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The rapid development of new methods for 
immunological data collection – from multicolor 
flow cytometry, through single-cell imaging, to deep 
sequencing – presents us now, for the first time, with 
the ability to analyze and compare large amounts 
of immunological data in health, aging and disease. 
The exponential growth of these datasets, however, 
challenges the theoretical immunology community 
to develop methods for data organization and 
analysis. Furthermore, the need to test hypotheses 
regarding immune function, and generate 
predictions regarding the outcomes of medical 
interventions, necessitates the development of 
mathematical and computational models covering 
processes on multiple scales, from the genetic and 
molecular to the cellular and system scales.

The last few decades have seen the development 
of methods for presentation and analysis of clonal 
repertoires (those of T and B lymphocytes) and 
phenotypic (surface-marker based) repertoires of 
all lymphocyte types, and for modeling the intricate 
network of molecular and cellular interactions 
within the immune systems. This e-Book, which 
has first appeared as a ‘Frontiers in Immunology’ 
research topic, provides a comprehensive, online, 
open access snapshot of the current state of the art 
on immune system modeling and analysis.

The S5F model of somatic hypermutation 
targeting at the nucleotide C as a function of the 
surrounding nucleotides created by integration 
of multiple B cell repertoire sequencing data 
sets. Bar lengths indicate mutability as a 
function of the surrounding bases (specified 
on each ring), and bar colors indicate classic 
hot-spot WRC motifs (red) and cold-spot 
SYC motifs (blue). Copyright: Yaari G, Vander 
Heiden JA, Uduman M, Gadala-Maria D, Gupta 
N, Stern JN, O’Connor KC, Hafler DA, Laserson 
U, Vigneault F, Kleinstein SH
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Immune system modeling and analysis
Ramit Mehr*
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*Correspondence: ramit.mehr@biu.ac.il
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Immunologists currently face daunting challenges, as a result of
the rapid development of new methods for immunological data
collection, from high-throughput phenotyping to deep sequenc-
ing (1). These and similar methods keep generating humon-
gous amounts of immunological data, which in turn challenge
the theoretical immunology community to develop methods for
data organization and analysis and mathematical and computa-
tional modeling. These challenges and methods were discussed
in recent workshops, for example the Lymphocyte Repertoire
Workshop (Institute of Advanced Studies of the Hebrew Uni-
versity, Jerusalem, early 2012, organized by myself), and the
International Seminar on Multi-Scale Physics of Lymphocyte
Development (Max Planck Institute for the Physics of Com-
plex Systems, Dresden, Summer 2012, organized by M. Or-
Guil et al.).

At about the same time, the organizers mentioned above were
approached by the Frontiers editorial staff with the idea for a
“Frontiers in Immunology” research topic, which was to provide a
comprehensive, online, open access snapshot of the current state
of the art on immune system modeling and analysis. The research
topic was launched, edited, and finalized with the kind help of
co-editors Rob de Boer, Miles Davenport, Carmen Molina-Paris,
Michal Or-Guil, and Veronika Zarnitsyna. It has been a success,
with 35 papers accepted for publication, which attests to the
timeliness of the topic.

The papers included in this Research Topic reflect many of
the issues that theoretical immunologists are struggling with.
Some of the papers address old questions – such as the target-
ing of somatic hypermutation (2) and the resulting diversity of
B cell repertoires (3, 4), how clonal selection operates in ger-
minal centers (5–8); or how the T cell compartment develops
(9–11) and changes with aging (12). However, these papers offer
new viewpoints, which emerged thanks to the immunological
“data revolution”, in particular next-generation sequencing of lym-
phocyte repertoires. Others address new methods of extracting
(13–15) and analyzing (16–18) comprehensive T and B cell phe-
notype and repertoire data, and delineate some of the first insights
gleaned from sequencing studies regarding how these repertoires
emerge, evolve, and function (19–25). Natural killer cells (26),
myeloid cells (27), and structural immunology (28–31) are also
represented.

My thanks go to the above-mentioned co-editors, to the respon-
sive and efficient Frontiers editorial staff, to all the authors who
contributed papers, and to the reviewers whose work has made
publication of all these papers possible.

REFERENCES
1. Mehr R, Sternberg-Simon M, Michaeli M, Pickman Y. Models and meth-

ods for analysis of lymphocyte repertoire generation, development, selec-
tion and evolution. Immunol Lett (2012) 148:11. doi:10.1016/j.imlet.2012.08.
002

2. Yaari G, Vander Heiden JA, Uduman M, Gadala-Maria D, Gupta N, Stern JN,
et al. Models of somatic hypermutation targeting and substitution based on syn-
onymous mutations from high-throughput immunoglobulin sequencing data.
Front Immunol (2013) 4:358. doi:10.3389/fimmu.2013.00358

3. Jackson KJ, Kidd MJ, Wang Y, Collins AM. The shape of the lymphocyte recep-
tor repertoire: lessons from the B cell receptor. Front Immunol (2013) 4:263.
doi:10.3389/fimmu.2013.00263

4. Michaeli M, Tabibian-Keissar H, Schiby G, Shahaf G, Pickman Y, Hazanov
L, et al. Immunoglobulin gene repertoire diversification and selection in the
stomach – from gastritis to gastric lymphomas. Front Immunol (2014) 5:264.
doi:10.3389/fimmu.2014.00264

5. Schwartz GW, Hershberg U. Germline amino acid diversity in B cell receptors
is a good predictor of somatic selection pressures. Front Immunol (2013) 4:357.
doi:10.3389/fimmu.2013.00357

6. Liberman G, Benichou J, Tsaban L, Glanville J, Louzoun Y. Multi step selection
in Ig H chains is initially focused on CDR3 and then on other CDR regions.
Front Immunol (2013) 4:274. doi:10.3389/fimmu.2013.00274

7. Kepler TB, Munshaw S, Wiehe K, Zhang R, Yu JS, Woods CW, et al. Reconstruct-
ing a B-cell clonal lineage. II. Mutation, selection, and affinity maturation. Front
Immunol (2014) 5:170. doi:10.3389/fimmu.2014.00170

8. Or-Guil M, Faro J. A major hindrance in antibody affinity maturation investi-
gation: we never succeeded in falsifying the hypothesis of single-step selection.
Front Immunol (2014) 5:237. doi:10.3389/fimmu.2014.00237

9. Yates AJ. Theories and quantification of thymic selection. Front Immunol (2014)
5:13. doi:10.3389/fimmu.2014.00013

10. Reynolds J, Coles M, Lythe G, Molina-París C. Mathematical model of naive
T cell division and survival IL-7 thresholds. Front Immunol (2013) 4:434.
doi:10.3389/fimmu.2013.00434

11. Hapuarachchi T, Lewis J, Callard RE. A mechanistic model for naive CD4 T
cell homeostasis in healthy adults and children. Front Immunol (2013) 4:366.
doi:10.3389/fimmu.2013.00366

12. Shifrut E, Baruch K, Gal H, Ndifon W, Deczkowska A, Schwartz M, et al. CD4+
T cell-receptor repertoire diversity is compromised in the spleen but not in the
bone marrow of aged mice due to private and sporadic clonal expansions. Front
Immunol (2013) 4:379. doi:10.3389/fimmu.2013.00379

13. Fiala GJ, Kaschek D, Blumenthal B, Reth M, Timmer J, Schamel WW. Pre-
clustering of the B cell antigen receptor demonstrated by mathematically
extended electron microscopy. Front Immunol (2013) 4:427. doi:10.3389/
fimmu.2013.00427

14. Mamedov IZ, Britanova OV, Zvyagin IV, Turchaninova MA, Bolotin DA, Putint-
seva EV, et al. Preparing unbiased T-cell receptor and antibody cDNA libraries
for the deep next generation sequencing profiling. Front Immunol (2013) 4:456.
doi:10.3389/fimmu.2013.00456

15. Chylek LA, Holowka DA, Baird BA, Hlavacek WS. An interaction library for
the FcεRI signaling network. Front Immunol (2014) 5:172. doi:10.3389/fimmu.
2014.00172

16. Bocharov G, Luzyanina T, Cupovic J, Ludewig B. Asymmetry of cell division
in CFSE-based lymphocyte proliferation analysis. Front Immunol (2013) 4:264.
doi:10.3389/fimmu.2013.00264

Frontiers in Immunology | B Cell Biology December 2014 | Volume 5 | Article 644 | 6

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00644/abstract
http://www.frontiersin.org/people/u/17632
mailto:ramit.mehr@biu.ac.il
http://dx.doi.org/10.1016/j.imlet.2012.08.002
http://dx.doi.org/10.1016/j.imlet.2012.08.002
http://dx.doi.org/10.3389/fimmu.2013.00358
http://dx.doi.org/10.3389/fimmu.2013.00263
http://dx.doi.org/10.3389/fimmu.2014.00264
http://dx.doi.org/10.3389/fimmu.2013.00357
http://dx.doi.org/10.3389/fimmu.2013.00274
http://dx.doi.org/10.3389/fimmu.2014.00170
http://dx.doi.org/10.3389/fimmu.2014.00237
http://dx.doi.org/10.3389/fimmu.2014.00013
http://dx.doi.org/10.3389/fimmu.2013.00434
http://dx.doi.org/10.3389/fimmu.2013.00366
http://dx.doi.org/10.3389/fimmu.2013.00379
http://dx.doi.org/10.3389/fimmu.2013.00427
http://dx.doi.org/10.3389/fimmu.2013.00427
http://dx.doi.org/10.3389/fimmu.2013.00456
http://dx.doi.org/10.3389/fimmu.2014.00172
http://dx.doi.org/10.3389/fimmu.2014.00172
http://dx.doi.org/10.3389/fimmu.2013.00264
http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mehr Immune system modeling and analysis

17. Thomas-Vaslin V, Six A, Ganascia JG, Bersini H. Dynamical and mech-
anistic reconstructive approaches of T lymphocyte dynamics: using visual
modeling languages to bridge the gap between immunologists, theoreti-
cians, and programmers. Front Immunol (2013) 4:300. doi:10.3389/fimmu.2013.
00300

18. Zarnitsyna VI, Evavold BD, Schoettle LN, Blattman JN, Antia R. Estimating
the diversity, completeness, and cross-reactivity of the T cell repertoire. Front
Immunol (2013) 4:485. doi:10.3389/fimmu.2013.00485

19. Collins AM, Jackson KJ. A temporal model of human IgE and IgG
antibody function. Front Immunol (2013) 4:235. doi:10.3389/fimmu.2013.
00235

20. Gong C, Linderman JJ, Kirschner D. Harnessing the heterogeneity of T cell dif-
ferentiation fate to fine-tune generation of effector and memory T cells. Front
Immunol (2014) 5:57. doi:10.3389/fimmu.2014.00057

21. Six A, Mariotti-Ferrandiz ME, Chaara W, Magadan S, Pham HP, Lefranc
MP, et al. The past, present, and future of immune repertoire biology –
the rise of next-generation repertoire analysis. Front Immunol (2013) 4:413.
doi:10.3389/fimmu.2013.00413

22. León K, García-Martínez K, Carmenate T. Mathematical models of the impact
of IL2 modulation therapies on T cell dynamics. Front Immunol (2013) 4:439.
doi:10.3389/fimmu.2013.00439

23. Caridade M, Graca L, Ribeiro RM. Mechanisms underlying CD4+ Treg immune
regulation in the adult: from experiments to models. Front Immunol (2013)
4:378. doi:10.3389/fimmu.2013.00378

24. Gerdes S, Newrzela S, Glauche I, von Laer D, Hansmann ML, Roeder I. Math-
ematical modeling of oncogenesis control in mature T-cell populations. Front
Immunol (2013) 4:380. doi:10.3389/fimmu.2013.00380

25. Kessinger TA, Perelson AS, Neher RA. Inferring HIV escape rates from multi-
locus genotype data. Front Immunol (2013) 4:252. doi:10.3389/fimmu.2013.
00252

26. Carrillo-Bustamante P, Kesmir C, de Boer RJ. Quantifying the protection of acti-
vating and inhibiting NK cell receptors during infection with a CMV-like virus.
Front Immunol (2014) 5:20. doi:10.3389/fimmu.2014.00020

27. Alagha A, Zaikin A. Asymmetry in erythroid-myeloid differentiation switch and
the role of timing in a binary cell-fate decision. Front Immunol (2013) 4:426.
doi:10.3389/fimmu.2013.00426

28. Sela-Culang I, Kunik V, Ofran Y. The structural basis of antibody-antigen recog-
nition. Front Immunol (2013) 4:302. doi:10.3389/fimmu.2013.00302

29. Sun J, Kudahl UJ, Simon C, Cao Z, Reinherz EL, Brusic V. Large-scale analysis
of B-cell epitopes on influenza virus hemagglutinin – implications for cross-
reactivity of neutralizing antibodies. Front Immunol (2014) 5:38. doi:10.3389/
fimmu.2014.00038

30. Rao X, De Boer RJ, van Baarle D, Maiers M, Kesmir C. Complementarity of
binding motifs is a general property of HLA-A and HLA-B molecules and does
not seem to effect HLA haplotype composition. Front Immunol (2013) 4:374.
doi:10.3389/fimmu.2013.00374

31. Castro M, van Santen HM, Férez M, Alarcón B, Lythe G, Molina-París C. Recep-
tor pre-clustering and T cell responses: insights into molecular mechanisms.
Front Immunol (2014) 5:132. doi:10.3389/fimmu.2014.00132

Conflict of Interest Statement: The author declares that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 02 September 2014; accepted: 03 December 2014; published online: 19
December 2014.
Citation: Mehr R (2014) Immune system modeling and analysis. Front. Immunol.
5:644. doi: 10.3389/fimmu.2014.00644
This article was submitted to B Cell Biology, a section of the journal Frontiers in
Immunology.
Copyright © 2014 Mehr. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

www.frontiersin.org December 2014 | Volume 5 | Article 644 | 7

http://dx.doi.org/10.3389/fimmu.2013.00300
http://dx.doi.org/10.3389/fimmu.2013.00300
http://dx.doi.org/10.3389/fimmu.2013.00485
http://dx.doi.org/10.3389/fimmu.2013.00235
http://dx.doi.org/10.3389/fimmu.2013.00235
http://dx.doi.org/10.3389/fimmu.2014.00057
http://dx.doi.org/10.3389/fimmu.2013.00413
http://dx.doi.org/10.3389/fimmu.2013.00439
http://dx.doi.org/10.3389/fimmu.2013.00378
http://dx.doi.org/10.3389/fimmu.2013.00380
http://dx.doi.org/10.3389/fimmu.2013.00252
http://dx.doi.org/10.3389/fimmu.2013.00252
http://dx.doi.org/10.3389/fimmu.2014.00020
http://dx.doi.org/10.3389/fimmu.2013.00426
http://dx.doi.org/10.3389/fimmu.2013.00302
http://dx.doi.org/10.3389/fimmu.2014.00038
http://dx.doi.org/10.3389/fimmu.2014.00038
http://dx.doi.org/10.3389/fimmu.2013.00374
http://dx.doi.org/10.3389/fimmu.2014.00132
http://dx.doi.org/10.3389/fimmu.2014.00644
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/B_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 08 October 2013

doi: 10.3389/fimmu.2013.00302

The structural basis of antibody-antigen recognition

Inbal Sela-Culang†,Vered Kunik † andYanay Ofran*

The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel

Edited by:
Michal Or-Guil, Humboldt University
Berlin, Germany

Reviewed by:
Gur Yaari, Yale University, USA
Chaim Putterman, Albert Einstein
College of Medicine, USA

*Correspondence:
Yanay Ofran, The Goodman Faculty of
Life Sciences, Bar Ilan University,
Ramat-Gan 52900, Israel
e-mail: yanay@ofranlab.org
†Inbal Sela-Culang and Vered Kunik
have contributed equally to this work.

The function of antibodies (Abs) involves specific binding to antigens (Ags) and activa-
tion of other components of the immune system to fight pathogens.The six hypervariable
loops within the variable domains of Abs, commonly termed complementarity determining
regions (CDRs), are widely assumed to be responsible for Ag recognition, while the con-
stant domains are believed to mediate effector activation. Recent studies and analyses of
the growing number of available Ab structures, indicate that this clear functional separation
between the two regions may be an oversimplification. Some positions within the CDRs
have been shown to never participate in Ag binding and some off-CDRs residues often con-
tribute critically to the interaction with the Ag. Moreover, there is now growing evidence
for non-local and even allosteric effects in Ab-Ag interaction in which Ag binding affects
the constant region and vice versa. This review summarizes and discusses the structural
basis of Ag recognition, elaborating on the contribution of different structural determinants
of the Ab to Ag binding and recognition. We discuss the CDRs, the different approaches
for their identification and their relationship to the Ag interface. We also review what is
currently known about the contribution of non-CDRs regions to Ag recognition, namely the
framework regions (FRs) and the constant domains.The suggested mechanisms by which
these regions contribute to Ag binding are discussed. On the Ag side of the interaction,
we discuss attempts to predict B-cell epitopes and the suggested idea to incorporate Ab
information into B-cell epitope prediction schemes. Beyond improving the understanding
of immunity, characterization of the functional role of different parts of the Ab molecule
may help in Ab engineering, design of CDR-derived peptides, and epitope prediction.

Keywords: antibody, CDRs, antigen, paratope, epitope, framework, constant domain

INTRODUCTION
Antibodies (Abs) have two distinct functions: one is to bind specif-
ically to their target antigens (Ags); the other is to elicit an immune
response against the bound Ag by recruiting other cells and mol-
ecules. The association between an Ab and an Ag involves myriad
of non-covalent interactions between the epitope – the binding
site on the Ag, and the paratopes – the binding site on the Ab. The
ability of Abs to bind virtually any non-self surface with exquisite
specificity and high affinity is not only the key to immunity but has
also made Abs an enormously valuable tool in experimental biol-
ogy, biomedical research, diagnostics and therapy. The diversity
of their binding capabilities is particularly striking given the high
structural similarity between all Abs. The availability of increas-
ing amounts of structural data in recent years now allows for a
much better understanding of the structural basis of Ab function
in general, and of Ag recognition in particular. This review sur-
veys the recent developments and the current gaps and challenges
in this field. We focus specifically on the current understanding
of the determinants within the Ab structure that contribute to
Ag binding. We first discuss the motivations for, and applications
of, the study of the structural basis of Ag recognition. Then we
describe and discuss the Ab-Ag interface, with specific focus on the
paratopes and the complementarity determining regions (CDRs),
and their role in Ag binding. The last part focuses on the contri-
bution of the non-CDRs parts of the Ab [i.e., framework regions

(FRs) and the constant domains] to Ag binding and on the recent
suggestions regarding non-local and allosteric effects in Ab func-
tion. Over the last few years numerous reviews have addressed
issues that are related or tangential to the topics we review here.
This includes reviews of the engineering of Abs (1), their stability
(2), affinity maturation (3), and isotype selection (4). While these
important topics are relevant to the findings and ideas we review
here, they are beyond the scope of this review.

THE MOTIVATIONS FOR, AND APPLICATIONS OF, THE STUDY
OF Ab-Ag RECOGNITION
UNDERSTANDING IMMUNITY AND AUTOIMMUNITY
The adaptive immune response involves two types of lymphocytes:
T cells, which recognizes Ags that have been processed and their
fragments are presented by MHC molecules, and B cells which pro-
duce soluble Abs that can identify also the intact Ag in its native
form. While the way in which T cells recognize their epitopes
has been extensively studied to a level that enables the successful
prediction of T-cell epitopes (5, 6), the rules that govern Ab-Ag
recognition, including which parts of the Ab structure underlie
Ag recognition and how and why certain determinants on the Ag
are selected as epitopes, are not as well characterized. Understand-
ing the mechanisms that underlie Ab-Ag recognition, therefore, is
crucial for understanding immunity.
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The immune system enables Abs to distinguish between foreign
and self molecules (7). Autoimmune diseases are characterized by
the inappropriate response to self-Ags. It is not always clear what
role is played by Abs and what role is played by other components
of the immune system in autoimmunity. A variety of molecu-
lar mechanisms have been proposed, including sequestered Ags,
molecular mimicry, and polyclonal B-cell activation (8). Better
understanding of the underpinnings of Ab-Ag recognition may
also shed light on these questions.

A MODEL FOR STUDYING BIO-MOLECULAR RECOGNITION
A fundamental characteristic of the immune system is its ability
to continuously generate novel protein recognition sites. Ab-Ag
interfaces, therefore, are often considered a model system for eluci-
dating the principles governing biomolecular recognition (9–13).
For example, Keskin (14) and McCoy et al. (15) used X-ray crystal-
lographic structures of Ab-Ag complexes to elucidate principles of
the molecular architecture of protein–protein interfaces. Other
studies, however, view Ab-Ag interfaces as a specific case that
may not allow for generalization to all types of protein–protein
interfaces (16). Thus, large scale studies of protein–protein inter-
actions often exclude Ab-Ag complexes from the dataset analyzed
(16–19). It is, therefore, important to determine to what extent Ab-
Ag complexes could serve as a general model for protein–protein
interactions.

ANTIBODY ENGINEERING
The specificity of the Ab molecule to its cognate Ag has been
exploited for the development of a variety of immunoassays, vacci-
nations, and therapeutics. Ab engineering may offer to expand the
application of Abs by permitting improvements of affinity (20, 21)
and specificity (22, 23). Understanding of the role each structural
element in the Ab plays in Ag recognition is essential for success-
ful engineering of better binders. The engineering of Abs is also
important for the clinical use of Abs from non-human sources.
Early studies on the use of rodent Abs in humans determined
that they can be immunogenic (24). Humanization by grafting
of the CDRs from a mouse Ab to a human FR is a commonly
used engineering strategy for reducing immunogenicity (25, 26).
In most cases, the successful design of high-affinity, CDR-grafted,
Abs requires that key residues in the human acceptor FRs that are
crucial for preserving the functional conformation of the CDRs
will be back-mutated to the amino acids of the original murine Ab
(26, 27). Several groups (28–30) used the experimentally deter-
mined 3-D structures of Ab-Ag complexes in the Protein Data
Bank (PDB) (31) to determine which residues participate in Ag
recognition and binding. Such knowledge can be exploited to
identify residues that are important for the function of the Ab
in general and for Ag recognition in particular and may guide Ab
engineering (32, 33). Residues that help maintain the functional
conformation of the CDRs, for example, can be used to improve
Ab humanization efforts by CDR-grafting.

Ab EPITOPE PREDICTION
Antibody epitopes (sometimes referred to as B-cell epitopes) are
the molecular structures within an Ag that make specific contacts
with the Ab paratope. B-cell epitopes are used in the development

of vaccines and in immunodiagnostics. Correct identification of
B-cell epitopes within an antigenic protein, may open the door for
the design of molecules (biologic or synthetic) that mimic poten-
tially protective epitopes and could be used to raise specific Abs
or be used as a prophylactic or therapeutic vaccines. Identification
of B-cell epitopes could promote protective immunity in the con-
text of emerging and re-emerging infectious diseases and potential
bioterrorist threats. This may be achieved by choosing from among
the putative epitopes those that may provide immunity (e.g., by
eliciting Abs that hamper the molecular function of pathogenic
Ags). The choice of such epitopes is believed to be relevant for
understanding and controlling protective immunity. In the case of
the vaccinia virus, for example, which was used as smallpox vac-
cine and is the only vaccine that has led to the complete eradication
of an infectious disease from the human population, individuals
possessing a high frequency of memory B-cells specific for major
neutralizing Ags of the vaccinia virus are better protected from
smallpox than individuals with a memory B-cell pool dominated
by specificities for non-protective Ags (34). Thus, understand-
ing the way in which an Ab recognizes its cognate epitope is
of particular interest for vaccine design and disease prevention
(35). Existing tools for identification of Ab epitopes (such as X-
ray crystallography, pepscan, phage display, expressed fragments,
partial proteolysis, mass spectrometry, and mutagenesis analysis)
are not only expensive, laborious, and time consuming but also
fail to identify many epitopes (36). When talking about protein
Ags, most of these methods typically identify linear stretches as
epitopes, while, arguably, most of the epitopes on protein Ags
are conformational and even discontinuous. As for computational
approaches, despite more than 30 years of efforts (37), existing B-
cell epitope prediction methods are not accurate enough (38, 39)
and are, therefore, not widely used. This is exemplified in Figure 1,
in which the structure of hen egg lysozyme (HEL) Ag and three
Abs that bind it are shown (Figures 1A,B), as well as the epitopes
predicted by three different methods (Figure 1C).

In general, current methods are trying to identify epitopic
residues based on the presence of features associated with residues
that bind the Ab (40–50). One possible explanation for the failure
of these methods is that the differences between epitopes and other
residues are not substantial. Indeed, several analyses (51–53) have
shown that the amino-acid composition of epitopes is essentially
indistinguishable from that of other surface-exposed non-epitopic
residues.

This lack of intrinsic properties that clearly differentiate
between epitopic and non-epitopic residues and the fact (demon-
strated in Figure 1) that most of the Ag surface may become a
part of an epitope under some circumstances (54–57) suggest that
epitopes depend, to a great extent, on the Abs that recognize them.
This is exemplified in Figure 1: most of the HEL surface residues
are part of an epitope of at least one Ab (Figures 1A,B), even
though this figure shows only three Abs (out of dozens known to
bind HEL). Almost all the residues predicted to be epitopic may be
considered as correct predictions as they bind some Ab (Figure 1C)
but also as false predictions as they don’t bind the others. Similarly,
predicting that a residue is not in an epitope may be either a true
negative or a false negative, depending on the Ab considered. It
has recently been suggested by us (Sela-Culang et al., submitted)
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FIGURE 1 | Predicted epitopes vs. the actual epitopes of HEL. (A) The 3-D
structure of HEL (CPK representation) together with three Abs (ribbon
representation). PDB IDs 1JHL, 3D9A, and 1MLC were superimposed
according to HEL structure. Epitope residues are colored blue, green, and red
according to the corresponding Ab. Residues that are common to two

epitopes are colored orange. (B) The structure of HEL colored according to
the same three epitopes as in (A), presented in a different orientation. (C) The
structure of HEL colored according to the epitopes predicted by Discotope
(light blue), ellipro (purple), and seppa (pink). Note, not all predicted residues
of Discotope and ellipro are observable in the presented orientation.

and by others (58–60) that predicting epitopes should be done
for a certain Ab. A similar concept was successfully applied in the
case of T-cell epitope prediction methods: these methods do not
examine the Ag for general features. Rather, different predictions
are made, dependent on the specific MHC molecule binding and
presenting the epitope to T cells.

THE ROLE OF CDRs AND THEIR DEFINITION
As shown in Figure 2, Abs are all-beta proteins consisting of four
polypeptide chains: two identical heavy (H) chains and two iden-
tical light (L) chains (61). The light and heavy chains are linked
by disulfide bonds to form the arms of a Y-shaped structure, each
arm is known as a Fab (61). The Fab is composed of two vari-
able domains (VH in the heavy chain and VL in the light chain)
and two constant domains (CH1 and CL) (62). In the pairing of
light and heavy chains, the two variable domains dimerize to form
the Fv fragment which contains the Ag binding site. Within each
variable domain lie six hypervariable loops (63), three in the light
chain (L1, L2, and L3) and three in the heavy chain (H1, H2, and
H3), supported by a conserved FR of β-sheets. The light and heavy
variable domains fold in a manner that brings the hypervariable
loops together to create the Ag binding site or paratope. Two addi-
tional domains of the heavy chain, CH2, and CH3, compose the
Fc region which is responsible for mediating the biological activity
of the Ab molecule.

CDRs IDENTIFICATION
As indicated by their names, CDRs are believed to account for
the recognition of the Ag. Therefore, a major focus in analyz-
ing the structural basis for Ag recognition has been in identifying
the exact boundaries of the CDRs in a given Ab. It is a common
practice to identify paratopes through the identification of CDRs.
Kabat and co-authors (63, 64) were the first to introduce a sys-
tematic approach to identify CDRs in newly sequenced Abs. It was
based on the assumption that CDRs are the most variable regions
between Abs. Therefore, they aligned the (fairly limited) set of Ab
sequences available at that time and identified the most variable
positions. Based on the alignment, they introduced a numbering

scheme for the residues in the hypervariable regions and deter-
mined which positions mark the beginning and the end of each
CDR. As structural data became available, Chothia and Lesk (65,
66) manually analyzed a small number of experimentally solved
3-D structures and determined the structural location of the loop
regions. The boundaries of the FRs and CDRs were determined
and the latter have been shown to adopt a restricted set of confor-
mations, based on the presence of certain residues at key positions
in the CDRs and the flanking FRs. Their finding that Kabat’s defini-
tions of L1 and H1 are structurally incorrect led to the introduction
of the Chothia numbering scheme. With the increase of available
structural data, they ran their analysis anew and introduced a new
definition of L1 (66) in 1989. In 1997 (67), however, they con-
cluded that this correction was erroneous, and reverted to their
original 1987 numbering scheme. While the Kabat and Chothia
schemes treated separately the different families of immunoglob-
ulin domains, Lefranc and colleagues (68, 69) proposed a unified
numbering scheme (referred to as IMGT numbering scheme) for
immunoglobulin variable domain genomic sequences, including
Ab light and heavy variable domains, as well as T-cell receptor vari-
able domains. To correlate between the sequence, structure, and
domain folding behavior of all immunoglobulin variable domains,
the Aho numbering scheme spatially aligned known 3-D structures
of immunoglobulins and unified their numbering (70).

A drawback of the Kabat, Chothia, and IMGT numbering
schemes is that CDRs length variability takes into account only
the most common loop lengths; While both Kabat and Chothia
schemes accommodate insertions with insertion letters (e.g., 27A),
the IMGT scheme avoids the use of insertion codes for all but the
least common very long loops, and the Aho numbering scheme
places insertions and deletions symmetrically around a key posi-
tion. However, Abs with unusually long insertions may be hard
to annotate using these methods and, as a result, their CDRs may
not be identified correctly. For instance, the recently determined
3-D crystal structure of two bovine Abs (71) reveal exceptionally
long H3 CDRs (>60 residues), with long insertions which these
methods cannot accommodate and thus cannot identify the CDRs
of these Abs.
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FIGURE 2 |The structure of an Ab molecule. (A) The 3-D structure of an Ab molecule (PDB ID: 1IGT). (B) A schematic representation of the Ab scaffold.

ARE CDRs GOOD PROXIES FOR THE PARATOPE?
While identification of paratopes is often done through identifica-
tion of CDRs, not all the residues within the CDRs bind the Ag. In
fact, an early analysis of the 3-D structures of Abs suggested that
only 20–33% of the residues within the CDRs participate in Ag
binding (72). In 1996, MacCallum and colleagues (73) performed
a detailed residue-level analysis of Ag contacts. They suggested that
contacting residues are more common at CDRs residues which
are located at the center of the Ag combining site, and that non-
contacting residues within the CDRs correspond with residues that
are important for maintaining the structural conformations of the
hypervariable loops and not necessarily for recognition of the Ag.
Thus, they introduced a mapping of Ag-contacting propensities
for each Ab position and proposed a new definition for CDRs
based on these propensities. Padlan and co-workers (28) utilized
Abs sequence and structure data to perform a by-position sum-
mary of Ag contacts. They found that the residues that are directly
involved in the interaction with the Ag are also, in general, the
most variable ones. They suggested that the residues that inter-
act with the Ag should be called Specificity Determining Residues
(SDRs).

The number of publicly available structures of Ab-Ag com-
plexes increased in recent years to a level that enabled large-scale
analyses. In a recent analysis (29) we utilized all available protein-
Ab complexes in the PDB to identify the structural regions in which
Ag binding actually occurs. This approach was implemented into
a method dubbed Paratome (30, 74) that is based on a multi-
ple structure alignment (MSTA) of all available Ab-Ag complexes
in the PDB. The MSTA revealed regions of structural consen-
sus where the pattern of structural positions that bind the Ag is
highly similar among all Abs. These regions of structural binding

consensus were termed antigen binding regions (ABRs). While
CDRs, as identified by methods such as Kabat (63), Chothia (65),
and IMGT (69), may miss ∼20% of the Ag binding residues, ABRs
cover∼96% of the residues that actually bind the Ag (30). To avoid
confusions and cumbersome nomenclature, herein we generically
refer to CDRs, SDRs, and ABRs as “CDRs” unless otherwise spec-
ified. Figure 3 shows an example of CDRs as identified by Kabat,
Chothia, IMGT, and Paratome for one Ab (anti-IL-15, PDB ID:
2XQB), compared to the actual Ag binding residues. It can be seen
that in this example, some of the CDRs (e.g., L3, H3) identified
by the four methods are almost identical, while in other CDRs
(e.g., L2, H1, and H2) there are substantial differences between the
methods. The MSTA of Abs with known 3-D structure also con-
firmed previous observations that there are structural positions
within the CDRs in which none, or only a small percentage of the
Abs contact the Ag. This is shown in Figure 4 where an example
of such a position is marked by a green arrow.

INTEGRALITY VS. MODULARITY
Designed systems are often characterized as either modular or
integral. In a modular system different components, or mod-
ules, function independent of the function of other modules. The
generation of Abs in the immune system is based on combining
different elements, in a way that may be considered modular where
each component is capable of binding the Ag regardless of the
others. However, some analyses suggest that Ag binding warrants
a more integrative view of the relationships between the different
components of the Ab.

The binding-sites of interacting proteins are usually com-
posed of surface patches that have good shape and electrosta-
tic complementary (15, 75, 76). It has been shown that CDRs
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FIGURE 3 | Comparison of different CDR identification methods. The light
(A) and heavy (B) chains of PDB ID 2XQB were numbered according to Kabat
(colored green) and Chothia (colored red) using the Abnum tool
(www.bioinf.org.uk/abs/abnum) and CDRs were extracted according to the
CDR definitions table (www.bioinf.org.uk/abs/#cdrs). CDRs according to

IMGT (colored orange) were identified using the IMGT-gap tool
(www.imgt.org/3Dstructure-DB/cgi/DomainGapAlign.cgi). ABRs according to
Paratome (colored blue) were identified using the Paratome server
(www.ofranlab.org/paratome). Contacts (colored purple) between the Ab and
IL-15 were defined using a 6-Å cutoff value.

are characterized by an amino-acid composition that is different
from that of other protein loops (77) and also from other types
of protein–protein interfaces (58). Thus, one would expect that
epitopes, just like paratopes, should have a distinct amino-acid
composition. However, several recent analyses (51, 53) have shown
that this is not the case: while epitopes differ from other types of

interfaces (10, 29, 60), their amino-acid composition is virtually
the same as that of non-epitopic surface residues.

Several studies have shown that each CDR has its own unique
amino-acid composition, different from the composition of the
other CDRs (52, 58, 78). Additionally, we have shown that each
CDR has a unique set of contact preferences, therefore, favoring
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FIGURE 4 | Ab positions that contact the Ag. (A,B) The lower graphs show
the percentage of Abs with known 3-D structure that have a residue in a given
position (i.e., in other Abs there is a gap in the MSTA in that position). The
upper graphs show the percentage of Abs that contact the Ag out of those
Abs that have a residue in that position. (A) Depicts the heavy chain and
(B) depicts the light chain. In the upper graphs, the ABRs are colored red and
the FRs are colored blue. An example of a position within an ABR that is not
in contact with the Ag in any of the Abs, is marked by a green arrow. An

example of a position in the FRs that is in contact with the Ag in many (8%) of
the Abs is marked by an orange arrow. (C) The Ab Fv domain (PDB ID: 1QFU)
is colored according to the percentage of all Abs with known 3-D structure in
which the residue in that position is in contact with the Ag: from red (100% of
the Abs) to blue (0%). ABR residues are presented as lines. The definition of
the ABRs is according to the Paratome server. A 6-Å cutoff value was used to
define residues in contact. Percentages of contacts were calculated based on
an MSTA of all protein Ab-Ag complexes in the PDB (30).

certain amino-acids over others (52). Dividing epitope residues
into six subsets according to the CDR they bind, we found that
each of the subsets has a distinct amino-acid composition, distin-
guishable from non-epitope surface (52). In other words, when the
six subsets of epitope residues are considered together the unique
composition of each subset disappears so that the overall amino-
acid composition of the entire epitope is indistinguishable from
the rest of the surface. Pathogenic epitopes may have evolved to
resemble Ag surface to escape recognition. On the other hand, the
integration of the six CDRs together, each with its own unique

amino-acid composition and contact preferences, could be the
evolutionary response of the immune system that enables Abs to
recognize virtually any surface patch on the Ag.

Despite this integrated effect of the CDRs, Abs can be also con-
sidered as a modular system, composed of different elements (such
as the Fab, VH and VL, or the six CDRs), which may bind the Ag
on their own. Such smaller Ab fragments that retain Ag binding
affinity and specificity, hold a great potential for drug design (79–
81) as they have improved pharmacokinetics, tissue and tumor
penetration, and can be produced more economically (80, 81).
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They may also be combined with other fragments to yield better
binders. Although such smaller fragments cannot induce effector
function such as complement activation (due to the lack of the
constant domains), they may neutralize the targeted Ag. Fab and
single-chain variable (scFv) fragments usually maintain specific
binding to the Ag (82). VH and VL fragments usually show sticky
behavior, low solubility, and reduced Ag binding affinity (83–85),
although, they sometime retain specificity to the Ag (83, 85–87).

The CDRs may provide additional level of modularity. Accord-
ing to the commonly accepted hotspot hypothesis, the binding
energy of two proteins is largely determined by a very small num-
ber of critical interface residues (12, 88–90). Thus,one may wonder
whether an individual CDR could bind the Ag on its own provided
that it harbors hotspots. Several linear peptides containing one or
more of the CDRs that retained Ag specificity have been reported
(91–98). Although their affinity was usually in the micromolar
range, it could be significantly improved by introducing relatively
minor modifications (91, 99). However, many attempts to isolate
and design such CDR derived peptides failed (100, 101). One pos-
sible reason is that a CDR, on its own, may not fold to the same
conformation as in the context of the entire Fab, which may be cru-
cial for binding. Cyclizing the CDR by adding Cys residues at its
edges was suggested as a solution for this problem (96, 102–104).
Another reason might lie in the fact that many attempts for the
design of CDR-derived peptides are made based on CDR-H3, as it
is considered to be the most important CDR for Ag binding (67,
105–107). However, the median length of ABR-H2 is substantially
longer than that of H3, and both typically form the same number
of interactions with the Ag (52). In addition, while ABR-H3 was
shown to have the highest contribution to Ag binding energy on
average (52), there are individual cases in which other CDRs are the
dominant ones (52, 102). It is also possible that in some cases the
binding depends on specific contacts from residues in different
CDRs, which may preclude the design of CDR-derived peptides
that maintain specificity. We have shown (102) that CDRs that are
able to bind the Ag on their own have unique characteristics and,
thus, can be computationally identified given the Ab-Ag complex
structure. This may enhance the design of CDR-derived peptides
that are not necessarily based on CDR-H3.

NON-CDR DETERMINANTS THAT HAVE A ROLE IN Ag
BINDING
FR RESIDUES
Within the variable domain, the CDRs are believed to be respon-
sible for Ag recognition, while the FR residues are considered a
scaffold for the CDRs. However, it is now well established that
some of the FR residues may play an important role in Ag binding
(32, 108). As mentioned above, many such FR residues were iden-
tified during the process of Ab humanization by CDR grafting.
While grafting only the CDRs usually results in a significant drop
or a complete loss of binding, the binding affinity can be retained
by back mutating some of the FR residues to the original murine
sequence, emphasizing their role in Ag binding (26, 109–115).

Framework region residues that affect Ag binding can be
divided into two categories. The first are FR residues that contact
the Ag, thus are part of the binding-site (108, 109, 111, 116–123).
Some of these residues are close in sequence to the CDRs (in fact

they may be within the boundaries of CDRs according to some
CDR identification methods, but not according to others, as shown
in Figure 3). Other residues are those that are far from the CDRs
in sequence, but are in close proximity to it in the 3-D structure. In
particular, a loop in the heavy chain FR-3, sometimes referred to as
CDR-H4, accounts for 1.3% of human Ab-Ag contacts (78, 124).
This CDR-H4 is also enriched (in human Abs) in somatic hyper-
mutations (Burkovitz et al., submitted). Figure 4 shows positions
that are not in the CDRs but are in contact with the Ag in many Abs
[e.g., the one marked by an orange arrow (4A), which corresponds
to CDR-H4].

In the second category of FR residues that affect Ag bind-
ing, are residues that are not in contact with the Ag, but affect
Ag binding indirectly (108, 109, 120, 121). These residues can
be further divided to those that are in spatial proximity to the
CDRs, and those that are not. The former are assumed to affect
binding by providing a structural support to the CDRs, enabling
them to adopt the right conformation and orientation, shaping
the binding-site required for Ag binding (32). For example, it has
been suggested that a certain position in heavy chain FR-3, close
in structure but not in sequence to CDR-H1 and CDR-H2, affects
the orientation of CDR-H2 relative to CDR-H1 in such a way that
a large side-chain packs between them and separates them while a
small side-chain allows them to be closer to each other (109, 120).
Nevertheless, this is not always true, as was shown in the case of
the anti-lysozyme D1.3 Ab: while mutating Lys in this position to
either Val, Ala, or Arg resulted in affinity difference, no structural
change was observed (121).

Framework region residues that are more distant from the
paratope are suggested to play a role in maintaining the over-
all structure of the Fv domains (32). However, these FR residues
may also affect the Ag binding-site itself, by directing the relative
orientation of the VH vs. the VL, and thus the orientation of the
CDRs relative to each other (125–128). In particular, FR-2 residues
were shown to play an important role in VH-VL interaction (129).
Moreover, Masuda et al. (130) pointed to a specific position in the
FR-2 loop, which controls the strength of the VH-VL interaction
as well as its dependence on Ag binding. We have shown that the
conformation of this loop changes upon Ag binding more than
other residues in the FRs, and that the binding related confor-
mational changes in this loop are similar in their magnitude to
those of the CDRs (107). The potential role of the VH-VL inter-
face in Ag binding is further supported by the observation that
residues that are in the VH-VL interface (and are not a part of the
Ab-Ag interface), are more likely to be mutated during the somatic
hypermutation process, than residues that are not in either of these
interfaces (Burkovitz et al., submitted).

Understanding the role of FR residues in Ag binding is crucial
for efficient Ab design in general and for humanization in particu-
lar. Specifically, knowing in advance which FR residues may affect
Ag binding, one may consider back-mutating these residues into
their murine sequence, to improve affinity during CDR grafting.
To this end, attempts were made to identify positions that con-
tribute to Ag binding in multiple cases (32, 113, 119). For example,
Haidar et al. (32) used a non-redundant dataset of Ab-Ag complex
structures to identify positions that frequently contact the CDRs,
and combined these positions with those that were back-mutated
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frequently in the humanization literature. The 17 FR positions they
identified were successfully used to design a combinatorial library
for Ab humanization. Additional Abs, for which structures of both
wild-type and a mutant(s) are available, may reveal the structural
mechanisms by which each FR position affects Ag binding.

CONSTANT REGION
Until recently, Ab constant domains were considered responsi-
ble for the isotype and for effector function, such as complement
activation, Fc receptor binding, avidity, and serum half-life (131).
However, many studies now provide a strong evidence for a role
for the constant region in Ag binding (131–147). There are many
examples of Abs with identical variable domains but different
isotypes that bind the same Ag with a different affinity or speci-
ficity (134–146). For instance, two Abs sharing identical variable
domains but expressing different isotypes were shown to bind
tubulin with significantly different affinities (135). Consistent with
these studies, it has been shown that the complex of HEL and the Fv
version of the HyHEL-10 Ab has an order of magnitude lower dis-
sociation constant than the complex of HEL with the Fab version of
this Ab (147). A probable explanation for this phenomenon would
be an allosteric influence of the constant domains on the structure
of the variable domains. Indeed, several structural studies pro-
vided some evidence for such structural effects (133, 146, 147).
For example, Janda et al. (133) analyzed by Circular Dichroism
(CD) spectra four different Ab isotypes of the 3E5 family that share
identical variable domains, and showed that the different isotypes
undergo different structural changes upon binding a common Ag.
Similar results were obtained for anti-nuclear Abs as well: Xia et al.
(146) compared four different isotypes of the PL9–11 anti-nuclear
Ab sharing the same variable region, and found that the changes
in secondary structure content (as revealed by CD analysis) as
well as the wave length shifts of tryptophan fluorescence emission,
upon Ag binding, are both isotype dependent. Recently, Tudor et
al. (144) showed that this allosteric effect may control not only Ag
binding affinity and specificity, but also the epitope recognized.
They showed that two anti-HIV-1 IgG1 and IgA2 Abs with identi-
cal variable regions, recognize only partially overlapping epitopes.

Differences in affinity and specificity of Abs with the same vari-
able region but different isotypes may play a role in autoimmunity
if they occur in a self-reactive Ag. For example, different isotypes
have been shown to be associated with different clinical outcomes
for lupus erythematosus: a set of anti-PL9–11 Abs sharing the same
variable domain but different isotypes were shown to bind DNA
and chromatin, as well as the renal Ags, with different affinities that
were associated with significant differences in renal pathogenicity
in vivo and survival (148).

Several studies have suggested that allosteric effects in Abs may
occur on the other direction as well: structural changes in the
variable region caused by Ag binding may be transferred into the
constant domains, potentially influencing effector activation and
cellular response (131, 149–151). For example, Oda et al. (149)
showed that the binding of staphylococcal protein A (SPA) or
streptococcal protein G (SPG) to the constant region was inhibited
by hapten binding in several Abs. A different example was provided
by Horgan et al. (151) who observed differences in complement
activation of two Abs which differ only in their VH domain.

An allosteric effect in Abs is further supported by a systematic
computational analysis we have performed on all available free
and Ag-bound pairs of structures (107). Many of the Ag-binding-
related structural changes occur distant from the Ag binding-site,
including changes in the relative orientation of the heavy and light
chains in both the variable and constant domains as well as a
change in the elbow angle between the variable and the constant
domains. Moreover, the most consistent and substantial confor-
mational change outside of the binding site was found in a loop in
the heavy chain constant domain, which is a part of the CH1-CL
interface, and is involved in complement binding (152).

What could be the mechanism for these allosteric effects?
Changes in the constant domains sequence (different isotypes of
the same Ab) or in its conformation (e.g., by effector binding) may
lead to a rearrangement of the constant domains relative to each
other and relative to the variable domains, which may result in a
change to the VH-VL relative orientation (72), thus re-shaping the
Ag binding-site (153–155).

The potential influence of the constant region on Ag affin-
ity or specificity suggests that the process of class-switch may be
considered, in combination with somatic hypermutations, as a
mechanism for Ab diversity (131, 132). Engineering of an Ab of
interest is usually associated with the optimization of its affin-
ity to the Ag. Since the constant region may affect this affinity, the
isotype selected should be carefully considered. Moreover, the con-
stant region should be taken into account in vaccine design as well
since different isotypes may bind the pathogenic Ag with different
affinities, thus affecting the response to infection. For example, the
anti HIV-1 IgG1 and IgA2 Abs mentioned above share the same
variable region, nevertheless, they have been shown to block HIV-1
infection differently (144). While IgA2 blocked HIV-1 transcyto-
sis and CD4+ cell infection more efficiently, IgG1 and IgA2 act
synergistically to block HIV-1 transfer from Langerhans cells to T
cells. Thus, it has been suggested that a mucosal IgA-based vaccine
response should complement an IgG-based vaccine response in
blocking HIV-1 transmission.

CONCLUDING REMARKS
As Abs are one of the most versatile naturally occurring biosensors,
it is of high importance to decipher the structural and molecular
mechanisms by which they recognize and bind their Ags. Such
knowledge is crucial for understanding immunity, may enable
better prediction of Ab epitopes, and assist in Ab engineering.

While the commonly accepted view has been that CDRs hold
the key for Ab-Ag recognition, recent findings indicate that not
all the positions in the traditionally defined CDRs are impor-
tant for binding. Furthermore, it has been shown that many
positions that contribute critically to the binding energy reside
outside of the transitional CDRs. Moreover, different CDR iden-
tification methods may often identify radically different stretches
as “CDRs,” indicating that CDRs are not well defined and thus
are not necessarily a good proxy for the binding site. The hyper-
variable loops that accommodate the CDRs differ significantly
from each other on various aspects. Understanding the way in
which their binding preferences are integrated to yield the overall
specificity of the Ab is an intriguing structural and biophysical
challenge.
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Accumulation of recent data suggests that elements that may
be spatially distant from the Ag binding site also play a crucial
role in Ag recognition. The unorthodox suggestion that non-local
and even allosteric effects influence epitope recognition warrants
additional analysis and research.

Addressing the open questions regarding the structural basis
of Ag recognition requires additional structural data in the form
of crystal structures of Abs bound to Ags of different types

(proteins, peptides, nucleic acids, and haptens). Large-scale analy-
sis of such structures will allow for the generation and testing of
new hypotheses regarding the way in which Abs find and bind
their epitopes.
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Influenza viruses continue to cause substantial morbidity and mortality worldwide. Fast
gene mutation on surface proteins of influenza virus result in increasing resistance to
current vaccines and available antiviral drugs. Broadly neutralizing antibodies (bnAbs) rep-
resent targets for prophylactic and therapeutic treatments of influenza. We performed a
systematic bioinformatics study of cross-reactivity of neutralizing antibodies (nAbs) against
influenza virus surface glycoprotein hemagglutinin (HA). This study utilized the available
crystal structures of HA complexed with the antibodies for the analysis of tens of thousands
of HA sequences.The detailed description of B-cell epitopes, measurement of epitope area
similarity among different strains, and estimation of antibody neutralizing coverage provide
insights into cross-reactivity status of existing nAbs against influenza virus. We have devel-
oped a method to assess the likely cross-reactivity potential of bnAbs for influenza strains,
either newly emerged or existing. Our method catalogs influenza strains by a new concept
named discontinuous peptide, and then provide assessment of cross-reactivity. Potentially
cross-reactive strains are those that share 100% identity with experimentally verified neu-
tralized strains. By cataloging influenza strains and their B-cell epitopes for known bnAbs,
our method provides guidance for selection of representative strains for further experimen-
tal design. The knowledge of sequences, their B-cell epitopes, and differences between
historical influenza strains, we enhance our preparedness and the ability to respond to the
emerging pandemic threats.

Keywords: influenza virus, neutralizing antibodies, B-cell epitope, cross-reactivity, discontinuous peptide

INTRODUCTION
Influenza epidemics result in substantial morbidity and mortal-
ity (1). The World Health Organization (WHO) Global Influenza
Network provides annual recommendations on antigenic variants
to be included in the influenza vaccine formulations. Influenza
virus has low-fidelity polymerases that result in high mutation
rates (2). As a consequence, seasonal influenza viruses efficiently
escape from acquired immunity in the human population through
antigenic drift increasing the impact of seasonal influenza. The
antigenic shift in influenza A viruses – the reassortment of multiple
viral genomes resulting in new strains with recombined antigens –
leads to occasional worldwide pandemics that result in significant
morbidity and, usually, high mortality. High transmissibility of
influenza combined with rapid mutation rates makes the discovery
of novel influenza therapeutics an imperative (3). The main chal-
lenge in developing antibody-based prophylactics and therapeutic
vaccine against influenza is to understand the variation generated
by the virus and developing means to elicit broadly neutralizing
antibody responses.

The majority of neutralizing antibodies (nAbs) generated dur-
ing a normal immune response target hemagglutinin (HA) and

block viral entry into host cells (4). However, significant sequence
diversity among HA genes limits the protective breadth of these
nAbs (5). This sequence diversity of influenza A virus is high –
there are 17 HA serotypes that belong into two major groups called
group 1 (Grp1: H1, H2, H5, H6, H8, H9, H11, H12, H13, H16,
and H17), and group 2 (Grp2: H3, H4, H7, H10, H14, and H15)
(6). C179, the first neutralizing antibody reported to neutralize
strains from H1 and H2 of influenza A virus, was isolated from
mice immunized with the A/Okuda/57 (H2N2) strain (7). Later
it was found that C179 was able to cross-neutralize H1, H2, H5,
H6, and H9 subtypes (8–11). The next major advance in the field
came about 15 years later (12), a novel class of human antibod-
ies encoded by the VH1–69 gene were discovered. Among these
antibodies, a series of broadly neutralizing antibodies (bnAbs)
have been described, such as CR6261 and F10 (13). Most bnAbs
that neutralize influenza A virus have been reported to neutral-
ize strains from either exclusively Grp1 or Grp2. FI6v3 (14) and
39.29 (5) are the only antibodies reported to neutralize human
influenza isolates from both Grp1 and Grp2. Influenza B viruses
are classified within a single influenza type, with two antigenically
and genetically distinct lineages that co-circulate (15), represented
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by the prototype viruses B/Victoria/2/1987 (Victoria lineage) and
B/Yamagata/16/1988 (Yamagata lineage) (16). Antibody CR8071
(17) is a bnAb against influenza B viruses, with neutralizing abil-
ity for both Victoria and Yamagata lineages. bnAb CR9114 (17)
binds a conserved epitope on the HA stem and was shown to
neutralize all tested influenza A viruses. However, it did not show
in vitro neutralizing activity against influenza B viruses at the tested
concentrations (17).

Generally, the neutralizing effectiveness of these bnAbs was
evaluated using representative strains from the subtypes of
influenza A virus or lineages of influenza B virus. Because of the
high variability of HA genes, such evaluation might result in a
conclusion that is limited to the tested viral variants. To determine
the landscape of nAbs and better understand their cross-reactivity
properties, we performed a systematic study of B-cell epitopes of a
selection of nAbs against influenza virus. Antibodies recognize dis-
crete sites on the surface of macromolecule called B-cell epitopes
(antigenic determinants). Some 10% of B-cell epitopes are linear
peptides while 90% are formed from discontinuous amino acids
that create surface patches through the three dimensional (3D)
conformation of proteins (18). We defined a novel way of describ-
ing discontinuous motifs, using virtual peptides, to represent
B-cell epitopes and further used this representation to estimate
potential cross-reactivity and neutralizing coverage of these nAbs.

Functional characterization of the increasing number of nAbs
and known crystal structures of these nAbs complexed with HA
proteins enables us to precisely define their B-cell epitopes. A
large number of sequences of influenza variants are available in
public databases (19) enabling systematic bioinformatics analysis
of cross-reactivity of nAbs against influenza virus. Such system-
atic analysis improves our understanding of antibody/antigen
interactions, facilitates mapping of the known universe of tar-
get antigens, and allows the prediction of cross-reactivity. These
methods and tools are useful for the design of broadly protec-
tive vaccines against emerging pathogens. This article describes
a study of influenza HA cross-reactivity, but the method is
applicable to any viral pathogen where information about nAbs
and a collection of variant sequences of the target antigen are
available.

MATERIALS AND METHODS
NEUTRALIZING ANTIBODIES AGAINST HEMAGGLUTININ
The names and specificities of nAb against influenza virus HA
were collected from published papers. Twenty-two nAbs against
influenza virus with crystal structures available in PDB were col-
lected from published articles (Table 1). Fifteen of these nAbs
target at the globular head of HA, and for the other seven, the
binding sites are located on HA stem region.

Table 1 | Summary of well-characterized neutralizing antibodies against influenza virus.

Location Neutralizing antibodies PDB ID Neutralizing breadth Reference

Head 1F1 4GXU H1 (20)

2D1 3LZF H1 (21)

2G1 4HG4 H2 (17)

8F8 4HF5 H2 (17)

8M2 4HFU H2 (17)

BH151 1EO8 A/X-31 (H3N2) (22)

C05 4FQR H1, H2, H3, H9 (23)

CH65 3SM5 H1 (24)

CH67 4HKX H1 (25)

CR8059 4FQK Influenza B virus (17)

CR8071 4FQJ Influenza B virus: Yamagata and Victoria (17)

HC19 2VIR A/X-31 (H3N2) (26)

HC45 1QFU A/X-31 (H3N2) (27)

HC63 1KEN A/X-31 (H3N2) (28)

S139/1 4GMS H1, H2, H3, H13, H16 (8, 29)

Stem 39.29 4KVN H1, H2, H3 (5)

C179 4HLZ Grp1: H1, H2, H5, H6, H9 (30)

CR6261 3GBN/3GBM Grp1: H1, H2, H5, H9 (31, 32)

CR8020 3SDY Grp2: H3, H7, H10 (33)

CR9114 4FQI/4FQV/4FQY Grp1: H1, H2, H5, H6, H8, H9, H12 (17)

Grp2: H3, H4, H7, H10

F10 3FKU Grp1: H1, H2, H5, H6, H8, H9, H11 (13)

FI6v3 3ZTJ/3ZTN H1, H3, H5, H7 (14)

The nAbs in underlined italics are nAbs specific for strain A/X-31 (H3N2). The designation of two groups (Grp1 and Grp2) of influenza A virus subtypes are shown in

Figure 1.
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Sun et al. Cross-reactivity of influenza neutralizing antibodies

FIGURE 1 | Phylogenetic tree of 17 influenza A virus subtypes.
Representative sequences were selected for each subtype (34) and the
phylogenetic tree was made with ClustalX (35) and TreeView (36). H1:
A/California/04/2009(H1N1); H2: A/Singapore/1/1957(H2N2); H3:
A/Aichi/2/1968(H3N2); H4: A/duck/Czechoslovakia/1956(H4N6); H5:
A/VietNam/1203/2004(H5N1); H6: A/chicken/California/431/2000(H6N2);
H7: A/Turkey/Italy/8458/2002(H7N3); H8: A/Turkey/Ontario/6118/
1968(H8N4); H9: A/Swine/Hong Kong/9/98(H9N2); H10: A/chicken/
Germany/N/1949(H10N7); H11: A/duck/England/1/1956(H11N6); H12:
A/duck/Alberta/60/1976(H12N5); H13: A/gull/Maryland/704/1977(H13N6);
H14: A/Mallard/Astrakhan/263/1982(H14N5); H15: A/shearwater/West
Australia/2576/79(H15N9); H16: A/black-headed gull/Sweden/2/99(H16N3);
and H17: A/little yellow-shouldered bat/Guatemala/060/2010 (H17N10).

The majority of these nAbs were observed to bind or neutralize
influenza A virus isolated either from Grp1 or Grp2. Antibod-
ies FI6v3, CR9114, and 39.29 were shown to neutralize influenza
strains within both Grp1 and Grp2 (5, 14, 27). Antibodies CR8059
and CR8071 (17) were the only two nAbs for influenza B virus.
CR8059 is a light chain D95aN variant of CR8071. Since the muta-
tion on CR8059 is not present at the binding interface and does not
affect the binding, only CR8071 was used in the following study
(17). The majority of these nAbs were shown to neutralize more
than one strain, some of them are broadly neutralizing across sub-
types of influenza A virus or lineages of influenza B virus. The Abs
BH151, HC19, HC45, and HC63 were shown to specifically neu-
tralize HA from the A/X-31(H3N2) strain. The available structures
of nAb/HA complexes were downloaded from PDB (37).

VALIDATED INFLUENZA STRAINS BY NEUTRALIZING ANTIBODIES
Binding and neutralization assays were collected from published
materials. Binding and non-binding strains were classified accord-
ing to their affinity measurements. The thresholds used to dis-
criminate binding and non-binding strains were inconsistent in
different studies: the lowest affinity detectable values were set as
10−4 M (17), 10−5 M (33), and ~10−6 M (20). In some reports,
nAbs showed positive binding results but did not display neutral-
ization ability to the same strains [e.g., nAb CR9114 against strain
B/Florida/4/2006 (Yamagata) (17)]. Because of the lack of stan-
dardized thresholds and ambiguous definition of binding, only

FIGURE 2 | B-cell epitope on the structure of neutralizing antibody F10
binding HA protein (PDB ID: 3FKU). (A) Complex of F10-HA
[A/Vietnam/1203/04(H5N1)]. The structure is a HA trimer of three identical
copies (one of them is colored as cyan and green; the other two are in
gray). Each copy contains the HA1 (cyan) and HA2 (green) chain, also the
heavy chain of F10 (red), the neutralized epitope is highlighted in pink;
(B) Close-up view of neutralized epitope identified on the structure
(highlighted as pink surface).

Table 2 | B-cell epitope regions of the 22 neutralizing antibodies.

