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This paper reviews several common challenges encountered in statistical analyses of 
epidemiological data for epidemiologists. We focus on the application of linear regres-
sion, multivariate logistic regression, and log-linear modeling to epidemiological data. 
Specific topics include: (a) deletion of outliers, (b) heteroscedasticity in linear regression, 
(c) limitations of principal component analysis in dimension reduction, (d) hazard ratio 
vs. odds ratio in a rate comparison analysis, (e) log-linear models with multiple response 
data, and (f) ordinal logistic vs. multinomial logistic models. As a general rule, a thorough 
examination of a model’s assumptions against both current data and prior research 
should precede its use in estimating effects.

Keywords: regression, logistic, log-linear, hazard ratio, odds ratio, relative risk, epidemiology, principal component 
analysis

iNTRODUCTiON

Statistics is the study of data collection, organization, abstraction, analysis, interpretation, descrip-
tion, conclusion, and inference (1). It deals with all aspects of data analysis, including planning for 
data collection, design of studies, model selection, and result interpretation. When analyzing data, an 
investigator can use descriptive or inferential statistics. One of the main roles of inferential statistics 
is to make conclusions about a population of interest when data are only available from a sample.

Epidemiology is the study of the distribution and determinants of health-related states or events 
in specified populations (2, 3). Based on the data from a good sample, epidemiologists can use 
inferential statistics to make inferences about a cause–effect relationship in the population (4). For 
epidemiologists, the function of statistics is to determine whether the association observed in a 
sample actually exists in the population from which the sample is drawn. Statistics is used as a tool 
to determine whether an association truly exists or it simply occurs by chance (5).

However, choosing the correct study designs and proper models is often challenging for research-
ers conducting epidemiological studies. The majority of the challenges in statistical inference are 
actually related to statistical modeling (6). Researchers often rely on statistical software to perform 
data analyses. Many non-statistician researchers, who do not have strong background in statistics, 
routinely use popular statistical models provided by the software inappropriately.

Although advanced modeling can be more useful than univariate analyses for detecting and 
summarizing data patterns, using such models inappropriately may generate a higher risk of bias 
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TABLe 1 | The death rate and cigarette data in Freedman et al.1

Obs Country Cigarette Deaths per million

1 Australia 480 180
2 Canada 500 150
3 Denmark 380 170
4 Finland 1100 350
5 Great Britain 1100 460
6 Iceland 230 60
7 Netherlands 490 240
8 Norway 250 90
9 Sweden 300 110
10 Switzerland 510 250
11 USA 1300 200
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(7). The assumptions used in most modeling procedures are more 
restrictive than those used in simple analyses. If one or more of 
these assumptions are violated, the estimates and tests derived 
from such modeling may be seriously compromised (8). On 
many occasions, neither researchers nor the statistical software 
used carefully check whether all the assumptions required for a 
given model are valid before a statistical analysis is performed.

This review is not intended to serve as a model selection 
guide as it is not possible for us to cover every issue in detail. 
We intend to discuss several issues in data analysis often ignored 
by non-statisticians. Investigators should make model-selection 
decisions based on the appropriate data review and the nature of 
the specific epidemiological question at the time of study design. 
The more complete answers can be found in many good statistic 
books. The topics presented are also critical, when we review or 
reference the published manuscripts.

SeveRAL COMMON STATiSTiCAL iSSUeS

Heteroscedasticity and Outliers 
in Linear Regression
Heteroscedasticity refers to the circumstance in which the 
variability of a variable is unequal across the range of values of 
a second variable that predicts it. As an illustration, Table 1 pre-
sents data on the per capita annual consumptions of cigarettes in 
various countries in 1930 and the death rates (number of deaths 
per million people) from lung cancer in 1950 in Freedman et al.1 
As shown in Figure 1, the fitted linear regression lines are differ-
ent when fitting with and without the United States of America 
(USA) data.

Whether to include the USA data in analysis is a question that 
was originally posted. However, a second, related question must 
also be answered: should the regression line pass through the 
original?

This example illustrates some common statistical issues that 
are often ignored by investigators performing linear regres-
sions. Specifically, there are only 11 data points, so the sample 
size is too small to make a meaningful conclusion about an 
association between the death rate and cigarette consumption. 

1 Data set in Freedman, et al. Outliers, Leverage & Influential Points in Regression 
(1991). Available from: http://math.etsu.edu/1530/Outliers.doc

Moreover, there are only two independent factors (Country and 
Cigarette consumption) and one response variable (Death from 
lung cancer) in the data set. Since there was one observation 
per country, the country variable cannot be used directly as a 
predictor. Using cigarette consumption as the only predictor 
for modeling the death rate is over-simplified. Since death rates 
from different countries are independent and the errors are 
approximately normally distributed, those assumptions could 
be accepted. When performing the linear regression using all 11 
records, the USA was considered as an outlier, with its Cook’s 
D  =  2.56, Leverage  =  0.43, and DFFITS  =  −4.32, which are 
commonly used measures of the influence of a data point when 
performing least squares regression analysis (9). Does being an 
outlier necessarily support the deletion of the USA data in the 
analysis? This may seem appropriate as it would yield a better fit 
with a higher coefficient of determination: R2 = 0.94 without vs. 
R2 = 0.54 with USA data. However, deletion of the USA from 
the analysis would remove the largest population of consum-
ers (1300) among the 11 countries. Therefore, any conclusion 
drawn without USA data would be improper. For example, the 
intercept of the regression without the USA data is 0 and this 
would imply that the death rate from lung cancer is 0 for non-
smoking countries.

When the 11 countries were categorized by order of cigarette 
use into five groups (2, 2, 2, 2, 3) respectively, the scatter plot of the 
SDs of the death rate by average cigarette consumption are shown 
in Figure 2. Hence, a simple linear model assuming homogeneity 
of variance does not hold. When linearity or homogeneity of vari-
ance is violated, a transformation, such as logarithm, square root, 
square, and exponential, is often used. If the linearity assumption 
holds, but the variance is not constant, the dependent variable is 
usually transformed before performing the regression modeling. 
If linearity is violated, then either or both of outcome and predic-
tor may be transformed (10).

