
fpsyg-09-00696 May 9, 2018 Time: 17:47 # 1

ORIGINAL RESEARCH
published: 11 May 2018

doi: 10.3389/fpsyg.2018.00696

Edited by:
Holmes Finch,

Ball State University, United States

Reviewed by:
Andrej Košir,

University of Ljubljana, Slovenia
Mark D. Reckase,

Michigan State University,
United States

*Correspondence:
Dubravka Svetina
dsvetina@iu.edu

Specialty section:
This article was submitted to

Quantitative Psychology
and Measurement,

a section of the journal
Frontiers in Psychology

Received: 25 January 2018
Accepted: 23 April 2018
Published: 11 May 2018

Citation:
Svetina D, Feng Y, Paulsen J,

Valdivia M, Valdivia A and Dai S
(2018) Examining DIF in the Context

of CDMs When the Q-Matrix Is
Misspecified. Front. Psychol. 9:696.

doi: 10.3389/fpsyg.2018.00696

Examining DIF in the Context of
CDMs When the Q-Matrix Is
Misspecified
Dubravka Svetina1* , Yanan Feng1, Justin Paulsen1, Montserrat Valdivia1, Arturo Valdivia2

and Shenghai Dai3

1 Department of Counseling and Educational Psychology, Indiana University Bloomington, Bloomington, IN, United States,
2 Department of Statistics, College of Arts and Sciences, Indiana University Bloomington, Bloomington, IN, United States,
3 Educational Psychology, College of Education, Washington State University, Pullman, WA, United States

The rise in popularity and use of cognitive diagnostic models (CDMs) in educational
research are partly motivated by the models’ ability to provide diagnostic information
regarding students’ strengths and weaknesses in a variety of content areas. An
important step to ensure appropriate interpretations from CDMs is to investigate
differential item functioning (DIF). To this end, the current simulation study examined the
performance of three methods to detect DIF in CDMs, with particular emphasis on the
impact of Q-matrix misspecification on methods’ performance. Results illustrated that
logistic regression and Mantel–Haenszel had better control of Type I error than the Wald
test; however, high power rates were found using logistic regression and Wald methods,
only. In addition to the tradeoff between Type I error control and acceptable power, our
results suggested that Q-matrix complexity and item structures yield different results for
different methods, presenting a more complex picture of the methods’ performance.
Finally, implications and future directions are discussed.
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INTRODUCTION

Cognitive diagnostic models (CDMs) are a modeling approach aimed at providing examinees
diagnostic information about their strengths and weaknesses relative to learning in specific
domains such as mathematics. A common example in the CDM literature is its application to
mathematical operations with fractions data. Here, an application of a CDM would identify for a
teacher and a student a number of specific skills1 involved in fraction and subtraction, for example,
a conversion of a whole number to a fraction, and it would provide information whether the
student is deficient or has mastered this particular skill. Such information would be obtained for all
hypothesized skills, assumed to underlie an assessment, and thus would provide more fine-grained
information of skills and masteries, as opposed to a general estimate of the student’s (mathematics)
ability (Tatsuoka, 1990, 2002; de la Torre, 2009). When applying CDMs to data, researchers (and
content experts) posit a hypothesized cognitive structure, known as the Q-matrix, indicating the

1Skills, attributes, or processes are used interchangeably in the literature and are used as such in the current manuscript.
These skills or attributes represent the cognitive processes hypothesized in the Q-matrix which items require for successful
outcome (i.e., correct answer), in other words, they indicate examinee’s knowledge structures.
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links between the latent skills of interest and the participant’s
observable test responses. In CDMs, a Q-matrix is used to map
the skill(s) necessary for correct item response onto each item.2

Thus, accurate Q-matrix specification is an important aspect of
any CDM venture.

Despite the promise of CDMs and the significant research
conducted on various models, to this point, CDMs have had
relatively limited impact on actual assessments. In other words,
while researchers have recognized the importance of cognitive
diagnosis, the development of the models is far more advanced
than test construction using the cognitive diagnosis framework
(Lee et al., 2012; Hou et al., 2014). In part, this can be attributed
to the relative paucity of research relating CDMs to the processes
necessary for developing tests and reporting results, including
examining differential item functioning (DIF). Nonetheless,
creating assessments for diagnostic purposes (or any other) is not
void of fairness issues. It is in this context that we situate our
current research.

Differential item functioning reflects potential test bias by
having different probabilities of obtaining a correct response
for people with the same ability but which belong to different
populations (groups). However, a deeper unfairness could be
rooted in the specification of the Q-matrix, potentially further
biasing score interpretations. Motivation for studying Q-matrix
misspecification stems from empirical research that suggests
a possibility for different groups to be subject to different
Q-matrices. For example, different groups may engage in
different strategies to correctly answer an item or particular
skills required for typical performers may be irrelevant for
those with accommodations. This kind of misspecification would
result in a structurally determined form of DIF (Svetina et al.,
2017). The current study approaches studying DIF within the
context of CDMs, with a focus on understanding how different
structures of Q-matrices impact DIF methods’ performance in
finding problematic items. Specifically, our research addressed
two questions:

(a) How does Q-matrix misspecification impact DIF methods’
performance to identify problematic items?

(b) How does Q-matrix misspecification in one but not both
groups impact the performance of DIF methods to identify
problematic items?

This paper is organized as follows. First, we provide the
background for the study by discussing CDMs in general,
and more specifically the model used in the current study.
Additionally, we present a brief summary of the existing CDM
DIF and Q-matrix misspecification literature to situate our
current study. The next section describes the methodology,
including the design of the simulation study and the analysis
plan and outcomes. Results are then summarized in the following
section, where we highlight main findings. Lastly, we discuss the

2Some CDMs, including the reparameterized unified model (RUM), include
a parameter that allows for unspecified, supplemental ability to account for
participants’ correct response. Even so, an item with a high level of this parameter
would be flagged for further revision as it is not functioning in a desired manner.

implications for future research in addition to acknowledgment
of the limitations.

BACKGROUND

Cognitive Diagnostic Models
The trend in education calling for tests to provide more
information at a greater detail, while requiring fewer tests (or
testing times), has created a demand for test outcomes CDMs
can produce. CDMs developed from the combination of various
latent class modeling approaches and the cognitive psychology
belief that responding correctly to individual items relies on the
mastery of some set of attributes or skills (von Davier, 2008).
Under this framework, a CDM requires a confirmatory loading
structure – the Q-matrix – that maps the multidimensional skills
required by the individual items using a complex or simple
structure (Rupp and Templin, 2008).

As noted above, the Q-matrix is a loading structure that
specifies which attributes are required to answer an item
correctly. A typical approach to creation of the Q-matrix is
to consult the experts in the content area (e.g., teachers) and
cognitive psychology who would provide insights as to which
skills are necessary to respond to a particular item. It has been
argued that Q-matrix creation should be based at least partially
based on cognitive labs, as examinees may be in a good position
to hypothesize about the necessary (or used) skills in problem
solving. A sample Q-matrix for four items and five attributes is
presented in Table 1. In the Q-matrix, an entry of 1 indicates
the attribute is required to correctly answer the item, while
0 indicates the attribute is not required. For example, item 1
requires only attribute 4, while item 3 requires attributes 2, 3,
and 4. The probabilistic portion of the model then accounts
for deviations from expected results (e.g., guessing correctly
or incorrectly) by predicting the probability of mastery on the
multiple attributes or dimensions designated in the loading
structure.

