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Music exhibits structure at multiple scales, ranging from motifs to large-scale functional

components. When inferring the structure of a piece, different listeners may attend to

different temporal scales, which can result in disagreements when they describe the

same piece. In the field of music informatics research (MIR), it is common to use corpora

annotated with structural boundaries at different levels. By quantifying disagreements

between multiple annotators, previous research has yielded several insights relevant to

the study of music cognition. First, annotators tend to agree when structural boundaries

are ambiguous. Second, this ambiguity seems to depend onmusical features, time scale,

and genre. Furthermore, it is possible to tune current annotation evaluation metrics to

better align with these perceptual differences. However, previous work has not directly

analyzed the effects of hierarchical structure because the existing methods for comparing

structural annotations are designed for “flat” descriptions, and do not readily generalize

to hierarchical annotations. In this paper, we extend and generalize previous work on

the evaluation of hierarchical descriptions of musical structure. We derive an evaluation

metric which can compare hierarchical annotations holistically across multiple levels. sing

this metric, we investigate inter-annotator agreement on the multilevel annotations of two

different music corpora, investigate the influence of acoustic properties on hierarchical

annotations, and evaluate existing hierarchical segmentation algorithms against the

distribution of inter-annotator agreement.

Keywords: music structure, hierarchy, evaluation, inter-annotator agreement

1. INTRODUCTION

Music is a highly structured information medium, containing sounds organized both
synchronously and sequentially according to attributes such as pitch, rhythm, and timbre. This
organization of sound gives rise to various musical notions of harmony, melody, style, and
form. These complex structures include multiple, inter-dependent levels of information that are
hierarchically organized: from individual notes and chords at the lowest levels, to measures,
motives and phrases at intermediate levels, to sectional parts at the top of the hierarchy (Lerdahl
and Jackendoff, 1983). This rich and intricate pattern of structures is one of the distinguishing
characteristics of music when compared to other auditory phenomena, such as speech and
environmental sound.

The perception of structure is fundamental to how listeners experience and interpret music.
Form-bearing cues such as melody, harmony, timbre, and texture (McAdams, 1989) can be
interpreted in the context of both short and long-term memory. Hierarchies are considered a
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fundamental aspect of structure perception, as musical structures
are best retained by listeners when they form hierarchical
patterns (Deutsch and Feroe, 1981). Lerdahl (1988) goes so far
as to advocate that hierarchical structure is absolutely essential
for listener appreciation of music since it would be impossible
to make associations between nonadjacent segments without it.
Hierarchical structure is also experienced by listeners over a
wide range of timescales on the order of seconds to minutes
in length (Farbood et al., 2015). Although interpretation of
hierarchical structure is certainly influenced by acculturation
and style familiarity (Barwick, 1989; Clayton, 1997; Drake, 1998;
Drake and El Heni, 2003; Bharucha et al., 2006; Nan et al.,
2006), there are aspects of it that are universal. For example,
listeners group together some elements of music based on
Gestalt theory (Deutsch, 1999; Trehub and Hannon, 2006), and
infants have been shown to differentiate between correctly and
incorrectly segmented Mozart sonatas (Krumhansl and Jusczyk,
1990).1

The importance of hierarchical structure in music is further
highlighted by research showing how perception of structure
is an essential aspect of musical performance (Cook, 2003).
Examination of timing variations in performances has shown
that the lengthening of phrase endings corresponds to the
hierarchical depth of the ending (Todd, 1985; Shaffer and Todd,
1987). Performers also differ in their interpretations much like
listeners (or annotators) differ in how they perceive structure. A
combination of converging factors can result in a clear structural
boundary, while lack of alignment can lead to an ambiguous
boundary. In ambiguous cases, listeners and performers may
focus on different cues to segment the music. This ambiguity has
not been the focus of empirical work, if only because it is (by
definition) hard to generalize.

Unsurprisingly, structure analysis has been an important area
of focus for music informatics research (MIR), dealing with tasks
such as motif-finding, summarization and audio thumbnailing,
and more commonly, segmentation into high-level sections (see
Paulus et al., 2010 for a review). Applications vary widely, from
the analysis of a variety of musical styles such as jazz (Balke
et al., 2016) and opera (Weiß et al., 2016), to algorithmic
composition (Herremans and Chew, 2016; Roy et al., 2016) and
the creation of mash-ups and remixes (Davies et al., 2014).

This line of work, however, is often limited by two significant
shortcomings. First, most existing approaches fail to account for
hierarchical organization in music, and characterize structure
simply as a sequence of non-overlapping segments. Barring
a few exceptions (McFee and Ellis, 2014a,b; McFee et al.,
2015a; Grill and Schlüter, 2015), this flat temporal partitioning
approach is the dominant paradigm for both the design
and evaluation of automated methods. Second, and more
fundamentally, automated methods are typically trained and
evaluated using a single “ground-truth” annotation for each
recording, which relies on the unrealistic assumption that there
is a single valid interpretation to the structure of a given

1In the context of the present article, these two elements (cultural and universal)

are not differentiated because the listeners who provide hierarchical analyses all

had prior experience with Western music.

recording or piece. However, it is well known that perception
of musical structure is ambiguous, and that annotators often
disagree in their interpretations. For example, Nieto (2015)
and Nieto et al. (2014) provide quantitative evidence of inter-
annotator disagreement, differentiating between content with
high and low ambiguity, and showing listener preference for
over- rather than under-segmentation. The work of Bruderer
(2008) shows that annotators tend to agree when quantifying
the degree of ambiguity of music segment boundaries, while in
Smith et al. (2014) disagreements depend on musical attributes,
genre, and (notably) time-scale. Differences in time-scale are
particularly problematic when hierarchical structures are not
considered, as mentioned above. This issue can potentially result
in a lack of differentiation between superficial disagreements,
arising from different but compatible analyses of a piece, from
fundamental discrepancies in interpretation, e.g., due to attention
to different acoustic cues, prior experience, cultural influences on
the listener, etc.

The main contribution of this article is a novel method for
measuring agreement between hierarchical music segmentations,
which we denote as the L-measure. The proposed approach can
be used to compare hierarchies of different depths, including
flat segmentations, as well as hierarchies that are not aligned
in depth, i.e., segments are assigned to the same hierarchical
level but correspond to different time-scales. By being invariant
to superficial disagreements of scale, this technique can
be used to identify true divergence of interpretation, and
thus help in isolating the factors that contribute to such
differences without being confounded by depth alignment
errors.

The L-measure applies equally to annotated and automatically
estimated hierarchical structures, and is therefore helpful to both
music cognition researchers studying inter-subject agreement
and to music informatics researchers seeking to train and
benchmark their algorithms. To this end, we also describe three
experimental studies that make use of the proposed method.
The first experiment compares the L-measure against a number
of standard flat metrics for the task of quantifying inter-
annotator agreement, and seeks to highlight the properties of
this technique and the shortcomings of existing approaches. The
second experiment uses the L-measure to identify fundamental
disagreements and then seeks to explain some of those differences
in terms of the annotators focus on specific acoustic attributes.
The third experiment evaluates the performance of hierarchical
segmentation algorithms using the L-measure and advances a
novel methodology for MIR evaluation that steps away from
the “ground-truth” paradigm and embraces the possibility of
multiple valid interpretations.