It can be seen in Figure 1 that points representing higher death 
rates have larger variances. Two possible transformations of death 
data could be considered: logarithm and square root. Figure 1 
also demonstrates that the variance of deaths is an increasing 
function of cigarette consumption. Using Y to represent death 
rates and X to represent cigarette consumption, the following 
transformation forms may be considered:

 
Square Root transformation     Y Y Y

E Y
V Y1 1

1
4

= ( ) = ( ) ( ), V
 

 
Logarithm transormation    Y Ln Y V Y

E Y
V Y2 2 2

1
= ( ) ( ) =
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Stabilizing variance     Y Y

X
Y

X
V Y3 3 2

1
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The size for each group is limited for doing two-stage modeling; 
here, we just used these data to show two-stage modeling as an 
example. As Figure 2 demonstrates, the relationship between SD 
of death and cigarette use becomes almost perfectly linear through 
the origin (by regression, interception = −0.76, R2 = 0.95); hence, 
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FiGURe 1 | The deaths by cigarette using: regression with USA and without USA.
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TABLe 2 | Parameter estimation and model fitting.

Model Parameter estimate Se T value p value R2

1 α 67.561 49.06 1.38 0.2 0.54
β 0.228 0.07 3.27 0.01

2 α 9.074 1.644 5.52 <0.0001 0.56
β 0.008 0.002 3.36 0.01

3 α 4.483 0.248 18.07 <0.0001 0.54
β 0.001 0 3.25 0.01

4 α 0.422 0.058 7.24 <0.0001 0.26
β 0 0 −1.2 0.26

5 α 0.352 0.071 4.98 <0.0001 0.37
β 4.274 27.749 0.15 0.88

6 α −44.763 58.595 −0.76 0.467 0.73
c 39.883 33.856 1.18 0.273
β 0.366 0.123 2.98 0.018
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it is easy to show V(Y3) is constant and the variance is stabilized 
by using Y3. Mortality and cigarette use are positively associated. 
It can be shown that the variance of Y1 and Y2 are also stabilized.

We consider the following six regression models varying by 
transformation of Y, order of X, and restriction on the error term 
(ε), α, β’s are corresponding regression coefficients:

Classic Regression Models

Model 1:  =  +  + Y Xα β ε

Model 2:  =  + X + Y α β ε

Model 3: ln  =  +  + Y X( ) α β ε

Models with non-constant error term

Model 4:  =  +  +  then  =  + +  2Y
X

X Y X X Xα β ε α β ε

Model 5:  =  +  +  then  =  + +  Y
X X

Y X Xα β ε α β ε
1

Two-Stage regression model

Model   6 1 2 1 2 5: , , , , , , , ,y X i n jij ij j ij j= + + = … = …α β ε

Model 1 is the classic regression. The systematic components in 
Models l and 5 are the same. Models 4 and 5 have a non-constant  
error term. The variance in Models 4 and 5 is proportional to the 
square of cigarette consumption. Models 2, 3, and 4 are non-linear 
regressions. The estimation of regression coefficients in Model 6 is 
different from other models, as the two-stage regression model is used 
(10). There are two kinds of errors in Model 6 for the observation:

 
εij ij j j ijy y y y= −( ) + −( ) .

 

The first part is the pure error; the second part is the regression 
error. After estimating sample SD sj for each group, performing 
the classic linear regression, and generating the residuals for all 
records, then define:
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(1)

using transformation, Y′ = Y/cj, X′ = X/cj, adding C = 1/cj as a 
new predictor to perform the multivariate analysis. Using the 
cigarette consumption and death rate data described earlier, the 
corresponding regression coefficient parameter estimates for 
Models 1–6 generated by SAS 9.3 are listed in Table 2.

In Model 5, the intercept α = 0.352 is the estimated linear effect 
(slope) of cigarette use on death rate, which should be compared 
to the slope β  =  0.228 with the USA data and β  =  0.430 (not 
shown in table) without the USA data in Model 1. When the USA 
data are included, the slope is higher when using Model 5 than 
when using Model 1. However, the SE remains the same (0.07). If 
using Model 5 for both data sets with and without the USA data, 
the difference between the two regression lines [slope (without 
the USA data) = 0.438, slope (with USA data) = 0.352] is much 
smaller than that when using Model 1. After controlling for the 

heteroscedasticity, the outlier effect from the USA data is reduced 
(Cook’s D = 0.76, Leverage = 0.24 and DFFITS = −1.68). Model 
6 generates a similar estimate of β = 0.366 (β = 0.414 without 
the USA data) with a higher SE of 0.123. However, the model 
fits the data best with a R2 of 0.73. The effect difference between 
including and excluding the USA data is reduced. In conclusion, 
both Models 5 and 6 might be better regression models for fitting 
the data with heteroscedasticity.

Collinearity and Principal  
Component Analysis
The specific conclusion on the effect of individual factors 
from a multiple regression equation depends on whether the 
predictor is correlated with other predictors (11). The coef-
ficient of a predictor measures the change of the response 
variable when the predictor changes by one unit, while other 
predictors are held constant. When one or more predictors 
are removed from the equation, the coefficient of the remain-
ing predictors should not change. However, in practice, the 
interpretation may not be valid because predictors are often 
correlated making it difficult to change one, while holding 
the others constant. In addition, if a strong association exists 
among predictors, referred to as collinearity, the interpretation 
of regression coefficients becomes unreliable. When collinear-
ity exists, even minor changes, such as removing or adding a 
predictor or deleting a few records, may lead to unpredictable 
changes in the estimated coefficients, or even changes in sign 
or an increase in the estimated SEs.

Table 3 shows Hald’s data with a new response variable (U) 
generated by Hadi [(10), Chapter 6]. The estimated regression 
coefficients on x1, x4, x1–x3, and x1–x4 are provided in Table 4. 
For univariate models, such as Models 1 and 2, both X1 and 
X4 are not statistically significant (p  <  0.05), the regression 
coefficient is close to 0 (0.05 and 0.26, respectively), and the 
model fits poorly. Similar results are found for X2 and X3 when 
using a univariate model. When U is regressed on X1, X2, and 
X3 (Model 3), the regression coefficients do not change much, 
but the SE for X1 is doubled. In Model 4, when X4 is added 
into Model 3, all regression coefficients increase more than 20 
times in magnitude, and the SE also increases dramatically. It 
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TABLe 4 | effects of collinearity.