Binding

site

Influenza A virus Influenza

B virus

Sa

site

Near

RBS

F subdomain Stem

base

Head

base

CROSS-REACTIVE NEUTRALIZING ANTIBODIES

nAbs 2D1 C05 CR6261 CR8020 CR8071

1F1 39.29 CR8059

2G1 C179

8F8 CR9114

8M2 F10

CH65 FI6v3

CH67

S139/1

Binding

site

Head

base

RBS Near RBS

X-31-SPECIFIC NEUTRALIZING ANTIBODIES

nAbs BH151 HC19 HC63

HC45

The nAbs are classified as cross-reactive or X-31-specific. For each binding region,

a representative nAb was selected (shown in bold) and its B-cell epitope was

mapped on the structures shown in Figure 3.

results that indicate non-binding of antibodies were considered as
useful information and were retained for the subsequent analysis
as negatives.
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Sun et al. Cross-reactivity of influenza neutralizing antibodies

FIGURE 3 |The distinct B-cell epitope regions recognized by
representative nAbs. The B-cell epitope regions of (A) represent
cross-reactive nAbs against influenza A virus; (B) represent
strain-specific nAbs against X-31(H3N2); (C) represent broadly nAb
CR8071 against influenza B virus. The epitope regions of nAbs target

influenza A virus were mapped on the monomer (A) or trimer (B) HA
from A/X-31(H3N2) (PDB ID: 1KEN). The structure of B/Brisbane/60/
2008 HA (PDB ID: 4FQM) was used as a template structure for
influenza B virus. Different colors here were used for distinguishing
B-cell epitope regions.

The neutralized and the escape strains were detected using the
microneutralization assay (38) or HA inhibition assay (39). Several
measurements were suggested in these studies:

1. The lowest concentration of nAb that displayed inhibition
of hemagglutination or microneutralizing activity were set as
either 2.5 µg/mL (40) or 5 µg/mL (41).

2. The 50% inhibitory concentration was set to IC50=

50 µg/mL (17).
3. The effective concentration of antibody needed to inhibit at

least 99% of viral infectivity was set as EC99= 100 µg/mL
(24, 25).

The HA sequences of strains that were experimentally validated
for neutralization by studied antibodies (“validated strains”) were
retrieved from the literature. The influenza strains HA sequences
were collected from the literature or, if absent, from the Influenza
Knowledge Base (FLUKB)1. All experimentally validated strains
were grouped into either neutralized strains or escape strains. The
neutralized strains were selected based on reported experimental
evidence. The escape strains included true escape strains as well as
strains that were reported not to bind nAbs. We did not find any
discrepancies in reported neutralizing properties across different
studies used to collect functional data.

HEMAGGLUTININ SEQUENCES
All HA sequences were downloaded from the Influenza Knowl-
edge Base (FLUKB1, dated August 26th, 2013). After removing

1http://research4.dfci.harvard.edu/cvc/flukb

the incomplete sequences (fragments), 45,812 full-length HA
sequences were left in the data set (HA sequence dataset) for
further analysis.

GENERATION OF MULTIPLE SEQUENCE ALIGNMENT OF
HEMAGGLUTININ SEQUENCES
The HA sequences of influenza strains from FLUKB were aligned
using the MAFFT tool (42). The resulting multiple sequence align-
ment (MSA) results provided a consistent numbering scheme for
all the further analyses. MSA were generated for both experimen-
tally validated strains of HA and for all entries from FLUKB. For
each nAb, every HA sequence from the crystal structure and from
the experimentally validated strains were searched individually
within the FLUKB database to find a strain with highest similar-
ity using BLAST (43). This procedure was done to ensure that
residue position mapping in following steps is consistent with the
numbering scheme.

IDENTIFICATION OF B-CELL EPITOPES
B-cell epitope were identified from antigen–antibody structure,
using a formula with the combination of the measurements of
accessible surface area (ASA) and atom distance. For each residue
from HA antigen, the ASA value was calculated using Naccess soft-
ware (44) for both free HA and for HA coupled with an antibody.
Residues ri with ASA loss more than 20% were selected as epitope
residues,

ri ∈
{

epitope residues
}

if
ASAfree − ASAcoupled

ASAfree
> 0.2.
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Sun et al. Cross-reactivity of influenza neutralizing antibodies

Table 3 | B-cell epitope overlap for nAbs targeting HA head region.

Sa Near RBS Sa Near RBS

2D1 1F1 2G1 8F8 8M2 C05 CH65 CH67 S139/1 2D1 1F1 2G1 8F8 8M2 C05 CH65 CH67 S139/1

A98 − + − + + + + + + A163 + − − − − − − − −

A125 + − − − − − − − − A165 + − − − − − − − −

A126 + − − − − − − − − A166 + − − − − − − − −

A128 + − + − − − − − − A167 + − − − − − − − −

A130 + − + + + − − + − A169 + − − − − − − − −

A131 − − − − − + − − + A183 − + − − − + + − +

A132 − − + + + − − − − A185 − + − − − − − − −

A133 − + + + + + − − − A186 − + − − + + − − +

A134 − − + + + + + + + A187 − + − + + + + + −

A135 − + − − − + + + + A188 − − − − + − − − −

A136 − − + + + + + + + A189 − + − + + + + + +

A137 − − + + + + + + + A190 − + + + + + + + +

A140 − − − + − − − − − A192 − + − − + + + + +

A143 − − − + − − − − − A193 − + + + + + + + +

A144 − − − + − − − − − A194 − + + + + + + + +

A145 − + + + + − − + A196 − + − − − − + + +

A153 − + + + + + + + + A197 + − − − − − − − −

A155 − + + + + + + + + A219 − + − − − − − + −

A156 − + + + + + + + + A222 − + − − + − + − −

A157 + − + − − − − − + A225 − + − − + + + + +

A158 + − + + + + + + + A226 − + − + + + + + +

A159 + + + + + + + + + A227 − + − − + + + − −

A160 + − − − − − + + + A228 − + − − + + − − +

A161 + − − − − − − − − A246 + − − − − − − − −

A162 + − − − − − − − − A248 + − − − − − − − −

The epitope residue positions of nine nAbs were mapped to the 1EO8 structure chain A. The symbol “+” indicates a contact epitope residue by corresponding nAb,

and the symbol “−” means it is not a epitope position. 2D1, with a different epitope area to other eight nAbs, is labeled in red.

The majority of contacts between two contacting atoms occur
at distance smaller than 5 Å separation (45). Euclidean distance
was calculated between atoms ai and aj using their coordinates
ai(xi, yi, zi) and aj(xj, yj, zj) in PDB structure data,

dij =

√(
xi − xj

)2
+
(
yi − yj

)2
+
(
zi − zj

)2
.

Hemagglutinin residues ri whose minimum atom distance to
the closest nAb atom was within 4 Å were also incorporated in the
epitope. The minimal atom distance was defined as:

dmin= min
{

dij
}

, ai ∈ antigen residue ri , aj ∈ antibody residue rj ,

ri ∈
{

epitope residue
}

if dmin < 4Å.

The residues that satisfy either of these two conditions (ASA
loss or minimum distance) are considered to constitute a B-cell
epitope.

The specific residues on HA that form hydrogen bonds, salt
bridges, disulfide bonds, and covalent bonds between the HA
and nAb were considered to define a B-cell epitope. The anti-
gen/antibody interaction was further analyzed using PISA tool
(46). The analysis of HA structures showed that all the hydrogen

bonds, salt bridges, disulfide bonds, and covalent bonds between
HA and nAb in each studied structure were incorporated in B-cell
epitopes defined in the previous step.

EXTRACTION OF DISCONTINUOUS MOTIFS FROM VALIDATED STRAINS
For each nAb, using the MSA result and the standardized num-
bering, the residue positions of B-cell epitope identified from
the HA/antibody crystal structure were mapped onto all HA
sequence of validated strains. Then discontinuous motifs com-
posed of mapped residues were extracted from these sequences.
These discontinuous motifs were classified as either “neutralized”
or “escape” motifs according to the experimental validation status
of the corresponding strain.

MAPPING OF DISCONTINUOUS MOTIFS TO HA SEQUENCE DATASET
For each nAb, based on the MSA result, the residue positions of B-
cell epitope identified from the HA/antibody crystal structure were
mapped onto the HA sequence dataset. A “discontinuous peptide”
composed of amino acids that form B-cell epitope, in order that
they appear in the sequence, was extracted from each HA sequence.
By comparing the discontinuous peptides to all validated neu-
tralized and escape motifs from experimentally validated strains,
each discontinuous peptide was classified as neutralized (if 100%
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Sun et al. Cross-reactivity of influenza neutralizing antibodies

FIGURE 4 | Neutralized and escape discontinuous motifs from
experimentally validated sequences with nAb F10. The WebLogo shows
global (A) neutralized motifs, and (C) escape motifs and BlockLogo shows
individual (B) neutralized motifs, and (D) escape motifs. The extracted

discontinuous motif extracted from the structure (PDB ID: 3FKU, chain A and
B), corresponds to the positions of reference sequence [FLU0293715, A/Viet
Nam/1203/2004(H5N1)]: 24, 44, 46, 48, 304, 305, 306, 331, 360, 361, 362,
363, 380, 383, 384, 387, 391, 394, 395, and 398.

matching a neutralized epitope motif), escape (if 100% matching
an escape epitope motif), or non-validated (if 100% matching
validation data are missing). The term “discontinuous motif”
indicates positions that define each B-cell epitope extracted from
experimentally validated strains collected from publications, while
term “discontinuous peptide” represents specific B-cell epitopes
extracted from the HA sequence dataset.

RESULTS
B-CELL EPITOPE REGIONS
For each nAb, the B-cell epitope was identified from the crys-
tal structure as described in Section “Materials and Methods.” The
structure of nAb F10-H5 (13) and identified epitope are illustrated
in Figure 2. After B-cell epitopes of all studied nAbs were mapped
to the same template structure, the overlapping of binding sites
were found among different nAbs, particularly at the receptor-
binding site (RBS), which is the necessary structure for binding to
the sialic acid receptors during virus infection.

For cross-reactive nAbs against influenza A virus, four major
binding locations on HA structure are apparent: two of them reside
on the globular head of HA and the other two target the stem
region of HA (Table 2; Figure 3). The RBS is a heavily targeted
area, with overlapping epitopes defined by eight nAbs. The only
nAb that binds HA head but not the RBS is 2D1 (21). The 2D1

recognizes the Sa site of A/South Carolina/1/1918(H1N1). Sa site
is one of the earliest known antigenic sites (47), which is proxi-
mal to the receptor-binding pocket. The detailed comparison of
epitope residue positions between 2D1 and the other HA head-
targeted nAbs are listed in Table 3. In contrast to the Abs that
interact with the HA head, a series of nAbs recognize another
highly conserved helical region in the membrane-proximal HA
stem. The epitopes on F subdomain (CR6261, 39.29, etc.) and stem
base (CR8020) are adjacent to each other, with a small number of
shared residues. The only broadly nAb neutralizing influenza B
virus, CR8071 binds to the lower region of the globular head of
HA – the “head base” (Figure 3C). All the remaining antibodies
analyzed in our study bind specifically the HA on A/X-31(H3N2)
strain. All X-31 specific nAbs complex with the membrane-distal
domain of HA. NAbs BH151 and HC45 (22) recognize a single
epitope located at the base of the eight-stranded antiparallel β-
sheet structure. The HC19 binding site is adjacent to the RBS. The
HC63 epitope shares several residues with HC19, thereby the anti-
body binding site overlaps the membrane-distal domains of two
HA monomers.

EXPERIMENTALLY VALIDATED DISCONTINUOUS MOTIFS
Discontinuous motifs were extracted from the validated sequences
as described in Section “Materials and Methods,” and presented
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Sun et al. Cross-reactivity of influenza neutralizing antibodies

by WebLogo (48) and BlockLogo2 [Ref. (49)]. WebLogo figures
consist of stacks of amino acids, while the overall height of the
stack indicates the sequence conservation at that position, and the
height of symbols within the stack indicates the relative frequency
of each amino or nucleic acid at that position. While BlockLogo is a
web-based application for visualization of protein and nucleotide
fragments, continuous protein sequence motifs, and discontin-
uous sequence motifs using calculation of block entropy from
MSAs. The BlockLogo figures present the actual combinations of
amino acids, and the height of each combination represents its rel-
ative frequency. In the nAb F10 as an example, the neutralized and
escape discontinuous motifs are shown in Figures 4A,C (WebLogo
figures), and Figures 4B,D (BlockLogo figures). WebLogos show
a clear overall description of each residue conservation difference
between individual neutralized and escape motifs. For example,
44N, 48T, 304R/D, 380L/Y, 391N, 394E/A/L on F10 epitope region
are likely to contribute to the escape strains. In the BlockLogo
figures, specific neutralized and escape B-cell epitopes of F10 were
listed with their frequencies, which can be used for their direct
comparison.

ANALYSIS OF VARIATION OF DISCONTINUOUS PEPTIDES IN HA
SEQUENCES DATASET
For each nAb, the residue positions of their B-cell epitopes were
mapped on the complete HA sequences dataset collected from the
FLUKB. Amino acid strings representing discontinuous peptides
were extracted from the HA sequence of each strain. The variabil-
ity of discontinuous peptides and validated discontinuous motif
coverage were analyzed for each nAb.

2http://research4.dfci.harvard.edu/cvc/blocklogo

For example, for the nAb F10, 589 different patterns of discon-
tinuous peptides were generated among all 45,812 sequences in
HA sequence dataset, using the F10 B-cell epitope identified from
the crystal structure. In the next step, the discontinuous peptides
were sorted according to their frequencies. The second most fre-
quent peptide in FLUKB is identical an escape motif, while the 6th,
8th, and 19th are each identical to one of the neutralized motifs.
However, the most frequent F10 discontinuous peptide in FLUKB
(see text footnote 1) has not been experimentally tested (Figure 5),
along with other 14 discontinuous peptides. The analysis of differ-
ences between the most frequent discontinuous peptide and neu-
tralized or escape motifs was inconclusive. Therefore future exper-
imental studies should include a representative sequence contain-
ing the discontinuous peptide HHVLSLPTVDGWLTQITVNI that
is present in more than 10,000 entries in the FLUKB. We also
recommend that motifs 1, 4, 5, 7, 9–18, and 20 are considered
for the experimental validation. The remaining sequences are less
common, each having <400 sequences in the data set.

The discontinuous peptides were generated and the variability
was investigated for all cross-reactive nAbs (Table 4). The B-cell
epitope regions on the HA stem are less variable as compared to
the epitopes on the HA head. The specific result generated within
each subtype in HA sequence dataset show similar patterns as
for all subtypes (data not shown). This conclusion is consistent
with our previous knowledge that the globular head of HA1 has a
higher mutation rate than the stem (29), making the stem a more
conserved region for bnAbs targeting.

DISCONTINUOUS MOTIFS COVERAGE IN HA SEQUENCES DATASET
The neutralized and escape discontinuous motifs of nAb F10
have covered 19 and 17% of FLUKB, respectively, while the
discontinuous peptides from 64% of the strains have not been

FIGURE 5 | Frequencies of top 20 discontinuous peptides (B-cell
epitope of nAb F10) from the HA sequence dataset. FLU0243751
(A/Viet Nam/1203/2004) was used as reference HA sequence in the
analysis of F10 B-cell epitopes. The corresponding positions of
discontinuous peptides on FLU0243751 are: 24, 44, 46, 48, 304, 305, 306,

331, 360, 361, 362, 363, 380, 383, 384, 387, 391, 394, 395, and 398.
Discontinuous peptides that were identical to neutralized motifs are
shown in blue, while those identical to escape motifs are shown in red.
The sequences of Top 20 most frequent discontinuous peptides are listed
along with their validation status.
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Sun et al. Cross-reactivity of influenza neutralizing antibodies

validated (Figure 6A). Viewed by the subtype, F10 neutralized
coverage of subtypes H5, H8, H9, and H11 are higher (50–90%)
than of H1 and H2 (5–20%), while the coverage of subtype H6 is
negligible (8 in 1708 H6 sequences) (Figure 6B).

The motif coverage analysis within the 45,812 HA sequences
was performed for all nAbs. For the nAbs with available cross-
reactivity data, the motif coverages were different between the
nAbs targeting the HA globular head and those targeting the stem

Table 4 |The number of different discontinuous peptides from B-cell

epitopes of each nAb in the HA sequence dataset.

Neutralizing

type

Neutralizing epitope

regions

Neutralizing

antibodies

Number of

different

discontinuous

peptides

Influenza A virus

Head Sa site 2D1 2,190

Near RBS 1F1 2,887

2G1 2,127

8F8 2,885

8M2 3,290

C05 3,020

CH65 2,727

CH67 2,773

S139/1 3,070

Stem F subdomain 39.29 983

C179 755

CR6261 658

CR9114 663

F10 589

FI6v3 905

Stem base CR8020 620

Influenza B virus

Head

base

CR8071 848

part. The nAbs that bind stem normally have higher neutralized
motif coverage than those that bind the globular head (Figure 7).

The motif coverage is shown as heat map for each subtype and
each nAb (Figure 8). The nAbs (such as CR6261, CR9114, F10,
and FI6v3) that target stem region are more cross-reactive – they
cover more strains, and also more subtypes of influenza.

COMBINING OF NEUTRALIZING ANTIBODIES
For each sequence in the HA sequence dataset, 22 strings (discon-
tinuous peptides) were extracted to represent 22 B-cell epitopes
by all nAbs analyzed in this study. The majority (82.62%) of all
strains in FLUKB have at least one discontinuous peptide that is
identical to the validated neutralized motifs (Table 5). A small
number (2.25%) of sequences can be neutralized by as many as
seven nAbs.

Here, we propose a combination of nAbs, where a small num-
ber of nAbs can cover a large proportion of influenza strains.
The nAbs FI6v3, F10, CR9114, and CR8071 (Figure 9A) were
selected, and the neutralized coverage has increased from 18.91%
(F10), 4.06% (CR8071), 43.89% (CR9114), and 58.44% (FI6v3) to
78.45% (Figure 9B) when these antibodies were combined. These
nAbs also covered most subtypes of influenza A virus and both
lineages in influenza B virus (Figure 9C).

DISCUSSION
This study presents an overview of binding specificities of reported
nAbs, as well as an estimate of their neutralization and escape
coverage (neutralization effectiveness) in more than 45,000 HA
sequences available in FLUKB. The variety and frequency of dis-
continuous peptides within different B-cell epitopes have been
analyzed in the HA data set. The results of the analysis of discontin-
uous peptides provide insights into further experimental design:
strains with peptides that have high frequency among the strain
populations should be given priority for experimental validation
and their neutralizing status for specific nAbs.

Of note, additional sequence changes in HA outside the
nAb epitope may result in either local or quaternary structural
alterations that impacts antibody binding to the epitope per se.

FIGURE 6 | Motif coverage for nAb F10. (A) The coverage of
neutralized and escape discontinuous motifs, and non-validated
discontinuous peptides within 45,812 HA sequences extracted from

the FLUKB; (B) The motif coverage by subtype, the numbers in
brackets indicate the number of sequence within the specific subtype
(among 45,812 HA sequences).
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FIGURE 7 | Discontinuous motif coverage in the HA sequence
dataset for cross-reactive nAbs. Only the coverage data for
cross-reactive nAbs are shown here. The nAbs are grouped based on

their binding locations and influenza types, from left to right: Sa site,
near RBS, F subdomain, stem base on influenza A virus, and head base
on influenza B virus.
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FIGURE 8 |The neutralized and escape motif coverage on each subtype
within FLUKB of neutralizing antibodies. The heat map of (A) neutralized
and (B) escape coverage are shown. Each cell on the grid represents
coverage for a specific antibody (row name) on specific subtype (column
name). The subtypes were sorted from Grp1 and Grp2 in influenza A virus,

and influenza B virus. Different color schemes were used in order to
differentiate neutralizing and escape coverage: from green to red/green to
blue indicate rising neutralizing/escape coverage in HA sequence dataset.
The boxes with symbol “X” indicate that no experimental validation data
were available for this study.

Likewise, modification of glycosylation sites through sequence
change may impact accessibility of antibodies to the neutralization
site, creating discordance between sequence identity of binding
site shown in BlockLogo and neutralization outcome between
two strains of viruses sharing the same epitope sequence. The
frequency of such occurrences will be important to determine.
Neutralization assays of strains with discontinuous epitopes

identical to validated B-cell epitopes will provide a proof of
cross-neutralization. Since the experimental validation is time and
money consuming, the introduction of extended B-cell epitope
(see Supplementary Material) aims to help select representative
sequences that differ in extended B-cell epitopes. For each pro-
posed neutralizing or escape peptide (actual B-cell epitope), a
small number of variants defined by changes in its environment
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(extended B-cell epitopes) constitute the majority of strains with
the proposed peptide.

On the other hand, before more experimental data generated
to fill the existing “non-validated gap,” it will be meaningful to
bring out some reasonable estimation. The assumption and meth-
ods in this paper are based on complete identity to discontinuous
motifs on B-cell epitope (additionally extended B-cell epitope).
To check the validity of this assumption, the similarity between
discontinuous motifs and discontinuous peptides could be used

Table 5 | Distribution of the number of neutralizing antibodies that

share identical neutralized discontinuous motif with sequences

within the HA sequence dataset.

Number of nAbs Coverage in 45,812 HA dataset (%)

0 17.38

1 12.45

2 11.68

3 13.39

4 31.38

5 1.59

6 9.89

7 2.25

For each sequence within the 45,812 HA dataset, the number of nAbs that share

identical neutralized motif was counted.The number of nAbs in our panel for any

given influenza strain can range from 0 to 7.

to estimate and predict neutralization and binding results in
the future. For example, a discontinuous peptide with mutated
residues of similar feature to the neutralized motif would be con-
sidered as “possible neutralized peptide” against specific nAbs.
These estimations could also be validated in experimental assays,
and then be used to further experimental design iteratively.

CONCLUSION
Over the past few years, our understanding of nAbs and their
responses against influenza HA have expanded tremendously.
Besides the well-known HA head region interactions, an increasing
number of characterized nAbs bind and neutralize influenza virus
by targeting the more conserved stem regions. Among these stem-
targeting nAbs, some show broadly neutralizing ability across
subtypes/lineages, even across two groups in influenza A virus
strains. However, the related experimental data for majority of
nAbs are quite limited.

In sum, we have established a library of validated motifs
(extracted from HA sequences in neutralized and escape strains)
for each nAb. For any newly emerging strain, the cross-
neutralization prediction can be made rapidly for existing nAbs
and validation experiments can be designed judiciously. This
study provides a method for investigation of cross-reactivity
of nAbs against influenza viruses, but is directly applicable to
any viral pathogen that has structurally characterized nAbs and
a collection of variant sequences of the target antigen. Exam-
ples of such pathogens include orthomyxoviruses (influenza);
flaviviruses such as dengue or West Nile; arenaviruses such as
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FIGURE 9 | A combination of four neutralizing subtype-diversified and
potent neutralizing antibodies. (A) The heat map of the neutralized
result for four nAbs, the color scheme is same as Figure 8A; (B) the
neutralized coverage of four nAbs individually, and the combination of

nAbs on HA dataset; and (C) the neutralizing result of combination of four
nAbs by subtype. The subtypes were sorted from Grp1 and Grp2 in
influenza A virus and influenza B virus. Only subtypes with neutralizing
data are shown.
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lymphocytic choriomeningitis virus and human immunodefi-
ciency virus, among others. Insights from such bioinformatics
analyses coupled with antibody antigenicity through crystallo-
graphic determinations will facilitate electronic neutralization
profiling that can be tested empirically in subsequent laboratory
neutralization assays.
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The B cell antigen receptor (BCR) plays a crucial role in adaptive immunity, since antigen-
induced signaling by the BCR leads to the activation of the B cell and production of
antibodies during an immune response. However, the spatial nano-scale organization of
the BCR on the cell surface prior to antigen encounter is still controversial. Here, we fixed
murine B cells, stained the BCRs on the cell surface with immuno-gold and visualized the
distribution of the gold particles by transmission electron microscopy. Approximately 30%
of the gold particles were clustered. However the low staining efficiency of 15% precluded
a quantitative conclusion concerning the oligomerization state of the BCRs. To overcome
this limitation, we used Monte-Carlo simulations to include or to exclude possible distrib-
utions of the BCRs. Our combined experimental-modeling approach assuming the lowest
number of different BCR sizes to explain the observed gold distribution suggests that 40%
of the surface IgD-BCR was present in dimers and 60% formed large laminar clusters
of about 18 receptors. In contrast, a transmembrane mutant of the mIgD molecule only
formed IgD-BCR dimers. Our approach complements high resolution fluorescence imag-
ing and clearly demonstrates the existence of pre-formed BCR clusters on resting B cells,
questioning the classical cross-linking model of BCR activation.

Keywords: BCR, oligomerization, electron microscopy, immuno-gold-labeling, Monte Carlo simulation, maximum-
likelihood method

1. INTRODUCTION
Cells communicate with each other and with their surround-
ings through transmembrane receptors that are embedded in the
plasma membrane. Thus, it is of high interest to understand how
these receptors and other cell surface proteins, such as adhesion
molecules or channels, are organized on the membrane. Initially it
was thought that proteins and lipids freely diffuse in membranes
and that they are randomly distributed (1). With the concept of
lipid rafts it was noted that specialized microdomains on the cell
surface exist, where some proteins are concentrated and others
are excluded (2). Although the raft concept had to be modified,
since in biological membranes they are smaller and more transient
than in artificial model membranes (3), it is clear that proteins
are not randomly distributed on the cell surface. One example
of the immune system is the T cell antigen receptor that can form
pre-clustered oligomers, called nanoclusters, on T cells (4–7). Nan-
oclusters form before and independently of any ligand encounter.
Interestingly, T cells can control the degree of TCR nanocluster-
ing, in order to regulate their avidity toward multivalent ligands
and thus their sensitivity (8–10). This indicates that studying the
nano-scale distribution of a receptor contributes to the under-
standing of the function of the receptor. Less well understood is

a potential pre-clustering of the B cell antigen receptor (BCR).
The BCR is expressed on B cells and controls the development
of these cells and their activation upon contact with the BCR’s
ligand, called antigen. The BCR is composed of the membrane-
bound immunoglobulin (mIg) molecule and a heterodimer of
the Igα (mb-1) and Igβ (B29) proteins (11). The mIg molecule
binds to the antigen and exists in different isotypes, of which the
mIgD form is the most abundant one on resting mature B cells
(12, 13). The Igα/Igβ dimer contains phosphorylatable tyrosines
in the cytoplasmic tails (14) and transmits the signal of antigen-
binding to the cytoplasmic signaling machinery. The first evidence
for BCR pre-clustering, i.e., the existence of BCR oligomers, was
obtained by Blue Native gel electrophoresis (15–17). Upon extrac-
tion of the IgD- and IgM-BCRs from the cell membrane of resting
B cells using low concentrations of detergent, the BCRs were found
in oligomers. Importantly, a mutant mIgD molecule, in which the
transmembrane region was mutated (called mIgD-hSbap), only
formed dimers (16). Thus, in the BCR as well as in the TCR
(10), the transmembrane region of the ligand-binding subunits
is involved in the pre-clustering. Later, three approaches were
used to investigate whether the BCR forms oligomers in living
cells. Firstly, a FRET approach was used, and oligomers were
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not detected (18). Secondly, a bifluorescence complementation
approach was used, and BCR oligomers were detected (19). The
differences in these two procedures and possible functional impli-
cations of pre-clustered BCR oligomers were recently discussed
(20). Thirdly, the superresolution microscopy method direct sto-
chastic optical reconstruction microscopy (dSTORM) was used
to show that BCRs were organized as pre-clusters on the surface
of resting primary B cells (21). Here, we used a validated tech-
nique, that we had previously used to study TCR pre-clustering
(6, 8), in order to answer the question of whether BCR oligomers
exist and if yes what their sizes are. To this end, we used fixed
B cells and labeled the BCRs with specific antibodies that were
bound to gold particles (immuno-gold-staining), prepared cell
surface replicas and analyzed the nano-scale distribution of the
gold particles by transmission electron microscopy (TEM). This
approach allowed visualization of BCRs on cell surface areas that
do not adhere to any experimental support, giving the opportunity
to analyze untouched (and non-modified) receptors. A general
challenge of immuno-gold-labeling is its low staining efficiency,
which is compensated by mathematical modeling and statisti-
cal methods, allowing solid conclusions to be drawn from the
experimental data.

2. MATERIALS AND METHODS
2.1. EXPERIMENTAL PROCEDURES
2.1.1. Cell culture and cell fixation
The murine B cell lines J558L (not expressing any BCR) and
J558Lδm/mb-1flN (expressing an IgD-BCR) were previously
described (16). We also used a J558L line that expressed a mutant
IgD-BCR, in which the transmembrane region of the mIgD
molecule was mutated (mIgD-hSbap) (16). Cells were cultured
in RPMI 1640 complete medium supplemented with 10% fetal
calf serum, 2 mM l-glutamine, 100 U/ml penicillin/streptomycin,
10 mM HEPES, and 50 mM 2-mercaptoethanol and grown at 37°C
in a humidified atmosphere with 5% CO2. Cells were fixed with
freshly prepared, ice-cold 4% paraformaldehyde in PBS for 20 min
at 4°C at a cell density of 10× 106 cells/ml. After fixing, cells were
washed twice with cold PBS.

2.1.2. Immuno-gold-staining and analysis of gold-reagent
Unstimulated PFA-fixed cells were stained with the primary anti-
idiotypic antibody Ac146 (22) at saturating concentration of
20 mg/ml in PBS with 1% BSA for 1 h on ice. This antibody binds
to the variable regions of the BCR used in this study. Staining
with a secondary anti-mouse IgG antibody conjugated to 10 nm
gold (Aurion) was performed for 1 h on ice. Prior to cell staining,
the aggregation state of the gold-reagent was tested by adsorbing
diluted suspensions of the gold-reagent onto collodion/carbon-
coated EM grids, which were analyzed in transmission electron
microscopy (TEM, Figure 2).

2.1.3. Surface replica preparation
Labeled cells were adsorbed to l-poly-lysine-treated micas, fol-
lowed by a second fixation with 0.1% glutaraldehyde on ice
for 30 min. Micas containing stained cells were covered with an
untreated piece of mica and fast-frozen in a Reichert-Jung (now
Leica) KF-80 plunge freezing unit using the secondary cryogen

liquid ethane. Metal replicas were prepared in a freeze fracture
unit (BAF 060; BAL-TEC) where the cell-containing mica slide
was freeze-etched at −150°C for 12 min to sublime surface ice.
Frozen cells were then shadowed with 2 nm of evaporated plat-
inum at an angle of 45°C and strengthened by a uniformly thick
20 nm electron-translucent carbon layer evaporated perpendicu-
lar to the mica surface plane. The metal replica of the surface was
released from the mica by floating it on commercial bleach where
it remained over night for digestion of the organic material. The
floating replica was washed three times in distilled water to remove
attached organic material and chemicals and then picked up on
uncoated copper EM grids. For a detailed protocol see Ref. (23).

2.1.4. Analysis of metal replicas by TEM
Replicas mounted on EM grids were examined in a transmis-
sion electron microscope (1200-EX II; JOEL) operating at 100 kV.
Gold particle numbers and the gold cluster size distribution were
counted and analyzed for at least 3 cells per sample at an augmen-
tation of 25000. Gold particles were considered to be part of the
same cluster when they were adjacent or less distant than 10 nm
(the diameter of a single gold particle), taking into account that
the diameter of the BCR is around 10 nm (24). Pictures were taken
at augmentations of 5000 (cell overview), 120000, and 300000
(gold-labeling).

2.1.5. Quantification of the number of BCRs per cell
The number of BCRs per cell was determined based on a sat-
uration binding assay. About 1× 106 J558Lδm/mb-1flN cells
were stained for 30 min at 4°C with increasing concentrations
of an FITC-coupled anti-IgD antibody (BD Pharmingen, clone
11-26c.2a). Following 5 extensive washing steps, the fluores-
cence signal was measured in duplicates using a SpectraMax 190
Absorbance Microplate Reader. In order to convert the fluores-
cence signal intensity into the number of antibodies, a calibration
of the antibody was performed by fitting the model y =mx + b
to the standard concentrations x and fluorescence signals y. Here
m denotes the slope and b denotes the intercept of the calibra-
tion curve. In order to infer the number of receptors on the cells,
antibody was spotted in different concentrations. The saturation
model y = y0+

ax
b+x was fitted to the sample data. Here, x denotes

the antibody concentration and y denotes the fluorescence sig-
nal after washing. The parameter y0 was measured explicitly. The
remaining parameters, i.e., the maximal fluorescence signal gain a
and the saturation constant b were estimated from the data. From
the maximum signal gain a, the corresponding concentration of
bound antibody was computed from the calibration curve, i.e.,
1x = a

m . Finally, the number of receptors per cell was computed

by the formula n = 1x·NA ·V
k·Ncells·M

, where NA= 6.022× 1023 1/mol,

V = 50µl, k = 2, N cells= 5× 105, and M = 146.389× 103 g/mol
denote Avogadros constant, the volume per well, the number anti-
body binding sites per receptor, the number of cells, and the
molecular weight of the antibody. From the parameters obtained
by the calibration and saturation curve, we get n= 122400± 7500.
The uncertainty of the number of receptors per cell is dominated
by the uncertainty of a, the maximum signal gain. The uncer-
tainty of a is propagated to the error of n by Gaussian error
propagation.
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2.2. MONTE-CARLO SIMULATION OF OBSERVED GOLD CLUSTER SIZE
DISTRIBUTION

The immuno-gold-staining and counting process was simulated
by a Monte-Carlo approach. It is assumed that the observed
gold cluster size distribution is a superposition of distributions
generated by single size oligomers. Each oligomer size produces
a characteristic distribution of observed gold cluster sizes that
depends on the staining efficiency. The characteristic distribu-
tion ranges from exclusively monomeric observation to exclusively
single size oligomeric observation for staining probabilities zero
and one, respectively. The distributions in between zero and one
depend on the oligomer geometry, which is reflected by the num-
ber of next neighbors of an average receptor. This number is at
least 2, i.e., for linear arrangement of the receptors. For other
cases, like dense circle packing resulting in a triangular geometry
it is 6 and for a quadratic grid it is 8. Simulations have been per-
formed for linear arrangements and quadratic grids which reflect
different extremes. An additional factor for the observed size distri-
bution is the gold-reagent itself, which is potentially pre-clustered.
Further, the staining efficiency, i.e., the number of receptors that
are stained; the geometry, i.e., the receptor positions within the
oligomers being stained; and potential unspecific stainings, i.e.,
presence of gold particles that are not bound to any BCR, have to be
considered. For given oligomer size, staining efficiency, geometry,
and gold distribution, the observed gold cluster size distribution
is obtained by repeated random number generation for the num-
ber of stained receptors, their positions and the number of gold
particles per staining spot. For each set of random numbers, the
resulting representation of the gold particle pattern is evaluated by
the simulation program and the number of counted monomers,
dimers, etc., is collected. This procedure was performed 105 times
for 10 staining probabilities between 2 and 40%, underlying BCR
oligomer sizes from 1 to 40 and three geometries, i.e., linear,
triangular, and quadratic. In addition, the simulation approach
has been adapted to explain the observation of the gold-reagent
control experiment.

2.3. STATISTICAL INFERENCE
The result of each gold-staining experiment is a distribution of
gold cluster sizes determined from gold particle counting in the
microscope. These experimental data are compared to the simu-
lated data and by means of statistical methods it is decided whether
simulation and experiment are in accordance. We tested four major
hypotheses: receptors are organized as:

1. BCR oligomers of a unique fixed size s,
2. BCR monomers and oligomers of a unique fixed size s,
3. BCR dimers and oligomers of a unique fixed size s,
4. BCR monomers, dimers, and oligomers of a unique fixed size s.

For each hypothesis, a likelihood function is derived based
on the assumption of Poisson statistics for the counted gold
oligomers. The corresponding log-likelihood reads

l (θ) =
∑

i

mi (θ)− Ni log (mi (θ))+

Ni∑
k=1

log k, (1)

where mi is the number of expected BCR oligomers of size
i predicted by the simulation and Ni is the number of gold
oligomers counted in the experiment. Minimization is performed
with respect to the parameter vector θ which is defined differently
for each hypothesis. This is explicitly

m(1)
i (θ) = θ · ni,sim (s) , (2)

m(2)
i (θ) = θ1 · ni,sim (1)+ θ2 · ni,sim (s) , (3)

m(3)
i (θ) = θ1 · ni,sim (2)+ θ2 · ni,sim (s) , (4)

m(4)
i (θ) = θ1 · ni,sim (1)+ θ2 · ni,sim (2)+ θ3 · ni,sim (s) , (5)

where ni,sim(s) denotes the simulated observed gold cluster size
distribution given the underlying BCR oligomer size. I.e., the para-
meter vector θ reflects the composition of BCR oligomers on the
surface. For each simulated data set, i.e., for each triplet (staining
efficiency p, underlying cluster size s, geometry g ), the maximiza-
tion of the log-likelihood results in an estimate for the parameter
vector θ , denoted by θ̂ , that explains the experimental data best.
In addition, to test if the log-likelihood value l(θ̂) is in accordance
with the data, parametric bootstrapping is employed. In paramet-
ric bootstrapping, the model prediction mi(θ̂) is used to generate
de novo observation data. In our case, 103 random samples have
been drawn from a Poisson distribution with mean mi(θ̂) and have
been treated like gold particle observations. For each sample, the
log-likelihood is maximized again and the values are collected in
a histogram approximating the asymptotic log-likelihood distri-
bution. The original value l(θ̂) is compared to different statistics
of the sampled distribution, among these p-value and weighted

distance to the mean 1 = l(θ̂)−〈l(θ)〉
σl(θ)

. The hypotheses are rejected

based on these values for p< 0.01 and1> 3, respectively.

3. RESULTS
3.1. THE WORKFLOW
Here we derived the size distribution of the IgD-BCRs on the cell
surface of J558L transfectants from the measured distribution of
gold particles after staining the BCRs with immuno-gold. “Size
distribution of the BCRs” is defined as the percentage of BCRs in a
given cluster size, such as 5% of the BCRs are in BCR monomers,
45% are in BCR dimers, and 50% are in BCR trimers. Our work-
flow consists of two phases. The first is carried out in the wet lab
and comprises immuno-gold-labeling of the BCRs on untreated
and PFA-fixed cells, followed by cell surface replica preparation
and the quantification of the gold particle cluster size distribution
on the replicated cell surface area by TEM (Figure 1, steps 1 and
2). As the staining efficiency reached by immuno-gold-labeling is
low, the obtained immuno-gold data cannot directly be converted
into the distribution of the BCRs. Thus, in the second phase math-
ematical modeling is used to derive the BCR distribution from the
gold particle data. To do so, we assume a large number of different
BCR distributions, such as only one defined size (only monomers,
or only dimers, or only trimers, etc.) or a combination of sizes (for
example, dimers and trimers). The observed gold particle size dis-
tributions are then stochastically simulated using a Monte-Carlo
simulation of the staining process, and the likelihood that the
gold size distribution represents a given BCR size distribution is
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FIGURE 1 | Scheme of the workflow. The approach is divided into six steps
partitioned into experimental (steps 1 and 2), theoretical (steps 3 and 4), and
statistical parts (steps 5 and 6). In step 1, the IgD-BCRs on the surface of
resting and fixed B cells are stained with immuno-gold and the gold particles
visualized by TEM. In step 2, the gold particles are counted, generating an
observed gold cluster size distribution. In step 3, the staining process is
simulated by Monte-Carlo procedures based on hypothetical BCR nanocluster
size distributions, generating characteristic gold particle cluster distributions
for the observed gold-labeling. Gold particles are shown in black and BCRs in

blue or red (each BCR occupies one square, thus showing a blue 8 mer and a
red dimer). In step 4, superposition parameters are estimated based on the
observed gold particle distributions by maximum-likelihood estimation. In
step 5 based on the estimated parameters, de novo, in silico cluster size
distributions are repeatedly generated and the corresponding log-likelihood is
re-optimized, providing a histogram of log-likelihood values. Step 6; if in
accordance with the data, the theory makes a valid prediction for the
underlying BCR nanocluster distribution and the relative amounts of the
nanocluster sizes is calculated.

calculated. Each single BCR oligomer size produces a characteris-
tic distribution of observed gold cluster sizes that depends on (1)
the pre-clustering of the gold-reagent, i.e., presence of monomeric,
dimeric, or trimeric gold particles in the staining reagent, (2) the
immuno-gold-staining efficiency, i.e., the percentage of BCRs that
are labeled by gold particles, (3) unspecific binding of the gold-
reagent to the B cell, independent of any BCR, (4) the oligomer
geometry which is reflected by the number of next neighbors of
an average receptor within the BCR oligomer, this number is at
least 2, i.e., for linear chains of receptors, or up to 8 for a qua-
dratic grid (Figure 3A). The Monte-Carlo simulation provides
information on the staining patterns and thus, the visible gold
cluster size distribution (step 3). To match the data, several such
gold cluster distributions are superposed with different strengths.
These strengths, called the superposition parameters, are estimated
from the data and give rise to a hypothesized underlying BCR
size distribution (step 4). Based on the estimated superposition

parameters the gold particle observation data is repeatedly gener-
ated and the parameters are re-estimated. This process results in a
distribution of log-likelihood values which, in case of good agree-
ment between model and data, contains the original log-likelihood
value l(θ̂) (step 5). For the log-likelihood value, the threshold cor-
responding to a p-value of 0.01 can be computed which when
being exceeded allows to reject the model. Otherwise, for a model
log-likelihood value in the interior of the distribution, the model
makes a valid prediction for the underlying BCR oligomer size
distribution (step 6). This means that the observed gold cluster
distribution can be fully explained by the predicted BCR oligomer
distribution.

3.2. ESTIMATION OF THE DEGREE OF PRE-CLUSTERING OF THE
GOLD-REAGENT

To address a possible pre-clustering of the gold-reagent used for the
BCR immuno-gold-labeling, the gold-reagent alone was adsorbed
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onto collodion/carbon-coated EM grids, i.e., without receptor
binding, and analyzed by TEM (Figure 2A). The few observed gold
particle dimers and trimers could be due to either pre-clustering
of the gold particles in the staining reagent or random collocation
of monomeric gold particles on the grid. The observed size distri-
bution data of the gold-reagent alone (Figure 2B) was subjected
to our workflow described above and interpreted as the staining of
one huge quadratic oligomer. The size of this quadratic oligomer
is the number of image pixels divided by the number of pixels per
gold dot. The staining efficiency was first assessed by the num-
ber of gold particles divided by the oligomer size. Subsequently,
the observed oligomer size distribution has been simulated by our
Monte-Carlo approach showing that random collocation is not
sufficient to explain the number of observed gold particle dimers
but that the gold-reagent is indeed already pre-clustered. From this
analysis, we find that 92.8% of all gold particles are monomeric,
6.5% are pre-clustered dimers, and 0.7% are pre-clustered trimers.
These numbers have been taken into account for all following
simulations by introducing parameters representing the inherent
fraction of gold dimers and trimers. A complementary perspec-
tive on Figure 2A is its interpretation as staining of a surface with
exclusively receptor monomers. This perspective enables insights
into the specificity of the approach. Testing the hypothesis “100%
monomers,” differences in the staining efficiency should not lead
to differences in the log-likelihood because only the total number
of counts but not the observed size distribution changes. In con-
trast, when testing alternative hypotheses such as“100% dimers”or
“100% trimers,” the method should allow rejecting those hypothe-
ses. Indeed, this was the case (Figure 2C). The plot shows the
weighted distance to the mean and the p-value based on the log-
likelihood. These values were computed for different hypothetical
staining efficiencies, represented by different colors, and dominant
oligomer sizes, represented by the x-axis. Already for hypothetical

staining efficiencies larger than 3% all tested hypotheses other than
“100% monomers” can be rejected with p≤ 0.001. Conversely, the
monomer assumption is not rejected for any staining efficiency, in
accordance with the expectation. This proofs that our approach is
highly sensitive as a staining efficiency of 3% is already sufficient
to reject wrong hypotheses.

3.3. CALCULATION OF THE IMMUNO-GOLD-STAINING EFFICIENCY
FOR THE IgD-BCR

Next, we calculated the staining efficiency of the BCR immuno-
gold-labeling process, using the murine B cell line J558Lm/mb-
1flN (16). These cells express IgD-BCRs on their surface, as seen
by a flow cytometric analysis using the same monoclonal anti-BCR
antibody (Ac146) that was also used for the immuno-gold-labeling
(Figure 3B). The total number of IgD-BCRs per cell was exper-
imentally determined to be 122400± 7500 BCRs (described in
the Methods section). The total cell surface area of a J558L cell
is 782± 25µm2 (25) resulting in an expected mean density of
156 BCRs/µm2. We analyzed three J558Lδm/mb-1flN cells by
immuno-gold-staining and TEM. The three areas analyzed by
TEM were 101, 183, and 152µm2 and the expected BCR number
in those areas was calculated to be 15600, 28080, and 23400 BCRs,
respectively. The achieved BCR immuno-gold-labeling efficiency
was calculated based on the number of gold particles observed in
the areas (2192, 3577, and 3876 gold particles, respectively) assum-
ing one gold particle to represent one BCR. Thus, the BCR labeling
efficiencies were 14.1, 12.7, and 16.6%, respectively. Thus, the BCR
staining efficiency in our experiment was approximately 15%.

3.4. THE ANTI-BCR IMMUNO-GOLD-STAINING IS SPECIFIC FOR THE
BCR

To prove that the anti-BCR immuno-gold-labeling protocol only
stained BCRs, we compared J558L cells that lack BCR expression

FIGURE 2 |The antibody-coupled gold-reagent is mainly monomeric.
(A) The gold-reagent alone was adsorbed onto collodion/carbon-coated EM
grids and analyzed by TEM. (B) Analysis of the clustering of 2041 gold
particles alone showed 88% monomeric gold particles, 8% of gold
particles as close as dimers, 3% were counted as trimers, and 1% as
clusters of larger sizes. (C) The gold-reagent cluster size distribution was
re-evaluated by our workflow, interpreting the cluster counts as receptor

staining. Pre-clustering of the gold-reagent was taken into account. For
different assumed receptor oligomer sizes (x -axis) and staining efficiencies
(color scale), significance level and p-value were computed (y -axis).
Models are rejected above the dashed line corresponding to a p-value of
0.01. The analysis confirms the monomer hypothesis and rejects other
hypotheses with p<0.01 (above the dashed line) for staining efficiencies
larger 3%.
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FIGURE 3 |The anti-BCR immuno-gold-labeling is specific. (A) The
Monte-Carlo simulations were performed for two possible BCR oligomer
geometries: a linear and a laminar geometry. (B) J558Lδm/mb-1flN cells
expressing the wt IgD-BCR (black line), J558L cells without any BCR (dark
gray line) or IgD-hSbap BCR-expressing J558L (light gray line) were labeled
with the anti-BCR antibody Ac146 and subsequently stained with
FITC-labeled anti-mouse IgG or gold-coupled anti-mouse IgG antibodies.
Fluorescently labeled cells were analyzed by flow cytometry, and mean
fluorescent intensities (MFI) of the gated populations are given. Gold
labeled cells were subjected to replica preparation and analyzed by TEM.
The mean gold particle (MGP) number detected on the cell replicas
confirms specific labeling of the BCR on wt and IgD-hSbap expressing
J558L cells, while immuno-gold-labeling of J558L not expressing BCR does
not result in significant gold particle detection on surface replicas.

and the J558Lδm/mb-1flN cells (Figure 3A). Flow cytometry
analysis confirmed no BCR expression on J558L cells. Immuno-
gold-labeling of the J558L cells resulted in 2 gold particles per
observed area, while J558Lδm/mb-1flN cells were stained with
3215 gold particles on average (Figure 3A). Thus (nearly) each
gold particle is representing a BCR.

3.5. DETERMINATION OF THE SIZE DISTRIBUTION OF WT IgD-BCR
OLIGOMERS

For our simulations to determine the size distribution of the wt
IgD-BCR,we have used the immuno-gold data from J558Lδm/mb-
1flN cells (Figure 4A) and the corresponding size distribution of
the gold particles (Figure 4B). The quantification of gold clusters
by TEM revealed 66% gold monomers, 21% gold in dimers, 7.5%
gold in trimers, and a fraction of 5.5% gold particles were part of
oligomers of four or more gold particles. To account for different
possible geometries of each individual BCR cluster, simulations
have been performed for linear and laminar BCR arrangements
(Figure 3B). Firstly, we have assumed a linear arrangement of
the BCRs (Figure 4C). Assuming the presence of one defined
BCR oligomer size, labeled by x, we have performed simulations
for BCR monomers (1), BCR dimers (2), BCR trimers (3), etc.
(Figure 4C, top, left panel). The different staining probabilities
are denoted by the color coding being centered around the exper-
imentally measured value of 15%. All curves outside a range of
±5% were shaded. For the single size assumption none of the
assumed BCR cluster sizes is in agreement with the data (below
the dotted line). The discrepancy between data and model does
not change any more as soon as the assumed BCR oligomer size is

larger than 6 because the observed size distribution produced by
them is almost identical. In particular, this means that linear BCR
oligomers larger than 6 or even a mixture of large BCR oligomers
is not in accordance with the experimental data at the given stain-
ing efficiency. Also a mixture of small and large BCR oligomer
sizes, e.g., 1+ x (BCR monomers and one BCR cluster size of x,
upper, right panel), 2+ x (BCR dimers and one BCR cluster size
of x, lower, left panel), or 1+ 2+ x (BCR monomers, dimers, and
one BCR cluster size of x, lower, right panel), is unable to explain
the observed data by linearly arranged receptor oligomers, thus,
leading to a full rejection of this geometry hypothesis. Secondly,
we have assumed a laminar arrangement of the BCRs (Figure 4D).
Following the plot for the single size assumption (Figure 4D, panel
x), the best agreement is obtained for small BCR oligomers such as
BCR dimers and trimers. This suggests that small BCR oligomers
contribute significantly to the overall observed gold cluster distri-
bution. Evaluation of related model hypotheses, 1+ x, 2+ x, and
1+ 2+ x shows that monomers plus an additional BCR oligomer
size is not sufficient to explain the observed size distribution. How-
ever, accordance can be achieved for BCR dimers plus a large BCR
oligomer around a size of 18 (lower, left panel). Additional BCR
monomers do not further reduce the discrepancy between model
and data (lower, right panel). This is also expressed in Figure 4F.
BCR dimers dominate the small observed gold particle oligomers
up to a size of 3, where BCR dimers are occasionally observed as
trimers due to the pre-clustering of the gold-reagent. Underlying
BCR oligomers of size 18 take over beginning from an observed
gold particle size of 4. The contribution by BCR monomers is
negligible. When testing a model with several BCR oligomer sizes,
e.g., 1+ 2+ 18, the maximization of the log-likelihood gives an
estimate for the ratio between the abundance of the single BCR
oligomer sizes. This ratio is then expressed in the percentage of
receptors being contained in either of the oligomers. The number
of receptors in oligomers of each size, computed from the model,
indicates that 60% of all receptors are contained in BCR oligomers
of size 18, 40% are contained in BCR dimers and BCR monomers
are negligible (Figures 4E,F). In conclusion, we suggest that IgD-
BCRs are arranged in pre-formed BCR oligomers on the surface
of J558Lδm/mb-1flN B cells and that BCR dimers as well as large
BCR oligomers of a laminar geometry co-exist.

3.6. DETERMINATION OF THE SIZE DISTRIBUTION OF A MUTANT
IgD-BCR THAT MOSTLY FORMS DIMERS

To validate our combined experimental and theoretical approach,
we took advantage of a transmembrane mutant IgD-BCR (IgD-
hSbap BCR), which resulted in impeded BCR oligomerization as
detected by Blue Native gel electrophoresis and pre-dominant
detection of BCR dimers (16). Immuno-gold-labeling of the
mutant BCR and sampling were performed as above. The quan-
tification of gold clusters by TEM revealed mainly gold monomers
(83%) and dimers (13%), and a smaller fraction of gold oligomers
of three or more gold particles (4%) (Figures 5A,B). In contrast
to the wt IgD-BCR, the staining efficiency was not determined
as mutant IgD-BCR expression was heterogeneous (Figure 3B).
When evaluating the log-likelihood for BCR staining efficiencies
up to 40% and dominant BCR oligomer sizes up to10, the over-
all best log-likelihood value was achieved for BCR dimers at a
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Fiala et al. BCR pre-clustering

FIGURE 4 |The IgD-BCR forms differently sized oligomers on the
surface of B cells. (A) IgD-BCR-expressing J558Lm/mb-1flN cells were
immuno-gold stained using the mouse anti-BCR antibody Ac146 and
anti-mouse IgG antibodies coupled to gold particles of 10 nm. The cell
overview is given at low magnification (upper left panel), gold-labeling of the
cell surface is shown in an overview picture (right panel) and individual gold
clusters are shown at high magnification (lower left panel). (B) 66% of the
gold particles were present as monomers, 21% formed dimers, 7.5%
trimers, and 5.5% were present in clusters of sizes larger than 3. (C) The
observed gold particle cluster size distribution was simulated with the
assumption of an underlying linear BCR oligomer geometry. Simulations
were performed for staining efficiencies of 15±5% indicated by colored
lines. The BCR oligomer sizes tested are indicated on the x -axis, and the
sigma/p-values for the statistical analysis of each simulation set is given on
the y -axis. Different hypothetical BCR oligomer size distributions are tested,

namely “one BCR oligomer size only” (x, upper left panel), “BCR
monomers+ another single BCR oligomer size” (1+ x, upper right panel),
“BCR dimers+ another single BCR oligomer size” (2+ x, lower left panel),
and “BCR monomers, dimers+ another single BCR oligomer size”
(1+2+ x, lower right panel). Models are rejected above the dashed line
corresponding to a p-value of 0.01. (D)The observed gold particle cluster size
distribution was simulated as in (C) with the assumption of an underlying
laminar BCR oligomer geometry. (E) Our simulations predict that 60% of all
receptors are part of oligomers of size 18 in a laminar geometry and 40%
are BCR dimers. (F) Gold cluster counts (dots with error bars) compared to
the prediction of best fitting model (continuous line). The number of counts
originating from the different underlying BCR oligomer sizes are shown as
dashed lines, indicating that observed clusters up to a size of 3 are primarily
caused by BCR dimers, while gold clusters larger than 3 can be explained by
BCR clusters of size 18. The impact of BCR monomers is negligible.
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FIGURE 5 |The IgD-hSbap BCR mutant forms mainly BCR dimers on the
surface of B cells. (A) IgD-hSbap BCR mutant-expressing J558L cells were
immuno-gold stained and analyzed as in Figure 4A. (B) 83% of the gold
particles were monomeric, 13% formed dimers, and 4% were present in
clusters of sizes larger than 2. (C) The observed gold particle cluster size
distribution was simulated for different BCR staining efficiencies (x -axis) and
different underlying BCR oligomer sizes (color scale). The sigma/p-values for
the statistical analysis of each simulation set are given on the y -axis. BCR
dimers with a staining efficiency of 8% are identified as the most likely

explanation for the observed gold cluster distribution. (D) Simulations were
performed as in (C). Assuming a staining efficiency of approximately 8%
(color coding), sigma/p-values (y -axis) are plotted for the different BCR
oligomer sizes (x -axis). (E) Gold cluster counts (dots with error bars)
compared to prediction of best fitting model (continuous line). The number of
counts originating from monomers and dimers are shown as dashed lines,
indicating that the observed distribution is dominated by BCR dimers. (F) A
model with BCR monomers and dimers was fitted to the data, predicting that
90% of all receptors are part of dimers, 10% are monomers.

staining efficiency of 8.8% (Figure 5C). The efficiency value is
not too far from the wt IgD-BCR staining efficiency, which has
been measured to be 15%. Our Monte-Carlo simulation indi-
cated that IgD-hSbap BCR oligomers larger than two can be
rejected at high confidence level unless the staining efficiency
would be lower than 5% (Figure 5D). Also BCR monomers
without larger BCR oligomers cannot explain the data, thus,
confirming that the mutant BCR dimerizes. In addition to the
single size model, a model with monomers and one further BCR
oligomer size was tested. The observed gold cluster distribution
after immuno-gold-labeling of the mutant IgD-BCR together with
the model prediction of the best fitting model, i.e., monomers
plus dimers, is shown in Figure 5E. Analogously to the wt IgD-
BCR experiment, the percentage of IgD-hSbap BCR present as
BCR monomers and BCR dimers was computed, demonstrating
that 90% of the mutant BCRs are present as dimers and 10%
as monomers (Figure 5F). These findings validate our approach
and reflect the Blue Native gel electrophoresis data for IgD-hSbap
BCR (16).

4. CONCLUSION
Here, we used a combined immuno-gold TEM and modeling
approach to suggest that the IgD-BCR is expressed as BCR
dimers and larger oligomers. To measure the distribution of cell
surface molecules super resolution light microscopy techniques,
such as high-speed photoactivated localization microscopy (5) or
dSTORM (21), have been employed. Unlike these light microscopy
techniques, our technique permits nano-scale resolution of cell
surface molecules on the membranes that are not in contact with
any support, thereby avoiding visualization of potential clustering
artifacts induced by cell adherence (26). This advantage is not given
in other EM methods, such as nano-probe labeling and transmis-
sion microscopy of cytoplasmic face-up sheets of cell membrane
ripped off from cells to generate cytoplasmic face-up membrane
sheets (27), which subsequently can be fixed and immuno-gold
labeled (5,28,29). Our method can measure the distribution of any
cell surface molecule, without the need to genetically modify this
protein with a fluorophore, provided that antibodies against the
protein are available. It is, however, not compatible with dynamic
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observations and, given the relatively low labeling efficiency, does
not allow absolute quantifications by direct gold counting; here we
present an approach to overcome the latter limitation. We assumed
that the presence of one gold particle is indicative of one BCR (with
the restraint that some gold particles are aggregated, which we
have taken into account). There is the unlikely possibility that our
staining approach with a primary anti-BCR and a secondary gold-
coupled antibody could allow for double labelings of the BCRs, if
the secondary antibody binds twice to the primary antibody (once
to each of the two heavy chains). However, double labeling most
likely did not take place: we used the IgD-hSbap BCR that only
formed monomers and dimers when analyzed by Blue Native gels
(16). And indeed, in our analysis this mutant BCR was exclusively
detected as monomers (10% of the BCRs) and dimers (90% of the
BCRs). These relative abundancies fit well to the biochemical Blue
Native gel data (16). Thus, we conclude that a potential double
gold-labeling of a BCR does not take place in our experiments and
does not prevent drawing our conclusions from the immuno-gold
TEM data. Here, we estimate that 60% of all wild type IgD-BCRs
expressed on J558Lδm/mb-1flN cells are part of BCR oligomers
of a size of around 18 and 40% form BCR dimers. This notion is
based on the most simple BCR size distribution (i.e., assuming the
lowest number of different BCR sizes) to explain the observed gold
distribution. Still, the co-existence of larger number of different
BCR oligomer sizes cannot be ruled out. Previously, the oligomer
size of the IgM-BCR has been theoretically approached by Iber
and Gruhn (30). Assuming oligomer formation and decay rates
based on the literature, they calculated that IgM-BCR pentamers
might exist. However, the modeling approach was not based on
experimental data on BCR oligomer sizes and thus the presence of
BCR pentamers is rather hypothetical. BCR pre-clustering might
increase the antigen-receptor avidity, since functional antigens are
mostly multimeric structures (31, 32). This increase in avidity
could enhance the sensitivity of B cell activation, as suggested
for TCR pre-clusters (8–10). BCR oligomers could also enhance
the sensitivity of B cells by cooperativity between BCRs in one
oligomer. Thus, antigen-binding to one or two BCRs could also
lead to the activation of non-engaged BCRs, propagating the signal
within one oligomer. In line with this, we had suggested earlier that
the kinase Syk bound to one BCR can phosphorylate the neigh-
boring BCR amplifying BCR signaling by a positive feedback loop
(33). In T cells it was shown experimentally that individual TCRs
cooperate in this manner within one TCR pre-cluster (34). On the
other hand, enhanced sensitivity of the B cells might also bear an
increased risk of reacting against abundant self-antigens and lead
to autoimmunity. The presence of pre-formed BCR oligomers has
important implications for the mechanism of how the BCR trans-
mits the signal of antigen-binding into the interior of the cells.
Initially, it was assumed that the BCRs are individually distributed
on the B cell surface and only brought into close proximity by their
multivalent antigens, leading to reciprocal phosphorylation of the
cytoplasmic tyrosines in Igα and Igβ and thereby signal initiation.
The idea of cross-linking as the first step in BCR activation was
based on the finding that monovalent antigens do not induce BCR
activation (31, 32). Now, the cross-linking model is questioned by
the finding that BCR oligomers exist (16, 17, 19, 21, 35). In our
analysis we hardly detected any BCR monomers, which is in line

with the finding that only oligomerized are stably expressed on the
cell surface (19). Our study clearly points out that BCR oligomers
of different sizes co-exist on the surface of resting B cells. Activa-
tion therefore might occur according to conformational changes
within the BCR oligomer, as e.g., the proposed in the dissociation
activation model (20). Knowledge on the pre-clustering of a given
receptor not only aids to explain the biology of the receptor, but
also might open new strategies for interfering with its function for
vaccination or therapeutic purposes.
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Both the B cell receptor (BCR) and the T cell receptor (TCR) repertoires are generated
through essentially identical processes of V(D)J recombination, exonuclease trimming of
germline genes, and the random addition of non-template encoded nucleotides.The naïve
TCR repertoire is constrained by thymic selection, and TCR repertoire studies have there-
fore focused strongly on the diversity of MHC-binding complementarity determining region
(CDR) CDR3.The process of somatic point mutations has given B cell studies a major focus
on variable (IGHV, IGLV, and IGKV) genes.This in turn has influenced how both the naïve and
memory BCR repertoires have been studied. Diversity (D) genes are also more easily iden-
tified in BCR VDJ rearrangements than in TCR VDJ rearrangements, and this has allowed
the processes and elements that contribute to the incredible diversity of the immunoglob-
ulin heavy chain CDR3 to be analyzed in detail. This diversity can be contrasted with that
of the light chain where a small number of polypeptide sequences dominate the reper-
toire. Biases in the use of different germline genes, in gene processing, and in the addition
of non-template encoded nucleotides appear to be intrinsic to the recombination process,
imparting “shape” to the repertoire of rearranged genes as a result of differences spanning
many orders of magnitude in the probabilities that different BCRs will be generated. This
may function to increase the precursor frequency of naïve B cells with important specifici-
ties, and the likely emergence of such B cell lineages upon antigen exposure is discussed
with reference to public and private T cell clonotypes.