DINA Model
In the current study, we employ one of the most popular and
parsimonious CDMs, the deterministic inputs, noisy, “and” gate
(DINA) model (Junker and Sijtsma, 2001).

Let Xij be a response of an examinee i to item j, where Xij = 1
is the correct response (0 otherwise), q-vector qjk = 1 or 0
represents the entry in the Q-matrix indicating whether attribute
k is required by item j, and αik = 1 or 0 represents if examinee

TABLE 1 | Sample Q-matrix for five attributes across four items.

Attributes/skills (K)

Skill 1 Skill 2 Skill 3 Skill 4 Skill 5

Items Item 1 0 0 0 1 0

Item 2 1 0 1 0 0

Item 3 0 1 1 1 0

Item 4 0 0 1 0 1
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i mastered skill k. Parameter ηij indicates whether examinee i
possesses all the required attributes for item j, such that

ηij =
K∏

K=1

α
qjk
ik . (1)

Parameter ηij serves in the DINA model as the “and” gate
combining the deterministic outputs αik, and the item response
Xij is modeled as a noisy observation of ηij. The item response
function (i.e., correct response) for the DINA model then can be
expressed as:

P(Xij =1|αij) = (1− sj)
ηij g

(1−ηij)
j , (2)

where sj and gi denote slipping and guessing parameters.
Parameter sj (i.e., the slipping parameter) expresses the
probability of obtaining an incorrect response to item j when all
required skills are mastered, and parameter gj (i.e., the guessing
parameter) represents the probability of obtaining a correct
response to item j when at least one required skill is not mastered.

Differential Item Functioning (DIF)
Differential item functioning is of particular importance in the
test development process because of its impact on equity in
score interpretation. DIF exists when two examinees with the
same ability, but who come from different groups, have different
probabilities of endorsing the correct answer for an item. In DIF-
type analysis, an analyst typically investigates item parameter
invariance between two or more groups of examinees: a single
reference group and one or more focal groups.

Furthermore, when DIF is investigated and interpreted at
an item-level, the analyst may consider methods that provide
information about the direction of DIF. For example, an analyst
may assign females as a reference group, and males as focal. If a
particular item is flagged as containing DIF, it may favor either
a reference or a focal group throughout the latent continuum
(known as uniform DIF). In such cases, item difficulty parameter
may be shifted to the right on the scale for the females group when
compared to the males group, suggesting that this item favors
male students over female students along the entire proficiency
scale (i.e., this item is thus more difficult for females than it is
for males). This measurement variance is expressed via members
of the male group having higher probability of success (i.e.,
correctly responding to an item) than members of the female
group. Alternatively, an item may benefit a reference group at
some part of the continuum, while in other parts of the latent
continuum, it may favor the focal group (this is also known as
nonuniform or crossed DIF).

DIF in CDMs
In CDMs, DIF is present when the success probability of an item
is different for examinees with the same attribute mastery profile
but different group membership. Specifically, in the DINA model,
DIF exists when the estimated guessing or slipping parameters
are different for the focal and the reference groups. However,
to this point relatively few studies have considered the impact
of DIF in CDMs. This is a significant weakness as it potentially

exposes CDM based results to biased measurement. The few
studies that have investigated DIF in the context of CDMs
(Milewski and Baron, 2002; Zhang, 2006; Li, 2008; Hou et al.,
2014; Li and Wang, 2015) have primarily focused their attention
on comparing various methods to identifying DIF. We briefly
describe this literature here in order to provide motivation for
our study.

Milewski and Baron (2002) conducted a study of preliminary
SAT data using DIF methodology to compare schools or
states to the total population at the level of attributes of
interest (as opposed to flagging poorly performing items).
They used a modified rule-space model for their CDM
(Tatsuoka, 1983; Tatsuoka and Tatsuoka, 1992; DiBello, 2002)
and then compared several DIF methods, including Mantel–
Haenszel, binary standardization, polytomous standardization,
and ANCOVA. The authors found that the ANCOVA method
was particularly sensitive to group differences, while the other
methods performed fairly similarly.

Zhang (2006) focused on Mantel–Haenszel and SIBTEST
methods when studying DIF in the DINA model. An important
aspect of his study was the comparison of the conditioning
variables – a typical total test score and an estimate of attribute
mastery patterns, which was introduced for the first time.
Mantel–Haenszel and SIBTEST performed similarly well in
identifying uniform DIF but were unable to identify nonuniform
DIF. Conditioning on attribute profiles functioned better than
total score when the Q-matrix was correctly specified, for
example Type I error rates in conditions with moderate DIF using
profile were 0.044 and 0.043 for small and large sample size, while
comparable rates when conditioning on the test scores were 0.042
and 0.055. When DIF was large, differences were more magnified
such that rates of 0.051 (0.057) were found for small (large)
sample size under profile and 0.071 (0.120) under test score
condition variable conditions. The author, however, notes that
using profile as conditioning method is more computationally
demanding than using the total score, which warranted further
exploration.

Similar to Milewski and Baron (2002), Li (2008) studied the
impact of DIF and differential attribute functioning in the context
of a modified higher order DINA model. Results suggested that
model was more accurate in recovering item than attribute
parameters. Further, this approach had better Type I error
control and higher power than Mantel–Haenszel, particularly
in nonuniform DIF conditions. In addition, in DIF analysis,
matching on attribute profile (as opposed to total score) appeared
superior in the simulation study, although in some cases using
real data, inflated Type I error rates were found.

Hou et al. (2014) used a DINA model to compare the Wald test
to both Mantel–Haenszel and SIBTEST procedures in presence of
uniform and nonuniform DIF using the attribute mastery profiles
as conditioning variable. Authors found that the Wald test
performed better than the other methods when the proportion
of DIF items was higher; however, it suffered from inflated Type I
error when items poorly discriminated (Type I error rates varied,
and ranged from 0.053 to 0.182 across various conditions).

Li and Wang (2015) developed a method that uniquely
addressed DIF by regressing item parameters on grouping
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variable when more than two groups were examined. Using an
LCDM and conditioning on the attribute profile, the authors
found that their method performed similarly to the Wald test
in terms of Type I error rates with two groups, and yielded
higher power rates in both uniform and nonuniform DIF items
and in situations with higher guessing and slipping parameters.
When three groups were considered, the regression method
produced lower Type I error rates compared to the Wald method
(likely because of differences in attribute profile distributions)
and similar power rates. As with other studies (e.g., Hou et al.,
2014), Li and Wang (2015) found a large range of power rates,
ranging from extremely (unacceptably) low rates of 0.10s to high
power rates of 0.90s.