Model variable DF Parameter Se Pr > |t| R2

1 Intercept 1 4.49 4.33 0.3227 0.05
X1 1 −0.34 0.46 0.4724

2 Intercept 1 −0.76 5.60 0.8948 0.026
X4 1 0.09 0.16 0.5988

3 Intercept 1 6.81 17.62 0.708 0.05
X1 1 −0.37 0.92 0.6962
X2 1 −0.03 0.20 0.8775
X3 1 −0.05 0.83 0.9522

4 Intercept 1 −804.74 132.13 0.0003 0.83
X1 1 7.90 1.40 0.0005
X2 1 8.35 1.36 0.0003
X3 1 8.41 1.42 0.0004
X4 1 8.23 1.34 0.0003

TABLe 3 | Hald’s data.

U x1 x2 x3 x4

0.955 7 26 6 60
0.746 1 29 15 52
−2.323 11 56 8 20
−0.82 11 31 8 47
0.471 7 52 6 33
−0.299 11 55 9 22
0.21 3 71 17 6
0.558 1 31 22 44
−0.119 2 54 18 22
0.496 21 47 4 26
0.781 1 40 23 34
0.918 11 66 9 12
0.918 10 68 8 12

TABLe 5 | eigenvalue and eigenvactor for Hald’s data.

Prin1 Prin2 Prin3 Prin4

Eigenvalue 2.236 1.576 0.187 0.002
x1 0.476 −0.509 0.676 0.241
x2 0.564 0.414 −0.314 0.642
x3 −0.394 0.605 0.638 0.268
x4 −0.548 −0.451 −0.195 0.677

TABLe 6 | Regression analysis by PCA score.

Model variable Parameter Se Pr > |t| R2

Prin1–prin3 Intercept 0.19 0.29 0.52 0.0596
Prin1 −0.13 0.2 0.53
Prin2 0.06 0.24 0.82
Prin3 −0.2 0.69 0.77

Prin1–prin4 Intercept 0.19 0.13 0.17 0.8345
Prin1 −0.13 0.09 0.18
Prin2 0.06 0.11 0.61
Prin3 −0.2 0.31 0.53
Prin4 20.22 3.3 0.0003
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can be shown that high collinearity exists among X1, X2, X3, and 
X4, and there is a strong association between the response and 
these highly correlated variables. However, it becomes difficult 
or impossible to distinguish their individual influences on the 
response variable (impossible to come up with reliable estimates 
of their individual regression coefficients). This poses a real 
problem if the purpose of the study is to estimate the contribu-
tions of individual predictors.

Principal component analysis (PCA) is one of the most com-
monly used approaches to resolving collinearity and reducing 
the dimensions for high dimensional data analysis. PCA uses 
an orthogonal transformation to convert a set of observa-
tions of potentially correlated variables into a set of values of 
linearly uncorrelated variables (12). The number of principal 
components used is often fewer than the number of original 
variables (13). The first principal component has the largest 
variance, followed by the subsequent components in decreas-
ing order by their associated variances under the constraint of 
orthogonal transformation to the preceding components. PCA 
might offer users with lower-dimensional components as the 
predictors in the linear regression. Then, the dimensionality of 
the transformed data is reduced to achieve similar model fit-
ting. Whether this is true and how many principal components 
should be used are common questions. Unfortunately, PCA 
does not imply that the first component is the most significant 

on the outcome. Neither does PCA guarantee that only a few 
principal components can fit the model well. For Hald’s data 
(10), the eigenvalues and eigenvectors from PCA are listed in 
Table 5. The 4th eigenvalue is almost 0, which means the linear 
combination 0.241*x1 + 0.642*x2 + 0.268*x3 + 0.677*x4 is near 
0 (0.002).

The regression analyses on (prin1, prin2, prin3) and (prin1, 
prin2, prin3, prin4) were performed, respectively, and the results 
are shown in Table 6. When the first three principal components 
are used as predictors, it can be seen that none of the first three 
principal components are significant (p  <  0.05), and the coef-
ficient of determination (R-square) is only approximately 0.06, 
When all four principal components are included in the model, 
the only significant principal component is “prin4,” with almost 0 
variance. The R-square is 0.83. This example illustrates that prin-
cipal components with high variances do not necessarily have 
large effects on the response outcome. Moreover, the number of 
orthogonal PCA components used to replace the high dimen-
sional original predictors in the modeling cannot be decided in 
general.

interpreting Regression Output
The regression analysis generates an equation that allows predict-
ing values of a dependent variable through the values of one or 
more independent variables. The equation is written as:

 Y X X X i ni i i p pi i= + + +…+ + = …α β β β ε1 1 2 2 1 2, , , ,  (2)

where Y is the dependent variable, and X1, X2,  …,  Xp are the 
independent variables used to predict Y. The coefficients β1, β2, … 
describe the size of the effects of the independent variables on 
the dependent variable Y, and α (also known as the intercept) 
is the predicted value of Y when all the independent variables 
are equal to 0. Holding all X2 to Xp constant, when X1 increases 
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TABLe 7 | Comparison of regression coefficients in multiple regressions.

Model variable Parameter Se p value

3 Intercept 278.916 48.804 0.000
x1 −1.826 0.685 0.024
x2 0.132 0.254 0.614
x3 −0.712 0.312 0.046

4 Intercept 0.000 1.544 1.000
r_x3_x1x2 −0.712 0.285 0.028
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one unit, Y will increase β1 units, β2, β3, etc., follow the similar 
interpretation. If the assumption of independence among all Xi 
is true, the interpretation might be correct. However, in practice, 
the independent assumption of the predictors is often violated 
and the meaning of the coefficients changes. Suppose there are 
two predictors, X1 and X2, then the actual meaning of β2 is the 
regression effect on two residuals: the residuals of X2 regressing 
on X1 as the predictor, and the residuals of Y regressing on X1 
as the outcome. For multiple regressions, the adjusted regression 
coefficient from a newly added predictor Xk is estimated by two 
residuals from two regression models with the same predictors of 
X1 to Xk−1 with different outcomes of Y and Xk.

