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Much work on communication and joint action conceptualizes interaction as a

dynamical system. Under this view, dynamic properties of interaction should be

shaped by the context in which the interaction is taking place. Here we explore

interpersonal movement coordination or synchrony—the degree to which individuals

move in similar ways over time—as one such context-sensitive property. Studies

of coordination have typically investigated how these dynamics are influenced by

either high-level constraints (i.e., slow-changing factors) or low-level constraints

(i.e., fast-changing factors like movement). Focusing on nonverbal communication

behaviors during naturalistic conversation, we analyzed how interacting participants’

head movement dynamics were shaped simultaneously by high-level constraints (i.e.,

conversation type; friendly conversations vs. arguments) and low-level constraints (i.e.,

perceptual stimuli; non-informative visual stimuli vs. informative visual stimuli). We found

that high- and low-level constraints interacted non-additively to affect interpersonal

movement dynamics, highlighting the context sensitivity of interaction and supporting

the view of joint action as a complex adaptive system.

Keywords: interpersonal coordination, synchrony, joint action, conversation, movement dynamics, cross-

recurrence quantification analysis, working memory, dual-task performance

1. INTRODUCTION

Human interaction is a complex and dynamic process. From the subtle modulation of speech to the
dynamic displacement of the body in posture or gesture, humans must fluidly organize behavior in
time acrossmultiplemodalities to interact effectively with one another. Contributing to the ongoing
debate about the underlying mechanisms of interpersonal processes (for reviews, see Brennan et al.,
2010; Dale et al., 2013; Barr, 2014; Paxton et al., 2016), we here build on previous work (Paxton
et al., 2016) to propose that context is critical for understanding how interaction unfolds. By using
advances in wearable technology (Paxton et al., 2015) to manipulate task parameters during an
interactive experiment, we explore the influence of context on dynamics of body movement during
conversation and turn to a particular theoretical framework to help understand it: dynamical
systems theory (DST).

From biomes to hurricanes, many physical and biological systems are recognized as complex
dynamical systems. These systems exhibit what are called emergent properties—that is, characteristic
behaviors that emerge not by instructions from some top-down controller but as a function of local
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interactions among the component parts within given contextual
pressures. A famous example of this is the so-called “butterfly
effect.” This principle suggests that subtle factors in a present
context may cascade into larger effects, which themselves serve as
a context that constrains ongoing behavior (e.g., Lorenz, 1963).
While it began in the physical and mathematical sciences, DST
has become a powerful lens for understanding human behavior
and cognition as well (Barton, 1994; Mathews et al., 1999).

DST—along with other complexity sciences (cf. Mathews
et al., 1999)—provides a conceptual and analytic framework
to capture the context-sensitive, soft-assembled, emergent
properties of cognitive, behavioral, and affective phenomena.
Though its influence is still growing in psychology more broadly,
DST principles and analyses have led to novel insights into
such phenomena as reading (e.g., Van Orden and Goldinger,
1994), gaze (e.g., Engbert et al., 2005), cultural evolution (e.g.,
Kenrick et al., 2003), general cognitive function (e.g., Van Orden
et al., 2003), and more. DST—and, more specifically, a branch
called synergetics (Haken, 1977)—has significantly influenced the
understanding of self-organizing principles in cognition (e.g.,
Haken, 1990; Stadler and Kruse, 1990; Haken and Portugali,
1996).

Increasingly, cognitive scientists interested in social
phenomena are recognizing the value of DST to understanding
human interaction (e.g., Vallacher et al., 2002; Coleman et al.,
2007). Within this area, DST may be uniquely equipped to
explore interpersonal coordination—the idea that individuals
influence one another’s behavior, cognition, and emotion
as a result of their interaction. By shifting analysis away
from the individual and conceptualizing the dyad as the
focus of analysis, we can begin to explore the behavioral,
cognitive, and emotional dynamics that emerge from the
contextual pressures constraining the dyadic system—like
the specific task or type of conversation in which the dyad is
engaging.

Interpersonal coordination has been an increasingly
influential way to capture interpersonal dynamics over the
last few decades (Condon and Sander, 1974). This phenomenon
has been studied under a variety of names—like accommodation,
alignment, the “chameleon effect,” contagion, coordination,
coupling, mimicry, synchrony, and synergy1. Interestingly, the
idea that coordination and other behaviors are adaptive in the
DST sense extends to even some of the earliest works in this
domain (Sander, 1975).

Within interpersonal coordination research, the interpersonal
synergies perspective has perhaps the strongest connection to
DST ideas (Riley et al., 2011). Historically, most work on
interpersonal coordination has tended to be characterized by
what we have called a “more is better” perspective (see Abney
et al., 2015). This perspective holds that individuals tend to
become more similar over time as a result of their interaction
and that this increased similarity tends to be better for a variety
of interaction outcomes (e.g., Pickering and Garrod, 2004).

1It is outside the scope of the current article to outline the differences in these

terms. For more on terminology within this domain, see Paxton and Dale (2013b)

and Paxton et al. (2016).

However, the interpersonal synergies perspective posits that
interpersonal dynamics are fundamentally shaped by a variety
of factors that exert pressure on the interpersonal system.
Under this view, interacting participants will not necessarily
become uniformly more similar over time. Instead, different
contextual factors—like interactants’ relationship, goals, physical
or perceptual environment, affordances (in the Gibsonian sense;
e.g., Gibson et al., 1999) and conversation type—will lead to
different configurations of behavioral channels (e.g., Fusaroli and
Tylén, 2016).

Inspired by research on DST, we have elsewhere proposed a
classification system for different components of an interaction
(Paxton et al., 2016), dividing the influences on communication
dynamics into top-level and bottom-level systems. Top-level
systems function at a lower frequency, change over longer
timescales, and tend to have fewer degrees of freedom; bottom-
level systems, by contrast, function at a higher frequency, can
change over very short timescales, and tend to have more degrees
of freedom2. Examples of top-level systems would include
conversational contexts and interpersonal relationships; bottom-
level systems would include body movement or phonetics.

Studies of coordination often focus on only one of these
systems at a time—like how coordination influences rapport
(e.g., Hove and Risen, 2009) or how perceptual information
influences coordination (e.g., Richardson et al., 2007a). In this
paper, we explore how simultaneous constraints on both systems
influence coordination: high-level contextual constraints (i.e.,
those affecting the overarching top-level systems) and low-level
contextual constraints (i.e., those affecting the rapidly changing
bottom-level systems).

Approaching nonverbal social behavior during conversation
from the synergies perspective, the present study focuses
on how high- and low-level contextual constraints can
change interpersonal coordination over time in naturalistic
interaction. Specifically, we explored how conversation
type—whether argument or a friendly conversation—and
perceptual information—either informative or noisy perceptual
signals3—altered coordination of interacting participants’ head
movements. We proposed four hypotheses, guided by previous
findings.

Keeping with our earlier work (Paxton and Dale, 2013a,b),
we use “coordination” as a general term for the idea that
individuals affect one another’s behavior over time as a result
of their interaction. We use “synchrony” as a specific case of
coordination: Interacting individuals are synchronized to the
extent that they tend to exhibit the same behavior at the same
time. Although we do not explore time-locked phase synchrony
here (cf. Richardson et al., 2007a), we use time series analyses to
quantify whether interacting individuals generally tend to behave
similarly in time.

2We recognize that this “top” vs. “bottom” categorization is a simplification, as it

likely approximates a spectrum of spatial or temporal scales; we nevertheless feel

this organizing scheme is useful for emphasizing the differing role of either end of

this spectrum.
3By “informative” we mean to say simply that participants must attend to the

stimulus for a secondary task.We do notmean that the stimulus will be informative

for the conversation.
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H1: Overall, head movement will be synchronized.

