkinson disease are precise and efficient enough for clinical
testing (Sánchez-Ferro et al., 2016).

This review intends to provide a more thorough assessment of
the features of IMUs and present a more complete assessment of
the set-up to add to already published reviews of gait in Parkinson
disease.

MATERIALS AND METHODS

This review was registered with the International Prospective
Register of Systematic Reviews on August 31, 2016 (Registration:
CRD42016043555). Both the search strategy and study protocol
are available at http://www.crd.york.ac.uk/PROSPEROFILES/
43555_STRATEGY_20160802.pdf.

Search Strategy
We searched MEDLINE via PubMed, Cochrane, and EMBASE
electronic databases to identify articles published from January 1,
2014 to August 31, 2016 that described the analysis of gait quality
by using inertial sensors in healthy older adults or people with

any pathology. Searches were not limited to neurological patients
so as to compare with other types of gait disorders. The search
involved the key words “Gait” with “inertial measurement unit,”
“IMU,” “inertial sensor,” “accelerometer” or “gyrometer.”

Inclusion Criteria
We included articles of studies of humans that investigated gait
with IMUs, computed parameters to quantify gait, included at
least one group of ill or older people, and compared at least
2 cohorts of participants. We excluded articles of studies that
quantified other activities (such as standing or running) or
assessed general physical activity (step count or walking bout
length); focused on walking segmentation or event detection
(U-turn, freezing of gait); assessed gait from raw data or used
IMUs as a feedback tool; or included only people younger than
65 years. The PRISMA guidelines were used to select articles.

Review Process
Potentially eligible studies were screened for eligibility
independently by 2 review authors (AV and DR) on the
basis of the title and abstract for the human research criterion
and main text for other criteria. Discrepancies between reviewers
were discussed to reach consensus. Then, eligible articles
underwent data extraction and quality assessment.

Quality Assessment
We evaluated the quality of articles by using a 20-item quality
checklist (details in Supplementary Material S1) for assessing gait
studies that we adapted from Hubble’s 17-item quality checklist
for longitudinal studies (Hubble et al., 2015). Each article was
assessed by three reviewers (AV, DR, RM), each blinded to the
score given by the two others. Disagreements were discussed
to achieve agreement on final scores. Scores for each study
were based on reporting, internal quality, external quality and
power and were reported as percentages for each category, a low
percentage indicating low quality and a high percentage, high
quality (details in Supplementary Material S1).

With appraisal of methodology quality, 22 studies were
identified as being at low methodological quality (from 33
to 48%), 49 at moderate methodological quality (from 50 to
69%), and 7 at high methodological quality (from 71 to 90%)
(Supplementary Table S1). A similar distribution was found for
neurology papers only. Generally, studies lacked arguments for
power, which was rarely computed, and less than 80% power
when computed a posteriori. Studies were also defective in
representativeness of the sample (external validity) as well as
controlling for confounding factors (internal validity).

RESULTS

In total, 78 full-text articles were selected (Figure 1).
Detailed data as well as references to studies assessing gait
in extraneurologic conditions can be found in Supplemental
Material S3.
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FIGURE 1 | PRISMA flow chart illustrating the study selection process resulting in 78 articles included in the review. IMU, inertial measurement units.

Aims and Methods of ILG
Spectrum of Pathological Conditions Assessed
In total, 47.4% of all described assessment of neurological care.
Other clinical domains were gerontological care (33.3%) and
rheumatological care (19.2%) (Supplementary Material S2). One
study assessed rapid weight loss after bariatric surgery.

For neurological patients as well as patients with other
conditions, indications for gait quantification varied from
early assessment (risk prediction for instance) to late severity
assessment or treatment efficiency evaluation (Figure 2). Some
studies included and compared several types of disorders: frailty
and mild cognitive impairment; Parkinson disease and dementia
(Yoneyama et al., 2016); Parkinson disease and peripheral
neuropathy (Sejdic et al., 2014); or Parkinson disease and
progressive supranuclear palsy (Hatanaka et al., 2016). Most of
the other studies aimed at differentiating pathological and healthy
participants. Protocols of gait evaluation that used 3D IMUs.

