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A number of psychophysical studies have shown that moving stimuli appear to
last longer than static stimuli. Here, we report that the perceived duration for slow
moving stimuli can be shorter than for static stimuli under specific circumstances.
Observers were tested using natural movies presented at various speeds (0.0×= static,
0.25× = slow, or 1.9× = fast, relative to original speed) and indicated whether
test duration was perceived as longer or shorter than comparison movies presented
at their original speed. While fast movies were perceived as longer than slow and
static movies (in accordance with previous studies), we found that slow movies
were perceived as shorter (i.e., time compressed) compared to static images. Similar
results were obtained for artificial stimuli consisting of drifting gratings. However, time
compression for slow stimuli disappeared if comparison stimuli were replaced by a
white static disk that removed repetitive exposures to moving stimuli. Results suggest
that duration estimation is modulated by contextual effects induced by the specific
diet – or distribution – of prior visual stimuli to which observers are exposed. A simple
model, which includes a rapid recalibration of human time estimation via adaptation to
preceding stimuli, succeeds in reproducing our experimental data.
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INTRODUCTION

We are able to judge the duration of an external event, but our performance is not always
constant. It has been shown that human estimation of event duration depends on a variety of
factors including temporal contexts (Jazayeri and Shadlen, 2010; Cicchini et al., 2012), adaptation
(Johnston et al., 2006, 2008; Burr et al., 2007; Ayhan et al., 2009, 2011; Bruno and Johnston, 2010;
Bruno et al., 2010, 2013; Bruno and Cicchini, 2016), spatial configuration (Gorea and Kim, 2015;
Aoki et al., 2016), and internal states such as attention (Tse et al., 2004; Cicchini and Morrone, 2009)
and emotion (Stetson et al., 2007). Above all, however, one of the main factors widely reported in
psychophysical literatures as influencing duration estimation is the amount of change contained
in the target event itself (Fraisse, 1963; Poynter, 1989; Brown, 1995; Kanai et al., 2006; Eagleman,
2008; Kaneko and Murakami, 2009).
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A number of studies have shown that stimuli containing more
changes are perceived to last longer than stimuli containing
fewer changes (e.g., Brown, 1995; Kanai et al., 2006; Kaneko
and Murakami, 2009). Stimulus changes that can induce time
dilation include changes in speed (Kaneko and Murakami, 2009;
Yamamoto and Miura, 2012), temporal frequency (Kanai et al.,
2006), and apparent distance (Gorea and Hau, 2013). The
large body of evidence that more changes lead to time dilation
is currently reflected in fundamental assumptions underlying
models of time perception. For instance, the classical “internal
clock” model suggests that the perceived duration of a stimulus
is the result of the accumulated number of pulses generated by a
pacemaker – that is, a stimulus undergoing more changes speeds
up the pacemaker rate and is therefore perceived to last longer
(Creelman, 1962; Treisman, 1963; Treisman et al., 1990).

According to current models of time perception and their
supporting evidence, any dynamic stimulus (even an extremely
slow-moving stimulus) must always be perceived longer than a
static stimulus involving no change at all. In this brief report,
however, we show that a natural movie presented at unnaturally
slow speeds is perceived to last for very short durations if
observers compare it to a movie presented at its original natural
speed. Perhaps most noteworthy is that perceived duration for
a slow movie is shorter than perceived duration for a static
image of the same physical duration. We observed this time
compression phenomenon not only for natural movies but also
for artificial stimuli such as sinusoidal gratings. Interestingly,
time compression diminished if the comparison movie was
replaced by a static disk. These results led us to hypothesize
that time perception undergoes recalibration via adaptation to
the distribution of prior stimuli to which observers are exposed.
A simple model that incorporates contextual effects induced by
preceding stimuli successfully replicated all our experimental
data. Together, our findings suggest that human time estimation
is adjusted rapidly and imply that previously reported effects in
time perception might also be the product of such a recalibration
process.