Previous work suggests that interacting individuals’ gross
body movements (Nagaoka and Komori, 2008; Paxton and
Dale, 2013a) and head movements specifically (Ramseyer and
Tschacher, 2014; Paxton et al., 2015) become more similar over
time as a result of their interaction. Therefore, we expect that we
will find that participants’ head movement will be synchronized.
That is, we anticipate that participants will be more likely tomove
(or not move) their heads at the same time than not.

H2: Dynamics of nonverbal communication signals will be
sensitive to conversation type (as a high-level contextual

constraint).
H2A: Argument—compared to friendly conversation—will

decrease head movement synchrony.

Mounting evidence suggests that coordination dynamics are
sensitive to high-level contextual perturbations (Miles et al.,
2011), including conversation type (Paxton and Dale, 2013a;
Abney et al., 2014; Main et al., 2016). Despite some exceptions—
for example, when analyzing gaze patterns (Paxton et al., under
review) and when discussing assigned (rather than personally
held) beliefs (Tschacher et al., 2014)—conflict has been found
to decrease interpersonal synchrony (Paxton and Dale, 2013a;
Abney et al., 2014).We therefore expect to find some difference in
movement synchrony between the two conversation types (H2);
directionally, we expect that argument will decrease synchrony
(H2A).

H3: Dynamics of nonverbal communication signals will be
sensitive to perceptual information (as a low-level contextual

constraint).
H3A: Changing visual information interpreted as noise—rather
than a meaningful signal to be remembered—will increase head

movement synchrony.

Low-level contextual constraints—like perceptual information—
have been relatively less studied in coordination research. This
may have been due to limitations in previous experiment tools:
Any perturbations to the dyadic system have had to expose
both participants in a naturalistic, face-to-face interaction to
the same environmental stimulus. A previous study found that
holding a conversation over loud ambient noise—as compared
with an otherwise silent room—led to an increase in head
movement synchrony (Boker et al., 2002). This supports the
idea that interpersonal coordination may serve to boost the
“signal” in communication within the “noise” of the environment
(Richardson and Dale, 2005; Shockley et al., 2009).

Although the concept of “information” has a variety of
meanings within cognitive science, we here simply mean that
the signal is imbued by the participant as having relevance to
some task. For the present study, this is not a signal that is
relevant to the conversation itself but to another memory task.
It is contrasted with signals in the environment that are not
directly relevant to any task at hand—signals that we may call
“noise.” Crucially, in the current study, both sets of stimuli are
otherwise identical, allowing us to disentangle the effects of the

stimulus itself and the information imbued in the signal by the
interlocutor.

The current study extends previous work to see whether visual
“noise” can serve the same function as auditory noise—boosting
synchrony and, possibly, comprehension. We hypothesize that
nonverbal communication signals will respond to low-level
contextual constraints or perturbations (H3). Directionally, we
expect that noise will increase synchrony (H3A).

H4: Dynamics of nonverbal communication signals will be
non-additively sensitive to conversation type (as a high-level
contextual constraint) and to perceptual information (as a

low-level contextual constraint).

While previous studies have focused on the effects of either high-
level constraints (e.g., Miles et al., 2011; Paxton and Dale, 2013a;
Abney et al., 2014; Main et al., 2016) or low-level constraints (e.g.,
Boker et al., 2002; Richardson et al., 2007a), we are unaware of
any studies to date that have combined the two. We see our work
as providing a vital step in the exploration of interaction and
coordination under the DST perspective: If communication is a
dynamical system, we would expect to see that behavior is context
sensitive and does not uniformly react to all constraints (cf. Riley
et al., 2011; Paxton et al., 2016). Therefore, we hypothesize that
head movement synchrony will be non-additively sensitive to
both high- and low-level constraints; however, as the first such
study of these simultaneous dynamics (of which we are aware),
we do not have a directional hypothesis.

2. METHODS

2.1. Participants
Forty-two undergraduate students from the University of
California, Merced participated as 21 dyads. Dyads were
created as participants individually signed up for experiment
appointments per their own availability through the online
subject pool system. Each participant received course credit in
return for participation. By chance, dyads included some pairs
of women (n = 9; 43%), some pairs of men (n = 3; 14%), and
mixed-gender pairs (n = 9; 43%) according to participants’ self-
reported gender identities. Participants in 2 dyads reported being
acquainted with one another prior to the experiment (10%).

Additional dyads—not included in the counts above—
participated but were not analyzed here. Two (2) additional
dyads were excluded due to lack of conflict in the argumentative
conversation, as we have done in previous work using a similar
paradigm (Paxton and Dale, 2013a).

We also experienced technical difficulties with the servers
running our data collection program for a number of additional
dyads. In order to be included in the present analysis, each
participant in the dyad must have had recorded movement data
for at least 4.5 min (including the calibration period; see Section
2.3) of each of the two conversations described in Section 2.2.
In an additional 21 dyads (not included in the counts above),
the server failed to record the minimum 4.5 min of movement
data for at least 1 of the 2 participants in at least 1 of the 2
conversations. This occurred because the program used to run
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the data collection software prioritizes fidelity of the connection
to the data collection server above all (see Paxton et al., 2015);
any perturbation of that connection causes the program to be
terminated. However, until the point of termination, data were
continuously and regularly sampled.

For example, assume that participants A and B are
participating in the experiment. For the first 3 min, the
movements of participants A and B are sampled regularly
(according to Section 2.2). At minute 4 of the first conversation,
participant A’s connection to the server is perturbed, causing
the server to disconnect participant A’s movement tracker.
Participant A’s regularly sampled data for the first 3 min are
saved, but no further data for participant A are recorded,
although the conversation continues as usual. Participant B’s
tracker, however, remains connected to the server, and after
being regularly sampled for the rest of the 8-min conversation,
participant B’s data are saved. Even if all 8 min of movement
data were successfully saved for both participants in the second
conversation, this dyad would be excluded from our analysis.
Although participant A has an unbroken 3-min movement
time series from the first conversation and an unbroken 8-min
movement time series from the second conversation, this dyad
would not have the minimum 4.5 min of movement data for both
participants in both conversations.

Although this prioritization led us to discard a number of
dyads due to insufficient data, it also allowed us to ensure that the
behavior of the included dyads were continuously and regularly
sampled during the experiment—leading to very few missing
samples in the included dyads. We chose this cutoff prior to
analysis and did not explore other thresholds for inclusion.

2.2. Materials and Procedure
This study was carried out in accordance with the
recommendations of Institutional Review Board of the
University of California, Merced, with written informed
consent from all subjects. All subjects gave written informed
consent in accordance with the Declaration of Helsinki. The
protocol was approved by the Institutional Review Board of the
University of California, Merced.

As noted below (see Section 2.2.2), the informed consent
process did not give any foreknowledge of the specific
phenomenon (i.e., similarity of movement), conversation
prompts or topics, nor the hypotheses of the study. Data were
collected by research assistants blind to study hypotheses for 20
of the 21 dyads; data for the remaining (1) dyad was collected by
the first author. The first author also assisted in data collection
for 4 dyads.

2.2.1. Experiment Design
The experiment had one within-dyads and one between-
dyads element. Conversation type was a within-dyads
condition and was adapted from Paxton and Dale (2013a):
Each dyad had one argumentative conversation and one
affiliative conversation. Conversation order was counterbalanced
(randomly assigned) to prevent order effects. For the between-
dyads condition, each dyad was randomly assigned to a
“noise” (n = 9; 43%) or a “dual-task” (n = 12; 57%)

condition4. Both conditions are described in greater detail
below.

2.2.2. Data Collection
Upon arriving, participants were separated and led to private
(semi-enclosed) areas with desks within the lab. Each was
then given a series of questionnaires, including a sociopolitical
opinion questionnaire. The opinion questionnaire neutrally
inquired about the participant’s opinion on a variety of issues
(e.g., abortion, death penalty, marriage equality5, whether
Spanish should be an official U.S. language, whether student
loans should be partially forgiven by the U.S. government).
The participant responded to each question in a brief,
open-ended response area and by indicating opinion
strength on a 1 (feel very weakly) to 4 (feel very strongly)
scale.

