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Background: Active travel is an important area in physical activity research, but objective
measurement of active travel is still difficult. Automated methods to measure travel behav-
iors will improve research in this area. In this paper, we present a supervised machine
learning method for transportation mode prediction from global positioning system (GPS)
and accelerometer data.

Methods: We collected a dataset of about 150 h of GPS and accelerometer data from
two research assistants following a protocol of prescribed trips consisting of five activities:
bicycling, riding in a vehicle, walking, sitting, and standing. We extracted 49 features from
1-min windows of this data. We compared the performance of several machine learning
algorithms and chose a random forest algorithm to classify the transportation mode. We
used a moving average output filter to smooth the output predictions over time.

Results: The random forest algorithm achieved 89.8% cross-validated accuracy on this
dataset. Adding the moving average filter to smooth output predictions increased the
cross-validated accuracy to 91.9%.

Conclusion: Machine learning methods are a viable approach for automating measurement
of active travel, particularly for measuring travel activities that traditional accelerometer data
processing methods misclassify, such as bicycling and vehicle travel.

Keywords: physical activity, random forest

INTRODUCTION
Individual travel behavior has been important in transportation
research and traffic planning for decades (1). More recently, active
travel has also become a focus for public health (2). Studies of
adults and children have shown that individuals who walk or bike
for transportation, or use public transportation, accumulate more
physical activity and are more likely to meet public health recom-
mendations (3, 4). In some countries active travel has been related
to obesity (5). These relationships, however, have been poorly
studied because they are reliant on self-report data, which pro-
vide crude metrics (e.g., number of days vs. total minutes of active
travel). The premise of active living research is that built environ-
ment can support more routine physical activity behaviors, and
that if active travel is an equal choice compared to car travel, more
people are likely to take advantage. Improvement in measurement
of active travel will enable intervention studies trying to promote
routine daily behaviors such as active travel.

Traditionally, travel behavior has been measured by travel and
time use diaries or self-report surveys (6). Not only are these bur-
densome to participants,but also recall of events is often inaccurate
and potentially biased (7–9). The emergence of lightweight, low

cost, and accurate global positioning system (GPS) devices has
enabled researchers to objectively track the location of individ-
uals. However, while it is relatively straightforward to view and
understand GPS data using Geographic Information System (GIS)
packages, it would be extremely time consuming to do large-scale
data analysis by manually interpreting each GPS track. In light of
this, researchers began looking into automated ways of segmenting
trips and identifying transportation mode from GPS data. Early
studies of GPS data in transportation research focused on vehi-
cle travel, simplifying the development of algorithms somewhat.
More recently, multiple transportation modes have been studied,
including active transportation.

There have been a variety of approaches to predicting trans-
portation mode automatically from GPS data. These include
heuristic rule-based algorithms, (10–13), fuzzy logic (14, 15),
neural networks (16, 17), Bayesian models (18, 19), and decision
trees (20, 21). These approaches rarely include non-travel activities
(e.g., sitting or standing), and many incorporate map matching or
GIS components, which are particularly useful in order to ascertain
when a user is traveling on a public transit route. Physical activity
researchers, however, may not have access to GIS data. In contrast,
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they are likely to include accelerometer data when assessing active
travel (3, 4). Previous studies have shown that specific behaviors
such as housework can be derived from accelerometer signals (22).
These studies rarely include vehicle travel as an activity mode, are
often performed in highly controlled lab settings, and mostly do
not include GPS data that can inform trip mode.

Only a few studies have employed GPS and accelerometer data.
Reddy et al. (23) use decision trees and Markov models to deter-
mine transportation mode on mobile phones, using both GPS
and accelerometer data. They report 93% accuracy in predict-
ing five activities (still, walking, running, bicycling, and vehicle).
Troped et al. (24) also combine accelerometer and GPS data,
but from standalone devices, using linear discriminant analy-
sis to predict five activities (walking, running, bicycling, inline
skating, and driving a car). They report 90% accuracy in pre-
dicting activities, but with a relatively small dataset of 712 min
of data.