American and French neurology (Thurman et al., 2008;
Gilman, 2010; Collége des Enseignants de Neurologie [CEN],
2016) as well as rheumatology and gerontology societies
recommended the use of standardized measures to assess gait: the
6-min walk test (assesses exercise tolerance in frail older adults),
the timed 25-foot walk test (a shorter test mainly used for patients
with multiple sclerosis), and the Timed-Up-and-Go (TUG) test

(Andrzejewski et al., 2016). Nonetheless, protocols offer endless
variabilities at each phase of their design as described below.

Environment: laboratory versus ambulatory
The first stage is to decide whether ILG will be performed at home
or at the laboratory or hospital (Figure 3). Among the 78 studies,
67 were set in a laboratory or hospital only, 9 assessed gait only
when the patient stayed at home and 2 studies were performed in
both environments.

Floor type and sequence of steps
The second stage involves floor type and the exact sequence of
steps the patient is asked to perform, from the most basic to
the most elaborate (Figure 3). The main characteristics included
short sequences (<20 m in total) on an unlevelled surface,
without a U-turn or sit-to-stand transition, with speed left to the
convenience of the participant.

Speed
Walking speed is an additional parameter that can be tuned.
Three main solutions were envisioned: letting the participant
choose the speed deemed the most convenient (“self-selected
speed”), instructing the participant to walk as fast as possible
(“fastest speed walk”) or imposing a given speed as defined
by the literature. Overall, 63 of the 78 articles did not justify
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FIGURE 2 | Pathologies assessed in the included studies and gait analysis in patient care. Dot colors specify the number of studies that addressed the
issue. See figures for precise definition of colors.

their choice and 15 examined the issue; 9 of the 15 studies
repeated the protocol under several speeds (from 2 to 6 speeds)
to describe only the effect of speed on parameters or to perform
further analysis: by subgroup analysis, linear mixed model with
speed as a fixed effect or a dependent variable, comparison of
parameters normalized to interpolated speed. The 6 other studies
explored the effect of self-selected speed, by using correlation
of parameters to speed, subgroup analysis or two-way mixed
effects analysis of covariance with speed as a covariate. Overall,
numerous parameters highly varied with speed.

Sensitization tactics: the use of specific conditions
The fourth step in the design of the protocol concerned the use of
specific sensitizing conditions. Studies included dual-task (Hsu
et al., 2014; Howell et al., 2015; Gillain et al., 2016; Henderson
et al., 2016; Jaywant et al., 2016), eyes-closed walk, narrow-
step width, and obstacle negotiation. Except for 4 studies, all
concerned neurological patients.

Aid
Finally, patients could be asked to walk with their usual mobility
aid (walker, cane, crutches or braces). In the absence of any details
in the articles reviewed, we assumed that patients walked without
any help.

Choice and Position of the Sensor
Inertial sensors were not all the same (Figures 4, 5). Several
specifications are also taken into account: sampling frequency
and low position drift, of major importance for precision

of data; size and weight, with increasing size and weight
potentially affecting gait; battery if ambulatory measures are
being performed; cost; sensitivity to magnetic fields, which can be
an issue when used with robotic orthoses for instance; availability
of raw unfiltered data; and software, the possibility to synchronize
with other sensors such as video motion analysis for validation
and electromyography for muscle activity analysis.

The selected articles mainly used 100–200 Hz sampling
frequency, with neurology studies more prone to using 200-Hz
sampling frequency than other types of studies, which reflects
differences in types of parameters computed (more dynamic
parameters than in rheumatology studies). Many sensors were
tested (see Figure 5 for names and sampling frequency used), but
2 stand out: Dynaport R© Hybrid (50% of ambulatory measures,
11% of laboratory or clinical measures) and XSens R© MtW (14%
of laboratory or clinical measures).

Overall, 16% of all studies reviewed recorded from more
than one IMU, with a maximum of 7 sensors. Half were
neurology studies (26% of neurology studies). None involved
ambulatory analysis. All setups are represented in Figure 4 for
both laboratory or clinical and ambulatory settings. The most
widely chosen position was the lower back with sensors (13%
of studies in laboratory or clinical settings, of which 67% were
neurological studies) or without other sensors (63% of studies
in laboratory or clinical settings and 64% of ambulatory studies,
49% and 57% were neurology studies). For laboratory or clinical
settings, other positions included head (4% of all studies, 3%
of neurology studies only), sternum (4% of all studies, 6% of
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FIGURE 3 | Methods for gait assessment in (A) laboratory and clinical settings and (B) ambulatory settings. Striped green: treadmill walking; dark green:
unlevelled surface without U-turn; emerald green: unlevelled surface with U-turn; light green: stand up from a chair and unlevelled surface with U-turn. ∗2 studies
were time-based but time limit was not specified; 1 study included 3 types of floor (flat floor, 8% and 20% slopes); 1 study included a trial with an obstacle. †1 study
analyzed only a large U-turn (circle and square turn).