After both participants completed the questionnaires,
they were brought together in a small, private space.
Participants were seated facing one another in stationary
chairs approximately 0.97m (3.17 feet) apart (measured at the
front legs). Participants were told that they would be having
“two conversations for about 8 min each” for a study “about
how people hold conversations,” but no information about
the nature or emotional valence of the prompts was given.
(If asked, participants were told that they would be given
the conversation topic immediately before beginning each
conversation.) The experimenter then told the participants to
take a few minutes to introduce themselves to one another
while the experimenter stepped outside of the room to
complete some last-minute paperwork before beginning the
experiment.

The experimenter then left the room for approximately
3min. Unknown to the participants, the experimenter spent
this time comparing the two participants’ opinion surveys
to identify up to 3 topics for which participants (a) wrote
the most differing opinions and (b) indicated the strongest
opinions. We refer to these as “candidate argumentative topics”
below.

After 3min, the experimenter re-entered the room and gave
each participant a Google Glass (Alphabet, Inc.), a piece of
wearable technology worn like glasses that features a small quartz
screen over the wearer’s right eye and an on-board processor on
the wearer’s right temple. The experimenter then explained the
device to the participants, adjusted the Glass (as necessary) to
fit each participant, and tested to ensure that each participant
could fully see the screen. (For complete fitting procedure, see
Paxton et al., 2015.) Participants were reminded that they would
be having “a couple of conversations about different topics” and
that they would “[be given] the topic for each conversation
right before [they] start.” They were told that the Google Glass
would be “recording information about the conversation,” but
the nature of the recorded information was not described in

4A subset of the affiliative conversations across both between-dyads conditions

served as a brief proof-of-concept study in an earlier methodological paper (Paxton

et al., 2015). Only the affiliative conversation of dyads who were assigned to the

affiliative-first conversation order were included in that analysis.
5Described to the participants as “gay and lesbian marriage.”
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detail to avoid drawing participants’ attention to their head
movements6.

Each Google Glass ran the PsyGlass program (Paxton et al.,
2015). Once initialized, each participant’s PsyGlass program
randomly generated a screen color at 1Hz (i.e., 1 color per s),
with a 0.9 probability of generating a blue screen and a 0.1
probability of generating a red screen. (If colort were the same
as colort+ 1, the screen did not flicker or otherwise indicate
that it was refreshing). PsyGlass also recorded participants’ head
movements by measuring the three-dimensional accelerometer
data (i.e., x, y, z axes, with the origin point set as the position at the
time of initialization) at 250Hz (i.e., 1 sample per 4 ms), which
were transmitted to and stored on the experiment server at 4Hz
(i.e., 1 transmission per 250 ms). All code for the program can be
downloaded from the GitHub (GitHub, Inc.; http://www.github.
com) repository for PsyGlass (http://www.github.com/a-paxton/
PsyGlass).

2.2.3. Task Condition (Between-Dyads)
Before initializing PsyGlass on each participant’s device, both
participants were given instructions about their between-dyads
condition. All dyads—across both task conditions—were exposed
to the same stimuli through PsyGlass, the same red-and-blue
screens. The two conditions differed only in the interpretation
or significance of the colored screens. In the noise condition, the
dyad was told that the flashing screens were a result of a bug
in the program and that participants should have conversations
as normal. In the dual-task condition, the dyad was told to
remember the number of times that the screen turned red while
having their conversation and that they would be asked to write
that number down after the conversation was finished (similar to
the oddball paradigm; Squires et al., 1975). After answering any
participant questions, the PsyGlass program was initialized.

2.2.4. Conversation Type (Within-Dyads)
Again, each dyad held 2, 8-min conversations—one affiliative
conversation and one argumentative conversation. In both
cases, participants were instructed to stay on the assigned
topics or on topics very similar to the assigned topic. After
assigning each prompt, the experimenter remained seated behind
a computer outside of the participants’ immediate peripheral
vision, surreptitiously monitoring the conversation.

The affiliative prompt was identical across all dyads, asking
them to discuss media that they both enjoyed, find something
that they both enjoyed, and talk about why they liked it. The
goal of the affiliative prompt was to emphasize similarity and
engender rapport between participants.

The argumentative prompt relied on the candidate
argumentative topics identified from the opinion surveys.
The prompt asked participants to discuss their views on the
top-rated candidate topic (again using neutral phrasing) and
asked participants to “try to convince one another of [their]
opinions.” If the conversation stopped altogether or shifted away
from being argumentative in nature (e.g., if both participants

6Participants were also video- and audio-recorded with separate equipment, but

this information is not under consideration in the current paper.

came to a consensus), the next highest-rated candidate topic was
assigned. If the second candidate topic again failed to produce
sustained argumentative conversation, the third candidate topic
was assigned.

After initializing PsyGlass for the first time, the prompt for
the first (randomly assigned) conversation type was given. After 8
min of conversation, the experimenter informed the participants
that their conversation was over, and PsyGlass was terminated.
Participants then removed their Google Glass and were led to
their private desks to complete two brief questionnaires about
the conversation (not analyzed here), including—for dual-task
condition dyads—the number of times they had seen a red
screen. Once both participants had completed the questionnaires,
participants were brought back to the joint space and re-fitted
with the Google Glass. After ensuring that both participants
could again see the entire screen, PsyGlass was initialized, and
the remaining prompt was given.

Participants were not given any foreknowledge about the
topics or type of conversation before being assigned the relevant
prompt. That is, if participants were assigned to have the
affiliative conversation first, they had no knowledge that their
second conversation would have an argumentative prompt; the
same applied if the participants had had the argumentative
conversation first.

2.3. Data Preparation
Each participant produced one movement time series for
each conversation. The time series captured timestamped
accelerometer values along x, y, z axes. After applying an
anti-aliasing zero-phase fourth-order Butterworth filter, we
downsampled the data to 10 Hz, a sampling rate similar to
those utilized in our previous movement coordination work
(Paxton and Dale, 2013a; Abney et al., 2015; Paxton et al., 2015).
We transformed these three-dimensional values into a single
value for acceleration at each time point by taking the three-
dimensional Euclidean distance of the time series. We then
applied a smoothing zero-phase second-order Butterworth filter
to the acceleration signal for each participant.

We then trimmed the movement data to remove the
time between the PsyGlass initialization and the beginning
of the conversation data. Immediately before beginning each
conversation (i.e., after having been given the appropriate
prompt), participants were asked to produce a brief bout of
high-velocity head movement (nodding and shaking their heads
rapidly). This was done under the guise of “initializing the
program” but was used as a marker for the beginning of the
conversation data.

Because each dyad took 60–120 s to test PsyGlass and hear
the conversation prompt, we used derivatives of acceleration
to identify the latest moment of intense movement by both
participants during that window.We explored both acceleration’s
first-order (jerk) and second-order (jounce) derivatives to
identify possible markers. The cutoff points identified by jerk and
jounce were significantly correlated, r = 0.62, t(40) = 4.94, p <

0.0001. However, because jounce produced more conservative
(i.e., later) estimates of cutoff times, we used jounce.
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Cutoff times for each conversation were created at the dyad
level. For each participant in each dyad, we identified the time of
largest jounce in the first 60–120 s of the conversation. We then
chose the more conservative (i.e., later) cutoff point of the two
participants, which we applied as both participants’ cutoff points.

Finally, we truncated both participants’ time series in each
conversation to the shorter of the two lengths, if they were not
already identical (e.g., due to server failure). Because PsyGlass
initializes data collection simultaneously for both participants
(Paxton et al., 2015), we did not need to time-align the beginning
of the conversation.