2. CORPORA

In our experiments, we use publicly available sets of hierarchical
structural annotations produced by at least two music experts
per track. To the best of our knowledge, the only published data
sets that meet these criteria are SALAMI (Smith et al., 2011) and
SPAM (Nieto and Bello, 2016).
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2.1. SALAMI
The publicly available portion of the Structural Annotations for
Large Amounts of Music Information (SALAMI) set contains
two hierarchical annotations for 1,359 tracks, 884 of which
have annotations from two distinct annotators and are included
in this study. These manual annotations were produced by a
total of 10 different music experts across the entire set, and
contain three levels of segmentations per track: fine, coarse,
and function. The fine level typically corresponds to short
phrases (described by lower-case letters), while the coarse section
represents larger sections (described by upper-case letters). The
function level applies semantic labels to large sections, e.g.,
“verse” or “chorus” (Smith et al., 2011). The boundaries of the
function level often coincide with those of the coarse level, but for
simplicity and consistency with SPAM (described below), we do
not use the function level. The SALAMI dataset includes music
from a variety of styles, including jazz, blues, classical, western
pop and rock, and non-western (“world”) music. We manually
edited 171 of the annotations to correct formatting errors and
enforce consistency with the annotation guide.2 The corrected
data is available online.3

2.2. SPAM
The Structural Poly Annotations of Music is a collection of
hierarchical annotations for 50 tracks of music, each annotated
by five experts. Annotations contain coarse and fine levels of
segmentation, following the same guidelines used in SALAMI.
The music in the SPAM collection includes examples from the
same styles as SALAMI. The tracks were automatically sampled
from a larger collection based on the degree of segment boundary
agreement among a set of estimations produced by different
algorithms (Nieto and Bello, 2016). Forty-five of these tracks
are particularly challenging for current automatic segmentation
algorithms, while the other five aremore straightforward in terms
of boundary detection. In the current work we treat all tracks
equally and use all 10 pairs of comparisons between different
annotators per track. The SPAM collection includes some of the
same audio examples as the SALAMI collection described above,
but the annotators are distinct, so annotation data is shared
between the two collections.

3. METHODS FOR COMPARING
ANNOTATIONS

The primary technical contribution of this work is a new way
of comparing structural annotations of music that span multiple
levels of analysis. In this section, we formalize the problem
statement and describe the design of the experiments in which
we test the method.

3.1. Comparing Flat Segmentations
Formally, a segmentation of a musical recording is defined by a
temporal partitioning of the recording into a sequence of labeled

2The SALAMI annotation guide is available at http://music.mcgill.ca/~jordan/

salami/SALAMI-Annotator-Guide.pdf.
3https://github.com/DDMAL/salami-data-public/pull/15

time intervals, which are denoted as segments. For a recording of
duration T samples, a segmentation can be encoded as mapping
of samples t ∈ [T] = {1, 2, . . . ,T} to some set of segment
labels Y = {y1, y2, . . . , yk}, which we will generally denote as a
function S : [T] → Y .4 For example, Y may consist of functional
labels, such as intro and verse, or section identifiers such as A
and B. A segment boundary is any time instant at the boundary
between two segments. Usually this corresponds to a change of
label S(t) 6= S(t − 1) (for t > 1), though boundaries between
similarly labeled segments can also occur, e.g., when a piece has
an AA form, or a verse repeats twice in succession.

When comparing two segmentations—denoted as the
reference SR and estimate SE—a variety of metrics have
been proposed, measuring either the agreement of segment
boundaries, or agreement between segment labels. Two
segmentations need not share the same label set Y , since different
annotators may not use labels consistently, so evaluation criteria
need to be invariant with respect to the choice of segment
labels, and instead focus on the patterns of label agreement
shared between annotations. Of the label agreement metrics, the
two most commonly used are pairwise classification (Levy and
Sandler, 2008) and normalized conditional entropy (Lukashevich,
2008).

3.1.1. Pairwise Classification
The pairwise classification metrics are derived by computing the
set A of pairs of similarly labeled distinct time instants (u, v)
within a segmentation:

A(S) :=
{
(u, v)

∣∣ S(u) = S(v)
}
. (1)

Pairwise precision (P-Rrecision) and recall (P-Recall) scores are
then derived by comparing A

(
SR

)
to A

(
SE

)
:

P-Precision
(
SR, SE

)
:=

∣∣A
(
SR

)
∩ A

(
SE

)∣∣
∣∣A

(
SE

)∣∣ (2)

P-Recall
(
SR, SE

)
:=

∣∣A
(
SR

)
∩ A

(
SE

)∣∣
∣∣A

(
SR

)∣∣ . (3)

The precision score measures the correctness of the predicted
label agreements, while the recall score measures how many
of the reference label agreements were found in the estimate.
Because these scores are defined in terms of exact label agreement
between time instants, they are sensitive to matching the exact
level of specificity in the analysis encoded by the two annotations
in question. If SE is at a higher (coarser) or lower (finer) level
of specificity than SR, the pairwise scores can be small, even
if the segmentations are mutually consistent. Examples of this
phenomenon are provided later in Section 4.

3.1.2. Normalized Conditional Entropy
The normalized conditional entropy (NCE) metrics take a
different approach to measuring similarity between annotations.

4Although segmentations are typically produced by annotators without reference

to a fixed time grid, it is standard to evaluate segmentations after re-sampling

segment labels at a standard resolution of 10 Hz (Raffel et al., 2014), which we

adopt for the remainder of this article.
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Given the two flat segmentations SR and SE, a joint probability
distribution P

[
yR, yE

]
is estimated as the frequency of time

instants t that receive label yR in the reference SR and yE in the
estimate SE:

P
[
yR, yE

]
∝

∣∣{t
∣∣ SR(t) = yR ∧ SE(t) = yE

}∣∣ (4)

From the joint distribution P, the conditional entropy is
computed between the marginal distributions PR and PE:

H
(
PE

∣∣ PR
)
=

∑

yR ,yE

P
[
yR, yE

]
log

PR
[
yR

]

P
[
yR, yE

] (5)

The conditional entropy therefore measures how much
information the reference distribution PR conveys about
the estimate distribution PE: if this value is small, then the
segmentations are similar, and if it is large, they are dissimilar.

The conditional entropy is then normalized by log
∣∣YE

∣∣: the
maximum possible entropy for a distribution over labels YE.5

The normalized entropy is subtracted from 1 to produce the so-
called over-segmentation score NCEo, and reversing the roles of
the reference and estimate yields the under-segmentation score
NCEu:

NCEo := 1−
H

(
PE

∣∣ PR
)

log
∣∣YE

∣∣ (6)

NCEu := 1−
H

(
PR

∣∣ PE
)

log
∣∣YR

∣∣ . (7)

The naming of these metrics derives from their application in
evaluating automatic segmentation algorithms. If the estimate
has large conditional entropy given the reference, then it is said
to be over-segmented since it is difficult to predict the estimated
segment label from the reference: this leads to a small NCEo.
Similar reasoning applies to NCEu: ifH

(
PR

∣∣PE
)
is large, then it is

difficult to predict the reference from the estimate, so the estimate
is thought to be under-segmented (and hence a small NCEu
score). If both NCEo and NCEu are large, then the estimate is
neither over- nor under-segmented with respect to the reference.

3.1.3. Comparing Annotations
When comparing two annotations in which there is no
privileged “reference” status for either—such as the case with
segmentations produced by two different annotators of equal
status—the notions of precision and recall, or over- and under-
segmentation can be dubious since neither annotation is assumed
to be “correct” or ground truth. Arbitrarily deciding that one
annotation was the reference and the other was the estimate
would produce precision and recall scores, but reversing the roles
of the annotations would exchange the roles of precision and
recall, since P-Precision(S1, S2) = P-Recall(S2, S1).

5It has been recently noted that maximum-entropy normalization can artificially

inflate scores in practice because the marginal distribution PE is often far from

uniform. See https://github.com/craffel/mir_eval/issues/226 for details. For the

remainder of this article, we focus comparisons on the pairwise classification

metrics, but include NCE scores for completeness.