Keywords: BCR repertoire,TCR repertoire,V(D)J recombination, public clonotypes, private clonotypes, combinato-
rial diversity, junctional diversity

GERMLINE GENES AND LYMPHOCYTE DIVERSITY
The mammalian immune system has the ability to respond to
almost any antigen to which it is exposed because of the incred-
ible diversity of lymphocyte receptor molecules. The diversity of
both the B cell receptor (BCR) repertoire and the T cell receptor
(TCR) repertoire is made possible by multiple sets of highly similar
genes that recombine to form functional genes. Immunoglobu-
lin heavy chains are encoded by recombined VDJ genes that are
formed from sets of Variable (V), Diversity (D), and Joining (J)
genes (IGHV, IGHJ, IGHD), while VJ rearrangements of kappa
and lambda chain V genes (IGKV, IGLV) and J genes (IGKJ, IGLJ)
encode the immunoglobulin light chains (1, 2). TCR β-chains and
δ-chains are similarly encoded by distinct sets of V, D, and J genes
(TRBV, TRBD, TRBJ; TRDV, TRDD, TRDJ), while α-chains and
γ-chains are encoded by additional sets of V and J genes (TRAV,
TRAJ; TRGV, TRGJ) (3–5). The resulting combinatorial diver-
sity is expanded still further by junctional diversification arising
from exonuclease trimming of the recombining gene ends and
from the essentially random addition of nucleotides, between
the recombining genes, by the enzyme terminal deoxynucleotidyl
transferase (TdT) (6). Together, combinatorial diversity and junc-
tional diversity create the diversity of the naïve T cell and B cell
repertoires. Limitations to diversity may however be a feature of
V(D)J rearrangement that is as significant to immune function

as the bewildering number of lymphocyte specificities that can
theoretically be generated.

This review will present evidence that biases in the processes
that generate combinatorial and junctional diversity are such that
the probabilities of different BCRs and TCRs being generated is
highly variable. This results in B and T cells of some specifici-
ties being present within the naïve repertoire at high frequency,
while other specificities may or may not be present at all. The
unevenness of the receptor abundance distribution can be said to
give “shape” to the naïve B and T lymphocyte repertoires. This
distribution may be further shaped by processes including posi-
tive and negative selection, clonal expansion and, in the case of
immunoglobulin genes, by somatic hypermutation, however this
review will focus upon recombination and gene processing.

As the shape of the naïve human B and T cell lymphocyte reper-
toire is an outcome of the evolution of genetically determined
biases, this should ensure the presence of critical rearrangements
in the repertoire of all individuals. It should also ensure that these
critical rearrangements are carried by multiple naïve cells (see
Figure 1). Such populations of specific naïve lymphocytes will
have a competitive advantage during antigen-driven clonal selec-
tion, and any discussion of repertoire diversity that is limited to the
size of the population of unique receptors will therefore be ignor-
ing a parameter of likely biological significance. In this review, we
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Jackson et al. Shaping the B cell repertoire

FIGURE 1 |The receptor repertoire has “shape,” as biases and
constraints in the recombination process vary the probabilities of
generating particular V(D)J rearrangements. (A) Higher probability
rearrangements are generated through utilization of more frequently
rearranged gene segments. These segments are joined with minimal gene
processing and N-addition, increasing the chance of independent
rearrangements with identical or near identical CDR3s. (B) Lower probability
rearrangements utilize rarely rearranged germline gene segments and the
CDR3s are more diverse owing to increased nucleotide removals and
additions at the joins. (C) The many order of magnitude differences in the

likelihood of generating particular rearrangements shape the repertoire, with
higher probability rearrangements being frequently generated and as a
consequence being carried by many identical B-cells. Only a relatively small
number of unique rearrangements will be generated with probabilities high
enough to be carried by a large number of B cells, but this should ensure that
they are always present in the repertoire at significant levels. Conversely,
lower probability rearrangements may be so rare that they are carried only by
a single B cell, or are entirely absent from the repertoire. The lower probability
rearrangements that are carried by just one or at most a few B-cells likely
represent many millions of unique rearrangements.

will use the term “repertoire” to refer to the complete set of recep-
tors that are carried by an individual, including multiple copies
of particular sequences. The number of unique sequences that are
found within an individual’s repertoire will be described as the
“diversity” of the repertoire.

The size of the sets of germline genes make a major contri-
bution to lymphocyte diversity, but surprisingly, our knowledge
of these germline genes is far from complete. In part this is the

result of the complexity of the loci, for they feature numerous
highly similar genes that are thought to have evolved via gene
conversion (7), and duplication and divergence (8). These genes
are interspersed with many pseudogenes and repetitive elements
(8). Sequencing and annotation of the loci is therefore challeng-
ing. These complexities also mean that SNPs arising from short
read-length sequences generated in studies such as the HapMap
and 1000 Genomes projects, cannot be used for the imputation of
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full-length allelic variants. In fact, these projects utilize polyclonal
lymphoblastoid cells lines in which the immunoglobulin loci have
undergone somatic recombination, and the rearranged genes may
have been affected by somatic point mutation. This makes these
cell lines unsuited to the study of immunoglobulin genes (9).

Arguably, it is the BCR germline genes that are best known, and
paradoxically, this is because of their transformation through the
process of somatic hypermutation, during an immune response.
IGHV genes are by far the longest of the recombining IGH genes,
and they are the principal targets of the mutational machinery
(10, 11). Many studies of the immunogenetics of immunoglobulin
have therefore concentrated upon the IGHV genes. As it is neces-
sary to be certain of the germline origin of mutated sequences, if
accurate studies of point mutations are to be conducted, the com-
plete and accurate definition of the set of germline immunoglob-
ulin IGHV genes and allelic variants has been and should remain
a focus of research.

The official human IGHV germline gene dataset, curated by
the ImMunoGeneTics (IMGT) group, includes 129 functional
genes, open reading frames (ORF), and pseudogenes, as well as
over 200 allelic variants (12). Interest in these germline genes
has increased in recent years, resulting in 40 new allelic vari-
ants being reported since 2005 (13–17). Many additional IGHV
allelic variants have also been identified in recent high-throughput
sequencing studies, through analysis of cDNA-derived VDJ gene
rearrangements (18, 19), but these have not been accepted as part
of the official IGHV dataset. We have designated alleles identi-
fied in this way with unofficial allele names using an indicator
(“p”) of their “putative” nature (e.g., IGHV3-9∗p03) (15), and
these additional alleles can be found in the UNSWIg repertoire
(http://www.ihmmune.unsw.edu.au/unswig.php).

The official human light chain V gene datasets appear to be
relatively complete and accurate, though few allelic variants have
been reported (20). Nevertheless these few variants appear to be of
functional and clinical significance. For example, a variant kappa
gene allele was identified within the Navajo population and has
been reported to account for the susceptibility of this population
to infections (21).

The human IGH germline genes receive continuing attention
while the IMGT human TCR germline gene datasets have barely
changed since the complete sequences of the TCR gene loci were
first described (22, 23). The IMGT TRBV dataset includes 65 func-
tional genes, ORFs and pseudogenes, and just 13 allelic variants,
and no new TRBV sequence has been added to the dataset since
the publication of the complete sequence of the TRB locus in 1996
(22). Only three TRAV/TRDV sequences (24) in the IMGT dataset
are derived from studies published since the reporting of the com-
plete sequence of the TRAV/TRDV locus (23), and some variants
that were described soon afterward still remain officially unrecog-
nized (25). The incomplete nature of the IMGT TRBV, and TRAV
datasets in particular are clearly highlighted in the literature, for
sequencing studies have reported many SNPs in the coding regions
of these genes. Subramanyan and colleagues reported 279 SNPs
in a study of 63 TRBV genes in 10 individuals from each of four
human populations (26). Of these reported SNPs, 114 were located
in coding regions of functional TRBV genes (26). A similar study
of 57 TRAV/TRDV genes in the same 40 individuals resulted in the

discovery of 284 SNPs, 51 of which encode amino acid changes in
the coding regions of the gene sequences (27). The allelic variants
associated with these TRAV/TRDV and TRBV SNPs have not been
reported in the literature or in sequence databases, and they have
not been incorporated into the official gene datasets. This is sur-
prising because the SNPs were identified through amplification
and sequencing of full-length genomic sequences. It is also unfor-
tunate, for studies of TCR polymorphisms have shown that they
can be of functional significance (28, 29).

The BCR and TCR D loci contribute differently to the gen-
eration of diversity, and the differences in the nature of the loci
have influenced BCR and TCR research directions. The 27 human
IGHD genes include 25 functional genes, 23 of which are unique
(30). Although some IGHD genes, especially those of the IGHD1
gene family, are very similar, there is considerable sequence diver-
sity amongst the genes. The lengths of the IGHD genes vary
from 11 nucleotides to 37 nucleotides, and almost all of them
are substantially longer than the TRBD and TRDD genes. This
length and the IGHD gene variability have made improvement
in the identification of IGHD genes within VDJ rearrangements
a challenging but achievable research goal. Pursuit of this goal
has driven the development of immunoglobulin gene alignment
utilities including SODA2 (31), IgBLAST (32), and iHMMune-
align (33). The objective measurement of the performance of these
utilities is made difficult, however, by a lack of appropriate data
sets. Ideally, performance would be measured using rearranged
sequences of known composition. As such sets are unavailable,
clonally related sequences can be used (32, 33). We have also com-
pared the performance of different utilities using a set of long-read
pyrosequenced (Roche 454) IGH rearrangements from an indi-
vidual with a homozygous deletion of six IGHD genes (34). This
test measures performance by the number of VDJ rearrangements
in the dataset that are said to include the absent IGHD genes.
Together these studies demonstrate that IGHD genes can now be
identified with confidence, and as a consequence, analysis of the
BCR heavy chain complementarity determining region (CDR) 3
can include detailed analysis of IGHD gene usage, gene processing,
and N nucleotide addition.

Analysis of the TCR CDR3 is not so easy. The two human
TRBD genes are both short (12 and 16 nucleotides) and highly
similar at their 5′ ends (22). This makes their identification in VDJ
rearrangements particularly difficult. The TRBD genes within a
VDJ rearrangement are likely to be flanked by N-REGIONS of
non-template encoded nucleotides. These nucleotides are intro-
duced through the action of the TdT enzyme, which is biased to
the addition of guanine (G) nucleotides (35) and to the addition
of homopolymer tracts (36, 37). Distinguishing TRBD gene ends
from G-rich N nucleotides is difficult because the TRBD genes are
G-rich at both their 5′ and 3′ ends. A final complication is that the
two alleles of TRBD2 differ by just a single nucleotide. This critical
nucleotide is flanked on both sides, in both alleles, by GGG motifs.
For these reasons, few TCR studies have included detailed analy-
sis of TRBD genes and their processing, or of the N-REGIONS
that can only be defined after the identification of a TRBD gene
segment within the CDR3. Even the most recently developed TCR
alignment utility excludes identification of TRBD genes from its
output (38).
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Analysis of the VDJ junction in TRD rearrangements is equally
difficult. The three human TRDD genes are just 8, 9, and 13
nucleotides in length (4). This makes their reliable identification
within VDJ rearrangements especially problematic if nucleotides
have been lost through exonuclease activity. Application of an
approach previously used in the analysis of BCR sequences (37)
suggests that eight nucleotides is the minimum D gene length
that will allow TRDD genes to be reliably distinguished from N-
REGIONS within a junction of 12 or fewer nucleotides, while 9
nucleotides are needed for regions from 13 to 15 nucleotides and
10 nucleotides for junctions greater than 15 nucleotides (Jackson,
unpublished data). It is therefore no surprise that few studies have
reported the partitioning of TRD junctions as two of the three
TRDD genes can only be confidently delineated from N-additions
in their unprocessed form.

The J loci of the human BCR and TCR also include important
differences. The IGHJ locus includes six functional genes, which
are all found downstream of the IGHD locus in a single clus-
ter. Allelic variants have been reported for IGHJ3, IGHJ4, IGHJ5,
and IGHJ6, though there is reason to doubt the existence of the
reported allelic variants of IGHJ3 and IGHJ5 (39). TCR J genes are
more numerous and are differently organized. The TRBJ genes are
found as a block of six genes located downstream from the TRDB1
gene, and a block of seven genes located downstream from the
TRDB2 gene. The TRDB1 gene can pair with all J genes, but the
TRDB2 gene is strongly biased toward pairing with its associated
J genes (40). There are also four functional J genes in the TRDJ
locus. Functional allelic variants have only been reported for the
TRBJ1-6 gene.

BIASES IN COMBINATORIAL DIVERSITY AND THE SHAPING
OF THE REPERTOIRE
Combinatorial diversity is that part of repertoire diversity that
results from the fact that functional receptor genes form by the
recombination of members of the sets of germline V, D, and J
genes. This diversity is usually calculated by simply multiplying
together the number of functional V, D, and J genes that are avail-
able within the genome. Such calculations, however, may promote
misunderstandings, for they encourage the view that “all genes are
equal,” and that all combinations are equally likely. TCR studies
have paid considerable attention to capturing an unbiased sam-
pling of the repertoire, for example using 5′ RACE to amplify TCR
transcripts from the constant region gene. Such studies have shown
that TCR genes are highly biased in their usage (41–43). In con-
trast, many BCR repertoire studies have amplified both mRNA and
genomic rearrangements, often using IGHV gene family-targeting
primer sets that were developed for the detection of malignan-
cies rather than for the investigation of the repertoire (44, 45).
Such primers almost certainly lead to some distortions in the rela-
tive abundances of different sequences that are seen. Nevertheless,
BCR studies utilizing different primer sets, and amplifying dif-
ferent source material are surprisingly consistent, and the B cell
literature provides unequivocal evidence of strong gene utilization
biases.

Different IGHV genes are used at frequencies that range from
as little as 0.1% to more than 10% of all rearrangements in an
individual’s naïve B cell repertoire (18, 46). Utilization frequencies

also vary between alleles. For example, analysis of VDJ recombina-
tion in different individuals has shown that IGHV1-2∗02 is used
approximately three times as often as IGHV1-2∗04, in individuals
who carry both these alleles (18). IGHV utilization frequencies are
surprisingly constant between individuals (47). Examples of such
consistency include IGHV1-46 which varies from 2 to 3.1% in dif-
ferent individuals (average 2.65%), IGHV3-21 which varies from
3.5 to 6.3% (average 4.59%), and IGHV3-49 which varies from 0.8
to 1.3% (average 1.0%) (18). This is not true for all genes, with
different individuals utilizing IGHV1-69 at frequencies that range
from 3.1 to 9.1% (average 6.2%) (18). IGHV3-23, which is typi-
cally the most utilized IGHV gene, was seen on average in 6.7% of
all VDJ sequences, but its utilization frequency in one individual
was 13.7% (18).

Biased gene usage is not confined to the IGHV genes. IGHD
gene usage varies from less than 1% (IGHD4-4/11) to over 15%
(IGHD3-22) of total rearrangements. Biases in the resulting amino
acid sequences of the CDR3 junction are even greater. IGHD
segments can be utilized in all three reading frames, and each
IGHD gene is therefore able to encode three distinct amino acid
sequences. Analysis of IGH rearrangements in which the IGHJ
is out-of-frame, and which are therefore non-productive, shows
each IGHD gene rearranges at equal frequency in each of the three
RFs, however among productive rearrangements there is a strong
skewing of the utilization of each gene toward a dominant RF
(48). This dominance is constant between individuals, and the
preferred RF is gene family dependent. Analysis of in-frame and
out-of-frame IGH rearrangements sequenced using the Illumina
platform suggests that the underlying rearrangement processes
have no reading frame bias, but that bias emerges from stronger
negative selection of sequences in certain reading frames (48).
Such negative selection particularly focuses on non-productive
sequences that result from the presence of stop codons within
the junction region. These are seen when many IGHD genes are
translated in the non-dominant reading frame, and such genes
can only be utilized in those reading frames if the stop codons are
removed by exonuclease trimming. When analysis of IGHD usage
in the expressed repertoire factors in the three RFs, the IGHD gene
utilization frequencies span three orders of magnitude. There is
also considerable variation between the utilization frequencies of
IGHJ genes. The IGHJ4 gene is present in approximately 45–50%
of rearrangements, while IGHJ6 accounts for a further 20–25% of
VDJ rearrangements (49, 50). IGHJ1, on the other hand, is utilized
by only 1% of all rearrangements (39).

Biases in light chain gene usage are just as strong. For IGK
rearrangements, preferential inclusion of IGKV3-20 was noted
in early studies of the expressed IGK repertoire of both adults
and neonates (51–53), while single cell PCR (54) and bioinfor-
matics analysis of IGK rearrangements from sequence databases
showed IGKV3-15, IGKV3-11, IGKV1-5, IGKV2-30, and IGKV1-
30/IGKV1D-39 to also display preferential rearrangement (20).
These biases were confirmed again recently in a high-throughput
sequencing study which also highlighted similarities in usage
between individuals, including similarities between individuals
from geographically distant and ethnically distinct populations
(55). Under-utilization and over-utilization of the J gene segments
have been reported. IGKJ1 and IGKJ2 appear more frequently,
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while there is under-utilization of IGKJ3 and IGKJ5 (20, 53, 54).
This skewing of IGKJ usage toward the genes located 5′ in the IGKJ
locus is seen despite the necessity for selection of more 3′ IGKJ
genes during secondary IGK rearrangements (56, 57). A similar
bias toward 5′ IGKJ genes is also seen in the mouse, and modeling
of mouse light chain rearrangement supports the strong underly-
ing tendency toward the initial rearrangement of IGKJ1 or IGKJ2
(58). The IGLV usage is strongly skewed toward a limited number
of the functional V segments with 3 of the 30 IGLVs accounting
for more than 50% of expressed rearrangements, and with indi-
vidual IGLV segment frequencies ranging from 0.02 to 27% (59).
Only four of the seven IGLJ are considered functional (60). The
four IGLJ range from almost 55% utilization in the expressed B
cell repertoire for IGLJ7, to just 5.5% for IGLJ1 (61).

Although bias in the reading frame of the IGHD gene is the
result of selection, other biases appear to be intrinsic to the recom-
bination process, for when analysis is confined to non-productive
rearrangements which carry an out-of-frame J-REGION, pref-
erential gene usage is still seen (48). Such sequences are not
subject to positive or negative selection. The same biases have
been observed among transcripts generated from transgenic mice
that carry a human heavy chain mini-locus (62), while in NOD-
scid-IL2Rγ null mice that had been reconstituted with human
hematopoietic stem cells, typical patterns of biased usage were
seen amongst the expressed light chain genes (63). Recent studies
in monozygotic twins show that they share utilization frequencies
for both the heavy and light chain genes (46, 63), with corre-
lations in a similar range to replicate biological samples. When
one twin was investigated following lymphocyte ablation therapy,
the reconstituted repertoire showed the same utilization patterns
(46). Unrelated individuals did not share this degree of correla-
tion. The biases in utilization frequencies of different V, D, and
J genes therefore appear to be genetically determined, and when
acted upon by the recombination machinery, the biases in that
process give rise to an individual’s distinct repertoire. Repertoire
shape is therefore directly linked to the genotype of an individ-
ual’s immunoglobulin gene loci. This has become even clearer
since high-throughput sequencing has allowed analysis to focus
upon individual chromosomes.

The large datasets that are now being generated by high-
throughput sequencing from single individuals are facilitating
analysis of the processes that shape the repertoire, but each dataset
still represents a mixture of rearrangements from two indepen-
dently recombining chromosomes. The fact that V(D)J rearrange-
ment is an intra-chromosomal event, however, means that every
V(D)J gene rearrangement provides information about the associ-
ation of different genes on a chromosome. Any heterozygous locus
allows each chromosome to be associated with one or the other
allele at that gene locus, and large sets of V(D)J rearrangements
can be analyzed to determine all the V, D, and J genes that rearrange
on each chromosome. This allows the determination of inferred
haplotypes (see Figure 2).

In practice, the complete inference of V, D, and J gene haplo-
types by the analysis of V(D)J rearrangements is only likely to be
possible in the case of the IGH locus. Approximately 40% of indi-
viduals are heterozygous at the IGHJ6 locus, and the IGHJ6 gene is
present in nearly 25% of all rearrangements. It therefore provides

FIGURE 2 | Inference of IGH haplotypes from VDJ rearrangements. The
availability of large datasets of VDJ rearrangements from single individuals
permit the inference of all germline V, D, and J genes within the genome,
from analysis of apparent gene utilization within a dataset. As IGH VDJ
rearrangement is an intra-chromosomal event, gene pairing in VDJ
rearrangements can be used to infer which gene segments are carried by
the same chromosome. Leveraging the heterozygous IGHJ6 or IGHJ4 locus
allows the reconstruction of IGH gene segments on each chromosome and
for the IGH haplotype to be inferred.

an ideal “anchor-point” from which to haplotype the IGH locus.
Using this approach, we recently investigated the IGH locus in
nine individuals, and showed that all 18 IGH variable region gene
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haplotypes were unique (19). In addition to allelic variants, many
IGHV and IGHD gene deletions and IGHV gene duplications were
evident. The definition of haplotypes in this way is allowing IGH
gene usage frequencies to be studied with unprecedented accuracy,
but unfortunately no locus as appropriate as the IGHJ6 anchor-
point exists amongst the light chain genes or amongst TCR genes.
Limited investigations in the past have highlighted TCR haplo-
typic variation in the human population (64, 65), but the extent
of variation within the IGH locus suggests that considerably more
TCR variation may await discovery.

Many factors have been explored to explain biases in chromo-
somal recombination patterns. Variations in enhancers (66) have
been implicated in biased murine TCR gene usage. Variations in
recombination signal sequences (RSS) also influence utilization
frequencies of both human BCR (67, 68) and TCR (69) genes. The
IGKV polymorphism that has been linked to increased susceptibil-
ity to Haemophilus influenzae in the Navajo population includes a
single nucleotide change in the heptamer sequence of the RSS, and
it reduces recombination by 4.5-fold relative to the common allelic
variant (21). The non-amer and heptamer sequences of the RSS are
separated by either a 12 or 23 base pair spacer. Spacers also show
sequence variation, and there has been debate about the impact
this has on recombination efficiency. While some studies did not
observe any impact when the regular spacer sequence was replaced
with runs of GC pairs (70),competition assays using extra chromo-
somal substrates suggest differences in spacer sequence can result
in differences in recombination efficiency that mirror differential
gene usage in the V(D)J repertoire (67, 68). However, RSS varia-
tion cannot explain all differences in allele utilization. The recent
re-sequencing of the complete IGH locus found that the IGHV-
associated RSS were the same as those earlier reported by Matsuda
(71) even where different alleles of the gene were present (17).

Some variation in the frequency with which particular gene
sequences are seen in the repertoire may be explained by copy-
number variations (CNV). The presence of CNV within the IG
variable gene locus was first determined using sequence-specific
RFLP analysis to determine gene copy-number (72), and the affect
of CNV on expression levels was investigated through the exam-
ination of the binding of an anti-idiotypic monoclonal antibody
(G6) to tonsillar IgD+B-cells (73). An examination of 35 indi-
viduals found that they carried between 0 and 4 copies of the
IGHV1-69 gene. Linear regression determined that for each allele
copy, approximately 3% of B-cells were G6 reactive. Individual
differences in the IGHV1-69 copy-number could therefore result
in the contribution that this single gene makes varying from being
totally absent (0 copies) to being present in as many as 12% of
rearrangements in individuals with four available copies.

Sequencing of single chromosomes of an individual’s IGH locus
has now demonstrated that insertions, deletions, and complex
events have altered the copy-number of IGHV genes, including the
IGHV1-69 and IGHV3-23 genes (17). The duplicate IGHV3-23
genes remain within the genome as absolutely identical sequences.
The presence of these and other CNVs has also been highlighted
in bioinformatic studies of immunoglobulin genotypes (18) and
haplotypes (19), where sequence data from single individuals
clearly demonstrated that some individuals had more than two
“alleles” of a single IGHV gene. Genes were also found to be

absent from the genome of some individuals. A limitation of these
bioinformatics studies was that gene duplications could only be
detected if two distinct “allelic variants” were carried on a single
chromosome.

In addition to the underlying biases in utilization of germline
genes, a final bias has been identified that affects the contribution
of recombination frequencies to repertoire diversity. For reasons
that are presently unclear, there appear to be pairing preferences
for some IGHD and IGHJ genes that increase the frequency of
particular IGHD-IGHJ pairs within the repertoire. Biases were
first observed in a small set of 59 non-productive rearrangements
(74). Later analysis of 6,500 IGH VDJ sequences collected from
public databases led to the observation that 5′ IGHD genes paired
with increased frequency to the most 3′ IGHJ (J5/J6) and with
decreased frequency to the 5′ IGHJ (J1–J4) (50). In contrast, 3′

IGHD tended to preferentially pair with 5′ IGHJ rather than 3′

IGHJ (50). This observation is also supported by analysis of very
large datasets generated by pyrosequencing of VDJ rearrangements
from three healthy subjects (75). Significantly more pairings were
seen of IGHD2-2 and IGHD3-3 with IGHJ6, and of IGHD3-22
and IGHJ3 than would be predicted from the frequencies of these
genes in the overall dataset (75).

The bias in D-J pairing also extends to the TCRB loci where
the application of HTS approaches to murine TCRB repertoires
has revealed a pattern of TRBD to TRBJ pairing that correlates to
the genomic distance between rearranged genes (40). The TRBV
and TRBJ gene usage in the mice was biased toward particular
genes, but the pairings of TRBV and TRBJ were independent.
The physical chromatin structure of the TRBD and TRBJ loci was
investigated using a biophysical model of the chromatin confor-
mation. The biases in TRBD to TRBJ pairing appeared to be better
explained by this mechanical model than previously proposed
genetic models based on RSSs (40). The model was also extended
to human TRBJ usage with favorable evidence that chromatin
conformation determines TRJB gene usage.

Biases in the pairing of heavy and light chains have also been
reported. The existence of forbidden or unfavorable pairings of
germline heavy and light chain genes was described in the early
literature (76). This was not supported by later studies (77, 78), nor
was it supported by a recent study that applied high-throughput
sequencing to generate thousands of linked heavy and light chain
genes (79).

BIASES IN JUNCTIONAL DIVERSITY AND THE SHAPING OF
THE REPERTOIRE
Both the naive B cell and T cell repertoires are limited in the
periphery by processes of selection. However T cell selection
within the thymus is a particularly rigorous process, and it leads
to dramatic differences between the potential and the observed
repertoire diversity. The idiosyncratic nature of TCR selection in a
human population with abundant MHC diversity also means that
analysis of the processes that contribute to TCR diversity will be
difficult using datasets comprising sequences from multiple indi-
viduals. Sufficiently large datasets from single individuals with a
specific MHC profile finally became available with the application
of high-throughput sequencing to repertoire studies. However,
the continuing difficulties involved with the identification of TCR
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D genes and hence the other constituent elements within the
TCR CDR3 still discourage analysis of the genetic elements and
processes that contribute to this region. It is therefore studies of
BCR genes that provide the clearest insights into the processes that
contribute palindromic P nucleotides and non-template encoded
N nucleotides to theV(D)J junction, and into the process of exonu-
clease trimming that depletes the ends of recombining genes. A
recent study of BCR CDR3 suggested that as a result of these
processes, the circulating B cell population in a typical adult
human includes 3–9× 106 unique heavy chain CDR3 (80).

Palindromic or P nucleotides are formed by the asymmet-
ric opening of hairpin loops that form at gene ends during the
rearrangement process (81). In the absence of exonuclease activ-
ity, the opening of the hairpins can add short, self-complementary
single stranded extensions into the junctions. P nucleotide addi-
tion was first recognized as a process that can contribute to TCR
CDR3 (82, 83), however the contributions of P nucleotides to
the BCR repertoire have been more precisely quantified (84, 85).
Similarly, it is recognized that N nucleotides make a major con-
tribution to the diversity of both the TCR and BCR repertoire
(86), but only BCR N-REGIONS have been subjected to detailed
analysis (37). Where BCR studies have investigated the kinds of
amino acids that are likely within N-REGIONS, studies of TCR
N-REGIONS have focused upon analysis of the overall contribu-
tion of N-REGIONS to αβ TCR diversity. This has been studied in
a comparison of wild-type mice with mice carrying homozygous
null alleles for TdT (86). N-addition was estimated to contribute
to 90% of the diversity of the αβ TCR repertoire (86). Diversity
could be estimated in this and other studies because of the devel-
opment of “spectratyping” techniques, which is the analysis of the
CDR3 length distribution in PCR amplicons. It permitted some
of the first explorations of the T cell repertoire, however it only
allowed detailed analysis of N-REGIONS if further sequencing
was undertaken. Until the advent of high-throughput sequencing,
such analysis was usually compromised by the restricted number
of sequences that could be generated from any individual, and by
the challenges associated with D gene identification.

Non-template encoded N-additions are intrinsically biased
owing to the preference of TdT toward the incorporation of G
nucleotides. This is manifested in G/C-rich additions when view-
ing the N-REGIONS of the coding strand, as additions may be
made to both the coding and non-coding strands during recom-
bination. This has been demonstrated through analysis of extra-
chromosomal substrates transfected into human cell lines (36),
as well as by analysis of human BCR (37) and TCR (87) VDJ
rearrangements. The G/C bias is coupled with an apparent inter-
dependence of the additions, which leads to the formation of
homopolymer tracts (36, 37, 87). Together these biases ensure that
the germline gene-encoded regions of the CDR3 are frequently
flanked by amino acids such as glycine, that are encoded by G-
rich codons (88). It has been proposed that the inclusion of small
amino acids such as glycine, which has only a single side chain,
promotes flexibility of the CDR3 loop (88).

Exonuclease trimming is perhaps the least understood process
that contributes to the BCR and TCR repertoires. The mechanisms
responsible for the loss of nucleotides from the coding ends of
the genes during rearrangement remains to be determined, but

a number of features of the process have been described, and
intrinsic biases have been identified. The extent of processing from
each gene end involved in a join (VD or DJ) is independent (87).
That is, we do not see more processing on one side of the join to
compensate for reduced processing of the gene on the other side.
The processing differs for V, D, and J genes and for gene families.
Removals may therefore be impacted by the sequence of the gene
ends. Sequences with high A/T content appear more susceptible
to nucleotide loss, while sequences with high G/C content appear
resistant to processing (36, 84, 89, 90). This bias is still seen after
controlling for the G/C bias of N-REGIONS.

The gene sequence ends that remain after exonuclease process-
ing provide a final bias that shapes the repertoire. The gene ends
are constrained by the genetic code, to favor the formation of
codons for a surprisingly limited number of amino acids. This is
best illustrated in the case of the many IGHD genes that have the
nucleotide sequence TAC at their 3′ end (see Figure 3). In the dom-
inant reading frame, these nucleotides encode tyrosine. Removal
of a single nucleotide creates a situation where only provision of
a T or C (from N-addition or from the 5′ end of the IGHJ gene)
will result in a functional sequence, for TAA and TAG are stop
codons. Addition of C returns the sequence to its original state,
while addition of T results in an alternative tyrosine codon. In this
and other cases, the nucleotide sequences of the gene ends limit
the diversity that results from exonuclease removals.

B CELL LINEAGES AND T CELL CLONOTYPES IN THE
ANTIGEN-SPECIFIC RESPONSE
Biases that we have described in immunoglobulin V, D, and J gene
usage mean that at least seven orders of magnitude separate the
probabilities that the most likely and the least likely combinations
of recombining genes will be generated in the bone marrow. Many
additional orders of magnitude separate the most likely from the

FIGURE 3 | Germline gene segment sequences constrain junctional
diversity. This is illustrated by processing of the codon TAC, which encodes
tyrosine as the most 3′ amino acid in the preferred reading frame of many
IGHD genes. A highly probable outcome of the VDJ rearrangement process
is the loss of a single nucleotide from the IGHD coding end. If this occurs,
the productive repertoire for these Ds is strongly skewed toward tyrosine,
as two of the four possible nucleotide replacement events generate stop
codons, and the other two ensure the maintenance of tyrosine. These
nucleotides may be sourced from either N-addition or from the 5′ end of an
IGHJ segment. The outcome of N-addition is depicted in the bottom panel.
N-additions are colored in orange and below each of the four possible
outcomes is shown the likelihood of the enzyme TdT adding each
nucleotide base.
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least likely heavy and light chain pairs. The least likely BCRs are
so unlikely to be generated in the bone marrow that they almost
certainly will never be seen in an individual’s lifetime. The most
likely BCRs, on the other hand, may be so readily generated that
they are always present within the repertoire at high copy number.
These high copy-number sequences are likely to utilize a relative
handful of the available germline genes, and to have been subject to
minimal processing. TdT adds, on average, around 6 nucleotides
between joining genes, and 30 or more nucleotides may occasion-
ally be added to the VD, DJ, and VJ junctions, but it is highly
likely that no more than two nucleotides will be added. Even long
heavy chain CDR3 are likely to be the result of long germline
sequences rather than the result of long N-REGIONS (47). Six or
more nucleotides may be removed from the 3′ end of the IGHV
gene, but most sequences lose no more than two or three IGHV
nucleotides, and many sequences lose no nucleotides at all.

Without the added diversity that comes from D genes, the kappa
and lambda repertoires are strongly shaped by biased gene usage
and minimal processing and the diversity of the repertoires is sur-
prisingly limited. The light chain repertoires are dominated by
a very small number of amino acid sequences, and this domi-
nance is so extreme that even in the days of Sanger sequencing,
identical light chain gene rearrangements were reported by sepa-
rate studies from independent laboratories (20). The theoretical
diversity of the kappa repertoire has been estimated to be as high
as 4× 1024 unique nucleotide sequences (91). However analysis
of kappa sequences generated from single individuals by high-
throughput sequencing suggest the repertoire may include less
than 104 unique amino acid sequences (55), and some of these
sequences may be seen in over 1% of all kappa-bearing BCR (55).
The diversity of the expressed lambda repertoire has recently been
shown to be similarly restricted (63).

Although the heavy chain repertoire has much greater diver-
sity then the light chain repertoire, repertoire shaping may be
sufficiently extreme that some heavy chain sequences, and even
some BCR will be present at high copy number in the reper-
toire of every individual. We are not aware of identical heavy
chain sequences being amplified from multiple individuals, but
highly similar “stereotypical” sequences have been found amongst
leukemic clones of individuals with chronic lymphocytic leukemia
(92). These stereotypical sequences differ through the stochas-
tic processes of somatic hypermutation, but they appear to have
evolved from cells expressing highly similar BCR within the naïve
B cell repertoires of different individuals. Antigen selection, which
may be associated with the pathogenesis of this condition (93),
could be selecting and therefore revealing high copy-number heavy
chain sequences.

The antigen specificity of most heavy and light chain sequences
remain unclear, for it is only very recently that antigen-specific
human B cells have been isolated and their BCRs investigated.
The isolation of antigen-specific plasmablasts from the peripheral
blood shortly after vaccination was first used to produce mon-
oclonal human antibodies (94). These cells express BCR genes
that are at once similar, as a consequence of their shared ori-
gins, yet highly divergent, as a result of the process of somatic
point mutation. Together they make up a B cell clone lineage.
High-throughput sequencing has since been used to identify clone

lineages after booster shots with the influenza vaccine (95) and
the pneumococcal vaccine (96). B cell lineages producing broadly
neutralizing antibodies to HIV have also been identified using
high-throughput sequencing (97). However this handful of stud-
ies of antigen-specific B cells in humans has not identified lin-
eages that are shared between individuals. Highly similar BCR
heavy chain sequences have recently been identified using high-
throughput sequencing of PBMC from multiple individuals with
acute symptomatic dengue (98). Although the specificities of these
sequences were not determined, such lineages were not identified
in uninfected individuals. These may therefore be the first antigen-
specific heavy chain “public lineages” to be identified. The extent
to which the response to specific antigen more generally involves
such “public lineages” remains to be determined.

In contrast to the paucity of studies of antigen-specific B cells,
antigen-specific TCRs have been investigated in the human reper-
toire for over 20 years. Early studies revealed that the immune
response to specific antigen, in HLA-matched individuals, can
include sets of T cells sharing identical or highly similar TCR α- and
β-chains (99–101). The development of techniques for the creation
of MHC peptide tetramer complexes has facilitated the identifi-
cation of antigen-specific T cells by flow cytometry (102). This
has allowed the detailed investigation of dominant sequence sets
and these studies gave rise to the notions of public and private T
cell “clonotypes.” Public clonotypes are defined as VDJ amino acid
sequences that are dominant and identical, or nearly identical, in
multiple individuals. Private clonotypes, in contrast, are idiosyn-
cratic. The apparently antigen-driven emergence of public B cell
lineages in chronic lymphocytic B cell leukemia also has parallels
amongst T cell leukemias. Studies of T cell large granular lympho-
cyte leukemias have identified a public clonotype in individuals
with the shared DRB1∗0701 HLA type (103). This same clono-
type was independently identified in DRB1∗0701+ individuals
who were infected with human cytomegalovirus (104), suggesting
that antigen-driven pathogenesis may be expanding and revealing
this public clonotype.

To understand the reasons for the emergence of particu-
lar clonotypes, the naïve repertoire must be better understood.
Enrichment techniques have recently been developed which
when combined with MHC peptide tetramer technology allows
extremely rare peptide-specific naïve murine T cells to be iden-
tified (105). Using this approach in humans, naïve CD8+ T cells
specific for peptide-MHC have been shown to range from 0.6 to
500 cells per million cells (106, 107) and CD4+ T cells to range
from 0.2 to 10 per million cells (107). Most of the cells within
identified sets of antigen-specific murine T cells express unique
TCRs (105), but clonal diversity within identified human cell pop-
ulations remains unclear. It is likely though that in the much larger
human T cell compartment, many circulating T cells could carry
identical TCRs. This should ensure that early adaptive responses
to these antigens are robust, for the strength of the response to
antigen has been shown to reflect the size of the antigen-specific
naïve T cell population (105).

The presence of particular public TCR clonotypes have not yet
been reported within the naïve human TCR repertoire. Discussion
of the emergence of such TCR clonotypes in an antigen-specific
response has therefore been driven principally by analyses of
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their nucleotide and amino acid features, and the phenomenon
of convergent recombination has been invoked to explain public
clonotypes (108, 109). Many public TCR clonotypes are diver-
gent at the nucleotide level, but identical at the amino acid level.
This results from the fact that particular amino acid sequences can
arise from multiple, variant nucleotide sequences, and that these
nucleotide sequences in turn can sometimes be formed by dif-
ferent genes with varying levels of gene processing and nucleotide
addition. Such convergent recombination will certainly contribute
to the presence of multiple copies of particular amino acid clono-
types within an individual’s repertoire, but arguably, it is unlikely
to increase the likelihood of one clonotype over another by more
than one or two orders of magnitude.

More recently the role of biases in gene usage and in the recom-
bination process have been identified as an alternative source of
public clonotypes (110). The biases in the usage of TCR V, D, and J
genes are less pronounced than is the case for the BCR genes. This
is the result of the lack of substantial germline diversity within the
sets of TRBD and TRDD genes, and because the TRBJ and TRDJ
genes lack the strong usage biases that are seen amongst the IGHJ
genes. Nevertheless biases in the usage of TCR genes are still likely
to ensure that the probabilities of the generation of the least likely
and the most likely V(D)J combination seen in αβ and γδ TCR dif-
fer by many orders of magnitude. It has also been pointed out that

many public clonotypes have short CDR3 loops that are mainly
encoded by germline-derived nucleotides rather then TdT-derived
nucleotides (110). The contribution this may make to the forma-
tion of T cell clonotypes is harder to judge, because of the lack
of detailed analysis of these processes, in the context of the TCR
repertoire. However lessons from analysis of the BCR repertoire
give strong credence to this hypothesis.

Both the BCR and the TCR repertoires have been the sub-
ject of considerable study and even greater speculation over many
decades. High-throughput sequencing is now revealing their sep-
arate secrets at a gratifying rate. Our understanding of the shaping
of the BCR and TCR repertoires will now surely move faster if a
greater dialog commences between researchers on the two sides
of the lymphocyte divide. BCR repertoire studies will be trans-
formed when greater attention is paid to antigen-specific lineages.
TCR repertoire studies, in turn, could benefit from the lessons of
the BCR repertoire, which suggest that the analysis of full-length
V(D)J rearrangements, and detailed analysis of the nucleotide
elements within the CDR3, can help explain the shaping of the
repertoire.
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Analyses of somatic hypermutation (SHM) patterns in B cell immunoglobulin (Ig) sequences
contribute to our basic understanding of adaptive immunity, and have broad applications
not only for understanding the immune response to pathogens, but also to determining
the role of SHM in autoimmunity and B cell cancers. Although stochastic, SHM displays
intrinsic biases that can confound statistical analysis, especially when combined with the
particular codon usage and base composition in Ig sequences. Analysis of B cell clonal
expansion, diversification, and selection processes thus critically depends on an accurate
background model for SHM micro-sequence targeting (i.e., hot/cold-spots) and nucleotide
substitution. Existing models are based on small numbers of sequences/mutations, in part
because they depend on data from non-coding regions or non-functional sequences to
remove the confounding influences of selection. Here, we combine high-throughput Ig
sequencing with new computational analysis methods to produce improved models of
SHM targeting and substitution that are based only on synonymous mutations, and are
thus independent of selection.The resulting “S5F” models are based on 806,860 Synony-
mous mutations in 5-mer motifs from 1,145,182 Functional sequences and account for
dependencies on the adjacent four nucleotides (two bases upstream and downstream of
the mutation). The estimated profiles can explain almost half of the variance in observed
mutation patterns, and clearly show that both mutation targeting and substitution are sig-
nificantly influenced by neighboring bases. While mutability and substitution profiles were
highly conserved across individuals, the variability across motifs was found to be much
larger than previously estimated. The model and method source code are made available
at http://clip.med.yale.edu/SHM

Keywords: immunoglobulin, B cell, somatic hypermutation, mutability, substitution, targeting, AID, affinity
maturation

1. INTRODUCTION
During the course of an immune response, B cells that initially
bind antigen with low affinity through their immunoglobulin
(Ig) receptor are modified through cycles of proliferation, somatic
hypermutation (SHM), and affinity-dependent selection to pro-
duce high-affinity memory and plasma cells. Current models of
SHM recognize activation-induced deaminase (AID), along with
several DNA repair pathways, as critical to the mutation process
(1). AID initiates SHM by converting cytosines (Cs) to uracils
(Us), thus creating U:G mismatches in the Ig V(D)J sequence.
If not repaired before cell replication, these mismatches produce

C→T (thymine) transition mutations (2). The AID-induced mis-
matches can alternatively be recognized by UNG or MSH2/MSH6
to initiate base excision or mismatch repair pathways, respectively.
These pathways operate in an error-prone manner to introduce the
full spectrum of mutations at the initial lesion, as well as spread-
ing mutations to the surrounding bases. Overall, SHM introduces
point mutations into the Ig locus at a rate of ∼10−3 per base-pair
per division (3, 4). While the process of SHM appears to be sto-
chastic, there are clear intrinsic biases, both in the bases that are
targeted (5, 6) as well as the substitutions that are introduced (7, 8).
Accurate background models for SHM micro-sequence targeting
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(i.e., hot/cold-spots) and nucleotide substitution would greatly
aid the analysis of B cell clonal expansion, diversification, and
selection processes. In addition, targeting and substitution models
could provide important insights into the relative contributions of
the various error-prone DNA repair pathways that mediate SHM.

Computational models and analyses of SHM have separated
the process into two independent components (7–11): (1) a tar-
geting model that defines where mutations occur (by specifying the
relative rates at which positions in the Ig sequence are mutated),
and (2) a nucleotide substitution model that defines the resulting
mutation (by specifying the probability of each base mutating to
each of the other three possibilities). In experimentally derived
Ig sequences, observed mutation patterns are influenced by selec-
tion. The affinity maturation process selects for affinity-increasing
mutations, while many mutations at structurally important posi-
tions in the framework regions are selected against (12). To avoid
the confounding influences of selection, most existing models
are built using mutation data from intronic regions flanking the
V gene (13) and non-productively rearranged Ig genes (6–10,
14). These works have identified several specific motifs as being
“hot” or “cold” spots of SHM. Hot-spots include WRCY/RGYW
and WA/TW (where W= {A, T}, Y= {C, T} R= {G, A}, and the
mutated position is underlined, see for example (5, 6)). Although
it has been argued that WRCH/DGYW (where H = {A, C, T} and
D= {A, G, T}) is a better predictor of mutability at C:G bases
(15). A single cold-spot motif has also been recognized: SYC/GRS
(where S= {C, G}) (16). Despite the wide recognition of these
specific hot-spot and cold-spot motifs, it is clear that a hierarchy
of mutabilities exists that is highly dependent on the surround-
ing bases (7, 10). More recently, it has been recognized that the
profile of nucleotide substitutions may also be dependent on the
surrounding bases (8, 17). Modeling SHM targeting and substitu-
tion is important for the analysis of mutation patterns since these
intrinsic biases can give the appearance of selection due to the par-
ticular codon usage and base composition in Ig sequences (17, 18).
Moreover, having such a model could shed light on the molecular
mechanisms underlying SHM, which are not fully understood.

Previous work has attempted to model the dependencies on
surrounding bases, but has been limited to (at most) the targeted
base and three surrounding bases (19), mainly due to the rela-
tively small data sets available. The use of intronic regions has
also limited the number of motifs that can be modeled (because
of the limited diversity of these regions), and non-productively
rearranged Ig genes may still be influenced by selection (e.g., if
the event rendering the sequence non-productive happened in the
course of affinity maturation). In this study, we take advantage of
the wealth of data available from high-throughput Ig sequencing
technologies to build improved targeting and substitution mod-
els for SHM. To avoid the biasing effects of selection, we have
developed a new methodology for constructing models from syn-
onymous mutations only, thus avoiding the need to limit analysis
to non-productive Ig sequences. The increased data set size allows
modeling of dependencies on the surrounding four bases (two
bases upstream and downstream of the mutation). These “S5F”
(Synonymous, 5-mer, Functional) models confirm the existence of
proposed hot- and cold-spots of SHM, but also show much more
extreme difference between hot- and cold-spots compared with

previous models. We also find that the nucleotide substitution pro-
files at all bases are dependent on the surrounding nucleotides. The
S5F targeting and substitution models can be employed as back-
ground distributions for mutation analysis, such as the detection
and quantification of affinity-dependent selection in Ig sequences
(11, 20). These models improve dramatically the ability to analyze
mutation patterns in Ig sequences, and provide insights into the
SHM process.

2. RESULTS
To develop models for SHM targeting and substitution pref-
erences, we curated a large database of mutations from high-
throughput sequencing studies (Table 1). These data were derived
from 7 human blood and lymph node samples, and Ig sequencing
was carried out using both Roche 454 and Illumina MiSeq next-
generation sequencing technologies. In total, the data contained
42,122,509 raw reads, which were processed (see Materials and
Methods) to arrive at 1,145,182“high-fidelity”Ig sequences, which
were each supported by a minimum of two independent reads in
a sample. These high-fidelity sequences were clustered to identify
clones (sequences related by a common ancestor) and one effective
sequence was constructed per clone so that each observed muta-
tion corresponded to an independent event. Overall, this process
produced a set of 806,860 synonymous mutations that were used
to model somatic hypermutation targeting and substitution.

2.1. THE NUCLEOTIDE SUBSTITUTION SPECTRUM IS AFFECTED BY
ADJACENT NUCLEOTIDES

A nucleotide substitution model specifies the probability of each
base (A, T, G, or C) mutating to each of the other three possi-
bilities. For example, when a C is mutated, we might find that
50% of the time it is replaced by T, while 30% of the substitutions
are to G, and the remaining 20% lead to A. These probabilities
may depend on the surrounding bases (i.e., the micro-sequence
context), as was previously suggested for mutations at A (17) and
more generally (8). To derive a nucleotide substitution model, the
set of mutations was filtered to include only those that occurred
in positions where none of the possible base substitutions lead to
amino acid exchanges. Focusing on positions where only synony-
mous mutations were possible removes the confounding influence
of selection. The resulting 408,422 mutations were analyzed and
grouped into “5-mers” according to the germline sequence of the
mutated position and surrounding bases (two base-pairs upstream
and two base-pairs downstream of the mutated position). For each
of the 1024 possible 5-mers (M), a substitution model was derived
by calculating SM

B , the probability that the central base in the 5-mer
motif (M) mutates to base B. For example, in the 5-mer CCATC
mutations at A are always synonymous whenever this motif starts
a reading frame, in which case it codes for a Proline (CCA) fol-
lowed by a Serine (TCN). In this case, the number of observed
mutations that led to each of the other three possible nucleotides
(C, G, or T) was recorded: N CCATC

C , N CCATC
G , N CCATC

T . The maxi-
mum likelihood value for the probability that A is substituted by
base B is then calculated as:

SCCATC
B =

N CCATC
B

N CCATC
C + N CCATC

G + N CCATC
T
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Table 1 | Next-generation sequencing data sets used to construct the “S5F” targeting and substitution models.

Study Sample Subject Tissue Tech. Raw reads Processed reads Clones # Mutations (substitution) # Mutations (targeting)

1 3931LN 1 LN MiSeq 3,641,633 79,777 16,272 25,307 53,840

1 4014LN 2 LN MiSeq 3,714,152 106,006 32,972 57,215 106,265

1 4106LN 3 LN MiSeq 10,917,517 231,387 54,400 108,591 208,338

1 3928LN 4 LN MiSeq 7,691,509 99,519 76,375 68,051 132,795

2 PGP1-1 5 PBMC MiSeq 3,851,658 55,606 50,514 23,939 48,558

2 PGP1-2 5 PBMC MiSeq 3,946,514 59,611 54,374 24,971 50,117

2 PGP1-3 5 PBMC MiSeq 4,543,353 48,971 45,788 20,865 42,737

2 PGP1-4 5 PBMC MiSeq 3,121,884 52,844 49,054 23,243 47,049

3 hu420143 6 PBMC 454 178,584 92,055 14,956 23,260 48,838

3 420IV 7 PBMC 454 398,517 248,363 39,047 24,771 50,899

3 PGP1-5 5 PBMC 454 117,188 71,043 12,275 8,209 17,424

Total – – – – 42,122,509 1,145,182 446,027 408,422 806,860

Tissue types are lymph node (LN) or peripheral blood mononuclear cell (PBMC). The different filters applied to arrive at the number of (synonymous) mutations used

for the targeting and substitution models are described in the text. All three studies relate to manuscripts in preparation.

A bootstrapping procedure was used to estimate 95% confidence
intervals (21).

Comparison of the substitution profiles for different 5-mer
motifs with the same central base clearly showed the significant
influence of surrounding bases. As an example, Figure 1A shows
how the profile of substitutions at G changes for several different
5-mers (ACGAT, GCGAG, GTGTA, and GGGAA). Such depen-
dencies were identified for every base (A, T, G, and C) (Figure 1B
and Figure S1 in Supplementary Material). The importance of
including two bases upstream and downstream was confirmed by
comparing these profiles with analogous profiles that only account
for the immediately adjacent bases (3-mer motifs) (Figure 1A).
For the 3-mer CGA, G→C and G→A substitutions were equally
likely (45% and 43% of substitutions, respectively), while G→C
substitutions were significantly more likely than G→A in the
context of the GCGAG motif (51% and 35% of substitutions,
respectively). If one ignores neighboring nucleotides, the substi-
tution profiles were qualitatively similar to previous estimates (7),
although significant quantitative differences were apparent (pre-
sumably due to the much larger size of the dataset compiled here).
Thus,nucleotide substitution profiles at every base are significantly
affected by adjacent nucleotides, including at least two bases on
either side of the mutating base.

2.1.1. The complete substitution model for somatic hypermutation
is not strand-symmetric

It is not possible to estimate substitution profiles for all 5-mer
motifs using the above methodology because: (1) not all 5-mers
appear within the set of Ig sequences, and (2) some 5-mers (such
as NANNN) can never appear in a context where all substitutions
at the central (underlined) base are synonymous. Among the 11
datasets used here, these issues prevent estimation of the substi-
tution profiles for 717 of the 1024 5-mers. For the profiles that
could be directly estimated, there was a high correlation (on aver-
age Pearson R= 0.63) between different individuals (Figures S2
and S3 in Supplementary Material), and so all the samples were
combined to estimate a single substitution model. To infer values
for the missing motifs, four methods were evaluated. In the first

method (“inner 3-mer”), the substitution profile for each missing
5-mer was inferred by averaging over profiles for all 5-mers with
the same 3-mer core (i.e., for which the middle three bases were
shared). In the second and third methods, missing values were
replaced by averaging over motifs sharing the two bases upstream
and downstream of the mutated base, respectively. In the fourth
method (“hot-spot”), the missing substitution profile was inferred
by averaging over 5-mers sharing the two upstream bases when
the mutated position was “C” or “A,” and two downstream bases
when the mutated position was “G” or “T.” This final option was
motivated by the dependencies of known “hot” and “cold” spots
for SHM targeting (5, 6). To choose between these four methods,
we compared their performance on 5-mers that could be directly
estimated from the data. Specifically, we calculated the correla-
tion between the inferred and directly estimated ratios for the
parameter R, which was defined as the ratio between the highest
substitution probability with the next highest one for a given 5-mer
(Table 2). Pearson and Spearman coefficients were both used in
order to be robust to the linear dependency assumption, and they
yielded comparable results. While the “hot-spot” method clearly
had the worst performance, the other three methods resulted in
very similar models. The “inner 3-mer” method produced the
highest Pearson correlation (0.4, see Table 2) and was chosen as the
basis to infer missing values. We refer to the resulting substitution
model as a “S5F” model since it is based on Synonymous muta-
tions at 5-mers in Functional Ig sequences. In contrast to previous
studies (8), there was no significant correlation between substi-
tution values of 5-mers and their reverse complements (Pearson
correlation of 0.005, Spearman correlation of 0.087), suggesting
that at least one component of the substitution mechanism is not
strand-symmetric.

2.2. THE HIERARCHY OF MOTIF MUTABILITIES IS CONSERVED
ACROSS INDIVIDUALS

The mutability of a motif is defined here as the (non-normalized)
probability of the central base in the motif being targeted for SHM
relative to all other motifs. Similar to the substitution model,
the targeting model was based on 5-mer motifs, including the
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FIGURE 1 |The substitution profile is significantly influenced by
surrounding bases. Substitution profiles for various micro-sequence contexts
are shown for substitutions at (A) guanine and (B) adenosine, cytidine, and
thymidine. G: literature indicates values estimated by Smith et al. (7), while
S1F and RS1F refer to models estimated using the methods proposed here
using all (replacement and silent) or only silent mutations, respectively, and

averaging over surrounding bases. 3-mer motifs were estimated using silent
mutations and dependencies on the immediately adjacent bases (S3F), while
5-mer motifs refer to the complete S5F model. Horizontal lines in (A) indicate
the substitution values for the S1F model following the color scheme shown
in the legend. Motifs that fall into one of the standard hot or cold-spots
categories are indicated by the motif above the column.

Table 2 | Correlation coefficients for inferring missing

mutability/substitution values.

Model Correlation Middle Upstream Downstream Hot

spots

Substitution Pearson 0.40 0.37 0.15 0.04

Spearman 0.20 0.24 0.23 0.09

Mutability Pearson 0.58 0.57 0.61 0.73

Spearman 0.61 0.58 0.64 0.79

two nucleotides immediately upstream and downstream of the
mutated base. The use of a 5-mer model is motivated by the
well-known WRCY hot-spot (where the underlined C is targeted
for mutation), and its reverse-complement (RGYW) which, when
taken together, create dependencies with the two bases on either
side of the mutating base.

When estimating the mutability (µ) for a motif (M), it is critical
to account for the background frequency of M. To see why this is
the case, consider the extreme example of a sequence composed of
all C nucleotides. Since all mutations will occur at CCCCC motifs,
one might consider this motif a hot-spot, except that its back-
ground frequency is 100% so it is actually targeted at the expected
frequency. When calculating mutabilities it is also important to
avoid statistical artifacts due to heterogeneity (e.g., the Simpson
paradox (22)). Thus, Ig sequences were first analyzed individually
since each has a different background 5-mer distribution. These
individual-sequence targeting models were then combined into a

single aggregated targeting model for each data set. Estimating the
relative mutabilities of 5-mer motifs for an individual Ig sequence
involves two steps: (1) Calculating the background frequency of the
different 5-mers based on the germline (unmutated) version of the
sequence, and (2) creating a table of the 5-mers that were mutated
in the sequence. To avoid the confounding influence of selection,
only mutations that were synonymous (i.e., that do not produce
an amino acid exchange in the germline context) were included
in the analysis. Note that these criteria are slightly different from
those used in the substitution model. In the substitution model,
mutations were used only where all possible mutations at that
position had to be synonymous, while all synonymous mutations
were considered for mutabilities (see Table 1).

For each of the 1024 possible 5-mers motifs (M) in each
Ig sequence, the background frequency (BM) was calculated as
follows:

BM =
∑

i

∑
b

SM
b I−→

GL
(i, M, b) (1)

where i is summed over all (non-N) positions in the Ig sequence,
M is the 5-mer nucleotide sequence centered at position i and b
includes all possible nucleotides ({A, C, T, G}). In this equation
GL is a vector containing the nucleic content of each position in
the germline sequence, SM

b is the relative rate at which the center
nucleotide in M (GL[i]) mutates to b (as estimated in the previ-
ous section, and where SM

GL[i] = 0) and I−→
GL

(i, M, b) is an indicator
function that is 1 in cases where the 5-mer surrounding GL[i]
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is M and a mutation in position i from GL[i] to b results in a
synonymous mutation (and 0 otherwise). A similar array was also
calculated for the mutated positions:

CM =
∑

i

I−→
GL,
−→
OS
(i, M) (2)

where i is summed over all (non-N) positions in the observed Ig
sequence (OS), and the indicator function I−→

GL,
−→
OS

(i, M) is 1 in

cases where the 5-mer surrounding GL[i] is M and a mutation in
position i from GL[i] to OS[i] is synonymous and 0 otherwise.
After calculating the arrays EC and EB, a mutability score, µ, was
defined for each motif M in the vector (for sequence j) as:

µ
j
M = C

j
M/B

j
M (3)

which was then normalized to one:

µ̄
j
M = µ

j
M/

∑
m

µ
j
m (4)

where m is an index spanning all positions in Eµj . Note that µ
j
M

is not defined wherever B
j
M = 0 (i.e., the motif M does not

appear in the Ig sequence, or can not admit any synonymous
mutations). Finally, a single mutability score is generated for each
5-mer motif (M) as the weighted average of the mutabilities scores

for each sequence j (µ̄
j
M), where weights correspond to the num-

ber of synonymous mutations in the sequence (
∑

M C
j
M). This

process resulted in an array of (relative) mutabilities,µM for each
of the 5-mers observed in the dataset. The resulting vector was
renormalized so that the mean mutability was one.