EXPERIMENT 1

Methods
Apparatus
Visual stimuli were generated on a graphics card (NVIDIA
Quadro 2000) hosted by a computer (DELL Precision T1650) and
displayed on a LCD monitor (BenQ XL2430T) with a refresh rate
of 60 Hz. The pixel resolution of the CRT was 0.016 deg/pixel at
the viewing distance of 100 cm we used. The experiment was done
in a dark room.

Observers
Six naïve paid volunteers and one of the authors (SK) served as
observers. Observers were 21.5 years old on average (20–24 years
old) and had normal or corrected-to-normal vision. All the
experiments were approved by the research ethics committee at
the University of Tokyo and consent forms were duly completed.

FIGURE 1 | Schematic of the stimulus sequence in Experiment 1.

Stimuli
Visual stimuli consisted of a natural movie (a running horse,
4.1 degree × 4.1 degree, Figure 1) taken by a high-speed video
camera (Sony DSC-RX10M2, 960 fps). Gamma correction was
applied to the stimulus on the assumption that the gamma
characteristic of the camera was 2.0. All stimuli were presented
in the center of the display’s uniform gray background of
45 cd/m2. A small black fixation point was shown throughout the
experiment in the center.

Procedure
We measured apparent movie duration via a two-alternative
forced choice method (2AFC). In each trial, test stimuli and
comparison stimuli were sequentially displayed with an inter-
stimulus intervals (ISI) ranging from 1.0 to 2.0 s. Test stimuli
were presented either at 0.0× (static), 0.25× (slow), or 1.9× (fast)
relative to the movie’s original speed. Comparison stimuli were
presented at the original speed with a duration of either 0.5, 1.1,
or 1.6 s.

The physical duration of the test was varied in accordance
with a staircase method described below. Presentation order was
randomized across trials. Observers viewed the fixation point
and reported which of the two stimuli appeared to last longer
by pressing one of two buttons. Observers were instructed to
avoid using unnatural strategies such as counting time as much
as possible. Subsequent trials started 1.0 s after the observers’
response. To minimize motion aftereffects, the first stimulus of
each trial was always flipped along the vertical axis while the
second stimulus was not.

Test stimulus duration was varied in accordance with a
staircase method. The duration of the test was either lengthened
or shortened by one step depending on whether the observer
reported that the comparison was longer or shorter than the
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FIGURE 2 | Apparent duration of a natural movie as a function of physical
duration. Gray, blue, and red circle indicate the results for the static, slow, and
fast stimuli, respectively. Error bars indicate SE across the observers.

test, respectively. The step size was chosen from a range of
0.07–0.53 s based on pilot experiments for each observer and
for each physical duration of the comparison. The step size was
doubled until the first reversal. In each measurement session, two
staircases for each stimulus condition were randomly interleaved,
and each staircase terminated when the number of trials after the
first reversal exceeded 5. Each observer ran at least four sessions,
and the point of subjective equality (PSE) was estimated by a
maximum likelihood method. The apparent duration of each
stimulus condition was defined as the product of the physical
duration of the comparison and the ratio of the duration of
the comparison to PSE. We also calculated the just-noticeable
difference (JND) of the duration between test and comparison as
a measure of the sensitivity for discriminating duration.

Results
Figure 2 shows the apparent duration for each tested condition
as a function of the comparison’s physical duration. In agreement
with previous studies, perceived duration for fast stimuli was
1.54 times longer than for static stimuli. However, perceived
duration for slow stimuli was shorter than for static stimuli (0.83
times). Ratios of perceived-to-physical duration were submitted
to a two-way repeated measures ANOVA with factors of duration
and speed. The analysis revealed a significant main effect of
speed [F(12,2) = 26.082, p < 0.001], no significant main effect
of duration [F(12,2) = 0.116, p = 0.892], and no significant
interaction [F(24,4) = 0.339, p = 0.849]. Post hoc comparisons
revealed significant differences between static vs. slow (t = 2.794,
p = 0.016), static vs. fast (t = 4.371, p < 0.001), and slow vs. fast
(t= 7.165, p< 0.001). We have also carried out a non-parametric
analysis in which we directly compared the apparent duration of

slow stimuli with that of static stimuli for individual data points.
The analysis revealed that the PSE for slow stimuli was shorter
than for static stimuli for 19 out of 21 data points in total, thereby
indicating that slow movies were perceived as shorter than static
images for almost all conditions and all observers.

