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As in cross sectional studies, longitudinal studies involve non-Gaussian data such

as binomial, Poisson, gamma, and inverse-Gaussian distributions, and multivariate

exponential families. A number of statistical tools have thus been developed to deal with

non-Gaussian longitudinal data, including analytic techniques to estimate parameters

in both fixed and random effects models. However, as yet growth modeling with

non-Gaussian data is somewhat limited when considering the transformed expectation

of the response via a linear predictor as a functional form of explanatory variables. In this

study, we introduce a fractional polynomial model (FPM) that can be applied to model

non-linear growth with non-Gaussian longitudinal data and demonstrate its use by fitting

two empirical binary and count data models. The results clearly show the efficiency and

flexibility of the FPM for such applications.

Keywords: fractional polynomial, generalized additive model, Non-Gaussian longitudinal data, Chicago

longitudinal study, reading of the mind

INTRODUCTION

Just as in cross sectional studies, longitudinal studies frequently utilize non-Gaussian data that
involve binomial, Poisson, Gamma, inverse-Gaussian distributions, and multivariate exponential
families. Fitzmaurice and Molenberghs (2008) categorized models for non-Gaussian longitudinal
data into three types based on the way they account for the correlation among the repeated
measures and interpret the regression parameters: (1) marginal or population-average models,
(2) generalized linear mixed models (GLMM), and (3) conditional and transition models. In the
research reported here, we opted to use a GLMM as this emphasizes individual differences and
takes into account random effects.

Given the prevalence of non-Gaussian longitudinal data, it is not surprising that a number of
statistical tools have been developed for estimating parameters in both fixed and random effects
models. Examples include Stiratelli et al. (1984) and Schall (1991), who proposed a penalized quasi-
likelihood estimation; Pinheiro and Bates’ (1995) Laplace approximation; and Breslow and Clayton
(1993), who combined marginal quasi-likelihood estimation with a penalized quasi-likelihood
estimation. Other approaches that have been proposed include Anderson and Aitkin’s (1985)
adaptive Gaussian quadrature; McCulloch’s (1997) Monte Carlo EM algorithm; Kuk and Cheng’s
(1997) Monte Carlo Newton-Raphson algorithm; and Zeger and Karim’s (1991) Monte Carlo
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integration via Gibbs sampling within the framework of the
GLMM. However, in spite of the many estimating methods
that have been suggested, growth modeling with non-Gaussian
data remains somewhat limited when modeling the transformed
expectation of the response when applying a linear predictor as a
functional form for the explanatory variables.

As summarized by Fox (2016), the generalized linear model
(GLM) consists of: (1) a random component specifying the
conditional distribution of a response variable, Yi; (2) a linear
predictor as a linear function of multiple regressors, ηi =

α + β1Xi1 + β2Xi2 + · · · + βkXik; and (3) a smooth and
invertible linearizing link function, g(·), that transforms the
expected value of the response variable to a linear predictor
such as g(E(Yi)) = ηi = α + β1Xi1 + β2Xi2 + · · · +

βkXik. In the applications of GLM reported in the literature, the
random component and the link function are generally well-
organized, for example in the form of exponential families, as
in Nelder and Wedderburn (1972). However, the functional
form for the linear predictor has been largely restricted to a
linear combination of explanatory variables, interactions, and
polynomial regressors. Although the link function resolves the
issue related to conditional distributions in the regression, the
trends exhibited in the associations between the latent variable
of a dependent variable and the explanatory variables within
the linear predictor would be more various and complex. For
example, the association could be an asymmetric curve that
could not be resolved simply by interactions or polynomial
regressors. In this paper, we introduce a more flexible functional
form for the linear predictor, which is known as a fractional
polynomial regressor (Royston and Altman, 1994; Long and
Ryoo, 2010).