As an illustration, the following data set, showing in SAS cod-
ing, has six predictors (X1 through X6) and one outcome of Y, but 
only X1, X2, and X3 are used to set up the following four models:

Model 1: Y = α1 + β11X1 + β12X2, the residual variable denoted as 
r_y_x1x2

Model 2: X3 = α2 + β21X1 + β22X2, the residual variable is r_x3_x1x2
Model 3: Y = α1 + β1X1 + β2X2 + β3X3

Model 4: r_y_x1x2 = α0 + β3′ r_x3_x1x2.

data reg;
  input x1–x6 y @@;
id = _N_;
datalines;
44 89.47 44.609 11.37 62 178 182 40 75.07 45.313 10.07 62 185 185
44 85.84 54.297 8.65 45 156 168 42 68.15 59.571 8.17 40 166 172
38 89.02 49.874 9.22 55 178 180 47 77.45 44.811 11.63 58 176 176
40 75.98 45.681 11.95 70 176 180 43 81.19 49.091 10.85 64 162 170
44 81.42 39.442 13.08 63 174 176 38 81.87 60.055 8.63 48 170 186
44 73.03 50.541 10.13 45 168 168 45 87.66 37.388 14.03 56 186 192
45 66.45 44.754 11.12 51 176 176 47 79.15 47.273 10.60 47 162 164
;

Model 3 is a multiple linear regression model and Model 4 is a 
simple linear regression on two residuals obtained from Model 1 
and Model 2. Table 7 shows the effect of predictor X3 in Model 3 
and the effect of its residual in Model 4.

The regression coefficient of β3 = −0.712 for X3 on Y in Model 
3 is the same as the regression coefficient of β3′ = −0.712 in Model 
4 using two residuals: r_x3_x1x2 on r_y_x1x2. In a multiple linear 
regression, the regression coefficient of a predictor is the effect of 
the unexplained information of that predictor by other predictors 
on the unexplained information of the outcome by the same group 
of predictors. If a predictor can be predicted by other predictors, 
i.e., they are correlated; the residuals (unexplained information) 

would be random and have no relation to that predictor. The 
adjusted effect of that factor in the model including all of the cor-
related independent predictors is unreliable, and the sign and the 
magnitude may be random. Based on Hald’s data in Table 3, the 
adjusted regression coefficient of X1, the unexplained information 
(residual) after controlling X2, X3 and X4, is independent of X1 (see 
Figure  3). Those results support that, if collinearity exists, the 
adjusted effect of X1 and the unadjusted effect are unrelated, and 
the effect changes unpredictably.

Categorical Data Analysis: Logistic 
Regression or Log-Linear Regression
In epidemiology, logistic regression is well known and commonly 
used. Logistic regression is a special case of the generalized linear 
model and thus analogous to linear regression (14). Logistic 
regression is often used in the analysis of binary response data 
based on one or more predictor variables, where odds ratios 
(ORs) are often reported. If the response has multiple qualita-
tive response levels, the logistic model becomes more complex 
and involves multiple outcome functions. If all predictors are 
categorical variables, a log-linear model may be used.

Similar to logistic regression, log-linear model is also a special 
case of generalized linear model (15). Log-linear models analyze 
contingency table data by taking the natural logarithm of the 
cell frequencies. In many cases, logistic and log-linear models 
are equivalent to one another (16). All variables investigated 
by a log-linear model are treated as response variables and not 
distinguished as dependent or independent as in the analysis of 
binary response data in a logistic regression.

The log-linear model is more flexible and demonstrates 
associations among two or more variables, by constructing a 
multi-way contingency table. In general, if only one variable is 
treated as the outcome (response), and all others are predictors, 
it is more convenient to use a logistic regression. If there are more 
than one response variable, a log-linear model should be used.

This distinction is illustrated in the following analysis of 
results from an employee survey (Table 8). “Grade” represents a 
four-point job satisfaction scale, with A being the highest and D 
the lowest. “Load” represents a working pressure scale, <4, 4, 5, 
and >5. Two other variables are age (<25, ≥25) and “Graduate” 
(whether the respondent graduated from college). Both log-linear 
and logistic models are used with two possible outcomes: Grade 
and Load.

Starting from a full model with a backward selection, the 
simplest and the most acceptable model is (grade|age|graduate, 
grade|load, load|graduate), where A|B|C = A B A*B C A*C B*C 
A*B*C, A*B is the interaction of the two factors A and B, and 
A*B*C is the three-way interaction among A, B, and C. The 
selected model contains one three-way interaction, five two-way 
interactions, and four main effects. When grade is used as the 
only response in the logistic model, the association of load and 
graduate cannot be estimated, because load*graduate cannot be 
included in the model. When load is used as the unique response 
in a logistic regression, the associations among grade, age, and 
graduate cannot be estimated. There is no equivalent logistic 
model for this circumstance, in which a log-linear model would 
be appropriate. Table 9 compares the results from two regression 
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models. One is the logistic model by using grade as the outcome. 
The other is the log-linear model, which is equivalent or the most 
closely related to the selected logistic model.

The SAS codes are:

proc logistic data = table1 rorder = data;
freq count;
class Load age graduate/param = glm;
model grade = age|graduate load/link = glogit;
title 'Logistic model: baseline';
run;

proc genmod data = table1 rorder = data;
class load age graduate grade;
model count  =  grade|age|graduate grade|load load|graduate/

type3 dist = poi link = log;
title 'Reduced log-linear model';
run;

It can be seen that for the associations of grade with age or 
graduate, the estimation results from two models are similar. 
However, there are some differences between the two models 
in evaluating the association of grade with the interaction of 
age*graduate. First, the parameter estimate is significant by using 
the log-linear model (p = 0.03), while it is weakly significant by 

TABLe 8 | employee survey data.