A repeated measures ANOVA performed on JNDs revealed
a significant main effect of speed [F(12,2) = 5.139, p = 0.024],
duration [F(12,2) = 16.911, p < 0.001], and no significant
interaction [F(24,4) = 1.461, p = 0.245]. Post hoc comparisons
revealed significant differences between slow vs. fast (t = 3.131,
p = 0.009), 0.5 s vs. 1.6 s (t = 5.714, p < 0.001), and 1.1 s vs.
1.6 s (t = 3.794, p = 0.003), but not for static vs. slow (t = 0.969,
p= 0.352), static vs. fast (t = 2.162, p= 0.052), and 0.5 s vs. 1.1 s
(t= 1.921, p= 0.079). The lack of a significant difference between
the static vs. slow implies that time compression for slow stimuli
cannot be attributed to potential artifacts whereby task difficulty
would have depended on speed.

These results illustrate that slow stimuli can be perceived
as shorter than static. This fact is clearly contradictory to the
conventional results that the apparent duration of a visual
stimulus increases with its speed. However, considering that
stimuli commonly used in previous studies were artificial (i.e.,
gratings), it could be that the time compression observed for
slow stimuli is attributable simply to the use of natural movies.
To examine this possibility, we employed artificial stimuli –
luminance sinusoidal gratings – in the subsequent experiment to
see whether time compression is still manifest. Indeed, observing
time compression with artificial gratings would generalize the
phenomenon to a larger set of moving visual stimuli. By contrast,
failure to observe time compression with gratings would imply
that the phenomenon is specific either to natural movies or even
perhaps tied uniquely to the movie of a running horse we have
used in Experiment 1.

EXPERIMENT 2

We measured the apparent duration for artificial stimuli, namely
luminance sinusoidal gratings presented at various speeds, using
the same methods as in Experiment 1.

Methods
The paradigm used in Experiment 2 was identical to that in
Experiment 1 with the following exceptions. Stimuli consisted
of a drifting luminance sinusoidal carrier grating within a
circular window tapered by a cosine wave of 0.5 deg wavelength
(Figure 3). The carrier’s spatial frequency was 1.0 c/deg,
Michelson contrast was 50%, and mean luminance was 45 cd/m2.
Test stimuli drifted either at 0, 0.5, or 7.5 Hz. The temporal
frequency of comparison stimuli was arbitrarily set to 3.8 Hz
given that a natural “original” speed for drifting grating does not
apply. The original natural movie had a 1/f temporal frequency
spectrum as many natural movies generally do. When the
spectrum was calculated for a limited spatial frequency band
around that of the grating (1.0 c/deg), it was found to peak at a
range from 0 to 5 Hz, which includes the frequency of the grating
(3.8 Hz).
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FIGURE 3 | Schematic of the stimulus sequence in Experiment 2.

In previous studies (e.g., Kaneko and Murakami, 2009; Bruno
et al., 2012), the orientation of the test and comparison gratings
remained the same. In preliminary experiments, however, we
observed that static gratings presented after moving stimuli
were clearly perceived to be moving due to a motion aftereffect
(MAE). This observation raises the concern that, in theory, MAE
artifacts could partially account for the phenomenon that moving
stimuli appear to last longer. To minimize the influence of
motion aftereffects and to ensure that a static stimulus remained
perceptually static, we used a horizontal grating as the first
stimulus in each trial and a vertical grating as the second stimulus.
Seven naïve paid volunteers and one of the authors (SK) served as
observers (average age of 21.6 years, range of 21–24 years).