neurology studies only), upper back (4% of all studies, 3% of
neurological studies), pelvis (1% of all studies, 3% of neurology
studies only), bilateral thighs (6% of all studies, 2% of neurology
studies only), unilateral or bilateral shanks (12% of all studies,
14% of neurology studies only), unilateral or bilateral ankles (3%
of all studies, 6% of neurology studies only) and bilateral feet
(7% of all studies, 9% of neurology studies only). For ambulatory
studies, in addition to the lower back, placements were sternum
(18% of all studies, 17% of neurology studies only), pelvis (9% of
all studies, 17% of neurology studies only) and bilateral feet (9%
of all studies, no neurology studies).

Analysis
Walking bout, turning and step detection
One of the main remaining challenges in the quantification of gait
measures using inertial sensors is robust and accurate walking-
bout automatic detection (for ambulatory measurements),
turning, and automatic-step detection. Signals are now precisely
understood and described, which allows for manual detection
(Taborri et al., 2016). Nevertheless, this process can be long and
painstaking and prevents any online analysis (Figure 6).

Apart from one study (data not available), all ambulatory
studies reviewed used automatic walking-bout detection: 45%
relied on an algorithm implemented by Weiss et al. (2011), which

uses a signal magnitude area (SMA) threshold combined with a
frequency based filter. Other algorithms were from previously
published articles by Lyons et al. (2005), Dijkstra et al. (2010),
Fraccaro et al. (2014) or Yoneyama et al. (2014) or were developed
by the authors by using cranio-caudal acceleration peaks and
wavelet decomposition.

In studies that included a U-turn, only 3 specifically
discriminated a U-turn from straight-line walking. They each
used a different algorithm: one adapted from Salarian et al.
(2009), one from Weiss et al. (2011) and the last developed by
the authors themselves.

Last but not least, automatic step detection requires
intense computation. Overall, 65% of studies included involved
automatic detection with only IMUs, whereas 3% were manual,
13% relied on other sensors (video motion analysis, photoelectric
cells, force plates, pressure sensors) and 19% did not specify any
method. Automatic detection involved use of industrial software
(BTS G-STUDIO R© and Locometrix R© in 3 studies each, and
Poseidon R©, Mobility Lab R© and EMG Works R© in 1 study each),
self-designed algorithms (9 studies) or previously described
models and algorithms (30 studies). At least 2 studies used several
algorithms. In total, 6 studies used the inverted pendulum model-
based algorithm developed by Zijlstra and Hof (2003), which
has been found accurate for non-disabled adults and children as
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FIGURE 4 | Overview of sensor position in (A) laboratory or clinical settings and (B) ambulatory settings. The size of the circles represents the total number of
studies (neurological, age-related, rheumatological, others). Numbers in the circles represent the number of studies for each of these four specialties. For sensor
position, one line joining several body parts represents one study using sensors attached to these body parts. When sensor was attached to a foot, ankle or thigh
unilaterally, we added one study point on the right side and none on the left side.

well as osteoarthritis patients and which was tested on various
pathologies. The zero-crossing method developed by González
et al. (2010) was used in 6 other studies, the Weiss et al. (2011)
SMA threshold-based filter combined with a frequency-based
filter in 5 studies, the Greene et al. (2010) algorithm in 3, and
the Jasiewicz et al. (2006), Mariani et al. (2013) and Yoneyama
et al. (2014) algorithms in 2 studies each. Other algorithms were
developed by Fraccaro et al. (2014) and van Schooten et al. (2015).