Many of these algorithms in the literature to date are only
tested in ideal conditions or controlled environments, which may
overestimate their accuracy. Conditions like instantaneous mode
changes, cold start journeys, and trips in urban canyons can all
interfere with signal detection and challenge the effectiveness
of algorithms. Our novel contribution to the research includes
a validation protocol that tested travel modes in multiple real
world conditions, and collected a comprehensive dataset consist-
ing of about 150 h of annotated data. We employed both GPS
and accelerometer data, and used machine learning algorithms
to identify transportation mode, using multiple features of both
devices to inform the prediction model. We used a random for-
est algorithm, an efficient algorithm that to our knowledge has
not previously been used to predict transportation modes from
accelerometer and GPS data, although Lustrek and Kaluza (25)
use a random forest algorithm for activity recognition from 12
small infrared motion tags placed on a user’s body and Casale
et al. (26) use random forests for physical activity recognition
from accelerometer data.

MATERIAL AND METHODS
DATA COLLECTION PROCEDURES
Two trained research assistants in San Diego followed a data collec-
tion protocol. They collected data under varying conditions (i.e.,
open space vs. urban, indoor vs. outdoor), for a variety of trans-
portation modes (walking, driving, etc.). The researchers wore
an Actigraph GT3X+ accelerometer on the hip and 12 devices
attached to 2 wooden boards (9′′× 12′′) carried in a backpack.
Board-mounted devices were attached with Velcro to ensure device
antennae were all aligned in the same way. The board contained
12 devices, each with different settings: 2 different GPS models, at
3 different epochs with either warm or cold start conditions (i.e.,
device on and signal obtained or device switched on immediately
before travel and no signal established). The GPS device we used
in this analysis was a Qstarz BT1000X set to collect data at 15 s
epochs using warm starts. The accelerometer device collected data
at 30 Hz on three axes. The researchers followed a set protocol of
trips, pauses, and locations. There were at least 4 example trips per
condition resulting in over 500 trips. The researchers kept a log of
each trip, location, and condition settings and noted start times for

Table 1 | Prescribed trip parameters for data collection.

Condition Description Number of

trips

First level environment variation 511 (total)

Urban canyon Downtown areas with high rise

buildings that interfere with GPS signal

259

Open space Areas without high rise buildings where

GPS signal connectivity is high

252

Second level transition and location variation

Continuous A continuous connection between

transportation modes, e.g., stop car and

passenger started walking immediately.

Most naturally occurring trip transitions

are continuous

142

Pause A 2-min pause between transportation

modes. Pauses enable trip ends to be

detected more easily

192

Indoor/outdoor

transition

Stationary periods indoors and outdoors

were tested, as well as transitions

between indoors and outdoors

including transitions every 30 s from

indoor to outdoor environments. The

Qstarz device allows collection of

satellite ratios, which can help to detect

indoor vs. outdoor locations.

22

Building types

Full/partial signal

buildings

Single story buildings with large

windows, wooden roofs, and open

courtyards

12

Blocked signal Multistory buildings, underground

garages

12

each event. A research manager reviewed files on a daily basis and
reallocated trips that were not successfully completed or noted.
(The full study protocol is available from the authors). All the data
are considered at the trip level, the individual characteristics of the
two data collectors were not included.

Table 1 outlines the different conditions under which GPS and
accelerometer data were collected following the protocol. Table 2
reports the total minutes of data collected in each transportations
mode, and includes periods of time between the prescribed trips
during data collection.

CLASSIFICATION PIPELINE
Each step in the data classification pipeline is detailed in the
following sections. Raw data were first preprocessed to remove
common GPS errors. The data were then split into 1-min win-
dows and feature vectors were extracted from each window. Each
window was then classified using a machine learning algorithm.
Figure 1 shows an overview of the classification pipeline, which
starts from raw sensor data and produces classifications for each
minute of data.
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DATA PREPROCESSING
Data smoothing typically occurs before data are employed in a
machine learning environment. GPS data were first processed
by the Personal Activity Location Measurement System (PALMS)
(27). PALMS filters spurious data points and smoothes out com-
mon GPS interference patterns. PALMS uses a set of simple filters
to remove invalid coordinates and reduce data volume. The filters
include removal of points with excess speed; large changes in eleva-
tion or very small changes in distance between consecutive points;
and scatter caused by interference from buildings. For periods of
signal loss PALMS imputes the previous valid coordinates (28).

TRIP SEGMENTATION
Many previous approaches to travel mode classification do a first
step of segmenting the GPS stream into cohesive trips consisting of
a single travel mode (10, 12, 14). This segmentation is usually done
based on simple rules that make some assumptions about the way
people travel – for example, people always walk in between trips
of different modes, or are always stationary for a certain length of
time in between trips. However, these assumptions may not hold
in the real world – in fact the data in this study were collected
in order to explicitly violate these assumptions. Therefore, instead

Table 2 | Minutes of data collected for each transportation mode.