Obs Age Graduate Load Grade

A B C D

1 <25 Yes <4 10 7 9 8
2 <25 No <4 18 28 15 12
3 >25 Yes <4 12 13 11 9
4 >25 No <4 38 28 22 14
5 <25 Yes 4 17 23 32 19
6 <25 No 4 25 27 21 11
7 ≥25 Yes 4 12 24 37 27
8 ≥25 No 4 17 29 31 9
9 ≤25 Yes 5 7 6 12 15
10 ≤25 No 5 11 25 34 21
11 ≥25 Yes 5 6 12 9 44
12 ≥25 No 5 12 39 20 22
13 ≤25 Yes >5 9 9 13 18
14 ≤25 No >5 12 24 29 23
15 ≥25 Yes >5 8 9 6 40
16 ≥25 No >5 15 29 23 24
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TABLe 9 | Comparison of the estimates from log-linear and logistic models.

Log-linear model Logistic model

Source DF Chi-Square Pr > ChiSq effect DF wald Chi-square Pr > ChiSq

Grade 3 21.72 <0.0001
Age 1 5.77 0.02
Age*grade 3 6.96 0.07 Age 3 7.05 0.07
Graduate 1 53.63 <0.0001
Graduate*grade 3 48.76 <0.0001 Graduate 3 47.98 <0.0001
Age*graduate 1 0.59 0.44
Age*graduate*grade 3 8.64 0.03 Age*graduate 3 6.90 0.08
Load 3 24.46 <0.0001
Load*grade 9 79.55 <0.0001 Load 9 74.74 <0.0001
Load*graduate 3 40.73 <0.0001
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using the logistic model (p = 0.08). The grade score changes by age 
and graduate as well as from their interaction. In other words, the 
distribution of grade score by age is significantly different for those 
who have an advanced degree from those who do not, which was 
found by using log-linear modeling, but it was not found if using 
logistic model. In addition, the log-linear model can examine the 
associations between load and graduate and age and graduate, 
while the logistic cannot do that. Therefore, the log-linear model 
outperforms the logistic model, as it can better explain the 
associations among the four factors in the contingency table. If 
more than one response variable are of interest to investigators, 
the log-linear model should be used rather than logistic model.

Multinomial and Ordinal Logistic 
Regression
Logistic regression is commonly used when the outcome is 
categorical. By using the natural log of the odds of the outcome 
as the dependent variable, we usually examine the odds of an 
outcome occurring and the relationship with other factors similar 
to multiple linear regression (16).

When the outcome is not dichotomous, the outcome meas-
urement type should be distinguished first; a step often ignored 
by some investigators. There are two kinds of logistic modeling: 
multinomial logistic regression handles the case of a multi-way 
categorical dependent variable (17) and ordinal logistic regres-
sion handles an ordinal dependent variable (18).

Multinomial Logistic Model
The dataset, in the following example from SAS, contains the 
results of hypothetical users testing three brands of computer 
games. Users rated the games on a five-point scale from very good 
(vg) to very bad (vb). The analysis is performed to estimate the 
differences in the ratings of the three games. The variable score 
represents the game rating scales, and the variable game repre-
sents the games tested. The variable count reflects the number of 
testers in the underlying rating category for the underlying game. 
The multinomial or baseline logistic model used to define the 
regression functions is written as:
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p
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 = + + = = =α β εgame     22, ,… n

 
 (3)

There are four outcome functions for the log odds compared 
with the very bad rating group (reference group): ln(p(vg)/p(vb)), 
ln(p(g)/p(vb)), ln(p(m)/p(vb)), ln(p(b)/p(vb)).

The SAS codes are:

Data Compgame;
input count game$ score$ @@;
datalines;
70 game1 vg 71 game1 g 151 game1 m 60 game1 b 46 game1 vb
20 game2 vg 36 game2 g 130 game2 m 80 game2 b 70 game2 vb
50 game3 vg 55 game3 g 140 game3 m 72 game3 b 50 game3 vb
;
Proc logistic data = Compgame rorder = data;/*rorder function 

keeps the outcome functions as the order as the order in data: 
vg, g, m, b, vb*/

freq count;
class game/param = glm;
model score = game/link = glogit;
run;

Table 10 summarizes the model fitting and estimation results. 
Below are some interpretations of the results:

 1. There are four intercepts for the four baseline logit outcomes, 
with the first for the first logit: ln(p(vg)/p(vb)), which is 
−1.25E−13 = 0. It is the log odds for Game 3: for Game 3, 
vg = vb = 50, hence ln(p1/p5) = 0. Similar to the intercept1, all 
intercepts are the log odds relative to p5 for Game3.

 2. There are eight regression coefficients β’s, which are the 
differences of the four logits between Game 1 and Game 3 
and between Game 2 and Game 3. The first β of Game 1 is 
0.42 for level of vg, which is logit difference between Game 
1 and Game 3 for the response function ln(p(vg)/p(vb)). It 
is positive, meaning that the rating of Game 1 is better than 
that of Game 3, with more ratings of “very good” received for 
Game 1. Exponentiation this value exp(0.4199) = 1.522 gives 
the OR between Game 1 and Game 3 for comparing the very 
good score with very bad score. The percentage ratio of rating 
GAME 1 to be very good vs. rating GAME 1 to be very bad 
is roughly 52% higher than the percentage ratio for GAME 3. 
However, the difference is not statistically significant as the 
p-value is only about 0.13.
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TABLe 10 | Results from multinomial logistic regression.a

Parameter Score estimate (β) Se p value Model fitting

Intercept vg 0.000 0.200 1.000 AIC 3356 3323
Intercept g 0.095 0.195 0.626 SC 3376 3383
Intercept m 1.030 0.165 <0.0001 −2Log L 3348 3299
Intercept b 0.365 0.184 0.048 ORa 95% CI
Game 1 vg 0.420 0.276 0.128 1.522 0.886 2.612
Game 1 g 0.339 0.272 0.213 1.403 0.823 2.391
Game 1 m 0.159 0.236 0.500 1.172 0.739 1.86
Game 1 b −0.099 0.269 0.713 0.906 0.535 1.534
Game 2 vg −1.253 0.323 0.000 0.286 0.152 0.538
Game 2 g −0.760 0.283 0.007 0.468 0.268 0.815
Game 2 m −0.411 0.222 0.064 0.663 0.43 1.024
Game 2 b −0.231 0.246 0.348 0.794 0.490 1.286

aThe Reference group is game 3 and score = vb.
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 3. The interpretations are similar for others, for Game 2, the per-
centage ratio receiving scores vg vs. vb is significantly lower 
than for Game 3, with an OR of 0.286. The number of very 
good ratings for Game 2 is much lower than that for Game 3.