2.2.1. Inference of missing values to complete targeting model
It was not possible to estimate mutabilities for 468 of the 1024
possible 5-mer motifs because not all 5-mers appeared within
the set of Ig sequences. The same four methods tested for infer-
ring missing values in the substitution model were also tested to
infer these mutabilities (see 2.1.1 and Table 2). The “inner 3-mer”
method produced a Pearson correlation of 0.58 (0.61 for Spear-
man), while the “hot-spot” method had a correlation of 0.73 (0.79
for Spearman). Thus, in contrast to the nucleotide substitution
model, mutabilities were best predicted by averaging over 5-mers
which shared the two upstream bases when the mutated position
was “C” or “A,” and two downstream bases when the mutated
position was “G” or “T.” This result is consistent with the expected
influence of the classic SHM hot-spot (WRCY/RGYW).

2.2.2. Targeting is conserved across individuals
To test whether the micro-sequence specificity of SHM was
conserved across individuals, separate targeting models were con-
structed for each of the 11 samples in our study (Table 1). Com-
parison of the motif mutabilities between pairs of samples showed
that the models were highly consistent, with Pearson correlation
∼0.9 (Figure 2 and Figure S4 in Supplementary Material). Thus,
we combined the data from all of the samples and generated a
single targeting model, with confidence intervals based on the

middle 50% quantiles of the mutability across samples. As with
the substitution model, we refer to this targeting model as a “S5F”
model. In order to visualize this model, we created “hedgehog”
plots to display the directly estimated mutability values and the
complete S5F model (Figures 3A,B, respectively).

2.2.3. The true “hotness” of SHM hot-spots
Visual inspection of the “hedgehog” plots (Figure 3B) shows
clearly that the S5F model is consistent with known micro-
sequence preferences for SHM (5, 6). WRC/GYW and WA/TW
hot-spot motifs are generally more mutable, while SYC/GRS cold-
spot motifs generally show the lowest mutability. However, the
mutability of “hot-spot” motifs was observed to be highly vari-
able. There is a 62.7-fold difference between the most mutable
(GGGCA, mutability= 9.56) and least mutable (TGCGA, muta-
bility= 0.15) WRC/GYW hot-spot motif. Indeed, ∼10% of so-
called “hot-spots” had mutabilities that were lower than the mean
mutability for“neutral”motifs (Figure 4A). This high variance was
especially obvious when looking at the subset of WRCA/TGYW
hot-spot motifs, and may help explain why WRCH/DGYW has
been proposed to be a better predictor of mutation at C:G com-
pared with WRCY/RGYW (15). The mutabilities estimated by
the S5F approach paint a qualitatively different picture of SHM
when compared with those estimated by the existing tri-nucleotide
model of Shapiro et al. (10). In the S5F model, the average
mutability of motifs that correspond to the WRC/GYW SHM hot-
spot was 3.2-fold higher than neutral motifs, and 9.6-fold higher
than the mutability of motifs corresponding to the cold-spot
SYC/GRS (Figure 4A). Using the tri-nucleotide model, hot-spots
were only 1.3-fold and 1.6-fold more mutable than neutral and
cold-spots, respectively (Figure 4B). In addition, in direct oppo-
sition to the S5F model, the tri-nucleotide method predicted that
A/T hot-spots (WA/TW) were more mutable than C/G hot-spots
(WRC/GYW). The mutabilities estimated by the S5F model bet-
ter predicted the positional-distribution of in vivo mutations. The
Pearson correlation between the expected mutability and observed
mutation frequency calculated over IMGT-numbered positions in
12,000 sequences derived from a variety of germline segments was
0.67 and 0.47 for the S5F and tri-nucleotide models, respectively
(Figure 5 and Figure S5 in Supplementary Material). In both meth-
ods, deviations from the expected frequencies that likely reflect
both positive and negative selection were observed (Figure 5).
The observation of position-specific signals suggests that there is
something generic about the Ig structure at these positions, and
may help refine traditional definitions of the complementarity
determining regions (CDR) and framework regions (FWR) (see
also (23)). Consistent with previous studies (24), the S5F model
displayed significant strand-bias at A/T hot-spots, but not C/G
hot-spots (Figure 6). Overall, the S5F targeting model provides a
new view of SHM with hot-spots being significantly more targeted
(and significantly more variable) than previously thought.

3. MATERIALS AND METHODS
3.1. HIGH-THROUGHPUT IG SEQUENCING DATA SETS
A total of 11 human Ig repertoires were sequenced from blood
and lymph node samples from 7 different individuals. Next-
generation sequencing was carried out using Illumina MiSeq 250
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FIGURE 2 |The S5F targeting model is consistent across individuals.
Targeting models were constructed independently for each of the samples
listed inTable 1. Estimated values for all 5-mer motifs derived using lymph
node samples from three individuals (3931LN, 4014LN, and 4106LN) are
shown along the diagonal. Mutability values are ranked (from lowest to

highest) and color coded by their category (WRC/GYW are red, SYC/GRS are
blue, WA/TW are green, and the rest are gray). Symbols indicate the mutated
nucleotide (in the center of the 5-mer). Correlations between the mutabilities
for all 5-mer motifs across individuals are shown in the upper (log-log scale)
and lower (linear scale) triangles.

base-pair paired-end reads (8 samples) and Roche/454 GS FLX
(3 samples). Details are provided in Table 1. These samples were
originally collected and sequenced as part of three ongoing studies
(manuscripts in preparation).

3.1.1. Illumina MiSeq data
Human lymph node specimens were collected under an exempt
protocol approved by the Human Research Protection Program at

Yale School of Medicine. Tissues were processed and RNA isolated
as previously described (25). Blood samples were collected under
the approval of the Personal Genome Project (26). Total RNA
was immediately extracted from each blood sample and stored
at −80°C until use. To carry out sequencing, mRNA was reverse
transcribed into cDNA using gene-specific primers mapping to
the constant region of the Ig heavy chain. Resultant cDNA was
tagged with 17 nucleotide single-molecule barcodes and amplified

Frontiers in Immunology | B Cell Biology November 2013 | Volume 4 | Article 358 | 60
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FIGURE 3 | “Hedgehog” plots for the S5F targeting model for somatic
hypermutation targeting A,T, C, and G nucleotides (individual circles).
(A) 5-mer mutabilities estimated directly from the Ig sequencing data. (B) The
complete S5F targeting model after inferring values for missing 5-mer motifs.
Bars radiating from each circle depict the mutability as a function of
surrounding bases. The inner-most ring in the circle corresponds to two

positions upstream (5′) of the mutated base for A and C, and two positions
downstream (3′) of the mutated base for T and G. Bar colors indicate known
hot/cold-spot motifs (WRC/GYW are red, WA/TW are green, SYC/GRS are
blue, and “neutral” are gray). Each plot corresponds to a different mutated
nucleotide. Error bars indicate confidence intervals based on the middle 50%
quantiles of the mutability value distribution across the set of samples.

by PCR in a multiplex reaction using primer sets for all possi-
ble V-regions (n= 45) and isotype/J-regions (n= 6) to generate
heavy chain transcripts. The amplified library was tagged with
barcodes for sample multiplexing, PCR enriched, and annealed
to the required Illumina clustering adapters. High-throughput
250 base-pair paired-end sequencing was performed using the
Illumina MiSeq platform. Raw reads were exported without the
sample barcodes and Illumina clustering adapters.

3.1.2. Roche/454 GS FLX data
Blood samples were collected under the approval of the Personal
Genome Project (26). Total RNA was immediately extracted from
each blood sample and stored at −80°C until use. Ig heavy chain
mRNA were reverse-transcribed using a pool of 6 primers spe-
cific to the Ig constant regions and cDNA was amplified using
16 cycles of PCR with a pool of 46 V-region-specific primers

and 6 nested constant region primers. Following ligation of 454-
compatible sequencing adapters, the expected heavy chain V gene
fragments were purified using PAGE. Each sample was uniquely
barcoded during the ligation process, allowing subsequent mix-
ing of all the samples into one common reaction sample (per-
formed independently for each replicate run). Emulsion PCR
and 454 GS FLX sequencing were performed directly at the 454
Life Sciences facility according to the manufacturer’s standard
protocols.

3.2. SEQUENCING DATA PRE-PROCESSING
Raw sequencing reads were filtered in several steps to identify
and remove low-quality sequences. Conservative thresholds were
applied in all cases to increase the reliability of the resulting
mutation calls, at the potential expense of excluding some real
mutations. Pre-processing was carried out using the Repertoire
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FIGURE 4 |The hierarchy of hot/cold-spot motifs. Mutability
values predicted by the (A) S5F model or (B) the tri-nucleotide
model of Shapiro et al. were grouped by the type of motif. Boxes
borders correspond to the first and fourth quartiles while the

horizontal bar inside the box corresponds to the median of the
distribution. Hot/cold spot motif groups are plotted using the same
colors as in Figure 3B with open boxes. WRCN/NGYW motifs are
plotted using filled boxes.

Sequencing Toolkit (pRESTO) (http://clip.med.yale.edu/pRESTO,
manuscript in preparation), and involved:

• Quality control
1. Removal of low-quality reads (mean Phred quality score
<20).

2. Removal of reads where the primer could not be identified
or had a poor alignment score (mismatch rate greater than
0.1).

3. For the MiSeq data, sets of sequences with identical molec-
ular IDs (corresponding to the same mRNA molecule) were
identified. Sets were collapsed into one consensus sequence
per set, after discarding those having a mean mismatch rate
across all positions >0.2.

4. For the MiSeq data, the two paired-end reads were assembled
into a complete Ig sequence.

5. Removal of sequences that do not appear in a single sample
at least twice.

• Assignment of germline V(D)J segments for each of the
Ig sequences: initial V(D)J assignments for each sequence
were obtained using IMGT/HighV-QUEST (27). Using these
assignments, non-mutated sequences were identified and a V
segment germline repertoire for each individual was determined
as the set of: (1) V genes that composed at least 0.1% of the

sequences, and (2) V gene alleles that composed at least 10% of
the assignments to that V gene. Ig sequences that were initially
assigned V segments not included in this germline repertoire
were then re-assigned to the closest present V segment based on
the Hamming distance.
• Removal of non-functional sequences due to the occurrence of

a stop codon or/and a reading frame shift between the V gene
and the J gene.
• Removal of sequences with more than 30 mutations and mask-

ing (replacement with Ns) of positions with Phred quality scores
<20.
• Removal of mutations in codons that had more than one muta-

tion, as it is usually not possible to infer the order in which the
mutations occurred (and thus the micro-sequence context of
the mutations is unknown).
• Identification of clonally related sequences: a two-step approach

was applied to identify sequences that were part of a B cell
clone (i.e., related through descent from a common ances-
tor). First, the sequences were divided into groups based on
equivalence of their V-gene assignment, J-gene assignment, and
the number of nucleotides in their junction. Second, clones
were defined within each of these groups as the collection of
sequences with junction regions that differed from one sequence
to any of the others by no more than three point mutations.
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FIGURE 5 | Comparison between expected and observed somatic
hypermutation targeting. (A) The predicted mutability from the S5F model
and (B) the observed mutation frequency from sample 3931LN (averaged
over all clones) for each position in the Ig sequence (IMGT-aligned along the
x -axis). The correlation across positions (points) is shown in the inset of (B).
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The threshold of three was determined after manual inspection
of the mutation patterns in resulting clones identified through
building lineage trees.

4. DISCUSSION
We have constructed new SHM targeting and substitution models
using a collection of more than 800,000 synonymous mutations
from next-generation Ig sequencing studies. The exclusive use of
synonymous mutations allowed us to include mutations from
functional Ig sequences without the biasing influence of selec-
tion. The large size of the resulting mutation data set allowed us
to model targeting and substitution dependencies on the mutat-
ing base as well as on two bases upstream and downstream of the
mutation. The resulting“S5F”models validate, and also help refine,
previously defined SHM hot and cold spots. Figure 4 shows how
the classic WRCY/RGYW hot-spot excludes some highly mutable
WRCA/TGYW motifs, implying that, as proposed by Rogozin and
Diaz (15), WRCH/DGYW could be a better predictor of muta-
tion. However, while the most mutable WRCA/TGYW motifs are
even hotter than WRCY/RGYW, others are comparable to neu-
tral motifs. This high variance demonstrates the importance of
including higher order dependencies, as we have done.

It has been suggested that nucleotide substitution profiles are
also dependent on the micro-sequence context of the mutat-
ing base (8, 17). We confirm that the substitution profiles at all
nucleotides are highly dependent on neighboring bases and these
dependencies are conserved across individuals. Interestingly, the
fact that substitution rates depend on surrounding bases may
resemble the situation in meiotic mutations as was suggested in
the past (9). The ability of the S5F models to estimate mutability
and substitution at each of the 1024 DNA 5-mer motifs will allow
for detailed, quantitative comparison of SHM with other mutation
processes.

A potential source of error in the approach taken here is the
existence of novel polymorphisms among the seven individuals
studied (Table 1). Since mutation detection depends on compar-
ison with known V and J segments that are part of the IMGT
repertoire, undetected polymorphisms will look like mutations.
However, any effect on the S5F model is expected to be small
relative to the estimated confidence intervals. Based on a new sta-
tistical tool to detect novel germline alleles from high-throughput
sequencing data (manuscript in preparation), the magnitude of
this effect was estimated to be less than ∼1% of the sequences and
less than ∼0.1% of the mutations used for the current analysis.
The S5F mutability and substitution models presented here were
developed using human heavy chain data, and thus may not be
valid for light chains or mouse sequences. Given the large amount
of sequencing data becoming available, it may be possible to extend
the proposed approach to model 7-mers instead of 5-mers. How-
ever, even with 5-mers, the values for some motifs had to be
inferred because of the limited diversity in germline repertoires.
It will be important to estimate the quality of these inferences
experimentally. Future experiments might be designed to enrich
for non-productively rearranged Ig sequences which could then be
sequenced using high-throughput technologies. Since mutations
in these sequences are (presumably) not subject to selection, they
provide a way to independently estimate substitution profiles and

mutabilities for at least some of the motifs inferred in the S5F
model. It will be important to confirm that the mutation process
operating on these non-productive sequences is equivalent to the
process at the productive alleles. This uncertainty is one reason
why only productively rearranged Ig sequences were included in
the current model.

The targeting and substitution models developed here provide
a quantitative description of SHM in the absence of selection,
and thus provide an important background for statistical analy-
sis of SHM patterns in experimental data. For example, such
models play an important role in quantifying antigen-driven
selection in Ig sequences (11, 20), and we have now made the
S5F model available as an option on our website for quantify-
ing selection (http://clip.med.yale.edu/baseline). When combined
with high-throughput sequencing, it should now be possible to
quantify selection for each position of the Ig sequence inde-
pendently and link these values back to the physical structure
of the protein. Following the approach of Brard and Guguen
(28), these models could also be incorporated into methods for
building lineage trees of B cell clones (29), thus helping to pro-
vide insight into the underlying population dynamics of adaptive
immunity. The model and method source code are made available
at http://clip.med.yale.edu/SHM.

ACKNOWLEDGMENTS
We thank the Yale High Performance Computing Center (funded
by NIH grant: RR19895) for use of their computing resources.
Funding: this work was partially supported by NIH R03AI092379.
The work of Jason A. Vander Heiden, Daniel Gadala-Maria and
Namita Gupta were supported in part by NIH Grant T15 LM07056
from the National Library of Medicine.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at http://www.frontiersin.org/journal/10.3389/fimmu.2013.00358/
abstract

REFERENCES
1. Chahwan R, Edelmann W, Scharff MD, Roa S. AIDing antibody diversity by

error-prone mismatch repair. Semin Immunol (2012) 24(4):293–300. doi:10.
1016/j.smim.2012.05.005

2. Peled JU, Kuang FL, Iglesias-Ussel MD, Roa S, Kalis SL, Goodman MF, et
al. The biochemistry of somatic hypermutation. Annu Rev Immunol (2008)
26(1):481–511. doi:10.1146/annurev.immunol.26.021607.090236

3. McKean D, Huppi K, Bell M, Staudt L, Gerhard W, Weigert M. Generation of
antibody diversity in the immune response of BALB/c mice to influenza virus
hemagglutinin. Proc Natl Acad Sci U S A (1984) 81(10):3180–4. doi:10.1073/
pnas.81.10.3180

4. Kleinstein SH, Louzoun Y, Shlomchik MJ. Estimating hypermutation rates from
clonal tree data. J Immunol (2003) 171(9):4639–49.

5. Betz AG, Rada C, Pannell R, Milstein C, Neuberger MS. Passenger transgenes
reveal intrinsic specificity of the antibody hypermutation mechanism: cluster-
ing,polarity,and specific hot spots. Proc Natl Acad Sci U S A (1993) 90(6):2385–8.
doi:10.1073/pnas.90.6.2385

6. Shapiro GS, Aviszus K, Ikle D, Wysocki LJ. Predicting regional mutability in
antibody v genes based solely on di- and trinucleotide sequence composition. J
Immunol (1999) 163(1):259–68.

7. Smith DS, Creadon G, Jena PK, Portanova JP, Kotzin BL, Wysocki LJ. Di- and
trinucleotide target preferences of somatic mutagenesis in normal and autore-
active b cells. J Immunol (1996) 156:2642–52.

8. Cowell LG, Kepler TB. The nucleotide-replacement spectrum under somatic
hypermutation exhibits microsequence dependence that is strand-symmetric

Frontiers in Immunology | B Cell Biology November 2013 | Volume 4 | Article 358 | 64

http://clip.med.yale.edu/baseline
http://clip.med.yale.edu/SHM
http://www.frontiersin.org/journal/10.3389/fimmu.2013.00358/abstract
http://www.frontiersin.org/journal/10.3389/fimmu.2013.00358/abstract
http://dx.doi.org/10.1016/j.smim.2012.05.005
http://dx.doi.org/10.1016/j.smim.2012.05.005
http://dx.doi.org/10.1146/annurev.immunol.26.021607.090236
http://dx.doi.org/10.1073/pnas.81.10.3180
http://dx.doi.org/10.1073/pnas.81.10.3180
http://dx.doi.org/10.1073/pnas.90.6.2385
http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yaari et al. Somatic hypermutation targeting and substitution models

and distinct from that under germline mutation. J Immunol (2000)
164(4):1971–6.

9. Oprea M, Cowell LG, Kepler TB. The targeting of somatic hypermutation closely
resembles that of meiotic mutation. J Immunol (2001) 166(2):892–9.

10. Shapiro GS, Ellison MC, Wysocki LJ. Sequence-specific targeting of two bases
on both DNA strands by the somatic hypermutation mechanism. Mol Immunol
(2003) 40(5):287–95. doi:10.1016/S0161-5890(03)00101-9

11. Uduman M, Yaari G, Hershberg U, Stern JA, Shlomchik MJ, Kleinstein SH.
Detecting selection in immunoglobulin sequences. Nucleic Acids Res (2011)
39(Suppl 2):W499–504. doi:10.1093/nar/gkr413

12. Shlomchik MJ, Watts P, Weigert MG, Litwin S. Clone: a Monte-Carlo computer
simulation of b cell clonal expansion, somatic mutation, and antigen-driven
selection. Curr Top Microbiol Immunol (1998) 229:173–97. doi:10.1007/978-3-
642-71984-4_13

13. MacCarthy T, Kalis SL, Roa S, Pham P, Goodman MF, Scharff MD, et al. V-region
mutation in vitro, in vivo, and in silico reveal the importance of the enzymatic
properties of AID and the sequence environment. Proc Natl Acad Sci U S A
(2009) 106(21):8629–34. doi:10.1073/pnas.0903803106

14. Spencer J, Dunn M, Dunn-Walters DK. Characteristics of sequences around
individual nucleotide substitutions in IgVH genes suggest different GC and AT
mutators. J Immunol (1999) 162(11):6596–601.

15. Rogozin IB, Diaz M. Cutting edge: DGYW/WRCH is a better predictor of muta-
bility at G:C bases in ig hypermutation than the widely accepted RGYW/WRCY
motif and probably reflects a two-step activation-induced cytidine deaminase-
triggered process. J Immunol (2004) 172(6):3382–4.

16. Bransteitter R, Pham P, Calabrese P, Goodman MF. Biochemical analysis
of hypermutational targeting by wild type and mutant activation-induced
cytidine deaminase. J Biol Chem (2004) 279(49):51612–21. doi:10.1074/jbc.
M408135200

17. Spencer J, Dunn-Walters DK. Hypermutation at A-T base pairs: the A nucleotide
replacement spectrum is affected by adjacent nucleotides and there is no reverse
complementarity of sequences flanking mutated A and T nucleotides. J Immunol
(2005) 175(8):5170–7.

18. Bose B, Sinha S. Problems in using statistical analysis of replacement and
silent mutations in antibody genes for determining antigen-driven affinity
selection. Immunology (2005) 116(2):172–83. doi:10.1111/j.1365-2567.2005.
02208.x

19. Cohen RM, Kleinstein SH, Louzoun Y. Somatic hypermutation targeting is influ-
enced by location within the immunoglobulin Z region. Mol Immunol (2011)
48(12-13):1477–83. doi:10.1016/j.molimm.2011.04.002

20. Yaari G, Uduman M, Kleinstein SH. Quantifying selection in high-throughput
immunoglobulin sequencing data sets. Nucleic Acids Res (2012) 40(17):e134.
doi:10.1093/nar/gks457

21. Correa J. Interval Estimation of the Parameters of the Multinomial
Distribution. Statistics on the Internet (2001). Available from: inter-
stat.statjournals.net.

22. Simpson EH. The interpretation of interaction in contingency tables. J R Stat
Soc B (1951) 13(2):238–41.

23. Kunik V, Ashkenazi S, Ofran Y. Paratome: an online tool for systematic identifi-
cation of antigen-binding regions in antibodies based on sequence or structure.
Nucleic Acids Res (2012) 40:W521–4. doi:10.1093/nar/gks480

24. Rogozin IB, Pavlov YI, Bebenek K, Matsuda T, Kunkel TA. Somatic mutation
hotspots correlate with DNA polymerase error spectrum. Nat Immunol (2001)
2(6):530–6. doi:10.1038/88732

25. Willis SN, Mallozzi SS, Rodig SJ, Cronk KM, McArdel SL, Caron T, et al. The
microenvironment of germ cell tumors harbors a prominent antigen-driven
humoral response. J Immunol (2009) 182(5):3310–7. doi:10.4049/jimmunol.
0803424

26. Nirantar SR, Ghadessy FJ. Compartmentalized linkage of genes encoding
interacting protein pairs. Proteomics (2011) 11(7):1335–9. doi:10.1002/pmic.
201000643

27. Lefranc M-P, Pommi C, Ruiz M, Giudicelli V, Foulquier E, Truong L, et al. IMGT
unique numbering for immunoglobulin and t cell receptor variable domains
and ig superfamily v-like domains. Dev Comp Immunol (2003) 27(1):55–77.
doi:10.1016/S0145-305X(02)00039-3

28. Brard J, Guguen L. Accurate estimation of substitution rates with neighbor-
dependent models in a phylogenetic context. Syst Biol (2012) 61(3):510–21.
doi:10.1093/sysbio/sys024

29. Barak M, Zuckerman NS, Edelman H, Unger R, Mehr R. IgTree: creating
immunoglobulin variable region gene lineage trees. J Immunol Methods (2008)
338(12):67–74. doi:10.1016/j.jim.2008.06.006

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 01 August 2013; accepted: 22 October 2013; published online: 15 November
2013.
Citation: Yaari G, Vander Heiden JA, Uduman M, Gadala-Maria D, Gupta N, Stern
JNH, O’Connor KC, Hafler DA, Laserson U, Vigneault F and Kleinstein SH (2013)
Models of somatic hypermutation targeting and substitution based on synonymous
mutations from high-throughput immunoglobulin sequencing data. Front. Immunol.
4:358. doi: 10.3389/fimmu.2013.00358
This article was submitted to B Cell Biology, a section of the journal Frontiers in
Immunology.
Copyright © 2013 Yaari, Vander Heiden, Uduman, Gadala-Maria, Gupta, Stern,
O’Connor, Hafler, Laserson, Vigneault and Kleinstein. This is an open-access arti-
cle distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or reproduc-
tion is permitted which does not comply with these terms.

www.frontiersin.org November 2013 | Volume 4 | Article 358 | 65

http://dx.doi.org/10.1016/S0161-5890(03)00101-9
http://dx.doi.org/10.1093/nar/gkr413
http://dx.doi.org/10.1007/978-3-642-71984-4_13
http://dx.doi.org/10.1007/978-3-642-71984-4_13
http://dx.doi.org/10.1073/pnas.0903803106
http://dx.doi.org/10.1074/jbc.M408135200
http://dx.doi.org/10.1074/jbc.M408135200
http://dx.doi.org/10.1111/j.1365-2567.2005.02208.x
http://dx.doi.org/10.1111/j.1365-2567.2005.02208.x
http://dx.doi.org/10.1016/j.molimm.2011.04.002
http://dx.doi.org/10.1093/nar/gks457
http://dx.doi.org/10.1093/nar/gks480
http://dx.doi.org/10.1038/88732
http://dx.doi.org/10.4049/jimmunol.0803424
http://dx.doi.org/10.4049/jimmunol.0803424
http://dx.doi.org/10.1002/pmic.201000643
http://dx.doi.org/10.1002/pmic.201000643
http://dx.doi.org/10.1016/S0145-305X(02)00039-3
http://dx.doi.org/10.1093/sysbio/sys024
http://dx.doi.org/10.1016/j.jim.2008.06.006
http://dx.doi.org/10.3389/fimmu.2013.00358
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/B_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ORIGINAL RESEARCH ARTICLE
published: 08 November 2013

doi: 10.3389/fimmu.2013.00357

Germline amino acid diversity in B cell receptors is a good
predictor of somatic selection pressures
Gregory W. Schwartz 1 and Uri Hershberg1,2*
1 Systems Immunology Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
2 Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA, USA

Edited by:
Michal Or-Guil, Humboldt University
Berlin, Germany

Reviewed by:
Andrew M. Collins, University of New
South Wales, Australia
Nicole Wittenbrink, Humboldt
University Berlin, Germany

*Correspondence:
Uri Hershberg, Systems Immunology
Laboratory, School of Biomedical
Engineering, Science, and Health
Systems, Drexel University, 3141
Chestnut Street, Philadelphia, PA
19104, USA
e-mail: uri.hershberg@drexel.edu

The diversity of the immune repertoire is important for the adaptive immune system’s abil-
ity to detect pathogens. Much of this diversity is generated in two steps, first through
the recombination of germline gene segments and second through hypermutation during
an immune response. While both steps are to some extent based on the germline level
repertoire of genes, the final structure and selection of specific receptors is at the somatic
level. How germline diversity and selection relate to somatic diversity and selection has not
been clear.To investigate how germline diversity relates to somatic diversity and selection,
we considered the published repertoire of Ig heavy chain V genes taken from the blood
of 12 individuals, post-vaccination against influenza, sequenced by 454 high-throughput
sequencing. We here show that when we consider individual amino acid positions in the
heavy chainV gene sequence, there exists a strong correlation between the diversity of the
germline repertoire at a position and the number of B cell clones that change amino acids
at that position. At the same time, we find that the diversity of amino acids used in the
mutated positions is greater than in the germline, albeit still correlated to germline diver-
sity. From these findings, we propose that while germline diversity and germline amino
acid usage at a given position do not fully specify the amino acid mutant needed to pro-
mote survival of specific clones, germline diversity at a given position is a good indicator
for the potential to survive after somatic mutation at that position. We would therefore
suggest that germline diversity at each specific position is the better a priori model for the
effects of somatic mutation and selection, than simply the division into complementarity
determining and framework regions.

Keywords: B cells, somatic hypermutation, selection, diversity, evolution

1. INTRODUCTION
The adaptive immune system’s ability to react to disease is based
on the diversity of its immune repertoire. In the case of B cells,
this diversity is generated in two rounds: the recombination of
germline gene segments (V, D, and J for heavy chains, V and
J for light chains) to create the B cell receptor (BCR), (1–3) as
well as somatic hypermutation during an immune response (4–
6). In both cases, these diversification processes are coupled with
stringent somatic selection based on the binding affinity of the
BCR (7). Thus, while the initial state of the BCR is at least some-
what based on an individual’s germline genes, the final structure
of specific BCR mutants is based on somatic selection processes
related to the binding affinity of the BCR. It remains unclear how
selection and diversity at the germline level relate to selection at
the somatic level. In this analysis, we demonstrate a link between
the diversity and selection at the germline and somatic levels for
V genes.

The germline genes encoding the different regions of the BCR
are themselves diverse, even before considering the diversification
produced from the recombination of different gene segments.
Specifically in V genes, this diversity is non-uniformly spread
across the gene sequence. Some positions always utilize the same

amino acid in all V genes while others can utilize many different
amino acids. This differential diversity is considered an indica-
tor of the functional role of each position in the eventual tertiary
structure of the receptor. Variable regions of the V gene sequences,
called complementarity determining regions (CDR), are thought
to be those that encode regions which interact with antigens, while
the more invariant positions, called framework regions (FR), are
proposed to be involved in the backbone of the receptor (8). It
has been generally thought that somatic selection segregates along
these two regions. Positive selection is thought to occur in the
CDR, while mutations in the FR were mostly debilitating to affin-
ity and lethal to the cell (5). It is now clear that this segregation is
not strictly true – positively selected key mutations can be found
in the FR (9) and negative selection can be seen in mutations
throughout the sequence (10).

Previously, the diversity measurements of the receptors were
based on differing diversity indexes with varying appropriateness
and on partial sets of germline and mutant sequences (8, 11).
We directly measured the “true” diversity of light chain V genes
and heavy chain V genes (VH) based on the entire known BCR
germline repertoire as found in the IMGT Ig gene database (12,
13). We demonstrated that the pattern of diversity in all V genes
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Schwartz and Hershberg Germline diversity and somatic selection

is non-uniform, with most positions showing a low level of diver-
sity (2–5 relevant amino acids) and a few exhibiting higher levels
of diversity (up to 10 relevant amino acids). If we rank all the
positions in the sequence by their diversity, we can explicitly show
that while the CDR is enriched for high diversity positions, many
CDR positions have diversities as low as those found in FR and
some FR positions have quite a high diversity (12). We previously
suggested that it is the diversity of positions, not solely their associ-
ation with the contiguous CDR or FR positions, which determines
their functional role and the consequence of mutation.

The diversity of positions in the germline repertoire of V genes
is the result of evolutionary selection of individuals and their
progeny. The process of affinity maturation is based on somatic
mutation and selection. It has thus far been unclear how these two
processes of selection are related and if they can be connected at
the V gene sequence level. To study this possible relationship, we
considered a published dataset of ∼17,000 recombined BCR VH

gene sequences from 12 individuals (14). We divided sequences by
their clonotypes, identifying the clonal origin for each recombined
sequence. In this way we could now count how many times each
position was mutated in the repertoire. Comparing the number
of individual times a position was mutated to its germline diver-
sity (12), we found that while synonymous mutations were evenly
spread across all positions, there was a clear positive correlation
between the number of times a position had a mutated amino acid
and that position’s diversity in the germline repertoire. From this
we conclude that the diversity at the germline level is an indication
for the potential for somatic harm as a result of mutation. The
diversity of each specific position is a more direct measure of the
functional consequence of mutation and selection at the somatic
level than a mere division into CDR and FR.

2. MATERIALS AND METHODS
2.1. SEQUENCES ANALYZED
We analyzed the amino acid and nucleotide sequences of Homo
sapiens BCR recombined VH genes (14). The sequences came from
twelve healthy individuals post-vaccination against influenza (14).
The individuals came from two age cohorts: 6 young (age range
19–45) and 6 old (age range 70–89). Sequences were acquired at
days 0, 7, and 28 post-vaccination and included both IgG, IgM,
and IgA class switched receptors. We divided the sequences into
clones by fully aligning their nucleotide sequences to the germline
V, D, and J genes from the IMGT Ig database (13). All sequences
that shared the same germline source (V, J, and CDR3 length) were
considered to be from the same clone. We filtered out sequences
with ≥30 nt point mutations from the germline. This alignment
resulted in the identification of 17,553 sequences divided into 9482
clones. Due to sequencing issues in the original dataset, we only
analyzed the sequences from position 25 and on. IMGT number-
ing leaves gaps in order to remain consistent with all V genes. Also,
the length of V genes is not always identical. Therefore, we only
calculated germline diversity for amino acid positions 25 − 30,
35 − 59, 63 − 72, and 74 − 106, leaving us with 74 positions in
the analysis. These positions were verified for adequate sampling
by the use of rarefaction curves at each position (15). We consid-
ered a position viable if more than 99% of the curve consisted of
a richness of ≥95% of the height of the curve (12). These curves

rule out the possibility of having too many gaps in the germline
repertoire.

We calculated the germline diversity per amino acid position
using BCR VH genes collected from IMGT as in Ref. (12). We
filtered out non-functional, partial, and duplicate sequences for
the analysis. All sequences were numbered according to the IMGT
unique numbering system based off of the universal alignment
provided by IMGT (13). We defined CDR and FR positions as in
Ref. (16).

2.2. DIVERSITY MEASURES
We measured the diversity of amino acids per position as in Ref.
(12) with an order of diversity equal to 1. The process of measur-
ing diversity is dependent on the order, or “Hill number” (17), we
use during calculations. While measuring the effective number of
species, the order affects the influence of the sample abundances.
An order of 0 does not consider abundances, thus all types are con-
sidered equally (this is equivalent to the number of different types,
also called“richness”). An order gives greater weight to rare species,
while an order>1 gives greater weight to common species. When
the order is 1, the effective diversity is determined without any bias
(18). We previously described the result of analyzing the diversity
of the different amino acid positions in the V gene germline reper-
toire at different orders of diversity (12). We decided here to focus
on the order of 1 as we found no a priori reason to bias toward
either the more commonly used amino acids at each position or
toward the rare amino acids.

At each position p, the number of amino acids at that position
was Np and the richness of the amino acids at that position was Rp.

The measure of diversity used for these positions was “true”
diversity qDp, where

qDp ≡

 Rp∑
i=1

pi
q
p

(1/1−q)

(1)

and q is the order of diversity and pi is the frequency of amino acid
i (17, 18). At q= 1, equation (1) does not exist, however the limit
as q approaches 1 is

1Dp ≡ exp

− Rp∑
i=1

pi p ln pi p

 (2)

2.3. DEFINITION OF POSITION CATEGORIES
For every amino acid position, we counted – across all clones
from any time point and person – the number of times a position
changed amino acids and how many times that position main-
tained its amino acid from the germline. If a position was found
to change into several amino acids in a single clone, that posi-
tion was counted once for each different amino acid. The cases
where amino acids were maintained relative to the germline were
in some cases further divided into non-mutated and synonymous
mutations. The amino acids collected in each category (changed,
maintained, or synonymous mutation) were then further analyzed
for their diversity and amino acid composition tendencies.
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2.4. CORRELATIONS OF DIVERSITY IN GERMLINE POSITIONS VERSUS
CHANGED OR MAINTAINED AMINO ACID POSITION CATEGORIES

Using a two sided Spearman’s rank correlation test, we assessed the
correlation of germline diversity of human VH genes, as calculated
in Ref. (12), with the counts and diversities of the three categories
(changed amino acid, maintained amino acid, and synonymous
mutation) described above.

2.5. AMINO ACID USAGE ANALYSIS
We assessed if position categories were biased toward specific
amino acid usage types. Following our definitions of Ig relevant
amino acid categorization by hydrophobicity and tendency to be
found on the surface of the receptor (16, 19), we categorized
amino acids as hydrophobic (IVLFCMW), neutral (AGTSYPH),
and hydrophilic (NDQEKR) (12). We then categorized a position
by how biased that position was to using amino acids from only
one of these categories. If a position used only amino acids from
one category, that position was considered to be of that type (i.e.,
a hydrophobic, a neutral, or a hydrophilic position). If the posi-
tion had both neutral and one other category of amino acids, that

position would be considered a “weak” version of that category
(i.e., weak hydrophobic or weak hydrophilic). If there were amino
acids in all categories, then that position was considered indeter-
minate. In all instances, if a position had a single amino acid in one
category, and three or more in another category, the single amino
acid category was ignored (12).

3. RESULTS
3.1. CORRELATION OF GERMLINE DIVERSITY TO NUMBER OF

CHANGED AMINO ACIDS PER POSITION
When comparing the germline diversity at each position – as calcu-
lated from the prototypical IMGT database (12) – and the number
of unique changed amino acids at each position, we find that
these two properties are highly positively correlated (ρ= 0.710,
p= 1.41× 10−12). This correlation holds true if we consider CDR
(ρ= 0.676, p= 2.18× 10−4) and FR (ρ= 0.668, p= 2.17× 10−7)
positions separately and if we consider all positions as a whole
(Figure 1). While this correlation is monotonic, it is by no means
strictly linear as the linear model explains only ∼43% of variation
in the extent of amino acid exchanges at the different positions

FIGURE 1 |The number of unique changed amino acids versus the
diversity of order 1 of the germline sequences per position. The points
are labeled by their IMGT sequence position number and if they are found
in the CDR (red) or the FR (blue). The lines represent linear regressions for
all positions (black, r 2

=0.433), for FR positions (dashed blue, r 2
= 0.289),

and for CDR positions (dotted red, r 2
=0.349). We found a significant

positive correlation for all positions (ρ=0.710, p=1.41×10−12). By
correlating the positions based on FR and CDR, we found a significant
positive correlation for both FR (ρ=0.668, p=2.17× 10−7) and CDR
(ρ=0.676, p=2.18×10−4).
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(r2
= 0.433). Interestingly, while in general the CDR positions

with similar diversity have more changed amino acids than most
FR positions of similar germline diversity and the linear fits to
CDR and FR are distinct, FR and CDR positions are not clearly
separated in this plane (Figure 1).

The analysis with synonymous mutations shows no correlation
(r2
= 1.87× 10−3, ρ= 0.232, p= 0.0468) and similar mutation

levels across the entire range of germline position diversities and no
difference between CDR (r2

= 0.0322,ρ=− 0.223, p= 0.273) and
FR (r2

= 0.0127, ρ= 0.289, p= 0.0466) positions (Figure 2). The
results found using the diversity of the germline repertoire were
at the whole repertoire level. No division into certain germlines
was necessary and so the possibility for misidentification of the
germlines by IMGT would have little to no impact on the diversity
at the repertoire level. Moreover, when splitting up the analysis of
clones by the germline they aligned with, there was no real dif-
ference in between different germlines and at the repertoire level
(results now shown).

3.2. CORRELATION OF GERMLINE DIVERSITY TO CHANGED OR
MAINTAINED DIVERSITY PER POSITION

We next looked to see how the actual amino acid diversity of
the mutant repertoire at the different positions related to the

germline diversity. We found that the maintained positions had
a diversity that was essentially identical to that found in the IMGT
based germline repertoire (r2

= 0.947,ρ= 0.961, p= 7.52× 1042)
(Figure 3A). In the changed positions a more complex pat-
tern emerges. While overall we find again that there is a posi-
tive correlation between germline diversity and the diversity of
the changed amino acids (r2

= 0.284, ρ= 0.359, p= 1.70× 103),
the range of diversity is much greater in the changed positions
(Figure 3B). This greater range of diversity is present in both
CDR (r2

= 0.419, ρ= 0.580, p= 2.27× 103) and FR (r2
= 0.0347,

ρ= 0.132, p= 0.371). However, when the FR is considered on its
own this leads to a lack of significant correlation with germline
diversity.

3.3. CHANGES IN AMINO ACID USAGE PATTERN
We categorized the amino acid usage patterns for each position. We
found in the maintained amino acid positions the biases toward
using specific amino acid types are maintained. This was especially
true for the positions in the germline that had stricter categories
of amino acids usage bias. 13 out of 14 hydrophobic positions,
17 out of 19 neutral positions, and 8 out of 10 hydrophilic posi-
tions retain the same bias in the maintained positions as in the
germline (Table 1). The positions with the more intermediate

FIGURE 2 |The number of synonymous mutations versus the
diversity of order 1 of the germline sequences per position. We
found no positive correlation with a flat trend (r 2

=1.87×10−3, ρ=0.232,

p=0.0468). When splitting by region, we found no correlation for FR
(r 2
=0.0127, ρ=0.289, p=0.0466) and CDR (r 2

=0.0322, ρ=−0.223,
p=0.273).
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FIGURE 3 |The diversity of order 1 of the amino acids versus the
diversity of order 1 for the germline sequences per position. (A) The
diversity of order 1 amino acid usage in amino acids positions. We found a
significant positive correlation (r 2

=0.947, ρ=0.961, p=7.52×10−42). We
also found positive correlations when the positions were split by region for
FR (r 2

=0.970, ρ=0.968, p=3.67×10−29) and CDR (r 2
=0.937, ρ=0.880,

p=1.76×10−6). (B) The diversity of order 1 amino acid usage of unique
changed amino acids. We found a positive correlation (r 2

=0.284,
ρ=0.359, p=1.70×10−3). When splitting the positions by regions,
however, FR did not correlate with the germline diversities (r 2

=0.0347,
ρ=0.132, p=0.371) while CDR did have a positive correlation (r 2

=0.419,
ρ=0.580, p=2.27× 10−3).

Table 1 | Number of positions for each amino acid usage bias.

Category Germline Maintained Changed

Hydrophobic 14 16: (13, 3, 0, 0, 0, 0) 7: (6, 1, 0, 0, 0, 0)

Weak hydrophobic 12 0: (0, 0, 0, 0, 0, 0) 8: (5, 2, 1, 0, 0, 0)

Neutral 19 27: (0, 6, 17, 4, 0, 0) 2: (0, 0, 2, 0, 0, 0)

Weak hydrophilic 13 3: (0, 0, 1, 2, 0, 0) 5: (0, 0, 1, 3, 1, 0)

Hydrophilic 11 10: (0, 0, 0, 1, 8, 1) 0: (0, 0, 0, 0, 0, 0)

Indeterminate 5 18: (1, 3, 1, 6, 3, 4) 52: (3, 9, 15, 10, 10, 5)

The numbers in parentheses after the colon signify the classifications of the

respective positions in the germline repertoire: hydrophobic, weak hydrophobic,

neutral, weak hydrophilic, hydrophilic, indeterminate.

biases (weak hydrophobic and weak hydrophilic) in the germline
did not adhere as strictly to the same bias category but tend to
have changed to one of the neighboring biases. Weak hydropho-
bic becomes either hydrophobic or neutral. Weak hydrophilic
becomes either hydrophilic or neutral (Table 1). Looking now
at the changed position we see that biases change much more
(Figure 4). Most positions simply become indeterminate (i.e.,
have no clear bias). However, it is interesting to note that those
positions that do have some bias exhibit either exactly the same
bias as they have in the germline repertoire or one that is similar
(Table 1).

4. DISCUSSION
The specificity of B cell and T cell receptors, while based on genes
in the germline, is ultimately not of the germline template. Due
to the imprecise nature of V(D)J recombination and, in B cells,
somatic mutation, the final affinity of each immune receptor is
neither inherited nor heritable. For this reason it is difficult to
assess how germline diversity and its selection relate to selection
during an immune response and specifically how they relate to
the anticipated outcome of somatic mutation during an immune
response. We have previously shown that the diversity of the
germline V gene repertoire can be characterized by looking at the
amino acid diversity of individual positions in the V gene sequence
(12). The distribution of diversity is non-uniform with most, but
not all highly diverse positions being found in the CDR. Further-
more, different positions show different biases toward the use of
hydrophobic or hydrophilic amino acids (12). To contrast this pic-
ture of germline diversity with somatic changes, we have taken a
published sample of the human peripheral B cell repertoire fol-
lowing influenza vaccination. We divided all of the sequences in
this dataset into their respective clones and counted the number of
times each position in the V gene sequence changed or maintained
the amino acid found in the germline origin of its clone. By doing
so, we could compare for each position how it contributes to reper-
toire diversity and its selection when changed from its germline
and when it remained the same. Analyzing the maintained posi-
tions and their diversity allows us to ask to what extent clonal shift
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FIGURE 4 | Copy of Figure 3B annotated for amino acid usage bias. The
coloring for the labels signifies whether that position is hydrophobic (red),
weak hydrophobic (light red), neutral (purple), weak hydrophilic (light blue),

hydrophilic (blue), or indeterminate (black), while a circle around the position
indicates that the position shares the same hydrophobicity bias as the
equivalent germline position. All amino acids are changed.

changes the diversity of the repertoire from the germline while
analyzing the changed positions describes the effects of selection.

Starting with the maintained positions, we see that the germline
diversity exhibited in the prototypic repertoire in the IMGT data-
base, which does not assume any specific biases in VH usage, is
recapitulated in even the small and clonally shifted snapshot of
the immune repertoire analyzed here. We find a significant lin-
ear correlation between germline diversity and that of positions
with maintained amino acids (Figure 3A) and also clear conser-
vation of amino acid usage biases (Table 1). Thus, despite the fact
that we analyzed ∼1000 clones per person (out of potentially 1011

clones) with a significant shift toward certain VH genes, we still
identify more or less exactly the same diversity and amino acid
usage as described by the IMGT database. This suggests to us that
clonal shift does not change the make up of amino acid diversity
in the B cell repertoire. Furthermore, the existing IMGT database
of human V genes represents this positional diversity well.

With regard to the changed positions, we find that there is a
significant positive correlation between the level of diversity in
the germline at a specific position and the survival of clones with
changed amino acids at that position (Figure 1). Such a correlation

suggests that there is a relationship between the tendency to diver-
sify a position at the germline level over evolutionary time and the
likelihood of mutants at those positions to survive somatic muta-
tion and selection. We do not find any kind of correlation between
germline diversity and synonymous mutation level (Figure 2).
For this reason, while the exact observed levels of mutations and
surviving mutants with specific amino acid changes may have
also been influenced by biases in somatic mutation targeting or
sequencing error, these explanations could not be the only reasons
for our results. It would be unreasonable to think that mutation
bias and sequencing error would only influence non-synonymous
mutation rates and so it is thus quite clear that selection is caus-
ing this skew in mutant numbers. While assessing the exact rate
of selection is beyond the scope of this paper, we can attempt to
use these levels of synonymous mutations to estimate some ball-
park level of expected non-synonymous mutations, which under
neutral conditions we would assume to be three times as high. We
can then see that all the positions with lowest germline diversity
must be undergoing quite stringent negative selection and that
once germline diversity gets higher (>2) there are some positions
that appear to also be undergoing some positive selection. The
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positions with a germline diversity value >5 show rates of non-
synonymous mutations 10- to 20-fold greater than synonymous
mutations – a clear indicator of strong positive selection.

Another indication that specific positive selection has great
influence on the final level of amino acid changed at each position
is that the diversity of changed positions is much higher than the
germline diversity at those positions (Figure 3B). Furthermore, in
most cases their bias in usage is indeterminate (Figure 4). Thus,
while the likelihood of survival is related to germline diversity,
the specific change in amino acid that is needed to save the clone
is also determined by the specific selection interactions in which
that change was positively selected. However, it is worth noting
that positions that can be classified (i.e., are not indeterminate)
in the mutants all exhibit the same general amino acid bias as the
germline repertoire (Table 1).

Taking all of these findings into account, we propose that
germline diversity is a good indicator of the likelihood of survival
following mutation but cannot account for the specific amino acid
whose usage accounted for survival of a specific clone, although
this usage can be approximated. This usage is based on the spe-
cific affinity maturation event and immune response that leads
to the formation of the clone. We would further conclude that
while CDR and FR do roughly segregate the sequence, a better
measure of potential selection force is the specific germline diver-
sity of each position. This is especially true for positions with <5
diversity in their germline amino acids. In such positions, while
diversity indicates a range of possible levels of surviving mutants,
there is no clear distinction between positions in the CDR and the
FR. Indeed, the only reason one exists beyond diversity of 5 is that
no FR positions have such high germline diversities.
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Affinity maturation occurs through two selection processes: the choice of appropriate
clones (clonal selection), and the internal evolution within clones, induced by somatic
hyper-mutations, where high affinity mutants are selected for. When a final population
of immunoglobulin sequences is observed, the genetic composition of this population is
affected by a combination of these two processes. Different immune induced diseases
can result from the failure of regulation of clonal selection or of the regulation of the within
clone affinity maturation. In order to understand each of these processes separately, we
propose a mixed lineage tree/sequence based method to detect within clone selection
as defined by the effect of mutations on the average number of offspring. Specifically,
we measure the imbalance in the number of leaves in lineage trees branches following
synonymous and non-synonymous (NS) mutations. If a mutation is positively selected, we
expect the number of leaves in the sub-tree below this mutation to be larger than in the
parallel sub-tree without the mutation. The ratio between the number of leaves in such
branches following NS mutations can be used to measure selection within a clone. We
apply this method to the sampled Ig repertoire from multiple healthy volunteers and show
that within clone selection is positive in the CDR2 region and either positive or negative
in the CDR3 and FWR3 regions. Selection occurs already at the IgM isotype level mainly
in the DH gene region, with a strong negative selection in the join region. This is followed
in the later memory stages in the CDR2 region. We have not studied here the FWR1 and
CDR1 regions. An important advantage of this method is that it is very weakly affected
by the baseline mutation model or by sampling biases, as are most synonymous to NS
mutations ratio based methods.

Keywords: adaptive evolution, phylogenetic tree, immune system, micro-evolution, tree shapes

INTRODUCTION
The humoral adaptive immune response is based on the produc-
tion of high affinity antibodies against pathogenic antigens. These
antibodies are produced through an affinity maturation process,
where high affinity antibodies are produced from a large number
of cells with different B Cell Receptors (BCRs). The affinity matu-
ration process involves two stages. The first one is clonal selection,
where a set of cells with initially mid-high affinity of their BCR to
the antigen are expanded. Following this stage, each clone passes
a within clone increase in affinity, through somatic hypermuta-
tion (SHM) (1) that alter the properties of the BCR, mainly in the
complementarity determining region (CDR)3 region (2). The end
product of this affinity maturation process is a large population
of B cells, with varying BCR that often contain at least one high
affinity clone (3).

While the choice of a clone is equivalent to the selection of
one specie among many, the dynamics of specific clones in the
B cell response against pathogens (4, 5) is a classical example of
a process involving rapid asexual reproduction, where constant
diversification and adaptation occurs following a high mutation
rate. While many tools to study the evolution of species have

been developed, tools for the analysis of within population evo-
lution are lacking. We here propose a new method to analyze
the within clone affinity maturation process and use it to ana-
lyze the healthy B cell repertoire in a large cohort of healthy
volunteers.

Multiple methods have been proposed for the measures of
selection in populations or between populations, in the sense of
evolving toward a higher fitness phenotype (Table 1). A now clas-
sical measure is the synonymous (S) to non-synonymous (NS)
mutations. Specifically, a comparison of the observed and expected
NS/(NS+ S) ratios is often used as a measure for selection. The
expected ratio is calculated based on an underlying mutation prob-
ability model [e.g., Ref. (6–8)], or based on genetic regions where
no selection is assumed to occur (9). An increased frequency of NS
mutations is treated as an indication for positive selection and a
decreased one indicates negative selection. Important drawbacks
of such methods are: (a) their strong sensitivity to the baseline
mutation model (i.e., the expected probability of each mutation
type), especially when the mutations rate is position dependent, as
happens for example in immunoglobulin sequences (10), and (b)
the effect of sampling biases. However, the main problem lies in
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Table 1 | List of existing methods based on their reference (first column), the method they use (second column), whether they can detect the

direction of selection (third column) and the baseline to which they compare in order to define if selection took place (last column).

Reference Method Directional Baseline reference

Nei and Gojobori (6) S vs. NS ratio Yes Mutation probability model

Yang (7) S vs. NS ratio Yes Mutation probability model

Yang and Nielsen (8) S vs. NS ratio Yes Mutation probability model

Shlomchik et al. (9) S vs. NS ratio Yes Genetic region with no selection pressure

Hershberg et al. (10) S vs. NS ratio Yes Position dependent mutation probability model

Sackin (11) Tree morphology No Yule model

Colless (12) Tree morphology No Yule model

Tajima (16), others Mutation statistic No Naive evolution

the fact that they were developed for an analysis of the comparison
between species (clones in this case), and not within a specie.

A different approach for detecting selection is to use proper-
ties of lineage trees. Two of the most powerful such methods are
Sackin’s and Colless’s statistics (11–14). Sackin’s index is the aver-
age root’-leaf distance (over all leaves). Colless’s index is the sum
of imbalance over all nodes, where a node’s imbalance is taken
to be the difference in number of leaves between the bigger and
smaller sub-trees. These measures are tested vs. a neutral model,
which is usually the Yule model, where a tree is constructed by
giving each branch the same probability to split (15). Other sta-
tistics do not use trees but are based on properties of the full
sequences, most notably Tajima’s D (16). Such methods have two
well-known limitations. They do not distinguish between S and
NS mutations and statistical power is lost. However, perhaps the
most significant limitation is that in most cases, these methods
cannot differ between different types of selection, e.g., positive
and negative ones.

We here offer a more direct approach to measure selection
within a clone,as well as a better definition of its meaning. This new
method overcomes limitations of the S to NS mutation ratio and
of the tree shape based selection detection methods, by accounting
for the completing information found in each of the two, that is,
the classification into mutation types, and the imbalance between
different sub-trees.

MATERIALS AND METHODS
SELECTION SCORE
Given a tree, each mutation event is assigned: (a) a NS or S
mutation flag by its effect on the amino-acid translation of the
containing codon; (b) the location of the mutation (related gene
where applicable, and number of nucleotides from the beginning
of the sequence, otherwise); and (c) the log of the ratio between the
number of leaves (sequences) in the sub-tree following the muta-
tion branch and the number of leaves in the sub-tree following the
non-mutated branch (see Figure 1; Figure A1 in Appendix). This
ratio is denoted the Log Offspring Number Ratio (LONR). This
log-ratio is thus positive if the number of final sequences marked
by the tree construction algorithm as descendants of the mutated
sequence is larger than the number of final sequences marked
as descendants of the non-mutated sequence. This suggests some
better fitness of the mutated sequence, or positive selection for
such mutation, and negative in the opposite case. For each area of

FIGURE 1 |The branch imbalance framework and examples.
(A) Schematic view of a branch corresponding to a mutation event.
Following a mutation, the population can be expanded (or reduced), the
advantage will lead to an exponentially growing difference in the number of
offspring in parallel branches descending from the same internal origin. T is
the time from the mutation to the sampling time. (B) After some time, one
branch will take over the entire sample, and the information carried in the
ratio between the branches will be lost. (C) LONR values histogram for one
simulated sequence pool, simulated under naive multiplication from unique
ancestral sequence. While the average is not 0, there is no difference
between branches following S and NS mutations. (D) Example of tree. In
the left branch, a mutation occurred from CTA to CTG, and the ratio
between the mutated and un-mutated branches number of offspring is
20/10. In the right branch, a mutation from ATA to TTA occurred, with a ratio
of 30/40. In the root, a mutation from CTA to ATA occurred with a ratio of
70/30.

the sequence, a t -test is performed (unpaired, unequal variances)
between the NS and S mutations (see Figure A4 in Appendix for
flow chart).

SIMULATION
A sequence pool simulating neutral reproduction was generated
from a random original sequence of 348 nt, with a constant mul-
tiplication rate of two offspring per organism. Two regions were
defined with uniform mutation probabilities with average muta-
tion rate of 1/2 and 1 mutation per generation. The population was
sampled in different sample sizes and along different generations.

Frontiers in Immunology | B Cell Biology September 2013 | Volume 4 | Article 274 | 74

http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology/archive


Liberman et al. Selection measurement through branch imbalance

In each sampling, one of the first eight siblings (the third genera-
tion) was chosen randomly, and its descendants had a twice higher
probability of being sampled, effectively simulating sampling bias
for a specific clone. The process was repeated 1000 times, and selec-
tion was computed in the described process. NS and S mutations
were defined relative to their direct ancestor, resulting in unequal
NS and S probabilities. All mutations had similar probabilities (i.e.,
we did not differentiate between Purines and Pyrimidines).

STATISTICAL ANALYSIS
For the immunoglobulin data, the receptors where clustered by
isotype (IgA and IgG). Lineage trees were constructed and the
sequences were divided into CDR and FWR regions. Mean LONR
NS-S difference was computed per clone and per region along with
two sample t -test p-values.

IMMUNOGLOBULIN SEQUENCES
Over 500,000 BCRs were sampled from each donor in 12 donors
(17), using 454 sequencing, and a RACE protocol. The details of
the sequencing and the validity checks are beyond the scope of this
manuscript. For each sequence, the most fitting VH, JH, and V-J
distance was found by maximizing the relative number of non-
mutations for both VH and JH segments. Only sequences that
matched higher than 0.5 in both segments were kept for further
analysis. The sequences were then clustered according to the most
fitting VH and JH as well as the distance between VH and JH, and
were truncated to 159 nt from the end of the germline VH and
20 nt from the beginning of the germline JH. Only trees with a
sufficient number of mutations were analyzed, which automati-
cally removed sequences defined with ORF and pseudo VH genes
(Figure A3 in Appendix).

CLONE DEFINITION
Sequences were grouped into clones using a two-step approach.
First, the germline VH and JH of each sequence were determined
by aligning all possible germline VH and JH (based on the IMGT
germline library) (18) against the sequence using the Basic Local
Alignment Search Tool (BLAST) (19).

Next, in order to count the clones, we grouped all sequences
according to their VH and JH usage as well as the distance between
VH and JH, since SHMs usually do not produce additions or dele-
tions of nucleotides. Thus, every clone emerging from the same
founder cell should have the same distance between VH and JH.
We then took all of the sequences with the same VH, JH, and dis-
tance between VH and JH and grouped them using a phylogenic
approach. The distance between VH and JH was computed by
positioning the IMGT germline VH and JH genes on the observed
sequence and determining the distance between the last nucleotide
of VH and the first nucleotide of JH.

All the sequences with equal VH, JH, and distance were aligned
together with an artificial sequence composed of the germline and
gaps between them. Within each group, the sequences were aligned
(using MUSCLE 3.6) (20), and a phylogenetic tree was built using
maximum parsimony (21) and/or neighbor joining (22) methods
(from the PHYLIP 3.69 program package). We then parsed this
tree with a cutoff distance of four mutations into clones. Thus, a
clone was defined as a set of sequences that are similar one to each
other, up to a distance of four mutations.

RESULTS
SELECTION
Before discussing B cells specifically, let us discuss how selection
can be estimated in a rapidly mutating population. Assume a pop-
ulation originating from a single founder through asexual division.
In the case of B cells, this would be a clone seeded by an ances-
tral B cell with a given H chain rearrangement. We ignore the L
chain at this stage. The genetic sequence of the founder can be
changed by mutations that can affect the population dynamics. In
such a case we would define positive selection in the population
as an increased average division/birth rate or a decreased average
death rate following mutations. Note that these are not precisely
the same, especially in the context of B cell dynamics (23), but
this is beyond the scope of the current analysis. A decrease in the
division rate would be defined as negative selection. Note that
each mutation by itself can have a positive, null, or negative effect,
but the definition of selection is based on the average population
dynamics and not with the dynamics following a single mutation.

Let us follow a mutation that occurs within a population. If this
mutation increases the average number of offspring per generation
from µ to µ+∆µ, then by a time proportional to log of the total
population size, the advantageous mutation will take over the pop-
ulation. When we compare the population to its latest common
ancestor (LCA), we will have no evidence that such a mutation
has occurred (Figures 1A,B). If the original sequence cannot be
known (as often occurs in the CDR3 region), we will not be able
to detect the presence of such a mutation. If the original sequence
is known (as typically occurs in mutations within the germline
VH gene), the genetic composition of the population would be
equivalent to the one expected in a neutral model (model with no
selection). The only difference would be the addition of a single
NS mutation to a gene in the entire population. This information
can be used to infer that selection has taken place. This is basically
the logic behind S to NS mutation ratio tests for selection.

During the intermediate period when the two sub-clones still
exist (the mutated and the un-mutated one), one can compare the
population size of the two sub-clones. We expect the ratio between
the two population sizes to be proportional to e∆µT, where T is
the time from the mutation to the sampling time (Figure 1A).

For a single mutation, it will be hard to differentiate between
the effect of selection and a non-uniform sampling where one
branch is sampled more deeply. However, if many mutations occur
in the genetic region of interest, and if on average mutations in
this region increase the average number of offspring, we expect
more offspring in branches that follow a mutation in this region
than in branches emerging from the same direct ancestor with no
mutations, and inversely in the case of negative selection.