In the social and behavioral sciences, modeling individual
differences in a change process is vital when compensating for
a small sample and/or reducing sampling bias. Random effects
models can be utilized to model these individual differences. A
GLMM can be defined by adding random effects representing
within-subject variations in the linear predictor (Laird andWare,
1982):

ηi: = g (µi) = β0 + β1Xi1 + · · · + βpXip + b0 + b1Zi1

+ · · · bqZiq = Xiβ + Zib (1)

where µi is the expected value of the response variable, χi

is a known design matrix linking β and ηi and Zi is a
known design matrix linking b and ηi. In practice, Zi is
often constrained within the random intercept model, since
non-Gaussian data provide relatively little information about
individual heterogeneity beyond variability in the random
intercept (Long et al., 2009). In the work reported here, Zi
is extended to random slope variability to account for non-
Gaussian data, including both count data and binary data.

In longitudinal data, the time variable is treated as a covariate
due to its key role in modeling change over time. For that reason,
the first step in model selection involves a visual inspection of
mean change over time (Pinheiro and Bates, 2000; Molenberghs
and Verbeke, 2005). Though the result of the visual inspection
is subjective and not necessarily representative, it does establish

a starting point for the analyses. In this step, a generalized
additive model (GAM; Hastie and Tibshirani, 1986; Berhane
and Tibshirani, 1998) can offer useful support for the results
obtained by a visual inspection of the data. As a non-parametric
analytic tool, GAM is well-known and performs better than the
local regression model (LOWESS; Cleveland, 1979; Cleveland
and Devlin, 1988) when modeling the relationship between a
response variable and each predictor.

To model the time transformation and articulate change
over time, a conventional polynomial model (CPM) is typically
utilized to identify the function with the best fit (Fitzmaurice
et al., 2004, chap. 12). However, a CPM seldom offers the
optimum solution and neither does it provide useful descriptive
information, since the CPM is always symmetric around the
local maxima and local minima and also requires an additional
parameter for each fluctuation in the pattern of change. There are
many alternatives to modeling asymmetric trends that provide
more parsimonious models with the same quality of information
on model fit (Sterba, 2014). Here, we focus on the use of
fractional polynomial models (FPMs; Royston and Altman,
1994). Compared with CPMs, FPMs have received relatively
little attention in the context of non-Gaussian longitudinal data
in the social and behavioral sciences, even though FPMs are
more flexible than CPMs and provide broader classes for model
selection. The flexibility and parsimoniousness of FPMs in model
selection for Gaussian longitudinal data have been discussed in
Long and Ryoo (2010). This paper investigates model selection
in the linear predictor for non-Gaussian longitudinal data, with
an extension of the time transformation and random effects
onto FPMs. This is also referred to as the generalized fractional
polynomial mixed model (GFPMM).

METHODS

Two real world datasets were analyzed to demonstrate a unified
framework for fitting GFPMM. The model selection procedure
for GFPMM suggested by Ryoo (2011) in LMM was used to
demonstrate the process involved in building the model by
fitting the time transformation, static predictor, interactions, and
random effects in Equation (1).

Data Sources
To demonstrate the parsimoniousness and flexibility in fitting
non-Gaussian data using the GFPMM, two longitudinal datasets
including binary and count responses were used. The first dataset
consisted of a binary response over four time points, while the
second dataset consisted of a count response over three time
points. In the second dataset, two static predictors were also
considered. In this exploratory data analysis, those two variables
were tested to determine whether they were significant variables
for the best fitting model.

Chicago Longitudinal Study
As part of the Chicago Longitudinal Study (CLS, http://www.
cehd.umn.edu/icd/cls/), data were collected from 1,539 Chicago
public school students deemed to be at risk of educational
and social difficulties due to economic disadvantage. Based on
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parents and teachers’ surveys at ages 3, 8, 12, and 17, a risk
index was computed by combining risk factors such as mother’s
age, mother’s education level, single parenting status, number
of children in the household, eligibility for free school lunches,
mother’s employment, and the poverty index in the local school
area, a total of four data points for each child. The scale of the
ordinal risk index from 0 to 8 was then further dichotomized
as 0 for low risk (<4) and 1 for high risk (4 or higher). In this
demonstration, the change in the proportion of high risk students
was examined by applying GFPMM.