If using the data with score = vg and score = vb only, the score 
becomes a binary outcome. The function is log(ps(vg|(under vg 
and vb)))/(1  −  ps(vg|(under vg and vb)))  =  log(p(vg)/p(vb)). 
Using the binary outcome logistic model generates the same 
results as those using the multinomial logistic regression for 
the response function for that subset of the data. The parameter 
estimate for Game 1 is 0.4199 and the OR for the two ratings 
p(vg) to p(vb) is 1.52. Hence, for the data above, without other 
control factors involved in the model, the multinomial model 
simply combines the dichotomous logistic regressions together. 
However, if there are other covariates, the model will be more 
complex. Usually, when the regressors include both categorical 
and continuous predictors, there are four different model designs 
that can be employed: (1) same intercept, same slope; (2) different 
intercepts same slope; (3) different intercepts, different slopes; (4) 
same intercept; different slopes. If design 3 – different intercepts 
and different slopes – is used, the combined multinomial logistic 
model and the binary logistic model by using the same reference 
level will generate the same regression results.

Ordinal Logistic Model
Ordinal (or ordered) logistic model can be used for ordinal 
dependent variables. Since the score measurement is clearly 
ordered, assuming p1, p2, p3, p4, and p5 are the probabilities to be 
tested, scored as vg, g, m, b, and vb, the cumulative logistic func-
tions are proportional and can be defined as follows:

Response function Assigned score

Very good: ln(p1/(p2 + p3 + p4 + p5)) 0
Good: ln(p1 + p2)/(p3 + p4 + p5) 1
Medium: ln(p1 + p2 + p3)/(p4 + p5) 2
Bad: ln((p1 + p2 + p3 + p4)/p5) 3

The regression equation:
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The SAS codes are:

proc logistic data = Compgame rorder = data;/* rorder function 
assigns the order of the four outcome functions as the order 
of the data, the scores are 0, 1, 2 and 3*/

freq count;
class game/param = glm;
model score = game/link = clogit;/*clogit performing the ordinal 

logistic regression, assuming the increasing rate or the four 
lgits is constant*/

run;

Table 11 shows that assuming the odds to be proportional, 
the option of “clogit” uses the cumulative odds to describe the 
game effects on the assigned score. The four cumulative logits 
are assumed to have the same “distance,” ranged from 0 to 3 on 
the cumulative logit function. The slope estimation for a game 
is the relative change of the logarithm, of cumulative odds, 
comparing with Game 3. For Game 1, the slope is 0.3098, it 
implies the counts are non-even comparing with Game 3, the 
logarithm of cumulative OR is 0.3098, which is the change from 
one category to another category in sequential with the refer-
ence level of vb. Hence, there are more good readings for Game 
1 as compared with Game 3. For Game 2, the slope is −0.5748. 
Hence, there are more bad readings for Game 2 as compared 
with Game 3.

Relative Risk, Odds Ratio,  
and Hazard Ratio
Odds ratio is one of three main ways to quantify how strongly the 
presence or absence of property A is associated with the presence 
or absence of property B in a given population (19). OR can be 
readily obtained from logistic regression. On the other hand, haz-
ard ratio (HR) is the ratio of the hazard rates corresponding to the 
conditions described by two levels of an explanatory variable and is 
often presented in a survival analysis. Notably, HR is often treated 
as a ratio of death probability (20). In fact, both OR and HR can be 
used in generalized linear regression to approximate relative risk 
(RR); a fact many researchers may not appreciate. HR is not OR in 
concept, and HR is popular in survival analysis. However, it is less 
known to researchers that HR can be used to compare rates as a 
ratio measure, especially for a matched case–control study. Under 
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TABLe 11 | Analysis of maximum likelihood estimates.

Parameter DF estimate 
(slope)

Se wald  
Chi-Square

Pr > ChiSq

Intercept vg 1 −1.9087 0.1189 257.592 <0.0001
Intercept g 1 −0.9356 0.1022 83.7943 <0.0001
Intercept m 1 0.7305 0.1004 52.9434 <0.0001
Intercept b 1 1.8493 0.1162 253.437 <0.0001
Game Game 1 1 0.3098 0.1307 5.6179 0.0178
Game Game 2 1 −0.5748 0.1365 17.7412 <0.0001
Game Game 3 0 0 – –

TABLe 12 | Comparisons between OR and HR for approximation of 
the RR.

RR p1 p0 OR HR

1.1 0.011 0.01 1.1011 1.1006
0.11 0.1 1.112 1.106
0.22 0.2 1.128 1.113

1.5 0.015 0.01 1.508 1.504
0.15 0.1 1.588 1.543
0.3 0.2 1.714 1.598

2.0 0.02 0.01 2.020 2.010
0.11 0.1 1.112 1.106
0.22 0.2 1.128 1.113

3.0 0.03 0.01 3.062 3.031
0.3 0.1 3.857 3.385
0.6 0.2 6.000 4.106

4.0 0.4 0.1 6.000 4.848
0.4 0.1 6.000 4.848
0.8 0.2 16.000 7.213
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certain conditions, while both OR and HR are good estimates of 
RR, HR is better than OR in approximating RR.