After applying these cutoffs, conversations had an average
of 6.54 min (range = 2.62–9.26min) of recorded movement
data. It is important to emphasize that dyads completed the full
experimental conditions even when they did not have complete
movement records: Connectivity issues with the experimental
server only resulted in a failure to record the movement
time series after the perturbation to the data collection server
occurred. We find it important to note because if participants
had experienced different experimental conditions (e.g., if some
had held only a 5-min first conversation while others had held
an 8-min first conversation), we could not infer that the intended
manipulations (i.e., conversation type and task condition) were
the cause of any effects, rather than any of the unintended
conditions (e.g., shorter conversations).

2.4. Data Analysis
We measured coordination by combining cross-recurrence
quantification analysis (CRQA) and growth curve analysis
(GCA). This combination allows us to quantify the amount of
moment-to-moment coordination occurring between interacting
participants, along with longer-scale trends. We describe these
techniques briefly below, but a more detailed explanation of the
benefits of using CRQA and GCA together can be found in Main
et al. (2016)7. We then used a linear mixed-effects model to
analyze the resulting data.

2.4.1. Cross-Recurrence Quantification Analysis
CRQA is an outgrowth of recurrence quantification analysis
(RQA), a nonlinear time series analysis that captures the
structure and patterns of states visited by a single dynamical
system over time (Eckmann et al., 1987). CRQA extends RQA
by capturing the amount to which two different systems co-
visit similar states in time and has become a staple for analyzing
human data from a dynamical systems perspective (e.g., Shockley
et al., 2003; Dale and Spivey, 2006; Richardson et al., 2007b;
Gorman et al., 2012; Anderson et al., 2013; Fusaroli et al., 2014;
Vallacher et al., 2015). Detailed explanations of CRQA and its
applications in a variety of settings are available in Marwan et al.
(2007), Coco and Dale (2014), and Main et al. (2016).

In our case, CRQA allows us to quantify when two participants
moved in similar ways during conversation. Unlike studies of
more rhythmic movements (e.g., tapping to a metronome),
head movement dynamics during conversation comprise both

7AlthoughMain et al. (2016) present the categorical case, the same principles apply

to the continuous case, which we employ here.

periodic (e.g., underlying postural sway) and non-periodic
(e.g., nodding intermittently during conversation) components—
leaving phase-coupling analyses (e.g., Richardson et al., 2007a)
less suitable for our current purposes. We chose CRQA as a
method that does not assume or require periodicities and that
can be more resilient to the noise inherent in a new method
(i.e., measuring interpersonal dynamics with head-mounted
accelerometers in Google Glass).

Current best practices for continuous CRQA include
reconstructing the phase space for each pair of signals using time-
delay embedding (Shockley et al., 2003; Riley and Van Orden,
2005) and then calculating recurrent points by identifying the
radius size at which overall recurrence rate (RR) of the plot is
equal to 5% (cf. Marwan et al., 2007; Konvalinka et al., 2011).
More detailed information on phase space reconstruction and
embedding are available from March et al. (2005) and Iwanski
and Bradley (1998). We follow these best practices to calculate
CRQA for each conversation of each dyad8. The parameters for
each dyad are available in the OSF and GitHub repositories for
the project (see Section 3).

CRQA was implemented in R (R Core Team, 2016) using the
crqa library (Coco and Dale, 2014). We obtained the diagonal
recurrence profile (DRP) for each conversation of each dyad.
The DRP captures how much coordination occurs within a
“window” of relative time between participants. Here, we target
a window of ±5 s, consistent with previous work on body
movement coordination generally (Paxton and Dale, 2013a) and
head movement specifically (Ramseyer and Tschacher, 2014).
With a sampling rate of 10 Hz, this creates a window of interest
of ±50 samples. Intuitively, the DRP can be read much like a
cross-correlation profile (Paxton and Dale, 2013a), with some
differences. (For more on the differences between DRPs and
cross-correlation profiles, see Main et al., 2016.)

Essentially, the DRP allows us to explore similarities in
patterns ofmovement that are independent of absolute time while
revealing patterns of relative time. The DRP captures leading
and following patterns along with simultaneous movement. In
other words, we are able to use DRPs to see, at any given time
in the conversation, whether participants are more likely to be
moving in similar ways (i.e., higher rate of recurrence or RR) or in
dissimilar ways (i.e., lower rate of recurrence or RR).

Because both participants will have the same length time series
(because of identical sampling rates within the experiment),
Participant A and Participant B will both have samples for all time
points, t. The DRP compares Participant A’s head movement at
t with Participant B’s head movement at t − 50, ..., t, ..., t + 50.
When Participant B’s t < 0, the DRP captures the degree to
which Participant B leads the movement state for Participant
A at t; when Participant B’s t > 0, the DRP captures the
degree to which Participant A at t leads the movement state for

8We do recognize that there are open questions about how to best handle phase

space reconstruction for RQA that can extend to CRQA, particularly with regard

to the choice of embedding dimension (e.g., Marwan et al., 2007). While some

previous work suggests that an embedding dimension of 1 (m = 1) is sufficient, we

follow current recommendations to determine embedding dimension with false

nearest neighbors for each participant in the dyad (Riley and Van Orden, 2005)

and selecting the higher embedding dimension of the two (Marwan et al., 2007).
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Participant B. When we compare Participant A’s movement at t
with Participant B’s movement at t, the DRP captures the amount
to which both participants engaged in movement at the same
time. The DRP also captures the reverse—comparing Participant
B’s head movement at t with Participant A’s head movement at
t − 50, ..., t, ..., t + 50.

2.4.2. Growth Curve Analyses
GCA is a time series analysis used to quantify the degree to which
changes over time can be best described by various orthogonal
polynomials (Mirman et al., 2008). Rather than assuming that
data are described by a linear relationship, GCA determines
how well the data are fit by polynomial relationships (e.g.,
linear, quadratic, cubic) and disentangles the contribution of each
polynomial independently. In the current analysis, we focus only
on the first- and second-order orthogonal polynomials.

In other words, GCA allows us to distinguish how much
the linear and quadratic forms separately contribute to the
overall shape of the data. As a result, GCA is a powerful
technique for quantitatively comparing DRPs, allowing us to
explore leading/following patterns (with the linear lag term) and
coordination patterns (with the quadratic lag term).

2.4.3. Model Specifications
All data analysis was performed in R (R Core Team, 2016).
Using the lme4 library (Bates et al., 2015), we created a linear
mixed-effects model to quantify the effects of linear lag (LL;
leading/following) and quadratic lag (QL; coordination) with
conversation type (within-dyads; dummy-coded: affiliative [0]
or argumentative [1]) and task (between-dyads; dummy-coded:
dual-task [0] or noise [1]) on head movement recurrence rate
(RR). Dyad and conversation number were included as random
intercepts; for both random intercepts, we included the maximal
random slope structure that permitted model convergence using
backwards selection per current best practices for linear mixed-
effects models (Barr et al., 2013). Compared against the random-
intercepts-only model, the maximal model justified by the data
better fits the data; these results are provided in the supplemental
repositories for the project (see Section 3).

As discussed below (see Section 3), our data and analysis
materials—including code with the precise specifications for all
models—are freely available in public repositories for the project.
For interested readers, we here provide the single-equation
mathematical form of our linear mixed-effects model using Barr
et al.’s (2013) conventions:

RRdt = β0 + D0d + N0d + (β1 + D1d + N1d)cd + β2kd

+(β3 + D3d + N3d)ldt + (β4 + D4d + N4d)qdt

+β5cdkd + β6ldtqdt + β7cdldt + β8kdldt

+(β9 + D9d + N9d)kdcdldt + β10cdqdt + β11kdqdt

+β12kdcdqdt + β13cdldtqdt + β14kdldtqdt + β15kdcdldtqdt

+edt (1)

Equation (1) estimates the recurrence rate RR for any dyad
d at lag t. It does so by estimating the global coefficients—
notated as β1,...,15—for each fixed effect: conversation type c, task

condition k, linear (i.e., orthogonal first-order polynomial) lag l,
quadratic (i.e., orthogonal second-order polynomial) lag q, and
all interaction terms. Random intercepts for dyad identity D0

and conversation number N0 are included. We also include the
maximal slope structure that permit model convergence using
backwards selection from the fully maximal model in accordance
with current best practices (Barr et al., 2013). The fixed effects
included in the maximal slope structure for random intercepts
are noted above (βn + Dnd + Nnd).