These studies have commonalities in that DIF is introduced in
differing item parameters across the groups and where a single
Q-matrix is considered across the groups. However, differences
appear across the studies, including the choice of a conditioning
variable – that is, whether to use a total score or an attribute
profile as a conditioning variable, the choice of the focus. They
also differed in terms of whether the focus is on differential item
or skill functioning, and the choice of the methods used to detect
DIF in the CDM context. However, to the best of our knowledge,
no study has considered the impact of Q-matrix misspecification
in CDMs while studying the impact of DIF. Given the central role
of the Q-matrix in any CDM analysis, we consider this to be an
important factor when examining DIF in CDMs.

Q-matrix Misspecifications in CDMs
Traditionally, Q-matrix misspecification is defined in terms of
omitting a necessary or required skill or adding an unnecessary
skill in the Q-matrix (Rupp and Templin, 2008; Im and Corter,
2011; Kunina-Habenicht et al., 2012). Several scholars have
studied impacts of overfitting (inclusion of a superfluous skill)
and underfitting (exclusion of an essential skill) of a Q-matrix on
parameter recovery and classification (e.g., Rupp and Templin,
2008; Im and Corter, 2011).

These authors found that each type of misspecification
resulted in specific parameters overestimation (e.g., overfitting
led to overestimation of the slipping parameter but accurate
estimation of the guessing parameter). Q-matrix misspecification
led to misclassification of entire classes that were related to
skills omitted from particular items; however, because of the
limited sizes of each class, this did not have a large overall
misclassification impact. Kunina-Habenicht et al. (2012) similarly
found over- and underfitting led to decent parameter recovery
across complex and simple items in large samples, but poor
parameter recovery for complex items in small samples. These
studies suggest that misspecification can interfere with accurate
parameter estimation. However, it is unclear how Q-matrix
misspecification will interact with DIF, which is basis for our
study design described next.

MATERIALS AND METHODS

In order to address our research questions and examine the
impact of DIF on CDMs with misspecified Q-matrices, we

conducted a Monte-Carlo simulation study. In what follows,
we offer a rationale for the choices made in the simulation
study design, including manipulated factors (and respective
levels) of the simulation study, and the process of the
selection/modification of item and person parameters. Lastly, we
provide the analysis plan to guide our results discussion.

Manipulated Factors
The manipulated factors fell into two categories: DIF- and CDM-
related factors. We considered two DIF-related factors: DIF type
(uniform DIF or nonuniform DIF) and DIF size (moderate or
large). We also manipulated three CDM-related factors: position
of misspecification (randomly across all items, occurs only
among items measuring two or fewer attributes, or only among
items measuring three or more attributes), impacted group of
misspecification (misspecified in both groups, or misspecified in
focal group only), and the attribute correlation (0.3, 0.5, 0.8).

DIF-Related Factors
DIF Type
Similar to the IRT context, uniform and nonuniform DIF can
also be differentiated in the DINA model. DIF-type is governed
by the directionality of the difference in slipping and guessing
parameters. Specifically, if the differences in the guessing and
slipping parameters are in the same direction, uniform DIF
occurs. Otherwise, nonuniform DIF occurs.

DIF Size
Magnitude of DIF varies across studies and its magnitude is based
on the model used in the study. Generally, however, scholars
examine various ranges of DIF to research the impact of DIF. In
our study for DINA model, we utilized two levels of DIF (also
studied in Zhang, 2006; Hou et al., 2014): moderate and large.
We defined moderate DIF as difference in item parameter (1sj or
1gj) equaled 0.075, while the large DIF was defined as difference
of 0.100 for the focal and reference item parameters.

The combinations of two DIF-related factors resulted in 16
conditions. Following Hou et al. (2014), we illustrated the 16 DIF
conditions (Table 2). For example, in the first row, we observe
that the differences of slipping (1sj) and guessing parameters
(1gj) between the focal and reference groups were in the same
direction, representing uniform DIF. For each DIF size, there
were two uniform DIF conditions: both 1sj and 1gj were positive
and both 1sj and 1gj were negative. For each DIF size, there were
six nonuniform DIF conditions: 1sj and 1gj had opposite signs
or one of the deltas was zero. Therefore, there were eight DIF
conditions for each DIF size, resulting in 16 DIF conditions in
total. In addition, we simulated a baseline (no DIF) condition
where the guessing and slipping parameters for the focal and
reference groups were the same.

CDM-Related Factors
Given the focus of our study was to understand the performance
of the methods in detecting DIF in CDMs, we manipulated
several factors related to CDM construction. That is, we examined
the impact of Q-matrix structure and its misspecification, as well
as the attribute correlation on methods’ ability to identify DIF.
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TABLE 2 | Summary of DIF conditions∗.

DIF type DIF size 1gj (gF j – gRj ) 1sj (sF j – sRj )

Uniform DIF Moderate +0.075 +0.075

−0.075 −0.075

Large +0.10 +0.10

−0.10 −0.10

Nonuniform DIF Moderate +0.075 −0.075

+0.075 0

−0.075 +0.075

−0.075 0

0 −0.075

0 +0.075

Large +0.10 −0.10

+0.10 0

−0.10 +0.10

−0.10 0

0 −0.10

0 +0.10

∗DIF combinations were modeled after Hou et al. (2014).

Position of Misspecification
The Q-matrix misspecification occurred at one of the three
levels: at random across all items, only among items measuring
one or two attributes, or only among items measuring three
or more attributes. Our rationale for including this factor was
based on the idea that items which require more attributes are
more likely to be misspecified, as that formation of Q-matrix
is a complex process which may leave out some attributes
while potentially including unnecessary ones. As scholars have
previously suggested, Q-matrix misspecification (overfitting or
underfitting) may occur for a number of reasons, including the
fact that skills may be hierarchically related (yet not accounted
for in the Q-matrix construction), and a failure to account for
alternative strategies when solving items (e.g., Rupp and Templin,
2008; Im and Corter, 2011).

Impacted Group of Misspecification
The Q-matrix that was misspecified impacted either both
reference and focal groups (in the same way), or only the focal
group. We utilized those two levels because in some situations, it
is possible that the focal and reference group may have a different
Q-matrix for the same test, yet in empirical research, both groups
would have a single Q-matrix.

Attribute Correlation
The correlations among attributes in CDMs literature ranged
from small to large (e.g., Zhang, 2006; Cui et al., 2012), even
though studies typically use a fixed level of attribute correlation
0.5 (e.g., Henson and Douglas, 2005; Chiu, 2013; Bradshaw and
Templin, 2014). However, applications of hierarchical CDMs
suggest that attributes may be related differently. Thus, in order to
examine the impact of the correlation among attributes, we used
three levels of attribute correlation in our study: 0.3, 0.5, and 0.8.

In addition to the six conditions combined from the two
Q-matrix misspecification factors, a baseline condition without
Q-matrix misspecification was also included in our study. The

Q-misspecification factors and the attribute correlation were fully
crossed, thus creating a total of 21 CDM-related conditions.