A common solution to this ambiguity is to combine precision
and recall scores into a single summary number. This is most
often done by taking the harmonic mean of precision P and recall
R, to produce the F1-score or F-measure:

F := 2
P · R

P + R
. (8)

For the remainder of this article, we summarize the agreement
between two annotations by the F-measure, using precision
and recall for pairwise classification, and over- and under-
segmentation for NCE metrics.

3.2. Hierarchical Segmentation
A hierarchical segmentation is a sequence of segmentations

H = (S0, S1, S2, . . . , Sm), (9)

where the ordering typically encodes a coarse-to-fine analysis of
the recording. Each Si in a hierarchy is denoted as a level. We
assume that the first level S0 always consists of a single segment
which spans the entire track duration.6

Most often, when presented with two hierarchical
segmentations HR and HE, practitioners assume that the
hierarchies span the same set of levels, and compare the
hierarchies level-by-level: SR1 to SE1 , SR2 , S

E
2 , etc., or between

all pairs of levels (Smith et al., 2011). This results in a set of
independently calculated scores for the set of levels, rather
than a score that summarizes the agreement between the two
hierarchies. Moreover, this approach does not readily extend
to hierarchies of differing depths, and is not robust to depth
alignment errors, where one annotator’s S1 may correspond to
the other’s S2.

To the best of our knowledge, no previous work has
addressed the problem of holistically comparing two labeled
hierarchical segmentations. Our previous work (McFee et al.,
2015a) addressed the unlabeled, boundary-detection problem,
which can be recovered as a special case of the more general
formulation derived in the present work (where each segment
receives a unique label).

3.2.1. Hierarchical Label Agreement
Given a hierarchical segmentation H as defined in Equation (9)
and time instants u, v, define themeet of u and v under H as

M(u, v | H) := max k such that Sk(u) = Sk(v), (10)

that is,M(u, v | H) is the deepest level of H where u and v receive
the same label. The meet induces a partial ordering over pairs of
time instants: large values ofM(u, v |H) indicate a high degree of
similarity, and small values indicate low similarity.

To compare two hierarchical segmentations HR and HE, we
examine triples of distinct time instants t, u, v in terms of the
pairwise meets M

(
t, u

∣∣ HR
)
and M

(
t, v

∣∣ HR
)
. We define the

reference comparison set for a hierarchy H as

A(H) :=
{
(t, u, v)

∣∣ M (t, u |H) > M (t, v | H)
}
, (11)

6If S0 is not provided, it can be trivially synthesized. Including S0 in the hierarchy

is useful for ensuring that the metrics derived in Section 3.2.1 are well-formed.
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that is, the set of triples where (t, u) agree at a deeper level than
the pair (t, v).

Level-independent precision and recall scores—L-Precision
and L-Recall—can be defined, just as in the pairwise classification
method of Section 3.1.1, by comparing the size of the intersection
to the reference comparison set:

L-Precision
(
HR,HE

)
:=

∣∣A(HR) ∩ A(HE)
∣∣

∣∣A(HE)
∣∣ (12)

L-Recall
(
HR,HE

)
:=

∣∣A(HR) ∩ A(HE)
∣∣

∣∣A(HR)
∣∣ . (13)

These scores capture the rank-ordering of pairwise similarity
between time instants, and can be interpreted as a relaxation of
the pairwise classification metrics. We define the L-Measure as
the harmonic mean of L-Precision and L-Recall.

Rather than asking if an annotation describes two instants
(u, v) as the same or different, the scores defined here ask
whether (t, u) as more similar or less similar to each-other than
the pair (t, v), and whether that ordering is respected in both
annotations. An example of this process is illustrated in Figure 1.
Consequently, the proposed scores are robust to depth alignment
errors between annotations, and readily support comparison
between hierarchies of differing depth.

4. EXPERIMENT 1: L-MEASURES AND
FLAT METRICS

Our first experiment investigates how the L-measure described
above quantifies inter-annotator agreement for hierarchical
music segmentation as compared to metrics designed for flat
segmentations.7

4.1. Methods
The data sets described in Section 2 consist of musical recordings,
each of which has at least two hierarchical annotations, which are
each comprised of flat upper (high-level) and lower (low-level)
segmentations. For each pair of annotations, we compare the L-
measure to existing segmentation metrics (pairwise classification
and normalized conditional entropy) at both levels of the
hierarchy.

From this set of comparisons, we hope to identify examples
illustrating the following behaviors: pairs where the flat metrics
are small because the two annotations exist at different levels of
analysis; and pairs where the flat metrics are large at one level, but
small at the other, indicating hierarchical disagreement. In the
calculation of all evaluation metrics, segment labels are sampled
at a rate of 10 Hz, which is the standard practice for segmentation
evaluation (Raffel et al., 2014).

4.2. Results and Discussion
Figure 2 illustrates the behavior on SALAMI of the L-measure
compared to the flat segmentationmetrics (right column), as well
as all other pairs of comparisons betweenmetrics. Overlaid in red

7Our implementations for the experiments included in this paper are available at

https://github.com/bmcfee/segment_hierarchy_labels.

on each plot is the best-fit robust (Huber’s T) linear regression
line, with shaded regions indicating the 95% confidence intervals
as estimated by bootstrap sampling (n = 500 trials). This figure
demonstrates a general trend of positive correlation between
the L-measure and flat segmentation metrics at both levels,
indicating that the L-measure integrates information across the
entire hierarchy. Additionally, this plot exhibits a high degree of
correlation between the pairwise classification and NCE metrics
when confined to a single level. For the remainder of this
section, we will focus on comparing L-measure to the pairwise
classification metrics, which are more similar in implementation
to L-measure.

To get a better sense of how the L-measure captures
agreement over the full hierarchy, Figure 3 compares the L-
measure to the maximum and minimum agreements across
levels of the hierarchy: that is, L(HR,HE) compared to
max

(
F(SR1 , S

E
1 ), F(S

R
2 , S

E
2 )

)
. The resulting plots are broken into

quadrants I–IV along the median values of each metric, indicated
in red. To simplify the presentation, we only compared the L-
measure to the pairwise F-measure scores, though the results
using normalized conditional entropy scores are qualitatively
similar. Of particular interest in these plots are the points where
the maximum is small (disagreement at both levels) or the
minimum is large (agreement at both levels), and how the L-
measure scores these points.

Quantitatively, of the points below the median of maximum
F-measure (quadrants II and III of Figure 3, left), 81% lie below
the median L-measure (quadrant III). Conversely, the points
above the median of minimum F-measure (quadrants I and
IV of Figure 3, right) have 75% above the median L-measure
(quadrant I). These two quadrants (I and III) correspond to
subsets of examples where the L-measure broadly agrees with the
pairwise F-measure scores, indicating that there is little additional
discriminative information encoded in the hierarchy beyond
what is captured by level-wise comparisons. The remaining
points correspond to inversions of score from what would
be expected by level-by-level comparison: quadrant II in the
left plot (9.5% of points), and IV in the right plot (12.6% of
points).

Figure 4 illustrates example annotations drawn from each
quadrant of the left plot of Figure 3 (across-layer maximum vs.
L-measure). The two plots in the left column, corresponding to
quadrants II and III, illustrate examples where the flat metrics
disagree at both levels. The top-left plot (track 347) achieves a
large L-measure because the first annotator’s upper-level matches
well to the second annotator’s lower level, but not to the
second annotator’s upper-level. However, the two hierarchies
are generally consistent with one another, and the L-measure
identifies this consistency. The top-right plot (track 555) achieves
large pairwise agreement at the upper level (aside from E/E’, these
annotations are equivalent up to a permutation of the labels),
but small pairwise agreement at the lower level, because the
annotators disagree about whether the lower-level segment labels
repeat in the second half of the song. Just as in the previous
example (347), these two hierarchies are mutually consistent, and
the L-measure produces a high score for this pair. The bottom-
left plot (track 436) appears to consist of genuinely incompatible
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FIGURE 1 | The L-measure is computed by identifying triples of time instants (t, u, v) where (t, u) meet at a deeper level of the hierarchy (indicated by solid lines) than

(t, v) (dashed lines), as illustrated in the left plot (Annotator 1). In this example, the left annotation has M(t, u) = 2 (both belong to lower-level segments labeled as d),

and M(t, v) = 1 (both belong to upper-level segments labeled as C). The right annotation has M(t, u) = M(t, v) = 2: all three instants belong to segment label f, as

indicated by the solid lines. This triple is therefore counted as evidence of disagreement between the two hierarchies.

hierarchies, resulting in small scores across all metrics. The
bottom-right plot (track 616) illustrates agreement in the upper
level, but significant disagreement in the lower level, which is
taken as evidence of hierarchical disagreement and produces a
small L-measure (0.30).