We thus propose to detect selection using this imbalance in
cases where the total mutation rate (mutation rate per organism
multiplied by population sample size) is significantly higher than
one, as typically occur in within clone B cell evolution.

LOG OFFSPRING NUMBER RATIO
We define a measure of selection in a gene as the ratio of
the number of leaves (measured descendants) under the branch
where a mutation occurred and the number of decedents in its
direct sibling where no such mutation occurred. We compare the
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distribution of these ratios (more precisely the log of the ratios) in
S and NS mutations to estimate whether the distribution deviates
from the one induced by neutral drift (Figure 1D).

Specifically, for each mutation occurring in one son of an inter-
nal node and not in the other, we compute the sub-tree size under
the son with a mutation and the sub-tree under the son without a
mutation. The log of the ratio between these two sizes is defined
as the LONR of this mutation. We then compute the LONR value
for all S and NS mutations in the tree, and compare the S and NS
LONR distributions (Figure 1C; Figures A1 and A2 in Appendix).

Note that this analysis is not sensitive to the details of the
baseline model for the probability of either silent or replacement
mutations, since their absolute number is never used in the analy-
sis. The only case where such a model would affect the current
measurement is in the extreme case that the probability for S
would differ by orders of magnitude from the probability of NS
mutations.

In order to check that the LONR does not detect selection in
its absence, we simulated mutating clones, sampled the resulting
sequences (see Materials and Methods for details), produced lin-
eage trees, and compared the LONR distribution following S and
NS mutations. When the number of mutations is very small, or
the number of samples is small, the False Positive (FP) rate (the
cases where the LONR average is significantly different following
S and NS mutations with a p-value of 0.05) is higher than the
expected 5%. However, in the regime of over 10–20 mutations
per sequence and at least 300 sequences per tree, the FP rates are
near the expected 5% (data not shown). We have repeated the
analysis with non-uniform mutation rates (position dependent
mutation rates) and with sampling biases, and obtained similar
results, as long as the S and NS mutation rates are of the same
order of magnitude. A detailed methodological analysis of the
LONR will be given in a separate analysis.

SELECTION ALONG HUMAN Ig CLONES
We have used the LONR score to analyze the healthy repertoire
from 12 donors. In such a repertoire two opposite forces oper-
ate: (a) mutations can ruin the functionality of the receptor and
decrease its survival probability, (b) mutations can on the other
hand increase the affinity to the antigen and thus lead to a higher
division rate. The CDRs of the BCR determine its interaction with
the antigen, and mutations there were reported to have a higher
probability to increase the affinity than mutations in the frame-
work (FWR) region (5, 24). However, the net selection effect in
each of these regions still remains unclear. Beyond the effect of
SHM, B cells are affected by isotype switches from naïve IgM to
memory IgM, and from there to memory IgG and IgA. The mem-
ory (IgM, IgG, and IgA) isotypes occur at the advanced stages of the
immune response and thus lineage trees based on such receptors
are expected to represent the full evolution following selection.

We have used high-throughput sequencing to sequence over
500,000 BCR samples from each donor, in 12 donors. We built lin-
eage trees from the sequences [see (17) for details of sequences, and
production of lineage trees]. We measured the LONR distribution
in all naïve and memory, IgM as well as IgA and IgG sequences
trees (over 50,000 lineage trees) and compared the LONR dis-
tribution in NS and S mutations. The results are actually quite

striking. We analyzed separately CDR2, FWR3, and CDR3, using
the standard IMGT definition (18).

We did not analyze the CDR1 and FWR1 and FWR2 regions,
since we did not have enough samples with reliable sequences in
these regions. Thus, our results only apply to the comparison of
the more 3′ regions (CD2,3 and FWR3). Also, we here include the
JH region within the CDR3 analysis. This was done in order to
avoid artifacts of the DH gene length. In this specific point, our
notation slightly deviates from the standard IMGT analysis that
ends the CDR3 region at the beginning of the JH gene region.

As expected in both IgG and IgA memory cells, the positive
selection is much stronger for the CDR regions than for the FWR
(Figure 2). However, in the memory IgM, even the FWR region
passes a positive selection during the immune response. Thus, one
cannot conclude as a generic conclusion that FWR regions are
under negative selection, while CDR regions are under a positive
selection. Within different CDR regions, CDR2 is under a much
more stringent positive selection than the CDR3 region. High-
lighting the fact that while the CDR3 is selected at clone level,
where clones with an appropriate CDR3 sequence are selected for
expansion, mutations in the CDR2 region may induce a much
stronger positive selection than mutations in the CDR3 that can
induce a more balanced effect. When analyzing only trees where
there is a significant difference between the LONR score (p < 0.01)
of S and NS mutations, the results are qualitatively similar to the
analysis of all trees (Figure 2, inset).

In order to ensure that the LONR is not an artifact of the
sampling depth or the number of mutations, we computed a cor-
relation between the average S vs. NS mutations LONR difference
in each sample (a sample being defined as a single donor, a given
isotype, and a given VH gene) and the sample size, or the average
number of mutations in each region separately or in all regions in
this sample. In all cases there was practically no correlation (the

FIGURE 2 | Average LONR score per region and per isotype for all
lineage trees (main figure) and for trees with a significant difference
(t -test, p < 0.01; inset). The main positive selection occurs in CDR2,
followed by CDR3. FWR3 has a limited if any negative selection. Selection
occurs mainly in the memory isotype, but some systematic selection is
already observed in the IgM naïve isotype.
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highest Spearman correlation was R= 0.05). The same occurs if S
or NS mutations are used separately. Thus, the observed selection
effect is not a sampling or a mutation rate effect.

COMPARISON OF ISOTYPES
Selection and mutations are accompanied by an isotype switch
process. It is not clear from the current literature whether isotype
switch precedes mutations and selection or if it occurs in paral-
lel. If selection occurs only following isotype switch, we expect
no selection to be observed in lineage trees composed of purely
IgM sequences. However, the selection level in IgM memory trees
is as high as the one observed in IgG lineage trees, and higher
than the one observed in IgA lineage trees. Moreover, even in
trees composed only of naïve (CD27−) sequences (25, 26), a clear
advantage in the division rate following mutations in the CDR2
region is observed. One can thus conclude that even before they
become memory cells, B cells pass an antigen induced selection.
Note that the CD27− cells can be activated cells, and are not of a
pure naïve type (27, 28).Thus, the observed mutations and selec-
tion may actually represent an activated phenotype which is a part
of the CD27− sub population.

COMPARISON BETWEEN DONORS AND BETWEEN VH GENES
The results presented in Figure 2 are the average of the selection
score over many donors. Some variability exists between donors,
and the average selection score can represent a combination of pos-
itive selection in some donors and negative selection in others. We
have thus separated the analysis into different donors (Figure 3).

A clear difference emerges between the different regions. While in
the CDR2 region practically all donors show a positive selection in
all isotypes, in FWR3 and CDR3, the results are highly variables in
all isotypes, with some donors showing a marked positive selection
and some a negative selection. The main difference between FWR3
and CDR3 is not in the sign of the selection but in its variance. In
CDR3 the variance among donors is much larger than in FWR3.

POSITION EFFECT
A more complex picture emerges when each position is analyzed
by itself, instead of merging all positions belonging to the same
region. At the naïve IgM level, positive selection is mainly focused
on the DH region within the CDR3 region, while negative selec-
tion takes place in the junction regions (Figure 4). When moving
to the IgM memory isotype the selection in the CDR3 becomes
much weaker, and the selection in the CDR2 starts to rise. Finally,
when moving to the IgA and IgG isotype selection is fully focused
on CDR2. Note that we here plot the net selection per nucleotide,
without considering the total number of mutations per nucleotide.
Thus some nucleotide may contribute significantly more than
other nucleotides to the average. This different weighting induces
some quantitative differences between Figures 3 and 4. Note also
that while the total number of mutations per sequences is much
larger in IgG and IgA than in the naïve IgM serotype, the selection
is actually maximal at the naïve level.

These results are highly consistent among the different inde-
pendent donors, with selection patterns practically overlapping
in 10 donors out of 12 (Figure 4). In two donors the observed

FIGURE 3 | Log offspring number ratio per donor and per isotype. Each
column is an isotype in a different region, and each color is a different donor.
Each column represents the aggregate over many donors, where negative
and positive values are drawn separately. While in the CDR2 there are
practically no donors where the average selection is negative (with the

exception of two IgA samples and one naïve IgM sample), in the CDR3 there
are approximately the same number of donors with negative selection and
with positive selection. This shows that the selection in CDR2 is a universal
feature, while in CDR3 it may depend on the random junction initially
produced or in the different exposures to antigens.
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FIGURE 4 | Position specific effects. Total LONR score per amino acid
(averaged over the 3-nt composing the amino acid). The LONR is drawn for
the four isotypes discussed in previous figures: naïve IgM, memory IgM,
IgG, and IgA. Each line represents a different donor. The highlighted regions
represent the CDR2 (to the left) and CDR3 (to the right). The sequence at
the bottom is a typical sequence. The zone of very strong negative
selection at the beginning of the CDR3 is the junction region. One can
observe a switch from a very strong positive selection in the naïve IgM
isotype focused on the CDR3 to a much weaker selection in the IgG and
IgA focused on the CDR2. Note that the scales of the y axes are different
between the plots.

selection was weak and noisy, but these donors had much smaller
sample sizes (data not shown).

These results suggest the following two stage selection process
occurring in Ig lineage trees. The first stage of selection occurs early
in the CDR3 and is generic and uniform. This would be equivalent
to the “key mutation” concept (29, 30). Following these key muta-
tions, selection becomes much weaker and focused on the CDR2
regions in the IgG isotype. The memory IgM shows a translational
mutation distribution from the key-mutation selection event, to
the weaker mutation in the CDR2, which may alters the affinity in
a limited way.

In order to check that there is indeed a correlation between
mutations in the CDR3 regions of naïve cells, we compared the
correlation between the NS/(S+NS) ratio and the total number
of B cells for different regions, VH genes, and isotypes (Figure 5).
The total clone size was defined as the number of sequences with
a give VH in a give sample. The NS and S mutations were defined
as the average number of mutations in the leaves compared with
the ancestral sequence of each clone (a similar analysis with the
number of unique mutations led to similar results). The total num-
ber of B cells is the total number of B cells sequenced in a given
sample with the same VH gene. As expected the highest correla-
tion was with the NS/(S+NS) ratio in the CDR3 region of naïve
IgM cells. Note that a trivial correlation is expected between the
number of B cells and the total number of mutations, since large
clones may be older clones and as such accumulate a large number
of mutations. However, here we have compares the NS fraction,
which is not expected to be correlated with the population size,
unless selection is involved.

FIGURE 5 | Spearman correlation between the NS/(S + NS) fraction
and the total number of B cells for different isotype and different
regions. For each sample we produced a vector of 46 values (all functional
VH genes with enough samples) representing the total number of B cells in
this sample with such a V gene. When all samples are taken together, this
leads to a 12*2*46 values (12 donors, 2 technical repeats per donor). We
computed the correlation of these values with the NS/(S+NS) values in the
same categories. As one can clearly see the highest correlation is with the
CDR3 regions of naïve IgM samples.

DISCUSSION
While multiple sequence based methods have been proposed to
detect selection (10, 31–36), most of them are sensitive to the
baseline mutation model, or to sampling effects. Moreover, many
existing methods conclude the existence of positive or negative
selection from highly frequent or rare mutations. Such an under
or over expression of a sequence can simply represent the random
expansion of a population, a bottleneck effect, or the random asso-
ciation of this mutation with another mutation which is selected.
Indeed even in models of neutral evolution, alleles carrying some
sequences are expected to be much more frequent than others,
since alleles, and sequence distributions have a fat tail. Instead, pos-
itive selection should be defined by the systematic increase of the
population size following replacement mutations in a given region.

We have here used this precise definition to define the LONR
score as the increase/decrease in the relative branch size following
a mutation. A comparison between the LONR score following syn-
onymous and NS mutations. A detailed methodological analysis
is left to a different framework; we here describe an application of
the LONR score to immunoglobulin clones in healthy volunteers.

The LONR differs in two basic aspects from most other S to NS
mutation frequencies methods. First this method does not count
the absolute number of sequences; instead it measures for each
mutation the effect it has on its number of offspring. The second
difference is the definition of mutations and their classification as
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S/NS in respect to their direct ancestor, and not to a consensus or
ancestral sequence.

Since each mutation is counted once, independent of the total
number of sequences that end up containing this mutation, it is
practically not affected by sampling biases or by the expansion of
specific sub-populations. Moreover the LONR does not require a
baseline mutation model, since it does not compare the number
of synonymous or NS mutations. Instead, it measures the effect of
each mutation on the total number of offsprings.

Tree shape based methods were developed (11–14). However,
these methods often cannot detect the direction of selection, and
cannot detect which region in the sequence is selected. Moreover,
many of these tree shapes are sensitive to sampling effects making
them impractical to use in realistic situations (37).

The observed selection in Ig clones has a well conserved pattern
among donors. It is consistently positive in the CDR2 region, and
positive in average in the CDR3 region. The mutation pattern in
the CDR3 region is composed of strong positive selection in the
DH region, and strong negative selection in the junctions between

the VH and DH genes and between DH and JH genes. We currently
have no clear explanation for the negative selection in the junction.
However, one can hypothesize that only B cells with appropriate
junctions are selected to pass affinity maturation, and that follow-
ing within clone selection must maintain these junctions. Such a
behavior has been clearly observed in H chain transgenic models
of selection in mice (23). At later stages, selection is focused on
the CDR2 region and is much lower in the CDR3 regions. This
can represent a fine tuning of the affinity, where the main limiting
step is the accumulation of key mutations in the CDR3, which is
then followed by the expression of more specific mutations in the
CDR2 region.

We did not analyze the CDR1 and FWR1 and FWR2 regions,
since we did not have enough samples with reliable sequences in
these regions. We can only guess that CDR1 should behave approx-
imately like CDR2. FWR1 and FWR2 may be quite different than
FWR3 as previously proposed (38). Advances in B cell sequencing
technologies (39) will hopefully provide longer reads allowing us
to study these regions as well.
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APPENDIX

FIGURE A1 |Typical tree with the sequences in each node and the total number of offspring of each node. Only internal nodes are drawn here (leaves are
not used for the analysis, since they have no mutations under them). The sequences are divided into two regions (different colors). The number in each node is
the total number of offspring.

FIGURE A2 | Log offspring number ratio values for S and NS mutations as given in Figure A1. For each mutation its region is give (1 or 2), its type (S or
NS), its position along the gene in nucleotides, the mutation itself in nucleotides, and amino acids, as well as the LONR score. The distribution of LONR scores
is used to assess selection.

FIGURE A3 | Number of mutation events per VH gene per isotype. There are practically no mutations assigned to pseudogenes, since practically none of
the sequenced in-frame lineage trees are based on pseudogenes (<0.05%). However, there are also some functional VH genes with practically no lineage
trees. We removed those from the current analysis.
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FIGURE A4 | Flow chart of LONR score production. First sequences
are aligned, then phylogenetic trees are produced. For each internal node
in the trees, a list of mutations is produced (between the internal node
and one of its direct descendents). For each such mutation the LONR

score is computed resulting in a list of LONR score for each mutation.
For genetic region, the LONR score of the mutations in this regions are
analyzed and the resulting p-value is the result of a t -test between S and
NS mutations.
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Affinity maturation of the antibody response is a fundamental process in adaptive immu-
nity during which B-cells activated by infection or vaccination undergo rapid proliferation
accompanied by the acquisition of point mutations in their rearranged immunoglobulin (Ig)
genes and selection for increased affinity for the eliciting antigen.The rate of somatic hyper-
mutation at any position within an Ig gene is known to depend strongly on the local DNA
sequence, and Ig genes have region-specific codon biases that influence the local muta-
tion rate within the gene resulting in increased differential mutability in the regions that
encode the antigen-binding domains. We have isolated a set of clonally related natural Ig
heavy chain–light chain pairs from an experimentally infected influenza patient, inferred the
unmutated ancestral rearrangements and the maturation intermediates, and synthesized
all the antibodies using recombinant methods. The lineage exhibits a remarkably uniform
rate of improvement of the effective affinity to influenza hemagglutinin (HA) over evolu-
tionary time, increasing 1000-fold overall from the unmutated ancestor to the best of the
observed antibodies. Furthermore, analysis of selection reveals that selection and muta-
tion bias were concordant even at the level of maturation to a single antigen. Substantial
improvement in affinity to HA occurred along mutationally preferred paths in sequence
space and was thus strongly facilitated by the underlying local codon biases.

Keywords: somatic hypermutation, experimental influenza infection, antibody selection, antibody affinity matura-
tion, phylogenetics

INTRODUCTION
B-cells that respond to infection or vaccination are induced by
signaling through their B-cell receptors to proliferate and differen-
tiate into plasmacytes and memory cells. Short-lived plasmacytes
secrete antibody and provide immediate protection from the elicit-
ing agent; memory cells and long-lived plasmacytes persist clonally
for very long times, providing protection against recurring chal-
lenges from the same or closely related agents (1). Cells that go
on to find persistent clones are subject to affinity maturation in
their post-exposure development. During affinity maturation, the
affinity of the B-cell receptor for antigens on the eliciting agent
is substantially increased, resulting in a more potent response on
recall (2).

Affinity maturation proceeds through somatic hypermuta-
tion, the introduction of point mutations into the rearranged
immunoglobulin (Ig) genes that encode the B-cell receptor. Those
B-cells that thereby acquire an increased affinity for the antigen
gain a proliferative advantage and come to dominate the acti-
vated B-cell population. Affinity maturation is crucial for humoral

immune protection, conferring greater neutralization capacity (3)
and opsonization efficiency (4), and is generally correlated with
higher vaccine efficacy (5). In fact, lack of effective affinity matu-
ration has been directly implicated in adverse outcomes for at least
one vaccine (6).

The rate of somatic hypermutation at a given position with
an Ig variable region is significantly influenced by the local DNA
sequence – both the nucleotide at that position and sequence of
nucleotides containing it (7). Codon usage in Ig V-gene segments
is strongly biased, with zones of high mutability largely over-
lapping with the complementarity-determining regions (CDR),
which encode the antibody’s antigen-binding residues (8, 9). Thus,
somatic mutation drives Ig genes along statistically favored paths
through the genotype space. Some combinations of substitutions
will therefore be visited much more rapidly than others involv-
ing the same number of changes. Each Ig gene segment has been
involved in the response to a huge number of antigens over the
course of its evolutionary history and has experienced selection
pressure to enhance its role as a template for affinity maturation.
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Technology for the isolation of native heavy-chain/light-chain
pairs and their subsequent recombinant synthesis have recently
been developed (10, 11) and refined (12), making it feasible to
determine the biophysical properties of large numbers of mono-
clonal antibodies (mAb). We have complemented this technology
with the development of computational tools that substantially
improve our ability to infer the unmutated common ancestor
of a set of clonally related antibodies, and the corresponding
maturation intermediates (13).

We have now applied these methods to the detailed study of the
maturation pathways of a B-cell clone whose antibody genes were
isolated from a human experimental influenza infection study,
providing an elucidation of the interplay of mutational constraints
and selection on antigen-binding affinity. One of our aims in this
study is to examine the influence that this differential mutabil-
ity has on a specific instance of affinity maturation to a given
antigen: the immune response to influenza hemagglutinin (HA)
in a human subject. This question clearly goes beyond the issue
of codon bias as a statistical regularity to inquire about influ-
ence of codon bias in a specific case. The relationship between
these two questions is analogous to the phenomenon of HCDR3
length in autoimmune disease. There one has the statistical obser-
vation that B-cells with long HCDR3 are counter-selected during
development (14), yet the role of long HCDR3 for individual
autoantibodies is rarely understood. In our case, we know that the
mutation frequency is higher on average in regions that encode
amino acids that are more likely, on average, to contact epitopes.
In this study, we examine the interplay of differential mutation
frequency and selection in the evolution of a single antibody
lineage.

Specifically, we demonstrate that intraclonal affinity matura-
tion proceeded by stepwise accumulation of affinity-enhancing
mutations and that mutation and selection interacted synergisti-
cally. These insights and others gained by application of the tools
we have developed promise to facilitate the effective harnessing of
affinity maturation for vaccine engineering.

RESULTS
ISOLATION AND IDENTIFICATION OF ANTI-INFLUENZA
HEMAGGLUTININ A B-CELL CLONE CL2569
Human subjects were experimentally infected intranasally with
influenza virus (15). Eighty-six natural heavy-chain/light-chain
gene pairs were isolated from one subject (subject EI13) on day 4
after exposure. Among these, we found three clonally related sets.
Two of the clones contained two antibodies each; the other con-
tained five. The members of this five-member clone, designated
CL2569, all bind HA in the K d= 1–20 nM range. Four of these
antibodies are of the IgM isotype while the other is IgA1. The light
chain in each antibody is Ig kappa. The remainder of this study
describes our analysis of CL2569.

The antibodies are highly diversified. The heavy chains have
a mean (±SD) pairwise difference of 28.0± 5.4 nucleotides (nt)
and 16.7± 3.6 amino acids (aa); the light chains have an average
pairwise difference of 18.0± 2.5 nt and 8.2± 1.5 aa.

We inferred the unmutated ancestor (UA) and intermediates
along the affinity maturation pathways by computing the Bayesian
posterior probability mass function on nucleotide states at each

position of the heavy and light chains conditioned by the data
and the maximum-likelihood phylogram as described in the com-
panion study (13). The mutations acquired along each branch
were enumerated and classified according to the IMGT classifica-
tion (16) (Table 1). The UA and all intermediates for both heavy
and light chains were synthesized using the same recombinant
technology used to synthesize the observed antibodies.

The probable error profile for the heavy-chain UA is shown in
Figure 1. Briefly, the sum of the probable errors over all positions
is 3.2. There are five nucleotide positions where the marginal pos-
terior probability of the modal nucleotide is <0.8, all of which
occur in CDR3. Importantly, at these somewhat lower-confidence
positions, the inferred modal CDR3 is identical to all five observed
sequences. The summed probable errors for each of the inferred
intermediates is less than that of the inferred UA and decreases
as one gets closer to the observed sequences. The kappa chain UA
is known with high confidence. The sum of the probable errors
is 0.33.

THE DISSOCIATION CONSTANT DECREASES EXPONENTIALLY WITH
UNIFORM RATE OVER THE DURATION OF THE PROCESS
The dissociation constant K d for binding to HA of the Brisbane
strain of influenza virus was measured using ELISA on solutions
of monoclonal antibody prepared at known concentrations. K d

Table 1 | Classification of mutations in CL2569 heavy- and light-chain

histories.

Heavy chains Light chains

Non Synon Non Synon

FR 40 20 14 7

CDR 17 11 11 4

FR, framework region; CDR, complementarity-determining region; Non, non-

synonymous; Synon, synonymous.

FIGURE 1 |The profile of the probable error in the modal heavy
chain UA.
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was estimated by non-linear curve fitting simultaneously on all
data for each plate. The UA binds to HA very weakly but mea-
surably, K d= 2.6 µM. Throughout the evolutionary process, K d

declines uniformly and exponentially (R2
= 0.92), falling 50–74%

(95% confidence interval) for each 1% increase in evolutionary
distance (Figure 2). The affinities of the observed antibodies are
approximately three orders of magnitude higher than that of the
ancestor, an improvement that occurs over a total evolutionary
distance of 6–9% nucleotide differences.

INTERACTION BETWEEN SELECTION AND MUTABILITY
To gage the force of selection in molecular evolution, deviations
in the ratio of the number of synonymous mutations to the num-
ber of non-synonymous mutations from that expected under the
null hypothesis of selection-free evolution are often used for sta-
tistical testing (17). For antibody somatic evolution, mutations are
further classified by region, occurring in the CDR or framework
regions (FR) and various combinations specific deviations from
expected values within these classifications used in statistical tests
[see, e.g., Ref. (18)]. Crucially, the distribution expected under the
no selection null hypothesis for Ig somatic evolution is not trivially

FIGURE 2 | (A) Maximum-likelihood clonal tree showing observed (o),
intermediate (i), and ancestral (a) sequences. The tree was inferred using
both heavy and light chains. (B) Regression analysis of log10 K d vs.
evolutionary distance.

computed. Because the codon bias has been adapted for Ig plastic-
ity, empirical estimation of the distributions under the null cannot
be avoided.

The model we use to estimate parameters and perform tests is
straightforwardly derived using likelihood-based methods in sta-
tistics. We nevertheless describe the model in some detail below so
that the argument may be essentially self-contained.

In order to explore the interplay of selection and mutability,
we use a non-linear regression model and multiple independent
categorical distributions1 in which every gene position along each
branch of the clonal tree can either be unmutated, mutated syn-
onymously, or mutated non-synonymously. That is, there are three
possible classifications for each nucleotide, and the “mutation
type” variable takes one of the two values: T ∈ {S, N } . For the
ith nucleotide in gene g, the variable xT

gi is an indicator for the

mutation type. For example, if the nucleotide in question has
been mutated non-synonymously along the branch leading up
to g from its parent sequence a(g ), we have xN

gi = 1 and xS
gi = 0. If

the nucleotide is not mutated at all, we have xN
gi = 0 and xS

gi = 0.

The relevant likelihood function is the product of independent
categorical distributions, whose log (we work with the log of the
likelihood function for convenience) is

log L =
∑

gi

[∑
T

xT
gi log PT

a(g)i +

(
1− x•gi

)
log

(
1− P•a(g)i

)]
(1)

where PT
a(g)i

is the probability that the ith nucleotide in the parent

of gene g would have mutation type T. The dot in place of an index
indicates summation over that index, for example, 1−P•

a(g)i
is the

probability that the nucleotide in question is not mutated. It is the
dependency of these probabilities on the covariates that we model.

The covariates are themselves properties of the specific
nucleotide expressed in terms of probabilities. There is first the
probability that a given nucleotide mutates at all. This probability
is the product of the sequence-specific mutation rate µai and the
effective evolutionary time τ along the relevant branch. Then, we
have the probability σT

ai that a mutation occurring at the position
and gene in question will have type T (that is, conditional on there
being a mutation at all). This probability depends on the codon in
which the nucleotide is found and its position within the codon.
But it also depends on the local sequence (19); these influences
have to be estimated for the nucleotide at each position of the
gene. Finally, there is the impact of selection. Once a mutation has
occurred, it must survive to fixation in order to be observed.

The covariates we will consider for predicting the survival of
mutations at the ith position of gene a are the type T of the
mutation, the region R (i) ∈ {FR,CDR} that contains position i,
and the mutability µai. Note that the dependence of the survival
probability on mutability is over and above the role of the mutabil-
ity in inducing the mutation initially. Indeed, it is the dependence
of survival on mutability that is of primary concern for this study.
The dependence of survival probability on region is given by the

1Such a product distribution is similar to a multinomial distribution, but has
different probabilities at each site.
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terms γT
R . The ratios of these terms give the relative survival prob-

abilities. Because they are introduced as multiplicative rather than
additive effects, they are subject, without loss of generality, to the

multiplicative constraint γ
Syn
FR γ

Syn
CDRγNon

FR γNon
CDR = 1.

Combining all the component probabilities then gives the prob-
ability that gene g has acquired an observed mutation of type T at
position i and has survived. It is given by

PT
gi = τµa(g)iσ

T
a(g)i

(
γT

R(i) + βT µa(g)i

)
. (2)

The local sequence specificity of µai and σT
ai are estimated using

external data as described in the supplementary information.
For each hypothesis being tested, we impose the specific con-

straints on the model parameters in Eq. 2 that correspond to
the hypothesis, estimate the remaining parameters by maximizing
the likelihood. We then test hypotheses using the likelihood ratio
test (20) where applicable, and compare models using the Akaike
information criterion (AIC). The AIC is a penalized likelihood,
appropriate for model selection where the likelihood ratio test is
inapplicable because the respective models are not nested (21).

Local mutability is strongly informative. We compare two mod-
els: in the first (Model 0), the mutability is constant over positions
µi=µj for all positions i and j. In the second (Model 1), the
mutability is determined by the local sequence µi=mj where mi

is the mutability for the local sequence context at position i, esti-
mated from an independent dataset (see Materials and Methods
section). For this test, assume that selection is based on the covari-
ate region× type, and allow γT

R to vary subject to the multiplicative
constraint above, whereas βT= 0 for both T. The models are not
nested, so we use AIC and relative likelihood for the comparison.
The model with empirical mutability is substantially better sup-
ported by the data than is the constant-mutability model (relative
likelihood= 3× 108).

Region× type is informative in selection. If region and type are
used to classify each potential mutation into one of the four classes
that are then used to model the selection process, the predictive
power of the model is increased. On comparing the selection-free
null model with empirical local mutability (Model 1) with the
alternative model in which γT

R are fit to the data (Model 2: βT= 0,
µi=mi), we reject the null model (likelihood ratio test, p= 0.014).

Mutability× type is informative in selection. In addition to the
mutability that is used to predict the generation of mutations,
we may use mutability as a covariate for predicting selection.
The resulting model has both linear and quadratic terms in the
mutability. On comparing the null model that recognizes type,
but not region (Model 3: γT

FR = γT
CDR, βT= 0 and µi=mi), with

the alternative model in which βT are fit to the data (Model 4:
γT

FR = γT
CDR µi=mi), we reject the null model (likelihood ratio

test, p= 0.010).
Mutability× type is slightly more informative than region×

type in selection. Both region× type and mutability× type have
been shown to be predictive. To determine which covariate is more
effective as a predictor, we perform a model comparison by AIC;
comparing the region× type model (Model 2) with the mutabil-
ity× type model (Model 4). Both have four degrees of freedom,

so by AIC, the comparison favors the mutability× type model
(relative likelihood= 1.35).

This result is illustrated in Figure 3, which shows the dis-
tribution of relative mutabilities in relation to region and the
distribution of observed non-synonymous mutations over both
gene position and evolutionary time.

The AIC-optimal model uses both mutability× type and
region× type to predict mutations. Given the covariates to which
we have access, the largest model has µi=mi, and both γT

R and βT

are free to vary. This model (Model 5) has the minimum AIC of all
models, and all those models that are nested within it are rejected
by likelihood ratio tests (p < 0.05). The coefficients of the optimal
model are shown in Table 2.

The selection observed is predominantly purifying. Having
determined that selection is measurably occurring, we investigate
the nature of the selection by examining the coefficients of the
model fit (Table 2). In both CDR and FR, the coefficients for non-
synonymous mutations are significantly smaller than those for
synonymous mutations, consistent with a scenario in which dele-
terious mutations were introduced in cells that did not survive
selection.

Mutability× type is more informative than mutability alone.
We have shown that mutability× type is informative. An infor-
mative test, the meaning of which will be elaborated on in the
discussion, is whether the contribution of mutability to the sur-
vival of a mutation depends on the mutation type. For this com-
parison, we take the null model (Model 6) to have βFR= βCDR

and γT
FR = γT

CDR, and the alternative model (Model 4) with βT

free to vary. The null model is rejected (likelihood ratio test,
p= 8× 10−3).

It is crucial here to understand that this last test is a test of
whether type (synonymous vs. non-synonymous) interacts in the
statistical sense with mutability (the evolved biases in the target-
ing of somatic hypermutation) to influence the probability that
a mutation survives to fixation. It is taken as given that type
alone does influence a mutation’s survival probability. It is fur-
ther taken as given that mutability alone influences whether a
mutation occurs in the first place or not. This test is a test of
whether mutability is informative regarding the probability that a
mutation survives selection. Selection cannot act on synonymous
mutations, so evidence that mutability is correlated with selective
survival must come from examination of the interaction term
between mutability and type. This interaction term is equivalent
to βFR− βCDR. The rejected null hypothesis is that this quantity
is zero.

DISCUSSION
In this study, by inference and expression of the UA and inferred
intermediate antibodies of a single clone, we have directly demon-
strated the stepwise maturation of antibodies. Such stepwise mat-
uration has been assumed on theoretical grounds (22), but the
technology to observe it has not been utilized before now.

The antibodies of clone CL2569 bind influenza HA and are
highly mutated. For these reasons, they almost certainly rep-
resent a secondary response. In fact, the most likely scenario
for the ontogeny of this lineage is that it was formed via
affinity maturation during an earlier infection or vaccination
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FIGURE 3 | Lower: mutability by position for heavy (left) and light (right) chains. Mutability at CDR nucleotides is shown in red. Upper: histogram by
position of accumulated non-synonymous mutations; evolutionary distance vs. position for each synonymous (open disks), and non-synonymous (closed disks)
mutation.

Table 2 | Maximum-likelihood estimates for the coefficients in the

optimal model.

Model Mutability γ
Syn
FR γ

Syn
CDR γNon

FR γNon
CDR βSyn βNon AIC

0 Constant (1) (1) (1) (1) (0) (0) 640.0

1 Empirical (1) (1) (1) (1) (0) (0) 589.2

2 Empirical 0.75 2.12 0.67 (0.94) (0) (0) 584.6

3 Empirical 1.18 (1.18) (0.85) (0.85) (0) (0) 589.2

4 Empirical 2.25 (2.25) (0.44) (0.44) −25.8 16.6 584.0

5 Empirical 1.58 3.23 0.34 (0.58) −21.4 13.8 579.0

6 Empirical 1.29 (1.29) (0.78) (0.78) 9.63 (9.63) 589.0

Parentheses indicate that the parameter is invariant at the indicated value in the

model considered.

and was subsequently activated into differentiation to plasma-
cytes by the experimental infection without undergoing fur-
ther affinity maturation. The subject was infected with the
H3N2 A/Wisconsin/67/2005 strain of influenza virus; preliminary

binding assays were done on HA from several strains including
the infecting strain, H1 A/Brisbane/59/2007, and several others.
Although the maturation patterns were similar across several of
the strains, the affinities measured against H1 A/Brisbane/59/2007
were generally higher (15). The infection study was performed in
2008, so previous infection in the subject with influenza strains
circulating in 2007 is consistent with this observed reactivity to
H1 A/Brisbane/59/2007.

The recovered mAb in this clonal lineage were mostly IgM with
a single member that was IgA1, and all the members had a degree of
somatic hypermutation consistent with one or more prior rounds
of antigen-driven germinal center maturation. Recent work by
Pape et al. (23) has shown that in mice IgM-memory B-cells and
class-switched memory B-cells have different circulation kinet-
ics, such that IgM-memory B-cells persist after class-switched
memory B-cells have disappeared from circulation. Furthermore,
upon restimulation with antigen, IgM-memory B-cells were less
likely to produce a secondary response in the presence of antigen-
specific plasma antibody. Thus, it is interesting that the members
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of this clonal lineage bind to various previously circulating strains
including the older H3 A/Johannesburg/33/1994 strain, that the
antibodies were predominantly IgM, were hypermutated, and did
not significantly contribute to the plasma antibody pool 4 weeks
after experimental infection (15). All these findings suggest that
this lineage is an example of such an IgM-memory B-cell clone
isolated from an influenza-infected human subject.

Like other Darwinian processes, affinity maturation arises in
the interplay between the generation of diversity and the subse-
quent selection of fitter variants. Affinity maturation, however, is
a somatic process; properties of the germline gene segments that
facilitate efficient maturation are preserved for the next germline
generation (8). Thus, mutation and selection in affinity matura-
tion are very strongly intertwined with mutations that are more
likely on average to confer advantage, produced more frequently
than those that are more likely on average to confer disadvantage.
This circumstance has a practical consequence, complicating the
analysis of selective pressure. We have overcome that problem by
estimating the relevant characteristics of somatic hypermutation
from a collection of human heavy chain genes rearranged out of
frame and insusceptible to selection.

SELECTION AND MUTABILITY SYNERGIZE DURING AFFINITY
MATURATION TO HA
The local codon bias that is present in Ig V-gene segments and
increases mutability in the CDR creates a strongly non-uniform
probability distribution over the links between Ig genes in the
genotype space (Figure 4). Each of the Ig genes at the nodes of
this space has an effective affinity for the antigen HA associated
with it, which presumably determines the relative fitness of B-
cells expressing the antibody encoded by that gene. Because of
the mutational bias, from any starting node there are preferred
nodes, which are visited with greater probability and in less time
on average, than others. The question addressed here is whether
the sequences more likely to be visited during somatic hypermuta-
tion because of this bias are also more likely to encode antibodies
that confer a selective advantage.

Figure 4 is a simple cartoon intended to illustrate the idea. The
grid represents the genotype space (although the topology is not at
all realistic). The dark arrows indicate the directions of preferred
mutations. We consider the node 1 to be the starting node. The
other nodes 2–4 are each six mutations away from node 1, but they
differ in the number of non-preferred mutations that are required
to reach them. In the real system, we can estimate the mutation
rate for each link, and in particular can estimate the mutation
rates over the links connecting the nodes actually occupied during
affinity maturation. We also have measured the affinity at each of
these nodes, and know that they represent increases over time. So
the question is, “are the visited nodes largely close to the preferred
paths (as are nodes 2 and 3 in Figure 4), or randomly placed with
respect to the preferred paths (illustrated by node 4)?”

We expect that such correlation between mutational prefer-
ence and selective advantage holds on average over the history
of antigens encountered by the gene segment in question. It is
hypothesized that this is the reason why such local codon bias
exists in the first place. The question addressed here is whether
such a correlation exists, not on average, but in this particular
instance, for this one specific antigen.

FIGURE 4 | Simplified illustration of genotype space with preferred
directions. Each node is a DNA sequence, and neighbors differ by one
nucleotide. The dark arrows show preferred directions, meaning the
mutation along the direction of the arrow occurs at a higher rate than
mutations along the regular paths. The nodes labeled 2, 3, and 4 are all six
steps from node 1, but differ in the number of non-preferred steps that
must be taken to arrive there from 1.

The mutability is defined at each nucleotide position as the
probability of a mutation at that position conditional on there
being exactly one mutation in the gene, and no selection on the
gene product. In the presence of selection, the probability that
a mutation will be fixed is the product of the probability that
the mutation occurs at all and the probability that, once it has
occurred, it is preserved through selection. The hypothesis we are
testing is that the second of these probabilities, the probability
of preservation, is itself functionally depending on the mutability.
The order of the causality would be that the mutabilities have been
adjusted, largely through codon usage, to make evolution toward
the potentially advantageous genes more rapidly and more reliably.

We address the question in Figure 5, which shows the empir-
ical cumulative distribution plots of synonymous and non-
synonymous mutations as a function of mutability, compared
to three theoretical models: zero order (mutability has no influ-
ence, even on the probability of having a mutation in the first
place), first order (mutability has the influence expected under
selection-free conditions), and second-order (probability of selec-
tion is directly proportional to mutability). The plots show that
the synonymous mutations are consistent, as expected, with the
first-order model. Indeed, this plot should be regarded as a test of
the accuracy of the estimated mutability, which appears to be ade-
quate, although the mutabilities of the higher-mutability positions
may be somewhat over-estimated. In contrast, the observed non-
synonymous mutations fall between the first- and second-order
curves, consistent with synergy between local codon bias and
selection. Figure 5 is merely suggestive; the direct test of the rele-
vant hypothesis (Model 4 vs. Model 6) provides stronger evidence.
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FIGURE 5 | Cumulative distribution function (CDF) of mutability
among observed mutations (black), and corresponding to three
models: order 0 (no effect of mutability at all, blue), order 1
(consistent with selection random with respect to mutability,
magenta), second order (selection proportional to mutability, red).

Note that the observed CDF for synonymous mutations is
approximately consistent with the order one model, and falls between
the order zero and order one curves in any case. The CDF for
non-synonymous mutations falls between the order one and order two
curves.

This test says that the influence of mutability on the survival of
a mutation depends on the type of mutation, whether synony-
mous or non-synonymous. If the mutation is non-synonymous,
the mutability has greater positive predictive power than that of
synonymous type.

CONCLUSION
Strikingly, despite the fact that the dissociation constant changed
by three orders of magnitude from the common ancestor to the
observed mature antibodies, the distribution of mutations is heav-
ily biased toward those with high intrinsic mutability, suggesting
that selection worked in synergy with local codon bias in the mat-
uration of CL2569. This analysis suggests that affinity maturation
is strongly constrained to occur by mutational diffusion along
preferred paths in genotype space, with selection acting nega-
tively on genotypes in this network that fail to confer enhanced
antigen-binding affinity. There is no evidence for selection pulling
the evolving clone substantially out of the mutationally preferred
paths.

There are many highly effective vaccines that work through
the induction of a potent humoral response, but there are many
devastating infectious diseases for which no effective vaccine is
yet available in spite of intense research efforts, including malaria,
hepatitis C,and HIV-1. The agents of these diseases do not typically
elicit protective natural immunity, so new approaches to vaccine
development may be indicated. One such approach is predicated
on the observation that the efficiency of immunogen stimula-
tion of germinal center naïve and intermediate B-cell antibodies
is determined by immunogen affinity for B-cell precursor B-cell
receptor (24–26). Design of immunogens with high-affinity bind-
ing for antibody UAs and their intermediates is now possible with
the computational methods described in this study (27). It is our
hope that the emerging understanding of the intertwined mech-
anisms of diversification and selection in affinity maturation will
open new avenues for vaccine engineering.

MATERIALS AND METHODS
STATISTICAL AND COMPUTATIONAL
All analyses and computational manipulations were performed
using software developed in the Kepler laboratory.

ELISA data analysis
The data from the ELISA dilution series were fit to a Hill function
with Hill coefficient= 1 and additive background (28). The maxi-
mum value of the optical density and the value of the background
optical density were taken to be equal over all wells on a given
plate.

Inference of unobserved antibodies: ancestral rearrangement and
maturation intermediates
We compute the posterior probability mass function on the
nucleotides at each position of the unmutated common ances-
tor given the set of clonally related observed Ig genes of CL2569,
as described in detail in Ref. (13).

Inference of somatic hypermutation sequence specificity
We searched NCBI Genbank for rearranged human Ig heavy-chain
variable-region genes and retrieved and validated 34,546 genes. We
eliminated genes with possible clonal relatives in the set by ran-
domly eliminating all but one of each sequence within groups
likely to be clonally related. Two antibodies were considered likely
to be related if they shared the same inferred IGHV and IGHJ
genes (without regard to allele) and shared at least 75% nucleotide
identity in CDR32. From these, we selected those that were likely to
have been rearranged out of frame as evidenced by the number of

2This is admittedly a crude estimation procedure, but sequence set is small enough
that we expect few if any errors from its use. Furthermore, we are unconcerned about
falsely excluding unrelated sequences, which is the only likely error to be made by
this method. Finally, the proper statistical procedure for testing clonal relatedness is
sufficiently complex (Thomas B. Kepler, in preparation) that to put aside the space
in a paper that does not require its full power would be distracting.
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nucleotides between the intact invariant cysteine in VH FR 3 and
the intact invariant tryptophan in JH being other than a multiple
of three.

By counting frame-shift mutations in the VH-encoded part of
the gene, which have resulted from somatic mutations or sequenc-
ing error, we estimate the likely number of genes that would have
frame-shift mutations in CDR3 to be about 195 genes. That is
about 11% of our candidate non-productively rearranged genes
are likely to have been rearranged in-frame and to have acquired
their frame-shift mutations subsequently.

To ameliorate the impact this contamination could have on the
downstream analysis, we removed all genes inferred to have been
rearranged to a VH1 family member. The reason for this filter-
ing step is that the positions of pentanucleotides in the remaining
sequences will be significantly de-correlated from the positions of
the corresponding pentanucleotides in the target sequences, which
are rearranged to a VH1 family member.

After this filtering step, 1707 sequences remained, containing
9961 nucleotide substitutions in 423,654 total bases.

The mutation frequency for the central position at each pen-
tanucleotide motif was computed by scanning each inferred UA.
Of the 45 (1024) possible pentanucleotides, 938 motifs were
present in the total dataset, 922 in the out of frame dataset. Of
the motifs with at least 100 observations among the UAs in the
non-productive set, 24 of them had no mutations. In contrast, the
motif AGCTA, which is consistent with the canonical “hot-spot”
RGYW, was mutated at the center position 112 out of 618 times
for a frequency of 18%.

For comparison to other such datasets previously assembled, we
also computed the trinucleotide mutation frequencies. The spear-
man correlation between our trinucleotide mutation frequen-
cies and the corresponding mutability indices from unselected
sequences in the study by Shapiro et al. (29) is 0.80, indicating a
high level of agreement between the two sets.

Rather than use, the raw count ratios for the mutability and
mutation spectrum estimates directly (which is likely to result in
over- or under-fitting),we chose to fit these data to a variable-motif
length model using regression trees. The first statistical treatment
of sequence specificity in somatic mutation produced hot-spot
motifs of different lengths (7) and it seems natural to fit such a
model now that much more data are available.

The end result of this estimation procedure is a set of nucleotide
motifs that are mutually exclusive and complete (every nucleotide
in any DNA sequence will belong to exactly one motif) to each
member of which is assigned a mutation rate. Each motif may be
up to 5 nt long. The procedure is as follows.

Each node in the decision tree contains a pentanucleotide motif
of the form n1, n2, n3, n4, n5 in which each ni= {A, G, T, C, R, Y, S,
W, N} where R, Y, S, W, N are the IUPAC symbols respectively for
purine (A or G), pyrimidine (T or C), weak (A or T), strong (G or
C), and any (A, G, T, or C) nucleotide.

The function to be maximized, the objective function, is the
log of the marginal likelihood summed over all nodes in the tree.
The overall likelihood is the product of the binomial likelihoods at
each node. At each node, the prior distribution on mutations is a
beta distribution with parameters α= 1,β= 47. The beta distribu-
tion is chosen because it is conjugate to the binomial distribution,
and the specific parameters are chosen because they maximize the

information entropy at the observed average mutation frequency
in the set, 2.1%. As such, this prior is the most uninformative prior
consistent with the average mutation frequency.

The marginal likelihood for a node with m mutations and u
unmutated bases is computed by integrating over the mutation
probabilities in the product of the likelihood and prior density
functions giving:

LMU (m, u|α, β) =
Γ (α+m) Γ (β+ u) Γ (α+ β+ 1)

Γ (α) Γ (β) Γ (α+ β+m + u + 1)
(3)

where Γ is the gamma function.
The tree-building algorithm is greedy, choosing the best avail-

able split at each node. Allowed splits at any step in the algorithm
at any single position in the motif are as follows:

N → R/Y , N → S/W , R→ A/G, Y → T/C ,

S → G/C , W → A/T .

This scheme ensures that each pentanucleotide is mapped to
exactly one terminal node on the tree at all stages of the proce-
dure. A node is declared terminal if the product of the marginal
likelihoods for the two daughter nodes in the optimal split is less
than the marginal likelihood of the parent node, that is, if the
likelihood cannot be increased any further at that node.

The result of applying this process to our count data is a tree
with 55 terminal nodes. Among these, the one with the lowest rela-
tive mutability is withYTGGS with posterior mean p̂= 7.9× 10−4.
The AID “hot-spot” motif AGCT is assigned to the NAGCW node,
with p̂= 8.8× 10−2.

Regression model for the dependence of selection on mutability
The model scheme for analysis of selection is described in the main
text. The data used are all nucleotide position in the heavy-chain
variable regions up to and including the nucleotides of the FR3
invariant cysteine codon. The fitting of parameters by maximum
likelihood was performed by numerical optimization using the
Nelder–Mead simplex algorithm using a software implementation
based largely on that described in Numerical Recipes (30).

Statistical hypothesis tests are based on the likelihood ratio test
when models are nested. Model comparison is done by differential
AIC expressed as relative likelihoods (31).

EXPERIMENTAL
Clinical protocol
The clinical EI protocol study was performed at Retroscreen Virol-
ogy Ltd. (Brentwood, UK) as previously described (32) using a
protocol approved by their local ethics board and the Duke IRB.
Subjects were prescreened and provided informed consent before
being given a nasal challenge with influenza A/Wisconsin/67/2005
(H3N2) challenge stock manufactured under current good man-
ufacturing practices by Baxter BioScience (Vienna, Austria).
Intranasal challenge was given using 103.08 TCID50 to subject EI13
from whom the antibodies described in this study were derived. In
this protocol, blood was drawn before challenge, then daily on days
0–7, and on day 28 after challenge. Symptoms were recorded twice
daily using a modified Jackson scoring system (33). Productive
infection was confirmed by active viral shedding detected by assays
of nasal washes obtained during the 7-day quarantine period.
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Single-cell flow cytometry sorting strategy
Human peripheral blood mononuclear cell samples collected
7 days after infection with A/Wisconsin/67/2005 (H3N2) were
labeled with panels of fluorochrome-antibody conjugates specific
for human CD3 (PE-Cy5), CD16 (PE-Cy5), CD19 (APC-Cy7),
CD20 (PE-Cy7), CD27 (Pacific Blue), CD235a (PE-Cy5), IgD
(PE), IgM (FITC) (all, BD Biosciences, San Jose, CA, USA), CD14
(PE-Cy5), and CD38 (APC-Cy5.5) (both Invitrogen, Carlsbad,
CA, USA). Plasma cells/plasmablasts were sorted into 20 µl/well
RT/PCR buffer in 96-well plates as described (10, 12) by gating
on CD3− CD14− CD16− CD235a− CD19+ CD20−/lo CD27hi

CD38hi cells. All antibody reagents were tittered and used at
optimal concentrations for flow cytometry.

PCR amplification of plasmablast/plasma cell immunoglobulin VH
and VL variable-region genes
The Ig VH and VL variable-region genes of the sorted plas-
mablast were amplified by RT and nested PCR using the method
as reported (11). The PCR products amplified by this method
contain enough coding region sequences for the constant regions
of either heavy- or light-chain genes for allowing the identifi-
cation of IgH subclass and light-chain types (12). Isolated VH
and VL variable-region genes were used to assemble full-length
Ig IgG1 heavy- and light-chain expression cassette by overlap-
ping to express recombinant IgG1 antibodies using the method as
described (12).

Expression of VH and VL variable-region genes as IgG1 recombinant
mAb
The isolated Ig VH and VL gene pairs were assembled by PCR into
the linear full-length Ig heavy- and light-chain gene expression
cassettes for production of recombinant mAbs by transfection in
the human embryonic kidney cell line, 293T (ATCC, Manassas,
VA, USA) using the methods as described (12). The purified PCR
products of the paired Ig heavy- and light-chain gene expression
cassettes were co-transfected into near confluent 293T cells grown
in 6-well (2 µg of DNA for each cassettes per well) tissue culture
plates (Becton Dickson, Franklin Lakes, NJ, USA) using PolyFect
(Qiagen, Valencia, CA, USA) or Effectene (Qiagen Valencia, CA,
USA) using protocols recommended by the manufacturers. Six to
eight hours after transfection, the 293T cells were fed with fresh
culture medium supplemented with 2% FCS and were incubated
at 37°C in a 5% CO2 incubator. Culture supernatants were har-
vested 3 days after transfection and quantified for expressed IgG
levels and screened for antibody specificity.

Antibodies that bound HA in a screening assay as well as the
inferred UA and intermediate clonal antibodies were produced
on a larger scale so that screening assays could be replicated and
broadened to more fully define the range of binding activity of
expressed plasma cell derived-antibodies. Purified recombinant
antibodies were produced in bulk cultures by transient trans-
fection using Ig heavy- and light-chain genes cloned in pcDNA
plasmids (12). The Ig heavy- and light-chain gene expression
cassettes used for production of recombinant antibodies for ini-
tial screening were cloned into pcDNA 3.3 (Invitrogen, Carlsbad,
CA, USA) for production of purified recombinant mAbs using
standard molecular protocol, and co-transfected into 293T cells

cultured in T175 flasks using PolyFect (Qiagen, Valencia, CA,
USA) or polyethylenimine (34), cultured in DMEM supplemented
with 2% FCS. Recombinant mAbs were purified from culture
supernatants of the transfected-293T cells using anti-human Ig
heavy-chain-specific antibody–agarose beads (Sigma, St. Louis,
MO, USA) using the method as previously described (12, 34).
Purified antibodies used in the study were confirmed having typi-
cal patterns of predominant whole IgG in SDS-PAGE and Western
blots under reducing and non-reducing conditions (12).

Binding antibody multiplex assay
Concentration of recombinant mAbs secreted in the transfected-
293T cell culture in the supernatants was determined using
a method previously described (12). The expressed recom-
binant mAb were assayed for antibody reactivity by a stan-
dardized binding antibody multiplex assay (35) performed in
a GCLP compliant manner. Binding specificities to influenza
vaccine 2007 (Fluzone® 2007), trivalent influenza vaccine
2008 (Fluzone® 2008), and baculovirus-derived HA proteins
(H1N1 A/Brisbane/59/2007, H1N1 A/California/04/2009, H1N1
A/Solomon Islands/03/06, H3N2 A/Brisbane/10/2007, H3N2
A/Johannesburg/33/1994, H3N2 A/Johannesburg/33/1994, H3N2
A/Wisconsin/67/05, B/Florida/04/06; Protein Sciences, Meriden,
CT, USA) were determined using purified mAb diluted serially
starting at 50 µg/ml.

ELISA data analysis for estimation of Kd

Purified mAb prepared at known concentrations were evaluated by
ELISA against baculovirus-expressed purified hemagglutinin (H1
A/Brisbane/59/2007; Protein Sciences, Meriden, CT, USA). Sam-
ples were diluted serially for the analysis and data were analyzed
using the model

yi = log

[
α+ (β− α)

ci

Kd + ci

]
+ εi (4)

where yi is the log of the optical density measured at the ith dilu-
tion, α is the background optical density, β is the maximum optical
density,K d is the equilibrium dissociation constant, ci is the known
concentration of analyte at the ith dilution, and the ε are indepen-
dent, identically distributed Gaussian errors. For each antibody
studied, the parameters of this model were fit using software
developed for the purpose (28).
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Datasheet 1 | Sequence alignment for CL2569 heavy chain, including
observed and inferred sequences.

Datasheet 2 | Sequence alignment for CL2569 light chain, including
observed and inferred sequences.

Datasheet 3 |Tables of results for sequence specificity of mutation
frequency.
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INTRODUCTION
Antibody (Ab) affinity maturation (AAM)
referred originally to the observed increase
in average Ab affinity against a hapten (1).
Later, it was found that AAM is associated
with the formation of transient lymphoid
structures in the B cell zones of lymphoid
tissues, called germinal centers (GC), dur-
ing T-cell dependent immune responses in
higher vertebrates (2).

In another line of research, AAM was
related to the occurrence of mutations in
the variable (V ) domain of Ab heavy (H )
and light (L) chains, respectively, VH and
VL. In those works, a mutational analysis
of Ab V genes was performed, initially on
bulk splenic plasma B cells and later on GC
B cells vs. extrafollicular B cells, after suc-
cessive immunizations. The results showed
typically an increased number of mutated
GC B cells (3–6), and an accumulation of
mutations per Ab chain during the ongoing
immune response, with many mutated B
cells displaying higher affinity for the hap-
ten used for immunization. This provided
strong support to a previously suggested
concept (7), according to which AAM is
a B-cell receptor (BCR)-based Darwinian
evolutionary process.

A few years later, two complementary
hypotheses were proposed. The first one,
based on a mathematical model, suggested
that, for the fastest production of high
affinity Abs, the mutation rate in GC B
cells should be minimal before GCs reach
a threshold size, and then switch abruptly

to the maximal possible rate (8). The sec-
ond hypothesis proposed, for the assumed
Darwinian process, alternating cycles of B
cell proliferation plus mutation plus selec-
tion (9). These ideas were soon extended in
another modeling work, showing that Ab
affinity can be maximized when the muta-
tional mechanism switches on and off reg-
ularly (10). These results contributed con-
siderably to strengthen the general belief
in the recycling or multiple-step selec-
tion hypothesis. On the other hand, more
recently, alternative B cell selection mech-
anisms were proposed that do not require
multiple-step selection in order to be com-
patible with observed levels of Ab affin-
ity increase during a primary immune
response (11, 12).

There is still much to learn about AAM
mechanisms (13–17), and there is a need
to clarify some aspects of the GC phys-
iology where overinterpretation and pre-
conceptions prevail (18, 19). The multiple-
step selection hypothesis is a prominent
example of a concept that, having impor-
tant basic and practical implications, has
never been confirmed. Clearly, a direct
way to establish it would be to observe
multiple BCR-mediated selection events
by tracking individual B cells via imag-
ing of lymphatic tissue, observing SHM
taking place between selection rounds.
However, direct observation of even one
selection event is not yet possible. At the
same time, attempts to interpret indi-
rect data must be faulty due to the need

to use unverified assumptions on AAM
mechanisms.

Therefore, we take here a radically dif-
ferent approach: we propose to consider the
single-step selection concept to be a null-
hypothesis which should be attempted to
be falsified (Figure 1). Because this ansatz
puts the focus on a process of random non-
directed acquisition of mutations, it mini-
mizes the need for unverified assumptions.
And because mutations carry the signature
of the selection process, the data to be used
should consist of Ab V gene sequences.
In the following, we examine two possible
falsifying strategies.

FALSIFYING THE NULL-HYPOTHESIS
WITH PHYLOGENETIC TREES
Let us consider all mutated VH or VL

sequences belonging to a given B cell lin-
eage. The corresponding phylogenetic tree
is a result of the evolutionary process
undergone by the initial sequence, and as
such, is shaped by the various factors per-
taining to the affinity maturation process.

Extensive work was performed on devel-
oping methods to build phylogenetic trees
from V genes of a common lineage (20)
and to analyze how shape measures depend
on AAM mechanisms (21, 22). These simu-
lations show that the tree shapes vary most
on the initial clone affinity and the selection
threshold, and much less in dependence on
the rates of GC B cell recycling (22), not
allowing for a unique mapping from tree
shapes to selection mechanisms – likely
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FIGURE 1 | Sketch of proliferation plus SHM and selection history of
a plasma or memory cell. (A) Single-step selection. Several cell division
plus mutation cycles and a single final selection step before terminal
differentiation into a plasma or memory cell. (B) Multiple-step selection.

Several alternating rounds of cell division plus mutation and selection
[corresponding to several rounds of (A)], followed by terminal
differentiation into a plasma or memory cell after the last selection step.
Vertical bars indicate mutations.

because the investigated trees were small.
In addition to global measures not always
being helpful in pointing to mechanisms
at the micro-evolutionary scale (15, 23,
24), simulation of global measures like
peak total GC B cell numbers did not lead
to results that contradict the single-step
hypothesis (22).

Summing up, the null-hypothesis has
never been falsified by examining the
shapes of phylogenetic trees.

FALSIFYING THE NULL-HYPOTHESIS BY
COUNTING RECURRENT MUTATIONS
Let us consider a thought experiment, in
which two syngeneic mice with a single,
non-mutated B cell clone expressing the
same V genes, are immunized with the
same antigen, and that both mice initiate
a process of AAM in which the selection
forces acting on the diversified V sequences
are identical. Let us further assume that
the baseline mutability during SHM is
uniformly distributed along rearranged V
genes and independent on the time elapsed
after immunization. After a number of
days, a sample of Ab V genes is sequenced

and an independent set of V sequences is
obtained for each mouse. As a result of
the stochastic nature of SHM, the muta-
tion distribution in both sets may be quite
different. If nevertheless an identical set
of mutations appears in both independent
data sets, we call it a recurrent mutation
pattern.

How likely is it to find a recurrent
mutation pattern? Assuming that the AAM
process in our mice followed a single-step
selection scheme (Figure 1A), we can make
a first rough estimation. Consider the prob-
ability pL

k to obtain a particular pattern
of k mutations out of all possible pat-
terns of k mutations, which is pL

k =
1

M L
k

,

with M L
k = 3k

× (L
k ) being the number of

possible mutation patterns of size k, and
L being the V sequence length. When an
Ab V gene of length L= 300 and k muta-
tions is produced by the SHM process, the
probability that the outcome is a particu-
lar mutation pattern is p300

1 ≈ 10−3 for
k = 1, and p300

2 ≈ 10−6 for k = 2. During
an AAM process, thousands of mutated
B cells are generated in a mouse; hence,
the probability of finding a given mutation

pattern of size k among all mutated B cells

is 1− (1− p300
k )

N
, where N is the number

of B cells with k mutations. Let us assume
that N = 105 B cells got k = 2 mutations.
Then, as a crude estimation, the proba-
bility of a given mutation pattern of size
k = 1 and k = 2 among all those B cells

is, respectively, 1 − (1− p300
1 )

105

≈ 1 and

1 − (1− p300
2 )

105

≈ 0.1. This means that
recurrent mutation patterns of such a small
size are rather likely to appear in a single-
step setting, and are therefore not suitable
to contradict the null-hypothesis.