Data Generation
In the simulation, we assumed that 2000 simulees (N = 1000
in reference and focal groups, respectively) responded to 31
dichotomously scored items measuring between one and five
attributes. Data were generated using the DINA model (see
Equation 2) with randomly chosen item parameters that align
with empirically found values (de la Torre and Douglas, 2004)
and the combination of factors previously discussed. Specifically,
guessing and slipping parameters for the baseline conditions
were randomly drawn from ∼U[0.1, 0.3]. The mean slipping
parameter was 0.226 (ranging from 0.103 to 0.291), and the
mean for the guessing parameter was 0.182 (ranging from 0.102
to 0.298). These values are comparable to those found in the
literature using DINA model (e.g., Zhang, 2006; de la Torre, 2009;
Li and Wang, 2015).

In order to simulate DIF, we selected six items3 (about 20%)
at random and increased (decreased) the baseline values of
slipping/guessing parameters per simulation design. Q-matrix
misspecification was modeled such that 10% of the Q-matrix
entries were randomly misspecified by changing the original
q-entries from 0 to 1 or from 1 to 0.

Data were simulated in R, Version 3.3.2 (R Core Team, 2016).
The R package difR was used to do DIF analysis using MH
and Logistic method (Magis et al., 2010), and the Wald test
was conducted using the GDINA package in R (Ma and de la
Torre, 2017). All study code is available upon request. Based on
the study design – the DIF-related factors fully crossed with the
CDM-related factors, resulted in 357 conditions.

Analysis and Outcomes
Each condition was replicated 100 times and results were
averaged across the 100 replications. We compare the
performance of the three DIF detection methods in terms
of Type I error and power. Type I error in this context indicates
that an item is flagged as having DIF when it does not. Power
rates are defined by the number of times an item is correctly
flagged as having DIF. For each of the 25 items that do not
have DIF, the Type I error rate is defined as the percentage of
times the item is detected as DIF out of the 100 replications. In
terms of power rates, for each of the six items that have DIF,
the power rate is defined as the percentage of times the item
is correctly detected as DIF out of the 100 replications. These
are reported as percentages in the table below averaged across
replication.

RESULTS

We present the results in two sections, beginning with the
graphical representations of the overall results for large DIF
(i.e., 1gj and 1sj = 0.10) conditions across the three studied

3These six items were then fixed across conditions to have DIF, although DIF
magnitude and directionally was changed according to the study design.
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methods.4 These overall rates represent an average across all
items within a replication, which are in turn averaged across
100 replications within a condition. The second section discusses
results by focusing on methods’ performance across items with
different characteristics. Specifically, we report results for items
that had relatively small number of attributes associated with
them (items with one or two attributes) and for items with
larger number of attributes (three or more). Within each section,
results are shown for Type I error, first, followed by power
rates.

Overall Results
Figures 1–4 present the average overall Type I error and
power rates for uniform and nonuniform large DIF. In all
figures, columns represent conditions in which the Q-matrix was
misspecified in (a) both reference and focal groups (left column)
and (b) only in focal group (right column). Rows of the figures
represent the location of the Q-matrix misspecification, such that
in the top row, misspecification is random (i.e., random Q-matrix
entries are misspecified); in the middle row, misspecification
is concentrated in items that required only two or one skills;
and in the bottom row, the misspecification of the Q-matrix
is simulated in items which require three or more attributes.
Within each figure, dashed lines indicate the baseline rates
(i.e., no Q-matrix misspecification), while solid lines represent
obtained results for various combinations of manipulated factors.
In addition, each of the three methods is represented by color
and mark, such that logistic regression is indicated by blue
squares, Mantel–Haenszel by red circles, and Wald by green
triangles.

Figure 1 illustrates the Type 1 error rates for conditions
with uniform large DIF across different attribute correlations
(x-axis) for all three methods. As noted in the left column of
Figure 1, when both reference and focal groups were affected
by Q-matrix misspecification (A1–A3 graphs), Mantel–Haenszel
and logistic regression methods outperformed the Wald method.
Specifically, while Mantel–Haenszel had the lowest Type I error
rates (average of 0.048, and with a range from 0.04 to 0.06),
closely followed by logistic regression rates (average of 0.059,
and with a range between 0.05 and 0.07), the Wald method
yielded inflated Type I error rates all above 0.10 (average of
0.125, and with a range from 0.07 to 0.39). When the Q-matrix
was misspecified only for the focal group, all three methods
yielded inflated Type I error rates even though the Mantel–
Haenszel and logistic regression yielded lower rates than the
Wald method. Across all three methods, the most inflated rates
were found in conditions when random misspecification was
simulated (B1 graph), where rates reached as high as 0.39, 0.31,
and 0.30 for Wald, Mantel–Haenszel, and logistic regression,
respectively.

Figure 2 presents the Type I error rates for conditions with
nonuniform large DIF across different attribute correlations
(x-axis) for all three methods. Very similar findings (and
patterns) to those in Figure 1 were observed in Figure 2,

4Similar results were found for comparable conditions in presence of moderate DIF
and are thus not reported here. Complete results can be obtained by request.

suggesting again that the Wald method performed worse than
the other two methods. However, two additional observations
were made. First, across all conditions, Type I error rates were
higher for all methods under nonuniform (Figure 2) than under
uniform (Figure 1) DIF. Second, the relative performance of the
methods was more similar under nonuniform DIF than under
uniform DIF, as indicated by closer proximity of the red, blue,
and green lines.

Overall average power rates for the three methods are reported
in Figures 3, 4. Unlike Type I error results, methods performed
rather differently for conditions under uniform and nonuniform
DIF. As Figure 3 shows, Mantel–Haenszel reported the lowest
power rates across the studied conditions when uniform large
DIF was present; its power rates never exceeded 0.72 (average
of 0.535, and with a range between 0.25 and 0.72) across
any condition. Wald and logistic regression methods, however,
yielded reasonable power rates, typically above 0.80.

Specifically, when both groups were impacted by the
misspecified Q-matrix (A1–A3 graphs in Figure 3), logistic
regression yielded the highest power rates, with an average of
0.879 (and range from 0.72 to 0.97) across conditions, and in
particular high power rates for conditions when misspecification
was either random (A1 graph in Figure 3; average power of 0.913,
range of 0.85–0.94) or in items with two or one attribute (A2
graph in Figure 3; average power of 0.890, range of 0.85–0.95)
across the attribute correlation levels. In the same conditions, the
Wald method yielded slightly lower, but still relatively acceptable
power rates which averaged of 0.823 and ranged from 0.71
to 0.88.

Furthermore, when Q-matrix misspecification was located
in items with three or more attributes (A3), logistic regression
and the Wald method performed similarly, although the Wald
method yielded higher rates than logistic regression when
attribute correlations were at 0.30 or 0.50, while Wald method
yielded higher power rates at 0.80 correlation. Specifically,
the Wald method yielded power rates of 0.885, 0.885, and
0.880 across three levels of attribute correlation (0.30, 0.50,
and 0.80), while logistic regression yielded 0.760, 0.840, and
0.905, respectively. Mantel–Haenszel never exceeded 0.310 in the
comparable conditions.

