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The use of figurate numbers (e.g., in the context of elementary number theory) can
be considered a heuristic in the field of problem solving or proving. In this paper,
we want to discuss this heuristic from the perspectives of the semiotic theory of
Peirce (“diagrammatic reasoning” and “collateral knowledge”) and cognitive psychology
(“schema theory” and “Gestalt psychology”). We will make use of several results taken
from our research to illustrate first-year students’ problems when dealing with figurate
numbers in the context of proving. The considerations taken from both theoretical
perspectives will help to partly explain such phenomena. It will be shown that the use of
figurate numbers must not be considered to be any kind of help for learners or some way
of ‘easy’ mathematics. Working in this representational system has to be learned and
practiced as another kind of knowledge is necessary for working with figurate numbers.
The named findings also touch upon the concept of ‘proofs that explain.’ Finally, we
will highlight some implications for teaching and point to a number of demands for
future research.

Keywords: figurate numbers, mathematical proof, proof that explain, diagrammatic reasoning, generic proof

INTRODUCTION

There are different ways of communicating facts and ideas in mathematics. Besides the
mathematical symbolic language, geometric representations can also be used: in figurate numbers,
“numbers are classified according to their geometric representation as sets of dots” (Weaver, 1974,
p. 661). These figurate numbers have a long tradition in mathematics history: even the ancient
Greeks and the Chinese, for example, used the geometric order of points to perform mathematics
(see Chemla, 2012). As Steinweg (2002, p. 131; our translation) puts it: “Figurate numbers can
be considered as a cultural heritage of mathematics.” Even today, these kinds of representations
can be found in mathematical journals (e.g., Gallant, 1983; Wakin, 1984) as well as in school
mathematics (e.g., Norman, 1991; Conway and Guy, 1996). While figurate numbers can constitute
a unique playground for conjecturing and proving, its use can also be helpful in the context of
problem solving. However, besides the useful advantages that are linked with the use of geometric
representations, some research results point to possible obstacles.
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In this article, we want to discuss the use of figurate numbers
in mathematics from different perspectives. In this sense, each
section will have a different focus on this topic. (This is why
the structure of this paper is different from ‘normal’ papers with
an empirical focus). The paper aims at getting deeper into the
phenomenon of using figurate numbers in mathematics and in
learning mathematics. This ‘deeper’ is concerned with two foci:
(1) Why is it possible to do mathematics by making use of
figurate numbers? (2) What problems are associated with the use
of figurate numbers in mathematics for learners?

First, we will summarize the use of such representations
in mathematics, especially in the field of problem solving
and proving. In this context, we also want to highlight
some useful benefits from the educational point of view.
In a second step, we will discuss the use of figurate
numbers from two theoretical perspectives. The semiotic
perspective of “diagrammatic reasoning” of Peirce opens the
view for the meaning of the “diagrams” used and the
importance of the rules for dealing with them and reading
and understanding corresponding calculations. The field of
cognitive psychology will help to elaborate on the concepts
of learning and understanding and hint to possible obstacles
when doing mathematics in this context. In a third step, we
will summarize different findings from our research to illustrate
and underline the considerations taken from both theoretical
perspectives. Finally, some implications for research and teaching
are highlighted.

FIGURATE NUMBERS IN MATHEMATICS
AND MATHEMATICS EDUCATION

Many sequences in mathematics can be illustrated by using a
special kind of geometric representation as sets of dots and the
other way round (examples are shown in Figure 1).

In addition to the arithmetic properties, the geometric shapes
may lead to special kinds of insights. In Figure 2, for example,
the transition from a square to the next is done by adding two
sides and one dot in the corner. This ‘is why’ the difference
of two consecutive square numbers is always an odd number.
Such types of insights that correspond to understanding have a
special quality that can hardly be explained by purely behaviorist
descriptions (Köhler, 1959, p. 731). We will return to this fact
later in the context of cognitive psychology (see section “Some
Insights From Cognitive Psychology”).

It becomes obvious, that figurate numbers can be useful
for both clarifying and illuminating mathematical issues.
Accordingly, they can be used in a variety of ways in mathematics
and mathematics education. In the following sections, we will
elaborate on three different aspects: Figurate numbers in the
context of problem solving, in the context of mathematical proof
and for educational purposes.

Geometric Representations in the
Context of Problem Solving
Being confronted with a ‘problem’ in mathematics, one might
follow different heuristic strategies, like having a look at examples

and special cases or trying to follow a forward/backward strategy.
Another heuristic is using a change of representation [compare
the idea of “deciding on a notation” or “change of representation
to see the problem from a fresh perspective” in Mason et al.
(1982) and the heuristic of variation, variation of representation,
described in Schwarz (2018), p. 3 ff].

We consider the following example: “Which natural numbers
can be written as a sum of consecutive natural numbers?”.

Having a look at some concrete examples, one might have
different conjectures:

3 = 2+ 1; 5 = 2+ 3; 7 = 3+ 4 . . .

Conjecture: All odd numbers can be written as corresponding
sums.

1+ 2+ 3 = 6; 2+ 3+ 4 = 9; 4+ 5+ 6 = 15;

5+ 6+ 7 = 18 . . .

Conjecture: The sum of three consecutive natural numbers is
always divisible by three. Accordingly, numbers from the three
times table can be written as consecutive sums. (It is a hypothesis
to be proven that this is true for all multiples of 3).

This gives a partial answer to the initial question: all
numbers from the three times table can be written as sums of
consecutive numbers.

This idea can be transmitted to the sums of four consecutive
numbers:

1+ 2+ 3+ 4 = 10; 2+ 3+ 4+ 5 = 14; 4+ 5+ 6+ 7 = 22;

5+ 6+ 7+ 8 = 26 . . .

In this case, the sums of four consecutive numbers are not
divisible by four. However, one realizes that numbers like 10+
n · 4 (n ∈ N0) can be written as consecutive sums.

What about the sum of five consecutive numbers?

1+ 2+ 3+ 4+ 5 = 15; 2+ 3+ 4+ 5+ 6 = 20;

3+ 4+ 5+ 6+ 7 = 25

Conjecture: The sum of five consecutive natural numbers is
always divisible by five. Accordingly, numbers from the five times
table starting with 15 can be written as consecutive sums. (It is
a hypothesis to be proven that this is true for all multiples of 5
greater or equal to 15).

One might follow this investigation by having a look at
concrete examples. However, a change of representation can be
helpful in this case. In the field of figurate numbers, even and
odd numbers can be represented by two rows of dots with equal
long rows (“even”) or with the difference of one dot (“odd”) (see
Figure 3). Having a closer look at this structure of odd numbers,
one easily divides the figure representing the odd number ‘in
the middle,’ obtaining two consecutive natural numbers (see
Figure 4).