Based on the dichotomous classification risk index for each
of the 1,539 students included in the dataset, 1,122 (72.9%),
1,004 (65.2%), 983 (63.9%), and 823 (53.5%) were deemed to
be at-risk at ages 3, 8, 12, and 17 years, respectively. Plotting
the mean proportion changes (Figure 1), the numbers of at-
risk students clearly decrease over time in a non-linear manner,
with the proportion at age 17 dropping significantly below
that at age 12. To further investigate the trend, the non-
linear relationship between the binary response variable and the
continuous time variable was modeled by applying GFPMM
and GAM. To visualize the individual differences in terms of
the change of at-risk status, we also plotted separate curves for
24 individuals randomly selected from the 1,539 participants
(Figure 2). Within these small randomly selected datasets, we
observed nine difference patterns in terms of their at-risk status.
To articulate both the overall change and individual change
patterns, we utilized GAM analysis as a diagnostic tool to capture
these patterns.

Reading of the Mind in the Eyes
Test-Revised
The Reading of the Mind in the Eyes Test-Revised (RMET-
R; Baron-Cohen et al., 2001) is a 28-item measure designed

to assess children’s ability to make social judgments based
on stimuli such as the eye region of another person’s face.
This test involves 28 photographs of the facial eye region,
each accompanied by four words describing various mental
states. In the present study, 212 participants were asked to
select the word that best described the mental state exhibited
in the accompanying image, with a point awarded for each
correct answer. The points were then summed to compute an
overall score representing the participant’s response at each time
point, calculated as 28 minus the total score. Lower scores
thus indicate higher “Theory of Mind.” Data were collected at
three different time points spaced at ∼6 month intervals. Two
demographic variables, gender (1 for girl and 2 for boy) and first
language (1 for English and 2 for Others), are included in this
demonstration.

Themeans for the RMET-R test results are plotted in Figure 3.
At first glance, the sharp drop between Time 2 and Time
3 would seem to indicate that a non-linear model would be
more appropriate for modeling the change than a linear model.
However, as the data presented in Figure 4 suggests, this may
not in fact be the case; the wide variations in the individual
curves for 20 randomly selected participants may indicate non-
linearity and decreases over time. To articulate both the overall
and individual change patterns, we therefore opted to utilize
GAM analysis as a diagnostic tool in order to capture both
patterns.

Generalized Additive Model (GAM)
To aid in the visual inspection of the data, GAM incorporating
non-parametric regression and smoothing was utilized. GAM
was initially used to model the change at the group level by
taking individual changes into account. Unlike GLM, the linear
predictor for GAM uses smooth functions rather than linear

FIGURE 1 | Mean change of risk index (Proportion) in the CLS dataset.
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FIGURE 2 | Individual curves for 24 participants randomly selected from the CLS dataset.

FIGURE 3 | Mean change of total score (Count) for the RMET-R dataset.

combination of predictors as follows:

η = s0 +

p
∑

i=1

si(Xi) (2)

where s1(·), · · · , sp(·) are smooth functions.
Applying back-fitting and local scoring algorithms and

generalized cross validation (GCV; Wahba, 1990), GAM
estimates the smooth functions and consequently provides a

means of examining possible non-linear change between the
response variable and each predictor variable.