When the Q-matrix was misspecified for the focal group only
(B1–B3 graphs in Figure 3), similar patterns of results to those
of A1–A3 were found. Namely, Mantel–Haenszel yielded lower
power rates than logistic regression or the Wald method with an
average of 0.579 and range from 0.50 to 0.68 across any condition,
while logistic regression and the Wald method yielded rates with
averages (ranges) of 0.860 (0.76–0.94) and 0.904 (0.81–0.97),
respectively. In addition, compared to A1–A3, Wald method and
logistic regression yielded power rates more similar to each other,
suggesting fewer differences in performance between these two
methods when Q-matrix misspecification occurred only in the
focal group.

When nonuniform DIF was present (Figure 4), logistic
regression and Wald method generally yielded lower power
rates when compared to the uniform condition (Figure 3)
counterparts, although their rates were still reasonably high
with overall averages of 0.785 and 0.728, respectively. In most
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FIGURE 1 | Type I error rates for DIF methods across attribute correlations when large uniform DIF is present.
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FIGURE 2 | Type I error rates for DIF methods across attribute correlations when large nonuniform DIF is present.
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FIGURE 3 | Power rates for DIF methods across attribute correlations when large uniform DIF is present.
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FIGURE 4 | Power rates for DIF methods across attribute correlations when large nonuniform DIF is present.
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conditions (except B3 graph), logistic regression yielded equally
high or the highest power rates when compared to Wald
method and Mantel–Haenszel, as indicated by the position of
the blue line relative to red or green. Specifically, when both
groups were impacted by the misspecified Q-matrix (A1–A3
graphs in Figure 4), logistic regression yielded the highest
power rates, with an average of 0.879 (and range between 0.72
and 0.97) across conditions, compared to the average (range)
power rate yielded by Wald method and MH, 0.664 (0.20–
0.90) and 0.704 (0.23–1.00), respectively.5 When only the focal
group was impacted, the three methods tended to perform
reasonably similar to each other under conditions where the
Q-matrix was misspecified at random or in items with two or
fewer attributes (B1 and B2 graphs), as indicated by the red,
blue, and green lines being relatively close to each other. The
largest difference in performance was noted in conditions where
Q-matrix misspecification occurred in items with three or more
attributes, where the Wald method, which yielded generally high
rates across conditions, outperformed the other two methods. In
those conditions, Wald was the only method with the average
power rates of above 0.80 across all three attribute correlation
levels (851, 0.850, and 0.867 for 0.30, 0.50, and 0.80 correlation
levels, respectively).

5The low power rates (as indicated by low rate in the range) occurred in only a
handful of conditions, mostly related to DIF being modeled in differential guessing
parameter (only), and when Q-matrix misspecification was simulated for both
groups and at random or for items with two or fewer attributes. Given that figures
represent the overall average, and since remaining conditions had relatively high
power rates, the presence of a handful of low power values did not affect the overall
rates as much.

Results for Items With Fewer and Larger
Number of Attributes
Overall rates, as presented in the aforementioned figures,
provide information about general trends across the simulated
conditions. We further report results by examining the impact
of Q-matrix structure – namely, by examining the performance
of the methods in identifying DIF for different types of items. In
the following tables, we report Type I error and power rates for
items with only one or two attributes (indicated as 2 or Fewer
K), and those with three or more attributes (3 or More K). This
allows us to examine at a more detailed level how particular
characteristic of an item (i.e., how many attributes are assumed to
be required for an item) affects the performance of the methods
to flag problematic items.6

Table 3 presents results of the average Type I error rates for
uniform [panel (a)] and nonuniform [panel (b)] DIF conditions
where attribute correlation was 0.50 and simulated DIF was
large. As previously suggested, Type I error results for moderate
DIF and other examined levels of attribute correlations yielded
similar patterns and thus were not reported here (complete
results for Type I error and power rates per item are available per
request).

As observed in Table 3, panel (a), Mantel–Haenszel and
logistic regression yielded Type I error rates around 0.05

6Items were grouped together based on the original Q-matrix. This meant that in
the baseline Q-matrix (prior to any misspecification) items 1–15 were simulated
to have only 1 or 2 attributes associated with them (labeled as two or fewer) and
were thus grouped together for purposes of reporting in tables, and items 16–31
were grouped together to represent items with three or more attributes. The rates
reported are averages across these item groups.

TABLE 3 | Average Type I error rates for conditions with attribute correlation of 0.50 and large DIF.

Group misspecification Position misspecification Mantel–Haenszel Logistic Wald

2 or Fewer K 3 or More K 2 or Fewer K 3 or More K 2 or Fewer K 3 or More K

Panel (b): Uniform DIF

Neither 0.05 0.04 0.06 0.04 0.14 0.12

Both groups At random 0.05 0.05 0.08 0.05 0.16 0.11

2 or Fewer 0.05 0.04 0.07 0.05 0.12 0.09

3 or More 0.06 0.05 0.07 0.05 0.12 0.10

Focal only At random 0.40 0.19 0.40 0.19 0.47 0.28

2 or Fewer 0.46 0.05 0.45 0.06 0.59 0.14

3 or More 0.06 0.37 0.07 0.37 0.17 0.48

Panel (a): Nonuniform DIF

Neither 0.05 0.04 0.07 0.05 0.14 0.11

Both groups At random 0.05 0.04 0.07 0.05 0.12 0.11

2 or Fewer 0.05 0.04 0.06 0.05 0.09 0.09

3 or More 0.05 0.05 0.06 0.05 0.10 0.09

Focal only At random 0.40 0.19 0.41 0.19 0.45 0.26

2 or Fewer 0.44 0.05 0.46 0.06 0.57 0.14

3 or More 0.05 0.37 0.08 0.37 0.16 0.47

Under 2 or Fewer: K = average Type I error rates for items with two or fewer (i.e., one) attributes. Under 3 or More: K = average Type I error rates for items with three or
more attributes. Under Group Misspecification: Neither = no group misspecification present, Both Groups = misspecification in the Reference and Focal Groups, Focal
only = misspecification in Focal group only. Under Position Misspecification: at random = misspecification at random across all 31 items. Two or fewer = misspecification
of Q-matrix entries for items 1–15 (at random) as those items were associated with two or one attribute. Three or more = misspecification of Q-matrix entries for items
16–31 (at random) as those items were associated with at least three attributes.
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when Q-matrix was not misspecified (0.04 for items of 2
or Fewer K and 0.06 for items with 3 or More K). When
Q-matrix was misspecified in both reference and focal groups,
Type I error rates were lower when items had larger number
of attributes associated with them (under 3 or More K),
although in Mantel–Haenszel, the difference was marginal. In
these conditions, regardless of the location of misspecification
(e.g., random or for items with fewer/more attributes under
Position Misspecification column), Mantel–Haenszel and logistic
regression yielded acceptable Type I error rates, ranging from
0.04 to 0.08. The Wald method yielded inflated Type I error
rates of about 0.12 average with a range of 0.09 to 0.16
for either items with 3 or More K or items with 2 or
Fewer K.