The sums of consecutive numbers can be represented
by ‘stairs’ of dots (see Figure 5). Following this idea, the
sum of three consecutive numbers always has three steps,
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FIGURE 1 | Some examples of figurate numbers (and their relationship to sequences): triangular numbers, square numbers, and hexagonal numbers.

FIGURE 2 | The transition from one square number to the next represented
by figurate numbers.

FIGURE 3 | Even and odd numbers represented by figurate numbers.

the sum of four has four, and so on. The phenomenon
explaining the assumptions above is the following: having
an odd number of stairs, one always has a line in the
middle. Accordingly, the dots overhanging on one side can be
transformed to the other side obtaining equal long rows. This
transformation does not work with an equal number of stairs
(see Figure 6).

FIGURE 4 | Odd numbers divided into two consecutive natural numbers.

FIGURE 5 | The sums of 3, 4, and 5 consecutive numbers represented by
figurate numbers.

Summarizing our ‘problem’: all odd numbers and all
numbers that are divisible by an odd number can be
written as sums of consecutive numbers. The numbers left
are the powers of two (1, 2, 4, 8, 16, . . .). And indeed,
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FIGURE 6 | The transformation of odd numbers for obtaining equal long rows
of dots.

FIGURE 7 | Generic proof with figurate numbers (Figure similar to Kempen
and Biehler, 2019a, p. 735).

as one can show – these numbers cannot be written as
respective sums.

As we have seen, the use of figurate numbers can help
investigate a problem (here: in elementary arithmetic) and may
even lead to a solution. More than this, the usage of figurate
numbers above also answers the question, why the assumptions
are true in every case. This fact opens the view for using figurate
numbers in the context of mathematical proving, too.

Figurate Numbers and Mathematical
Proof
In the investigation above, an argument was found to explain,
why the sum of three consecutive natural numbers is always
divisible by three (see Figure 6). This idea can also be used
to prove the corresponding claim. However, in the context
of concrete examples, the question of generality arises. One
characteristic of mathematical proof is the issue of generality.
The given argument concerning the transformation of one
dot to the former shortest row can be used in every possible

FIGURE 8 | A proof using geometric variable (Figure similar to Kempen and
Biehler, 2019a, p. 736).

case! This is due to the shape of stairs on the right-hand
side when representing the sum of any three consecutive
natural numbers by figurate numbers. This kind of proof,
giving some concrete examples to illustrate an overall idea and
explicating its generality is called “generic proof” (e.g., Dreyfus
et al., 2012, p. 200 f.). A complete generic proof is shown
in Figure 7.

In comparison, one feature of the mathematical symbolic
language is the possibility to express generality, e.g., by
using algebraic variables. A corresponding proof with algebraic
variables might be:

For all n ∈ N : n+ (n+ 1)+ (n+ 2) = n+ n+ n+ 1+ 2

= 3n+ 3 = 3 · (n+ 1)

Since (n+ 1) ∈ N the sum is divisible by three.
In the context of figurate numbers, a special kind of symbol

has been introduced to represent an arbitrary number of dots to
express some kind of generality, too. Kempen and Biehler (2019a,
p. 735) call this a “geometric-variable.” Geometric-variables
allow the construction of mathematical proof in the context of
figurate numbers expressing generality by its use of symbols (see
Figure 8).

There are a lot of proofs collected in the literature making
use of such geometric representations, called “charming proofs”
(Alsina and Nelsen, 2010) or “proofs without words” (Nelsen,
1993, 2000; Alsina and Nelsen, 2009). From a meta point of view,
such proofs are said to bear a special kind of explanatory quality
(e.g., Hanna, 1990, 2018; Hemmi, 2006).

A Closer Look at the Idea of Explanatory Proofs
The famous distinction between proofs that prove and proofs
that explain has been given by Hanna (1990). However, the idea
of explanation allows for different approaches (Hanna, 2018).
In the philosophy of mathematics, the explanatory quality is
stressed by the connections between mathematical statements
and their mutual relationships. From a pedagogical point of
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FIGURE 9 | An explanatory proof for the sum of the first n ∈ N natural numbers making use of figurate numbers.

view, the idea of explanation is combined with some insights
as to why a statement is true. In the following, we will refer
to this pedagogical concept of explanation. We also refer to the
characterization of proofs that explain, considered in Lockwood
et al. (2019), for their description links the concept with the
features of different representations systems that will be useful
in the theoretical consideration from a semiotic point of view
(see below). “We interpret, then, that a proof that explains
allows for a prover to make meaning of whatever formal
representation system he or she may be working with in order
to connect ideas to some semantic system.” (ibid., p. 777). The
idea of a semantic system is taken from the distinction between
semantic and syntactic proof production that seems to be helpful
for our discussion.

Weber and Alcock (2004) describe two different ways
of producing mathematical proofs. The syntactical proof
production is done by “manipulating correctly stated definitions
and other relevant facts in a logically permissible way. [. . .]
The prover does not make use of diagrams or other intuitive
and non-formal representations of mathematical concepts.”
(ibid., p. 210). In a semantic proof production, a person
uses instantiations of the mathematical objects to guide the
formal inferences in the proving process. With instantiations,
the authors describe “a systematically repeatable way that
an individual thinks about a mathematical object, which
is internally meaningful to that individual” (Weber and
Alcock, 2004, p. 210). As Weber (2010b, p. 34) puts it,
an explanatory proof “allows the reader to translate the
formal argument that he or she is reading to a less formal
argument in a separate semantic representation system”.
(The author uses the term semantic representational system
in opposite to a formal representational system). They
give the following descriptions of an even function as an
example: in a formal representational system, an even function
satisfies the condition ∀ x ∈ R : f (x) = f (−x). In a semantic
representational system, this concept might be described
“informally as a function whose graph is symmetric around the
y-axis” (ibid., p. 34).

This conceptualization of proof that explains gives a hint
of why such explanatory proofs often make use of geometric
descriptions to reach the conclusion: The representation system
of figurate numbers can be considered to be such a semantic
representation system, as it constitutes a non-formal way for
communicating mathematical ideas. In this sense, proofs making
use of geometric representations are considered to have a
special kind of explanatory quality. As an example, we give an

explanatory proof for the formula 1+ 2+ . . .+ n = n(n+1)
2 (see

Figure 9).

Figurate Numbers for Educational
Purposes
In elementary school, figurate numbers can be used to get insights
into the nature of natural numbers and the decimal systems and
to promote mathematics as a science of patterns (e.g., Steinweg,
2002). Even at elementary school, figurate numbers offer the
possibility to discuss generality and to introduce students to the
idea of reasoning (e.g., Söbbeke and Welsing, 2017). Sequences
of figurate numbers can be used in middle school to foster
algebraic thinking (e.g., Rossi Becker and Rivera, 2006; Britt and
Irwin, 2008). Moreover, the context of figurate numbers may
serve as a playground to perform exploration and conjecturing in
the interplay of algebra, arithmetic, and geometry (e.g., Weaver,
1974; Flores, 2002). For the context of first-year pre-service
teachers at university, Kempen (2019, p. 21) highlights several
benefits of the use of figurate numbers. Their use. . .