Minutes of data Percent of total (%)

Bike 857.5 10

Bus 632.3 7

Car 2063.0 23

Sit 849.5 9

Stand 1631.3 18

Walk 2490.3 28

Unclassified 464.0 5

Total 8987.8 100

of segmenting the data into trips, in our method we individually
classified each minute of data with a travel mode. These predic-
tions are then smoothed with a simple moving average filter that
encourages consecutive minutes of data to be classified with the
same mode. Trips can then be easily defined by grouping consec-
utive minutes classified with the same travel mode. This approach
prevents the use of heuristics that enforce a specific ordering of
transportation modes.

FEATURE EXTRACTION
Most machine learning algorithms require inputs to be exam-
ple data points consisting of real numeric data. These inputs are
called feature (or attribute) vectors. Our input data consist of
streams of accelerometer and GPS data. The feature extraction
step is the process of transforming these data streams into fea-
ture vectors that capture relevant and predictive information. We
used a sliding window to break the data stream into 1-min win-
dows of accelerometer and GPS data, each with a corresponding
transportation mode label. If the window spanned multiple dif-
ferent transportation modes, or an unlabeled segment of data,
we left it unlabeled. Consecutive windows overlap by 30 s. We
summarized each 1-min window by computing a feature vector
consisting of descriptive statistics of the data in that window (e.g.,
average speed, correlation between accelerometer axes, etc.). We
normalized the features to have mean zero and standard devia-
tion one, to account for the scale difference between features (i.e.,
acceleration measurement is between ±6 G, while GPS speed is
commonly above 40 mph). We computed a 49-dimensional fea-
ture vector for each minute of data, consisting of 43 acceleration
features and 6 GPS features. Using a 1-min window resulted in
17,916 example minutes in our dataset, 14,307 of which had valid
labels.

Acceleration features
An 1-min window of acceleration measurements con-
tains T = 60s× 30 Hz× 3 axes= 5400 samples of acceleration

FIGURE 1 |The classification pipeline. (1) We started from raw sensor data, which was split into 1-min windows. (2) Features were extracted from each
window of data. (3) Then the features from each window were classified into transportation modes.
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measurements along the x, y, and z axes, which we represent as
a matrix,

A =

a1,x a2,x . . . aT ,x

a1,y a2,y . . . aT ,y

a1,z a2,z . . . aT ,z

 .

The data from this window are condensed to 43 acceleration fea-
tures. Most features are computed from the vector magnitude of
the 3-axis acceleration,

at =

√
a2

t ,x + a2
t ,y + a2

t ,z ,

although some features (for example, correlations between axes)
are computed differently. We compute the following features:

• Basic descriptive statistics computed from the vector magnitudes
a1:T: mean, standard deviation, 25th and 75th percentiles, min-
imum, and maximum. These are features commonly used in
previous work predicting physical activity from accelerometers
(21, 23, 24).

• Skewness and Kurtosis, descriptive statistics derived from the
third and forth moments of the data distribution, that measure
the asymmetry and peakedness, respectively, of the distribution
of accelerometer magnitudes in a minute.

• Autocorrelation of the vector magnitude with 1-s lag (17).
• Correlations between each pair of axes of the accelerometer (i.e.,

x–y correlation, x–z correlation, and y–z correlation).
• Entropy, a measurement of the randomness of the distribution

of accelerometer magnitudes.
• Angular features, to provide information about the orientation

of the accelerometer in space. The roll, pitch, and yaw are mea-
surements used in aeronautics to describe the rotation of an
aircraft, and are calculated by:

average roll =
1

T

T∑
t−1

tan−1 (at ,y , at ,z
)

average pitch =
1

T

T∑
t−1

tan−1 (at ,x , at ,z
)

average yaw =
1

T

T∑
t−1

tan−1 (at ,y , at ,x
)

Figure 2 shows these angles on the coordinate axes.

• Principal direction of motion, obtained via Eigen-decomposition
of the acceleration covariance matrix, AAT. In particular, we
determined the principal direction of motion by taking the
eigenvector ν of AAT with corresponding maximal eigenvalue –
this corresponds to the direction with maximum variation.

• Autoregressive coefficients: we model the acceleration vector
magnitude by an autoregressive model of order p= 5,

at = c0 +
∑p

i=1
cixt−i + εt ,

where c0, . . . ,cp are the model coefficients, and εt is white noise.

FIGURE 2 | Average roll, pitch, and yaw angles.