However, for k = 5, the probability of
obtaining a particular mutation pattern
by chance among 105 B cells is only 1 −

(1− p300
5 )

105

≈ 2×10−8. Hence it is highly
improbable that both mice in our thought
experiment could produce, by a single-step
process, the same recurrent mutation pat-
tern. On the other hand, in a multiple-step
selection process, single mutations can be
selected one by one (Figure 1B). There-
fore,finding recurrent mutation patterns of
that size or larger would be consistent with
a multiple-step scheme while deeming the
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single-step null-hypothesis highly improb-
able. Admittedly, the above is a simpli-
fied probability calculation. A more realis-
tic estimation, based on calculations that
include reversions and different baseline
mutabilities, does not change the above
conclusions (see Supplementary Material).

Data from experiments along the main
idea of our thought experiment do exist.
For instance, Rag1−/− double transgenic
mice for Ab H and L chains are available
(25). Also, hapten-conjugated proteins can
yield a large percentage of canonical V gene
sequences (3).

In a survey, we found a number of
publications that present Ab V sequences
obtained from syngeneic mice under the
same immunization protocol (3, 4, 26–31).
In all the data analyzed so far we could
not find a single instance of mutated V
sequences from GC B cells sharing three or
more mutations. Also, a substantial set of
independent murine VH genes with a com-
mon VH germline sequence was recently
collected from literature and examined for
recurrent patterns (32). The search yielded
not a single case of shared triplets.

In summary, to our knowledge, there is
no published independent sequence data
that contradicts the single-step hypothesis.

CHALLENGE FOR FUTURE RESEARCH:
TRYING TO FALSIFY THE SINGLE-STEP
HYPOTHESIS WITH
HIGH-THROUGHPUT SEQUENCE DATA
A clear understanding of AAM requires
answering the question whether the single-
step or the multiple-step selection hypoth-
esis hold. A straightforward approach
would be direct observation of SHM and
Ab-mediated selection events via in vivo
imaging, but this is technically not yet
possible. Similarly daunting is to try to
infer the frequency of selection steps from
indirect observations while making use of
non-validated assumptions.

Our proposal of falsifying the single-
step null-hypothesis provides a way out.
This hypothesis does not preclude the
knowledge of any mechanisms besides the
stochastic process of SHM. Moreover, this
knowledge does not need to be highly
precise because an upper estimation of
probabilities under the null-hypothesis can
suffice.

Therefore, examining Ab V gene
sequence data with the aim of falsifying

the single-step hypothesis is a powerful
technique.

Next generation sequencing currently
allows to obtain suitable Ab V gene
sequence data (33, 34). One strategy for
the search of contradictions is to calculate,
under the null-hypothesis, the probability
distribution of recurrent mutation patterns
acquired independently.

A detailed calculation of probability dis-
tributions is shown in the Supplementary
Material. It allows to estimate that, for given
realistic parameters (see Table therein), the
probabilities of observing recurrent pat-
terns are much lower than 0.05. In case of a
very strict multiple-step selection, the null-
hypothesis can potentially be contradicted
with very few sequences.

This strategy can be pursued both for
independent and same-lineage V gene
sequence sets. In the latter case, the proba-
bility calculation must be performed exclu-
sively for recurrent patterns that cannot
possibly stem from common ancestors.

Another strategy comprises trying to
contradict the null-hypothesis by exam-
ining the structure of a same-lineage
V sequence population for signs of a
directed multi-step process as in contrast
to an undirected, random process. Such
signs can be, for instance, the emergence
of independent quasi-species (35), or of
coalescence times typical to multi-step
processes (36).

These methods require however: (i) that
the AAM process has been ongoing long
enough for population structures to have
emerged, and (ii) that enough sequences
can be retrieved to make these structures
visible. It is well possible that times are too
short and clonal sizes too small to provide
this sort of data.

No matter which strategy turns out
to be the best, important challenges are
still open. For instance, present meth-
ods of calculating the pairwise probability
that sequences pertain to a common or
to a different B cell lineage (32) need to
be improved, especially where short junc-
tional regions make identification of lin-
eage difficult. With such an analysis work-
ing, different independent Ab V sequence
sets can also be retrieved from the same
individual. A further challenge consists
of devising estimators of the recurrent
mutation pattern probability distributions
adequate to the respective experimental

setup. Good estimations of baseline muta-
bility would be helpful; however, using
upper estimations of probability might be
sufficient.

For pinning down the actual AAM
process, it is not advisable to examine
data sets that include sequences of mem-
ory cells, to avoid the risk of analyzing
repeated rounds of immunizations against
the same or different antigens. Thus, the
design of experiments that consider both
the anatomical compartment from which
B cells are taken and strategies that maxi-
mize the size of data sets, poses a challenge
as well.

While multiple-step selection points to
AAM as an accelerated molecular evolution
process maximizing Ab affinity increase,
single-step selection points at an optimiza-
tion process of Ab repertoires in which both
Ab affinity enhancement and diversifica-
tion can be equally relevant (14, 17, 37).
Striving to discover which is right must
be a priority to those interested in unveil-
ing AAM mechanisms. Trying to falsify the
single-step hypothesis is not easy and might
be even impossible – for instance, if the
underlying process is indeed a single-step
one. But it is, in our opinion, the only
viable way.
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The diversity of the human antibody repertoire that is generated by V(D)J gene rearrange-
ment is extended by nine constant region genes that give antibodies their complex array
of effector functions. The application of high throughput sequencing to the study of V(D)J
gene rearrangements has led to significant recent advances in our understanding of the
antigen-binding repertoire. In contrast, our understanding of antibody function has changed
little, and mystery still surrounds the existence of four distinctive IgG subclasses. Recent
observations from murine models and from human studies ofVDJ somatic point mutations
suggest that the timing of emergence of cells from the germinal center may vary as a con-
sequence of class switching.This should lead to predictable differences in affinity between
isotypes.These differences, and varying abilities of the isotypes to fix complement and bind
FcRs, could help coordinate the humoral defenses over the time course of a response. We
therefore propose a Temporal Model of human IgE and IgG function in which early emer-
gence of IgE sensitizes sentinel mast cells while switching to IgG3 recruits FcγR-mediated
functions to the early response. IgG1 then emerges as the major effector of antigen clear-
ance, and subsequently IgG2 competes with IgG1 to produce immune complexes that
slow the inflammatory drive. Persisting antigen may finally stimulate high affinity IgG4
that outcompetes other isotypes and can terminate IgG1/FcγR-mediated activation via the
inhibitory FcγRIIB. In this way, IgG antibodies of different subclasses, at different con-
centrations and with sometimes opposing functions deliver cohesive, protective immune
function.

Keywords: IgG subclasses, humoral immunity, class switching, affinity maturation, IgE, antibody function, B cell
differentiation

It is almost 50 years since the complete set of human antibody
isotypes was first described (1). For over 30 years, associations
have been explored between antibody classes and subclasses and
the response to particular pathogens (2). And for almost 30 years,
the relationships between cytokine production and antibody class
switching have been reported (3). Other rich sources of data that
have guided thinking about antibody isotype function have been
studies of immunodeficiencies, and the disease susceptibilities
with which they are associated (2, 4). Yet despite literally thousands
of such studies, and despite significant insights into the particulari-
ties of humoral immunity, no proposal has emerged that describes
how IgG antibody subclasses and other antibody isotypes work
together to provide protective immune functions. Here we pro-
pose a Temporal Model of human IgE and IgG antibody function,
in which there is a programed order to the emergence of the dif-
ferent IgG isotypes that reflects their genomic organization, with
switching and emergence being promoted or delayed at different
critical points through the action of cytokines. We suggest that
early in the germinal center reaction, IgM+ B cells switch to both
IgE and IgG3. Subsequently, IgG1 cells switch and emerge, fol-
lowed by IgG2-committed cells and finally, if antigen persists, by
IgG4-producing cells.

The Temporal Model has its genesis in recent observations of
IgE-switched cells in the mouse. These studies suggest that the
IgE response is not usually a late development arising from an

expanded clone of IgG-committed cells that develops through the
germinal center reaction. Rather, it has been shown that IgE class-
switched murine cells usually develop and exit the germinal center
reaction in the early phase of an immune response, and that they
rapidly differentiate into plasmablasts and plasma cells (5, 6). The
IgE-secreting plasma cells carry fewer somatic point mutations in
their rearranged V(D)J genes than IgG-secreting plasma cells (6),
and as a consequence their secreted antibodies are likely to be of
lower affinity.

There can be no doubt that IgE antibodies can also be produced
late in a response. Recent studies have confirmed the existence of
high affinity IgE, and of sequential switching to IgE within the
germinal centers of mice (7, 8). No attempt has been made here
to incorporate such late IgE into the model. The functions of
secretory IgA in mucosal secretions and of serum IgA are also not
considered, but the temporal model provides a coherent view of
the separate and joint activities of early IgE and the IgG subclasses.

Reports of early IgE in murine models provide a new perspec-
tive from which to consider some unusual features of human IgE
antibody gene sequences. We have shown that IgE-associated VDJ
genes from non-allergic individuals carry very few somatic point
mutations, and some IgE sequences carry no mutations at all (9).
In individuals with atopic dermatitis, unmutated sequences have
also been seen at relatively high frequency (10). In parasitized indi-
viduals, we have seen more highly mutated IgE sequences (11),
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Collins and Jackson IgG subclasses and immune function

but these sequences did not carry the pattern of mutations that
is considered the mutational signature of antigen selection within
the germinal center reaction (12). In some, though not all allergic
conditions, IgE sequences also lack this pattern of mutation (9, 10).

These studies can be understood if IgE class switching in
humans, as in the mouse, can occur early in the germinal cen-
ter reaction, and if such switching is rapidly followed by the
differentiation of IgE-switched cells into plasmablasts that leave
the germinal centers. Some continuing accumulation of somatic
point mutations might then take place, outside the germinal cen-
ters (13). This would give the mutations in those IgE sequences a
distinctly different pattern to that which is seen in IgG sequences
that emerge after multiple rounds of selection within the germinal
centers. Such selection typically leads to an accumulation of non-
synonymous (replacement) mutations in the complementarity
determining regions of the antibody genes (12).

In the context of invasion by pathogens, the production of early
IgE antibodies could allow widely dispersed mast cells to function
as sentinel cells (14), alerting the immune system to further incur-
sions or spread of the pathogens. Early IgE could function in this
way,despite its low affinity,because low affinity IgE has been shown
to function well on the surface of mast cells and basophils, if it is
directed against multiple epitopes on multivalent antigen (15, 16).

If class switching to IgE is rapidly followed by departure of
cells from the germinal center, the possibility that switching to
other isotypes may lead cells to follow other distinct developmen-
tal pathways cannot be ignored. We have therefore reconsidered
the functions of human IgG subclasses, and this has been done
in the light of our observations of somatic point mutations in
antibodies of different IgG subclasses. These observations provide
the broadest possible overview of humoral immunity. In an analy-
sis of almost 1,000 VDJ genes isolated from people living in an
area of endemic parasitism, a surprising and statistically signifi-
cant relationship was seen (11). IgG3-associated VDJ genes were
the least mutated VDJ gene sequences, and the mean number of
mutations seen in sequences associated with the other subclasses
corresponded to the position of each constant region gene within
the IGH gene locus. That is, IgG3 < IgG1 < IgG2 < IgG4.

We hypothesize that differences in mean levels of mutation
arise because human B cells tend to follow a programed sequence
of class switching and departure from the germinal center reac-
tion. We propose that cells first switch from IgM to IgG3, then to
IgG1 and to IgG2 and finally to IgG4 following the genomic order-
ing of the constant region genes (Figure 1). This is not to deny the
reality of alternative switch pathways under the influence of par-
ticular cytokines (17). We propose that class switching is driven
by underlying probabilities, and switching is linked to emergence
from the germinal centers, leading to the generalizable sequence
of the Temporal Model. Through changes in probabilities associ-
ated with the expression of adhesion molecules and chemokine
receptors, switching could be closely followed by emergence, or
emergence could follow variable periods of proliferation, muta-
tion, and selection within the germinal centers. The model does
not attempt to resolve the timing of these events for each isotype.

The Temporal Model has parallels with models of division-
linked phenotypic change, including class switching, which sug-
gest that predictable order can emerge from stochastic processes

FIGURE 1 |TheTemporal Model of IgE/IgG class switching and
departure from the germinal center reaction. A programed sequence of
sequential switching is highlighted, though alternative switch pathways are
also indicated. The timing of switching events and the emergence of
different cell types from the germinal center reaction is suggested by the
extent of somatic point mutations carried by the cells. Many cytokines may
act to promote or delay class switching, as indicated.

because of differences in the underlying probabilities of differ-
ent outcomes (18, 19). It also is in line with modeling of the
dynamics of murine division-linked isotype switching that sug-
gested that the outcome of isotype switching, under the indirect
influence of cytokines, is biased toward switching to the immediate
downstream neighboring constant region gene (20).

Though a simple relationship between mutation numbers and
affinity in any sequence cannot be assumed, accumulating muta-
tions are generally considered to give rise to higher affinity anti-
bodies through selection within the germinal centers (21). Sequen-
tial departure of cells from the germinal centers should therefore
ensure that antibodies of different isotypes have predictable dif-
ferences in affinity. This in turn should ensure that despite the
different isotypes having some opposing actions, and despite the
changing relative concentrations of the different isotypes over time
(22), all antibodies at the time of their production should be able to
play their assigned roles. It should also ensure that inflammatory
processes are tightly controlled, through the temporal coordina-
tion of antibodies that have striking differences in their abilities to
bind FcγR and to fix complement.

There is good evidence that the IgG3 response occurs early, is
relatively transient and is of relatively low affinity (22, 23). This
is supported by our sequencing study, for IgG3-associated VDJ
genes had the fewest mutations of the IgG subclasses (mean 17.7
mutations), 31% of the sequences had less than 10 mutations and
7% of the sequences had no mutations at all (11). We propose that
class switching to IgG3, the first IgG subclass gene in the human
IGHC locus, first brings beneficial FcγR-mediated defenses into
play. The accumulation of some somatic point mutations dur-
ing the differentiation of IgG3-committed cells should ensure that
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Collins and Jackson IgG subclasses and immune function

most IgG3 antibodies have experienced some affinity maturation,
and the specific physicochemical properties of IgG3 should mean
that the switch from IgM to IgG3 does not lead to a crippling loss
of binding avidity.

The principal “early” antibody, IgM, is able to provide use-
ful protection despite its low affinity, because of the multivalent
nature of secreted IgM, and because of its flexibility (24). The long
hinge region of IgG3 makes it the most flexible human IgG anti-
body (25). This should facilitate bivalent binding of high avidity
to repeated determinants on the surface of an invading pathogen.
As part of the early response, IgG3 antibodies would have to work
with IgM antibodies to efficiently trigger complement fixation and
engagement with FcγR-bearing cells. In fact, IgG3 has the highest
affinity of the IgG subclasses for C1q, the first component of the
classical complement cascade (26). It also has the highest affin-
ity for the FcγRIIIA and FcγRIIIB receptors, and its affinity for
FcγRIIA is second only to IgG1 (27).

The elongated hinge region makes IgG3 vulnerable to catab-
olism. IgG3 has a half-life of just 7 days (28) and shares a short
half-life with IgM (∼5 days) (29) and IgE (∼3 days) (30). This
rapid turnover of all three kinds of “early antibody” should facil-
itate the ever-increasing dominance, as a response progresses, of
higher affinity antibodies of other isotypes.

In our study of VDJ rearrangements, IgG1-associated sequences
were significantly more mutated than IgG3 sequences. The mean
mutation of VDJ utilizing the IgG1 gene, positioned immediately
downstream from IgG3, was 21.0 somatic point mutations, and
only 13% of sequences had fewer than 10 mutations (11). We
therefore suggest that IgG1-committed cells are the next cell type
to differentiate and depart the germinal centers. Although having
on average just three more mutations than IgG3 sequences, we sug-
gest that a number of days are likely to separate the average time
of departure of IgG3-committed cells and IgG1-committed cells.
It is generally accepted that mutations accumulate at the rate of
about one mutation per cell division (31), and centroblast division
time is thought to be around 7 h (32). It is likely, however, that as
increasing numbers of mutations accumulate, the probability that
further random mutations are beneficial is low (33). The speed
with which selected sequences accumulate mutations is therefore
likely to slow over the course of a response.

Class switching to IgG1 leads to the secretion of more highly
mutated, complement-fixing, FcγR-binding IgG antibodies that
often dominate the response to bacterial and viral invaders (34,
35). Certainly, IgG1 antibodies are the most abundant serum anti-
bodies (36). With their shorter hinge regions, IgG1 molecules lack
flexibility but with their higher affinity for antigen, even mono-
valent binding should be stable and effective. And with their high
affinity for C1q (26) and FcγRI, FcγRII, and FcγRIII (27), such
IgG1 antibodies would continue driving inflammatory processes
and antigen clearance.

Many studies report that IgG1 antibodies appear relatively early
in the immune response, and in fact IgG1 and IgG3 are often the
only IgG subclasses detected in a response (37, 38). This could
result from early antigen clearance preventing the appearance of
IgG2 and IgG4 antibodies. It could also reflect delays in down-
stream class switching as a result of the prevailing cytokine milieu.
T cell cytokines are often said to drive class switching to IgG1 and

IgG3 (39). Alternatively, they could be said to delay class switching
to IgG2 and IgG4, by their promotion of the IgG1 response.

IgG2 antibodies are the second most abundant serum antibod-
ies and the IgG2 gene is positioned immediately downstream of
IgG1. IgG2 antibodies are seen at concentrations that are compa-
rable to IgG1 antibodies, and that are much higher than the typical
serum concentrations of IgG3 and IgG4. In contrast to IgG1 anti-
bodies, IgG2 antibodies fix complement very poorly (40, 41) and
interact very weakly with FcγR (27). In our sequence study, IgG2
antibodies carried a higher mean number of mutations (22.0)
than IgG1 antibodies (21.0) (11). It is difficult to believe that this
higher level of mean mutations would lead to biologically sig-
nificant differences in mean antibody affinity, but certainly IgG2
antibodies must share high affinity with IgG1 antibodies. All these
features of the humoral response require explanation. In particu-
lar, any model of IgG subclass function must explain how IgG1 and
IgG2 antibodies, the two most abundant antibody isotypes, work
together to deliver protective immunity despite their diametrically
opposed properties.

We hypothesize that IgG2-committed cells emerge from the ger-
minal center reaction, on average, shortly after the development
of the IgG1 response. We further hypothesize that IgG2 func-
tions as an anti-inflammatory “partner” to more inflammatory
IgG1 antibodies, “dampening down” the inflammatory response
by its competition with the IgG1 isotype (Figure 2). Working
together, IgG1 and IgG2 antibodies could provide a spectrum of
activity, from the highly inflammatory “pure IgG1 response,” to
the “pure IgG2 response” that results in immune complexes that
cannot interact with FcγR-bearing cells or with molecules of the
complement system.

Mutation data suggests that IgG1 and IgG2 antibodies have
similar affinities. If this is the case, they will compete on a level
playing field, where antibody concentrations prevail. We propose
that the relative concentrations of IgG1 and IgG2 are the result of
the balance of cytokines that either promote or delay switching to
IgG2. These proportions will be seen in the immune complexes
that form during the response, and the outcome of varying pro-
portions of IgG1 and IgG2 antibodies will be immune complexes
having varying avidity for complement and for FcγR. IgG2 can
therefore be conceptualized as an anti-inflammatory brake on the
inflammatory actions of IgG1. In certain circumstances, switching
may occur quickly, leading to a response that is dominated by IgG2.
This could help explain reports that IgG2 dominates the antibody

FIGURE 2 | Immune complex formation over the course of a prolonged
immune response. The likely complement-fixing and FcγR-binding abilities
of immune complexes formed by antibodies of mixed isotypes are
indicated.
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response to carbohydrates response (42). In fact similar concen-
trations of IgG1 and IgG2 antibodies have often been reported in
response to carbohydrate antigens (43–45), and IgG2 antibodies
are also a conspicuous part of the response to many protein anti-
gens (46). It is clear that the chemistry of carbohydrate antigens
cannot explain the IgG2 response.

The human IgG4 response is often described as an anti-
inflammatory blocking response (47), but the apparent functions
of these antibodies have been difficult to reconcile with their
very low concentrations. We believe that their mode of action is
revealed by the levels of mutations that are seen in IgG4-associated
VDJ sequences. IgG4 is the most distal of the IgG subclass genes
within the heavy chain constant region locus. In our sequence
study, IgG4 antibodies carried the highest mean number of VDJ
mutations of the IgG subclasses (mean: 27.1), and no unmutated
IgG4-associated VDJ sequences were seen (11). This suggests to
us that IgG4-committed cells are (typically) the last cell type to
emerge from the germinal center reaction. They are therefore likely
to be the highest affinity antibodies. This is indirectly supported
by the circumstances in which IgG4 antibodies are conspicuous.
Serum IgG4 concentrations are elevated in chronic helminth and
other parasite infections (47). Serum IgG4 concentrations also rise
during allergy desensitization therapy, after repeated exposure to
low doses of allergen (47). They have also been reported in the
convalescent phase of the anti-viral response (35).

IgG4 antibodies do not fix complement and bind very poorly
to activating FcγR (27), but they bind to the inhibitory FcγRIIB
with an affinity that is higher than that of the other three IgG
isotypes (27). Critical to the blocking activity of IgG4, inhibition
is only mediated via the FcγRIIB receptor when immune com-
plexes co-engage FcγRIIB and other activating FcRs (48). Despite
high concentrations of specific antibodies of other isotypes, IgG4
should therefore block FcγR-mediated processes if it is present as
a modest proportion of all antibodies in an immune complex. The
high affinity of IgG4 should provide it with a competitive advan-
tage, ensuring its participation in immune complex formation,
and therefore allowing it to successfully act through FcγRIIB.

The ability of IgG4 antibodies to outcompete other isotypes
may also be facilitated by the phenomenon of Fab arm exchange.
In reducing conditions, IgG4 antibodies have the unique abil-
ity to dissociate into monovalent heavy/light chain pairs, and to
re-associate again as bivalent antibodies (49, 50). This Fab arm
exchange leads frequently to the formation of bi-specific antibod-
ies. It has been suggested that this would, in practice, lead IgG4
antibodies to be functionally monovalent, as Fab arm exchange
would be unlikely between antibodies of related specificities (49).
We believe an alternative explanation of the consequences of Fab
arm exchange could be the formation of blocking antibodies that
bind with very high avidity because of their bi-specific nature.

Bivalency gives power to the IgG molecule. It most obviously
allows a single antibody molecule to aggregate two antigen mol-
ecules, but it also allows high avidity binding to suitably spaced,
repeated epitopes on the surface of a complex antigen. An addi-
tional outcome of bivalency has also been identified. It was first
proposed on theoretical grounds that very weak binding of one
arm of a bivalent antibody molecule to a “non-target” epitope
could substantially improve the avidity of binding of the antibody
to its target epitope, and that the probability of such bi-specific

interactions was reasonably high (51). Recently, such bi-specific
heteroligation was shown to facilitate antibody binding to HIV-
gp140 (52). For a number of antibodies, high affinity interactions
between gp140 and one antigen-binding site were supported by
low affinity binding of the second antibody arm to completely
different epitopes (52).

Fab arm exchange by IgG4 antibodies could improve the like-
lihood of heteroligation, if exchange occurs between antibodies
of related specificities. This would be likely in two situations.
IgG4 antibodies are undetectable in response to many antigens,
and individuals with very low serum IgG4 concentrations are
likely to have a limited IgG4 repertoire. In such circumstances,
Fab arm exchange between antibodies targeting associated epi-
topes or related antigens would be more likely. In individuals
with higher IgG4 concentrations, Fab arm exchange could also
take place between antibodies of related specificities through their
co-localization at sites of inflammation. At such sites, appropri-
ate redox conditions of even a transient nature could lead Fab
arm exchange to “lock together” Fab arms of associated specifici-
ties. This would function to increase IgG4 binding avidity, giving
bi-specific IgG4 antibodies the ability to outcompete the more
inflammatory isotypes, late in a response.

In addition to its IgG1-blocking activity, it is clear that IgG4 can
block IgE-mediated immune function. The IgE and IgG4 isotypes
are strongly linked with one another in the literature, and in fact
IgE antibodies are often said to arise by class switching of IgG4+ B
cells (53, 54). The mutational characteristics that we have reported
clearly demonstrate that this is not always so, for both the number
and patterns of mutations we have seen differ between IgE and
IgG4 (11). However it is possible that IgG4 antibodies could be
related to high affinity IgE, if such IgE antibodies arise late in a
response. Clarification of this question, and determination of the
circumstances in which such high affinity IgE might be produced
by the human immune system will be necessary before late-arising
IgE can be incorporated into the model.

The temporal model, as presented here, outlines sequential class
switching during a first, persisting exposure to antigen. The nature
of isotype expression in a recall response will clearly depend upon
the tendency of class-switched cells to differentiate into memory
cells during the primary response. Though IgM memory cells are
now known to be an important part of the memory compart-
ment (55, 56), there is some evidence from the early literature
that IgG1 dominates the switched memory compartment. Stud-
ies of the recall response after re-challenge with keyhole limpet
hemocyanin (KLH) showed little or no increase in peak concen-
trations of KLH-specific IgG2 and IgG3 antibodies, but a marked
increase in circulating IgG1 anti-KLH antibodies (57). IgG4 anti-
bodies were only seen upon re-challenge. The high affinity of IgG1
and its inflammatory functions make it the ideal isotype for IgG
memory, and the logic of the Temporal Model suggests that mem-
ory cells of the other IgG isotypes could be either unhelpful or
counterproductive.

The contributions that memory cells make to antibody isotype
production in a recall response will depend upon whether mem-
ory cells re-enter germinal centers or immediately differentiate
into plasmablasts and plasma cells. Studies in the mouse sug-
gest that in a recall response, mouse IgG+ memory cells (55) and
IgE+ memory cells (8) rapidly give rise to plasma cells, but IgM+
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memory cells re-enter the germinal center reaction (55). If human
and mouse cells are governed by similar processes, it may therefore
be that events within the human germinal center during a recall
response proceed as we have outlined for earlier events. In other
words, reactivated IgM memory cells within the germinal cen-
ters would give rise to new IgE-switched and IgG-switched cells
through a programed process of sequential switching.

Mechanisms that could underlie the temporal emergence of
different IgG subclasses from the GC reaction will need to be
explored, and one possibility lies in the recently reported com-
petitive feedback between soluble antibody from plasma cells
and the GC B cells (58). Soluble antibody, produced by cells
that have previously emerged and differentiated, competes with
GC B cells for binding to FDC-associated antigen. This com-
petition promotes survival of GC B cells with higher affinity
than the soluble antibody, while B cells of lesser affinity die by
neglect. The Temporal Model suggests that as class switching
proceeds, antibodies expressing subclasses from the more dis-
tally positioned IgG genes are likely to be of higher affinity. At
a particular point in the response, higher affinity antibodies that
express downstream IgG genes would outcompete soluble anti-
body of earlier subclasses, while promoting the destruction of B
cells expressing earlier subclasses that carry fewer mutations and
are of lower affinity. Feedback competition may therefore promote
the temporal emergence of the subclasses in their genomic order.

Many studies give credence to the Temporal Model, but cer-
tainly this is not true of all studies. Discordant observations

could be the result of pathogen-directed perturbations of nor-
mal immune function, for the temporal progression of isotype
switching would be as susceptible as other aspects of immune
function to subversion by bacterial and viral virulence factors (59).
Discordant observations are particularly seen in some early stud-
ies of antibody isotypes, but these reports might be explained by
the cross-reactivity of many early “isotype-specific” reagents (60).
Others might now be explained by phenomena such as Fc–Fc bind-
ing of IgG4 antibodies that were unknown until recently (50). But
the resolution of the mystery of antibody function cannot come
from studies of the past. It is our hope that this description of the
Temporal Model will encourage the question of antibody isotype
function to be revived. Having received so little attention over the
last two decades, it is now time for the power of high throughput
sequencing to be harnessed, to confirm the relationship between
the levels of mutation and antibody isotypes in individuals of dif-
ferent ethnicities and states of health, and to properly address the
clonal relationships between B cells producing antibodies of dif-
ferent isotypes. It may then be that the timing of class switching,
the passage of different cell populations between anatomical com-
partments within the lymph node, the emergence of cells from
the germinal center reaction, and the overall functions of human
isotypes can finally be determined with certainty.
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We consider the problem of self-tolerance in the frame of a minimalistic model of the idio-
typic network. A node of this network represents a population of B-lymphocytes of the
same idiotype, which is encoded by a bit string. The links of the network connect nodes
with (nearly) complementary strings. The population of a node survives if the number of
occupied neighbors is not too small and not too large. There is an influx of lymphocytes
with random idiotype from the bone marrow. Previous investigations have shown that this
system evolves toward highly organized architectures, where the nodes can be classified
into groups according to their statistical properties.The building principles of these architec-
tures can be analytically described and the statistical results of simulations agree very well
with results of a modular mean-field theory. In this paper, we present simulation results
for the case that one or several nodes, playing the role of self, are permanently occupied.
These self nodes influence their linked neighbors, the autoreactive clones, but are them-
selves not affected by idiotypic interactions. We observe that the group structure of the
architecture is very similar to the case without self antigen, but organized such that the
neighbors of the self are only weakly occupied, thus providing self-tolerance. We also treat
this situation in mean-field theory, which give results in good agreement with data from
simulation. The model supports the view that autoreactive clones, which naturally occur
also in healthy organisms are controlled by anti-idiotypic interactions, and could be helpful
to understand network aspects of autoimmune disorders.

Keywords: idiotypic network, self-tolerance, control of autoreactive idiotypes, autoimmunity, bitstring model,
mean-field theory

1. INTRODUCTION
B-lymphocytes express Y-shaped receptor molecules, antibodies,
on their surface. These antibodies have specific binding sites which
determine their idiotype. All receptors of a given B-cell have
the same idiotype. B-cells with random idiotypes of remarkable
diversity are produced in the bone marrow.

A B-cell is stimulated to proliferate if its receptors are cross-
linked by complementary structures, unstimulated B-cells die.
Proliferation occurs if the concentration of complementary struc-
tures is not too low or not too high, see e.g., Ref. (1). The latter
condition refers to a steric hindrance for cross-linking if too many
complementary molecules are around. Stimulating complemen-
tary structures can be found on foreign antigens and on other,
so-called anti-idiotypic antibodies of complementary specificity.
Thus B-lymphocytes can stimulate each other and form a func-
tional network, the idiotypic network, as first proposed in Ref. (2),
see also Ref. (3, 4).

The potential repertoire includes idiotypes that can recog-
nize other complementary structures, e.g., on the active sites
of enzymes, hormones, and neurotransmitters. Further, there
are idiotypic interactions of B-lymphocytes with T-lymphocytes
and between T-cells (5). Thus, the idiotypic network is not an
autonomous entity of the adaptive immune system, but is coupled
to many other networks.

Even for a hypothetical autonomous B-lymphocyte system, we
have the requisites of evolution, random innovation, and selection.

So the architecture of the idiotypic network can be conceived
as the result of an evolution during the life time of an individ-
ual. In a revised version of the idiotypic network paradigm, the
second generation idiotypic network (6–8), it was suggested that
this architecture comprises a densely connected central part with
autonomous dynamics and a hereto disconnected (or only sparsely
connected) periphery. The periphery is able to clonal expansion
in (an adaptive) response to external antigen, and since it is dis-
connected to the central part, the stimulation does not percolate
through the network.

Already Jerne thought the idiotypic network to play an essen-
tial role in the control of autoreactive idiotypes (3). Today, the
concept of idiotypic networks is still popular in the research
on autoimmune diseases, both in theoretical studies and clini-
cal context. Indeed, autoreactive antibodies are regularly found
in healthy individuals though in low concentrations. Antibodies
which escape other regulatory mechanisms can be controlled by
the idiotypic network (9). Anti-idiotypic antibodies specific to
potentially autoreactive clones are found in healthy individuals
or in patients during remission, they are absent during periods
of active autoimmune disease (10). Autoimmune diseases can
be related to perturbations of the control of autoreactive clones
(10–17), as for example in Myasthenia gravis, a well known B-cell
associated autoimmune disease (18).

There are many alternative or complementary concepts to
explain self-tolerance and a multitude of possible mechanisms
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to cause autoimmune diseases. It is of course beyond the scope of
this paper to give an exhaustive review over this rapidly expanding
field. We can list only a necessarily subjective selection of a few
major concepts and mechanisms. Several theoretical concepts of
self-nonself discrimination are presented in a topical issue of Sem-
inars in Immunology (19), including the Two-signal theory (20),
the Danger model (21), the context dependent tuning of T-cell
antigen recognition (22), cf. also (23, 24), and the Immunological
homunculus (25), cf. also (26, 27). Zinkernagel (28) emphasizes
the importance of localization, dose, and time of antigens: anti-
gen that does not reach secondary lymphoid organs in minimum
doses or for sufficiently long times is immunologically ignored.

Regulatory T-cells have been identified to suppress a variety
of immune responses and playing a crucial role in self-tolerance
and in controlling the balance of T-helper cells such as Th1, Th2,
and Th17 (29, 30). Various mechanisms how infections can trigger
autoimmunity are reviewed in Ref. (31). Superantigens may cause
a polyclonal T-cell response with an excessive cytokine release,
which in turn can induce autoimmune disorders. Chronic tissue
damage can, regardless of the initial stimulus, lead to a spreading of
the specificity of the T-cell response (epitope spreading) including
self-epitopes (32). More recently, epigenetic mechanisms which
may cause a breakdown of immune tolerance have been identified
in the context of several autoimmune diseases, for a review see Ref.
(33), cf. also Ref. (34).

Recent progress in the understanding of autoimmune diseases
is reviewed in a topical section of Current Opinion in Immunol-
ogy edited by Wucherpfennig and Noel (35). The T-cell system and
the B-cell system interact in various ways at different stages of an
immune response and the distinction between B-cell mediated and
T-cell mediated autoimmune disorders appears to erode (36). For
T-independent features of B-cell response confer however (37).
Also idiotype driven interactions exist between B-cells and T-
cells, as reviewed in Ref. (38). Very recently, regulatory B-cells are
brought into discussion (36, 39).

There are early attempts to model self-tolerance and autoim-
munity mathematically within the network paradigm. We can
distinguish papers which consider networks with predefined archi-
tecture from work, which studies the (ontogenic) evolution of the
networks architecture.

In Ref. (40), based on experimental results (41), an idealized
architecture of 26 clones was proposed, which comprises four
groups of B-cell clones, a multi-affine group A, two mirror groups
B and C with mutual coupling but no intra-group affinity, and
a group D which couples with low affinity only to A. Based on
this ad hoc architecture, a set of non-linear ordinary differential
equations (ODEs) is proposed (42) that describes the continu-
ous dynamics of B-cells and antibodies in the presence of self. The
proliferation and maturation of by idiotypic interactions activated
B-cells is modeled by the non-linear terms of the ODEs. Computer
simulations of these ODEs reveal that the response of clones, which
couple to self antigen depends on their connectivity to other clones
of the network: the higher the connectivity the greater the degree
of tolerance; poorly connected clones show unlimited growth.

In Ref. (43), an analytical theory for the dynamics of clones in
the mirror groups B and C, which feel the mean-field exerted by
the clones of group A that couple to self antigen is considered. The

model describes a switching between tolerant and autoimmune
states and reverse, induced by infection with external antigen.

Also a paper by Calenbuhr et al. (44) studies the behavior
of idiotypic networks with predefined architecture in the pres-
ence of self. There, using a similar continuous dynamics as (42)
the interaction between N clones of different idiotypes is deter-
mined by an N ×N connectivity matrix (N = 2, . . . , 25) with
entries zero and one. The maximum number of interactions C
of a single clone with other clones is varied between 1 and N − 1
and open (chain like) and closed architectures are distinguished.
The autonomous system shows oscillatory or chaotic behavior
with parameter depending amplitudes. The response to a self-
antigen depends on its concentration, and on the parameters of
the autonomous system. The state of the system is called tolerant
(safe) if the clones which couple to the self have low concentration,
otherwise, for a large or even unbounded response, it is called dan-
gerous. The study confirms that more densely connected networks
tend to provide tolerant states.

Our work describing the evolution of the idiotypic network in
the presence of self antigens is similar in spirit to previous work by
De Boer and Perelson (45), Stewart and Varela (46), and Takumi
and De Boer (47).

De Boer and Perelson (45) investigated a model which describes
the population dynamics of antibodies and B-cells by a set of non-
linear ODEs. The idiotype is modeled in a discrete shape space
by bitstrings of length L (L= 32), two idiotypes match if the two
aligned bitstrings are complementary in at least T adjacent posi-
tions (T is varied from 6 to 11, mainly T = 8) which mimics the
presence of several idiotopes on an antibody with certain idio-
type. For exactly T complementary positions an affinity of 0.1 is
assigned, for more than T an affinity of 1. The stimulation of B-
cells is described by a bell-shaped activation function, and the pro-
duction of antibodies by stimulated B-cells by a gearing-up mecha-
nism. There is an input of 10 new clones per day. They are incorpo-
rated in the network if at least one other clone is complementary.
Clones with too high connectivity are suppressed. Simulations
show that the network reaches a stationary regime where the idio-
types that are incorporated in the network are more similar than to
be expected for a completely random choice. This gives an advan-
tage because the incorporated B-cells feel a similar stimulating field
and their (similar) antibodies do not form complexes. Among the
clones which do not expand there are about 25% which have no
sufficient stimulation. They are not incorporated in the network
and can be considered as the clonal (peripheral) component of the
immune system (similar to the singletons in our work, see below).
Self antigen is also modeled by bitstrings. In high concentration
it suppresses all clones which recognize the antigen, in stimula-
tive concentrations (i.e., if their field is in the stimulating region
of the bell-shaped activation function) it gives rise to unlimited
self aggression. The authors mention that some of the self-reactive
clones, especially those with a high connectivity, are controlled by
overstimulation, clones with few connections escape the control.

Stewart and Varela (46) considered a model, which describes
the presence or absence of clones of a given idiotype, not distin-
guishing B-cells and antibodies, using a discrete dynamics. A clone
of idiotype i survives if it receives a stimulus σi within an allowed
window, σL≤ σi≤ σU. If σi is outside the window, the clone does
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not survive the next step of a parallel update. The stimulus an
idiotype i receives from clones of complementary idiotype is cal-
culated in a double-sheeted two-dimensional continuous shape
space as σi =

∑
j mij where mij = exp {−aij/c}2. An idiotype is

represented by a point on one of the sheets (say, the white one)
while the perfectly complementary idiotype has the same coor-
dinates on the other (black) sheet. aij is the Euklidian distance
of two points at different sheets and c is a characteristic distance
below which idiotypic interactions are relevant. Simulations for
periodic boundary conditions show that stationary patterns on
the shape space emerge which consist of nested (concentric) black
and white ellipses. They can be conceived as mirror groups where
members of one group have only idiotypic interactions with the
other group but not within their own group. Idiotypes discon-
nected from these groups (clonal components) only occur before
saturation. The system needs a longer time to reach saturation
as smaller c is. Self antigen is represented as points on the two-
dimensional shape space. If located on the black (white) sheet it
is incorporated in the black (white) elliptic lines. So if the bone
marrow is able to produce idiotypes similar to the self, they buffer
the self against aggressive autoimmunity.

Takumi and De Boer (47) investigated the evolution of a
model network on a double-sheeted two-dimensional discrete
shape space in the presence of self-epitopes. Self-reactive clones
are deleted by hand assuming some not closer characterized
self-tolerance process. Each idiotype has several determinants
(idiotopes). New B-cell clones are generated randomly. The
dynamics of B-cells is described by a system of ODEs with a log-
bell-shaped activation function. A buffering term prohibits the
explosion of the clone size, clones are removed if their size falls
below an extinction threshold. Their main finding is that the net-
work organizes such that most self-epitopes are embedded in an
antibody repertoire of intermediate concentration. Without the
explicit deletion of self-reactive clones the authors were unable to
obtain robust self-tolerance.

The B-cell models mentioned above,describing the evolution of
the network,have in common that they do not show an appropriate
partitioning into network and disconnected fraction, and are not
reliably stable when coupled to permanently present self antigen.
Motivated by these drawbacks (48, 49) proposed to extend their
previous models to include the cooperation with T-lymphocytes.
Indeed, simulations of the ontogenic evolution of the network in
the presence of self antigens (“founder” antigens) show that the
system differentiates in several stages into two coexisting compart-
ments, the central immune system that couples to and tolerates self
antigens, and the peripheral immune system that could respond
to “late” antigen. In the first stage, T-cells which become activated
by the initial founding set of antigens, activate in turn B-cells.
This continues until the B-cell repertoire is complete and the B-
cells start to exert a regulatory feedback on the T-cells. In the
second stage, the B-cells compete for T-cell help and their reper-
toire shrinks to B-cells of an idiotype, which directly recognize
a T-cell receptor. After this, a single new antigen would elicit a
response only of clones, which are not mounted to the network.
However it turned out, that the peripheral system is too tolerant to
a later antigen. This motivated (50) to further modify this model
making the idiotypic connectivity an explicit function of time, and

introducing a log-bell-shaped activation function also for the T-
cells. Stewart and Coutinho (51) reviewed the state of modeling
and the development of the paradigm,and critically mentioned the
lack of experimental evidence supporting the physiological signifi-
cance of idiotypic interactions between B-cell and T-cell receptors.

For more detailed reviews on the history of the paradigm,math-
ematical modeling, and new immunological and clinical develop-
ments the reader is referred to Ref. (52, 53). For very interesting
personal accounts on the development of the network paradigm
and the concept of immunological self, see Ref. (8, 54–57).

In the present paper, we consider a model of the idiotypic B-
cell network proposed in Ref. (58) which describes the evolution
toward complex, functional architectures. The model uses a dis-
crete shape space spanned by bitstrings which represent idiotypes.
The discrete dynamics describes presence or absence of idiotypic
clones,which survive if their stimulus is within an allowed window.
In a sense, the model combines the simplest features of the models
previously proposed by De Boer and Perelson (45) and Stewart and
Varela (46) and therefore can be considered as a minimal model.

The most interesting architecture emerging in this model com-
prises (i) densely linked core groups, (ii) peripheral groups without
intra-group linking, (iii) groups of suppressed clones, and (iv)
groups of singletons which potentially interact only with the sup-
pressed clones. The expressed clones of the core and periphery
groups build the actual network, the central part. The expressed
clones of the singleton groups are not mounted to the network and
can be considered as the peripheral or clonal component. This is
clearly very close to the architecture envisaged in the concept of
second generation idiotypic networks (6–8) and similar to the ide-
alized ad hoc architecture of (40) but in our model these properties
evolve from simple principles.

In the steady state, the size of these groups and their linking does
not change with time. The groups are built from clones of differ-
ent idiotypes, which have an individual dynamics but share certain
statistical properties. The building principles of these architectures
can be described analytically (59, 60), and the statistical properties
can be calculated within a mean-field theory in good agreement
with simulations (61).

Whereas the preceding work by Brede and Behn (58),
Schmidtchen and Behn (59), Schmidtchen et al. (60), and
Schmidtchen and Behn (61) considered the autonomous idiotypic
network, i.e., the network of B-lymphocytes and their antibodies
without foreign or self antigen, we investigate here the evolu-
tion of the idiotypic network, in the presence of self, toward an
architecture where the expansion of autoreactive clones is con-
trolled by idiotypic interactions. Self is modeled by permanently
present idiotypes which influence the evolution of the network but
are themselves not affected by idiotypic interactions. Our model
avoids the above reviewed drawbacks of previous attempts, and
the results clearly support the view that the idiotypic network is
instrumental in the control of autoreactive clones.

The paper is organized as follows. In Section 2, we describe
essential features of the model, its update rules, the general build-
ing principles which allow to understand the structural properties
of the expressed networks architecture, and a tool which allows
a real time identification of patterns in simulations. In Section 3,
we sketch the derivation of the mean-field theory which allows
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to compute statistical properties if the structural properties of the
pattern are known. In Section 4, we describe how the model should
be modified in the presence of self. We report on simulations where
the network in the presence of self evolves to an architecture such
that the self is linked only to groups with very low population.
Results of a modified mean-field theory are in good agreement
with simulations. Finally, we give some conclusions and discuss
problems for further research. There is a glossary where major key
terms are briefly explained in a logical order.

2. THE MODEL
In this paper, we consider a minimal model of the idiotypic net-
work (58), which is a coarse simplification of the real biological
system but retains most important features and reveals a surpris-
ing complexity. The model has only few parameters and allows an
analytical understanding of many of its properties.

2.1. POTENTIAL REPERTOIRE AND IDIOTYPIC INTERACTIONS
We model the repertoire of all possible idiotypes and their interac-
tions by an undirected network, where each node v of the network
represents a distinct clone of B-lymphocytes of a given idiotype
together with its antibodies. The idiotype is encoded by a bitstring
of length d with entries 0 or 1. The number of different bitstrings
2d is the size of the potential repertoire. Note that the bitstrings
are not thought to represent the genetic code or the sequence of
amino acids but are meant as a caricature of the phenotype allow-
ing an easy notion of complementarity. Interpreting the entries of
the bitstrings as coordinates in a d-dimensional space each node
can be conceived as a corner of a d-dimensional unit hypercube.

B-lymphocytes receive a stimulus to proliferate if their recep-
tors are cross-linked by complementary structures, which can be
situated on antigen but also on antibodies of complementary idio-
type. We represent possible idiotypic interactions by links between
nodes of nearly complementary idiotype. Assuming only per-
fect complementary receptor structures seems unrealistic and it
appears reasonable to allow small variations. Therefore, two nodes
v and u of our model are linked if their bitstrings are complemen-
tary allowing for up to m mismatches. We denote the undirected
graph with 2d nodes labeled by bitstrings of length d and links
between complementary nodes with up to m mismatches as base

graph G(m)

d . Each node of the graph is linked to κ =
∑m

k=0

(
d
k

)
nodes, which we will call the neighborhood of a node in the fol-
lowing. For example, consider in d = 12 the bitstring 1 1 1 1 1 1 1
1 1 1 1 1, which is perfect complementary to the bitstring 0 0 0 0 0
0 0 0 0 0 0 0. Replacing anyone of the zero’s in the latter by 1, we
obtain the 12 bitstrings which are complementary to the former
except for one mismatch.

We only account whether an idiotypic clone is present or not
and the corresponding node v is either occupied n(v)= 1 or empty
n(v)= 0. The subgraph of occupied nodes, the expressed reper-
toire, with its links represents the expressed idiotypic network at
a certain time. In the following subsection, we describe how the
expressed idiotypic repertoire is generated.

2.2. METADYNAMICS AND LOCAL DYNAMICS
There is a continuous influx of new B-lymphocytes from the bone
marrow. There, by somatic random reshuffling of the VDJ genes,

which are responsible for the binding sites of the variable regions of
an antibody, different idiotypes of an enormous diversity are gen-
erated. The potential repertoire is estimated to exceed the order of
1010 (62). We model this metadynamics by occupying, in each step
of an iteration procedure, empty nodes of the expressed network
with probability p.

The stimulation of a B lymphocyte to proliferate is a non-
monotonous, log-bell-shaped, function of the concentration of
complementary structures (63). The number of cross-linked
receptors increases with the concentration of complementary
structures. However, if their concentration is too high, cross-
linking becomes less likely due to a steric hindrance and the
stimulation decreases. An unstimulated B-lymphocyte dies. In our
model an occupied node, i.e., a clone of a certain idiotype only
survives if the number of its occupied neighbors is in an allowed
window between two thresholds, tL and tU. The survival of a clone
depends in a deterministic way on its local neighborhood in the
shape space.

The dynamics is described in discrete time, the time step should
be chosen such that an unstimulated cell will die within this time
span and a stimulated cell can proliferate. The temporal evolution
of the network is induced by the following update rules:

(i) Influx: occupy empty nodes with probability p.
(ii) Window rule: count the number of occupied neighbors n(∂v)

of node v. If n(∂v) is outside the window [tL,tU], set the node
v empty. This step is performed in parallel.

(iii) Iterate.

All three steps, the random global metadynamics, the determin-
istic local selection, and the iteration are of equal importance to
describe an evolution of the network toward a complex architec-
ture. Technically, our model can be categorized as a probabilistic
cellular automaton, and also as a Boolean network, see Ref. (60)
for a more detailed discussion.

Figure 1 illustrates the construction of the base graph and
the application of the update rules for the case d = 3, m= 1,
[tL, tU]= [1,3].

Here, we report mainly on results for the following parameter
setting, which is best investigated. The length of the bitstring is
d = 12, then the network has 212

= 4096 nodes. We allow m= 2
mismatches, which make the linking neither too sparse nor too
dense, each node has κ= 79 neighbors. The lower threshold tL

of the window rule has its minimal non-trivial value tL= 1: for
survival of a clone the stimulation by at least one anti-idiotypic
clone is required. The upper threshold of the window rule is cho-
sen as tU= 10 that excludes very regular static patterns, which
are in our context not interesting, for more details, see Ref. (60).
Given these values, the influx probability p remains as main con-
trol parameter. In previous work (60, 61), we have studied a range
for p from 0 to 0.1 and found that the architecture, which is of
interest here evolves for p from 0.026 to 0.078. The results pre-
sented here explicitly are for p close to 0.078, where it is easier to
initiate a reorganization of the pattern, but we have also studied a
broader range of p. Simulations for longer bitstrings up to d = 22
have shown that many features are also found in larger networks
and the major concepts of structural analysis are still applicable
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FIGURE 1 | Potential and expressed idiotypic repertoire. The figure
shows all nodes whose idiotypes are encoded by bitstrings of length d =3.
The nodes can be thought as the corners of a 3-dimensional cube. Also
shown are the links of node 010 (filled circle) to the node with perfect
complementary idiotype 101 (red line), and to the nodes with idiotypes 100,
001, and 111, which are complementary allowing for one mismatch (blue
lines). The dotted lines are only to visualize the edges of the cube. The base
graph G(m)

d for d =3 and m=1 consists of these 2d
= 8 nodes and all links

connecting complementary nodes allowing for up to one mismatch. It
represents the potential idiotypic repertoire and the possible idiotypic
interactions. The influx of B cells from the bone marrow is modeled
occupying empty nodes with probability p. Assume that node 010 is
occupied. If the neighboring nodes representing clones of complementary
idiotypes are empty, it receives no stimulation and will die. It will also die if
there are too many, say all 4, nodes of complementary idiotype occupied.
So the node 010 survives the update only if the number of occupied
neighbor nodes is within a window [tL,tU]= [1,3]. These steps, random influx
and parallel application of the window rule for all nodes, are repeated and
lead for larger dimensions d and appropriate parameters to a steady state
with a complex architecture of the expressed idiotypic network, see text.

(64). The program code is implemented in C++. For small base
graphs (d ≈ 12) optimization is not necessary. Larger base graphs
(d ≈ 20) require optimization and parallel computing.

2.3. BUILDING PRINCIPLES OF THE NETWORK ARCHITECTURE
Extensive simulations have shown that the network evolves,
depending on the parameter choice, toward quasistationary states
of possibly complex architecture (58). This architecture is charac-
terized by groups of nodes that share statistical properties such as
the mean occupation 〈n(v)〉 and the mean occupation of neigh-
bors 〈n(∂v)〉. The mean occupation of the nodes, the groups,
and of the whole base graph, i.e., the size of the expressed idio-
typic repertoire, all are stationary – which implies homeostasis.
Although, the mean occupation of a single node is stationary, its
actual occupation switches in time between 0 and 1. These switches
are induced by both the random influx from the bone marrow and
the deterministic window rule. A statistical characteristics of this
behavior is the mean life time, which is also stationary and the
same for all nodes of a group.

There are general building principles of the network’s archi-
tecture which have been found by observing regularities in the
bitstrings of nodes, which belong to the same group (59, 60). These
principles make it possible to calculate the number of groups, their
size, and the linkage between groups. Here, we only introduce the
key terms and describe the essential results which are used in the

following. For a deeper understanding of the derivation the reader
should consult the original papers.

For a given architecture, the nodes can be classified accord-
ing to their entries in the so-called determinant positions of the
bitstrings. Different architectures have a different number dM≤ d
of determinant positions. The group S1 is defined as the set of
all nodes with the same entries in all determinant positions, the
entries in the non-determinant positions run through all 2d−dM

possible combinations. Nodes in group S2 differ in one determi-
nant position compared to nodes in S1, nodes in group S3 in two
determinant positions, and so on. Consequently we have dM+ 1
groups of size

|Sg | = 2d−dM

(
dM

g − 1

)
(1)

for g = 1, . . . , dM+ 1 and we can immediately observe that groups
Sg and SdM+2−g have the same size.

The whole architecture can be build from smaller units, so-
called pattern modules. These modules are the corners of a dM-
dimensional hypercube labeled by the determinant bits, together
with the allowed links. Since the number of non-determinant bits
is d − dM, the whole architecture is obtained by arranging 2d−dM

identical pattern modules and adding the allowed links between
the nodes of these modules.

Next, we discuss the linkage of our idiotypic network in a

pattern with dM determinant bits on a base graph G(m)

d . Each
node in group Si has a fixed number Lij of links to nodes in
group Sj. The Lij are the elements of the link matrix L. Since
the update rule counts the number of occupied neighbors and
all nodes of a group have the same mean occupation these data
are of obvious interest to formulate a mean-field theory. A careful
analysis of the bitstrings which encode the nodes of groups Si and
Sj allows to derive an explicit expression (59, 60) which can be
written as

Lij =

m∑
k=0

k∑
r=0

(
i − 1

r

)(
dM − i + 1
j − 1− r

)

×

(
d − dM

k + j − 1− 2r − (dM − i + 1)

)
. (2)

Given a pattern with dM determinant bits there are dM+ 1
groups, therefore in equation (2) both i and j run from 1 to dM+ 1.
As every node has κ neighbors, the row sum of L yields κ. Since
Lij = LdM+2−i,dM+2−j the link matrix is centrosymmetric, i.e.,
it fulfills the identity LJ = JL where the exchange matrix J has
entries 1 on the counterdiagonal and 0 elsewhere. L describes a
directed graph.

2.4. REAL TIME PATTERN IDENTIFICATION
In simulations, huge amounts of data are produced describing the
occupation of each of the 2d nodes of the network in every single
time step. An enormous, namely logarithmic reduction of infor-
mation can be reached by introducing a center of mass vector R
in dimension d which allows a real time identification of patterns
and detection of pattern changes (60). Instead of monitoring 2d
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data per time step it is enough to observe the d components of R.
The center of mass vector is defined as

R =
1

n(G)

∑
v

n(v)r(v), (3)

where the position vector r(v) of a node v, which is encoded
by the bitstring bd bd−1 · · · b1 with bi ∈ {0, 1} has components
ri(v)= 2bi− 1. n(G) is the total occupation of the basegraph G.
By definition, for a symmetrically occupied base graph, we have
R= 0, a symmetry breaking pattern is easy to identify.

In Figure 2, we see the time series of the components of R for
the evolution toward a stationary 12-group pattern. The trajectory
of R2 fluctuates around zero. Since, the entries of non-determinant
bits take for every group all possible values, and supposing that all
nodes of a group are occupied with the same probability, the cor-
responding bit position can be identified as non-determinant. The
trajectories of the five components R7, R9, R10, R11, R12 fluctuate
around 0.4 and those of the 6 components R1, R3, R4, R5, R6,

R8 around −0.4, The corresponding 11 bit positions are determi-
nant. The dimension of the pattern module is dM= 11, thus we
have a 12-group architecture. Furthermore, we can readily identify
the determinant bits of the group S1. As explained below, S1 is a
peripheral group with high occupation. The observation that five
components of R fluctuate around a positive value indicates that
the five determinant bits at the corresponding positions should
have entry 1, and the other six should have entry 0. Thus, the
nodes of group S1 have a bitstring 1 1 1 1 0 1 0 0 0 0 · 0, where
the · represents the only non-determinant bit. The determinant
bits of S12 are complementary, and also nodes of the other groups
are easily identified knowing their bitstrings. The reader who is
interested in further technical details should consult (60).

The procedure is fast, robust against defects of patterns, and
allows to identify pattern changes. Needless to say, the method
hinges by construction on the encoding of the idiotype by bit-
strings, which is only a gross caricature of the phenotype. Here,
we use this tool to characterize the behavior of the network if sev-
eral nodes become permanently occupied to mimic the presence
of self.

3. MEAN-FIELD THEORY
Once established, an architecture, characterized by the number of
groups, their size, and their linking remains stationary for long
periods of time and over some range of the main control para-
meter p. As shortly sketched above, for most architectures found
in simulations their characteristics can be computed knowing the
number of determinant bits dM, which can be inferred from the
time series of the center of mass coordinates.

The statistical properties of the nodes, which belong to the
same group, such as the mean occupation and the mean life time,
depend however on the actual value of p. They can be calculated
(61) adopting the concept of mean-field theories, which was devel-
oped in statistical physics to describe phase transitions and has
been transferred to many other problems in different fields. The
main argument goes as follows.

The window rule (ii) for update of the occupation of a node
counts only the total of the occupied neighbors. All nodes of a

FIGURE 2 | Real time pattern identification. Time series of the
components of the center of mass vector R given by equation (3), here on
the base graph G(2)

12 for a window [tL,tU]= [1,10] and influx probability
p=0.074. Every color corresponds to one component of the center of
mass vector. We start from an empty base graph, which is gradually
occupied. A stationary state has evolved after about 200 time steps. The
trajectory of R2 (green) fluctuates around zero. The corresponding bit
position is non-determinant, see text. The trajectories of the five
components R7, R9, R10, R11, R12 fluctuate around 0.4 and those of the 6
components R1, R3, R4, R5, R6, R8 around −0.4, The corresponding bit
positions are determinant. Together there are 11 determinant bits, hence
the dimension of the pattern module is dM =11, and we can infer that the
system has evolved toward a stationary 12-group architecture.

group have the same number of neighbors in the other groups
given by the elements of the link matrix. The occupation of these
neighbors typically fluctuates in time, and if they are many, it
appears natural to replace the actual occupation of the neigh-
bors by the average occupation. This works the better, the more
neighbors are involved. In this view, a node feels only the differ-
ent mean-fields, the modular mean-fields, exerted by the occupied
neighboring nodes belonging to the different groups.

We now shortly describe the derivation in a more formal way to
make the modifications understandable which are necessary when
modeling the presence of self. Consider an architecture, which
can be described by pattern modules of dimension dM. Then, we
have dM+ 1 groups of nodes Sg which share the mean occupation
〈n(vg )〉 = ng where vg ∈ Sg, their linking is described by the link

matrix L. The set of mean occupations n = (n1, · · · , ndM+1)
T

defines the state of the network in the reduced mean-field descrip-
tion at a certain time. Application of the update rules to n leads to
a new state n′ given by

n′ = f(n), (4)

where the non-linear function f depends on the update rules and
on the pattern we want to describe. We know that a node vg of
group Sg has Lg1 neighbors in Sl. If the mean occupation in Sl

is nl, the new mean occupation after the influx with probability
p is ñl = nl + p(1 − nl). The probability that kl nodes of the
neighborhood in Sl are occupied after the influx is(

Lgl

kl

)
ñ kl

l (1− ñl)
Lgl−kl . (5)
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Schulz et al. Self-tolerance and idiotypic network

Supposing that the groups are independent, the probability that
for a micro-configuration with fixed kl, l = 1, . . . , dM+ 1, a total of∑dM+1

l=1 kl neighbors is occupied is simply the product of factors
(5) for each group. Summing over all micro-configurations and
taking into account the window rule leads to Lgl∑

kl=0

dM+1

l=1

(tL ≤

dM+1∑
l=1

kl ≤ tU )

dM+1∏
l=1

(
Lgl

kl

)
ñkl

l (1− ñl)
Lgl−kl ,

(6)

where the indicator function (·) gives one, when the window
rule in the parameters is fulfilled, otherwise zero. The last result
should be multiplied with the mean occupation of a node of the
considered group after the influx ñg = ng +p(1−ng ) which gives

n′g = ñg

 Lgl∑
kl=0

dM+1

l=1

(tL ≤

dM+1∑
l=1

kl ≤ tU )

×

dM+1∏
l=1

(
Lgl

kl

)
ñkl

l (1− ñl)
Lgl−kl . (7)

Iterating equation (7), for g = 1, . . . , dM+ 1, the n′ converge
to a fixed point n*. Since f (n) is a non-linear function, several
fixed points may exist. As a thumb rule, initial values close to the
stationary average values seen in simulations are in the basin of
attraction of fixed points of equation (7), which reproduce the
simulation results. There may exist other fixed points, which were
not found in simulations, for details see Ref. (61).