Although we report effects of LL in the model (noted l above),
we are cautious in interpreting them. Participants were paired
by a fairly random process (i.e., by individual sign-ups for open
experimental timeslots that did not allow participants to see their
partner’s identity) and were randomly assigned to their seat in the
interaction space (i.e., by arrival time; each chair was closer to one
or the other of the private questionnaire spaces). Unlike previous
studies (Main et al., 2016), we had no a priori expectations about
or reasons to expect leading/following behaviors; therefore, we
refrain from deeply interpreting any LL results.

2.4.4. Comparing to Baseline
In keeping with recommended baselines for nonlinear analyses,
we also create a baseline using a Fourier phase-randomization
analysis (Theiler et al., 1992; Kantz and Schreiber, 2004). Phase
randomization creates a surrogate dataset that contains the same
power spectrum as the real data but differs in phases, retaining
the autocorrelations of the original time series. Here, we use
the nonlinearTseries package (Garcia, 2015) in R (R Core
Team, 2016) to create 10 phase-randomized surrogate time series
for each conversation of each dyad to provide a more robust
baseline analysis. We then perform CRQA over these new time
series using the same parameters as the real data. Essentially, the
resulting recurrence dynamics capture the amount of similarity
that emerges by chance between the two time series (in this case,
interacting individuals)9.

In our Supplementary Materials on GitHub and the OSF
(see Section 3), we also perform a baseline analysis using
a sample-wise shuffled baseline, a more common baseline
technique in interpersonal coordination research that breaks
temporal correspondence between two time series by separately
randomizing (or shuffling) the order of each sample from the real
behavior time series (Dale et al., 2011; Louwerse et al., 2012).
Although this destroys more inter-sample dependencies, the
sample-wise shuffled baseline also destroys the autocorrelation
of the time series. This creates a somewhat less conservative
baseline, as shuffled baselines cannot strongly account for the
hysteresis of the system. Because the samples are shuffled
independently, the temporal dynamics of shuffled baselines
through their reconstructed phase-spaces are not influenced by
their previous time-steps. By retaining the autocorrelation of
the individual time series in the phase-randomization surrogate
analysis, we are able to account for the chance that two individual
time series might “live” in similar regions for some amount of
time simply due to their own dynamics, rather than the influence
of the other time series.

9We thank a reviewer for suggesting this more robust analysis.
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We provide the results from analyses using the sample-wise
shuffled baseline in our Supplementary Materials (see Section
3). The results are highly similar to those performed against the
phase-randomization baseline, although our results suggest that
the phase-randomization baseline provides a more conservative
metric for the amount of synchrony that might occur by chance.

3. DATA AND CODE SHARING

We have made data and code (including code for data
preparation and analysis) for the project freely available
according to current best practices for data stewardship. Due to
the nature of self-disclosure in the conversation data (especially
in the argumentative context), we were permitted to release only
limited information about each dyad: de-identified movement
time series for each participant in each conversation, the dyad’s
assigned experimental condition, and the dyad’s gender makeup.

Current best practices for open science include the sharing
of data and code in public repositories (see Nosek et al., 2015;
Blohowiak et al., 2016; Gewin, 2016; Kidwell et al., 2016).
Two prominent venues for storing and sharing materials
are the Open Science Framework (OSF; http://osf.io) and
GitHub (GitHub, Inc.; https://www.github.com/). Both OSF
and GitHub serve as platforms to share materials, promote
community contribution, and facilitate open re-use (and
re-analysis) of materials by others through appropriate
attribution. Furthermore, the OSF allows researchers to
“freeze” specific versions of the project—for example, at
the point of publication (as we have done here)—providing
a crystallized, unmodifiable snapshot of all files at that
time.

All data and code for the project are freely available through
our OSF repository (Paxton andDale, 2017): https://osf.io/4yqz8/

All code can also be freely accessed through our project’s
GitHub repository: https://www.github.com/a-paxton/dual-
conversation-constraints

4. RESULTS

All analyses were performed in accordance with the model
specifications described in Section 2.4.3. We here present only
the standardized model, as it allows us to interpret estimates
as effect sizes (see Keith, 2005). (The unstandardized model is
available in the project’s OSF andGitHub repositories; see Section
3.) Full standardized model results are presented in Table 1. For
clarity within the text, we reference main and interaction terms
in parentheses within the text so that readers can easily find the
relevant values in Table 1.

Results indeed suggested that high- and low-level constraints
influence coordination dynamics—even in some unexpected
ways. Contrary to our hypothesis H1, we did not find evidence
of overall time-locked synchrony. Participants’ head movements
were, in fact, better described by a turn-taking pattern with slight
leading-following dynamics (LL× QL).

Consistent with our hypotheses H2 and H2A—and replicating
our previous findings (Paxton and Dale, 2013a)—we found

TABLE 1 | Results from the standardized linear mixed-effects model (implemented

with lme4; Bates et al., 2015) predicting recurrence of head movement between

participants (RR) with conversation (within-dyads; dummy-coded: affiliative [0] or

argumentative [1]), task (between-dyads; dummy-coded: dual-task [0] or noise

[1]), linear lag (LL; leading/following), and quadratic lag (QL).

Predictor Estimate Std. Error t-value p-value Sig.

Conversation −0.601 0.114 −5.288 <0.001 ***

Task −0.102 0.109 −0.938 0.350

LL 0.023 0.055 0.412 0.680

QL 0.054 0.045 1.200 0.230

Conversation × task 0.133 0.103 1.289 0.197

LL × QL −0.039 0.005 −7.089 <0.001 ***

Conversation × LL −0.039 0.035 −1.130 0.260

Task × LL −0.011 0.043 −0.265 0.790

Task × conversation × LL −0.039 0.044 −0.878 0.380

Conversation × QL 0.036 0.004 9.072 <0.001 ***

Task × QL 0.019 0.040 0.480 0.630

Task × conversation × QL 0.067 0.004 17.408 <0.001 ***

Conversation × LL × QL 0.003 0.005 0.542 0.590

Task × LL × QL −0.004 0.005 −0.640 0.520

Task × conversation × LL × QL 0.000 0.005 0.057 0.960

The model’s fixed effects alone accounted for 37% of the variance (marginal R2 = 0.37),

while the fixed and random effects accounted for 94% of the variance (conditional R2 =

0.94). .p < 0.10; *p < 0.05; **p < 0.01; ***p < 0.001.

that argument significantly decreased RR compared to affiliative
conversations (conversation; see Figure 1). Conversation also
affected moment-to-moment coupling dynamics: Recurrence
during the affiliative conversations was higher but more diffuse,
while recurrence in the argumentative conversation was lower
and showed a distinct turn-taking pattern (conversation× QL).

Interestingly, although we hypothesized that the noise
condition would increase RR compared to the dual-task
condition, we did not find a significant main effect of task
condition (task). Instead, we found that task affected the
dynamics of coordination only in conjunction with other
pressures (task × conversation × QL). We explored these
patterns in greater depth by analyzing each of the conversation
types (i.e., affiliative and argumentative conversations)
separately.

4.1. Post-hoc Analyses of Interaction Terms
Results for the standardized models exploring the complex
interaction term are presented in Table 2. For clarity, we again
refer in the text only to the model variables so that readers
can find the relevant statistics in the model. As with the first
model, we ran both standardized and unstandardized versions
of these models, but we present only the standardized models in
the text. Additional information—including the unstandardized
models—can be found in the OSF and GitHub repositories for
the project (see Section 3).