• . . . offers the possibility to take up students’ prior
experiences from school mathematics, also concerning
mathematical reasoning,
• . . . offers a non-symbolic language for the pre-service

teachers they can use in their daily life as a teacher in the
future,
• . . . makes it possible to involve the students in conjecturing

and proving and helps to highlight the process aspect of
mathematics,
• . . . may help to highlight the advantages of the

mathematical symbolic language in comparison.

Moreover, in the comparison of the single test of some
concrete examples, generic proofs and so-called ‘formal proofs’
making use of algebraic variables, the important distinction
between purely empirical verification and the matter of generality
in mathematical proofs can be stressed.

THEORETICAL CONSIDERATIONS

Diagrammatic Reasoning
In this section, we will analyze the use of figurate numbers
from a semiotic point of view. This will help us discuss
possible obstacles in their usage when reading and constructing
mathematical proofs.
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Peirce (1839–1914) uses the word “diagram” in a wide
sense. He calls those signs and their combinations “diagrams”
that can be used, read and understood in the context of a
wider representational system, where the rules for dealing with
the diagrams are constituted. As an example, we mention
the following diagrams: “a2,” “2x+ 5y+ 6x,” and “7b2.” The
meaning of the signs, their combinations and the possibility
of transformations are given by the representational system of
algebra. From a semiotic point of view, the area of figurate
numbers can be considered to be such a representation system,
too. Fischer (2010) describes the corresponding rules for dealing
with the symbols:

Natural numbers are represented by the quantity of dots.
Summation corresponds to joining amounts of dots,
multiplication to the duplication of dots. Subtraction is
done by eliminating dots (by erasing or crossing them). Dividing
means to divide the dots into equal subgroups. (ibid., p. 86;
our translation).

Following Peirce’s semiotic theory and his view on
mathematics as “diagrammatic reasoning” (Hoffmann, 2003;
Dörfler, 2008), the work in a representational system presupposes
certain knowledge (“collateral knowledge”) about this system
(Hoffmann, 2005). This knowledge comprises facts about the
construction of diagrams, their usage and the interpretations
of possible results. In some sense, this collateral knowledge can
be seen as an implicit instruction manual for the use of the
whole representational system. When performing or learning
mathematics, one has to have the corresponding collateral
knowledge, in order to work with the diagrams used or offered.

Peirce describes the mathematical activity making use of
diagrams as the essential feature of mathematics:

By diagrammatic reasoning, I mean reasoning which constructs
a diagram according to a percept expressed in general terms,
performs experiments upon this diagram, notes their results,
assures itself that similar experiments performed upon any
diagram constructed according to the same percept would have
the same results, and expresses this in general terms (Conference
on Sensation-Mediation-Perception, 2012, p. 2).

This sequence of four phases [(i) construction of a diagram,
(ii) performing experiments, (iii) observing the results, and (iv)
determining the overall generality] describes the way new insights
are gained in mathematics (see Dörfler, 2006, p. 211). The idea
of diagrammatic reasoning, considered as the basic activity in
mathematics, can be transmitted to the concept of mathematical
proof. We will illustrate this by stating two different proofs
concerning the claim “The sum of an odd number and its double
is always odd.”

The proving process for a so-called “formal proof” is shown
in Table 1.

Overall, the meaning of the collateral knowledge in the
different phases as well as for the whole proving process becomes
clear. We will compare this use of diagrams and the meaning of
the corresponding collateral knowledge when dealing with the
representational system of figurate numbers in the context of
mathematical proof.

The corresponding proof in the representational system
of figurate numbers (using geometric variables) is shown
in Table 2.

At this stage, we would like to highlight that several
representational systems can be used to perform mathematical
proving. The quality of a representational system has to be judged
in comparison to its usefulness in this context. On the one hand,
the writer of the proof has to have the corresponding collateral
knowledge to construct such proofs. On the other hand, the
reader of the proof also has to have this knowledge, to be able
to read and to understand the proof correctly. Learners have to
acquire certain collateral knowledge before they can be successful
in working with any (geometric) representation.

Some Insights From Cognitive
Psychology
In this section, we will enrich the discussion about the use of
figurate numbers by referring to different strands from cognitive
psychology. After discussing basic aspects of understanding and
the schema theory (see section “Diagrammatic Reasoning”), we
will have a look at the perception of figurate numbers from the
area of Gestalt psychology (see section “Some Insights From
Cognitive Psychology”). Finally, the specific role of pictures and
texts for understanding are revisited.

Understanding and the Extension of Existing Schema
From the perspective of cognitive psychology, the meaning of
previous knowledge for learning is highlighted. Understanding
is conceptualized as the integration of new information
into the existing knowledge to build new schema (see
Lee and Seel, 2012 for a summarized description). When
working with (geometric) representations, this previous
knowledge concerns semantical and syntactical issues. Since
one person’s knowledge has an individual character, the process
of understanding is an individual matter, too. However, the
process of understanding (of getting new insights) must
not be considered to be just some kind of accumulation.
New information is integrated into one person’s existing
knowledge and leads to elaboration, to the extension of
existing schemata (Axelrod, 1973; Minsky, 1975; Collins
et al., 1980). Following the perspective of the schema theory,
one’s knowledge is organized and arranged in a specific way.
DiMaggio (1997) brings in the schema aspect here: a schema
describes a pattern of thought that organizes categories of
information and the relationships between them. In this sense,
the knowledge about the use and meaning of (geometric)
representations is organized as a whole and constitutes a
so-called schema. Combined with the concept of proof, the
corresponding schema becomes evident. Again, a learner
has to be acquainted with an adequate schema before being
able to work with such representations or gain new insights
from their usage.

When being confronted with a mathematical claim, a learner
might activate the schema ‘figurate numbers’ in the context of
proving. Activating this schema, several ‘blank spaces’ arise that
have to be filled with respective knowledge:
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TABLE 1 | Description of the proving process for a so-called “formal proof” following the concept of diagrammatic reasoning.

Phase 1: Construction of the diagram One possibility to prove this claim is by constructing diagrams in the
representational system of algebra. Here, one needs an odd number, its double
and the sum.

2n+ 1, 2 · (2n+ 1) with n ∈ N0,
2n+ 1+ 2 · (2n+ 1)

Phase 2: Performing experiments The constructed diagrams can be transformed according to the rules of the
representational system. (This transformation can be done either in an
exploratory manner or with a certain objective).