• Fast Fourier Transform (FFT) coefficients: the FFT decomposes
the signal, e.g., the time series of acceleration measurements,
into components of different frequencies, transforming a time
domain signal at to a frequency domain signal Af. From the

FFT, we computed the power spectrum
∣∣Af

∣∣2 for frequencies
f= 1–15 Hz.

• Total power in the signal from 0 to 15 Hz.
• Dominant frequency, the frequency corresponding to maximal

power in the power spectrum, and corresponding power.

GPS features
We obtained six features from the GPS device: average speed, aver-
age number of satellites used and in view, average signal-to-noise
ratio (SNR) of satellites used and in view, and net distance traveled
in the minute. These 6 features were appended to the 43 acceler-
ation features to obtain the 49-dimensional feature vector that
describes each minute of data.

MACHINE LEARNING METHODS
Our goal in this work is to use supervised machine learning meth-
ods to predict transportation mode from streams of accelerometer
and GPS data. The term“supervised”refers to the fact that we make
use of a training data set containing examples of accelerometer
and GPS data with known corresponding labels (i.e., transporta-
tion mode). A supervised learning algorithm analyzes the training
data and produces an inferred function, or classifier, which maps
a data point (represented by its feature vector), to a label. This is
in contrast to “unsupervised” learning algorithms, which use data
without labels to identify some sort of underlying structure in the
data (i.e., clustering methods). A labeled training dataset is made
up of pairs of feature vectors and labels. There are a wide variety
of classifier functions and learning algorithms that could be used,
and we tested several of the more popular choices.

Classification
We tested several well-known machine learning algorithms to
classify transportation mode: k-nearest neighbor (kNN), sup-
port vector machines (SVM), naive Bayes, decision trees, and
random forests. Many software packages exist that implement
these algorithms and allow them to be used as a “black box” to
perform classification of data. Of these algorithms, the random
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forest algorithm, which is an ensemble method based on decision
trees, produced the highest accuracy, and thus the remainder of
the analysis in this paper will focus on the random forest algo-
rithm. A decision tree is a type of classifier that consists of leaves
representing class labels and branches representing conjunctions
of features that lead to those class labels. For a test data point, the
class label is found by traversing the tree according to the conjunc-
tions in the branches of the tree, and when a leaf is reached the
label in that leaf is assigned to the data point. The training phase
of the algorithm consists of building the decision tree, i.e., learn-
ing the branches that lead to a tree that correctly classifies as many
examples in the training data set as possible. A random forest com-
bines the outputs of multiple randomized decision trees. Shotton
et al. (29) use random forests to do human pose recognition for
the Xbox Kinect. To learn each decision tree, we chose a random
subset of 10,000 training examples (at 1-min epoch) and a random
subset of 25 features. We learned 100 of these randomized decision
trees. To classify a given test example, we traversed each tree until
we arrived at a leaf node. Each leaf node has a probability score
for each transportation mode, according to the ratio of training
examples of each transportation mode that land in that node. We
summed these probability scores in the final leaf node over the 100
trees, and chose the transportation mode with highest probability
for our test example. We choose the parameters for our classifica-
tion algorithms (i.e., number of trees to use) using a held-out day
of data that was not included in the final cross-validation results.
For the decision trees, we set the minimum number of examples
in a leaf to be 10. For the kNN algorithm k was chosen to be 3 and
for SVM the regularization parameter was chosen to be 10.

MOVING AVERAGE OUTPUT FILTER
We filter the output predictions from the random forest classi-
fier with a simple moving average filter. This filter looks at the
predictions made in the 2 min previous to and 2 min following
the minute in question, and outputs the mode that is predicted
the highest number of times. If there is a tie, it outputs either the

prediction from the current minute (if this is one of the tied predic-
tions), or the prediction from the earlier of the tied minutes. This
prevents rapid switching between different modes and encourages
successive predictions to belong to the same travel mode.

RESULTS
We tested the performance of each machine learning algorithm by
performing leave-one-day-out cross-validation. This corresponds
to a realistic setting in which the algorithm would be used – the
data from within a trip are never used as training data to classify
another piece of data from that same trip. Using standard k-fold
cross validation that allows data from the same trip in the test and
training set produces artificially high accuracy scores.