Steps included in the analysis
The sequence of steps to be included in the analysis also varied
largely between studies. Specifically, a decision has to be made on
whether the first and last steps should be included in the analysis.
Most studies (48 of 78) did not specify if any step was removed.
One study kept all detected steps (Zakaria et al., 2015). Other

articles removed the first meters (4 studies removed 1 m, 1 study
removed 1.5 m, 5 studies removed 2 m, 2 studies removed 2.5 m,
1 study removed 3 m and 1 last study removed 3.4 m), the first
steps (2 studies removed the first step, 1 other the first 3 steps
and 2 others the first 4 steps) or the first seconds (5 and 30 s,
respectively, for the 2 studies that chose this solution). One study
analyzed only one typical stride (Rahman et al., 2015). Eventually,
the last 8 studies first defined the data points to be included
(between 6 and 10 middle steps and between 6 and 30 s depending
on the studies) and removed the rest.

Features
The multiplicity of parameters derived from these measurements
can be highly confusing for practitioners: among the 78 studies,
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FIGURE 5 | Overview of main sensors used as a function of frequencies in (A) laboratory or clinical settings and (B) ambulatory settings.

453 parameters were computed, with only 102 assessed in at least
2 studies.

Computation methods ranged from the most basic to the
most elaborate. Classically, gait parameters were divided into (1)
spatiotemporal features, expressed as means over several steps,
which reflect a typical cycle, and (2) dynamic features, which
mirror the irregularity of gait for which standard deviations
or coefficients of variation across several strides have been
successfully complemented by more intricate extraction methods
borrowing from frequential and wavelet analysis, analysis of
complexity, chaos theory or fractals.

As can be appreciated in Figure 6, neurology and age-related
studies both used the whole range of possible methods, whereas
rheumatological conditions were mostly described with more
straightforward spatial and temporal parameters.

DISCUSSION

Protocols of Gait Evaluation
We conducted a thorough review of the literature to identify
the most commonly used protocols for ILG for its use in
neurology clinical practice. Not surprisingly, we found a plethora

of different set-ups and tools, and the variations involved
the environment, floor, instruction for speed, sensors, specific
conditions and constraint and parameters assessed.

In terms of the environment, measures could be performed
in ambulatory or laboratory set-ups. Ambulatory assessment is
more representative of people’s gait. Indeed, the environment
with ILG is physiological; hours of walking at different times
of day can be recorded, which is key to valid interpretation
of pattern and rhythm variability parameters that assess gait
at a macro-level (Robles-García et al., 2015); and the putative
“white-coat” syndrome (Andrzejewski et al., 2016) is avoided.
Nevertheless, ambulatory data extraction and analysis entail
great challenges because various algorithms have been developed
for controlled testing, and their validity in this uncontrolled
environment is questioned. Reviewed studies were mostly set up
in a laboratory or clinical space (69 of 78 studies). Two studies,
analyzing both ambulatory and laboratory data (Figures 2, 3),
brought more arguments for higher sensitivity of ambulatory
measures while enhancing the difficulty in controlling features
that highly depend on bout length and algorithms for gait
detection (Andrzejewski et al., 2016; Del Din et al., 2016a).

In terms of floor type and sequence of steps, treadmills were
preferred to over-ground walking because they are space-efficient
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FIGURE 6 | Analysis used to compute gait features of neurologic patients as well as rheumatologic and gerontologic patients for comparison. (A)
Fully colored slices represent the percentage of total number of parameters computed in studies from the specialty (neurology, rheumatology, age-related) by using
the method specified on top of the slice. Striped slices represent the percentage of parameters computed in studies from the specialty (neurology, rheumatology,
age-related) that could discriminate between two cohorts in at least one study. (B) Total number of parameters (including all studies) and mean number per study
computed in studies from the specialty (neurology, rheumatology, age-related).

and allow for assessment at specific walking speeds. However,
they are less ecological and may provide external cues, thus acting
as confounders (Kang and Dingwell, 2008; Bruijn et al., 2009;
Bryant et al., 2011). Long-distance or minute-long walks may
be upheld because they are needed for computation of some
factors (detrended fluctuation analysis, chaos theory analysis)
and because they allow for assessment of fatigue and give time
for patients to become familiar with the task. Nonetheless, they
are limited by lack of space, time or patient capabilities.