= 3 · (2n+ 1) = 6n+ 3
= 2 · (3n+ 1)+ 1

Phase 3: Observing the results The constellation of diagrams obtained can be read and interpreted according
to the rules of the representation system. Here, the result can be understood as
an odd number.

2 (3n+ 1)+ 1 is an odd number,
because (3n+ 1) ∈ N.

Phase 4: Determining the overall generality The correctness of the result in a syntactical sense is a consequence of the
correct usage of operations and transformations and the consistency of the
representational system. The final insight follows by the interpretation of the final
diagram and the link with the initial conjecture.

Accordingly, the sum of an odd
number and its double is always
odd.

TABLE 2 | Description of the proving process for making use of figurate numbers following the concept of diagrammatic reasoning.

Phase 1 In the representational system of figurate numbers, odd numbers can be represented by the
combination of two rows of dots that differ in one dot. We use a geometric variable to represent an
arbitrary number of dots, highlighting the fact that we are dealing with one arbitrary odd number.

Phase 2 The summation of the diagrams is done by putting them together.

Phase 3 After combining all the rows of dots linearly, we obtain two rows of dots that differ in one dot.

Phase 4 The correctness of the result in a syntactical sense is a consequence of the correct usage of operations
and transformations and the consistency of the representational system “figurate numbers.” The final
insight follows by the interpretation of the final diagram and the link with the initial conjecture.

Accordingly, the sum of an odd number
and its double is always odd.

– Geometrical representation (start): what kind of geometrical
representation (e.g., shape) seems to be appropriate to
represent the situation given in the context of the claim?

– Operations (start): which operations in the context of figurate
numbers seem to be appropriate for being a translation of the
operations mentioned in the given claim?

– Transformations: which transformations in the context of
figurate numbers can be used to verify the given claim?

– Geometrical representation (end): what kind of geometrical
representation should be reached after the transformations
were done? What geometrical arrangement is considered to be
a translation of the desired mathematical results?

– On a meta level: (1) why and when to use figurate numbers?
(2) why is it possible and legitimate to perform mathematical
proving with figurate numbers?

It becomes obvious that these demands have to be handled on
top of the mathematical problem itself. This is also the case when
using the algebraic language, but normally, learners have much
more experience in using the algebraic language and therefore
have a more complete schema in this case.

Some Remarks on Perception of Arrangements From
the ‘Gestalt Psychology’
When dealing with figurate numbers, the question arises: why
and how do we perceive such elements as arrangements in larger
structures? For using figurate numbers to do mathematics and/or
to grasp a general idea in a given pattern, it might be necessary
to realize different structures within the whole. We take Figure 2
as an example: in this Figure, a 4 times 4 square is given. The
transition from the previous to the given one results from seeing
the following elements: the previous square (3 times 3), the two

newly placed sides at the top and the right and the new point at
the top right corner. Finally, for a general understanding of the
transition from one square (number) to the next, this concrete
pattern has to be recognized as a general one. The coming
together of these aspects are necessary for obtaining the intended
insight. This requires seeing one pattern in different ways. The
Gestalt psychology gives some hints to why this activity might
be problematic. Wertheimer (1938, p. 71; emphasis in original)
describes this phenomenon as follows:

The concrete division which I see is not determined by some
arbitrary mode of organization lying solely within my own
pleasure; instead I see the arrangement and division which is given
there before me. And what a remarkable process it is when some
other mode of apprehension does succeed!

This author names several principles trying to explain the
arrangement of stimuli perceived. Such impressions rely among
others on the factor of proximity (this concerns the distance
between individual elements) and the factor of similarity (the
tendency to band similar or equal elements together)1. We
cite two short examples (ibid., p. 72 and 74) to illustrate
these principles.

Having a look at the sequence shown in Figure 10, one tends
to ‘see’ naturally groups of two dots being near to each other (so
to say the sequence “ab | cd | ef | gh”). Somehow it would be
possible to always group the two dots next to the gap (“a | bc | de
| fg | h”), which tends to be much harder. As Wertheimer puts it:
(ibid., p. 73; emphasis in original): “[. . .] that form of grouping is
most natural which involves the smallest interval. They all show,
that is to say, the predominant influence of what we may call

1Concerning the perception of arranged stimuli, Wertheimer (1938) also mentions
the factor of continuity and the factor of closure.
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FIGURE 10 | Sequence to illustrate the “factor of proximity” (patterns similar
to Wertheimer, 1938, p. 72).

FIGURE 11 | Different geometric interpretations of the triangular numbers.

The Factor of Proximity.” In the sequence shown in Figure 11,
all distances between the dots are exactly the same. However, the
picture seems to contain vertical rows of dots. One might try
to see a pattern of horizontal lines, but this tends to be harder.
Accordingly, the factor of similarity describes the tendency to
group similar elements.

By making use of such principles (implicitly), one’s perception
of figurate numbers (e.g., their geometrical shape as a whole or
the phenomenon of detecting several sub-groups in the whole
figure) might be explained.2 A first and simple example is
given in Figure 12. The way one interprets the pattern of the
triangular numbers has effects on the geometrical interpretation
of the corresponding formula. Following interpretation (i), the
new number line is always added on the right-hand side.
Accordingly, the previous number is detected on the left in
the actual pattern. In interpretation (ii), the new number line
is added below the former pattern and (iii) offers a diagonal
interpretation. Finally, the representation as a pyramid (iv)
offers some more interpretation. However, one interpretation
is necessary for a person for ‘seeing’ the connection between
the given formula and the corresponding geometric shapes. It
becomes obvious, that different interpretations can lead to a
number of misunderstandings between teachers and learners or
among the learners.

Another example might be the fact, that the sum of two
consecutive triangular numbers is always a square number.
A more complex example of seeing a subpattern in the whole
is given in Figure 13. Do you ‘see’ why the difference of two
cube numbers is always a hexagonal number (Figure 13)? Adding
three lines makes it much easier to see this relationship. The
respective connection in the transition from one cube to the

2Similar principles for the grouping of patterns (proximity, collinearity, and good-
continuation) could be verified empirically by Kubovy and van den Berg (2006).

next can be calculated easily: cn − cn−1 = n3
− (n− 1)3

= n3
−[

n3
− 3n2

+ 3n− 1
]
= 3n2

− 3n+ 1 = hn .
In accordance to the patterns or shapes perceived, operations

on these figures (see section “Diagrammatic Reasoning”) might
be considered as “pro-structural,” when being in line with the
perceived structures or when leading to new ones, or as “contra-
structural” (ibid., p. 76), when destroying some structure. Thus,
the perception of a shape might guide one’s operations.

However, seeing a different arrangement after perceiving the
first one tends to be difficult (Wertheimer, 1938, p. 71):

[. . .] one sees a series of discontinuous dots upon a homogeneous
ground not as a sum of dots, but as figures. Even though there
may here be a greater latitude of possible arrangements, the dots
usually combine in some “spontaneous,” “natural” articulation –
and any other arrangement, even if it can be achieved, is artificial
and difficult to maintain.