Generalized Fractional Polynomial Mixed
Model (GFPMM)
The primary statistical model utilized in this study was GFPMM,
which can be written in terms of the linear predictor, ηij, using
the following the individual level form:

ηij = β0 +

p
∑

b=1

βbfb(tij)+

l
∑

e=1

γeXej + bi0 +

q
∑

g=1

big fg(tij)

= Xiβ + Zib (3)

where p and q indicate the orders of the FP terms for the time
variable for the fixed effects and the random effects, respectively,
and l indicates the number of static predictors. The indices i and j
denote the ith time and jth person, respectively. An FP function,
f, is defined as:

fh(yij) =

{

y
(mh)
ij , ifmh 6= mh−1,

fh−1(yij) · log(yij), ifmh = mh−1,
(4)

where m1 ≤ m2 ≤ · · · ≤ mp. The parentheses on the exponent
signify Box and Tidwell’s (1962) transformation:

y
(mh)
ij =

{

y
mh
ij , ifmh 6= 0,

log(yij), ifmh = 0,
(5)

with the constraint yij > 0, so that all transformations are
defined. The power terms (exponents), mh, are taken from the
set of values suggested by Royston and Altman (1994) for general
curve fitting. The set is:

M =
{

−2,− 1,− 0.5, 0, 0.5, 1, 2, max(3,m)
}

(6)
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FIGURE 4 | Individual curves for 20 participants randomly selected from the RMET-R dataset.

where m is the order of the FP. The values in M offer a wide
variety of curve shapes and constitute transformations that are
familiar to applied researchers. Figure 5 presents the shapes of
the first order FPs, demonstrating this approach’s flexibility in
terms of fitting a fixed model.

In the equation for the linear predictor, ηij, the first three terms
refer to the fixed effects and the last two to the random effects.
Applied researchers may also be interested in the interactions
between time variables and additional explanatory variables. This
term can be added by multiplying the 2nd and 3rd terms in
the equation for the linear predictor, ηij. If no between-person
variation is expected, the random effects terms can be dropped.

Maximum Likelihood Estimation for
GFPMM
Within the format of a GLMM, GFPMM can also be estimated
using one of three common estimation methods: penalized
quasi-likelihood (PQL; Schall, 1991; Breslow and Clayton, 1993),
integral approximations such as the Laplace approximation
(Pinheiro and Bates, 1995), or Gauss-Hermite quadrature

(McCulloch, 1997). In the current study, we used the Laplace
approximation as we consider it to obtain more accurate results
than PQL and to avoid the additional computational burden
imposed by Gauss-Hermite quadrature.

The GFPMM can be written in matrix format as follows:

η = X · β + Z · b and g (µ) = g
[

E(y|b)
]

= η (7)

where b∼N (0,9). The mean and variance conditioned random
effects can also be written as E(y|b) = µ and V(y|b) = ϕ ·

ν(µ), respectively, where ϕ is a dispersion parameter and ν(µ)
is a variance function that depends on the distribution family.
Based on the multivariate normality assumption for ν(µ), we can
estimate the fixed effects β , along with the dispersion parameter
ϕ, by maximizing the marginal distribution:

p(y|β ,ϕ) =

∫

b
p(y|β ,ϕ, b)p(b|9)db (8)

We can now re-estimate the variance function, ν(µ), using a
pseudo-variable, y∗, that is predicted by the linear predictor.
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FIGURE 5 | First order fractional polynomials.

Estimation continues in this manner until convergence is
achieved. The R lme4 package (Bates et al., 2015) was used to
estimate the parameters in GFPMM.

Model Comparison
After diagnosing the trends in the change patterns using mean
changes and the GAM results, we applied the generalized
conventional polynomial mixed model (GCPMM) to both
datasets. We considered conventional up to quadratic
polynomials for the CLS data and a linear model for the
RMET-R data with up to random slope models due to their
respective four and three time points. The best fit was obtained
for the GFPMM with random slope models. We then compared
the best fitting GCPMM and GFPMM to identify the model with
the best fit. When comparing models, we utilized a generalized
likelihood ratio test (GLRT; Cox and Hinkley, 1974; Wood,
2006) with a significance level of 0.05, and delta (1) methods
(Burnham and Anderson, 2004) based on AICc (Hurvich and
Tsai, 1989) and BIC (Schwarz, 1978), applying the criteria that
models with 1i: = 1AICci = AICci − min(AICc) ≤ 2 have
substantial support, models with 4 ≤ 1i ≤ 7 have considerably
less support, and models with 1i > 10 have essentially no
support. This last delta criterion has also been applied to BIC in
similar applications in the Bayesian literature (Raftery, 1996).