In addition to overall accuracy, we evaluated the performance
of each classifier using precision, recall, and F-score. Precision
measures the proportion of predicted examples of an activity type
that are correct. Precision (P) is calculated as P =TP/(TP+ FP),
where TP is the number of true positives, and FP is the number
of false positives. Recall measures the proportion of true examples
of an activity type that are correctly identified (also called sensi-
tivity). Recall (R) is calculated as R=TP/(TP+ FN), where TP is
the number of true positives, and FN is the number of false neg-
atives. F-score is a measure of accuracy, and is computed as the
harmonic mean of precision and recall, F-score= 2PR/(P +R).
These metrics provide detailed information about how the algo-
rithm performs on each class. The F-scores obtained from each
algorithm are shown in Table 3. The random forest algorithm
showed the highest performance, with an overall accuracy of
89.8%.

Using the moving average output filter to smooth predictions
significantly improved results, leading to an average precision of
0.900, average recall of 0.882, and overall accuracy of 91.9%.
Table 4 reports the precision, and recall scores before and after
output filtering. Figure 3 shows an example day of data, before
and after smoothing, compared to the ground truth annota-
tions for the day. Table 5 shows the confusion matrix for the

Table 3 | Performance results for various classifiers (without output filtering).

F -score Overall accuracy (%)

Bike Bus Car Sit Stand Walk Average

kNN 0.924 0.585 0.855 0.682 0.829 0.955 0.805 86.2

Naïve Bayes 0.872 0.220 0.824 0.503 0.484 0.920 0.637 74.2

SVM 0.962 0.609 0.884 0.724 0.833 0.954 0.828 87.7

Decision tree 0.922 0.537 0.846 0.674 0.792 0.936 0.785 83.6

Random forest 0.971 0.601 0.888 0.778 0.855 0.962 0.843 89.8

Table 4 | Precision (P ) and recall (R ) results for the random forest classifier with and without output filtering.

Bike Bus Car Sit Stand Walk Average Overall accuracy (%)

No output filter P 0.982 0.795 0.880 0.779 0.844 0.968 0.874 89.8

R 0.979 0.545 0.934 0.832 0.880 0.945 0.853

Output filter P 0.985 0.860 0.910 0.807 0.878 0.962 0.900 91.9

R 0.976 0.701 0.952 0.821 0.871 0.970 0.882
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FIGURE 3 | Example output for 1 day of data. We plot the activity
mode vs. time for 1 day of data. In the top plot, we show the activity
mode predicted by the random forest algorithm. In the middle plot, we
show the smoothed predictions output by the moving average filter. In

the bottom plot, we show the ground truth annotations for this day.
Minutes in black were correctly classified, minutes in red were
misclassified, and minutes in blue had no ground truth annotation with
which to compare.

Table 5 | Confusion matrix for the random forest classifier with output

filtering.

Bike Bus Car Sit Stand Walk

Bike 1526 18 4 0 8 3

Bus 2 611 409 54 34 11

Car 2 127 3563 42 69 13

Sit 0 1 44 1232 186 17

Stand 5 8 8 228 2546 97

Walk 19 4 22 26 174 4228

Rows represent number of examples of true activities; columns represent num-

ber of examples of predicted activities. Entries along the diagonal indicate correct

predictions.

smoothed random forest classifier, which reports the number of
test examples classified in each transportation mode. The diag-
onal emboldened numbers represent the correct predictions by
mode.

IMPORTANCE OF FEATURES
In order to gain insight into the usefulness of each feature, we com-
puted an importance score. This score was computed by summing
the changes in the training error each time a feature was used to
create a new branch in a decision tree, and averaged over each tree
in the random forest. We then normalize the scores to sum 1 over
all the features. Table 6 shows the top 15 features according to this
importance score.

Table 6 |Top 15 most informative features.

Score

Standard deviation 0.251

Average speed 0.147

Net distance covered 0.085

Power at dominant frequency 0.082

Autocorrelation 0.061

Average yaw 0.044

Average roll 0.039

Minimum 0.034

FFT 4 Hz 0.029

FFT 3 Hz 0.022

Correlation between x and y axes 0.018

Maximum 0.018

25th Percentile 0.013

Total power 0.013

Average SNR used 0.013

We computed an importance score for each feature and ranked the features

according to this score

DISCUSSION
This study employed GPS and accelerometer data to identify
transportation mode for trips collected in varying environmental
conditions. Machine learning methods were employed to extract
features of the data stream and build an algorithm to predict
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transportation mode. The algorithm was shown to have over 90%
accuracy on leave-one-day-out cross-validation.