For each individual, through the coming together of the
various named principles and the individual’s experiences, a
certain initial interpretation of what has been experienced
emerges. If one tries to see another interpretation, the earlier
stimuli must be overcome.

From a meta-level, it seems to be significant, not only for the
phenomenon of figurate numbers, that some kind of quantity is
translated into orderly spaced identical elements. In our cases,
these orderly spaced identical elements are considered to convey
special kinds of insights. However, this principle can be detected
in other parts of mathematics, too. As an example, we point to
the meaning of such representations for estimating quantities
(e.g., Hansen et al., 2015). Another example is the translation
of quantities into position in space as one basic principle of
many data graphs such as scatter plots (some nice examples are
discussed in Garcia-Retamero and Cokely, 2017).

About the Role of Figurate Numbers Seen as
‘Pictures’
Our focus is on the interplay of mathematical content and the use
of figurate numbers. To be successful in achieving understanding,
learners have to combine the given content with its interpretation
in the context of figurate numbers and to integrate this
information into one coherent mental representation. Since
figurate numbers are a specific type of representation that
somehow resembles a picture, it could be assumed that, unlike
conventional texts, they could fulfill different functions in the
process of understanding. Accordingly, we will take a first
look at the role that ‘pictures’ play in our everyday process of
understanding. [For this discussion, we will shortly leave the
interpretation of pictures and its parts as diagrams in a wider
representational system in the sense of Peirce (see above), for our
intention is to highlight a normal or naïve role of pictures for the
individual in the context of understanding].

As a part of our living in the real world, we seem to
have learned that reading a text is about acquiring information
and about constructing mental models. Pictures, particularly
given in addition to a text, are about reading off information
(compare Zhao et al., 2020). Furthermore, pictures can constrain
the interpretation of a text (Ainsworth, 1999) and serve a
scaffolding function for constructing mental representation (e.g.,
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FIGURE 12 | The connection between cube numbers and hexagonal numbers.

FIGURE 13 | A student answer, which belongs to the category “empirical” [“=21 result odd→ claim”].

Eitel and Scheiter, 2015) that might lead to the construction
of deeper understanding (Ainsworth, 2008). However, research
has shown, that learners often fail to exploit such advantages
and the use of (several) representation might hinder learning
(ibid.). When one works with figurate numbers, the ‘pictures’
themselves become the center of interest. At first glance, it
might seem quite unnatural that these pictures should contain
all relevant information (and not a given text), this phenomenon
might contradict previous experiences. In addition, one is also
asked to work with these pictures; the diagrams should be
(intentionally) changed and new information should be taken
from the result. This change in function may prevent learners
from fully exploiting the potential of the figurate numbers.

For the process of problem solving, the search for a suitable
representation of the problem can serve as a promising heuristic
(see section “Geometric Representations in the Context of
Problem Solving”). A type of representation will emphasize
certain or characteristic features of the initial problem (see also
Dunbar, 1998, p. 294). In this sense, a change of presentation will
also change the problem: This change may affect the initial state,
the target state and/or the set of applicable operations (ibid.; see
also section “Diagrammatic Reasoning”). In summary, it can be
said that a problem discussed in another representation system
can be considered a different problem.

FINDINGS FROM OUR RESEARCH
UNDERLINING THE THEORETICAL
CONSIDERATIONS ABOVE

In this section, we will recapitulate findings and experiences
from our empirical research in the context of figurate
numbers. The research presented here touches upon the
following aspects: students’ proof construction making use of
figurate numbers (see section “Students’ Proof Construction
With Making Use of Figurate Numbers”), students’ perceived
explanatory power, conviction, and proof-acceptance (see section
“Proof-Acceptance, Explanatory Power, and Conviction”), and
students’ perception of proofs making use of figurate numbers
(see section “Students’ perception of proofs making use of
figurate numbers”). Due to the size of this paper, we will
only report on the main findings. For deeper descriptions
of the methodology used and further results the relevant
references will be given.

Students’ Proof Construction With
Making Use of Figurate Numbers
The authors investigated pre-service teachers’ proof construction
in the winter term 2013/2014 (Biehler and Kempen, 2015) and
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2014/2015 (Kempen, 2017, 2019) in the context of the transition-
to-proof course “Introduction into the culture of mathematics.”
In both years, the students were asked to prove a given claim in
the final exam of the course by using four different kinds of proofs
they had learned about before. The claim to be proven was: “The
sum of six consecutive natural numbers is always odd.” These
four different kinds of proofs comprise:

(1) One proof with concrete examples making use of natural
numbers. In this case, the overall argument to verify
the given claim in general was explicated in a narrative
(“generic proof with numbers”3).

(2) One proof with concrete examples making use of figurate
numbers. In this case, the overall argument to verify
the given claim in general was explicated in a narrative
(“generic proof with figurate numbers”).

(3) One proof making use of figurate numbers and geometric
variables to highlight the general quality of the argument
given in the geometrical representation (“proof with
figurate numbers making use of geometric variables”).

(4) One so-called formal proof making use of algebraic
variables (“formal proof”).

The authors developed a set of categories for summarizing all
proving attempts and for comparing the results evenly between
the different kinds of proof. A summarized version of the
set of categories is described below (compare Kempen, 2017,
p. 388 f.); the examples illustrating the categories concern the
generic proof with figurate numbers. The claim to be proven is
mentioned above.

(1) n. p.: not processed.
(2) Empirical: The truth of the statement is inferred from a

subset of (concrete) examples (see Figure 14).
(3) Pseudo: the answer is given by merely stating or

paraphrasing the statement that the sum is always
odd/wrong solutions/irrelevant information/construction
(see Figure 15).

3Concerning the concept of generic proofs see Section “Figurate Numbers and
Mathematical Proof.”

FIGURE 14 | A student answer, which belongs to the category “pseudo.”

FIGURE 15 | A student answer, which belongs to the category “fragmentary.”

FIGURE 16 | A student answer, which belongs to the category “sound
argument” [“Three points can always be used for completing the rectangle.
Thus, we obtain the product by multiplying the sides (here: 6·4)” which is
even. Since there are always three points left, and three is an odd number, the
sum of the even and the odd number will always be odd].

FIGURE 17 | Boxplots concerning students’ measured proof acceptance.

(4) Fragmentary: only fragmentary information is
given/meaningful arrangement of figurate numbers
without further information (see Figure 16).

(5) Sound argument: the students derives the conclusion from
a connected argument and from generally agreed facts of
principles that might contain (minor) inaccuracies (see
Figure 17).

In both years, the students were asked to prove the given claim
with all four kinds of proof in the final exam of the course. The
corresponding results are shown in Table 3.