RESULTS

Chicago Longitudinal Study Dataset
As shown in Figure 1, the proportion of high risk students drops
from age 3 to age 8, levels off to some extent from age 8 to

age 12, and then drops sharply from age 12 to age 17. This is
somewhat inconsistent with the results obtained from the GAM
analyses, which generates the linear model shown. The GAM
curve follows a slightly different pattern from the mean change
shown in Figure 1, indicating a decreasing pattern and faster
drop for the oldest students. Interestingly, the GAM analysis
yields an effective degree of freedom of one, meaning that the
suggested value for the exponent of the time variable is linear.
Based on both these findings, the quadratic polynomial model
was considered to provide the best fit for the time transformation.

Analyses using the polynomial methods begin by
implementing GCPMM. In the class of conventional polynomials
with four time points, the suggested model would be considered
to be either linear or quadratic polynomial; a cubic model would
be a saturated model for fixed effects. For random effects, the
models up to the random slope term were considered in a
well-formulated model. The well-formulated model includes
lower order terms when higher order terms are significant,
regardless of the significance of the lower order terms (Morrell
et al., 1997). Table 2 displays the results of the competing models
utilizing GCPMM.

The results shown in Table 1 suggest that the best fit is
obtained for the quadratic model with linear random effects,
described in equation form as follows:

log

{

Pr(Yij = 1|b0i, b1i)

Pr(Yij = 0|b0i, b1i)

}

= ηij = β0 + β1 · timeij + β2 · time2ij

+ b0i + b1i · timeij (9)
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TABLE 1 | Results of model selection within generalized conventional polynomial

mixed models (GCPMMs) for the CLS dataset.

Models Number of

parameters

BIC AICC GLRT 1(BIC) 1(AICC)

Chisq

(p-value)

gcpm.10a 3 6,179 6,159 52.46 69.03

gcpm.20b 4 6,186 6,159 1.24

(0.27)

59.94 69.79

gcpm.11c 5 6,126 6,093 68.67

(0.00)

0.00 3.13

gcpm.21d 6 6,130 6,090 5.13

(0.02)

3.59 0.00

aRandom intercept linear model;
bRandom intercept quadratic model;
cLinear model with random slope;
dQuadratic model with random slope.

The resulting GCPMM does not adequately describe the drops
observed in the results for the quadratic model, however, since
conventional polynomials are symmetric around vertexes. On
the other hand, the shapes of fractional polynomials vary more
widely than conventional polynomials, as can be seen in Figure 5.
In addition, FPMs can be fit with a relatively small number of
parameters; although the GCPMM with the best fit (Equation 9)
includes six parameters, the GFPMM with the best fit (Equation
10) includes only five. The results of the model selection for the
random intercept and intercept FPM are summarized in Table 2.
The results suggest the FPM with power 3 provides the best fit
in terms of the two delta methods, BIC and AICc; delta values
for the GFPMM with power −1 are >10. Thus, the model with
the best fit for GFPMM combines a cubic polynomial term with
random slope effects and can be written in equation form as
follows:

log

{

Pr(Yij = 1|b0i, b1i)

Pr(Yij = 0|b0i, b1i)

}

= ηij = β0 + β1 · time3ij + b0i

+ b1i · time3ij (10)

When comparing the results of the best fitting models for
GCPMM and GFPMM, GFPMM performs better than the best
GCPMM, as indicated by the 1(BIC) and 1(AICC) values of
132.3 and 125.6, respectively, in Table 3. This result is also
supported by Figure 6, where the GFPMMwith the best fit shows
a stable decrease between ages 3 and 12, at which point there is a
sudden drop.