In the following example, p1 is the prevalence of a disease (say 
lung cancer) among an exposure group (say smoking) and let p2 
be the prevalence of the same disease among an unexposed group, 
then RR = p1/p2 is the RR of disease; that is the probability of 
disease in the exposed group compared with the probability of the 
disease in the unexposed (comparison) group. When the disease 
(e.g., lung cancer) is a rare event, it can be extremely inefficient 
to study cancer in relation to certain exposures in a cohort study. 
As an alternative, a case–control study design is often used. For 
case–control studies, it is impossible to estimate the prevalence of 
p1 and p2 from the selected sample with given number of cases and 
controls. Hence, we can only use ORs to estimate the associations 
in such studies. The log odds or logit, ln(p/(1 − p)), is used as the 
outcome in logistic regression. The simple logistic regression can 
be written as:

 
ln p

p
Xi

i
i i1−









 = + +α β ε

 
(5)

For the continuous factor X, each unit of increase in X will lead 
to β units of increase in logit. For categorical factor, say X = 0, 
refers to the non-exposure group and X = 1 refers to the exposure 
group, the natural logarithm of the OR is equal to β, hence
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where p1 = p(Y = 1|x = 1), p0 = p(Y = 1|x = 0).
However, logit link is not the only function that can be used 

in generalized linear regression. If choosing log–log link, the cor-
responding generalized regression is

 
ln ln− −( )( ) = + +1 p Xi i iα β ε

 
(7)

with the same predictor of X. Using the same prevalence notation, 
for one unit increasing of X, the log–log non-event probability 
changes β units, i.e.,

 
ln ln ln ln− −( )( ) − − −( )( ) =1 11 0p p β

 
(8)

then,

 1 1 11 0 0−( ) = −( ) = −( )p p pexp HRβ ( )  (9)

where HR = exp(β). For a binary response, p1 is the prevalence of 
disease in the exposed group. Thus, (1 − p1) is the probability of 
no disease (non-event, or survival from disease) in the exposed 
group. Similarly, (1 − p0) is the probability of no disease (non-
event) in the unexposed group.

We can also extend these analyses for ordinal outcomes. 
Suppose we have an ordinal variable Z with multiple levels of 
responses, e.g., different healthy levels: Z  =  0: seriously sick, 
Z = 1: moderately sick, Z = 2: lightly sick, and Z = 3: healthy. 
Let’s consider these values as survival time. Using the cumulative 
probabilities, we can apply the cumulative logistic regression with 
the log–log link function as below:
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The log–log link regression is

 
ln ln , , , ,− >( )( )( ) = + + =p Z z X zi i i0 0 0 1 2 3α β ε

 
(10)

On the other hand, the proportional hazard (PH) model 
estimating HR may also be applied. The PH model is popular in 
survival analysis. It can be used to perform conditional logistic 
analysis, and has been used for matched case–control studies. If 
the true prevalence of a disease is low, and the true RR is not too 
high, as shown below, both the OR and HR are approximately 
equal to RR, i.e.,

 
OR RR=

−( )
−( )

≈ =
p p
p p

p
p

1 0

0 1

1

0

1
1  

 1 1 11 0 0−( ) = −( ) ≈ − ≈p p pHR HR* then HR RR,  

The following numerical example was generated for RR = 1.1, 
1.5, 2.0, 3.0, and 4.0 with different p0 from 0.01 to 0.2. Both ORs 
and HRs were calculated. It can be seen from Table 12, for a RR 
of 3 or higher and the prevalence of no disease >0.2, that while 
both OR and HR perform poorly in estimating RR, yet HR is 
always better.
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DiSCUSSiONS

Setting up an appropriate research question or hypothesis is 
the foundation of a scientific research study. Selecting proper 
methodology and study design are essential for the study results 
to be interpretable and to have clinical relevance. Different 
study designs may have particular methodological issues and 
constraints; a common challenge is to avoid potential biases. 
The potential biases, while often unavoidable and inherent to 
certain study designs, can limit the relevance and applicability 
of a given study. It is important to address the potential biases 
early in the design phase, so as to ensure an appropriate design 
for the hypothesis and to outline procedures for data collection 
and analysis (21). While some biases can be adjusted or corrected 
in the statistical analysis, many others cannot and may render 
the results of a study invalid. Investigators must be aware of the 
presence of bias, its effect on validity, and how it can lead to data 
misinterpretation and limit the applicability or generalizability of 
a given study [Hartling et al. (22), Agency for Healthcare Research 
and Quality (USA) (23)].

In this manuscript, several statistical modeling techniques 
have been reviewed, which often challenge non-statistician inves-
tigators. As pointed out earlier, the quality of the findings derived 
from statistical analyses depends on the model assumptions and 
data quality. In summary, the examples and discussions in this 
manuscript show that: (1) When any non-independent predictor 
is included in a model, the estimation of the exposure effect will 
vary from its true effect; (2) One can obtain an effect estimate 
of acceptable precision only by making certain assumptions that 
the effects of all the covariates are independent of each other 
and follow a linear response curve; (3) If these assumptions are 

incorrect, the estimates are likely to be biased; (4) If more than 
one response factor is involved in contingency table analysis, 
a log-linear model might offer a better estimate than a logistic 
regression model; (5) The HR can be used to approximate RR; (6) 
log–log linear model could be applied to do the data analysis as 
the logistic regression does. HR might be better than OR in the 
estimation of RR.

In conclusion, when conducting statistical analyses, one 
should always evaluate the study hypothesis; check the data type 
and data quality; check the underlying assumptions, and finally, 
carefully interpret and present the results. Because some statisti-
cal techniques need users to have a strong statistical background, 
software developers may consider improving the existing statisti-
cal packages by including information for non-statistician users 
to check the data quality and model assumptions automatically, 
perform suitable statistical analyses, and present appropriate 
interpretations.

AUTHOR CONTRiBUTiONS

YL provided ideas and drafted of the manuscript. All other 
authors participated revising and polishing the manuscript.

ACKNOwLeDGMeNTS

The authors are grateful for COL Christopher Littell and COL 
Earl Lynch for valuable suggestions and review of the manu-
script and Ms. Janice K. Gary, BS, Accession Medical Standards 
Analysis & Research Activity (AMSARA), ManTech International 
Corporation, Health and Life Sciences, for administrative support 
in preparation of the manuscript.

ReFeReNCeS

1. Dodge Y, Cox D, Commenges D, Davision A, Solomon P, Wilson S. The Oxford 
Dictionary of Statistical Terms. 6th ed. New York, NY: Oxford University Press 
(2006).