When misspecification was located in the focal group only,
all three methods reported unacceptably inflated Type I error
rates with only a few exceptions. Namely, when Q-matrix
misspecification was only in the focal group and misspecification
was concentrated in items with two or fewer attributes, both
Mantel–Haenszel and logistic regression reported reasonable
Type I error rates for items with larger number of attributes (0.05
and 0.06, respectively, under respective 3 or More K). Similarly,
when Q-matrix misspecification was concentrated in items with
larger number of attributes, appropriate Type I error rates for
items with fewer number of attributes were observed (0.06 and
0.07, respectively under 2 or Fewer K). In all other conditions,
for all three methods, Type I error rates were unacceptably high,
typically in the 0.40s.

As noted in Table 3, panel (b), similar magnitudes of
Type I error rates as well as patterns for nonuniform DIF

were observed. Here again, we observed Mantel–Haenszel and
logistic regression yielded more acceptable Type I error rates
for conditions in which the Q-matrix was correctly specified or
misspecified for both groups. The Wald method again yielded
inflated Type I error rates, with an average of over 0.22 and
range of 0.09–0.57 regardless of how many attributes items
were associated with. Mantel–Haenszel and logistic regression
yielded somewhat lower Type I error rates, but generally followed
in similar pattern as the Wald method – the worst Mantel–
Haenszel and logistic regression performances were again found
in conditions where only the focal group was impacted by
Q-matrix misspecification, in particular for items with fewer
attributes (2 or Fewer K).

Table 4 presents results of the average power rates for
uniform [panel (a)] and nonuniform [panel (b)] DIF conditions
where attribute correlation was 0.50 and simulated DIF was
large. As previously suggested, results for moderate DIF and
other examined levels of attribute correlations yielded similar
results and thus were not reported here. As noted in panel
(a) of Table 4, the three methods performed differently across
various levels of Q-matrix specification when DIF was uniform.
Specifically, when no Q-matrix misspecification was modeled,
logistic regression and Wald reported reasonably high power
rates (in range of 0.80–0.96), compared to Mantel–Haenszel
(0.44 and 0.52 for items with 2 or Fewer K and 3 or More K,
respectively).

When reference and focal groups contained Q-matrix
misspecification, logistic regression reported the highest power
rates (0.81–0.93), followed by the Wald method (0.70–0.96)
and Mantel–Haenszel, which reported generally unacceptably

TABLE 4 | Average power rates for conditions with attribute correlation of 0.50 and large DIF.

Group misspecification Position misspecification Mantel–Haenszel Logistic Wald

2 or Fewer K 3 or More K 2 or Fewer K 3 or More K 2 or Fewer K 3 or More K

Panel (a): Uniform DIF

Neither 0.44 0.52 0.80 0.93 0.96 0.89

Both groups At random 0.71 0.52 0.90 0.93 0.87 0.74

2 or Fewer 0.65 0.53 0.84 0.92 0.86 0.70

3 or More 0.45 0.10 0.81 0.87 0.96 0.81

Focal only At random 0.74 0.47 0.86 0.86 0.99 0.80

2 or Fewer 0.66 0.43 0.81 0.87 0.96 0.75

3 or More 0.42 0.69 0.78 0.95 0.95 0.96

Panel (b): Nonuniform DIF

Neither 0.71 0.71 0.75 0.78 0.79 0.69

Both groups At random 0.70 0.73 0.75 0.79 0.70 0.60

2 or Fewer 0.68 0.73 0.74 0.82 0.70 0.53

3 or More 0.69 0.72 0.73 0.82 0.80 0.64

Focal only At random 0.78 0.69 0.82 0.74 0.89 0.68

2 or Fewer 0.79 0.71 0.82 0.81 0.84 0.62

3 or More 0.70 0.74 0.75 0.80 0.80 0.91

Under 2 or Fewer: K = average Type I error rates for items with two or fewer (i.e., one) attributes. Under 3 or More: K = average Type I error rates for items with three or
more attributes. Under Group Misspecification: Neither = no group misspecification present, Both groups = misspecification in the Reference and Focal Groups, Focal
only = misspecification in Focal group only. Under Position Misspecification: At random = misspecification at random across all 31 items. Two or fewer = misspecification
of Q-matrix entries for items 1–15 (at random) as those items were associated with two or one attribute. Three or more = misspecification of Q-matrix entries for items
16–31 (at random) as those items were associated with at least three attributes.
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low power rates (0.10–0.71). In conditions where the Q-matrix
was misspecified in the focal group only, the Wald method
and logistic regression similarly outperformed Mantel–Haenszel.
An interesting observation was noted about logistic regression
and Wald method performance. Namely, in most cases, unlike
logistic regression (which yielded increased or equal power rates),
increase in the number of attributes (i.e., from 2 or Fewer K
to 3 or More K) resulted in poorer (lower) power rates in
Wald (and Mantel–Haenszel). This decrease was noted across
most conditions regardless of the location or group Q-matrix
misspecification – one exception was in condition where the
Q-matrix was misspecified only in the focal group and in
conditions where misspecification occurred only in items with
3 or More K. In those cases, power rates increased from 0.42
to 0.69 for Mantel–Haenszel, and 0.95 to 0.96 for the Wald
method.

As noted in panel (b) of Table 4, nonuniform DIF conditions
resulted in lower power rates for logistic regression and Wald
method (from about 0.80 and 0.90s down to about 0.70s);
Mantel–Haenszel, however, yielded results more comparable to
the other two methods than in uniform conditions. Power rates
across Q-matrix misspecification and location were generally
lower in presence of nonuniform DIF, typically ranging in
the 0.70s. Further, when both reference and focal groups had
misspecified Q-matrix, logistic regression (and Mantel–Haenszel)
yielded higher power rates for items with larger number of
attributes, while the Wald method yielded higher power rates for
items with two or fewer attributes, on average.

However, when Q-matrix misspecification was present in
the focal group only, all three methods tended to be more
successful in flagging problematic items (i.e., higher power rates),
for items with fewer number of attributes than when Q-matrix
misspecification was either random or concentrated in items
with two or fewer number of attributes. Higher power rates
were observed in all three methods when misspecification was
concentrated in items with three or more attributes. Specifically,
in these conditions, Wald method yielded the highest power rates
of 0.80 and 0.91 (for fewer and more attributes, respectively),
while comparable rates for logistic regression and Mantel–
Haenszel were 0.75 and 0.80, and 0.70 and 0.74, respectively.

DISCUSSION

Cognitive diagnostic models are considered a promising
methodology that allows more access to knowledge about student
performance without necessarily increasing the test time (Hou
et al., 2014). This area of research is currently gaining a lot
of attention in part due to the educational climate which
makes use of models to provide insight into students’ strengths
and weaknesses. As with any assessment context that produces
some type of scores used in high-stakes decision making, valid
inferences are important. Thus, our study contributes to better
understanding of how methods to detect DIF perform in the
context of CDMs.