The speed the participant should take has a strong effect
on the general quality of the walk (Frenkel-Toledo et al., 2005;
Beauchet et al., 2009). In the panel of articles, 3 main solutions
were envisioned: letting the participant choose the speed deemed
the most convenient (“self-selected speed”), instructing the
participant to walk as fast as possible (“fastest speed walk”) or
imposing a given speed. The first case is more physiological and
preserves the walking pattern. In turn, any variable correlated
with speed will be affected and conclusions should be drawn
carefully. The choice of the fastest speed, which is often used in

the TUG test or to evaluate a time threshold to complete the test,
assesses the participant’s adaptability and sensitizes the risk of fall.
Nevertheless, the pattern of walk is less physiological (Middleton
et al., 2015) and performance, not quality, is evaluated. In
addition, the test does not allow for exploration of speed
alteration itself, which is known to bring key information (Toebes
et al., 2015). Eventually, imposing a given speed allows for
matching with controls, with data from the literature (Bragge
et al., 2014) or between baseline and follow-up measurements
(Ellis et al., 2015; Schmitz-Hubsch et al., 2016). However, as for
fastest speed walking, the pattern of walk is modified and speed
alteration itself is not explored. Because studies included mainly
asked subjects to walk at self-selected speed only (83% of studies),
speed decorrelation analysis should be performed so that the
parameter group difference already accounted for by speed can
be removed. Another solution would be to implement principal
component analysis or sophisticated selection features analysis,
to have independent parameters, which often leads to opacity in
clinical interpretation.
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The possibility to walk with aid is another parameter that can
influence results, although it was not mentioned in the 78 studies.
Patients are more likely to reproduce their usual walk when using
their habitual aid, but this can be a major confounder.

As shown in Figure 5, some types of sensors were mainly used
in the past years, among which Dynaport R© and XSens R© stood out.
Some arguments for choosing Dynaport R© might be that it has
been validated to detect walking bouts as well as steps and it has
been registered as a Class I Medical Device with the US Food and
Drug Administration and the European Medicines Agency, so
validation of clinical trials is easier. Choosing XSens R© MtW could
be explained in part by the availability of raw data, the possibility
of easily synchronizing XSens R© IMUs with other XSens R© sensors
and the option to use already-computed algorithms to change the
frame of reference.

The choice of the number and exact position of sensors should
consider expected outcomes (e.g., exploration of knee motion
should include both thigh and distal shank IMUs), practicality
(patients should feel comfortable), time to set up and ease in
reproducing attachment.

Walking detection and segmentation is a main issue in gait
analysis. Many different algorithms for walking bout detection
have been developed and good results have been obtained with
threshold-based methods (Weiss et al., 2011), zero-crossing
methods (González et al., 2010), and model-based methods
(Zijlstra and Hof, 2003). Because turning steps are different from
straight-line walking and therefore prone to spoiling straight-
line data and because they may bring insight into pathological
gaits, characterization of turning steps inside the walk is of key
importance. Several algorithms also exist that should be further
tested.

Steps that should be included in the analysis highly depend
on protocols, the environment (laboratory or ambulatory) and
features that need more or fewer data points. Nevertheless, some
questions should not be left unanswered because they have a
strong impact on computations. Particularly, assessing steady-
state walking requires a clear definition of the transition period.
For frail older adults, Lindemann et al. (2008) advocate the
exclusion of the first 2.5 m to be confident about assessing a purely
steady-state walk.

Semiology of Walking
The diversity of parameters is an obstacle for a comprehensive
overview of pathological gaits and can be sometimes disturbing
(Bloem et al., 2016). Inconsistent and uninformative
interpretation of outcomes often precludes a prescriptive
attitude toward the patient. After homogenization of directly
related parameters, 57 parameters were extracted from the 102
parameters and classified according to seven criteria classically
assessed in neurology, physical medicine and rehabilitation,
gerontology and rheumatology:

- Springiness: criterion relative to gait rhythmic pattern, which
includes step time, percentage time of the different step
phases;

- Sturdiness: criterion relative to gait amplitude, which
includes step length, range of motion of any articulation,

average and maximum acceleration or speed of the foot,
vertical acceleration of the lower back;

- Smoothness: criterion relative to continuousness or non-
intermittency of walking, which is by definition independent
of its amplitude or rhythm (Lord et al., 2013), and includes
mean and maximum anteroposterior acceleration of the
lower back, maximum acceleration or speed of all body parts;

- Stability: criterion relative to postural balance, which
includes mediolateral range of motion of the lower back,
Lyapunov exponent of the lower back in all directions,
entropy;

- Steadiness: criterion relative to step regularity, which
includes variation coefficients and autocorrelation
coefficients of all parts and all directions;

- Symmetry: criterion relative to right/left concordance,
which includes harmonic ratio, symmetry of autocorrelation
coefficient, right/left symmetry of parameters of springiness
and sturdiness;

- Synchronization: criterion relative to inter limbs (lower
limbs and upper limbs) coordination, which includes double
stance time, phase coordination index.