2. Center for Disease Control and Prevention (CDC). Principles of Epidemiology 
in Public Health Practice, Third Edition An Introduction to Applied Epidemiology 
and Biostatistics: Section 1: Definition of Epidemiology (2012). Available from: 
http://www.cdc.gov/ophss/csels/dsepd/ss1978/lesson1/section1.html

3. Last JM. Dictionary of Epidemiology. 4th ed. New York, NY: Oxford University 
Press (2001). 61 p.

4. Porta M. A Dictionary of Epidemiology. 6th ed. New York, NY: Oxford 
University Press (2014).

5. Asher W. The role of statistics in research. J Exp Educ (1993) 61:388–93.  
doi:10.1080/00220973.1993.10806599 

6. Konishi S, Kitagawa G. Information Criteria and Statistical Modeling.  
New York, NY: Springer (2008).

7. Manderscheid RW, Henderson MJ. Mental Health, United States. Darby, PA: 
Diane Publishing CO (1998).

8. Greenland S. Modeling and variable selection in epidemiologic analysis. 
Am J Public Health (1989) 79:340–9. doi:10.2105/Ajph.79.3.340 

9. Mendenhall W, Sincich T. A Second Course in Statistics: Regression Analysis. 
5th ed. Upper Saddle River, NJ: Prentice-Hall (1996). 422 p.

10. Chatterjee S, Hadi AS. Regression Analysis by Example. 5th ed. Hoboken, NJ: 
John Wiley & Sons, Inc (2012).

11. Slinker BK, Glantz SA. Multiple linear regression – accounting for multiple 
simultaneous determinants of a continuous dependent variable. Circulation 
(2008) 117:1732–7. doi:10.1161/Circulationaha.106.654376 

12. Jolliffe IT. Principal Component Analysis. 2th ed. New York, NY: Springer (2002).

13. Huang S, Ward MO, Rundensteiner EA. Exploration of dimensionality 
reduction for text visualization. CMV ’05: Proceedings of the Coordinated and 
Multiple Views in Exploratory Visualization. Washington, DC: IEEE Computer 
Society (2005). p. 63–74.

14. Freedman DA. Statistical Models: Theory and Practice. Cambridge, NY: 
Cambridge University Press (2009). p. 128.

15. Agresti A. Categorical Data Analysis. 3nd ed. Hoboken, NJ: John Wiley & Son, 
Inc (2002).

16. Hosmer DW Jr, Lemeshow S. Applied Logistic Regression Analysis. 2nd ed. 
Hoboken, NY: John Wiley & Son, Inc (1989).

17. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear 
models via coordinate descent. J Stat Softw (2010) 33:1–22. doi:10.18637/jss.
v033.i01 

18. Simon S. “Sample Size for an Ordinal Outcome”. STATS − Steve’s Attempt to 
Teach Statistics. Kansas City, MO: Children Mercy Hospital (CMH) (2004).
Available from: http://www.pmean.com/04/OrdinalLogistic.html

19. Edwards AWF. The measure of association in a 2 X 2 table. J R Stat Soc Ser A G 
(1963) 126:109–14. doi:10.2307/2982448 

20. Case LD, Kimmick G, Paskett ED, Lohman K, Tucker R. Interpreting mea-
sures of treatment effect in cancer clinical trials. Oncologist (2002) 7:181–7. 
doi:10.1634/theoncologist.7-3-181 

21. Crewson PE, Applegate KE. Data collection in radiology research. Am 
J Roentgenol (2001) 177:755–61. doi:10.2214/ajr.177.4.1770755 

22. Hartling L, Hamm M, Milne A, et al. Validity and Inter-Rater Reliability Testing 
of Quality Assessment Instruments. Rockville, MD: Agency for Healthcare 
Research and Quality Rockville, MD (2012). Available from: http://www.ncbi.
nlm.nih.gov/books/NBK92299/

23. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig 
LM, et  al. The STARD statement for reporting studies of diagnostic 

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive
http://www.cdc.gov/ophss/csels/dsepd/ss1978/lesson1/section1.html
http://dx.doi.org/10.1080/00220973.1993.10806599
http://dx.doi.org/10.2105/Ajph.79.3.340
http://dx.doi.org/10.1161/Circulationaha.106.654376
http://dx.doi.org/10.18637/jss.v033.i01
http://dx.doi.org/10.18637/jss.v033.i01
http://www.pmean.com/04/OrdinalLogistic.html
http://dx.doi.org/10.2307/2982448
http://dx.doi.org/10.1634/theoncologist.7-3-181
http://dx.doi.org/10.2214/ajr.177.4.1770755
http://www.ncbi.nlm.nih.gov/books/NBK92299/
http://www.ncbi.nlm.nih.gov/books/NBK92299/


12

Yan et al. Revealing Facts and Avoiding Biases

Frontiers in Public Health | www.frontiersin.org October 2016 | Volume 4 | Article 207

accuracy: explanation and elaboration. Ann Intern Med (2003) 138:W1–12. 
doi:10.7326/0003-4819-138-1-200301070-00012-w1 

Conflict of Interest Statement: The research was conducted in the absence of any 
commercial or financial relationships that could be construed as a potential con-
flict of interest. Material has been reviewed by the Walter Reed Army Institute of 
Research. There is no objection to its presentation and/or publication. The opinions 
or assertions contained herein are the private views of the author, and are not to be 
construed as official, or as reflecting true views of the Department of the Army, the 
Department of Defense or Food and Drug Administration (FDA).

The reviewer CT and handling Editor declared their shared affiliation, and the 
handling Editor states that the process nevertheless met the standards of a fair and 
objective review.

Copyright © 2016 Yan, Sun, Boivin, Kwon and Li. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) or licensor are credited and that the original publication in this 
journal is cited, in accordance with accepted academic practice. No use, distribution 
or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive
http://dx.doi.org/10.7326/0003-4819-138-1-200301070-00012-w1
http://creativecommons.org/licenses/by/4.0/

	Revealing Facts and Avoiding Biases: A Review of Several Common Problems in Statistical Analyses of Epidemiological Data
	Introduction
	Several Common Statistical Issues
	Heteroscedasticity and Outliers in Linear Regression
	Collinearity and Principal Component Analysis
	Interpreting Regression Output
	Categorical Data Analysis: Logistic Regression or Log-Linear Regression
	Multinomial and Ordinal Logistic Regression
	Multinomial Logistic Model
	Ordinal Logistic Model

	Relative Risk, Odds Ratio, and Hazard Ratio

	Discussions
	Author Contributions
	Acknowledgments
	References