An important contribution of the study is the understanding
how methods perform in detecting DIF under different Q-matrix

structures including when the Q-matrix was misspecified at
various degrees. Broadly, results in the current study suggested
that while Mantel–Haenszel and logistic regression typically
yielded reasonable Type I error rates, the Wald method
yielded inflated Type I error rates across most conditions.
Further, all methods’ performance deteriorated (i.e., higher
Type I error rates) when only one group modeled misspecified
Q-matrix. Mantel–Haenszel tended to yield the lowest power
rates among the three methods, while the Wald method
performed similarly to logistic regression and yielded reasonably
high power rates across conditions. The implication here is that
different methods performed more favorably under different
conditions and that a researcher should take into account the
potential tradeoff between acceptable Type I error and power
rates.7

As with any simulation study, the settings we considered
were necessarily limited, and other contexts may produce
different results. For example, in our Q-matrix construction,
we only considered items with up to five attributes. While this
is not unusual when studying parsimonious CDMs, empirical
applications of models such as reparameterized RUM or Rule
Space methodology often employ a dozen or more attributes
(e.g., Tatsuoka et al., 2004; Svetina et al., 2017). For example,
in a study aimed at investigating and comparing eighth-graders’
mathematics performance across countries, Tatsuoka et al.
(2004), together with content experts, developed a Q-matrix that
contained 27 mathematics attributes that spanned across three
main skill groups (content, process, and skill type).

Additionally, Q-matric complexity exponentially increases as
the number of attributes increase, and thus the performance
of DIF methods studied here (i.e., MH, logistic regression, or
Wald) is unknown in such contexts. In addition, while our design
allowed for differing correlation levels among the attributes (at
low, moderate, and high levels), our design assumed that a select
level of correlation was constant between all pairs of attributes.
This may not work in all applications, however, as some
attributes may be more strongly related than others. In a similar
vein, researchers may hypothesize that some skills are related
hierarchically to other skills and thus, the Q-matrix structure may
result in different correlations among the attributes. Examples
of several constructs, including reading comprehension and
mathematics, can be found where CDMs fit to the analyses
allowing for hierarchical attribute models (e.g., Gierl et al., 2008,
2010; Wang and Gierl, 2011).

In addition to addressing the above-mentioned limitations,
future work could also consider contexts in which more groups
or smaller sample sizes were included, as the current study
considered only the large sample size of 1000 per group and
just two groups. More so, in the current study, performance of
the methods was evaluated via Type I errors (i.e., an item is

7We note that outside simulation, knowledge of the models’ performance in terms
of control of Type I errors or power is unknown; however, we agree with Madison
and Bradshaw (2013) who suggested that researchers interested in designing a
test that would ultimately employ a CDM should perform some type of power
analysis (in this context, the accuracy and reliability of classification). The authors
developed a tool called Q∗Power in attempt to address this issue, which can be
freely accessed at http://www.lainebradshaw.com/qpower/.
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incorrectly flagged as having DIF when the item was simulated
as invariant) and power (i.e., an item is correctly flagged as
having DIF as item was simulated to be noninvariant). It would
be useful to explore further impact of manipulated factors on
the precision or accuracy of mastery classification. In other
words, CDMs provide item parameter estimates, which can help
understand the precision of model estimation, but they also
provide information regarding the mastery of examinees who in
turn can be classified which is generally a benefit of using a CDM
over a traditional statistical model. In other words, the utility of
fitting CDMs is to potentially better understand the strengths and
weaknesses of the examinees. One aspect in the CDM literature
that deals with this is the idea of examinee classification, and
factors that impact it. Our study is currently being extended to
examine the factors that impact the precision of classification of
examinees. Despite the limitations, the current work provides
further insight into the performance of popular DIF methods
in a context that is still relatively unexplored, yet which may

potentially make big impacts in educational research given the
current accountability era.

AUTHOR CONTRIBUTIONS

DS developed the original idea, conducted the data analyses
and interpretation, performed majority of the writing, guided
the overall research process, and contributed to editing. YF
contributed to conceptualizing idea and data analyses, wrote
some portions of the manuscript, and contributed to editing. JP
contributed to conceptualizing idea, wrote parts of manuscript
(in particular in background section), and contributed to editing.
MV contributed to data interpretation and formatting, and
contributed to editing. AV contributed to data analysis, in
particular with data generation, and contributed to editing. SD
contributed to conceptualizing the original idea, graphing, and
editing.

REFERENCES
Bradshaw, L., and Templin, J. (2014). Combining item response theory and

diagnostic classification models: a psychometric model for scaling ability and
diagnosing misconceptions. Psychometrika 79, 403–425. doi: 10.1007/s11336-
013-9350-4

Chiu, C. Y. (2013). Statistical refinement of the Q-matrix in cognitive diagnosis.
Appl. Psychol. Meas. 37, 598–618. doi: 10.1177/0146621613488436

Cui, Y., Gierl, M. J., and Chang, H. H. (2012). Estimating classification consistency
and accuracy for cognitive diagnostic assessment. J. Educ. Meas. 49, 19–38.
doi: 10.1111/j.1745-3984.2011.00158.x

de la Torre, J. (2009). DINA model and parameter estimation: a didactic. J. Educ.
Behav. Stat. 34, 115–130. doi: 10.3102/1076998607309474

de la Torre, J., and Douglas, J. A. (2004). Higher-order latent trait models
for cognitive diagnosis. Psychometrika 69, 333–353. doi: 10.1007/BF0229
5640

DiBello, L. (2002). “Skill-based scoring models for the PSAT/NMSQT,” in
Proceedings of the Symposium Conducted at the Meeting of the National Council
of Measurement in Education: Reporting More Than Scores: Skills-Based Scoring
of a National Test, K. L. Huff (Organizer), New Orleans, LA.

Gierl, M. J., Alves, C., and Majeau, R. T. (2010). “Using principled test design
to develop and evaluate a diagnostic mathematics assessment in grades 3 and
6,” in Proceedings of the Annual Meeting of the American Educational Research
Association, Denver, CO.

Gierl, M. J., Zheng, Y., and Cui, Y. (2008). Using the attribute hierarchy
method to identify and interpret the cognitive skills that produce group
differences. J. Educ. Meas. 45, 65–89. doi: 10.1111/j.1745-3984.2007.
00052.x

Henson, R., and Douglas, J. (2005). Test construction for cognitive diagnosis. Appl.
Psychol. Meas. 29, 262–277. doi: 10.1177/0146621604272623

Hou, L., de la Torre, J. D., and Nandakumar, R. (2014). Differential item
functioning assessment in cognitive diagnostic modeling: application of the
Wald test to investigate DIF in the DINA model. J. Educ. Meas. 51, 98–125.
doi: 10.1111/jedm.12036

Im, S., and Corter, J. E. (2011). Statistical consequences of attribute misspecification
in the rule space method. Educ. Psychol. Meas. 71, 712–731. doi: 10.1177/
0013164410384855

Junker, B. W., and Sijtsma, K. (2001). Cognitive assessment models with few
assumptions, and connections with nonparametric item response theory. Appl.
Psychol. Meas. 25, 258–272. doi: 10.1177/01466210122032064

Kunina-Habenicht, O., Rupp, A. A., and Wilhelm, O. (2012). The impact of model
misspecification on parameter estimation and item-fit assessment in log-linear
diagnostic classification models. J. Educ. Meas. 49, 59–81. doi: 10.1111/j.1745-
3984.2011.00160.x

Lee, Y. S., de la Torre, J., and Park, Y. S. (2012). Relationships between cognitive
diagnosis, CTT, and IRT indices: an empirical investigation. Asia Pac. Educ. Rev.
13, 333–345. doi: 10.1007/s12564-011-9196-3

Li, F. (2008). A Modified Higher-Order DINA Model for Detecting Differential
Item Functioning and Differential Attribute Functioning. Doctoral dissertation,
University of Georgia, Athens, GA.