Few previous studies have employed GPS and accelerometer
data [for example, Reddy et al. (23)] and machine learning tech-
niques to predict transportation mode. Our study demonstrated
similar accuracy rates as Reddy et al., but deployed the devices
over a larger number of trips, which varied by environmental fea-
tures, thereby providing a more challenging test of the algorithms.
Another difference was the Reddy study employed smart phones
whereas we used research-grade accelerometers and GPS devices
mounted at specific locations. Although smartphones are becom-
ing ubiquitous technologies for continuous sensing of geolocation
and acceleration data, they are limited because of competing power
demands of the phone or other functions (e.g., there must be suf-
ficient power for the phone to make calls, text, read email, surf
the web, etc., with limited interruption to other sensor inputs).
It is also unclear if the integrity of smartphone sensor data relies
on the phone being in a fixed position (i.e., the person keeping
the phone in the same position all day). Although recent studies
have attempted to circumvent these issues, solutions appear largely
experimental or prototypical (30, 31). Importantly, there have
been few studies in the transportation literature that have included
accelerometer data to improve prediction of transportation mode.
Previous studies have employed machine learning techniques on
GPS data alone, but the diversity of the training data was unknown.

The analysis of the importance of each feature demonstrated
that the accelerometer data contribute additional predictive power
above the GPS data. The feature with highest importance was the
standard deviation of the acceleration, which captures informa-
tion about the signal variability. Stationary sitting and standing
should consistently produce low speeds and accelerations, while
bus and car have a much wider range of possible values. The fea-
ture with the second highest importance score was the speed from
the GPS, which differentiates fairly well between activities with
very different average speeds, such as vehicle vs. walking and sitting
or standing. Although vehicle speeds are often higher than active
transportation modes, in downtown corridors vehicle speeds can
be slow including periods where the vehicle has stopped altogether,
such as at a traffic light. These movements may mimic that of walk-
ing or biking. The net distance covered feature is computed from
the GPS data, by simply computing the distance between the first
and last latitude and longitude points in a data window. It is help-
ful in determining whether substantial forward progress was made
during the minute, which is helpful, for example, in differentiating
walking from standing. Another important feature was the power
at the maximum frequency – this measures whether the acceler-
ation signal has a strong dominant frequency, which is exhibited
in signals that are highly periodic, such as walking or bicycling.
Walking in particular has a very consistent dominant frequency
between 3 and 4 Hz, which accounts for the high importance of
the 3–4 Hz feature. Another interesting feature is the average roll,
which provides information about the angle with which the device
is positioned. Since the device is firmly affixed to the participant’s
hip can provide information about whether the subject is bent at
the hip, i.e., sitting vs. standing.

This study demonstrated that under varied environmental con-
ditions known to affect GPS signal, transportation modes could be

detected with high accuracy. Although the accelerometer and GPS
data were collected from separate devices, most mobile phones
now collect GPS and accelerometer data. Additional studies could
investigate algorithms applied to such mobile phone data. While
mobile phone implementation of this study would lose some stan-
dardization of device placement (i.e., subjects could hold the
phone wherever they like), which may make the angular fea-
tures in particular less helpful, these features may instead provide
some information about device placement, which can be corre-
lated with transportation mode. Studies in free-living populations
should also be conducted to confirm the generalizability of these
algorithms. New sensors such as the SenseCam that provides
accompanying image data may make this possible (32).

Limitations of this study include the small sample of sub-
jects (n= 2; although each subject provided over 200 trips).
When participants are performing prescribed trips, there should
be less variation between participants than in a free-living sce-
nario. In particular, the GPS data of two participants performing
the same prescribed trip should look very similar. For this rea-
son we chose to focus on collecting data from a wide variety
of environments rather than a wide variety of participants. Val-
idating methods on a controlled dataset is a first step before
applying them to larger free-living dataset, which is the subject
of future work. Additional limitations are that the data were only
collected in one county (although the environments purpose-
fully varied), and application of the algorithms to only one GPS
model. Additionally, we only tested our algorithms on windows of
data that fell completely within a bout of certain transportation
mode – i.e., we did not include windows containing transitions
between activities. This was done because evaluating the perfor-
mance of our algorithm on these windows that have no single
ground truth label is not straightforward. Future work should
determine a metric for assessing the performance of the algo-
rithm on these split class windows. One of the main sources of
error in our classification was confusion between bus and car
transportation modes, which is to be expected since the two
modes are so similar. Including information from GIS systems,
such as the proximity of public transportation routes, has the
potential of greatly improving the distinction between these two
modes, and we plan on addressing this in future work. Addition-
ally, future work will test the effect of warm vs. cold start GPS
data.
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