Results
Figure 4 plots apparent test duration as a function of the
comparison’s physical duration. As in Experiment 1, apparent
duration for slow stimuli was shorter than for static stimuli
(87%), and apparent duration for fast stimuli was longer than for
static stimuli (139%). The ratio of perceived-to-physical duration
was submitted to a two-way repeated measures ANOVA with
factors of duration and speed. The analysis revealed a significant
main effect of speed [F(14,2) = 24.703, p < 0.001], a significant
difference for static vs. slow (t = 2.608, p = 0.021), static vs. fast
(t = 4.349, p < 0.001) and slow vs. fast (t = 6.957, p < 0.001).
The main effect of duration was also significant [F(14,2)= 9.755,
p= 0.002], and a significant difference was found for 0.5 s vs. 1.1 s
(t = 2.665, p = 0.018) and 0.5 s vs. 1.6 s (t = 4.383, p < 0.001).
The interaction was not significant [F(28,4) = 0.478, p = 0.752].
A non-parametric analysis also revealed that the PSE for slow
gratings was shorter than for static gratings for 19 out of total
24 data points.

FIGURE 4 | Apparent duration of a grating as a function of physical duration.
Gray, blue, and red circle indicate the results for the static stimulus, the grating
drifting at 0.5 Hz, and the grating drifting at 7.5 Hz, respectively. Error bars
indicate SE across the observers.

A repeated measures ANOVA performed on JNDs revealed a
significant main effect of speed [F(14,2) = 16.386, p < 0.001],
duration [F(14,2) = 26.389, p < 0.001], and no significant
interaction [F(28,4) = 2.100, p = 0.108]. A significant difference
was found for static vs. fast (t = 3.680, p = 0.002), slow vs. fast
(t = 5.638, p < 0.001), and all the pairs in three durations (0.5 s
vs. 1.1 s, t = 3.297, p = 0.005; 0.5 s vs. 1.6 s, t = 7.255, p < 0.001;
1.1 s vs. 1.6 s, t = 3.958, p = 0.001), but not for static vs. slow
(t = 1.958, p= 0.070).

The pattern of the results remained the same as in
Experiment 1, namely that the apparent duration of slow stimuli
is the shortest, followed by the static and the fast stimuli in
that order. These findings indicate that time compression for
slow stimuli is not restricted to natural movies but is instead
generally observable in moving visual stimuli. However, since the
difference for static vs. slow was relatively more profound for
natural movies, it is not out of the question that natural movies
may contribute a distinct component to the phenomenon.

EXPERIMENT 3

In Experiments 1 and 2, we measured apparent duration for
natural movies and grating stimuli and found that, contrary to
general expectations, slow stimuli were perceived as shorter than
static stimuli. These findings are unexpected because, according
to prevailing models, slow moving stimuli (by definition)
undergo more changes per unit time than static stimuli and
should therefore induce time dilation. Here, however, we reason
that an important factor that may account for our unusual results
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FIGURE 5 | Schematic of the stimulus sequence in Experiment 3.

is the nature of the comparison stimulus itself. In previous studies
on duration perception, static stimuli were commonly used as the
comparison interval in two-alternative forced-choice methods. In
contrast, our Experiments 1 and 2 employed moving comparison
stimuli whose speeds were chosen from the bracket of speeds
defined by slow and fast test stimuli. It is therefore possible that
the time compression observed in our experiments is attributable
to the use of a moving comparison.

To test for the above possibility, we designed a new experiment
(Experiment 3) in which we emulated previous studies and used
a static stimulus as the comparison instead of a moving one. If
a moving comparison imposes a contextual effect that plays an
important role in duration estimation, then time compression
should be weakened or altogether eliminated if a static stimulus is
used as the comparison instead. To this end, we used a white static
disk as the comparison since a comparison stimulus that differs
significantly from the test should minimize contextual effects
that could interact with mechanisms involved in estimating test
stimulus duration but should nonetheless provide an adequate
static reference against which time duration can be perceptually
estimated.