Li, X., and Wang, W. C. (2015). Assessment of differential item functioning under
cognitive diagnosis models: the DINA model example. J. Educ. Meas. 52, 28–54.
doi: 10.1111/jedm.12061

Ma, W., and de la Torre, J. (2017). GDINA: The Generalized DINA Model
Framework. R Package Version 1.4.2. Available at: https://CRAN.R-project.org/
package=GDINA

Madison, M., and Bradshaw, L. (2013). The effects of Q-matrix design on
classification accuracy in the LCDM. Paper Presented at the Annual
Meeting of the Northeastern Educational Research Association, Rocky
Hill, CT.

Magis, D., Béland, S., Tuerlinckx, F., and De Boeck, P. (2010). A general
framework and an R package for the detection of dichotomous differential
item functioning. Behav. Res. Methods 42, 847–862. doi: 10.3758/BRM.42.
3.847

Milewski, G. B., and Baron, P. A. (2002). “Extending DIF methods to inform
aggregate reports on cognitive skills,” in Proceedings of the National Council of
Measurement in Education, New Orleans, LA.

R Core Team (2016). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Rupp, A. A., and Templin, J. L. (2008). Unique characteristics of diagnostic
classification models: a comprehensive review of the current state-of-the-art.
Measurement 6, 219–262. doi: 10.1080/15366360802490866

Svetina, D., Dai, S., and Wang, X. (2017). Use of cognitive diagnostic model to study
differential item functioning in accommodations. Behaviormetrika 44, 313–349.
doi: 10.1007/s41237-017-0021-0

Tatsuoka, C. (2002). Data analytic methods for latent partially ordered classification
models. J. R. Stat. Soc. Ser. C 51, 337–350. doi: 10.1111/1467-9876.00272

Tatsuoka, K. K. (1983). Rule space: an approach for dealing with misconceptions
based on item response theory. J. Educ. Meas. 20, 345–354. doi: 10.1111/j.1745-
3984.1983.tb00212.x

Tatsuoka, K. K. (1990). “Toward an integration of item-response theory and
cognitive error diagnosis,” in Diagnostic Monitoring of Skill and Knowledge
Acquisition, eds N. Frederiksen, R. Glaser, A. Lesgold, and M. G. Shafto
(Hillsdale, NJ: Lawrence Erlbaum), 453–488.

Tatsuoka, K. K., Corter, J. E., and Tatsuoka, C. (2004). Patterns of diagnosed
mathematical content and process skills in TIMSS-R across a sample of
20 countries. Am. Educ. Res. J. 41, 901–926. doi: 10.3102/0002831204100
4901

Frontiers in Psychology | www.frontiersin.org 14 May 2018 | Volume 9 | Article 696

https://doi.org/10.1007/s11336-013-9350-4
https://doi.org/10.1007/s11336-013-9350-4
https://doi.org/10.1177/0146621613488436
https://doi.org/10.1111/j.1745-3984.2011.00158.x
https://doi.org/10.3102/1076998607309474
https://doi.org/10.1007/BF02295640
https://doi.org/10.1007/BF02295640
https://doi.org/10.1111/j.1745-3984.2007.00052.x
https://doi.org/10.1111/j.1745-3984.2007.00052.x
https://doi.org/10.1177/0146621604272623
https://doi.org/10.1111/jedm.12036
https://doi.org/10.1177/0013164410384855
https://doi.org/10.1177/0013164410384855
https://doi.org/10.1177/01466210122032064
https://doi.org/10.1111/j.1745-3984.2011.00160.x
https://doi.org/10.1111/j.1745-3984.2011.00160.x
https://doi.org/10.1007/s12564-011-9196-3
https://doi.org/10.1111/jedm.12061
https://CRAN.R-project.org/package=GDINA
https://CRAN.R-project.org/package=GDINA
https://doi.org/10.3758/BRM.42.3.847
https://doi.org/10.3758/BRM.42.3.847
https://doi.org/10.1080/15366360802490866
https://doi.org/10.1007/s41237-017-0021-0
https://doi.org/10.1111/1467-9876.00272
https://doi.org/10.1111/j.1745-3984.1983.tb00212.x
https://doi.org/10.1111/j.1745-3984.1983.tb00212.x
https://doi.org/10.3102/00028312041004901
https://doi.org/10.3102/00028312041004901
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-00696 May 9, 2018 Time: 17:47 # 15

Svetina et al. DIF in CDMs

Tatsuoka, K. K., and Tatsuoka, M. M. (1992). A psychometrically sound cognitive
diagnostic model: effect of remediation as empirical validity. Technical Report,
RR-92-38-ONR. Princeton, NJ: Educational Testing Service.

von Davier, M. (2008). A general diagnostic model applied to language testing data.
Br. J. Math. Stat. Psychol. 61, 287–307. doi: 10.1348/000711007X193957

Wang, C., and Gierl, M. J. (2011). Using the attribute hierarchy method to
make diagnostic inferences about examinees’ cognitive skills in critical reading.
J. Educ. Meas. 48, 165–187. doi: 10.1111/j.1745-3984.2011.00142.x

Zhang, W. (2006). Detecting Differential Item Functioning Using the DINA
Model. Doctoral dissertations, University of North Carolina at Greensboro,
Greensboro, NC.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Svetina, Feng, Paulsen, Valdivia, Valdivia and Dai. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Psychology | www.frontiersin.org 15 May 2018 | Volume 9 | Article 696

https://doi.org/10.1348/000711007X193957
https://doi.org/10.1111/j.1745-3984.2011.00142.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

	Examining DIF in the Context of CDMs When the Q-Matrix Is Misspecified
	Introduction
	Background
	Cognitive Diagnostic Models
	DINA Model

	Differential Item Functioning (DIF)
	DIF in CDMs

	Q-matrix Misspecifications in CDMs

	Materials And Methods
	Manipulated Factors
	DIF-Related Factors
	DIF Type
	DIF Size

	CDM-Related Factors
	Position of Misspecification
	Impacted Group of Misspecification
	Attribute Correlation

	Data Generation
	Analysis and Outcomes

	Results
	Overall Results
	Results for Items With Fewer and Larger Number of Attributes

	Discussion
	Author Contributions
	References