RMET-R
The RMET-R data consists of only three time points. Figure 3
displays the mean changes, with a relatively stable value from
Time 1 to Time 2 followed by a decrease from Time 2 to Time
3, which is similar to the results of the GAM analysis. However,
the 20 randomly selected individual curves from among the
212 participants plotted in Figure 4 fail to exhibit any coherent
pattern but instead clearly show the between-subject variability.

TABLE 2 | Results of model selection in 1st order generalized fractional polynomial

mixed models (GFPMMs) with random intercept and slope for the CLS dataset.

Power BIC AICC 1(BIC) 1(AICC)

Random intercept

GFPMM (df = 3)

−2 6,149 6,129 151.15 164.60

−1 6,121 6,101 123.88 137.33

−0.5 6,103 6,083 105.20 118.64

0 6,084 6,064 86.43 99.87

0.5 6,069 6,049 71.85 85.30

1 6,062 6,042 64.46 77.91

2 6,066 6,046 68.46 81.91

3 6,079 6,059 81.92 95.36

Random slope

GFPMM (df = 5)

−2 6,278 6,244 280.02 280.02

−1 6,031 5,997 33.41 33.41

−0.5 6,073 6,039 75.07 75.07

0 6,098 6,065 100.61 100.61

0.5 6,113 6,080 115.84 115.84

1 6,126 6,093 128.73 128.73

2 6,147 6,113 149.25 149.25

3 5,998 5,964 0.00 0.00

TABLE 3 | Results of model comparison between the best fitted GCPMM and

GFPMM for the CLS dataset.

Models Number of

parameters

BIC AICC GLRT 1(BIC) 1(AICC)

Chisq

(p-value)

GFPMMa 5 5998 5964 0.0 0.0

GCPMMb 6 6130 6090 0.000

(1.000)

132.3 125.6

a1st order fractional polynomial model with power 3 and random slope;
bQuadratic polynomial model with random slope.

This random effect was thus taken into account for the between-
subject variability. In the GCPMM class, the random effects can
be either random intercept or random slope.

Both the GLRT and the delta method indicate that the
random slope model performs significantly better than the
random intercept model (Table 4). Next, variable selections were
conducted via the GLRT and delta methods to select the variable
that most affects the model. The result of both methods indicated
that language is not significant but gender is. Interestingly, unlike
the main effect of the gender variable, the interaction effect
between the gender and time variables was not significant. The
results for the gender variable are summarized in Table 4. The
GCPMM with the best fit can be written as follows:

log
{

E(Yij|bi)
}

= ηij = β0 + β1 · timeij + β2 · genderi + b0i

+ b1i · timeij (11)

Next, the class of model was extended to GFPMM. As can be seen
in Figure 3, the mean remains roughly constant between Times 1
and 2 but then drops off sharply. The model with the best fit thus
needs to describe this behavior over time. Among the random
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FIGURE 6 | Predicted curves for the 2nd order generalized conventional polynomial (GCPMM) and 1st order generalized fractional polynomial mixed model (GFPMM)

with mean changes for the CLS dataset.

TABLE 4 | Results of model selection within GCPMM for the “Reading the Mind”

dataset (N = 212).

Models Number of

parameters

BIC AICC GLRT 1(BIC) 1(AICC)

Chisq

(p-value)

gcpm.10a 3 885.846 872.519 129.960 142.259

gcpm.11b 5 755.887 733.706 142.870

(0.000)

0.000 3.446

gcpm.11gc 6 756.857 730.260 5.485

(0.019)

0.971 0.000

gcpm.11gid 7 762.065 731.056 1.248

(0.264)

6.178 0.797

aRandom intercept linear model.
bLinear model with random slope.
cLinear model with random slope and gender.
dLinear model with random slope, gender, and interaction between gender and time.

intercept models tested, this would appear to be the GFPMM
with power 3 based on the results presented in Table 5. However,
the GFPMMs with powers 1, 2, and 3 all have substantial support
based on the criteria suggested by Burnham and Anderson (2004)
so instead of selecting a single model, these three GFPMMs were
all considered candidates for the best fit.