Similarly, Figure 5 illustrates examples drawn from each
quadrant of the right plot in Figure 3 (across-layer minimum vs.
L-measure). Here, the right column is of interest, since it lists
annotations where the flat metrics agree at both levels (quadrants
I and IV). The top-right plot (track 829) contains virtually
identical hierarchies, and produces high scores under all metrics.
The bottom-right plot (track 1342) consists of two essentially
flat hierarchies where each lower-level contains the same label
structure as the corresponding upper level. The large flat metrics
here (F = 0.80) are easily understood since the majority of pairs
of instants are labeled similarly in both annotations, excepting
those (u, v) for which u is in sectionC/c for the second annotation
and v is not, which are in the minority. The small L-measure
(0.39) for this example is a consequence of the lack of label
diversity in the first annotation, as compared to the second. By
the definition in Equation (11), the L-measure only compares
triples (t, u, v) where the labels for u and v differ, and in the
second annotation, most of these triples contain an example
from the C/c sections. Since the second annotation provides no
information to disambiguate whether C is more similar to A or
Z, the L-measure assigns a small score when compared to the first
annotation.

A similar phenomenon can be observed in the bottom-left
plot (track 768), in which the first annotator used a single label
to describe the entire track in each level. In this case, nearly all
of the comparison triples derived from the second annotation
are not found in the first, resulting in an L-measure of 0.06. It
is worth noting that the conditional entropy measures would
behave similarly to the L-measure here, since the first annotation
has almost no label entropy in either level.

To summarize, the L-measure broadly agrees with the level-
by-level comparisons on the SALAMI dataset without requiring

assumptions about equivalent level structure or performing
comparisons between all pairs of levels. In the minority of
cases (22%) where the L-measure substantially disagrees with the
level-by-level comparison, the disagreements between metrics
are often explained by the flat segmentations not accounting
for hierarchical structure in the annotations. The exception to
this are annotations with low label diversity across multiple
levels, where the L-measure can assign a small score due to
insufficiently many contrasting triples to form the evaluation
(Figure 5, bottom-right).

5. EXPERIMENT 2: ACOUSTIC
ATTRIBUTES

In the second experiment, we investigate annotator disagreement
with respect to acoustic attributes. Two annotations that produce
a small L-measure may be due to annotators responding to
different perceptual or structural cues in the music.

5.1. Methods
To attempt to quantify attribute-based disagreement, we
extracted four acoustic features from each recording, designed to
capture aspects relating to tempo, rhythm, harmony, and timbre.
Our hypothesis was that if hierarchical annotations receive small
L-measure, and the annotators are indeed cued by different
acoustic properties, then this effect should be evident when
comparing annotations in a representation derived from acoustic
features. All audio was down-sampled and mixed to 22,050 Hz
mono prior to feature extraction, and all analysis was performed
with librosa 0.5 dev (McFee et al., 2015b). A visualization
of the features described in this section is provided in
Figure 6.

5.1.1. Tempo Features
The tempo features consist of the short-time auto-correlation of
the onset strength envelope of the recording. This feature loosely
captures the timing structure of note onsets centered around each
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FIGURE 2 | Relations between the different segment labeling metrics on the SALAMI dataset. Each subplot (i, j) corresponds to a pair of distinct metrics for i 6= j, while

the main diagonal illustrates the histogram of scores for the ith metric. Each point within a subplot corresponds to a pair of annotations of the same recording. The

best-fit linear regression line between each pair of metrics is overlaid in red, with shaded regions indicating the 95% confidence intervals.

time point in the recording. The location of peaks in the onset
strength auto-correlation can be used to infer the tempo at a given
time.

The onset strength is computed by the spectral flux of a
log-power Mel spectrogram of 128 bins sampled at a frame
rate of ∼ 43 Hz (hop size of 512 samples), and spanning
the frequency range up to 11,025 Hz. The short-time auto-
correlation is computed over centered windows of 384 frames
(∼ 8.9 s) using a Hann window, resulting in a feature matrix
Xt ∈ R

384×T
+ (for T frames). The value at Xτ [i, j] is large if an

onset envelope peak at frame j is likely to co-occur with another
peak at frame j + i. Each column was normalized by its peak
amplitude.

5.1.2. Rhythm Features
The rhythm features were computed by applying the scale
(Mellin) transform to the tempo features derived above (Cohen,
1993; De Sena and Rocchesso, 2007). The scale transform
magnitude has been used in prior work to produce an
approximately tempo-invariant representation of rhythmic
information (Holzapfel and Stylianou, 2011), so that similar
rhythmic patterns played at different speeds result in similar
feature representations.

At a high level, the scale transform works by re-sampling the
onset auto-correlation—i.e., each column of Xτ defined above—
on a logarithmic lag scale from a minimum lag t0 > 0 to the
maximum lag, which in our case is the auto-correlation window
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FIGURE 3 | For each pair of annotations in the SALAMI dataset, we compare the L-measure to the maximum and minimum agreement between the upper and lower

levels. Agreement is measured by pairwise frame classification metrics. Red lines indicate the median values for each metric. A small maximum F-measure (quadrants

II and III in the left plot) indicates disagreement at both levels; a large minimum F-measure (quadrants I and IV in the right plot) indicates agreement at both levels.

length (384 frames). This transforms multiplicative scaling in
time to an additive shift in logarithmic lag. The Fourier transform
of this re-sampled signal then encodes additive shift as complex
phase. Discarding the phase information, while retaining the
magnitude, produces a tempo-invariant rhythm descriptor.

The scale transform has two parameters which must be set:
the minimum lag t0 (in fractional frames), and the number of
scale bins n (analogous to FFT bins), which we set to t0 = 0.5
and n = 64. Because the input (onset autocorrelation) is real-
valued, its scale transform is conjugate-symmetric, so we discard
the negative scale bins to produce a representation of dimension
⌊n/2⌋ + 1. The log-power of the scale transform magnitude was
computed to produce the rhythm features Xρ ∈ R

33×T .

5.1.3. Chroma Features
The harmony features were computed by extracting pitch class
(chroma) features at the same time resolution as the tempo
and rhythm features. Specifically, we applied the constant-Q
transformmagnitude using 36 bins per octave spanning the range
(C1,C8), summed energy within pitch classes, and normalized
each frame by peak amplitude. This resulted in a chromagram
Xχ ∈ R

12×T
+ .

5.1.4. Timbre Features
Finally, timbre features were computed by extracting the first 20
Mel frequency cepstral coefficients (MFCCs) using a log-power
Mel spectrogram of 128 bins, and the same frame rate as the
previous features. This resulted in theMFCC featurematrixXµ ∈

R
20×T .