Speed was not considered a quality index but was left as
a performance index as proposed by Lord et al. (2013). For
each of the 57 parameters, the discrimination power (dP) was
defined as the percentage of analyses in which the parameter was
significant to the number of times the parameter was assessed
(Supplementary Table S3).

Methods for automatic analysis of ILG during clinical time
should be more available so that gait is measured as a follow-up.
Being more systematic and understanding the semiology of ILG
would allow for better and the most personalized care because
each patient often requires a different rehabilitation intervention
depending on their primary functional constraints.

Limitations
A number of limitations should be considered when interpreting
the results of this review. First, the dates for inclusion were
limited to the past 3 years. This restriction allowed us to
extract precise information from the articles, but it might have
favored more recent set-ups and specially more recent sensor
types over others. Second, inclusion criteria were limited to
studies overtly designed to test IMUs as a tool for pathological
gait assessment. Therefore, other protocols that could have
been useful in healthy participants were not included. As well,
the results of the quality assessment included in this review
were based on the assessors’ own interpretation. We aimed
to reduce subjectivity by analyzing each article 3 times, in 3
different orders and by 3 different assessors blinded to the
scores given by the 2 others. Yet, subjectivity should be kept in
mind.

Prospects and Recommendations
Our review highlights the great prospects for use of IMUs in
neurological practice. Nevertheless, it also emphasizes the lack
of standardization and the heterogeneity of results that do not
facilitate the adoption of IMUs for gait analyses.
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Indeed, homogenization of protocols is needed to validate
normative values and to be able to compare diseases, which
is key to envisioning the use of IMUs as a tool for assessing
gait quality in routine practice. Reasons for deciding on one
protocol or another are not often specified in studies because
they may depend on very pragmatic external factors (sensor price,
laboratory or clinical space). However, this feedback is of great
importance ensure that any recommendation could be followed
by practitioners.

From available data, we can propose the following
recommendations:

- Environment: both hospital and ambulatory assessments
should be conducted depending on the pathology and the
objective. Elderly fallers should be assessed in their home
environment to account for external fall risk factors. Likely,
patients or patients’ relatives reporting fluctuant alterations
of gait during the day should be an indication for ambulatory
assessments;

- Protocol: we recommend the use of 2 set-ups in the hospital.
The TUG test does not appear long enough to assess gait
quality. Likely, the 25-foot walk test does not include a
U-turn. A short walk 10–50 m long with a U-turn in the
middle should advantageously overcome this issue. The 6-
min walk test would allow for assessment of fatigability and
is therefore also recommended;

- Walking bout detection, walk segmentation, step detection:
previously described algorithms should be made available to
be tested and discussed openly before any recommendation
is made.

- Features: the set of 57 parameters presented here should be
informative for most diseases. It should be tested on several
set-ups to validate reliability and several diseases and healthy
participants should be assessed so as to remove redundancy
and provide normative values. We recommend the use of the
7 clinical criteria that could provide relevant feedback to both
the patient and the clinician.

These recommendations are preliminary and should be
challenged by larger studies of several diseases. Stronger and
more precise recommendations could then be agreed on
by clinicians and regulatory societies. Their implementation

would then require the development of an integrated and
comprehensive environment for wide-scale adoption by
clinicians. This enterprise requires involvement and strengthened
communication among all fundamental actors in the process
(Maetzler et al., 2016). Upstream work on sensors is expected
from industry and engineers, as is further study and testing by
researchers to investigate potential confounders including patient
morphology and the protocol testing method and to develop
markers for diagnosis, disease severity, prognosis, fall risk, and
treatment efficiency. The need for more robust gait detection
algorithms — tested with patients early in the process —
and computation of clinically relevant features emphasizes the
centrality of the computer scientist (Kubota et al., 2016). This
need would benefit from recent development of computer-
aided diagnosis methods including machine learning. Eventually,
feedback from the patient should be welcomed and sought at
every stage. Only then will new applications be delineated and the
contribution of ILG to improving gait analysis and understanding
gait disorders be fully appreciated.
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