4. IDIOTYPIC NETWORK AND SELF
The 12-group architecture is of particular interest, as it strongly
resembles the central and peripheral parts of the second gener-
ation idiotypic network. A scheme of these architecture is given
in Figure 3. The 12-group architecture evolves on the base graph

G(2)
12 for [tL,tU]= [1,10] and a range of p from 0.026 to 0.078.

The groups comprise two self coupled core groups, two peripheral
groups, which couple only to the core and five groups of stable
holes. Stable holes are typically unoccupied since their occupied
neighbors exceed tU. Finally, there are three groups of singletons
which are neighbored only by stable holes. Nodes of the singleton
groups have an average occupation of 0.2–0.8, nodes of the periph-
ery groups have 0.4–0.8 depending on p. The average occupation
of the densely linked core groups is kept below 0.07, and the holes
are almost empty, for details see Figure 8 in Ref. (61). Note that
the singletons have no links to the connected part of the occupied
network, which is built of the core and periphery groups. In terms
of the second generation idiotypic networks, core, and periphery
groups form the central part. The singletons, disconnected from
the central part, form the clonal component (the peripheral part)
of the second generation network.

The simplest possible way we can imagine to mimic the pres-
ence of self is to permanently occupy one or several nodes of
the base graph and investigate their influence on the network
architecture. The self nodes contribute to the number of occu-
pied neighbors counted in the window rule but are themselves

FIGURE 3 | 12-group architecture. (A) The entries Lij of the link matrix,
given by equation (2), show the number of neighbors a node vi of group Si

has in group Sj. For example, the first row of the matrix tells that every
node of the singleton group S1 (denoted by v 1) is linked only to nodes of
the hole groups S10, S11, and S12, namely to 55, 22, and 2 nodes,
respectively. Only nodes of S6 and S7 (red box) have links to other nodes of
the own group. (B) The architecture generated by this link matrix together
with a phenomenological classification into singletons (green), periphery
(blue), core (red), and stable holes (black). The lines symbolize the existence
of links between nodes of the connected groups, i.e., possible idiotypic
interactions between the corresponding clones. The number of links which
a node in Si has to nodes in Sj is given by the element Lij of the link matrix
shown in (A). The weakly occupied core groups have links within the own
groups (open circles). The periphery groups are highly occupied and couple
to the core and to the group of stable holes. The group of singletons is
highly occupied and couples only to the stable holes. This architecture
evolves on the base graph G(2)

12 for a window [tL,tU]= [1,10] and a range of
the influx probability p from 0.026 to 0.078. See also Glossary.

not affected by idiotypic interactions. The window rule does not
apply to self nodes. We performed two types of computer experi-
ments, inserting permanently occupied nodes in a fully developed
12-group architecture and monitoring the induced changes, or in
an empty base graph and observing from scratch the evolution of
the networks architecture.

Naturally, the influence of the permanently occupied nodes
increases with their number. Their impact also depends on the
influx rate p since the 12-group architecture becomes unstable for
p ' 0.08. Inserting self nodes in the established architecture, close
to this threshold the strongest impact is to be expected.

4.1. SIMULATIONS
We performed extensive simulations for different protocols. Here,
we describe only few most instructive cases.

We permanently occupy one node of the hole group S10 of an
established 12-group pattern for p= 0.076, i.e., close but below the
upper threshold of stability of the pattern. The hole groups have

www.frontiersin.org March 2014 | Volume 5 | Article 86 | 109

http://www.frontiersin.org
http://www.frontiersin.org/B_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schulz et al. Self-tolerance and idiotypic network

many occupied neighbors and a self node staying there would be
subject of a heavy autoimmune response. After few iterations, the
former stable pattern destabilizes under the presence of the self and
collapses. Thereafter, a new 12-group architecture evolves where
the self node is now located in a group with only weakly occu-
pied neighbors, which could be one of the singleton or periphery
groups. Figure 4A shows the time series of the center of mass
components for an example where the permanent occupied node
(the self) is after a reorganization of the architecture finally in the
periphery group S5.

If we permanently occupy more than one node the scenario
is similar. Figure 4B shows an example where we have perma-
nently occupied 10 nodes of the hole group S10 of an established
12-group pattern for p= 0.076. The reorganization of the archi-
tecture is faster and in the new steady state the self nodes are found
in singleton and periphery groups.

We also performed simulations where for a stationary 12-group
pattern all members of the hole group S10 are permanently occu-
pied. After reorganization of the architecture, in the steady state
all self nodes belong to singletons and periphery groups and are
never seen in a core or a hole group. If we start from an established
12-group pattern and permanently occupy one of the singletons
or periphery groups this state will be stable for very long periods
of time.

Starting from an empty base graph with several permanently
occupied nodes, one observes that the architecture evolves from
the very beginning such that the self nodes have only weakly

FIGURE 4 | Reorganization of the 12-group architecture with self. The
figures displays the time series of the components of the center of mass
vector obtained from simulations for an influx probability p=0.076 when at
t = 0 one node (A) or 10 nodes (B) of the hole group S10 are permanently
occupied. Each of the 12 components is drawn with a different color. They
are plotted one after another, only the last printed color is visible. The
trajectories mainly fluctuate around ±0.4 and zero. Jumps between these
values indicate changes of the determinant bits associated with a
reorganization of the architecture. For one self node (A) we see five jumps
and for t '2×104 a stationary state is reached. For 10 self nodes (B), after
a few jumps, the stationary state is already reached for t '104, obviously
the impact of 10 self nodes is stronger than the impact of one. A closer look
at the data (not discussed here) shows that the new stationary pattern has
indeed a 12-group architecture where the self node in case (A) belongs to
periphery group S5 and in case (B) four self nodes belong to the singleton
group S3 and the remaining six self nodes belong to the periphery group S5.

occupied neighbors and thus are tolerated. This evolution from
scratch toward a tolerant architecture occurs for a much broader
range of p than the reorganization of an established architecture.

4.2. MEAN-FIELD THEORY WITH SELF
It is possible to modify the mean-field theory to describe a sta-
tionary architecture in the presence of self. We thus can describe
situations where in an established pattern nodes are permanently
occupied and the impact is so small that no reorganization sets in.
If the impact is strong enough that a reorganization occurs and a
new steady state emerges, we also can describe statistical properties
of this steady state, such as the mean occupation of nodes and its
neighbors, provided that we know its architecture.

We first consider one permanently occupied node of group Ss.
It is linked to nodes of group Sg if Lsg > 0. The group Sg contains
Lsg nodes that see the self. For these nodes we should modify the
mean-field mapping, equation (7). The node of Ss which is per-
manently occupied should be exempted from the combinatorics
of possible and allowed micro-configurations. Thus, we need to

replace Lgs by Lgs− 1. Observe that

(
Lgs − 1

ks

)
in the modified

equation (7) is zero if Lgs− 1 is smaller than zero or ks. To account
for the permanently occupied self node, we should decrease both
thresholds of the window condition by 1. For the |Sg |−Lsg nodes of
Sg which do not see the self node, the mapping is not modified. For
example, for an influx with p= 0.07 and one permanently occu-
pied node in a hole group or in a core group, 〈n(∂v)〉 increases
by about 1 and 〈n(v)〉 decreases by about 20% if v is linked to
the self node. The mean-field theory agrees with the simulation
within 3–5%.

The case that all nodes of a group Ss are permanently occupied
is even simpler because all nodes in group Sg see the same number
Lsg of self nodes. We only have to modify the window condition
decreasing both thresholds by Lsg. Note that if tU− Lsg < 0 the
modified window condition cannot be fulfilled and the indicator
function (·) in the modified equation (7) returns 0. Table 1 gives
a detailed comparison of simulation and mean-field theory for the
case that all 110 nodes of the singleton group S10, cf. equation (1)
for d = 12, dM= 11, are occupied for p= 0.074.

For Ns self nodes with 1 < Ns < |Ss| the modification is also
possible but more intricate and will not be reported here.

Encouraged by the good quantitative agreement between the
steady states obtained in simulations and mean-field theory, we
also looked at the time series of n generated by the mean-field map-
ping for a dM= 11 pattern at p= 0.074 to see the effect induced by
permanently occupying a group of nodes. We start with the fixed
point n*, which describes a 12-group pattern where the groups
are ordered as in Figure 5A. In the steady state, at an arbitrary
iteration step, we permanently occupy the hole group S10. The
time series, cf. Figure 6, shows that this state immediately desta-
bilizes and that a reorganization sets in. The pattern converges
to a new state where the self belongs to the new singleton group
S10. These singletons have only neighbors in the new unoccupied
hole groups, see Figure 5B. The network controls the expansion
of the autoreactive idiotypes in the hole groups – thus providing
self-tolerance. Analogous results (not shown here) are obtained
if we permanently occupy the hole group S9, after reorganization
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Table 1 | 12-Group architecture with self after reorganization.

Group 〈n(v )〉 〈n(∂v )〉

Simulation MFT Simulation MFT

S1 0.0 0.0 71.75 (54.01) 71.40 (53.99)

S2 0.0 0.0 60.34 (53.86) 60.29 (53.96)

S3 0.0 0.0 59.62 (53.50) 59.85 (53.52)

S4 0.0 0.0 36.70 (34.86) 36.62 (34.72)

S5 0.0 0.0 31.5 (29.62) 31.63 (29.73)

S6 0.002 (0.001) 0.0 13.52 (13.53) 13.63 (13.63)

S7 0.01 0.003 10.12 (10.09) 10.10

S8 0.677 (0.661) 0.6708 0.15 (0.14) 0.07

S9 0.706 (0.681) 0.6827 0.025 (0.018) 0.01

S10 1.0 (0.685) 1.0 (0.685) 0.02 (0.0) 0.0

S11 0.685 (0.684) 0.6835 (0.685) 0.001 (0.0) 0.0

S12 0.685 (0.682) 0.6835 (0.685) 0.001 (0.0) 0.0

The 110 nodes of the singleton group S10 are permanently occupied to mimic the

presence of self antigen, see Figure 5B. The table shows the mean occupation

〈n(v)〉 and the mean occupation of neighbors 〈n(∂v)〉 for all groups as obtained

for p=0.074 from simulations and from mean-field theory (MFT) with a dM =11

module. When deviating, the data for the case without self are given in parenthe-

ses. The groups S1, . . . , S5 have direct neighbors in S10, where S1 has the most

ones. Therefore, the change in 〈n(∂v)〉 due to self is largest for S1. Results from

simulation and mean-field theory are in good agreement.The simulation data are

obtained as follows.We first computed the temporal average of each node’s occu-

pation from 30,000 time steps.Then the mean of these data over all nodes of the

same group is calculated. The variance of the mean over the group members is

of the order 10−3.

group S9 is a periphery group coupling only to the holes and to
the weakly occupied core.

We note in this context that due to the centrosymmetry of
the link matrix of the autonomous network without self, given a
fixed point n∗ = (n∗1 , n∗2 , . . . , n∗dM+1)

T, there exists always a mir-

rored fixed point n∗mirror = (n∗dM+1, . . . , n∗2 , n∗1 )T. Obviously this
symmetry is broken if self is present.

5. CONCLUSION AND OUTLOOK
We have extended a minimal model of the idiotypic network (58,
60, 61) to study the evolution of the network in the presence of
self. Self is represented by permanently occupied nodes of certain
idiotypes. These self nodes can stimulate autoreactive clones and
thus influence the evolution of the network but are themselves not
affected by the idiotypic interactions. We report on simulation
results for the case that the self nodes are permanently occu-
pied already at the initial state. Then, the network evolves toward
an architecture where the permanently occupied self nodes are
incorporated into groups of nodes which have, in a sense, a sim-
ilar idiotype. These groups can idiotypically interact only with
other groups that are either completely suppressed by the network
(stable holes) or only weakly occupied. The network controls the
expansion of self-reactive clones thus providing self-tolerance.

We also studied the response of a network with an already
established architecture to a sudden appearance of self antigen.
Nodes of the hole groups were permanently occupied, which is

FIGURE 5 | 12-group architecture with self. (A) We permanently occupy
one of the hole groups, group 10 (cyan), thus mimicking the permanent
presence of self. This state is not favorable since the self couples to
singletons and periphery, which have a high occupation. (B) Letting the thus
prepared system evolve, it soon reaches a new steady state, still a 12-group
architecture, but organized such that the self now belongs to the singletons
and thus couples only to the almost empty stable holes. The
self-recognizing idiotypes are controlled by the network, thus providing
self-tolerance.

most unfavorable since these groups are linked to highly occupied
clones. Provided that the influx from the bone marrow is suffi-
ciently high the network reorganizes its architecture such that in
the end the self nodes belong to groups, which have only empty
ore weakly occupied neighbors, as in the previous case.

For the simplest cases that only one node or all nodes of a
group are permanently occupied, we have modified the mean-field
theory and found good agreement of analytical and simulation
results.

As discussed in the introduction to some extent, there are pre-
ceding attempts in the literature, which aim in the same direction
but were not really satisfying. Our results strongly support the
view that idiotypic interactions can be instrumental in the control
of autoreactive clones.

The network in the presence of self has been previously studied
by one of us in simulations for one self node on the base graph

G(3)
12 with weighted links. The weights were given according to the

number of mismatches of the linked nodes and the window con-
dition was modified accordingly. The patterns are slightly easier to
destabilize which explains why the phenomenon of self-tolerance
was first observed in that version of the model (65).

Further studies should systematically explore the system’s
behavior for other protocols, e.g., for arbitrary numbers of self
nodes possibly distributed over the whole base graph, desir-
ably in both simulations and an accordingly extended mean-field
approach.

It is of obvious interest to investigate in the frame of the
model possible reasons for failure of self-tolerance. Transitions
from a healthy self-tolerant state to an autoimmune state by a
perturbation, possibly an ordinary infection, of the clones that
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Schulz et al. Self-tolerance and idiotypic network

FIGURE 6 | Mean-field theory of a 12-group architecture with self. The
figure shows the time series of the mean occupation per node of the 12
groups as obtained from iterating equation (7) for an influx probability
p=0.074. We start with the autonomous system in the steady state where
singletons (green) and periphery (blue) have a mean occupation per node
〈n〉≈0.68, whereas core (red) and stable holes (black) have 〈n〉≈0. The
color code is the same as in Figure 5A. At some arbitrary iteration step
(here 500), we permanently occupy the 110 nodes of the hole group S10

(dashed cyan line). The fixed point of equation (7) looses its stability and a
new mirrored architecture emerges where the permanently occupied
nodes, the self, now belong to the singletons, which have neighbors only in
the empty hole groups, cf. Figure 5B. The occupation of the previous
singleton (green line) and periphery (blue line) groups drops down to almost
zero, whereas the previous hole groups (black lines) become occupied as
typical for singletons and periphery. (The light blue line of the periphery
group S4 is not visible here since it is covered by the green line up to
iteration step 500, and thereafter by the blue line.) After an temporary
increase the core groups (red lines) return to its previous occupation. For a
detailed comparison of steady state results of mean-field theory and
simulation seeTable 1.

control the autoreactive idiotypes should be considered, together
with the reverse phenomenon of ’spontaneous’ remission from
an autoimmune to a healthy state. Therapeutic strategies adopt-
ing the network paradigm (66), which consist in stimulating the
protective clones that control the autoreactive clones, instead of
applying immunosuppressive drugs, could be modeled.

To study age induced effects, it would be very interesting to
consider an influx rate p from the bone marrow, which decreases
over the lifespan of an individual. The architecture which controls
autoreactive clones is found for a certain range of p. However, if
we suddenly stop the influx at all, the group of singletons, which is
only sustained by the influx would be depopulated, and the other,
connected part of the network would, in a sense, freeze. Since
the singletons play an important part in controlling the autore-
active clones this should have consequences for maintaining self-
tolerance. A small influx outside the range mentioned above would
lead to less complex architectures which may be not functional.

The renewal rate of the expressed idiotypic repertoire is cer-
tainly relevant in the physiological context. Therefore, it would be
interesting to determine this characteristics in the frame of our
model. It is of course related to the influx from the bone mar-
row but also depending on the population dynamics of the B-cell

clones. It would be collective characteristics of a group and is more
difficult to determine than the mean life of a single clone.

Motivation to develop our mathematical model further comes
also from experimental and clinical medicine and from the
progress of microarray technologies.

Hampe (10) reviewed the role of anti-idiotypic antibodies in
autoimmunity, including Type 1 Diabetes. There is experimen-
tal evidence of anti-Id mediated neutralization of autoantibodies,
e.g., in Myasthenia gravis, or suppression of autoantibody secre-
tion, e.g., in Idiopathic thrombocytopenic purpura. For a number
of autoimmune diseases including systemic lupus erythematosus
and autoimmune thyroid diseases it has been shown that anti-Id
specific to autoantibodies are present in patients during remission
and/or in healthy individuals,whereas it is absent during periods of
active disease. The formation of anti-Id-autoantibody complexes
makes it difficult to detect the single constituents by conventional
assays, but several methods have been developed to overcome this
problem.

Monoclonal antibodies become rapidly important in clinical
therapies of autoimmune and inflammatory diseases, see e.g., Ref.
(67). This gives a strong motivation to improve our understanding
of systemic consequences of immunomanipulation.

The rapid technological progress makes large scale studies of the
expressed idiotypic repertoire feasible. The use of antigen microar-
rays to profile the autoantibody repertoire in health and disease
is reviewed in Ref. (68), for an application of network theory to
detect antibody trees associated with antigen see (69). Immunosig-
naturing, reviewed in Ref. (70) uses random-sequence peptide
microarrays. Microarrays using antibodies or proteins are how-
ever still expensive and complicated (70). In addition, inferring
the network architecture from a sample, which is only a snap-
shot of a subset of the expressed idiotypic repertoire is a very
demanding task.

Our model, which provides an analytical understanding of the
network architecture, could be helpful to formulate conditions for
a new generation of experiments with the aim to infer the networks
architecture and to elucidate its role in healthy conditions and dis-
ease. From the viewpoint of statistical physics or systems biology,
the question appears natural and most interesting whether there
is a general principle which guides the evolution of the idiotypic
network.

6. GLOSSARY
• Nodes: A node of the network represents a clone of B-

lymphocytes of a certain idiotype together with its antibodies.
At a given time a node can be either occupied or empty, the
corresponding clone is present or absent, respectively.
• Bitstrings: An idiotype is encoded by a bitstring of length d

with entries 0 or 1. There is a total of 2d different bitstrings,
which is the size of the potential idiotypic repertoire.
• Links: A link of the network connects two nodes with comple-

mentary idiotype, i.e., with complementary bitstrings. We do
not require perfect complementarity but allow for up to m mis-
matches. The links represent the possible idiotypic interactions
between the clones of the potential idiotypic repertoire.
• Base graph: The base graph consists of all nodes and their links

for a given choice of d and m. It represents the potential idiotypic
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repertoire and the possible idiotypic interactions, which take
place if the linked nodes are occupied.
• Influx: The influx of new B-lymphocytes with random idio-

type from the bone marrow is modeled by occupying empty
nodes with a certain probability p in each iteration of an update
procedure.
• Window rule: The window rule decides whether an occupied

node will survive the update or not. It will only remain occu-
pied if the number of its occupied neighbors is neither too small
nor too high but lies within an allowed window with lower and
upper thresholds, tL and tU. The window rule is applied in par-
allel for all nodes of the network in each iteration of an update.
• Evolution: Iterating the steps of random innovation (influx)

and deterministic selection (window rule) induces an evolution
which leads, after a transient period, toward a quasistation-
ary state of the network which may have, depending on the
parameter setting, a very complex architecture.
• Architecture: In the steady state, groups of nodes can be identi-

fied which share statistical properties such as mean occupation
and mean occupation of neighbors. The number of groups,
their size, and their linking remain constant and characterize
the architecture. The most interesting architecture, considered
in this paper, comprises a connected part (core and periphery), a
hereof disconnected part (singletons), and groups of suppressed
clones (stable holes).
• Pattern modules: The architecture can be build by arranging

identical smaller units, the pattern modules which are con-
structed like the base graph but have a smaller dimension dM.
A pattern module contains at least one node from every group.
Given dM, the number of groups, their size, and their linking
can be calculated.
• Stable Holes: Group of nodes that are mainly unoccupied

because the number of their occupied neighbors typically
exceeds by far the upper threshold of the window rule, there-
fore we call this group stable holes. The mean occupation is
close to zero.
• Core: Groups consisting of nodes with links to nodes in the

same group build the core. The mean occupation is very low.
• Periphery: Groups consisting of nodes linked to the core and

to stable holes, but not to nodes in its own group. The core and
periphery correspond to the central part of the network. The
mean occupation is high.
• Singletons: Groups of nodes that are only connected to stable

holes. An occupied singleton can survive if it has, after the influx
step, an occupied neighbor (in the group of stable holes) which
typically does not survive applying the window rule. The mean
occupation is high.
• Mean-field theory: The mean-field theory allows for a given

architecture to calculate statistical properties of the groups,
independent of simulations. The main simplification is that the
actual occupation of neighboring nodes is replaced by their
mean occupation which works the better the more neighbors
are involved.
• Self: In the extended version of the model, self is represented by

permanently occupied nodes of the network that exert influence
on the linked neighbor nodes but are themselves not affected by
idiotypic interactions. The window rule does not apply to self
nodes.
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Chronic gastritis is characterized by gastric mucosal inflammation due to autoimmune
responses or infection, frequently with Helicobacter pylori. Gastritis with H. pylori back-
ground can cause gastric mucosa-associated lymphoid tissue lymphoma (MALT-L), which
sometimes further transforms into diffuse large B-cell lymphoma (DLBCL). However, gas-
tric DLBCL can also be initiated de novo. The mechanisms underlying transformation into
DLBCL are not completely understood.We analyzed immunoglobulin repertoires and clonal
trees to investigate whether and how immunoglobulin gene repertoires, clonal diversifica-
tion, and selection in gastritis, gastric MALT-L, and DLBCL differ from each other and from
normal responses. The two gastritis types (positive or negative for H. pylori ) had similarly
diverse repertoires. MALT-L dominant clones (defined as the largest clones in each sample)
presented higher diversification and longer mutational histories compared with all other
conditions. DLBCL dominant clones displayed lower clonal diversification, suggesting the
transforming events are triggered by similar responses in different patients. These results
are surprising, as we expected to find similarities between the dominant clones of gastritis
and MALT-L and between those of MALT-L and DLBCL.

Keywords: B-cells, gastritis, H. pylori, MALT lymphoma, DLBCL, Ig gene, repertoire, somatic hypermutation

INTRODUCTION
Chronic gastritis is a common disorder characterized by chronic
inflammation of gastric mucosa. In acute gastritis, patients suffer
from dyspeptic symptoms including epigastric burning, distention
or bloating, belching, episodic nausea, flatulence, and halitosis. In
contrast, most patients with chronic gastritis are asymptomatic
(1). One of the major causes of gastritis is bacterial infection,
most frequently with Helicobacter pylori (H. pylori). H. pylori are
Gram-negative bacteria that are present in the gastric mucosa
of more than 50% of people and may persist lifelong unless
treated (2). H. pylori are resistant to elimination by the immune
response so the immune system fails to remove the infection
effectively (3). Previous studies have shown a strong association
between gastritis and H. pylori infection, at least in the early
stages of gastritis (3, 4). Although rare, organisms other than
H. pylori (e.g., Mycobacterium avium-intracellulare, Herpes sim-
plex, Cytomegalovirus, and Epstein–Barr virus) can invade the

Abbreviations: AML, acute myeloid leukemia; B-CLL, chronic lymphocytic
leukemia; BCR, B-cell receptor; CDR, complementary determining region; CI, con-
fidence intervals; CLN, control lymph node; DLBCL, diffuse large B-cell lymphoma;
FL, follicular lymphoma; GHP, gastritis with H. pylori background; GNHP, gastritis
without H. pylori background; H. pylori, Helicobacter pylori; HTS, high-throughput
sequencing; Indels, insertions and/or deletions; MALT, mucosa-associated lymphoid
tissue; MALT-L, MALT lymphoma; MID, molecular identification; MM, multiple
myeloma; SHM, somatic hypermutation.

gastric mucosa and cause inflammation (5, 6). Gastritis can also
be initiated de novo, as an autoimmune disease (7). In either case,
prolonged antigenic stimulation causing chronic inflammation
might further contribute to the development of some malignancies
(8), such as gastric mucosa-associated lymphoid tissue (MALT)
lymphoma (9–16).

Mucosa-associated lymphoid tissue lymphoma (MALT-L) is a
low-grade B-cell lymphoma. It grows slowly and remains confined
to one organ for a relatively long time. Stomach MALT-L exempli-
fies the close link between chronic inflammation and lymphoma-
genesis. B-cells of MALT-L are related to normal marginal zone
cells. Their IgH variable region gene sequences exhibit features
of post germinal center B-cells, such as somatic hypermutation
(SHM), implying that the clone has expanded in the presence of an
antigen (17). MALT-L is often associated with bacterial infection,
most commonly by H. pylori bacterium (7–9, 15–17).

A possible outcome of low-grade B-cell lymphomas such as
MALT-L is the transformation into a more aggressive lymphoma
such as diffuse large B-cell lymphoma (DLBCL) (18, 19). Gastric
DLBCL is a fast-growing, aggressive B-cell malignancy character-
ized by diffuse proliferation of large neoplastic lymphoid B-cells
(20, 21). DLBCL is known to represent a heterogeneous group of
malignancies, comprising either germinal center-like cells exhibit-
ing intra-clonal diversity or “activated B-cell-like” cells, which do
not (22, 23).
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During the clonal expansion of B-cells in response to an anti-
gen, Ig gene sequences from clonally related B-cells (i.e., B-cells
that are derivatives of the same B-cell ancestor) accumulate muta-
tions via SHM and thus diversify. Clonally related cells are iden-
tified by identical V(D)J segments and by highly homologous
sequences of the complementary determining region (CDR) 3 of
their Ig genes. An easy way to track and analyze the relationships
between clonally related Ig gene sequences is by using lineage trees.
The tree root is the ancestor sequence, usually the rearranged,
pre-mutation sequence. Each tree node represents a single muta-
tion (point mutation, insertion, or deletion). Lineage trees have
been used in order to quantify the differences between the dynam-
ics of SHM and antigen-driven selection in different lymphoid
tissues, species, and disease situations. Our lineage trees-based
mutation analysis has demonstrated its usefulness in previous
studies of aging (24), autoimmunity (25–28), and chronic inflam-
mation (29). Recent work on B-cell malignancies done in our
lab (30–32) showed differences in tree properties between lym-
phomas and controls. Lymphoma trees were more branched and
had longer trunks compared to controls, indicating a higher intra-
clonal diversification and a longer mutational history. Intra-clonal
diversification was also shown in chronic lymphocytic leukemia
cases (33–35), in marginal zone lymphoma cases (36, 37) and in
intestinal DLBCL cases (21). In addition, lymphoma and controls
exhibited similar mutation rates and same SHM motifs. Follicular
lymphoma (FL), which is considered a less aggressive lymphoma,
displayed higher diversity than DLBCL and highest recent diver-
sification events, suggesting that the more aggressive lymphoma
diversifies the least (38–40).

In the present study, we used repertoire, lineage tree, and muta-
tion analyses to investigate whether and how B-cell repertoires,
clonal diversification, and selection mechanisms in gastritis, gas-
tric MALT-L, and DLBCL differ from each other and from normal
responses. The two types of gastritis (positive or negative for H.
pylori) were found to have similar repertoires and diversification.
MALT-L clones were found to be more diversified and had longer
mutational histories compared with all other conditions, but the
dominant clones of MALT-L (defined as the largest clones in each
sample) were different from those of all other conditions. DLBCL
dominant clones, however, displayed lower diversification. These
results are surprising, as we expected to find similarities between
the dominant clones of gastritis and MALT-L and between those
of MALT-L and DLBCL, according to the hypothesis that these are
often sequential steps of inflammation and transformation.

RESULTS
REPERTOIRES IN GASTRITIS WITH H. PYLORI BACKGROUND WERE AS
DIVERSE AS THOSE IN GASTRITIS NEGATIVE FOR H. PYLORI, AND
CONTAINED SIMILAR V(D)J COMBINATIONS
We compared the repertoires in both types of gastritis, with
H. pylori background (GHP) or without H. pylori background
(GNHP), and examined the differences between them. We
expected the repertoire in GHP to be less diverse due to the
response to the bacterium, as previous studies showed that mono-
clonality is frequently found in GHP samples [(41–43) and others].
In contrast to our expectation, the confidence intervals (CI) of
alpha, beta, and gamma diversity indices of both orders were

FIGURE 1 | Graphic presentation of alpha, beta, and gamma diversity
indices of order 1 and 2. Diversity measures were calculated, as
described in the Section “Materials and Methods,” based on the Shannon
entropy and the Simpson concentration diversity indices. The alpha diversity
measure represents the average sample diversity in each
condition/population.The gamma diversity measure represents the “global”
repertoire diversity across all samples studied in each condition/population.
The beta diversity measure represents the diversity component resulting
from the variability between samples. In our Ig gene repertoire studies, the
abundance data (numbers of unique sequences) of antibody clones in each
sample was used to estimate the mean, standard error, and 95%
confidence intervals (CI) of the total number of unique sequences in clones
within each sample. The CI allows us to compare between diversity indices
of different conditions. The error bars show the standard errors.

overlapping (Figure 1), implying the average individual biopsy
diversities, the variability of diversities between individual biop-
sies, and the overall pool diversities in GHP and GNHP were not
statistically different. Indeed, most V(D)J combinations observed
were expressed in both gastritis types (Figures 2A,B).

Gastritis with H. pylori background and GNHP were the most
similar conditions (similarity index of 0.543, Table 1), although
one GHP sample (the second GHP sample in Table S1 in Sup-
plementary Material) had an extremely high alpha diversity index
compared to the other two samples (data not shown). This con-
tradicts our expectation of narrower repertoires in GHP samples
due to the presence of H. pylori. However, if the one highly diverse
GHP sample is excluded from the analysis, the confidence interval
of alpha of GHP becomes narrower (3.9–11.25), and lower than
that of GNHP. It is possible that the highly diverse sample reflected
additional ongoing responses.

VH1-3/JH4 was a common combination in both GNHP and
GHP VH–JH repertoires, but not so prominent in repertoires of
other conditions (Figures 2A,B). These combinations contained
several DH genes in both GNHP and GHP. However, identification
of D genes should be taken with caution, as SoDA always finds a D
gene, even when this is based on too-few nucleotides to be reliable.
Table 2 summarizes all common combinations and genes found
in our study and their relationships with other clinical conditions
as implicated in the literature.
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Michaeli et al. From gastritis to gastric lymphomas

FIGURE 2 | Average percentages of clones in each VH–JH combination, in (A) GHP, (B) GNHP, and (C) CLN samples.

Table 1 |The average similarity between each pair of conditions.

CLN GNHP GHP

CLN 0.211 0.295 0.343

GNHP 0.408 0.543

GHP 0.478

Similarity measures were calculated between all clones in all samples in the

compared conditions. In lymphomas, only the dominant clone(s) are relevant, as

the rest of the clones in each sample represent other B-cells present in the tis-

sue, which are not related to the malignancy. Thus, MALT-L and DLBCL are not

included in the calculation of similarity measures because the dominant clones

in these conditions cannot be compared to the full repertoire samples from other

conditions.

In the case of GNHP, the DH3 and DH6 families were found to
be preferred, as combinations of V6D3J6 and V6D6J6 were used
significantly more than expected (Table 3; Figure 2B). Other over-
expressed DH genes were used in less prominent combinations in
the observed repertoire. Other combinations used in GNHP and
GHP, such as VH3-7, VH3-23, and VH3-30 – all with JH4 – used
several DH genes from different DH families.

Gastritis without H. pylori background and GHP pre-
sented almost identical gene usage patterns, having VH5-
51/JH4 and VH6-1/JH6 as the two most frequent combinations
(Figures 2A,B). VH5-51 and VH6-1 have been shown to often
participate in earlier stages of repertoire development via positive
selection by auto-antigens (Table 2). These two combinations also
appeared in our control lymph node (CLN) samples (Figure 2C),
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Table 2 | A summary of frequent combinations and genes in conditions from our study and from other studies.

Gene or combination Common in our study in Appeared in the literature in relation to

VH1-2 MALT-La Self-reactive antibodies, Bahler et al. (44)

Chronic lymphocytic leukemia (B-CLL), primary central nervous system lymphomas,

and splenic marginal zone lymphomas, Walsh and Rosenquist (45)

VH1-3 GNHP, GHP B-CLL, Fais et al. (46)

VH1-18 GNHP, GHP, DLBCL B-CLL, Fais et al. (46)

Autoreactive gene, Yamashita et al. (47)

BM-DLBCL, gastric MALT-Ls, Bende et al. (48)

VH1-8 DLBCL B-CLL, Pimentel et al. (49)

VH1-69 MALT-La, DLBCL Rheumatoid factor, Bende et al. (48), Matsuda et al. (50)

Gastric MALT-Ls, Bende et al. (48)

B-CLL, Fais et al. (46), Pimentel et al. (49), Johnson et al. (51)

VH2-26/JH5 MALT-La FL, Bayerl et al. (52)

VH2-26 MALT-La B-CLL, Pimentel et al. (49)

Hairy cell leukemia, Hashimoto et al. (53)

VH3-7 MALT-L Dominant, DLBCL Rheumatoid factor, Bende et al. (48), Matsuda et al. (50)

Rheumatoid arthritis, Nakamura-Kikuoka et al. (54)

Sjögren syndrome, Bahler and Swerdlow (55)

B-CLL, Fais et al. (46)

BM-DLBCL, Yamashita et al. (47)

Gastric MALT-Ls, Bende et al. (48)

VH3-23 DLBCL IgM+ B-cells, Brezinschek et al. (56)

Naïve B-cells, Wu et al. (57)

Anti-DNA auto-antibodies, Matsuda et al. (50)

Hepatitis C virus-related mixed cryoglobulinemia, Perotti et al. (58)

Unmutated VH3-23 in transformation from B-CLL into DLBCL, Mao et al. (59)

Gastric MALT lymphomagenesis, Sakuma et al. (60), Lenze et al. (61), Alpen et al. (62),

Siakantaris et al. (63)

BM-DLBCL, Yamashita et al. (47)

B-CLL, Pimentel et al. (49)

VH3-30 DLBCL Rheumatoid factor, Bende et al. (48), Matsuda et al. (50)

Gastric MALT lymphomagenesis, Sakuma et al. (60), Lenze et al. (61), Alpen et al. (62),

Siakantaris et al. (63)

B-CLL, Pimentel et al. (49)

VH3-30/JH4 DLBCL FL, Bayerl et al. (52)

VH5-51 and VH6-1 CLN, GNHP, GHP, and DLBCL Auto-antigens, Matsuda et al. (50)

Dominant

The dominant segments are marked with “Dominant” indication. The dominant segments/combinations are those that appeared in the largest clone in each sample.
aRepresents frequent genes or combinations in the repertoire of unique sequences.

so they probably have no specific connection to gastritis or H.
pylori response. However, the VH1-18/JH4 combination was more
frequently used in GNHP than in GHP, and was not prominently
observed in other conditions. As VH1-18 is an autoreactive gene
and was found in several gastric MALT-Ls (Table 2), VH1-18
may be involved in the development of gastritis regardless of the
presence of H. pylori.

One combination was over-expressed in both types of gastritis
(V3D0J5), and two combinations (V6D3J6 and V6D6J6, Table 3)
were over-expressed in GNHP (as dominant clones) and in DLBCL
samples (not the dominant clones). As can be seen in Figures 2B,C
and 3A, many sequences used the V6–J6 combination in GNHP
and DLBCL, but also in the controls. Thus, this combination is
very frequent in immune responses, and cannot be ascribed to a
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Table 3 | VDJ combinations that were over-expressed in each

conditiona.

Condition Combination p-Value Mean differenceb

GNHP V2D1J6 0.009 3.57

V3D5J4 0.002 4.38

V3D0J5 0.001 7.84

V6D6J6 0.035 3.84

V6D3J6 0.042 3.60

GHP V3D0J5 0.035 10.44

V5D3J2 0.015 3.26

DLBCL V1D1J6 0.011 1.30

Dominantc

V1D4J3 0.000 4.94

V4D6J4 0.046 2.70

V5D1J4 0.001 1.80

Dominantd

V5D7J4 0.036 2.20

V6D6J6 0.000 3.47

V6D3J6 0.003 3.50

aThere were no VDJ combinations that where over-expressed in MALT-L samples,

thus MALT-L does not appear in the table.
bRepresents the value of log2(observed/expected).
cThis combination was found in DLBCL samples number 1, 2, 3 (sample numbers

according toTable S1 in Supplementary Material).The dominant combinations are

those that appeared in the largest clone in each sample.
dThis combination was found in DLBCL sample number 5.

specific condition. However, the combination V3D0J5 may repre-
sent an antibody that is effective in the gastric environment, related
to inflammatory processes, or participates in both.

To conclude, both types of gastritis presented similar reper-
toires and diversity properties, in contrast to our expectation.

GASTRIC MALT-L EXHIBITED UNIQUE V(D)J COMBINATIONS
Several studies have demonstrated that gastric MALT-L is often
associated with a bacterial infection, most commonly by H. pylori;
another association has been revealed between gastritis and gas-
tric MALT-L (11–13). Therefore, we expected to find similar
V(D)J combinations when comparing the two conditions. Sur-
prisingly, the dominant MALT-L V(D)J combinations were very
different from those in GHP. While GHP showed an extensive
use of JH4 family genes and several common combinations, of
which the most frequent was VH5-51/JH4, in MALT-L dominant
clones were VH3-7/JH4, VH1-69/JH6, and VH1-2/JH1. VH3-7
is frequently found in rheumatoid factors and was selectively
expressed by patients with rheumatoid arthritis and Sjögren syn-
drome. Preferential use of these genes and combinations has
been reported in several types of lymphomas and leukemias
(Table 2).

Table S2 in Supplementary Material presents the combina-
tions that were over-expressed in one condition while under-
represented in the other. It can be seen (from the “Mean devi-
ation” column) that over-expressed combinations were almost

absolutely from either MALT-L or DLBCL samples (domi-
nant clones only). As DLBCL contained dominant combina-
tions that also appeared in other conditions, this supports the
observation of different dominant combinations in MALT-L
compared to those observed in other conditions. These com-
binations may relate to the malignancy, but this remains to
be explored.

We also compared the dominant clones in DLBCL and MALT-
L samples, as in some cases DLBCL appears in association with
MALT-L (18, 19). DLBCL is considered in these cases to result
from clonal transformation of large cells within the low-grade
lymphoma (64, 65). Hence, we expected to identify similar seg-
ment combinations on the dominant clones from the two con-
ditions. However, the dominant clones of MALT-L samples were
different from those of DLBCL (Figures 3A,B). As mentioned
above, the dominant clones in MALT-Ls were VH3-7/JH4, VH1-
69/JH6, and VH1-2/JH1, while in DLBCLs these combinations
were found, but were not the dominant clones. VH5-51/JH4 and
VH6-1/JH6 were frequent combinations in all conditions, except
in MALT-L, suggesting they may have some advantage in binding
common antigens. In terms of unique sequences, MALT-Ls pre-
sented completely different dominant combinations from DLBCL
(VH1-2/JH1, VH1-69/JH6, VH2-26/JH5, and VH3-7/JH4, data
not shown). Preferential use of these genes and combinations
has been reported in several types of lymphomas and leukemias
(Table 2). In addition, VH3-7/JH4, which was the most fre-
quent combination in MALT-L dominant clones, appeared in
all other conditions but with dramatically lower numbers. As
mentioned above, VH3-7 participates in the formation of auto-
antibodies and was found in several gastric MALT-Ls. Some
MALT-Ls were found to use VH genes previously associated with
auto-reactivity. This suggests that B-cells in MALT-L react with
self-antigens (66), different from those that arouse in GHP and
DLBCL responses.

MALT-L DOMINANT CLONES HAD LONGER DIVERSIFICATION HISTORY,
IN CONTRAST TO DLBCL CLONES
Lineage trees of the MALT-L dominant clones had significantly
longer trunks (T) and path lengths (PLmin), which are tree
length measures, than all other conditions (Figure 4; Figure
S1 in Supplementary Material). In addition, according to the
correlation of tree properties with the dynamic parameters of
the secondary B-cell response (67), longer trunks correlate with
a lower initial affinity, and longer paths also correlate with
a lower selection threshold. This suggests that diversification
history in MALT-L dominant clones was longer than that of
other conditions.

On the contrary, DLBCL dominant clones had significantly
shorter trunks and path lengths than those of GHP (and MALT-
L), and in general, the lowest tree length measures. Dominant
clones of DLBCL presented similar tree length measures to those
of CLN (Figure 4; Figure S1 in Supplementary Material). This is
in line with the above-described observation of similarity between
DLBCL and CLN. The shorter lengths observed in DLBCL, which
correlate with high initial affinity and selection threshold, may
indicate a shorter diversification process compared to MALT-L and
GHP (21). A possible explanation for this is that, because MALT-L
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FIGURE 3 | Average percentages of clones in each VH–JH combination, in (A) DLBCL and (B) MALT-L samples.

is an indolent lymphoma and DLBCL is an aggressive lymphoma,
the latter usually has less time to diversify until it is discovered
and treated. Figures S2 and S3 in Supplementary Material show
representative examples for MALT-L and DLBCL dominant trees,
respectively.

The fact that MALT-L dominant clones had larger trunks, path
lengths, and distance from the root to any split node, thus prob-
ably lower initial affinity than DLBCL dominant clones, suggests
that DLBCL dominant clones started as responses to specific (yet-
unknown) antigens, with probably higher initial affinity than the
responses that initiated MALT-Ls. That is, high affinity and vigor-
ous response may be risk factors for aggressive lymphoma devel-
opment. In terms of selection, these results show that selection
thresholds in MALT-L dominant clones were the lowest among all
other conditions. Low selection pressure may simply be the result
of abundance of antigen, and this may indeed be the case in gastric
MALT-Ls.

Dominant clones from the two types of gastritis presented sim-
ilar tree length measures, which correlate with the observed similar
repertoires.

DISCUSSION
In this study, we investigated the relationships between four
related conditions of the stomach: gastritis positive or negative
for H. pylori, gastric MALT-L, and gastric DLBCL. As previous

studies showed, these conditions sometimes appear successively,
as prolonged stimulation during chronic gastritis may result in
the development of gastric MALT-L, which in some cases fur-
ther transforms into DLBCL. We examined the clonal reper-
toires of the IgH variable region genes (or in the case of lym-
phomas, the dominant clones, which are defined as the largest
clone in each sample) and the lineage tree characteristics in each
condition, in order to find similarities or differences between
these conditions.

Both types of gastritis presented similar IgH variable region
gene repertoires and lineage tree characteristics, in contrast to our
pre-study assumptions. However, although the GNHP biopsies
were negative for H. pylori, it could be present in the tissue in
undetectable amounts, and thus affect the repertoire of the B-
cells in its surroundings. Moreover, both types of gastritis used
the VH1-18 gene, which may be involved in the development of
gastritis regardless of the presence of H. pylori; this remains to
be elucidated, as this was not the dominant combination in both
type of gastritis. We expected the repertoire in GHP to be less
diverse than that of GNHP due to the response to the bacterium,
which is expected to elicit only specific clones. In contrast to our
expectations, GHP samples showed at least as diverse repertoires
as GNHP (Figures 1 and 2A,B). An explanation for a high diver-
sity in GHP might be the phase variation of H. pylori, which is the
generation of intra-strain diversity that is important for bacterial
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FIGURE 4 | Lineage tree analysis – comparison between dominant
clones from the three MALT-L samples (24 trees) and the five DLBCL
samples (47 trees). There was more than one tree per sample, as we
included all clones with the same VH and JH genes (but different alleles) in
the dominant clone in each sample, because they might be related to the
dominant clone and falsely attributed to other alleles. Significant differences
were found in trunk length (T) and minimal path length (PLmin). An asterisk
(*) represents p-value <0.01; two asterisks (**) represents p-value <0.005.

niche adaptation (68), and could cause variability not only in the
bacterial strains but also in the responding antibody repertoire.
Hussell et al. (69, 70) showed that the extreme variability of H.
pylori strains led to diverse T cell responses. Moreover, they showed
that B-cells did not respond to H. pylori themselves, but required
contact-dependent help from H. pylori-specific T cells, and their
Ig genes responded to auto-antigens, similar to our observations.
Alternatively, the repertoires in the biopsies – even GHP biopsies –
may reflect immune responses to a variety of pathogens, including
but not limited to H. pylori.

Although in many cases DLBCL is associated with MALT-L, the
two types of lymphomas presented different dominant clone com-
binations and lineage tree characteristics. DLBCL may develop
after prolonged stimulation during gastritis, derive from a low-
grade malignant clone, or it can initiate de novo, depending on
the mutations in each clone. In this study, as MALT-L and DLBCL
presented different dominant clone combinations, in contrast to
our expectations; we speculate that in these cases DLBCL may have
initiated de novo. MALT-L samples presented different lineage tree
characteristics from those of all other conditions, although we
expected MALT-L to resemble GHP. In fact, we identified pref-
erential use of the autoreactive gene VH3-7 in MALT-L samples.
VH3-7 was one of the common VH genes in GHP (but not the
dominant clone). These findings suggest that gastric MALT-L is
derived from highly restricted B-cell subsets probably resulting
from specific antigenic stimulation, such as with H. pylori (15).
It is possible that B-cells in MALT-L react with self-antigens (66),
however, the role of self-antigens in the development of the malig-
nancy has yet to be examined. Moreover, lineage tree drawings
demonstrated longer trunks and path lengths in MALT-L domi-
nant clones, compared with all other conditions. These differences

in tree characteristics correlate with lower initial affinity and lower
selection threshold, respectively. Low selection pressure may sim-
ply be the result of abundance of antigen, and this may indeed be
the case in gastric MALT-L. The above may indicate that MALT-L
has undergone a longer mutational history than other conditions.
On the contrary, the shorter lengths observed in DLBCL dominant
clones may be a result of shorter diversification and responses to
specific (yet-unknown) antigens, with higher initial affinity com-
pared to MALT-L and the two types of gastritis (21). The latter
may be risk factors for aggressive lymphoma development.

We observed some similar VH–JH combinations in all condi-
tions, together with over-expressed and preferred combinations
unique to gastritis, MALT-L, and DLBCL samples. These combi-
nations should be investigated in order to further understand their
role in the development of each condition. For example, the rela-
tively extensive use of combinations, which were previously found
in other malignancies, in DLBCL samples in this study reinforces
the notion that some DLBCL clones had developed from MALT-L
clones. Moreover, the fact that the dominant combinations were
identical in all conditions except in MALT-L (and that MALT-L did
not contain this combination at all) is interesting and should be
further investigated. We also identified frequent VH genes in GHP
repertoires and in the dominant clones in MALT-L samples, which
were also found in autoimmune diseases. It was previously shown
that some autoreactive B and T cells are activated during H. pylori
infection (71). The connection between the appearances of these
VH genes in GHP and MALT-L samples from our study and in
autoimmune diseases remains to be explored. There was no promi-
nent trend toward any V, D, or J gene family in the over-expressed
combinations in each of the conditions. However, combinations
that were over-expressed in lymphoma dominant clones compared
to other conditions had a clear preference toward the use of VH2,
JH1 in MALT-L and VH1, JH2 in DLBCL. The role of these
combinations and gene families in lymphomas is still unknown.

It should be noted that, because we studied formalin-fixed
paraffin-embedded archival biopsies, we had access to only a lim-
ited number of biopsies, and limited amounts of DNA, as DNA
in the preserved biopsies is often denatured (72). More samples in
more conditions will have to be studied in order to give a clearer
picture of the roles of specific V(D)J genes and combinations in
inflammation and malignancies. Moreover, the similarity between
conditions is also affected by the limited number of samples in
each condition. This may cause the similarity calculations to be
biased toward random features of the samples that may char-
acterize a certain condition, and thus affect the interpretations.
However, the similarity between samples within each condition
was not very large, so it is unlikely that some random feature is
common to all samples of the same condition. Coincident with
obtaining more samples, we intend to use the Illumina high-
throughput sequencing (HTS) in future studies, in order to avoid
the 454 sequencing artifacts, which resulted in discarding many
sequences (73). A possible argument could be raised regarding the
exclusion of duplicate sequences from our analysis. As mentioned
in the Section “Materials and Methods,” duplicate sequences may
stem from the PCR amplification, and may cause misidentification
of dominant clones. Although we stringently defined duplicate
sequences as those that had the exact nucleotide composition
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and equal lengths, most of the sequences differed not only by
their lengths, but also in the mutations they include. Table S5
in Supplementary Material summarizes the distributions of the
number of sequences in the tree-nodes in the dominant and sec-
ond dominant clones in lymphoma samples. As can be seen from
Table S5 in Supplementary Material, most of the nodes contained
only one sequence, implying that most of the sequences differed
not only in their lengths, but also in the mutations they include.
There were, however, several nodes that contained more than one
sequence. This does not necessarily indicate that those sequences
are duplicates, as the clone-tree is built according to the aligned
sub-sequences that are shared between all sequences in the clone.
This means that sequences included in a specific node could differ
in their ends, and not necessarily be duplicates.

All conditions in this study presented similar mutation rates
and the same SHM targeting motifs. Replacement and silent
mutation analysis revealed a strong selection against replacement
mutations in the CDR regions of all conditions. This may indicate
that most of the examined IgH variable region gene sequences rep-
resented B-cell receptors (BCRs) that were already highly specific
to their antigens and thus selection operated against replacement
mutations in their CDR regions, which are responsible for antigen
binding. These results are also consistent with previous work on
lymphomas from our lab (30).

In this study, we used the Morisita similarity index in order
to measure similarity between conditions (as mentioned in the
Section“Materials and Methods”). Similarity measures were calcu-
lated between all clones in all samples in the compared conditions.
In lymphomas, only the dominant clone(s) are relevant, as the rest
of the clones in each sample represent other B-cells that are also
present in the tissue, but are not related to the malignancy. Thus,
the MALT-L and DLBCL conditions were not included in calcu-
lation of similarity measures exactly because the dominant clones
in these conditions cannot be compared to the whole other sam-
ples in other conditions. In addition, Morisita similarity index is
of order 2, which emphasizes large clones. This affects the similar-
ity results. However, we are interested in the larger clones in each
condition as they probably represent the dominant responses.

In summary, we showed that gastritis positive or negative for H.
pylori presented very similar IgH variable region gene repertoires.
This suggests that the diverse stomach repertories do not change
much due to the presence of the bacteria, and moreover, GHP
does not become oligoclonal (or at least with narrower repertoire)
due to H. pylori. MALT-L, however, presented different and unique
dominant clone gene combinations, which can result from specific
antigenic stimulation. As was mentioned in the Section“Introduc-
tion,” several studies showed that H. pylori causes gastritis, and
suggested that prolonged gastritis can lead to MALT-L, and that
prolonged MALT-L can develop into DLBCL. This flow and gradu-
ation of diseases led us to the assumption that the repertoires (VDJ
combinations) in these conditions would be similar, because these
conditions were initiated by the bacteria, and several clones got
out of control to progress into lymphoma. Moreover, the diversity
in these conditions was expected to be narrower than that in CLN,
and to be progressively lower as the conditions proceed toward the
aggressive lymphoma. However, the results differed from what we
expected. In addition, some combinations did appear in several
conditions, but not in MALT-L, and the DLBCL dominant clones

also appear in other conditions (so they were not unique to the
cancer). We speculate that the transformation into MALT-L, after
the prolonged stimulation by the chronic GHP, amplified specific
combination(s) that were also found in GHP but in a lower fre-
quency (such as VH3-7). The two types of lymphomas differed
in their dominant clone gene combinations and lineage tree char-
acteristics, suggesting differences in the abundance of antigens, if
not in their nature, which remain to be explored.

MATERIALS AND METHODS
HISTOPATHOLOGICAL SPECIMENS
Five gastric DLBCL biopsies, 3 gastric MALT-L biopsies, 10 chronic
gastritis biopsies (3 with H. pylori background and 7 that were neg-
ative for H. pylori), and 19 reactive lymph node biopsies (which
served as controls), each from a different patient, were selected
from the pathology department archives in the Sheba Medical
Center (Table S1 in Supplementary Material). Tissue biopsies
were taken during resection procedures and were used in this
study in accordance with institutional Helsinki committee guide-
lines and approval. Histochemical stains, by Hematoxylin-Eosin
(H&E) and Giemsa, were performed for histological evaluation
and H. pylori identification. For diagnosis of lymphoproliferative
disease and characterization of lymphocyte populations, immuno-
histochemical stains (e.g., CD20, CD3, CD23, CD21, cyclin-D1,
Ki67, and IgD) were also performed. All cases were revised by two
independent pathologists to confirm the diagnosis.

DNA EXTRACTION
Paraffin-embedded blocks were cut using a microtome to get
extremely thin slices of tissues (sections). Each of the biopsies was
consecutively cut to yield 10–20 sections of 4 µ each, depending
on tissue size. All sections from each biopsy were inserted into an
eppendorf tube with 200 µl water (Sigma) and were heated in 90°C
until the paraffin was melted. After the tubes were centrifuged at
full speed (14000 rpm) for 1 min, a paraffin ring was created and
could easily be removed from each of the tubes. Water was drawn
from the tubes while tissues remained in the tubes. Extraction of
DNA was then performed using the QIAamp DNA Mini Kit (or
the QIAamp DNA Micro Kit for very small samples) according to
the QIAGEN protocol.

In some cases, a micro-dissection was needed. First, H&E
stained thin sections were reviewed by a pathologist, and areas of
interest were outlined. The tissues were cut from 5 to 10 sections
that were placed onto five slides per tissue. The slides were heated
in 90°C for 15 min. Next, the slides were hydrated (5 min soak-
ing in Xylene, brief immersion in Ethanol 100, 96, and 70% in
this order). The slides were then placed to dry. According to the
outlined stained slides of each tissue, the hydrated slides were
scratched with buffer ATL (QIAamp DNA Mini Kit, QIAGEN) and
sample scrapings were picked up into eppendorf tubes. Extraction
of DNA was then performed using the QIAamp DNA Mini Kit (or
the QIAamp DNA Micro Kit for very small samples) according to
the QIAGEN protocol.

PCR AMPLIFICATION AND HIGH-THROUGHPUT SEQUENCING
For each sample taken from each biopsy, semi-nested PCR was per-
formed using the same forward primers for the two PCR rounds
and two different reverse primers as described below.
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Forward primers from FR2 region:

VH1: 5′-TGCGMCAGGCCCCYGGACAAR-3′,
VH2: 5′-ARGRAAGGCCCTGGAGTGG-3′,
VH3: 5′-CCAGGCTCCAGGSAAG-3′,
VH4: 5′-MGGGAAGGGRCTGGAGTGG-3′,
VH5: 5′-GAAAGGCCTGGAGTGGATGGG-3′,
VH6: 5′-TTGAGTGGCTGGGRAGGAC-3′.

Reverse primers:

First round – JH1R: 5′-TGAGGAGACGGTGACCAGGGT-3′,
Second round – JH2R: 5′-TGACCRKGGTHCCYTGGCCC-3′.

There is no specific primer for VH7 gene family in the FR2
region, as the VH7 primer in this region is very similar to that of
VH1, thus, it amplifies the VH1 family and creates a very strong
VH1 bias.

The primers were augmented for HTS experiments by the addi-
tion of 5′ sequencing adapter elements and 10-nucleotide unique
sample molecular identification (MID) tags according to the 454
FLX Titanium chemistry protocol (Roche) (74). Proofreading Taq
DNA polymerase (ABgene) was used in PCR reactions according
to the manufacturer’s protocol. PCR reaction was performed on
a sample of 50 ng DNA from each sample, with slight changes
according to calibration (because DNA was taken from different
tissues, and each tissue can differ in the percentages of lympho-
cytes). PCR products were separated on a 2% agarose gel stained
by ethidium bromide. Clear bands were cut from the gel and DNA
was extracted using the MinElute Gel Extraction kit (QIAGEN),
according to the manufacturer’s protocol. Sequencing of small
samples of the PCR products by the classic Sanger method (after
cloning to pGEM – T-easy vector) was performed in order to
make sure they are Ig gene amplifications and the sequences of
the primers and the tags are intact. DNA concentration of PCR
products from each sample were determined by PicoGreen dye
and fluorospectrometer (Nanodrop). According to these results,
a mixture containing 109 molecules of PCR products from each
sample was prepared and sent to sequencing. HTS was performed
using the 454 GS FLX Titanium platform by DYN Diagnostics Ltd.,
the sole representative in Israel of Roche Diagnostics. Raw data files
containing a total of ~120,000 reads were received when the HTS
was completed. Raw data files can be downloaded from the SRA
database, accession number PRJNA206548 (Runs: SRR873440,
SRR873441, SRR873442).

HTS RAW DATA PRE-PROCESSING
To process the 454 raw data, we used our program Ig-HTS-
cleaner (73). Ig-HTS-cleaner discards artifact sequences, assigns
the sequences to samples according to their MID tags, identifies
primers, and discards sequences much shorter or longer than the
expected length of an Ig variable region gene, or sequences with
average quality scores below a defined threshold. Parameters used
in the Ig-HTS-Cleaner run were as follows. Average quality score
threshold of 20, a maximum of 2 allowed mismatches in the primer
search, 75% of the primer’s length to search, and a range of 25 bases
at the ends of the read for the MID and primers search (Table S3
in Supplementary Material).

Next, we discarded duplicate sequences, which are completely
identical sequences, from each sample. We cannot exclude the
possibility that duplicate sequences are a result of the PCR amplifi-
cation; hence the existence of many identical sequences in a sample
does not necessarily indicate that the sequence is found in the
original biopsy in the same frequency.

Afterward, we used our program Ig-Indel-Identifier (Ig Inser-
tion – Deletion Identifier) (73), in order to identify legitimate
and artifact insertions and/or deletions (indels) in the sequences.
Parameters used in the Ig-Indel-Identifier run were as follows.
HPT length was set to 2, quality score threshold (for suspected
point mutations) of 25, and the number of sequences in the same
clone containing the same indel was set to 1 (Table S4 in Sup-
plementary Material). Table 4 presents the numbers of unique
sequences from each condition after discarding sequences with
suspected indels. These were the final numbers of sequences that
were analyzed.

GERMLINE VDJ SEGMENT IDENTIFICATION AND ASSIGNMENT INTO
CLONES
Clonally related sequences were identified by identical V(D)J seg-
ments and by highly homologous sequences of the CDR3 of their
Ig genes. For gene segment identification, we used SoDA (75). We
computationally grouped the sequences into clones based only on
their V, D, and J segments. We aligned clonally related sequences
using ClustalW2 (76), in order to confirm that the CDR3 in the
clonally related sequences were highly homologous. If not, we sep-
arated the sequences into clonally related groups according to the
different CDR3 sequences.

REPERTOIRE ANALYSIS
We enumerated the clones based on V(D)J combinations. Results
are presented as the average sample percentages of clones of
each VH–JH combination, across all samples within the same
group. Using the percentages normalizes for different numbers
of sequences and/or clones, due to sampling of different numbers
of B-cells or obtaining different DNA quantities in each case.

In order to examine the relationships between the VDJ com-
binations used in each repertoire, we needed to compare the
observed repertoires to repertoires predicted under some model,
for example, under the assumption that the expression of each
gene in each VDJ combination (e.g., V1D1J1) is independent
of that of other genes. Immunologists call this assumption “the
product rule” (77). Deviations from this assumption can thus
point at interdependencies between the V, D, and J genes. We
decided to look only at the gene family level, as higher reso-
lution (genes, alleles) would give extremely large numbers of
possible combinations, far from the number of combinations
observed and therefore the frequencies of each expected combi-
nation at the gene or allele level would be close to zero. Thus,
each observed gene combination would be significantly differ-
ent from the expected. Using only families of the VDJ segments
would solve this problem. For each sample, we counted the num-
ber of unique sequences that used each V, D, or J family. We then
calculated the frequency of each V/D/J family as the number of
unique sequences using this family divided by the total number
of unique sequences in the sample. We then created all possible
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Table 4 | Number of unique sequencesa, without suspected indelsb, from each condition.