As in the main model, both follow-up models showed
that head movement showed turn-taking patterns with
some leader-follower dynamics (LL × QL). No other effects
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FIGURE 1 | Interaction of conversation type (green = affiliative, red =

argumentative), task condition (left = dual-task, right = noise), and lag (LL =

slope; QL = curvature) on head movement synchrony (RR).

Phase-randomized surrogate baselines are graphed in dotted lines of

corresponding color. Lag is graphed in the 10 Hz sampling rate (10

samples/s). Shaded bands represent standard error. Created in R (R Core

Team, 2016) with ggplot2 (Wickham, 2009).

reached significance in the post-hoc analyses of the affiliative
conversations.

The results of the post-hoc analyses of argumentative
conversations, however, showed context-sensitive responses
to low-level constraints. Overall, participants demonstrated a
much stronger turn-taking pattern of head movement during
argumentative conversations (QL). These effects were much
more pronounced during the dual-task condition than in the
noise condition (task × QL), with recurrence exhibiting the
characteristic U-shaped DRP of turn-taking behavior.

4.2. Comparisons to Phase-Randomized
Baseline
The patterns outlined above hold even compared to baseline
measures of synchrony. For brevity, tables of results comparing
real data to phase-randomized surrogate baseline data are
included in Appendix. Table A1 is the companion to Table 1;
Table A2 is the companion to Table 2. In these tables, the “data”
variable refers to either the baseline surrogate data (data = −0.5)
or the real experimental data (data = 0.5).

TABLE 2 | Results from two standardized linear mixed-effects models

(implemented with lme4; Bates et al., 2015).

Conv. Predictor Estimate Std. Error t-value p-value Sig.

Aff. Task −0.251 0.180 −1.394 0.163

LL 0.050 0.072 0.698 0.480

QL 0.013 0.056 0.225 0.820

LL × QL −0.044 0.009 −4.782 <0.001 ***

Task × LL 0.015 0.072 0.211 0.830

Task × QL −0.054 0.056 −0.973 0.330

Task × LL × QL −0.004 0.009 −0.436 0.660

Arg. Task 0.054 0.186 0.290 0.770

LL −0.015 0.060 −0.255 0.800

QL 0.132 0.060 2.219 0.026 *

LL × QL −0.052 0.007 −6.987 <0.001 ***

Task × LL −0.077 0.060 −1.287 0.198

Task × QL 0.127 0.051 2.488 0.013 *

Task × LL × QL −0.005 0.007 −0.622 0.530

To follow up on the four way interaction term in the main model (see Table 1), we targeted

each conversation type in separate models, using their own standardized datasets. The

affiliative model’s fixed effects alone accounted for 7% of the variance (marginal R2 =

0.07), while the fixed and random effects accounted for 91% of the variance (conditional

R2 = 0.91). The argumentative model’s fixed effects alone accounted for 5% of the

variance (marginal R2 = 0.05), while the fixed and random effects accounted for 94%

of the variance (conditional R2 = 0.94). .p < 0.10; *p < 0.05; **p < 0.01; ***p < 0.001.

Again, only the standardized models are presented in the
text of the current paper. Unstandardized models—along with
standardized and unstandardized models performed with the
sample-wise shuffled baseline—are available on the project’s
GitHub and OSF repositories (see Section 3). Due to the
complexity of the overall model (Table A1), we use the post-
hoc models (Table A2) as a framework for discussing the
results.

4.2.1. Affiliative Conversation Post-hoc Analyses for

Comparison to Baseline
Strikingly, these results suggested that the level of recurrence
observed in the affiliative conversations was not overall
significantly different from baseline (data), although the
two datasets did differ in their dynamics (data × LL ×

QL). The surrogate data showed significantly lower leading-
following patterns (data × LL) and exhibited no turn-
taking nor synchrony patterns (data × QL significant, but
not QL).

The affiliative conversations also differed from baseline with
the task data. The results suggested a trend toward significantly
higher overall recurrence in the noise condition than we would
expect to see by chance, although it did not reach significance
(data × task). We did, however, find a significant difference
in the coordination dynamics between the two task conditions
(data × task × QL): Compared to the flat recurrence profile
of the baseline in both conditions, the dual-task condition
demonstrated more of the inverted-U-shape of synchrony, while
the noise condition demonstrated more of the U-shape of turn-
taking.
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4.2.2. Argumentative Conversation Post-hoc

Analyses for Comparison to Baseline
Unlike the affiliative conversations, we found that levels of
recurrence were—overall—significantly lower than baseline
(data). In other words, participants coordinated with one another
even less than what would be expected by chance, and that
decreased recurrence was more likely to appear in a turn-taking
pattern (data × QL) with some leader-follower effects (data
× LL).

Task constraints also exerted significant effects on the
dynamics of recurrence. In addition to showing different leader-
follower behaviors across the two tasks (data × task × LL), the
data revealed differences in the temporal patterning of movement
across the two tasks (data× task× QL). Essentially, participants’
head movements showed much stronger turn-taking patterns in
the argumentative conversations in the dual-task condition than
in the noise condition, which had a relatively flat recurrence
profile.

5. DISCUSSION

Communication is a rich, complex phenomenon that plays
a central role in daily human life. We use conversation
flexibly, allowing us to engage in mundane transactions, bond
over shared interests, collaborate to complete joint tasks, and
argue about our political opinions. Although these different
communicative contexts are part of our everyday experiences,
the scientific study of these dynamics have largely centered on
friendly or collaborative contexts. The current study aimed to
contribute to a fuller picture of communicative dynamics by
investigating how conflict (a high-level contextual perturbation)
and rapidly changing visual information (a low-level contextual
perturbation) interact to affect the dyadic system.

Here, we specifically targeted interpersonal synchrony of
head movement—that is, the similarity of participants’ head
movement over time during their interaction. We used
PsyGlass (Paxton et al., 2015), a stimulus-presenting and
movement-recording application on Google Glass, to capture
the acceleration time series of participants’ head motion
during naturalistic conversations shaped by high-level (i.e.,
argumentative or affiliative conversational context) and low-
level (i.e., noise or dual-task visual information condition)
constraints. From the theoretical position that human interaction
is a complex adaptive system, we hypothesized that interaction
dynamics should be sensitive to each of these constraints.

Our analyses found support for some—but not all—of our
hypotheses. Taken together, our results support the idea of
interaction as a complex adaptive system while highlighting
inconsistencies within previous literature and suggesting avenues
for future research.

5.1. Head Movement Synchrony
Perhaps most unexpectedly, we did not find support for our
hypothesis that participants would be synchronized in their head
movement patterns (H1). Instead, participants’ head movement
tended to exhibit time-lagged synchrony or turn-taking dynamics
(cf. Butler, 2011). These results stand in contrast with previous

work on head movement synchrony, which has shown that
individuals tend to synchronize their head movements during
conversation.

Interestingly, these patterns resemble those observed in
speech signals during friendly and argumentative conversations
(Paxton andDale, 2013c). Of course, this suggests that the current
measure of head movement may be influenced by speaking.
Future work should disentangle the ways that intrapersonal
coupling of head movement and speaking may influence
interpersonal head movement coordination.