Methods
The paradigm used in Experiment 3 was identical to that
in Experiment 1 with the following exceptions. Test stimuli
consisted of either natural movies or drifting gratings used in
Experiments 1 and 2. Comparison stimuli consisted of a white
static disk designed to minimize contextual effects that could
interfere with the processing of subsequent dynamic test stimuli
(Figure 5). Natural movies were presented inside a 4.1-deg-
diameter circle so that test stimuli were equal in size to white-
disk comparisons. The duration of the comparison stimulus was
varied in accordance with the staircase method. Four naïve paid
volunteers and one author (SK) served as observers (average of
21.2 years, range of 20–22 years) in the experiment using natural
movies, and four naïve paid volunteers and one author (SK)
served as observers (average 21.4 years, range 20–24 years) in the
experiment using drifting gratings.

Result
Figures 6A,B show apparent test duration as a function of
the physical duration for natural-movie and drifting-grating
conditions, respectively. As in Experiments 1 and 2, fast stimuli
were perceived to last longest. However, the time compression
for slow stimuli which we observed in Experiments 1 and 2
has completely disappeared in Experiment 3, as no substantial
difference was found between slow and static stimuli. For natural
movies, fast stimuli were perceived to last longer than static ones
by 21% on average. Slow stimuli were perceived to last almost the
same as static ones, being shorter than the static by 3% on average.
For drifting gratings, fast stimuli were perceived to last longer
than static ones by 21% on average. Slow stimuli were perceived
to last almost the same as static ones, being longer than the static
by 1% on average. Ratio of apparent-to-physical duration were
submitted to a two-way repeated measures ANOVA with factors
of duration and speed. For natural movies, the analysis revealed
a significant main effect of speed [F(8,2) = 5.867, p = 0.027] and
a significant difference for static vs. fast (t = 2.797, p = 0.023)
and slow vs. fast (t = 3.111, p = 0.014). No significant difference
was observed for static vs. slow (t = 0.314, p = 0.761). No
significant main effect of duration [F(8,2) = 0.244, p = 0.789]
and no significant interaction [F(16,4) = 1.831, p = 0.172] were
observed. For drifting gratings, the analysis revealed a significant
main effect of speed [F(8,2)= 18.253, p= 0.001] and a significant
difference for static vs. fast (t = 5.260, p < 0.001) and for slow vs.
fast (t = 5.205, p< 0.001). No significant difference was observed
for static vs. slow (t = 0.054, p = 0.958). No significant main
effect of duration [F(8,2) = 0.009, p = 0.991] and no significant
interactions [F(16,4)= 0.317, p= 0.862] were observed.

For natural movies, a repeated measures ANOVA performed
on JNDs revealed a significant main effect of duration
[F(8,2) = 28.397, p < 0.001], no significant main effect of
speed [F(8,2) = 1.051, p = 0.393],and no significant interaction
[F(16,4) = 1.652, p = 0.210]. A significant difference was found
for all the pairs in three durations (0.5 s vs. 1.1 s, t = 3.572,
p = 0.007; 0.5 s vs. 1.6 s, t = 7.533, p < 0.001; 1.1 s vs. 1.6 s,
t = 3.961, p= 0.004). For drifting gratings, we found a significant
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FIGURE 6 | (A) Apparent duration of a natural movie as a function of physical duration in Experiment 3. Gray, blue, and red circle indicate the results for the static,
slow, and fast stimulus, respectively. (B) Apparent duration of a grating as a function of physical duration in Experiment 3. Gray, blue, and red circle indicate the
results for the static stimulus, the grating drifting at 0.5 Hz, and the grating drifting at 7.5 Hz, respectively. Error bars indicate SE across the observers.

main effect of duration [F(8,2) = 18.648, p = 0.001], no
significant main effect of speed [F(8,2)= 3.409, p= 0.085],and no
significant interaction [F(16,4) = 0.994, p = 0.439]. A significant
difference was found for all the pairs in three durations (0.5 s vs.
1.1 s, t= 3.023, p= 0.016; 0.5 s vs. 1.6 s, t= 6.107, p< 0.001; 1.1 s
vs. 1.6 s, t = 3.084, p= 0.015).