First, we would like to stress that several students did not
even try to solve the given task by using figurate numbers
(“GenFig” + “GV”) in the winter term 2013/2014, even though,
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TABLE 3 | Results [%] concerning students’ proof productions in the context of
the course “Introduction into the culture of mathematics” concerning four different
kinds of proofs (“genN,” generic proof with numbers; “genFig,” generic proof with
figurate numbers; “GV,” proof with geometric variables; “FP,” formal proof).

Winter term 2013/14
(n = 139)

Winter term 2014/15
(n = 107)

GenN FP GenFig GV GenN FP GenFig GV

n. p. 3 3 6 18 0 2 1 4

Empirical 7 0 7 0 1 0 0 0

Pseudo 22 15 37 45 6 8 14 34

Fragmentary 14 3 24 9 11 6 36 10

Sound argument 54 79 27 28 82 84 50 52

Sum 100 100 100 100 100 100 100 100

they were sitting an exam to pass the course. Moreover, the
higher percentage of pseudo answers and the lower results of
proving attempts belonging to the category “sound argument”
when working with figurate numbers (“GenFig” + “GV”) are
astonishing in both years.4

To sum up, these results highlight students’ difficulties
in making use of figurate numbers to construct
mathematical proofs.

Proof-Acceptance, Explanatory Power,
and Conviction
Kempen and Biehler (2019b) investigated the perceived
explanatory power, conviction, and proof acceptance concerning
the four different kinds of proof (see above) in the context of
pre-service teachers at the University of Paderborn in Germany.

We will rely on the following research questions taken from
the study of Kempen and Biehler (2019b)

(i) How do pre-service teachers rate the different kinds of
proofs concerning the perceived explanatory-quality and
conviction at the beginning of their university studies?

(ii) How can students’ proof acceptance of the four kinds of
proofs be described?

While Kempen and Biehler (2019b) investigated the changes
in students’ proof perception and acceptance while attaining the
course “Introduction into the culture of mathematics,” we will
have a close look at the corresponding results from the pre-test
at the beginning of the course.

To answer the research question (i), the students were asked to
rate one proof of each kind (see above) concerning the perceived
explanatory power and conviction on a six-level Likert scale ([1]
“totally Disagree” . . . [6] “totally agree,” see Table 4). We cite
the example for the so-called formal proof (Kempen and Biehler,
2019b, p. 39 f.) for the claim “For all natural numbers a, b, c:
If b is a multiple of a and c is a multiple of a, then (b + c) is a
multiple of a.”

Let a, b, c be natural numbers.

4The different results between the 2 years can be explained by referring to several
changes made in the whole course (see Kempen, 2019 for description of the whole
research project).

TABLE 4 | The items concerning “conviction” and “explanatory power” for the
rating of the four different kinds of proof.

The reasoning. . . Totally disagree Totally agree

[1] [2] [3] [4] [5] [6]

Convinces me that the statement
holds in every case.

Explains why the statement is true.

. . .

Since b is a multiple of a, there exists a natural number n with:
n · a = b.

Since c is a multiple of a, there exists a natural number m with:
m · a = c.

We have: b+ c = n · a+m · a = a · (n + m). Since (n +
m) is a natural number, (b + c) is a multiple of a.

Q.e.d.

As indicated in Table 4, students were asked to rate other
statements concerning the given proofs, too. These statements
comprised the aspects verification, interpretation as purely
empirical verification, the existence of counterexamples, the
importance of variables, the interpretation as testing of concrete
cases and correctness. The mean of the different ratings for
each kind of proof was considered to be one’s score in “proof
acceptance.” I.e., a high scale value represents a high level
of acceptance concerning a given ‘proof ’ and vice versa. This
construction of one scale was confirmed by a corresponding
factor analysis. The reliabilities of the constructed scales for the
four kinds of proof out of the eight items were very high (all
Cronbach’s alpha > 0.88). Accordingly, we used the following
conceptualization for “proof acceptance” to answer the research
question (ii):

“‘proof acceptance’ is conceptualized as the extent to which
an individual perceives verification, conviction and explanation
when reading a mathematical proof combined with the extent, the
reader does consider the reasoning to be a correct mathematical
proof” (ibid., p. 31).

We quote the corresponding results:
With regard to both conviction and explanatory power, the

formal proof achieved the highest ratings (Table 5), whereas the
proof with geometric variables achieved the lowest. The results

TABLE 5 | Statistical data concerning the items “conviction” and “explanatory
power” (“genN,” generic proof with numbers; “genFig,” generic proof with figurate
numbers; “GV,” proof with geometric variables; “FP,” formal proof).

Conviction Explanatory power

genN genFig GV FP genN genFig GV FP

n 74 74 68 72 74 74 68 72

Mean 3.32 4.38 2.96 5.35 3.82 4.50 2.85 5.15

Median 3.00 5.00 3.00 6.00 4.00 5.00 3.00 6.00

SD 1.664 1.411 1.688 1.050 1.511 1.274 1.730 1.206

Minx 1 1 1 2 1 1 1 2

Max 6 6 6 6 6 6 6 6
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TABLE 6 | Statistical significance of the differences between the medians concerning “conviction” and “explanatory power” (p-value, Wilcoxon-test) with effect sizes
[Pearson’s correlation coefficient (r)].

Conviction Explanatory power

genFig GV FP genFig GV FP

genN p < 0.001 (r = 0.47) – p < 0.001 (r = 0.71) P = 0.001 (r = 0.39) p = 0.001 (r = 0.41) p < 0.001 (r = 0.58)

genFig – p < 0.001 (r = 0.59) P < 0.001 (r = 0.49) – p < 0.001 (r = 0.63) P = 0.001 (r = 0.40)

GV – – p < 0.001 (r = 0.75) – – p < 0.001 (r = 0.70)

TABLE 7 | Statistical data concerning proof acceptance scales.

acc_genN acc_genFig acc_GV acc_FP

n 74 74 67 72

Mean 2.79 3.67 2.96 5.15

Median 2.50 3.50 2.88 5.63

SD 1.18 1.27 1.27 1.02

Min 1.00 1.00 1.00 1.00

Max 6.00 6.00 6.00 6.00

Cronbach’s alpha 0.886 0.912 0.896 0.939

concerning the generic proofs are located between these kinds
of proofs. All differences concerning the medians are pairwise
highly statistically significant (p ≤ 0.001, Wilcoxon-test) with
medium and high effect sizes (see Table 6).

The results concerning students’ proof acceptance are shown
in Table 7 and Figure 17. The score concerning the generic proof
with numbers (mean of 2.79) was quite low, as was the acceptance
of the proof with geometric variables. Again, the formal proof
achieved the highest score (mean: 5.15).

All differences between the means are highly statistically
significant (p ≤ 0.001; t-test) with medium to high effect sizes,
except for the difference between the generic proof with numbers
and the proof with geometric variables (see Table 8).