However, relatively little research has targeted headmovement
synchrony, and the existing work in this area has used very
different methods and analyses. For example, Boker et al. (2002)
(a) tracked head movements with passive three-dimensional
motion-tracking sensors at 80 Hz, (b) analyzed Euclidean
velocity, (c) did not mention whether a filter was used on
the movement time series, (d) calculated synchrony through
windowed cross-correlation (i.e., a linear time series analysis)
and (e) did not use a baseline. On the other hand, Ramseyer
and Tschacher (2014) (a) tracked head movements through
video (i.e., by quantifying displaced pixels from frame to frame
in a region of interest around the head) at an unspecified
sampling rate, (b) analyzed a “flattened” velocity (i.e., 2D
projection of 3D movement), (c) filtered movement signals with
an unspecified filter, (d) calculated synchrony as the absolute
value of the windowed cross-correlation coefficients between
participants, and (e) used a “window-wise” shuffled baseline
(i.e., preserving local structure within the data by shuffling 1-
min chunks rather than shuffling all samples independently).
By contrast, we (a) tracked head movements with active head-
mounted sensors at 10 Hz (after downsampling), (b) analyzed
Euclidean acceleration, (c) filtered movement signals with a low-
pass Butterworth filter, (d) calculated synchrony with cross-
recurrence quantification analysis (i.e., a nonlinear time series
analysis without windowing), and (e) used a phase-randomized
baseline (and, in our Supplementary Materials, a sample-wise
shuffled baseline). Future work should explore the degree to
which these and other factors may influence findings of head
movement synchrony. Our task also differed by integrating high-
and low-level constraints. We turn to these next.

5.2. Differences in High-Level Contextual
Constraints
Conversational context modulated these patterns of coordination
(supporting H2). Consistent with previous research (Paxton and
Dale, 2013a), we also found support for our directional
hypothesis. Argument decreased synchrony (supporting
H2A): Participants moved in more dissimilar ways during
argumentative conversations relative to affiliative ones.

The way in which the two high-level contexts influenced
synchrony was particularly interesting. Synchrony during
friendly conversations was indistinguishable from chance, while
synchrony during argumentative arguments was significantly
lower than what would be expected by chance. This contrasted
with our previous work (Paxton and Dale, 2013a), which
found that overall body movement synchrony during friendly
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FIGURE 2 | Individual profiles of head movement synchrony for each dyad, divided by conversation type (green = affiliative; red = argumentative) and task condition

(left = dual-task; right = noise). Lag is graphed in the 10 Hz sampling rate (i.e., 10 samples per second). Created in R (R Core Team, 2016) with ggplot2 (Wickham,

2009).

conversations was higher than expected by chance and that
synchrony during arguments was not significantly different than
chance. However, this again would be consistent with the patterns
observed in speech rather than movement (Paxton and Dale,
2013c), as mentioned earlier.

5.3. Differences in Low-Level Contextual
Constraints
We also found that low-level contextual constraints influenced
coordination dynamics (supporting H3), but the results
surrounding our directional hypothesis were more nuanced
(H3A). We found no significant differences in the overall levels
of synchrony in the presence of informative or uninformative
visual input, instead finding differences in the moment-to-
moment dynamics of coordination across high-level contextual
constraints. The effects of task condition emerged only
during arguments, again supporting the idea that emergent
behaviors—like synchrony—are context-dependent: Head
movements exhibited a marked turn-taking pattern during
argumentative conversations in the dual-task condition but
had relatively flat temporal correspondence in the noise
condition.

In finding an interaction effect for the low-level contextual
constraint, the current study may highlight the importance of
the cognitive interpretation of the perceptual information in the
environment. Previous work on auditory perceptual information
simply introduced a noisy background stimulus (Boker et al.,
2002); no additional interpretation was needed. The current
work, by contrast, presented the same perceptual stimulus to
participants (i.e., changing blue and red screens), and the two

conditions differed by the significance (or lack thereof) of that
stimulus.

Although we found no main effect between task conditions
(see Section 5.5), the differences of these two conditions
relative to one another can meaningfully inform some of
our understanding of these phenomena. The turn-taking
coordination dynamics during arguments in the dual-task
condition (compared with the flat profile in the noise condition;
see Figure 1) may suggest a slight reworking of the influences
seen in previous work. The auditory noise of Boker et al. (2002)
would have presented task-relevant difficulties, since hearing and
speaking are directly affected by ambient noise. By contrast,
our “noise” condition—a flashing screen—may not have directly
impacted conversation, compared with the increased cognitive
load of performing a working memory task while having a
complex conversation. This suggests a slight change in what
may boost coordination: Like the auditory noise of Boker et al.
(2002) and the dual-task condition of the present study, perhaps
constraints must be task-relevant in order to influence movement
coordination.

5.4. Conversation as a Complex System
The partial support for H3A provided the strongest evidence
for context sensitivity of conversation to high- and low-level
constraints. Our results both supported and failed to support
our directional hypothesis, depending on the context. The effects
of high- and low-level contextual constraints were neither
uniform nor additive; instead, high- and low-level contextual
effects interacted to produce unique patterns. We interpret
these results as fitting with the idea that conversation can
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be fruitfully conceptualized through dynamical systems theory
(DST), supporting our final hypothesis (H4).

While previous work explored only perceptual noise within
“free conversation” (p. 350; Boker et al., 2002), the present study
asked participants to engage in two distinct discourse activities—
argument or friendly conversation. This allowed us not only to
explore the effects of low-level contextual constraints in a new
modality (i.e., vision) but provided us with an opportunity to
combine it with a growing emphasis on exploring coordination
dynamics in different conversational contexts.

Our results add nuance to previous findings about perceptual
noise: Rather than uniformly increasing coordination (cf. Boker
et al., 2002), low-level contextual pressures alter coordination
dynamics only in some conversational contexts. Our results also
add nuance to previous findings about conversational context:
Rather than uniformly decreasing synchrony (Paxton and Dale,
2013a; Abney et al., 2014), argument’s effects can bemodulated by
low-level perturbations. Moreover, these low-level perturbations
affect behavior differently depending on the overarching high-
level context—exerting a stronger influence on coordination
dynamics during argument compared to affiliative conversations.
Most strikingly, this particular combination of high- and low-
level context has led to unique behavioral dynamics, leading both
synchrony in both friendly and argumentative conversations to
decrease (relative to chance) and to reorganize their temporal
dynamics.

Of the contributions of the current study, we believe that our
results most compellingly speak to the importance of recognizing
conversation as a complex dynamical system. Consistent with the
interpersonal synergies perspective on coordination (e.g., Riley
et al., 2011), we find that coordination is sensitive to contextual
constraints. Put simply, coordination—as one property of
interaction, which we view as a complex dynamical system—
is simultaneously sensitive to low-level perceptual information,
cognitive interpretation of this low-level information, and high-
level interpersonal goals.

5.5. Limitations and Future Directions
The current paper provides one of the first simultaneous
explorations of high- and low-level contextual constraints in
naturalistic conversation. As a result, the study has several
limitations that are opportune areas for future directions.

First, we found that the difference in recurrence between
affiliative and argumentative conversations was modulated by
task: Argumentative conversations were more strongly affected
by task condition than affiliative conversations (see Table 2).
However, this pattern could have emerged in a variety of ways:
For example, compared to non-visually-disrupted conversation,
noise could have decreased coordination; the dual-task condition
could have increased coordination; both could have decreased,
with noise simply leading to a greater decrease; both could have
increased, with dual-task simply leading to a greater increase; or
some other pattern may be at work. Simply put, although we
can address relative differences between the two conditions, we
cannot make strong claims as to the precise mechanism behind
the differences in absolute coordination from the current study.
Future work should include a baseline condition without any

visual noise (holding all other experimental pressures equal)
in order to target these possibilities. (A baseline condition
would also help choose among similar causes behind the
difference in peakedness between noise and dual-task conditions
in argument.)

Second, we here only investigated linear (i.e.,
leading/following) and quadratic (i.e., synchrony or turn-
taking) patterns across all dyads. As we have observed in our
previous work, these data appear to exhibit interesting dyad-
specific effects (see Figure 2), and future work should investigate
them as dyad-level analogs to individual differences. It may be of
interest to include higher-order polynomial patterns (e.g., cubic,
quartic) in future analyses, both in describing the observed data
and in understanding what they might mean psychologically or
interpersonally.