5.1.5. Comparing Audio to Annotations
To compare audio features to hierarchical annotations, we
converted the audio features described above to self-similarity
matrices, described below. However, because the features are
sampled at a high frame rate, the resulting T × T self-similarity

matrices would require a large amount of memory to process (∼
3 GB for a four-minute song). We therefore down-sampled the
feature matrices to a frame rate of 4 Hz by linear interpolation
prior to computing the self-similarity matrices below. The tempo
and rhythm features are relatively stable across large extents
of time (each frame spans 8.9s), but the chroma and MFCC
features are confined to much smaller local regions defined by
their window sizes. To improve the stability of similarity for the
chroma and MFCC features, each frame was extended by time-
delay embedding (Kantz and Schreiber, 2004): concatenating the
features of the previous two frames (after down-sampling). This
provides a small amount of local context for each observation,
and is a commonly used technique in music structure analysis
algorithms (Serra et al., 2012).

We then computed self-similarity matrices for each feature
with a Gaussian kernel:

G[u, v] := e
− 1

σ
‖X[u]−X[v]‖2 (14)

where X[t] denotes the feature vector at frame t, and the
bandwidth σ is estimated as

σ := meanu medianv‖X[u]− X[v]‖2. (15)

Similarly, for each annotation, we computed the meet matrix M
by Equation (10) (also at a frame rate of 4 Hz). Figures 9, 10
illustrate examples of the feature-based self-similarity matrices,
as well as the meet matrices for two annotations each.

To compare M to each of the feature-based self-similarity
matrices Gτ ,Gρ ,Gχ ,Gµ, we first standardized each matrix
by subtracting its mean value and normalizing to have unit
Frobenius norm:

D̂ :=
D−meanu,vD[u, v]∥∥D−meanu,vD[u, v]

∥∥
F

. (16)
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FIGURE 4 | Four example tracks from SALAMI, one drawn from each quadrant of Figure 3 (Left), which compares L-measure to the maximum of upper- and

lower-level pairwise F-measure between tracks. For each track, two hierarchical annotations are displayed (top and bottom), and within each hierarchy, the upper level

is marked in green and the lower in blue. (Upper right) Track 555 (L = 0.94, upper F = 0.92, lower F = 0.69) has high agreement at the upper level, and small

agreement at the lower level. (Upper left) Track 347 (L = 0.89, upper F = 0.65, lower F = 0.19) has little within-level agreement between annotations, but the upper

level of the top annotation is nearly identical to the lower level of the bottom annotation, and the L-measure identifies this consistency. (Bottom left) Track 436

(L = 0.24, upper F = 0.35, lower F = 0.44) has little agreement at any level, and receives small scores in all metrics. (Bottom right) Track 616 (L = 0.30, upper

F = 0.998, lower F = 0.66) has high agreement within the upper level, but disagreement in the lower levels.

The inner product between normalized self-similarity matrices

〈
M̂, Ĝ

〉
F
:=

∑

u,v

M̂[u, v]Ĝ[u, v] (17)

can be interpreted as a cross-correlation between the vectorized
forms of M and G, and due to normalization, takes a value in
[−1, 1]. Collecting these inner products against each G matrix
results in a four-dimensional vector of feature-based similarity

to the annotationM:

z(M) :=
(〈
M̂, Ĝi

〉
F

)
i∈{τ ,ρ,χ ,µ}

(18)

To compare two annotations HR,HE with meet matrices
MR,ME, we could compute the Euclidean distance between
the corresponding z-vectors. However, correlated features (such
as tempo and rhythm) could artificially inflate the distance
calculation. We therefore define a whitening transform W−1,
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FIGURE 5 | Four example tracks from SALAMI, one drawn from each quadrant of Figure 3 (Right), which compares L-measure to the minimum of upper- and

lower-level pairwise F-measure between tracks. (Upper right) Track 829 (L = 0.94, upper F = 0.93, lower F = 0.96) has high agreement at the both levels, and

consequently a large L-measure. (Upper left) Track 307 (L = 0.94, upper F = 0.92, lower F = 0.11) has high agreement in the upper level, but the first annotator did

not detect the same repetition structure as the second in the lower level. (Bottom left) Track 768 (L = 0.06, upper F = 0.43, lower F = 0.18) has little agreement at

any level because the first annotator produced only single-label annotations. (Bottom right) Track 1342 (L = 0.39, upper F = 0.80, lower F = 0.80) has high pairwise

agreement at both levels, but receives a small L-measure because the first annotator did not identify the distinct C/c sections indicated by the second annotator.

where

W[i, j] :=
〈
Ĝi, Ĝj

〉
F
. (19)

This provides a track-dependent, orthogonal basis for comparing
meet matrices MR and ME. The distance between annotations is
then defined by

δ
(
HR,HE

)
:=

√(
z
(
MR

)
− z

(
ME

))T
W−1

(
z
(
MR

)
− z

(
ME

))
.

(20)

By introducing the whitening transformation, we reduce the
influence of correlations between acoustic features on the
resulting annotation distance δ. A large distance δ indicates that
the hierarchies correlate with different subsets of features, so
we expect an inverse relationship between δ and the L-measure
between the annotations.

5.2. Results and Discussion
The results of the acoustic feature correlation experiment are
displayed in Figure 7. As expected, the δ score is inversely

Frontiers in Psychology | www.frontiersin.org 10 August 2017 | Volume 8 | Article 1337

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


McFee et al. Evaluating Hierarchical Structure in Music Annotations

FIGURE 6 | Features extracted from an example track in the SALAMI dataset, as described in Section 5.

related to the L-measure (r = −0.61 on the SALAMI data
set, r = −0.32 on SPAM). Because the SPAM dataset was
explicitly constructed from difficult examples, it produces smaller
L-measures on average than the SALAMI dataset. However,
the SPAM annotators did not appear to produce low label-
diversity annotations that generate small L-measures, so the
overall distribution is more concentrated. The δ distribution is
similar across both datasets, which explains the apparently large
discrepancy in correlation coefficients.

The estimated mean feature correlations are displayed in
Figure 8. Because the SPAM dataset provides all combinations
of the five annotators with the fifty tracks, it is more amenable
to statistical analysis of annotator behavior than the SALAMI
dataset. Using the SPAM dataset, we investigated the relationship
between feature types and annotators. A two-way, repeated-
measures ANOVA was performed with annotator and feature
type as fixed effects and tracks as a random effect (all results
Greenhouse-Geisser corrected). The main effects of annotator
and feature type were both significant: F(2.92, 142.85) = 3.44, p =

0.02, η2 = 0.068, η2p = 0.066 for annotator and F(2.52, 123.37) =

28.33, p = 1.49× 10−12, η2 = 0.159, η2p = 0.366 for feature type.
The interaction effect was also significant, F(8.26, 404.97) = 3.00,
p = 2.46 × 10−3, η2 = 5.17 × 10−3, η2p = 0.058. There was
a large effect size for feature type and very small effect sizes for
annotator and interaction.

Tukey’s test for multiple comparisons revealed a significant
difference between Annotators 3 and 4 (|z| = 2.88, p = 0.032)
and a slight difference between 2 and 4 (|z| = 2.52, p = 0.086).
Figure 8 (right) indicates that most of this difference is likely
attributable to the tempo feature, which annotator 4 correlates

with considerably less than the other annotators. These results
demonstrate that a small set of annotators are likely to produce
significantly different interpretations of musical structure, even
when they are following a common set of guidelines.