To sum up, the students in our study struggled with the
interpretation of figurate numbers in the context of proving. The
use of these geometric representations in such proofs did not lead
to an increased perception of conviction or explanatory power.
On the contrary, the proof making use of algebraic variables
(the ‘formal proof ’) was perceived as the most convincing and
explanatory argument. The same is true for the measured proof-
acceptance values5.

Students’ Perception of Proofs Making
Use of Figurate Numbers
Kempen and Biehler (2015) conducted an interview study
with 12 first-year pre-service teachers to investigate students’
perceptions of proofs making use of concrete examples in
elementary number theory. These students participated in the
course “Introduction into the culture of mathematics,” where
they were introduced to the concept of proving. In the context

5This study was originally conducted with a bigger sample size. The students dealt
with in Kempen and Biehler (2019b) are those, that could be tracked from the
pre- to the post-test. The whole sample contains 145 pre-service teachers. The
corresponding results are discussed in Kempen (2018). However, also in the whole
sample, the overall results are nearly the same: the formal proof achieves the
highest ratings and acceptance-score.

TABLE 8 | Statistical significance of the differences between the means of the
acceptance scores (p-value, t-test) with effect sizes (Cohen’s d).

acc_genFig acc_GV acc_FP

acc_genN p < 0.001 (Cohen’s
d = 0.663)

p = 0.412 (–) p < 0.001 (Cohen’s
d = 2.229)

acc_genFig – P = 0.001 (Cohen’s
d = 0.427)

p < 0.001 (Cohen’s
d = 1.269)

acc_GV – – p < 0.001 (Cohen’s
d = 1.845)

of the course, the varying use of concrete examples, figurate
numbers, and algebraic variables played an important role
(see Kempen and Biehler, 2019a,b). In this research study,
the students were asked to work on the following task:
“Prove or disprove: If one takes a natural number and adds
its square, the result will always be divisible by 2.” After
students’ initial answers, an interview phase followed. Here,
the students were asked to explain their proving attempts to
reason why they used the respective approach in contrast to
the other ones they had learned in the course. We transcribed
each session and analyzed the transcripts and students’ proof
constructions. We looked for common and characteristic
patterns in students’ comments to categorize them as cases
of a certain type.

This study reveals some interesting results concerning
learners’ perspective on the usage of figurate numbers. Following
students’ responses in the interview, proofs making use of figurate
numbers (i) are hard to construct because one always has to
have a special “idea” and (ii) can be harder to understand than
formal proofs. As an example, we cite the following statements
from three different students (taken from Kempen, 2019, p. 260
f.; authors’ translation):

[. . .] compared to the one with figurate numbers, but since [with
figurate numbers; L. K.] you always need an idea first, right? That’s
why I like it worse, compared to the formal proof, because one
always has to have an idea.

[. . .] we know at an early age if we multiply a number by two,
that the result is logically divisible by 2. Here [in the case of
figurate numbers; L. K.] one has to consider horizontal/vertical,
odd number above/even number below. The feeling of looking at
and understanding is easier here [in the case of the formal proof;
L. K.]. Here one shows, no matter which natural number you take,
multiplied by two will be logically divisible by 2.

I find that [the formal proof; L. K.] is most understandable for
everyone. If someone else were to look at it, he or she would most
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likely understand it, instead of such proofs with figurate numbers,
where one would have to think over and over again.

These results point to the fact, that the use of figurate numbers
(even for university students) cannot be considered as being that
easy. Argument (i) points to the problems that have already
been raised in the context of schema theory: starting with a
mathematical claim, one has to translate the given information
to the representational system of figurate numbers. This means
that a geometrical interpretation of the given facts has to be
undertaken. The second argument highlights the fact that the
use of figurate numbers must not be considered as being easier
than the use of the algebraic symbolic language. As already
mentioned in the context of Peirce’s semiotic theory, dealing with
a representational system has to be learned and practiced. In this
way, learners might acquire the respective collateral knowledge to
work in this system.

SUMMARY, CONCLUSION, AND
IMPLICATIONS FOR TEACHING AND
RESEARCH

It has been shown above that figurate numbers can be used in
mathematics in various ways, e.g., for illustrating, clarifying, and
illuminating mathematical issues. Moreover, in the context of
problem solving and proving, a change to this special kind of
representational system and working with it can be considered
to be a useful heuristic. Especially in the context of mathematical
proof, working with such ‘semantic’ representational system
(Lockwood et al., 2019) is said to increase the explanatory
power of mathematical proof leading to so-called proofs that
explain. Besides, the use of such representation is said to ease the
transition to algebra and to contribute to a meaningful concept
of variable. Finally, working within this field can constitute a
playground for exploration, conjecturing, and proving in the
interplay of algebra, arithmetic, and geometry.

However, the discussion of part of Peirce’s semiotic theory led
to a closer look at the representational system ‘figurate numbers.’
For working with the corresponding symbols and signs, a
special kind of knowledge (“collateral knowledge”) is necessary.
This knowledge comprises facts about the construction of
diagrams, their usage and the interpretations of possible results.
Working with figurate numbers in mathematics (especially in
mathematical proving) can be conceptualized as diagrammatic
reasoning, i.e., reasoning by making use of such diagrams. It
became clear that performing mathematics with figurate numbers
or understanding someone else’s performance presupposes the
existence of the corresponding collateral knowledge.

The discussion about necessary prior knowledge and
the acquisition of new understanding could be elaborated
by referring to cognitive psychology. Here, learning and
understanding are combined with the integration of new
information into the existing knowledge to build new schema.
In addition to parts of knowledge referring to the use of such
representations (an appropriate ‘translation’ of a mathematical
issue to the system of figurate numbers, the choice of operations

to achieve a selected aim) some meta-knowledge about the usage
of such representations (e.g., “why and when to use them”) is
necessary, too. Since geometric representations like figurate
numbers fulfill distinct functions in the context of understanding
and the construction of mental models, the question arose,
as to how learning processes change while changing the
representational system. Finally, it became obvious, that one
problem or task changes fundamentally when changing the
representational system, because the initial state of the problem,
the goal state and/or the set of operations that can be applied will
differ fundamentally. Besides, the semiotic considerations above
hint toward the fact, that while changing a representational
system, another collateral knowledge is necessary, that can
be developed more or less than the previous one for each
person. This is also true for the interpretation of learning and
understanding by referring to a corresponding schema.