Whereas Experiments 1 and 2 used moving comparison
stimuli, Experiment 3 used a white static disk that, by virtue of
its spatial and temporal properties, we assume, has a minimal
effect on the processing of subsequent stimuli. Correspondingly,
Experiments 1 and 2 revealed significant differences between
the apparent duration of static and slow stimuli whereas the
phenomenon was absent in Experiment 3. This pattern of results
is consistent with the notion that time compression for slow
moving stimuli is a phenomenon that depends on the sequence
of stimulus speed.

DISCUSSION

We measured apparent duration for natural movies and
artificial gratings presented at various speeds and found that,
if compared to a moving stimulus, a slow stimulus was
perceived as shorter than a static stimulus (Experiments 1
and 2). This “time compression” phenomenon is inconsistent
with a fundamental assumption in perceptual temporal-duration
research that stimuli undergoing more change per unit time are
perceived to last longer. Moreover, we found that replacing the
moving comparison stimuli with a static white disk weakened
and even eliminated time compression for slow moving tests
(Experiment 3). Crucially, in both types of the experiments, test
stimuli were identical but comparison stimuli were different.
In Experiments 1 and 2, observers were frequently exposed to
moving stimuli by virtue of the fact that both test and comparison
stimuli involved similar speed regimes. In Experiment 3, by

contrast, comparison stimuli were static, and moving stimuli
were therefore presented less frequently. Given that Experiments
1 and 2 used moving comparison stimuli, it is reasonable to
assume that moving comparisons play an important role in the
phenomenon of time compression.

Contextual Effects on Time Perception
Previous studies have shown that time perception is influenced
by stimuli presented prior to the test stimulus. For example,
apparent duration is well known to be systematically affected
by adaptation to a moving stimulus (e.g., Johnston et al.,
2006; Bruno et al., 2013) or to stimulus duration (Heron
et al., 2012). It has also been shown that apparent duration
exhibits a systematic regression toward the mean of prior stimuli
(Jazayeri and Shadlen, 2010; Cicchini et al., 2012). Among
these contextual factors, we explore the possibility that time
compression effects observed in our experiments are partially
explained by adaptation to moving stimuli. Motion adaptation
is known to have differential effects on apparent test duration
depending on whether the test is static or dynamic. If the test is a
moving stimulus, adaptation leads to a compression in apparent
duration (Johnston et al., 2006; Bruno et al., 2013). By contrast, if
the test is static, adaptation leads to an opposite result – a dilation
in apparent duration (Droit-Volet and Wearden, 2002; Ortega
et al., 2012).

Under the assumption that the motion-adaptation rules
described above are applicable to shortly presented adaptors, our
results in Experiments 1–3 could be explained as follows. In
Experiments 1 and 2, test stimuli were frequently preceded by
moving stimuli acting as adaptors that compress the perceived
duration of moving tests and dilate the duration of static tests.
As the net result, slow tests were therefore perceived as shorter
than static tests. In Experiment 3, however, comparison stimuli
were static and, given that the frequency of observing moving
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FIGURE 7 | Simulated data based on the model including contextual effects. Apparent duration of a stimulus as a function of physical duration. (A) The result for
Experiment 1 (natural movie, moving reference). (B) The result for Experiment 2 (artificial grating, moving reference). (C) The result for a natural movie in Experiment 3
(static reference). (D) The result a grating in Experiment 3 (static reference). Gray, blue, and red circle indicate the results for the static, slow, and fast stimulus,
respectively. For (C,D), the gray circles are invisible as the gray and the blue circle are almost overlapped.

stimuli was relatively low, we assume that the contextual effects
were negligible. Thus, under the conditions of Experiment 3, the
perceived duration of slow stimuli was not significantly below
that of static stimuli.