Figure 9 illustrates the self-similarity matrices for SALAMI
track 410: Erik Truffaz–Betty, a jazz recording featuring trumpet,
piano, bass, and drums. The two annotations for this track
produce a small L-measure of 0.25, and a large δ score of 0.67. In
this example, the two annotators appear to be expressing different
opinions about the organization of the piece, as illustrated in the
right-most column of Figure 9. Annotator 1 first separates the

extended final fermata from the rest of the recording in the upper

level, and then segments into repeated 4-bar progressions in the

lower level. Annotator 2 groups by instrumentation or texture in

the upper level, separating the piano and trumpet solos (center

blocks) from the head section, and then grouping by repeated
8-bar segments. The first annotation correlates well with all of
the feature-based similarity matrices, which exhibit low contrast
for the majority of the piece. The second annotation is generally
uncorrelated with the feature similarities, leading to the large δ

score between the two. Note that this does not imply that one
annotator was more “accurate” than the other, but it does suggest
that the differences in the annotations can be attributed, at least
in part, to perceptual characteristics of the music in question. In
this case, Annotator 2 accounted for both instrumentation
and harmony, while Annotator 1 accounted only for
harmony.

Figure 10 illustrates a second example, SALAMI track 936:
Astor Piazzola – Tango Aspasionado, which produces L-measure
of 0.46 and a relatively large δ = 0.45. The two annotators in
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FIGURE 7 | Feature correlation compared to L-measures on the SALAMI (Left) and SPAM (Right) datasets.

FIGURE 8 | The mean feature correlation for each feature type and annotator on the SPAM dataset. Error bars indicate the 95% confidence intervals estimated by

bootstrap sampling (n = 1, 000). Left: results are grouped by annotator ID; Right: results are grouped by feature type.

this example have again identified substantially different large-
scale structures, with the first annotation correlating highly with
tempo (0.57) and rhythmic (0.40) similarity as compared to
the second annotator (0.16 and 0.12, respectively). The second
annotator identified repeating melodic and harmonic themes
that persist across changes in instrumentation and rhythm. This
persistence explains the comparatively low correlation scores for
the tempo and rhythm features. The two annotators appear to
disagree on the relative importance of rhythmic and instrumental
characteristics, compared to melodic and harmonic features, in
determining the structure of the piece.

In both of these examples, and as a general trend illustrated in
Figure 8, annotations that relied on solely on harmony produced
lower correlation scores than those which align with timbre and
rhythm descriptors. This is likely a consequence of the dynamic
structure of harmony and chroma representations, which evolve
rapidly compared to the more locally stationary descriptors of

timbre, rhythm, and tempo. Chroma self-similarity matrices
(Figures 9, 10, bottom-left) tend to exhibit diagonal patterns
rather than solid blocks of self-similar time intervals, which
are easier to match against the annotation-based meet matrices
(right column). It may be possible to engineer locally stable
harmony representations that would be more amenable to this
kind of correlation analysis, but doing so without supposing a
pre-existing segmentationmodel is a non-trivial undertaking and
beyond the scope of the present experiment.

6. EXPERIMENT 3: HIERARCHICAL
ALGORITHMS

This last experiment focuses on using the L-measure to compare
hierarchical results estimated by automatic approaches with
those annotated by music experts. Assuming that the L-measure
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FIGURE 9 | Feature correlation for SALAMI track #410: Erik Truffaz–Betty, which achieves δ = 0.67, L-measure = 0.25. The two annotations encode different

hierarchical repetition structures, depicted in the meet matrices in the right-most column. Annotator 1’s hierarchy is more highly correlated with the feature-based

similarities: z = (0.62, 0.42, 0.26, 0.48) for tempo, rhythm, chroma, and MFCC, compared to z = (0.03, 0.07, 0.07, 0.04) for Annotator 2.

between human annotations defines the upper limit in terms
of performance for the automated hierarchical segmentation
task, we explore how the L-measure behaves when assessing
this type of algorithms. We are particularly interested in better
understanding how much room there is for improvement when
designing new approaches to this task.

6.1. Methods
To the best of our knowledge, only two automatic methods
that estimate hierarchical segmentations have been published
with open source implementations: Laplacian structural
decomposition (McFee and Ellis, 2014a), and Ordinal Linear
Discriminant Analysis (McFee and Ellis, 2014b). The Laplacian
method generates hierarchies of depth 10, where each layer i
consists of i + 1 unique segment labels McFee and Ellis (2014a).
For each layer index, this method first partitions the recording
into a set of discontinuous clusters (segment labels), and then
estimates segment boundaries according to changes in cluster
membership between successive time instants. Consequently,
each layer can have arbitrarily many segments, but the number
of unique segment labels is always fixed.

The OLDA method, as described by McFee and Ellis (2014b),
operates by agglomerative clustering of time instants into
segments, resulting in a binary tree with time instants at the
leaves, and the entire recording at the root. Each layer i of this
tree has i + 1 contiguous segments, and the tree is automatically
pruned based on the statistics of segment lengths and the

overall track duration. This results in a hierarchy of variable
depth, typically between 15 and 30 levels, where each level
can be seen as splitting one segment from the previous level
into two. Because OLDA only estimates segment boundaries,
segment labels were estimated at each level by using the 2D-
Fourier Magnitude Coefficients method (Nieto and Bello, 2014),
which yields state-of-the-art results in terms of automatic flat
segment label prediction. The 2D-FMC method is set to identify
a maximum of 7 unique labels per level of segmentation, as this
number was previously found to produce the best results in The
Beatles8 and SALAMI datasets. These sets are themost popular in
the task of structural segmentation, and it is a standard practice to
tune the parameters according to them (Kaiser and Sikora, 2010;
Nieto and Jehan, 2013; Nieto and Bello, 2014).

The standard approach to measuring the performance of
automatic algorithms is to compare the average scores derived
from a sample of tracks, each of which has one “ground truth”
annotation. However, as demonstrated in the previous sections,
there is still significant disagreement between annotators when
it comes to hierarchical segmentation, so selecting a single
annotation to use as a point of reference would bias the
results of the evaluation. Instead, we compared the output
of each algorithm to all annotations for a given track, with
results presented in terms of the full empirical distribution
over scores rather than the mean score. We quantify the

8http://isophonics.net/content/reference-annotations-beatles
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FIGURE 10 | Feature correlation for SALAMI track #936: Astor Piazzola–Tango Aspasionado, which achieves δ = 0.45, L-measure = 0.46. Annotator 1 is highly

correlated with the features: z = (0.57, 0.40, 0.11, 0.25) for tempo, rhythm, chroma, and MFCC, compared to z = (0.16, 0.12, 0.13, 0.25) for Annotator 2.

difference in distributions by the two-sample Kolmogorov-
Smirnov statistic, which measures the maximum difference
between the empirical cumulative distributions: a small value
(near 0) indicates high similarity, a large value (near 1) indicates
low similarity. For this experiment, the set of human annotations
had a privileged interpretation (compared to the automatic
methods), so we reported L-precision, L-recall, and L-measure
separately.

Both algorithms (OLDA and Laplacian) were run on
both datasets (SALAMI and SPAM) using the open-source
implementations found in the Music Structure Analysis
Framework, version 0.1.2-dev (Nieto and Bello, 2016). All
algorithm parameters were left at their default values.

6.2. Results and Discussion
The results of the automatic hierarchical segmentation algorithm
experiment are displayed in Figure 11. Both algorithms achieve
larger average L-recall (center column) than L-precision (left
column), which suggests that the automated methods, which
produce much deeper hierarchies than the reference annotations,
have identified more detailed structures than were encoded by
the human annotators. Notably, the Laplacian method achieved
a recall distribution quite close to that of the human annotators.
This indicates that the L-measure is robust to differences in
hierarchical depth: structures encoded in the depth-2 human

annotations can also be found in the depth-10 automatic
annotations.

The right column shows the total L-measure distribution
(combining precision and recall). In both datasets, the Laplacian
method was significantly more similar to the inter-annotator
distribution than the OLDA-2DFMC method was, despite the
mode at the bottom of the L-measure scale visible in Figure 11

(right). The region of low performance can be attributed to an
apparent weakness of the method on longer recordings (e.g.,
SALAMI-478 at 525 s, or SALAMI-108 at 432 s) where it tends
to over-emphasize short discontinuities and otherwise label the
remainder of the track as belonging primarily to one component.
This behavior can also be seen in the SALAMI distribution,
though such examples make up a smaller portion of the corpus,
and therefore exert less influence on the resulting distribution.