Insights from the Gestalt psychology made it possible to
investigate the phenomenon of ‘seeing’ patterns within the
arrangements of figurate numbers. However, corresponding
principles of perception do not constitute universally valid rules,
the individual experiences play another constitutive part. That
is why the individual’s perception of geometric arrangements
may be different to someone else’s. (The corresponding reading
and understanding of a perceived geometric shape is again a
matter of collateral knowledge). Working with figurate numbers
demands a flexible perception about recognizing patterns,
imaging future constellations, and eventually grasping a general
idea. Furthermore, the identification of patterns does also
affect the perception and awareness of possible operations or
transformations that can be used, being “pro-structural” and
“contra-structural.” Accordingly, the individual’s perception of
a given arrangement may influence its choice of operations or
transformations which, of course, also indicates the possibilities
of achieving the respective goals and possible insights. The
coming together of all these aspects illustrates the demands
placed on learners when working with figurate numbers.
Finally, the way of working with these ‘pictures’ for performing
operations, achieving results, and getting new insights may
contradict previous experiences about the role of pictures and
texts in the context of learning.

In chapter 4, we summarized some findings from our own
empirical research concerning the use of figurate numbers
in a variety of aspects concerning the topic “mathematical
proof.” As could be observed in every study, the students
struggled with the use and the understanding of figurate
numbers. This was somehow in contrast to the descriptions in
the literature, highlighting the benefits of the use of figurate
numbers for educational purposes. Concerning students’ proof
productions, the learners struggled the most in constructing
mathematical proofs by using figurate numbers. However,
the students succeeded much better in construction generic
proofs with numbers (instead of figurate numbers) and formal
proofs. In this sense, the use of the representational system
of Algebra seemed to be much easier for them than the one
of figurate numbers and lead to the construction of proofs
at a higher level. Concerning perceived explanatory power
and conviction, the formal proof making use of algebraic

Frontiers in Psychology | www.frontiersin.org 13 June 2020 | Volume 11 | Article 1180

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-01180 June 15, 2020 Time: 22:37 # 14

Kempen and Biehler Using Figurate Numbers

variables always got the highest ratings. In this sense, the
pre-service teachers in our study did not perceive a special
kind of explanatory power and conviction in the context
of the representational system ‘figurate numbers.’ Moreover,
such proofs achieved significantly less scores concerning the
individual’s “proof acceptance” than the formal proof. Taken
together, these students seemed to appreciate especially the
mathematical symbolic language in the context of proving.
Results from our interview study could partly explain the
results obtained. Students mentioned the necessity for a
special “idea” when working with figurate numbers. When
working with natural numbers (generic proof with numbers) or
algebraic variables (formal proof), the students did not mention
such challenges.

Finally, we will combine the theoretical considerations and the
empirical findings. In the studies presented, the representational
system of algebra (making use of algebraic variables in the
context of elementary arithmetic) led to the biggest success
when being used by students. These results can be explained
by the fact that this representational system is the most used
and practiced one in school mathematics. Other representational
systems (as figurate numbers) are used less. Accordingly,
students did not have enough time to acquire the corresponding
collateral knowledge and to practice its use. Working within
a representational system can be described by the four phases
of diagrammatic reasoning [(i) construction of a diagram, (ii)
performing experiments, (iii) observing the results, and (iv)
determining the overall generality]. In all of these phases,
a special kind of knowledge is necessary to cope with the
respective aspects of a representational system. The lack of
collateral knowledge will prevent the construction of correct
mathematical proofs.

The named hints from schema theory highlighted the aspects,
learners have to be (implicitly) aware of when working with
figurate numbers in mathematics, too. When trying to prove a
given claim, all aspects named in the given statement have to be
transmitted to the representational system of figured numbers.
Then, the conclusion has to be faced, again interpreted in the
context of figurate numbers. Finally, this goal has to be achieved
using the possible operations in this representational system.
Again, students’ problems when working with figurate numbers
can be partly explained by making use of such aspects from
the schema theory. However, the corresponding understanding
and interpretations belong to the individual’s perception which
also affects the identification and selection of suitable operations.
Accordingly, the given problem changes by undertaking a
change of the given representational system and it also changes
due to the individual’s perception. These perceptions could be
elaborated by pointing to the Gestalt psychology. In addition,
there is not only the need for perceiving and constructing a
first pattern, as the initial state of a given problem. There
are multiple arrangements and possibilities the learner has
to recognize. A change in perception is difficult to achieve.
However, this is a necessary prerequisite for making targeted
transformations.

Both theoretical perspectives mentioned above highlight
the necessity of corresponding prior knowledge for being

able to work with and to understand the representational
system of figurate numbers. In this sense, the use of such
representations is no guarantee to lead to special insights.
The explanatory quality of such ‘pictures’ or ‘proofs’ has
to be considered as an ‘offer’ and not as a ‘present.’ The
understanding of a representation is an individual process (of
elaboration) and relies on the individual’s previous knowledge
and perception. All kinds of representations (or representational
systems) constitute a learning content at the first level. Even
so-called ‘explanatory’ representations have to be read and
to be understood by a certain reader, who has to have the
corresponding collateral knowledge (in the sense of Peirce,
see above). Considering learning as an active process based
on one’s prior knowledge highlights the subjective nature and
the relativity of the understanding of given representations.
Accordingly, such ‘explanatory proofs’ making use of geometrical
representations are not self-evident nor self-explanatory (see also
Jahnke, 1984); ‘explanatory proofs’ cannot be considered to be
explanatory by themselves.

These considerations lead to several implications for
teaching: As Dörfler (2006) points out, learners have to perform
several activities to get used to a representational system,
i.e., to acquaint the corresponding collateral knowledge.
These activities comprise (i.a.): manipulating (performing
calculations) with the diagrams, performing experiments on
the diagrams to explore their characteristics, investigating
the relationships between such diagrams, inventing new
diagrams, etc. Some examples of such activities can be found
in modern textbooks. Kempen and Biehler (2019a) proposed
some learning environment for first-year pre-service teachers
to cope with different representational systems in the context of
mathematical proof.

The perspective of schema theory highlights the questions,
what kind of knowledge concerning the representational system
as a whole is necessary to construct a coherent schema for
dealing with this system in mathematics. (This knowledge
also touches upon some kind of meta knowledge concerning
mathematics). Such question can partly be discussed from the
perspective of diagrammatic reasoning (see above). However, the
Gestalt psychology stresses the individual’s perception in this
context. Besides, affective factors might also contribute to the
individual’s perspective.

The theoretical considerations above also lead to
implications for research. The use of geometric representation
in mathematical activities (like problem solving or
conjecturing and proving) has to be investigated at different
stages and in different institutions. Here, the aspect of
“acceptance” should be considered, too, constituting a
basis for the individuals work and understanding. This
is also true when considering different research areas of
mathematics and different representations in the context
of proving (e.g., Weber, 2010a). Finally, the phenomenon
of getting some ‘insights’ demands further research. Haider
and Rose (2006) have proposed a way for detecting
‘insights’ empirically. Besides, philosophical investigations
seem to be promising for conceptualizing this unique
moment of ‘understanding-why’ (e.g., Lawler, 2019).
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