Rapid Recalibration by Prior Stimuli
To verify that contextual effects induced by moving stimuli
can explain results from the present study, we conducted
a numerical simulation using a simple model. The model
makes three assumptions. First, a moving stimulus presented
immediately after another moving stimulus is perceived as
shorter (time compression) than if no preceding stimulus had
acted as an adaptor. We assumed that only fast- and mid-speed
stimuli give rise to a contextual effect given that slow comparison
stimuli (natural movies: 0.25 speed, gratings: 0.5 Hz) are
perceptually similar to static stimuli. Second, we assumed that a
static stimulus presented immediately after a fast- or mid-speed
stimulus is perceived to last longer (time dilation) than if no
preceding stimulus had acted as an adaptor. Third, we assumed
a conventional rate-of-change bias that a faster stimulus is
perceived to last longer.

For each condition (duration × speed), +1 point was given
to events corresponding to the first assumption, and −1 point
to events corresponding to the second assumption. The average
score was calculated within each condition, and we took that
score as our indication of the quantitative shift in the internal
representation of test duration. We performed simulations on
actual trials that observers experienced during the experiments
and calculated the average shift across observers. To account
for the conventional rate-of-change phenomenon that faster
stimuli are perceived as longer, we included multiplicative
biases to the perceived duration of static, slow, and fast
stimuli (1.0×, 1.013×, and 1.2×, respectively) relative to physical
stimulus duration. The ratio for fast stimuli was estimated
based on the data in Experiment 3. The ratio for slow
stimuli was then defined such that the amount of dilation
would be proportional to the speed of stimulus used in
Experiment 2. In the end, the apparent duration of each tested
condition was calculated as (physical duration) × (conventional

bias) × 10ˆ (average shift× weight). The weight of the
average shift was set to 0.04 so that estimated contextual
effects would correspond to approximately 10% of original
stimulus duration, in line with the amount reported by
previous studies (Johnston et al., 2006; Ortega et al., 2012;
Bruno et al., 2013).

As Figure 7 shows, the model simulation in each
condition qualitatively reproduces the pattern of results
for human observers. The simulation illustrates that time
compression for slow speeds is attributable to contextual
effects induced by preceding moving stimuli. Similar
patterns of simulated results were obtained over a wide
range of conventional rate-of-change fast-stimulus biases
(1.15–1.6) under conditions where either the bias of slow
stimuli was estimated in the way described above or the
weight of the average shift amount was varied from 0.03 to
0.06.

The third assumption in the model which contains a
conventional rate-of-change bias was necessary to reproduce
our data. Without this bias, the apparent duration simulated
for fast tests was shorter than for static tests. However, only
one assumption among the first two (irrespective of which)
was necessary to reproduce the data – that is, similar patterns
could be reproduced with either assumption alone. Manifestly,
further examination is needed to further characterize the role of
contextual effects in perceived stimulus duration.

In the present study, stimuli were presented in foveal vision
so that observers could understand the content of a natural
movie used in Experiments 1 and 3. In comparison, stimuli in
previous studies were generally presented in peripheral vision.
One might argue that time compression for slow stimuli reported
in this study is a special case that can only be observed in
foveal vision. However, time compression was not observed for
slow stimuli in Experiment 3 in which stimuli were presented in
foveal vision. Although we do not rule out the possibility that
stimulus properties such as eccentricity may have some impact
on time compression, Experiment 3 rules out that eccentricity
alone accounts for time compression. We also do not rule out the
possibility that speed could produce time compression by itself.
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In fact, individual data in Experiment 3 even show that some
observers perceived slow stimuli as shorter than static stimuli.

It has been shown that adaptation-induced time compression
is specific to spatial location in the retinotopic (Bruno et al.,
2010; Johnston et al., 2011) and/or spatiotopic coordinates (Burr
et al., 2007, 2011; Morrone et al., 2010; Bruno and Cicchini, 2016;
Latimer and Curran, 2016). These findings point a possibility
that the contextual effects found in the present study would also
depend on the congruency in spatial location between stimuli.
This possibility could be directly tested in future investigations.