The results of this experiment demonstrate a rather large
gap between the distribution of inter-annotator agreement
and algorithm-annotator agreement. In the examples presented
here, and especially the Laplacian method, much of this
gap can be attributed to low precision. Low precision may
arise naturally from comparisons between deep and shallow
hierarchies. Because the reference annotations in both SALAMI
and SPAM have fixed depth, this effect is not observable in the
inter-annotator comparison distribution. This effect suggests a
trade-off between precision and recall as a function of hierarchy
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FIGURE 11 | The distribution L-measure scores for inter-annotator agreement, OLDA-2DFMC, and Laplacian on the SALAMI (Top row) and SPAM (Bottom row)

datasets. The left, middle, and right columns compare algorithm L-precision, L-recall, and L-measure to inter-annotator scores. For each algorithm, the two-sample

Kolmogorov-Smirnov test statistic K is computed against the inter-annotator distribution (smaller K is better).

depth. If a practitioner was interested in bounding hierarchy
depth to optimize this trade-off, the L-measure would provide a
means to do so.

7. GENERAL DISCUSSION

From the perspective of music informatics research, the
hierarchical evaluation technique described here opens up new
possibilities for algorithm development. Most existing automatic
segmentation methods, in one way or another, seek to optimize
the existing metrics for flat boundary detection and segment
label agreement. Boundary detection is often modeled as a
binary classification problem (boundary/not-boundary), and
labeling is often modeled as a clustering problem. The L-
measure suggests instead to treat both problems from the
perspective of similarity ranking, and could therefore be used to
define an objective function for a machine-learning approach to
hierarchical segmentation.

As demonstrated in Section 4, the L-measure can reduce
bias in the evaluation due to superficial differences between
two hierarchical segmentations, which better exposes meaningful
structural discrepancies. Still, there appears to be a considerable
amount of inter-annotator disagreement in commonly used
corpora. Disagreement is a pervasive problem in music
informatics research, where practitioners typically evaluate an
algorithm by comparing its output to a single “ground truth”

annotation for each track in the corpus. The evaluation described
in Section 6 represents a potentially viable alternative method
of evaluation, which seeks not to measure “agreement” against
human annotators, but rather to match the distribution of
agreement between human annotators. This approach could be
easily adapted to other tasks involving high degrees of inter-
annotator disagreement, such as chord recognition or automatic
tagging.

While the L-measure resolves some problems with evaluating
segmentations across different levels, it still shares some
limitations with previous label-based evaluation metrics.
Notably, none of the existing methods can distinguish between
adjacent repetitions of the same segment label (aa) from a
single segment spanning the same time interval (A). This
results in an evaluation which is blind to boundaries between
similarly labeled segments, and therefore discards important
cues indicating repetition. Similarly, variation segments—e.g.,
(A, A’) in SALAMI notation—are always treated as distinct,
and equally distinct as any other pair of dissimilar segments
(A,B). While the L-measure itself does not present a solution
to these problems, its ability to support hierarchies of arbitrary
depth could facilitate solutions in the future. Specifically, one
could augment an existing segmentation with additional lower
layers that distinguish among each instance of a label, so that
a, a decomposes into a1, a2, without losing the information
that both segments ultimately receive the same label. Similarly,
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variations could be resolved by introducing a layer above which
unifies A, A’ both as of type A. Because this approach requires
significant manipulation of annotations, we leave it as future
work to investigate its effects.

The work described here also offers both insight and a
potential tool for researchers in the field of music cognition. The
results from Experiment 1 reveal that flat segmentation metrics
are confounded by superficial differences between otherwise
consistent hierarchical annotations, while the L-measure is
robust to these differences. The L-measure can therefore provide
a window into the individual differences inherent in the
perception of musical structure. Furthermore, the L-measure can
provide a quantitative metric for directly comparing hierarchical
analyses of musical form in experimental work. It can serve
as a means to objectively assess response similarity between
subjects on tasks that require analysis of metrical, grouping, and
prolongational hierarchies.

The results of Experiment 2 present evidence for distinct
modes of listening predicated on different acoustical features
of the music. Comparing differences in feature correlations can
help identify potential causal factors contributing to listener
interpretation of musical form. The feature analysis offers
objective evidence in support of qualitative observations for
how and why listeners interpret musical structure differently,
particularly in cases of significant disagreement.
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Clayton, M. (1997). Le mètre et le tāl dans la musique de l’inde du nord. Cahiers

Musiques Traditionnelles 10, 169–189. doi: 10.2307/40240271

Cohen, L. (1993). The scale representation. IEEE Trans. Signal Process. 41,

3275–3292. doi: 10.1109/78.258073

Cook, N. (2003). “Music as performance," in The Cultural Study of Music A Critical

Introduction, eds M. Clayton, T. Herbert, and R. Middleton (New York, NY:

Routledge), 204–214.

Davies, M. E. P., Hamel, P., Yoshii, K., and Goto, M. (2014). Automashupper:

automatic creation of multi-song music mashups. IEEE/ACM Trans. Audio

Speech Lang. Process. 22, 1726–1737. doi: 10.1109/TASLP.2014.2347135

De Sena, A., and Rocchesso, D. (2007). A fast mellin and scale transform. EURASIP

J. Appl. Signal Process 2007, 75–84.

Deutsch, D. (ed.). (1999). “Grouping mechanisms in music,” in The Psychology of

Music, 2nd Edn. (New York, NY: Academic Press), 299–348. doi: 10.1016/B978-

012213564-4/50010-X

Deutsch, D., and Feroe, J. (1981). The internal representation of pitch sequences in

tonal music. Psychol. Rev. 88, 503–522. doi: 10.1037/0033-295X.88.6.503

Drake, C. (1998). Psychological processes involved in the temporal organization of

complex auditory sequences: universal and acquired processes. Music Percept.

Interdisc. J. 16, 11–26. doi: 10.2307/40285774

Drake, C., and El Heni, J. B. (2003). Synchronizing with music: intercultural

differences. Anna. N.Y. Acad. Sci. 999, 429–437. doi: 10.1196/annals.1284.053

Farbood, M. M., Heeger, D. J., Marcus, G., Hasson, U., and Lerner, Y. (2015). The

neural processing of hierarchical structure in music and speech at different

timescales. Front. Neurosci. 9:157. doi: 10.3389/fnins.2015.00157

Grill, T., and Schlüter, J. (2015). “Music boundary detection using neural networks

on combined features and two-level annotations,” in Proceedings of the 16th

International Society for Music Information Retrieval Conference (Málaga:

Citeseer).

Herremans, D., and Chew, E. (2016).Music Generation with Structural Constraints:

An Operations Research Approach. Louvain-La-Neuve.

Holzapfel, A., and Stylianou, Y. (2011). Scale transform in rhythmic

similarity of music. IEEE Trans. Audio Speech Lang. Process. 19, 176–185.

doi: 10.1109/TASL.2010.2045782

Kaiser, F., and Sikora, T. (2010). “Music structure discovery in popular music using

non-negative matrix Factorization,” in Proceedings of the 11th International

Society of Music Information Retrieval (Utrecht), 429–434.

Kantz, H., and Schreiber, T. (2004). Nonlinear Time Series Analysis, Vol. 7.

Cambridge, UK: Cambridge University Press.