Third, research should continue across additional modalities
and contexts. Not all constraints should affect conversation
equally; therefore, there should be no expectation that the
same dynamics will emerge across all modalities. The effect of
low-level constraints in a joint task-performance environment
may be quite different than naturalistic conversation. Similarly,
introducing perturbations of varying severity to different
perceptual modalities may unequally affect interpersonal
dynamics. Future work should continue to map out these effects
to better understand interaction.

Finally, we present only a first exploration of these dynamics;
our findings should be replicated, especially in larger samples.
The sample included here is fairly normative for conversational
coordination research (for discussion of sample sizes, see Paxton
and Dale, 2013a); the only other study exploring the effects
of perceptual perturbations on conversation dynamics (to the
authors’ knowledge) included only 4 dyads (Boker et al., 2002).
Issues of open science and reproducibility are particularly salient
at this time to psychology and cognitive science (cf. Open
Science Collaboration, 2015), so we provide (1) open-source
code for our data collection techniques (on the PsyGlass GitHub
repository: http://www.github.com/a-paxton/PsyGlass), (2) a
high level of methodological detail about our procedure (in
Section 2.2), (3) our data (on OSF: https://osf.io/4yqz8/), and
(4) open-source code for our data preparation and analysis
techniques (on OSF, https://osf.io/4yqz8/, and GitHub, https://
www.github.com/a-paxton/dual-conversation-constraints).
These tools will help us and other researchers interested in
interpersonal coordination and communication dynamics to
integrate our practices, resources, and findings so that we
can—together—better refine our understanding of human social
behavior.

6. CONCLUSION

In this paper, we explore the dynamics of human interaction
in an experiment and analyses inspired by ideas from
complex adaptive systems. Patterns of nonverbal behavior
during conversation change based on both high-level contextual
constraints—like what kind of conversation people are having—
and low-level contextual constraints—like the significance of
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visual information in the environment. Replicating previous
work, we find that argument decreases movement synchrony.
Interestingly, we find that high-level constraints interact with
low-level ones, mitigating or exacerbating the effects of argument
depending on the cognitive interpretation of the perceptual
stimuli. We see our results as contributing to the growing view
that patterns of communication—even subtle signatures of body
movement—are shaped by the host of contextual factors that
surround the conversation.
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APPENDIX

Comparisons to Baseline
This appendix provides the results of analyses comparing the real
experimental data to the phase-randomized surrogate baseline
data. Table A1 compares the real and baseline data using the

analysis scheme provided in Section 2.4. Table A2 provides post-
hoc analyses diving into the differences between the affiliative and
argumentative conversations.

TABLE A1 | Results from the standardized linear mixed-effects model comparing the real data to the phase-randomized surrogate baseline (implemented with lme4;

Bates et al., 2015).

Predictor Estimate Std. Error t-value p-value Sig.

Data Type −0.133 0.003 −40.421 <0.001 ∗ ∗ ∗

Conversation −0.220 0.128 −1.718 0.0860 .

Task 0.034 0.086 0.396 0.6900

LL 0.024 0.008 2.894 0.0040 ∗∗

QL 0.025 0.006 4.395 <0.001 ∗ ∗ ∗

Data × LL −0.006 0.008 −0.769 0.4400

Data × QL 0.025 0.009 2.800 0.0050 ∗∗

Conversation × Task 0.090 0.096 0.940 0.3500

Data × Conversation −0.320 0.047 −6.875 <0.001 ∗ ∗ ∗

Data × Task −0.114 0.006 −20.019 <0.001 ∗ ∗ ∗

Data × Conversation × Task 0.044 0.047 0.950 0.3400

Task × LL −0.006 0.008 −0.782 0.4300

Data × Task × LL −0.012 0.008 −1.417 0.1570

Conversation × LL 0.001 0.008 0.142 0.8900

Data × Conversation × LL −0.029 0.008 −3.495 <0.001 ∗ ∗ ∗

Task × Conversation × LL −0.019 0.008 −2.270 0.0230 ∗

Data × Task × Conversation × LL −0.013 0.008 −1.580 0.1140

Task × QL 0.006 0.006 1.010 0.3100

Data × Task × QL 0.012 0.009 1.338 0.1810

Conversation × QL 0.022 0.006 3.772 0.0002 ∗ ∗ ∗

Data × Conversation × QL 0.017 0.006 3.061 0.0020 ∗∗

Task × Conversation × QL 0.040 0.006 7.054 <0.001 ∗ ∗ ∗

Data × Task × Conversation × QL 0.025 0.006 4.454 <0.001 ∗ ∗ ∗

LL × QL −0.026 0.008 −3.129 0.0020 ∗∗

Data × LL × QL −0.011 0.008 −1.328 0.1840

Task × LL × QL −0.005 0.008 −0.600 0.5500

Data × Task × LL × QL 0.002 0.008 0.197 0.8400

Conversation × LL × QL 0.013 0.008 −1.541 0.1230

Data × Task × LL × QL 0.015 0.008 1.882 0.0600 .

Conversation × Task × LL × QL 0.004 0.008 0.465 0.6400

Data × Conversation × Task × LL × QL −0.004 0.008 −0.429 0.6700

The model’s fixed effects alone accounted for 8% of the variance (marginal R2 = 0.08), while the fixed and random effects accounted for 51% of the variance (conditional R2 = 0.51).
.p < 0.10; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.
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TABLE A2 | Results from two standardized linear mixed-effects models comparing real data to phase-randomized surrogate baseline (implemented with lme4; Bates

et al., 2015).

Conv. Predictor Estimate Std. Error t-value p-value Sig.

Aff. Data 0.062 0.061 1.021 0.310

Task −0.079 0.131 −0.605 0.550

LL 0.027 0.030 0.899 0.370

QL 0.004 0.009 0.491 0.620

Data × LL 0.027 0.013 2.145 0.032 *

Data × QL 0.009 0.016 0.583 0.560

Data × Task −0.191 0.105 −1.820 0.069 .

Task × LL 0.015 0.030 0.486 0.630

Task × QL −0.042 0.009 −4.755 <0.001 ***

Data × Task × LL 0.002 0.013 0.128 0.900

Data × Task × QL −0.016 0.016 −1.044 0.300

LL × QL −0.016 0.013 −1.249 0.212

Data × LL × QL −0.032 0.013 −2.526 0.012 *

Task × LL × QL −0.011 0.013 −0.838 0.400

Data × Task × LL × QL 0.006 0.013 0.493 0.620

Arg. Data −0.276 0.044 −6.282 <0.001 ***

Task 0.099 0.112 0.882 0.380

LL 0.022 0.019 1.139 0.260

QL 0.041 0.012 3.301 0.001 **

Data × LL −0.030 0.010 −3.015 0.003 **

Data × QL 0.037 0.007 5.262 <0.001 ***

Data × Task −0.061 0.076 −0.800 0.420

Task × LL −0.022 0.019 −1.145 0.250

Task × QL 0.040 0.012 3.259 0.001 **

Data × Task × LL −0.021 0.010 −2.119 0.034 *

Data × Task × QL 0.033 0.007 4.630 <0.001 ***

LL × QL −0.033 0.010 −3.303 0.001 **

Data × LL × QL 0.004 0.010 0.392 0.700

Task × LL × QL −0.001 0.010 −0.095 0.920

Data × Task × LL × QL −0.002 0.010 −0.164 0.870

To follow up on the interaction terms in the main model (see Table A1), we targeted each conversation type in separate models, using their own standardized datasets. The affiliative

model’s fixed effects alone accounted for 2% of the variance (marginal R2 = 0.02), while the fixed and random effects accounted for 42% of the variance (conditional R2 = 0.42). The

argumentative model’s fixed effects alone accounted for 10% of the variance (marginal R2 = 0.10), while the fixed and random effects accounted for 64% of the variance (conditional

R2 = 0.64)..p < 0.10; *p < 0.05; **p < 0.01; ***p < 0.001.
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