One might argue that the reason why there was no difference
between the static and the slow in Experiment 3 was because
contrast adaptation to white static disk comparison reduced the
apparent speed in slow stimuli. As contrast adaptation is tightly
selective for the spatial frequency (Blakemore and Campbell,
1969; Blakemore et al., 1973; Georgeson, 1985), however, it is
unlikely that a significant contrast adaptation on the gratings was
induced by the static disk which had quite a different spatial-
frequency component.Since natural movies presented at different
speeds have different contents (e.g., the number of repeated
movements of horse’s legs), one might consider that such higher-
order factors played a significant role to induce unusual time
compression phenomenon in slowly moving stimuli. However,
since there was no difference from the results in artificial gratings
(Experiment 2), we were not able to find evidence which supports
the existence of a bias induced by differences in contexts.

Although the differences between the two results
(Experiments 1 and 2) did not reach a significant level, time
compression with slow stimuli was relatively more profound
for natural movies (Experiment 1) than for drifting gratings
(Experiment 2). As we demonstrated herein, contextual effects
could impact duration perception; it is therefore likely that
time compression was less profound in grating conditions
simply because contextual effects were weakened by the
alternation of both orientation and motion direction on every
stimulus presentation. The other intriguing possibility is that
natural movies contain distinctive information specific to
natural movements such as biological motion and gravitational
fall (Carrozzo et al., 2010; Lacquaniti et al., 2015). In a
pioneering study, Eagleman (2004) has shown that a small flash
superimposed on a slow natural movie was perceived to be
∼30% shorter than if the flash was superimposed on a movie
playing at a natural speed. Eagleman (2004) interpreted this
time compression as a phenomenon resulting from an efficient
coding strategy that minimizes error between predictions
from an internal model of Newtonian physics and sensory
feedback (Eagleman, 2004; Eagleman et al., 2005; Eagleman and
Pariyadath, 2009). According to this efficient-coding model,
the existence of the standard speed is essential to produce
time compression. That is, perhaps time compression is more
profound for natural movies because the natural speed in the
internal model was present only in natural movies and not in
artificial drifting gratings. In addition to a partial interpretation
of the results in our experiments, Eagleman’s prediction-error
theory can also describe the ensemble of our results without
contradicting our rapid recalibration account. Given that the
standard speed in the model is established by prior input

exposure, repeated exposures to a particular speed could also
lead to an establishment of a standard speed and induce time
compression in artificial gratings. Presumably, while both the
Newtonian model and the flexible repeated-exposure model
apply to natural movies, only the repeated-exposure model
applies to artificial gratings. On that basis, one could perhaps
attribute the greater time compression observed for natural
movies to predictions from models that generate greater
certainty.

The present study focused only on prior stimuli presented
immediately before test stimuli. However, it is quite possible
that, in line with prediction-error theory, contextual effects
were determined by the entire history of stimuli. We examined
contextual effects to a first approximation using only the simplest
of models, but one could consider more elaborated models
that take into quantitative account the known properties of
time perception mechanisms (Herbst et al., 2013; Shi et al.,
2013). It is nonetheless noteworthy that, despite considering only
immediately preceding stimuli as adaptors, our simple model was
able to qualitatively reproduce observed human data. We take
this as evidence that our perception of event duration can be
affected by immediately preceding stimuli presented for as little
as a few hundred milliseconds.

One might consider that contextual effects may account for
a range of phenomena reported in the literature on perceived
event duration (e.g., Brown, 1995; Kanai et al., 2006; Kaneko and
Murakami, 2009). While the idea is intriguing, we do not argue
here that it can explain the conventional law in time perception
that faster stimuli are perceived as lasting longer. In fact, in the
present study, the fastest test stimulus was always perceived to
last longer even in Experiment 3 where we sought to minimize
contextual effects as much as possible, and it was necessary to
introduce conventional rate-of-change bias to model the human
data.
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