Krumhansl, C. L., and Jusczyk, P.W. (1990). Infants’ perception of phrase structure

in music. Psychol. Sci. 1, 70–73. doi: 10.1111/j.1467-9280.1990.tb00070.x

Lerdahl, F. (1988). Tonal pitch space. Music Percept. 5, 315–349.

doi: 10.2307/40285402

Lerdahl, F., and Jackendoff, R. (1983). An overview of hierarchical structure in

music.Music Percept. Interdisc. J. 1, 229–252. doi: 10.2307/40285257

Levy, M., and Sandler, M. (2008). Structural segmentation of musical audio by

constrained clustering. IEEE Trans. Audio Speech Lang. Process. 16, 318–326.

doi: 10.1109/TASL.2007.910781

Lukashevich, H. (2008). “Towards Quantitative Measures of Evaluating Song

Segmentation,” in Proceedings of the 10th International Society of Music

Information Retrieval (Philadelphia, PA), 375–380.

McAdams, S. (1989). Psychological constraints on form-bearing dimensions in

music. Contemp. Music Rev. 4, 181–198. doi: 10.1080/07494468900640281

McFee, B., and Ellis, D. P. W. (2014a). “Analyzing song structure with

spectral clustering,” in Proceedings of the 15th International Society for Music

Information Retrieval Conference (Taipei), 405–410.

Frontiers in Psychology | www.frontiersin.org 16 August 2017 | Volume 8 | Article 1337

https://doi.org/10.1016/j.cognition.2005.11.008
https://doi.org/10.2307/40240271
https://doi.org/10.1109/78.258073
https://doi.org/10.1109/TASLP.2014.2347135
https://doi.org/10.1016/B978-012213564-4/50010-X
https://doi.org/10.1037/0033-295X.88.6.503
https://doi.org/10.2307/40285774
https://doi.org/10.1196/annals.1284.053
https://doi.org/10.3389/fnins.2015.00157
https://doi.org/10.1109/TASL.2010.2045782
https://doi.org/10.1111/j.1467-9280.1990.tb00070.x
https://doi.org/10.2307/40285402
https://doi.org/10.2307/40285257
https://doi.org/10.1109/TASL.2007.910781
https://doi.org/10.1080/07494468900640281
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


McFee et al. Evaluating Hierarchical Structure in Music Annotations

McFee, B., and Ellis, D. P. W. (2014b). “Learning to Segment Songs With

Ordinal Linear Discriminant Analysis,” in Proceeings of the 39th IEEE

International Conference on Acoustics Speech and Signal Processing (Florence),

5197–5201.

McFee, B., Nieto, O., and Bello, J. (2015a). “Hierarchical evaluation of segment

boundary detection,” in 16th International Society for Music Information

Retrieval Conference (ISMIR) (Malaga).

McFee, B., Raffel, C., Liang, D., Ellis, D. P. W., McVicar, M., Battenberg,

E., et al. (2015b). “Librosa: audio and music signal analysis in pyhon,”

in Proceeding of the 14th Python in Science Conference (Austin, TX),

18–25.

Nan, Y., Knösche, T. R., and Friederici, A. D. (2006). The perception of musical

phrase structure: a cross-cultural ERP study. Brain Res. 1094, 179–191.

doi: 10.1016/j.brainres.2006.03.115

Nieto, O. (2015). Discovering Structure in Music: Automatic Approaches and

Perceptual Evaluations. Ph.d dissertation, New York University.

Nieto, O., and Bello, J. P. (2014). “Music segment similarity using 2D-Fourier

magnitude coefficients,” in Proceedings of the 39th IEEE International

Conference on Acoustics Speech and Signal Processing (Florence),

664–668.

Nieto, O., and Bello, J. P. (2016). “Systematic exploration of computational music

structure research,” in Proceedings of ISMIR (New York, NY).

Nieto, O., Farbood, M. M., Jehan, T., and Bello, J. P. (2014). “Perceptual analysis of

the f-measure for evaluating section boundaries in music,” in Proceedings of the

15th International Society for Music Information Retrieval Conference (ISMIR

2014) (Taipei), 265–270.

Nieto, O., and Jehan, T. (2013). “Convex non-negative matrix factorization for

automatic music structure identification,” in Proceedings of the 38th IEEE

International Conference on Acoustics Speech and Signal Processing (Vancouver,

BC), 236–240.

Paulus, J., Müller, M., and Klapuri, A. (2010). “State of the art report: audio-based

music structure analysis,” in ISMIR (Utrecht), 625–636.

Raffel, C., McFee, B., Humphrey, E. J., Salamon, J., Nieto, O., Liang, D., et al.

(2014). “mir_eval: a transparent implementation of common mir metrics,” in

Proceedings of the 15th International Society for Music Information Retrieval

Conference, ISMIR (Taipei: Citeseer).

Roy, P., Perez, G., Rgin, J.-C., Papadopoulos, A., Pachet, F., and Marchini, M.

(2016). “Enforcing structure on temporal sequences: the allen constraint,” in

Proceedings of the 22nd International Conference on Principles and Practice of

Constraint Programming - CP (Toulouse: Springer).

Serra, J., Müller, M., Grosche, P., and Arcos, J. L. (2012). “Unsupervised detection

of music boundaries by time series structure features,” in Twenty-Sixth AAAI

Conference on Artificial Intelligence (Toronto, ON).

Shaffer, L. H., and Todd, N. (1987). “The interpretive component in musical

performance,” inAction and Perception in Rhythm andMusic, ed A. Gabrielsson

(Stockholm: Royal Swedish Academy of Music), 139–152.

Smith, J. B., Burgoyne, J. A., Fujinaga, I., De Roure, D., and Downie, J. S. (2011).

“Design and creation of a large-scale database of structural annotations,” in

ISMIR, Vol. 11 (Miami, FL), 555–560.

Smith, J. B., Chuan, C.-H., and Chew, E. (2014). Audio properties of

perceived boundaries in music. IEEE Trans. Multimedia 16, 1219–1228.

doi: 10.1109/TMM.2014.2310706

Todd, N. (1985). A model of expressive timing in tonal music. Music Percept. 3,

33–57. doi: 10.2307/40285321

Trehub, S. E., and Hannon, E. E. (2006). Infant music perception:

domain-general or domain-specific mechanisms? Cognition 100, 73–99.

doi: 10.1016/j.cognition.2005.11.006

Weiß, C., Arifi-Müller, V., Prätzlich, T., Kleinertz, R., and Müller, M. (2016).

“Analyzing measure annotations for western classical music recordings,” in

Proceedings of the 17th International Society for Music Information Retrieval

Conference (New York, NY).

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 McFee, Nieto, Farbood and Bello. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 17 August 2017 | Volume 8 | Article 1337

https://doi.org/10.1016/j.brainres.2006.03.115
https://doi.org/10.1109/TMM.2014.2310706
https://doi.org/10.2307/40285321
https://doi.org/10.1016/j.cognition.2005.11.006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

	Evaluating Hierarchical Structure in Music Annotations
	1. Introduction
	2. Corpora
	2.1. SALAMI
	2.2. SPAM

	3. Methods for Comparing Annotations
	3.1. Comparing Flat Segmentations
	3.1.1. Pairwise Classification
	3.1.2. Normalized Conditional Entropy
	3.1.3. Comparing Annotations

	3.2. Hierarchical Segmentation
	3.2.1. Hierarchical Label Agreement


	4. Experiment 1: L-measures and Flat Metrics
	4.1. Methods
	4.2. Results and Discussion

	5. Experiment 2: Acoustic Attributes
	5.1. Methods
	5.1.1. Tempo Features
	5.1.2. Rhythm Features
	5.1.3. Chroma Features
	5.1.4. Timbre Features
	5.1.5. Comparing Audio to Annotations

	5.2. Results and Discussion

	6. Experiment 3: Hierarchical Algorithms
	6.1. Methods
	6.2. Results and Discussion

	7. General Discussion
	Author Contributions
	Funding
	Acknowledgments
	References