As discussed in the Introduction Section, the random effects
were extended to the random slope. The results, summarized in
Table 5, suggests that all the GFPMMs except the GFPMM with
power 1 have substantial support. Regardless of the structure
of the random effects, the GFPMMs with powers 2 and 3 have
substantial support. Since both these GFPMMs performed better

TABLE 5 | Model selection in the 1st order generalized fractional polynomial

mixed models (GFPMMs) with random intercept and slope for the “Reading the

Mind” dataset.

Power BIC AICC 1(BIC) 1(AICC)

Random intercept

GFPMM (df = 3)

−2 889.069 875.742 153.200 162.054

−1 888.242 874.914 152.373 161.226

−0.5 887.703 874.375 151.833 160.687

0 887.100 873.772 151.230 160.084

0.5 886.466 873.139 150.597 159.451

1 885.846 872.519 149.977 158.831

2 884.803 871.475 148.933 157.787

3 884.126 870.799 148.257 157.111

Random slope

GFPMM (df = 5)

−2 737.510 715.329 1.641 1.641

−1 736.963 714.782 1.094 1.094

−0.5 736.658 714.477 0.789 0.789

0 736.365 714.185 0.496 0.497

0.5 737.776 715.595 1.907 1.907

1 755.887 733.706 20.018 20.018

2 735.869 713.688 0.000 0.000

3 736.076 713.895 0.207 0.207

in the further model comparison, they are jointly considered the
best fitted models.

We further investigated the effect of gender by fitting all eight
GFPMMs with random slopes. In all the 1st order GFPMs, the
gender is significant (all of p ≤ 0.032); although there is no
interaction effect with the time variable (all of p ≥ 0.110) at
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FIGURE 7 | Predicted curves for GCPMM and GFPMM with mean changes across gender for the RMET-R dataset. (A) Girls, (B) Boys.

a significance level of 0.05. As a result, the gender variable was
added to the model as a main effect. This result can be confirmed
by examining Figure 7. As the figure shows, the mean changes
for boys and girls differ slightly. Comparing these mean changes
with those predicted by the GFPMM with power 2 and the linear
GCPMM, the mean for the girls is lower than that for the boys,
which indicates that as a group, the girls have a higher “Theory of
Mind” than the boys.

After the gender variable was added into the 1st order
GFPMMs, all the 1st order GFPMMs were compared and the
results are summarized in Table 6. Although five of the GFPMMs
have substantial support, the GFPMM with power 2 has the
smallest BIC and AICC. The model equation can thus be written
as follows:

log
{

E(Yij|bi)
}

= ηij = β0 + β1 · time2ij + β2 · genderi + b0i

+ b1i · time2ij (12)

Within the various conditions tested for the FPMs, the models
with the best fit are the GFPMM with power 2 in terms of BIC
and the GFPMM with power 2 and the gender variable in terms

of AICc. Both GFPMMs have random slope as their random
effect and both are substantially supported compared with the
best fitted models shown in Table 7. However, GLRT indicates
that the GFPMM with power 2 and the gender variable performs
significantly better than the GFPMM with power 2 alone.

DISCUSSION

In this study, the efficiency and parsimoniousness of GFPMM
have been investigated for non-Gaussian longitudinal data,
specifically in the context of binary and count responses. In
line with the flexibility of shapes in FPMs, the GFPMMs with
the best fit performed better than GCPMMs for both types of
data according to the GLRT and delta methods used to assess
the results of two empirical studies. In addition, GFPMMs are
more parsimonious than GCPMMs. As shown in the analyses
above, GFPMMs can be utilized to achieve more parsimonious
(i.e., requiring fewer parameters), better fitting models than
GCPMMs.

The results of the GAM analyses provide fairly consistent
models for the GFPMMs with the best fits, which shows that
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TABLE 6 | Results of model selection in the 1st order generalized fractional

polynomial mixed model (GFPMM) with random slope and gender for the

“Reading the Mind” dataset.

Power BIC AICC 1(BIC) 1(AICC)

−2 739.359 712.761 2.052 2.051

−1 738.765 712.167 1.458 1.457

−0.5 738.423 711.825 1.116 1.115

0 738.081 711.483 0.774 0.773

0.5 739.555 712.957 2.248 2.247

1 756.857 730.260 19.550 19.550

2 737.307 710.710 0.000 0.000

3 737.381 710.783 0.074 0.073

TABLE 7 | Results of model comparison between the best fitted GCPMM and

GFPMM in the “Reading the Mind” dataset.

Models Number of

parameters

BIC AICC GLRT 1(BIC) 1(AICC)

Chisq

(p-value)

GFPMMa 5 735.869 713.688 0.000 2.979

GFPMMb 6 737.307 710.710 5.017

(0.025)

1.438 0.000

GCPMMc 6 756.857 730.260 0.000

(1.000)

20.988 19.550

a1st order fractional polynomial model with power 2 and random slope;
b1st order fractional polynomial model with power 2, random slope, and gender;
cLinear model with random slope and gender.

the non-parametric modeling is well-incorporated with the
parametric modeling conducted via standard model comparison
tools, namely the GLRT and delta methods. Such compatibility is
not achievable with the comparable GCPMMs due to the limited
choice of shapes available. Thus, for the case of fitting non-linear
trends in non-Gaussian longitudinal data, we recommend that
applied researchers utilize GFPMM with GAM and using the
GLRT and delta methods for their modeling. In this paper, we
mainly focused on exploratory analysis. However, it is not limited
to exploratory analysis but the procedure can also be used for any
confirmatory analysis.

We have also demonstrated the use of GFPMM in the context
of non-linear patterns of change. GFPMM offers a flexible and
efficient means of modeling non-linear change in continuous,
binary, and count data within the linear predictor. As our
analyses of the CLS and RMET-R datasets showed, GFPMM
can provide a more parsimonious solution than the traditional
approach based on GCPMM.

The utility of this approach does require further investigation
in the context of a multitude of different data situations where

non-linear change is present. In general, the main difficulty in
fitting polynomial models lies in the interpretation of the results.
That is, what does the model tell us about the substantive nature
of the data? Answering this question lies at the heart of every
investigation undertaken by applied researchers. In the context of
the types of data illustrated above, a better model fit was achieved
by using GFPMM rather than GCPMM. Of course, the need to
estimate fewer parameters inevitably eases the interpretation of
the model and in the cases illustrated above GFPMM provided a
better model fit with fewer parameters.

Royston and Altman (1994) noted that a GFPMM with order
>3 is rarely fitted due to its inherent complexity, which does
not actually mean that their flexibility is limited but rather that
GFPMMs up to order two provide a wide variety of shapes that
are generally sufficient tomodel non-linear trends in longitudinal
data. The shapes of a 2nd order GFPMM can be found in Long
and Ryoo (2010). If there are many time points, then dynamic
changes would be expected in practice. In the case, higher order
GFPMMs can also be applicable. Such flexible and parsimonious
properties in the GFPMM suggest applied researchers to consider
it when asymmetric growth pattern is observed or expected.
Although a number of time points will not be associated with
using the GFPMM, three to six time points often favor the
GFPMM than the GCPMM (Long and Ryoo, 2010; Ryoo et al.,
2017). Future studies will examine the efficiency via a simulation
study. By considering the random effects introduced to take in
account the between-person variability, GFPMM incorporated
with GAM provides an advanced statistical model that takes
care of these individual differences. In the social and behavioral
sciences, the articulation of individual difference is of paramount
importance. Thus, fitting GFPMM to non-Gaussian longitudinal
data will enable applied researchers in these areas to articulate
individual differences in model selection.
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