CLN GNHP GHP MALT-L DLBCL Total

Number of patients (samples) 19 7 3 3 5 37

Number of unique sequences 23,308 4,676 3,373 3,851 4,389 39,597

Range of sequencesc 384–3,353 75–1,105 513–1,406 838–1,854 267–1,601

Dominant clone sizesd 360 (249) 162 (49)

461 (399) 325 (257)

408 (321) 58 (42)

78 (47)

418 (193)

aUnique sequence: a sequence that differs from all other sequences due to one or more insertion(s), deletion(s), or point mutation(s).
bAfter sequences with suspected indels were discarded.
cThe lowest-to-highest numbers of unique sequences without suspected indels in each sample from each condition.
dThe number of unique sequences in the dominant clone, and the number of the second dominant clone (in parentheses), in the lymphoma samples. Each couple of

numbers represents one-sample.

combinations that can be made using the observed VDJ fami-
lies, and defined their expected frequencies as the product of the
V/D/J family frequencies calculated in the previous step. Next,
we calculated the actual frequencies of the observed combina-
tions (number of unique sequences in each observed combination
divided by the total number of unique sequences). There was no
point in creating combinations with families that did not appear
in the sample, as there was no meaning of calculating frequencies
of non-existing combinations.

In order to know whether a combination was expressed
more or less than expected, we calculated the expression:
log2(observed/expected). If a specific combination was over-
expressed compared to the expected frequency, the ratio inside
the logarithm would be larger than 1, as the observed frequency
would be larger than the expected,and thus the logarithm would be
positive. On the other hand, if a specific combination was under-
expressed compared to the expected frequency, the ratio inside the
logarithm would be smaller than 1, and thus the logarithm will
be negative. Combinations that were not observed at all received
the value (−∞), because the expression inside the logarithm was
zero. This step was repeated for each sample. It is important to
note that most of the combinations (>80%) were observed in a
significantly different frequency than expected. Out of these com-
binations, 99% were under-represented (because the number of
combinations observed is smaller than the potential number), and
only 1% of the combinations were over-expressed compared to
the expected frequency, and any such case of over-expression was
thus particularly noticeable.

The final step was to unite all combinations from all samples as
follows: we created a matrix, where rows represented samples and
columns represented VDJ combinations. For each combination
and for each sample, we inserted the logarithm that was calcu-
lated as above. If a sample did not have a specific combination, the
cell would be left unfilled. The full matrix was used to carry out
the statistical tests. In order to examine whether some combina-
tions tend to appear more or less than expected, we carried out a
one-sample t -test on each of the conditions. In order to examine
differences in combination usage between conditions, we carried
out a two-sample ANOVA test.

In order to graphically present repertoires, we only plotted V–J
repertoires, not showing the DH segments used in each VH–JH
combination. There are several ways of presenting also the DH
genes used in the repertoires (78, 79). However, as mentioned
above, DH segments are sometimes misidentified, so we preferred
to focus on V and J segments.

DIVERSITY ANALYSIS
Clones in samples can be regarded as species in habitats
In the case of lymphocyte clonal repertoire samples (e.g., those
obtained from tissue biopsies), we treat each sample as a sam-
ple from a habitat, in which the “species” are the BCR or TCR
clones found in the sample. Each of the clones may be composed
of a number of different sequences. In TCR clones, all sequences
are identical, but in BCR clones sequences from the same clone
may be different due to SHM, and one may choose to use only
unique sequences found, or all sequences including multiplicate
ones. The latter choice depends on whether identical sequences
coming from different cells can be identified as such, or cannot be
distinguished from sequence duplications caused by PCR amplifi-
cation. If the former is true (as when using random barcoding in
the PCR primers), then the number of sequences that come from
different cells is known, and can be used to estimate diversity. If
not, then TCR diversity cannot be estimated, and BCR diversity
can only be estimated based on the numbers of unique sequences
and thus would usually only gives a minimum estimate of the total
diversity, as we have done in this study.

Diversity indices
In order to quantify the diversity of clonal repertoires (such as
antibody/BCR or TCR gene repertoires) in each experimental or
clinical condition, and later to be able to compare between two
or more conditions, we used diversity indices (such as the Species
Richness, the Shannon entropy, or the Simpson concentration,
which are indices of order 0, 1, and 2, respectively) (80). These
indices take into account the number of species and (in indices
of order >0) the frequency of members of a species (in our case,
sequences) of each species (in our case, clone) in each habitat sam-
ple. In indices of order 0, diversity is defined simply as number of
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species (in our case, lymphocyte clones) in a sample. In order 1
indices, clone size (or frequency) is taken into account, as in the
Shannon entropy when diversity is the sum of

[
− p∗i ln

(
pi

)]
, where

i represents a species or clone and pi represents its size (the number
of members/sequences, see below). Order 2 indices attribute more
weight to large clones, as in the Simpson concentration, which is
the sum of p2

i . In our studies, we used both order 1 and 2 diversity
indices, i.e., the Shannon entropy and the Simpson concentration.

Diversity measures
From the sample diversity indices, we have calculated the alpha,
beta, and gamma diversity measures for each condition (80). The
alpha diversity measure represents the average sample diversity in
each condition/population. In order to calculate alpha, we calcu-
late the alpha diversity of each sample, and then average over all
samples from the same condition. The gamma diversity measure
represents the “global” repertoire diversity across all samples stud-
ied in each condition/population. It is calculated as the diversity
of the pool containing all the sequences from all the samples from
the same condition/population.

Finally, the beta diversity measure, which represents the diver-
sity component resulting from the variability between samples, is
derived from the alpha and gamma measures using the method
of Jost et al. (80). The beta diversity measure is calculated as
the gamma diversity of each condition/population divided by the
alpha diversity (average of the diversities of individual samples).
In order to allow an intuitive comparison between the diversities
of each of the groups, all the diversity measures can be expressed as
their number equivalents (80), which reflect the number of equally
sized clones needed to produce the given value of the diversity
index.

Estimating the full repertoire from the sample
Considering the large number of sequences that were observed
only once in each sample, it is likely that many rare clones in an
individual’s original full repertoire were not detected. To account
for the presence of unobserved“species”(clones), all diversity mea-
sures can be estimated for whole repertoires (rather than calculated
for the sample) using the method described by Chao and Shen (81),
which is based on a non-parametric estimation of diversity indices
where there are undetected species. Chao and Shen’s approach uti-
lizes the concept of sample coverage to adjust the diversity indices
for clones that escaped sampling. The sample coverage is estimated
from the proportion of species/sequences that are observed only
once within a sample.

In our Ig gene repertoire studies, the abundance data (num-
bers of unique sequences) of antibody clones in each sample were
used to estimate the mean, standard error, and 95% CI of the total
number of unique sequences in clones within each sample. This
was done using SPADE©, a program designed for diversity calcu-
lations (81). The alpha diversity for each sample, and the gamma
diversities for combined samples in each condition, were then cal-
culated from the order 1 or 2 diversity indices of the estimated
total repertoires, also using SPADE©(81). In principle, beta is cal-
culated as the average alpha of all samples in the condition divided
by the gamma of the condition, as explained above. In order to
compare between conditions, however, we needed to calculate CI

for beta. This was done by calculating beta index per sample (alpha
of the sample divided by the gamma of the condition) and then
calculating the CI for each condition (Figure 5).

SIMILARITY ANALYSIS
Another method we used to compare between conditions is the
Morisita similarity index (82). SPADE©(81) was used to calculate
a similarity matrix, in which we measured each individual reper-
toire’s similarity to all other individual repertoires. The average
of similarity indices of individuals in a given group to those in
another group represents the similarity index for the comparison
between the two groups. A value close to 1 represents high sim-
ilarity between two groups, and a value close to 0 represents low
similarity.

The highest values of the Morisita similarity indices represent-
ing the highest similarity were rather low and relatively far from
1, indicating the sensitivity of this method. However, they were
consistent with observed repertoire diversities.

Ig LINEAGE TREE ANALYSES
Clonally related Ig gene sequences from each sample were used to
create mutational lineage trees using our program IgTree©(83), as
described in previous work (29, 30). All trees were measured using
our program MTree©, quantifying the graphical properties of the
trees (84, 85). A thorough statistical analysis has concluded that
seven specific tree characteristics possess the highest correlation
values with the biological parameters and are hence most infor-
mative (67). As described there, these properties are the minimum
root to leaf path length, the average distance from a leaf to the first
split node/fork, the average outgoing degree, that is the average
number of branches coming out of any node, the root’s outgoing

FIGURE 5 | Illustration of the calculation of repertoire diversity. First,
the diversity indices (Shannon entropy, Simpson concentration index, etc.)
are calculated for the pool of samples in each condition and also for each
sample separately (samples are denoted by X 1, . . ., X n. Diversity indices
are denoted by D (sample) or D (pool)). Next, the distribution measures (α,
β, γ) are calculated for each condition using the samples. γ is the pool
diversity, α is the mean sample diversity, and β for each sample is γ divided
by D (sample). Finally, the CIs of the distribution measures are compared
between the populations/conditions.
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degree, minimum distance between adjacent split nodes/forks, the
length of the tree’s trunk and minimum distance from the root
to any split node/fork. The analysis in this study has thus focused
on these properties. Comparison between lineage tree character-
istics of different conditions was done using the non-parametric
Mann–Whitney U -test, as normal distributions (required by tests
such as Student’s t -test) could not be assumed. We used the FDR
correction (86) for multiple comparisons.

Replacement (R) and silent (S) mutation analysis methods
attempt to measure the extent of selection operating on the
diversifying clones. These methods compare the frequencies of
replacement mutations found in the frame-work and CDR regions
of mutated Ig gene sequences to their expected frequency, based
on codon usage of the germline sequence. We used the updated
focused binomial test by Hershberg et al. (87, 88). The numbers of
observed mutations were pooled for each data group by IgTree©,
and the new focused binomial formula (88) was calculated using
Microsoft Excel©. This measure was also performed for each sam-
ple separately, yielding the same results; however, when comparing
conditions, we chose to show the pooled analysis for simplicity.
Additional mutational analyses were carried out as described in
previous studies (27, 28, 30), however, no significant differences
between the conditions were found.

AUTHOR CONTRIBUTIONS
Miri Michaeli performed all steps from DNA extraction from
samples to bioinformatical analysis of the sequences, and wrote
the manuscript. Hilla Tabibian-Keissar supervised the molecular
process. Ginette Schiby revised the samples to confirm the diag-
nosis. Gitit Shahaf and Yishai Pickman developed the diversity
analysis. Lena Hazanov developed the bioinformatical analyses.
Kinneret Rosenblatt was in charge of the laboratory in which
the molecular work was performed. Deborah K. Dunn-Walters
advised the author throughout the study. Ramit Mehr and Iris Bar-
shack supervised the molecular work and the analyses performed,
and finalized the manuscript. All authors read and approved the
final manuscript.

ACKNOWLEDGMENTS
This work was supported in parts by an Israel Science Foundation
(grant number 270/09, to Ramit Mehr); and a Human Frontiers
Science Program Research Grant (to Ramit Mehr and Deborah
K. Dunn-Walters). The work was part of Miri Michaeli’s studies
toward a combined M.Sc/Ph.D. degree in Bar-Ilan University, and
she was supported by a Combined Technologies M.Sc Scholarship
from the Israeli Council for Higher Education.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00264/
abstract

REFERENCES
1. Schubert TT, Schubert AB, MA CK. Symptoms, gastritis, and Helicobacter

pylori in patients referred for endoscopy. Gastrointest Endosc (1992) 38:357–60.
doi:10.1016/S0016-5107(92)70432-5

2. Kusters JG, van Vliet AHM, Kuipers EJ. Pathogenesis of Helicobacter pylori infec-
tion. Clin Microbiol Rev (2006) 19:449–90. doi:10.1128/CMR.00054-05

3. Sipponen P, Hyuarinen H. Role of Helicobacter pylori in the pathogenesis of
gastritis, peptic ulcer and gastric cancer. Scand J Gastroenterol (1993) 28:3–6.
doi:10.3109/00365529309098333

4. Veldhuyzen van Zanten SJ, Sherman PM. Helicobacter pylori infection as a cause
of gastritis, duodenal ulcer, gastric cancer and nonulcer dyspepsia: a systematic
overview. Can Med Assoc J (1994) 150:177–85.

5. Nordenstedt H, Graham DY, Kramer JR, Rugge M, Verstovsek G, Fitzgerald S,
et al. Helicobacter pylori-negative gastritis: prevalence and risk factors. Am J Gas-
troenterol (2013) 108:65–71. doi:10.1038/ajg.2012.372

6. Ryan JL, Shen Y-J, Morgan DR, Thorne LB, Kenney SC, Dominguez RL, et al.
Epstein-Barr virus infection is common in inflamed gastrointestinal mucosa.
Dig Dis Sci (2012) 57:1887–98. doi:10.1007/s10620-012-2116-5

7. Karlsson FA, Burman P, Loof L, Mardh S. Major parietal cell antigen in
autoimmune gastritis with pernicious anemia is the acid-producing H+,K+-
adenosine triphosphatase of the stomach. J Clin Invest (1988) 81:475–9.
doi:10.1172/JCI113344

8. Sipponen P, Kosunen TU, Valle J, Riihelä M, Seppälä K. Helicobacter pylori infec-
tion and chronic gastritis in gastric cancer. J Clin Pathol (1992) 45:319–23.
doi:10.1136/jcp.45.4.319

9. Segal ED, Cha J, Lo J, Falkow S, Tompkins LS. Altered states: involvement of
phosphorylated CagA in the induction of host cellular growth changes by Heli-
cobacter pylori. Proc Natl Acad Sci U S A (1999) 96:14559–64. doi:10.1073/pnas.
96.25.14559

10. Lin W-C, Tsai H-F, Kuo S-H, Wu M-S, Lin C-W, Hsu P-I, et al. Transloca-
tion of Helicobacter pylori CagA into human B lymphocytes, the origin of
mucosa-associated lymphoid tissue lymphoma. Cancer Res (2010) 70:5740–8.
doi:10.1158/0008-5472.CAN-09-4690

11. Fujimori K, Shimodaira S, Akamatsu T, Furihata K, Katsuyama T, Hosaka S.
Effect of Helicobacter pylori eradication on ongoing mutation of immunoglob-
ulin genes in gastric MALT lymphoma. Br J Cancer (2005) 92:312–9. doi:10.
1038/sj.bjc.6602262

12. Suzuki H, Saito Y, Hibi T. Helicobacter pylori and gastric mucosa-associated lym-
phoid tissue (MALT) lymphoma: updated review of clinical outcomes and the
molecular pathogenesis. Gut Liver (2009) 3:81–7. doi:10.5009/gnl.2009.3.2.81

13. Lochhead P, El-Omar E. Helicobacter pylori infection and gastric cancer. Best
Pract Res Clin Gastroenterol (2007) 21:281–97. doi:10.1016/j.bpg.2007.02.002

14. Wotherspoon AC, Ortiz Hidalgo C, Falzon MR, Isaacson PG. Helicobacter
pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet (1991)
338:1175–6. doi:10.1016/0140-6736(91)92035-Z

15. Zucca E, Bertoni F, Roggero E, Bosshard G, Cazzaniga G, Pedrinis E, et al. Molec-
ular analysis of the progression from Helicobacter pylori-associated chronic gas-
tritis to mucosa-associated lymphoid-tissue lymphoma of the stomach. N Engl
J Med (1998) 338:804–10. doi:10.1056/NEJM199803193381205

16. Isaacson PG. Lymphomas of mucosa associated lymphoid tissue (MALT). Am
J Surg Pathol (1992) 16:201–5. doi:10.1097/00000478-199202000-00023

17. Cavalli F, Isaacson PG, Gascoyne RD, Zucca E. MALT lymphomas. Hematology
Am Soc Hematol Educ Program (2001) 2001:241–58. doi:10.1182/asheducation-
2001.1.241

18. Chan JKC, Ng CS, Isaacson PG. Relationship between high-grade lymphoma and
low-grade B-cell mucosa-associated lymphoid tissue lymphoma (MALToma) of
the stomach. Am J Pathol (1990) 136:1153–64.

19. Peng H, Du M, Diss TC, Isaacson PG, Pan L. Genetic evidence for a clonal link
between low and high-grade components in gastric MALT B-cell lymphoma.
Histopathology (1997) 30:425–9. doi:10.1046/j.1365-2559.1997.5450786.x

20. Freeman C, Berg JW, Cutler SJ. Occurrence and prognosis of extranodal lym-
phomas. Cancer (1972) 29:252–60. doi:10.1002/1097-0142(197201)29:1<252:
:AID-CNCR2820290138>3.0.CO;2-\#

21. Go JH, Kim DS, Kim TJ, Ko YH, Ra HK, Rhee JC, et al. Comparative studies of
somatic and ongoing mutations in immunoglobulin heavy-chain variable region
genes in diffuse large B-cell lymphomas of the stomach and the small intes-
tine. Arch Pathol Lab Med (2003) 127:1443–50. doi:10.1043/1543-2165(2003)
127<1443:CSOSAO>2.0.CO;2

22. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct
types of diffuse large B-cell lymphoma identified by gene expression profiling.
Nature (2000) 403:503–11. doi:10.1038/35000501

23. De Paepe P, De Wolf-Peeters C. Diffuse large B-cell lymphoma: a heterogeneous
group of non-Hodgkin lymphomas comprising several distinct clinicopatho-
logical entities. Leukemia (2007) 21:37–43. doi:10.1038/sj.leu.2404449

Frontiers in Immunology | B Cell Biology June 2014 | Volume 5 | Article 264 | 126

http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00264/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00264/abstract
http://dx.doi.org/10.1016/S0016-5107(92)70432-5
http://dx.doi.org/10.1128/CMR.00054-05
http://dx.doi.org/10.3109/00365529309098333
http://dx.doi.org/10.1038/ajg.2012.372
http://dx.doi.org/10.1007/s10620-012-2116-5
http://dx.doi.org/10.1172/JCI113344
http://dx.doi.org/10.1136/jcp.45.4.319
http://dx.doi.org/10.1073/pnas.96.25.14559
http://dx.doi.org/10.1073/pnas.96.25.14559
http://dx.doi.org/10.1158/0008-5472.CAN-09-4690
http://dx.doi.org/10.1038/sj.bjc.6602262
http://dx.doi.org/10.1038/sj.bjc.6602262
http://dx.doi.org/10.5009/gnl.2009.3.2.81
http://dx.doi.org/10.1016/j.bpg.2007.02.002
http://dx.doi.org/10.1016/0140-6736(91)92035-Z
http://dx.doi.org/10.1056/NEJM199803193381205
http://dx.doi.org/10.1097/00000478-199202000-00023
http://dx.doi.org/10.1182/asheducation-2001.1.241
http://dx.doi.org/10.1182/asheducation-2001.1.241
http://dx.doi.org/10.1046/j.1365-2559.1997.5450786.x
http://dx.doi.org/10.1002/1097-0142(197201)29:1<252::AID-CNCR2820290138>3.0.CO;2-\
http://dx.doi.org/10.1002/1097-0142(197201)29:1<252::AID-CNCR2820290138>3.0.CO;2-\
http://dx.doi.org/10.1043/1543-2165(2003)127<1443:CSOSAO>2.0.CO;2
http://dx.doi.org/10.1043/1543-2165(2003)127<1443:CSOSAO>2.0.CO;2
http://dx.doi.org/10.1038/35000501
http://dx.doi.org/10.1038/sj.leu.2404449
http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Michaeli et al. From gastritis to gastric lymphomas

24. Banerjee M, Mehr R, Belelovsky A, Spencer J, Dunn-Walters DK. Age- and
tissue-specific differences in human germinal center B cell selection revealed by
analysis of IgVH gene hypermutation and lineage trees. Eur J Immunol (2002)
32:1947–57. doi:10.1002/1521-4141(200207)32:7<1947::AID-IMMU1947>3.
0.CO;2-1

25. Steiman-Shimony A, Edelman H, Barak M, Shahaf G, Dunn-Walters DK, Stott
DI, et al. Immunoglobulin variable-region gene mutational lineage tree analy-
sis: application to autoimmune diseases. Autoimmun Rev (2006) 5:242–51.
doi:10.1016/j.autrev.2005.07.008

26. Steiman-Shimony A, Edelman H, Hutzler A, Barak M, Zuckerman NS, Shahaf G,
et al. Lineage tree analysis of immunoglobulin variable-region gene mutations
in autoimmune diseases: chronic activation, normal selection. Cell Immunol
(2006) 244:130–6. doi:10.1016/j.cellimm.2007.01.009

27. Zuckerman NS, Hazanov H, Barak M, Edelman H, Hess S, Shcolnik H, et al.
Somatic hypermutation and antigen-driven selection of B cells are altered in
autoimmune diseases. J Autoimmun (2010) 35:325–35. doi:10.1016/j.jaut.2010.
07.004

28. Zuckerman NS, Howard WA, Bismuth J, Gibson KL, Edelman H, Berrih-Aknin S,
et al. Ectopic GC in the thymus of myasthenia gravis patients show characteris-
tics of normal GC. Eur J Immunol (2010) 40:1150–61. doi:10.1002/eji.200939914

29. Tabibian-Keissar H, Zuckerman NS, Barak M, Dunn-Walters DK, Steiman-
Shimony A, Chowers Y, et al. B-cell clonal diversification and gut-lymph node
trafficking in ulcerative colitis revealed using lineage tree analysis. Eur J Immunol
(2008) 38:2600–9. doi:10.1002/eji.200838333

30. Zuckerman NS, McCann KJ, Ottensmeier CH, Barak M, Shahaf G, Edelman
H, et al. Ig gene diversification and selection in follicular lymphoma, dif-
fuse large B cell lymphoma and primary central nervous system lymphoma
revealed by lineage tree and mutation analyses. Int Immunol (2010) 22:875–87.
doi:10.1093/intimm/dxq441

31. Manske MK, Zuckerman NS, Timm MM, Maiden S, Edelman H, Shahaf G, et al.
Quantitative analysis of clonal bone marrow CD19+ B cells: use of B cell lineage
trees to delineate their role in the pathogenesis of light chain amyloidosis. Clin
Immunol (2006) 120:106–20. doi:10.1016/j.clim.2006.01.008

32. Abraham RS, Manske MK, Zuckerman NS, Sohni A, Edelman H, Shahaf G, et al.
Novel analysis of clonal diversification in blood B cell and bone marrow plasma
cell clones in immunoglobulin light chain amyloidosis. J Clin Immunol (2007)
27:69–87. doi:10.1007/s10875-006-9056-9

33. Gurrieri C, McGuire P, Zan H, Yan X-J, Cerutti A, Albesiano E, et al. Chronic
lymphocytic leukemia B cells can undergo somatic hypermutation and intr-
aclonal immunoglobulin V(H)DJ(H) gene diversification. J Exp Med (2002)
196:629–39. doi:10.1084/jem.20011693

34. Kostareli E, Sutton L, Hadzidimitriou A, Darzentas N, Kouvatsi A, Tsaftaris
A, et al. Intraclonal diversification of immunoglobulin light chains in a subset
of chronic lymphocytic leukemia alludes to antigen-driven clonal evolution.
Leukemia (2010) 24:1317–24. doi:10.1038/leu.2010.90

35. Bashford-Rogers RJM, Palser AL, Huntly BJ, Rance R, Vassiliou GS, Follows GA,
et al. Network properties derived from deep sequencing of human B-cell recep-
tor repertoires delineate B-cell populations. Genome Res (2013) 23(11):1874–84.
doi:10.1101/gr.154815.113

36. Zhu D, Orchard J, Oscier DG, Wright DH, Stevenson FK. V(H) gene analy-
sis of splenic marginal zone lymphomas reveals diversity in mutational sta-
tus and initiation of somatic mutation in vivo. Blood (2002) 100:2659–61.
doi:10.1182/blood-2002-01-0169

37. Traverse-Glehen A, Davi F, Ben Simon E, Callet-Bauchu E, Felman P, Baseggio L,
et al. Analysis of VH genes in marginal zone lymphoma reveals marked hetero-
geneity between splenic and nodal tumors and suggests the existence of clonal
selection. Haematologica (2005) 90:470–8.

38. Matolcsy A, Schattner EJ, Knowles DM, Casali P. Clonal evolution of B
cells in transformation from low- to high-grade lymphoma. Eur J Immunol
(1999) 29:1253–64. doi:10.1002/(SICI)1521-4141(199904)29:04<1253::AID-
IMMU1253>3.0.CO;2-8

39. Carlotti E, Wrench D, Matthews J, Iqbal S, Davies A, Norton A, et al. Transfor-
mation of follicular lymphoma to diffuse large B-cell lymphoma may occur by
divergent evolution from a common progenitor cell or by direct evolution from
the follicular lymphoma clone. Blood (2009) 113:3553–7. doi:10.1182/blood-
2008-08-174839

40. Green MR, Gentles AJ, Nair RV, Irish JM, Kihira S, Liu CL, et al. Hierarchy
in somatic mutations arising during genomic evolution and progression of

follicular lymphoma. Blood (2013) 121:1604–11. doi:10.1182/blood-2012-09-
457283

41. Wündisch T, Thiede C, Alpen B, Stolte M, Neubauer A. Are lymphocytic
monoclonality and immunoglobulin heavy chain (IgH) rearrangement pre-
malignant conditions in chronic gastritis? Microsc Res Tech (2001) 53:414–8.
doi:10.1002/jemt.1110

42. Miyamoto M, Haruma K, Hiyama T, Kamada T, Masuda H, Shimamoto F, et al.
High incidence of B-cell monoclonality in follicular gastritis: a possible associ-
ation between follicular gastritis and MALT lymphoma. Virchows Arch (2002)
440:376–80. doi:10.1007/s00428-001-0575-8

43. Georgopoulos SD, Triantafyllou K, Fameli M, Kitsanta P, Spiliadi C, Anagnostou
D, et al. Molecular analysis of B-cell clonality in Helicobacter pylori gastritis. Dig
Dis Sci (2005) 50:1616–20. doi:10.1007/s10620-005-2905-1

44. Bahler DW, Szankasi P, Kulkarni S, Tubbs RR, Cook JR, Swerdlow SH. Use of
similar immunoglobulin VH gene segments by MALT lymphomas of the ocular
adnexa. Mod Pathol (2009) 22:833–8. doi:10.1038/modpathol.2009.42

45. Walsh SH, Rosenquist R. Immunoglobulin gene analysis of mature B-cell malig-
nancies: reconsideration of cellular origin and potential antigen involvement in
pathogenesis. Med Oncol (2005) 22:327–41. doi:10.1385/MO:22:4:327

46. Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL, et al.
Chronic lymphocytic leukemia B cells express restricted sets of mutated and
unmutated antigen receptors. J Clin Invest (1998) 102:1515–25. doi:10.1172/
JCI3009

47. Yamashita Y, Kajiura D, Tang L, Hasegawa Y, Kinoshita T, Nakamura S, et al.
XCR1 expression and biased VH gene usage are distinct features of diffuse large
B-cell lymphoma initially manifesting in the bone marrow. Am J Clin Pathol
(2011) 135:556–64. doi:10.1309/AJCPCTDC5PY3LXBP

48. Bende RJ, Aarts WM, Riedl RG, de Jong D, Pals ST, van Noesel CJM. Among
B cell non-Hodgkin’s lymphomas, MALT lymphomas express a unique anti-
body repertoire with frequent rheumatoid factor reactivity. J Exp Med (2005)
201:1229–41. doi:10.1084/jem.20050068

49. Pimentel BJ, Stefanoff CG, Moreira AS, Seuánez HN, Zalcberg IR. Use of V H,
D and J H immunoglobulin gene segments in Brazilian patients with chronic
lymphocytic leukaemia (CLL). Genet Mol Biol (2008) 31:643–8. doi:10.1590/
S1415-47572008000400007

50. Matsuda F, Shin EK, Nagaoka H, Matsumura R, Haino M, Fukita Y, et al. Struc-
ture and physical map of 64 variable segments in the 3’0.8-megabase region
of the human immunoglobulin heavy-chain locus. Nat Genet (1993) 3:88–94.
doi:10.1038/ng0193-88

51. Johnson TA, Rassenti LZ, Kipps TJ. Ig VH1 genes expressed in B cell chronic
lymphocytic leukemia exhibit distinctive molecular features. J Immunol (1997)
158:235–46.

52. Bayerl MG, Bentley G, Bellan C, Leoncini L, Ehmann WC, Palutke M. Lacunar
and Reed-Sternberg – like cells in follicular lymphomas are clonally related to the
centrocytic and centroblastic cells as demonstrated by laser capture microdissec-
tion. Am J Clin Pathol (2004) 122:858–64. doi:10.1309/PMR86PHKK4J3RUH3

53. Hashimoto Y, Tsukamoto N, Nakahashi H,Yokohama A, Saitoh T, Handa H, et al.
Hairy cell leukemia-related disorders consistently show low CD27 expression.
Pathol Oncol Res (2009) 15:615–21. doi:10.1007/s12253-009-9161-1

54. Nakamura-Kikuoka S, Takahi K, Tsuboi H, Toyosaki-Maeda T, Maeda-Tanimura
M, Wakasa C, et al. Limited VH gene usage in B-cell clones established with
nurse-like cells from patients with rheumatoid arthritis. Rheumatology (2006)
45:549–57. doi:10.1093/rheumatology/kei170

55. Bahler DW, Swerdlow SH. Clonal salivary gland infiltrates associated with
myoepithelial sialadenitis (Sjögren’s syndrome) begin as nonmalignant antigen-
selected expansions. Blood (1998) 91:1864–72.

56. Brezinschek HP, Foster SJ, Brezinschek RI, Dörner T, Domiati-Saad R, Lipsky PE.
Analysis of the human VH gene repertoire. Differential effects of selection and
somatic hypermutation on human peripheral CD5(+)/IgM+ and CD5(-)/IgM+
B cells. J Clin Invest (1997) 99:2488–501. doi:10.1172/JCI119433

57. Wu Y-C, Kipling D, Leong HS, Martin V, Ademokun A, Dunn-Walters DK.
High-throughput immunoglobulin repertoire analysis distinguishes between
human IgM memory and switched memory B-cell populations. Blood (2010)
116:1070–8. doi:10.1182/blood-2010-03-275859

58. Perotti M, Ghidoli N, Altara R, Diotti RA, Clementi N, De Marco D, et al.
Hepatitis C virus (HCV)-driven stimulation of subfamily-restricted natural
IgM antibodies in mixed cryoglobulinemia. Autoimmun Rev (2008) 7:468–72.
doi:10.1016/j.autrev.2008.03.008

www.frontiersin.org June 2014 | Volume 5 | Article 264 | 127

http://dx.doi.org/10.1002/1521-4141(200207)32:7<1947::AID-IMMU1947>3.0.CO;2-1
http://dx.doi.org/10.1002/1521-4141(200207)32:7<1947::AID-IMMU1947>3.0.CO;2-1
http://dx.doi.org/10.1016/j.autrev.2005.07.008
http://dx.doi.org/10.1016/j.cellimm.2007.01.009
http://dx.doi.org/10.1016/j.jaut.2010.07.004
http://dx.doi.org/10.1016/j.jaut.2010.07.004
http://dx.doi.org/10.1002/eji.200939914
http://dx.doi.org/10.1002/eji.200838333
http://dx.doi.org/10.1093/intimm/dxq441
http://dx.doi.org/10.1016/j.clim.2006.01.008
http://dx.doi.org/10.1007/s10875-006-9056-9
http://dx.doi.org/10.1084/jem.20011693
http://dx.doi.org/10.1038/leu.2010.90
http://dx.doi.org/10.1101/gr.154815.113
http://dx.doi.org/10.1182/blood-2002-01-0169
http://dx.doi.org/10.1002/(SICI)1521-4141(199904)29:04<1253::AID-IMMU1253>3.0.CO;2-8
http://dx.doi.org/10.1002/(SICI)1521-4141(199904)29:04<1253::AID-IMMU1253>3.0.CO;2-8
http://dx.doi.org/10.1182/blood-2008-08-174839
http://dx.doi.org/10.1182/blood-2008-08-174839
http://dx.doi.org/10.1182/blood-2012-09-457283
http://dx.doi.org/10.1182/blood-2012-09-457283
http://dx.doi.org/10.1002/jemt.1110
http://dx.doi.org/10.1007/s00428-001-0575-8
http://dx.doi.org/10.1007/s10620-005-2905-1
http://dx.doi.org/10.1038/modpathol.2009.42
http://dx.doi.org/10.1385/MO:22:4:327
http://dx.doi.org/10.1172/JCI3009
http://dx.doi.org/10.1172/JCI3009
http://dx.doi.org/10.1309/AJCPCTDC5PY3LXBP
http://dx.doi.org/10.1084/jem.20050068
http://dx.doi.org/10.1590/S1415-47572008000400007
http://dx.doi.org/10.1590/S1415-47572008000400007
http://dx.doi.org/10.1038/ng0193-88
http://dx.doi.org/10.1309/PMR86PHKK4J3RUH3
http://dx.doi.org/10.1007/s12253-009-9161-1
http://dx.doi.org/10.1093/rheumatology/kei170
http://dx.doi.org/10.1172/JCI119433
http://dx.doi.org/10.1182/blood-2010-03-275859
http://dx.doi.org/10.1016/j.autrev.2008.03.008
http://www.frontiersin.org
http://www.frontiersin.org/B_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Michaeli et al. From gastritis to gastric lymphomas

59. Mao Z, Quintanilla-Martinez L, Raffeld M, Richter M, Krugmann J, Burek
C, et al. IgVH mutational status and clonality analysis of Richter’s trans-
formation: diffuse large B-cell lymphoma and Hodgkin lymphoma in asso-
ciation with B-cell chronic lymphocytic leukemia (B-CLL) represent 2 dif-
ferent pathways of disease evolution. Am J Surg Pathol (2007) 31:1605–14.
doi:10.1097/PAS.0b013e31804bdaf8

60. Sakuma H, Nakamura T, Uemura N, Chiba T, Sugiyama T, Asaka M, et al.
Immunoglobulin VH gene analysis in gastric MALT lymphomas. Mod Pathol
(2007) 20:460–6. doi:10.1038/modpathol.3800758

61. Lenze D, Greiner A, Knörr C, Anagnostopoulos I, Stein H, Hummel M. Receptor
revision of immunoglobulin heavy chain genes in human MALT lymphomas.
Mol Pathol (2003) 56:249–55. doi:10.1136/mp.56.5.249

62. Alpen B, Wündisch T, Dierlamm J, Börsch G, Stolte M, Neubauer A. Clonal
relationship in multifocal non-Hodgkin’s lymphoma of mucosa-associated lym-
phoid tissue (MALT). Ann Hematol (2004) 83:124–6. doi:10.1007/s00277-003-
0763-5

63. Siakantaris MP, Pangalis GA, Dimitriadou E, Kontopidou FN, Vassilakopoulos
TP, Kalpadakis C, et al. Early-stage gastric MALT lymphoma: is it a truly localized
disease? Oncologist (2009) 14:148–54. doi:10.1634/theoncologist.2008-0178

64. De Wolf-Peeters C, Achten R. The histogenesis of large-cell gastric lymphomas.
Histopathology (1999) 34:71–5. doi:10.1046/j.1365-2559.1999.00602.x

65. Friedberg JW. Diffuse large B-cell lymphoma. J Hematol Oncol (2008)
22:941–52. doi:10.1016/j.hoc.2008.07.002

66. Lenze D, Berg E, Volkmer-Engert R, Weiser A, Greiner A, Knörr-Wittmann
C, et al. Influence of antigen on the development of MALT lymphoma. Blood
(2006) 107:1141–8. doi:10.1182/blood-2005-04-1722

67. Shahaf G, Barak M, Zuckerman NS, Swerdlin N, Gorfine M, Mehr R. Antigen-
driven selection in germinal centers as reflected by the shape characteristics of
immunoglobulin gene lineage trees: a large-scale simulation study. J Theor Biol
(2008) 255:210–22. doi:10.1016/j.jtbi.2008.08.005

68. Salau L, Linz B, Suerbaum S, Saunders NJ, Saunders N. The diversity within
an expanded and redefined repertoire of phase-variable genes in Helicobacter
pylori. Microbiology (2004) 150:817–30. doi:10.1099/mic.0.26993-0

69. Hussell T, Isaacson PG, Crabtree JE, Spencer J. The response of cells from low-
grade B-cell gastric lymphomas of mucosa-associated lymphoid tissue to Heli-
cobacter pylori. Lancet (1993) 342:571–4. doi:10.1016/0140-6736(93)91408-E

70. Hussell T, Isaacson PG, Crabtree JE, Spencer J. Helicobacter pylori-specific
tumour-infiltrating T cells provide contact dependent help for the growth of
malignant B cells in low-grade gastric lymphoma of mucosa-associated lym-
phoid tissue. J Pathol (1996) 178:122–7. doi:10.1002/(SICI)1096-9896(199602)
178:2<122::AID-PATH486>3.0.CO;2-D

71. Ernst PB, Gold BD. The disease spectrum of Helicobacter pylori: the
immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu Rev
Microbiol (2000) 54:615–40. doi:10.1146/annurev.micro.54.1.615

72. Tabibian-Keissar H, Schibby G, Michaeli M, Rakovsky-Shapira A, Azogui-
Rosenthal N, Dunn-Walters DK, et al. PCR amplification and high throughput
sequencing of immunoglobulin heavy chain genes from formalin-fixed paraffin-
embedded human biopsies. Exp Mol Pathol (2012) 94:182–7. doi:10.1016/j.
yexmp.2012.08.002

73. Michaeli M, Noga H, Tabibian-Keissar H, Barshack I, Mehr R. Automated
cleaning and pre-processing of immunoglobulin gene sequences from high-
throughput sequencing. Front Immunol (2012) 3:386. doi:10.3389/fimmu.2012.
00386

74. Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol (2009)
25:195–203. doi:10.1016/j.nbt.2008.12.009

75. Volpe JM, Cowell LG, Kepler TB. SoDA: implementation of a 3D alignment algo-
rithm for inference of antigen receptor recombinations. Bioinformatics (2006)
22:438–44. doi:10.1093/bioinformatics/btk004

76. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam
H, et al. Clustal W and Clustal X version 2.0. Bioinformatics (2007) 23:2947–8.
doi:10.1093/bioinformatics/btm404

77. Mehr R, Sternberg-Simon M, Michaeli M, Pickman Y. Models and methods
for analysis of lymphocyte repertoire generation, development, selection and
evolution. Immunol Lett (2012) 148:11–22. doi:10.1016/j.imlet.2012.08.002

78. Weinstein JA, Jiang N, White RA, Fisher DS, Quake SR. High-throughput
sequencing of the zebrafish antibody repertoire. Science (2009) 324:807–10.
doi:10.1126/science.1170020

79. Briney BS, Willis JR, McKinney BA, Crowe JE. High-throughput antibody
sequencing reveals genetic evidence of global regulation of the naïve and mem-
ory repertoires that extends across individuals. Genes Immun (2012) 13:469–73.
doi:10.1038/gene.2012.20

80. Jost L. Partitioning diversity into independent alpha and beta components. Ecol-
ogy (2007) 88:2427–39. doi:10.1890/06-1736.1

81. Chao A, Shen TJ. Program SPADE (Species Prediction and Diversity Estimation):
Program and User’s Guide. (2003). Available from: http://chao.stat.nthu.edu.tw

82. Chao A, Jost L, Chiang SC, Jiang Y-H, Chazdon RL. A two-stage proba-
bilistic approach to multiple-community similarity indices. Biometrics (2008)
64:1178–86. doi:10.1111/j.1541-0420.2008.01010.x

83. Barak M, Zuckerman NS, Edelman H, Unger R, Mehr R. IgTree: creating
immunoglobulin variable region gene lineage trees. J Immunol Methods (2008)
338:67–74. doi:10.1016/j.jim.2008.06.006

84. Dunn-Walters DK, Belelovsky A, Edelman H, Banerjee M, Mehr R. The
dynamics of germinal centre selection as measured by graph-theoretical analy-
sis of mutational lineage trees. Dev Immunol (2002) 9:233–43. doi:10.1080/
10446670310001593541

85. Dunn-Walters DK, Edelman H, Mehr R. Immune system learning and memory
quantified by graphical analysis of B-lymphocyte phylogenetic trees. Biosystems
(2004) 76:141–55. doi:10.1016/j.biosystems.2004.05.011

86. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J R Stat Soc Ser B (1995) 57:289–300.

87. Hershberg U, Uduman M, Shlomchik MJ, Kleinstein SH. Improved methods for
detecting selection by mutation analysis of Ig V region sequences. Int Immunol
(2008) 20:683–94. doi:10.1093/intimm/dxn026

88. Uduman M, Yaari G, Hershberg U, Stern JA, Shlomchik MJ, Kleinstein SH.
Detecting selection in immunoglobulin sequences. Nucleic Acids Res (2011)
39:W499–504. doi:10.1093/nar/gkr413

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 10 December 2013; paper pending published: 17 January 2014; accepted: 20
May 2014; published online: 03 June 2014.
Citation: Michaeli M, Tabibian-Keissar H, Schiby G, Shahaf G, Pickman Y, Hazanov
L, Rosenblatt K, Dunn-Walters DK, Barshack I and Mehr R (2014) Immunoglobulin
gene repertoire diversification and selection in the stomach – from gastritis to gastric
lymphomas. Front. Immunol. 5:264. doi: 10.3389/fimmu.2014.00264
This article was submitted to B Cell Biology, a section of the journal Frontiers in
Immunology.
Copyright © 2014 Michaeli, Tabibian-Keissar , Schiby, Shahaf, Pickman, Hazanov,
Rosenblatt , Dunn-Walters, Barshack and Mehr. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal is cited,
in accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Immunology | B Cell Biology June 2014 | Volume 5 | Article 264 | 128

http://dx.doi.org/10.1097/PAS.0b013e31804bdaf8
http://dx.doi.org/10.1038/modpathol.3800758
http://dx.doi.org/10.1136/mp.56.5.249
http://dx.doi.org/10.1007/s00277-003-0763-5
http://dx.doi.org/10.1007/s00277-003-0763-5
http://dx.doi.org/10.1634/theoncologist.2008-0178
http://dx.doi.org/10.1046/j.1365-2559.1999.00602.x
http://dx.doi.org/10.1016/j.hoc.2008.07.002
http://dx.doi.org/10.1182/blood-2005-04-1722
http://dx.doi.org/10.1016/j.jtbi.2008.08.005
http://dx.doi.org/10.1099/mic.0.26993-0
http://dx.doi.org/10.1016/0140-6736(93)91408-E
http://dx.doi.org/10.1002/(SICI)1096-9896(199602)178:2<122::AID-PATH486>3.0.CO;2-D
http://dx.doi.org/10.1002/(SICI)1096-9896(199602)178:2<122::AID-PATH486>3.0.CO;2-D
http://dx.doi.org/10.1146/annurev.micro.54.1.615
http://dx.doi.org/10.1016/j.yexmp.2012.08.002
http://dx.doi.org/10.1016/j.yexmp.2012.08.002
http://dx.doi.org/10.3389/fimmu.2012.00386
http://dx.doi.org/10.3389/fimmu.2012.00386
http://dx.doi.org/10.1016/j.nbt.2008.12.009
http://dx.doi.org/10.1093/bioinformatics/btk004
http://dx.doi.org/10.1093/bioinformatics/btm404
http://dx.doi.org/10.1016/j.imlet.2012.08.002
http://dx.doi.org/10.1126/science.1170020
http://dx.doi.org/10.1038/gene.2012.20
http://dx.doi.org/10.1890/06-1736.1
http://dx.doi.org/10.1111/j.1541-0420.2008.01010.x
http://dx.doi.org/10.1016/j.jim.2008.06.006
http://dx.doi.org/10.1080/10446670310001593541
http://dx.doi.org/10.1080/10446670310001593541
http://dx.doi.org/10.1016/j.biosystems.2004.05.011
http://dx.doi.org/10.1093/intimm/dxn026
http://dx.doi.org/10.1093/nar/gkr413
http://dx.doi.org/10.3389/fimmu.2014.00264
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology/archive


GENERAL COMMENTARY
published: 05 January 2015

doi: 10.3389/fimmu.2014.00666

Addendum: Immunoglobulin gene repertoire
diversification and selection in the stomach – from gastritis
to gastric lymphomas
Miri Michaeli 1, HillaTabibian-Keissar 1,2, Ginette Schiby 2, Gitit Shahaf 1,Yishai Pickman1, Lena Hazanov 1,
Kinneret Rosenblatt 2, Deborah K. Dunn-Walters3, Iris Barshack 2,4 and Ramit Mehr 1*
1 The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
2 Department of Pathology, Sheba Medical Center, Ramat Gan, Israel
3 Division of Immunology, Infection, and Inflammatory Diseases, King’s College London School of Medicine, London, UK
4 Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
*Correspondence: ramit.mehr@biu.ac.il

Edited by:
Michal Or-Guil, Humboldt University of Berlin, Germany

Reviewed by:
Jose Faro, Universidade de Vigo, Spain
Andrew M. Collins, University of New South Wales, Australia

Keywords: B-cells, Ig gene, repertoire, somatic hypermutation, diversity

A commentary on

Immunoglobulin gene repertoire diversi-
fication and selection in the stomach –
from gastritis to gastric lymphomas
by Michaeli M, Tabibian-Keissar H, Schiby
G, Shahaf G, Pickman Y, Hazanov L, et al.
Front Immunol (2014) 5:264. doi:10.3389/
fimmu.2014.00264

In Section “Diversity Analysis” of this arti-
cle, there were some inaccuracies in the way
diversity terms were referred to. Hence, we
re-wrote the section, which should read as
follows.

DIVERSITY ANALYSIS
CLONES IN SAMPLES CAN BE REGARDED AS
SPECIES IN HABITATS
In the case of lymphocyte clonal repertoire
samples (e.g., those obtained from tissue
biopsies), we treat each sample as a sam-
ple from a habitat, in which the “species”
are the BCR or TCR clones found in the
sample. Each of the clones may be com-
posed of a number of different sequences.
In TCR clones, all sequences are identi-
cal, but in BCR clones sequences from the
same clone may be different due to somatic
hypermutation, and one may choose to
use only unique sequences found, or all
sequences including multiplicate ones. The
latter choice depends on whether identi-
cal sequences coming from different cells
can be identified as such, or cannot be
distinguished from sequence duplications

caused by PCR amplification. If the former
is true (as when using random barcoding
in the PCR primers), then the number of
sequences that come from different cells is
known and can be used to estimate diver-
sity. If not, then TCR diversity cannot be
estimated, and BCR diversity can only be
estimated based on the number of unique
sequences and thus would usually only give
a minimum estimate of the total diversity,
as we have done in this study.

DIVERSITY INDICES
In order to quantify the diversity of clonal
repertoires (such as antibody/BCR or TCR
gene repertoires) in each experimental
group, and later to be able to compare
between two or more groups, we used
diversity indices (such as the Species Rich-
ness, the Shannon entropy, or the Simp-
son concentration, which are indices of
order 0, 1, and 2, respectively) (1). These
indices take into account the number of
species and (in indices of order >0) the
frequency of members of a species (in
our case, sequences) of each species (in
our case, clone) in each habitat sample.
In indices of order 0, diversity is defined
simply as number of species (in our case,
lymphocyte clones) in a sample. In order
1 indices, clone size (or frequency) are
taken into account, as in the Shannon
entropy when diversity is the sum of
[–pi*ln(pi)], where i represents a species or
clone and pi represents its size (the num-
ber of members/sequences, see below).

Order 2 indices attribute more weight to
large clones, as in the Simpson concen-
tration, which is the sum of pi

2. In our
studies, we used both order 1 and 2 diver-
sity indices, i.e., the Shannon entropy and
the Simpson concentration.

ESTIMATING THE FULL REPERTOIRE FROM
WHICH EACH SAMPLE WAS TAKEN
Considering the large numbers of
sequences observed only once in each
sample, it is likely that many rare clones in
an individual’s original full repertoire were
not detected. To account for the presence
of unobserved “species” (clones), all diver-
sity indices can be estimated for whole
repertoires (rather than calculated for the
sample) using the method described by
Chao and Shen (2), which is based on
a non-parametric estimation of diver-
sity indices where there are undetected
species. Chao and Shen’s approach uti-
lizes the concept of sample coverage to
adjust the diversity indices for clones
that escaped sampling. The sample cov-
erage is estimated from the proportion of
species/sequences that are observed only
once within a sample.

In our Ig gene repertoire studies,
the abundance data (numbers of unique
sequences) of antibody clones in each sam-
ple was used to estimate the mean, standard
error, and 95% confidence intervals (CI) of
the diversity index of choice (order 0, 1,
and 2 indices) of the full repertoire from
which each sample was taken (including
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FIGURE 1 | Illustration of the calculation of repertoire diversity. First, the
diversity indices (Shannon entropy, Simpson concentration, etc.) are
calculated for each sample. Next, the distribution measures (α, β, γ) are
calculated for each condition using the individual samples. Finally, the
confidence intervals (CI) of the distribution measures are compared between
the populations/conditions. Xi represents the set of clone frequencies in

sample i, that is, the set (for all samples) of the numbers of unique sequences
in all clones in sample i out of the total number of unique sequences in the
whole sample. D stands for Diversity, D(pool) is the calculation of γ (gamma)
for a sample and D(Xi) is the calculation of α (alpha) for sample i. In our
calculations of order 1, we used only the Shannon entropy for D, and for order
2 we used only the Simpson concentration for D.

unobserved clones). This was done using
SPADE©, a program designed for diversity
calculations (2).

DIVERSITY MEASURES
From the estimated diversity indices for
each sample or pool of samples, we have
calculated the average alpha, beta, and
gamma diversity measures for each group
of samples (1). The average alpha diversity
measure represents the average sample –
or in our case, whole repertoire – diversity
in each group of samples. In order to cal-
culate the average alpha, we calculate the
alpha diversity of each estimated repertoire
using SPADE©(that is,−

∑s
i=1 (pi × lnpi)

for Shannon entropy, and
∑s

i=1

(
p2

i

)
for

Simpson concentration), and then aver-
age over all samples from the same group
of samples. The gamma diversity measure
represents the “global” repertoire diver-
sity across all samples studied in each
group of samples. It is calculated as the
diversity of the pool containing all the
repertoires estimated from all the sam-
ples in the same group of samples, also

by SPADE©, using the same indices as for
alpha.

Finally, the beta diversity measure,
which represents the diversity component
resulting from the variability between indi-
vidual repertoires or samples, should in
principle be calculated as the gamma of
the group of samples divided by the aver-
age alpha of all samples in the group
of samples. In order to compare between
groups of samples, however, we needed to
calculate CI for beta. This was done by
calculating a beta measure per sample (the
gamma of the group of samples divided
by alpha of the sample) and then calcu-
lating the average, standard error, and CI
of beta for each group of samples. Thus,
comparisons can be made between the
diversity measures calculated for different
groups. One should keep in mind, how-
ever, that the comparisons of average alpha
are based on averages of the estimates of
alpha for all samples in a group, while
the comparisons of gamma are based on
the CI for the estimated diversity for each
group. Since in all cases the 95% CI are

given, if these intervals (e.g., of gamma)
for two groups do not overlap, then the
measures in question (e.g., gamma) of
the two groups are significantly differ-
ent with p < 0.05 under Student’s t -test
(Figure 1).

In order to allow an intuitive compari-
son between the diversities of each of the
groups, all the diversity measures can be
expressed as their number equivalents (1),
which reflect the number of equally sized
clones needed to produce the given value
of the diversity index.

SIMILARITY ANALYSIS
In order to understand the sources for
the differences in diversity between groups
of samples, we used similarity analysis
based on the Morisita similarity index (3).
SPADE©(2) was used to calculate a similar-
ity matrix, in which we measured each esti-
mated individual repertoire’s similarity to
all other estimated individual repertoires.
A value close to 1 represents high similarity
between two groups, and a value close to
0 represents low similarity. The average of
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similarity indices of individuals in a given
group to those in another group represents
the similarity index for the comparison
between the two groups.
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Different human leukocyte antigen (HLA) haplotypes (i.e., the specific combinations of HLA-
A, -B, -DR alleles inherited together from one parent) are observed in different frequencies
in human populations. Some haplotypes, like HLA-A1-B8, are very frequent, reaching up to
10% in the Caucasian population, while others are very rare. Numerous studies have iden-
tified associations between HLA haplotypes and diseases, and differences in haplotype
frequencies can in part be explained by these associations: the stronger the association
with a severe (autoimmune) disease, the lower the expected HLA haplotype frequency.The
peptide repertoires of the HLA molecules composing a haplotype can also influence the fre-
quency of a haplotype. For example, it would seem advantageous to have HLA molecules
with non-overlapping binding specificities within a haplotype, as individuals expressing
such an haplotype would present a diverse set of peptides from viruses and pathogenic
bacteria on the cell surface. To test this hypothesis, we collect the proteome data from
a set of common viruses, and estimate the total ligand repertoire of HLA class I haplo-
types (HLA-A-B) using in silico predictions. We compare the size of these repertoires to
the HLA haplotype frequencies reported in the National Marrow Donor Program (NMDP).
We find that in most HLA-A and HLA-B pairs have fairly distinct binding motifs, and that the
observed haplotypes do not contain HLA-A and -B molecules with more distinct binding
motifs than random HLA-A and HLA-B pairs. In addition, the population frequency of a hap-
lotype is not correlated to the distinctness of its HLA-A and HLA-B peptide binding motifs.
These results suggest that there is a not a strong selection pressure on the haplotype level
favoring haplotypes having HLA molecules with distinct binding motifs, which would result
the largest possible presented peptide repertoires in the context of infectious diseases.

Keywords: haplotypes, HLA antigens, selection, genetic, peptide binding, bioinformatics, computational biology

INTRODUCTION
The human leukocyte antigen (HLA) genes are the most poly-
morphic coding loci known in humans. The HLA gene cluster is
located on the major histocompatibility complex (MHC) on chro-
mosome 6, and contains over 200 genes. The two groups of loci
that contain the MHC class I and II genes dictating T cell responses
are the most polymorphic. It is widely accepted that this variability
is maintained by balancing selection, as individuals that are het-
erozygous in their HLA class I and II loci seem to have a better
outcome in infections diseases [see e.g., for HIV-1 (1)]. In line
with this, it has been demonstrated that in several species, and up
to a certain extent in humans, females prefer to mate with males
having a dissimilar HLA to increase the chance of their offspring
to survive infectious diseases (2, 3). We have argued that the het-
erozygous advantage is on its own not enough to maintain such a
large degree of polymorphism, and that the frequency dependent
co-evolution with pathogens should also play a major role (4).

On the functional level the HLA polymorphism seems to be
much smaller. It is well established that MHC class II molecules

have largely overlapping peptide repertoires [see e.g., (5)]. In the
last few years we and others showed this to be also true for class I
alleles (6–9). This promiscuous peptide binding is not limited to
the alleles within each locus, and extends to alleles from different
MHC class I loci (7, 9). This property has important evolutionary
consequences as heterozygous individuals carrying genetically dif-
ferent HLA molecules that nevertheless have overlapping peptide
repertoires should have a diminished heterozygous advantage.

Recombinations occur frequently in the HLA region and they
generate novel HLA haplotypes (10). However, the number of hap-
lotypes found in human populations is far lower than the number
of alleles observed (11), suggesting that not all the HLA haplo-
types have the same chance of becoming established in human
populations. Indeed, different haplotypes occur with very dif-
ferent frequencies in different ethnic groups/subpopulations1,2.

1www.allelefrequencies.net
2www.nmdp.org
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The “usefulness” of HLA molecules is expected to play a role in
determining the haplotype frequencies: haplotypes carrying HLA
molecules that are protective for certain diseases are expected to
be present in relatively high frequencies in endemic areas. Indeed,
several HLA haplotype disease associations have been established,
e.g., in autoimmune diseases (12), squamous cell cervical cancer
(13) and recurrent aphthous stomatitis (14). Along these lines, one
can speculate that it should be advantageous to have MHC mol-
ecules with distinct binding specificities in a haplotype, because
such haplotypes would provide an individual with more epitopes
eliciting T cell responses during an infectious disease than hap-
lotypes containing HLA molecules with similar binding motifs.
This hypothesis is rather impossible to test experimentally, because
one needs to determine the total set of peptides presented by
a very large set of HLA molecules in cells infected by different
viruses. Such experiments (e.g., eluting peptides from HLA mole-
cules expressed by a cell) are typically done at small scales because
they are time consuming. Therefore, we here study the peptide
repertoires of HLA molecules that are estimated to be combined
in a haplotype (i.e., the ones with a strong linkage disequilibrium)
using an in silico approach. This approach unfortunately suffers
of two main limitations. First, the quality of the peptide-HLA
predictions differs between the loci. The quality of HLA-A and
HLA-B peptide binding predictions is very reliable. For the other
loci (HLA-C, HLA-DR, etc.) the predictions are of low quality (15),
and are therefore left out of this analysis. Second, having distinct
HLA binding motifs might also be important in the context of
cancer or autoimmunity, however, it is very complicated to deter-
mine the role of HLA haplotypes in these diseases. Therefore, we
perform our analysis explicitly for infectious diseases, and focus on
the peptides that can be presented from common viruses only. Still,
we think that our study is a first step to investigate the role of HLA
binding motifs in the evolution of HLA haplotype frequencies.

MATERIALS AND METHODS
NMDP DATA
All estimated HLA-A-B haplotype frequencies were downloaded
from the National Marrow Donor Program (NMDP) database,
which was established to develop and maintain a registry of
HLA-typed volunteer unrelated donors for patients requiring a
hematopoietic stem cell transplant (16)3. Four predominant US
ethnic and racial groups were included in this data set: European
Americans, African Americans, Asians, and Hispanic (17). Haplo-
type frequencies were estimated separately for each ethnic group
using an implementation of the expectation maximization (EM)
algorithm (18, 19).

The linkage disequilibrium, D, between two alleles in each
haplotype was expressed as the difference between the observed
and expected haplotype frequency: D= fAB−fAfB, where fAB is
the observed (estimated) haplotype frequency, fA is the allele fre-
quency of the HLA-A molecule in the haplotype and fB is the allele
frequency of the HLA-B molecule in this haplotype. D is easy to
calculate, but has the disadvantage of depending on the frequency
of the alleles. In order to overcome this drawback, the normalized

3http://bioinformatics.nmdp.org

measure, D′, was calculated a D′ = D
Dmax

, where Dmax is the lesser
of fAB or (1− fA) (1− fB) when D < 0 and is the lesser of fA(1− fB)
or fB(1− fA) when D > 0. The advantage of this measure of dis-
equilibrium is that it ranges between −1 and 1, regardless of the
allelic frequencies in the sample.

∣∣D′∣∣ = 1 indicates complete LD
and D′= 0 corresponds to total absence of LD.

Linkage disequilibrium statistics were calculated for each
haplotype to identify the haplotypes that have a significantly
positive D′.

HLA LIGAND PREDICTION
To be able to perform our analysis for as many as possible HLA
molecules, we used NetMHCpan (15) to predict peptide-HLA
binding affinity. NetMHCpan assigns to each peptide-HLA pair
a predicted IC50 value, indicative of the predicted binding affin-
ity. To assess whether a peptide binds to an HLA molecule depends
on the choice of binding threshold, and the optimal threshold has
been discussed (20). If one assumes that all HLA molecules use a
fixed threshold, one can use the default threshold of 500 nM (21,
22), otherwise a 5000 nM threshold can be used to allow for the
comparison of more weakly binding peptides. However, using a
fixed threshold to define predicted binders result in large differ-
ences in the predicted repertoire sizes between HLA molecules.
For instance using a fixed threshold of 500 nM, the HLA reper-
toire sizes range between 20 and 6574 peptides for the viral set
listed in Table S2 in Supplementary Material. As such a variance
could introduce large biases in our analysis, we defined the 1%
top-ranking peptides as candidate binders for each HLA mole-
cule. This gives each HLA molecule the same ligand repertoire size
(i.e., 570 binders per HLA molecule for the viral set listed in Table
S2 in Supplementary Material). To check the consistency of our
results with respect to these parameters, we repeated every analy-
sis with the fixed threshold of 500 nM. All results presented below
were derived using the threshold of 1% to define candidate binders,
and remain similar for a fixed threshold, unless mentioned other-
wise. To test whether our results change if one were to use a much
larger data set, we also generated predicted binders using a much
larger set of viruses (see below), in which case each HLA molecule
had 60-fold more binders.

VIRAL DATA
The proteomes of 17 common human viruses were downloaded
from the European Bioinformatics Institute website4 (downloads
were made in October 2006, listed in Table S2 in Supplementary
Material) as the source of potential HLA ligands. To extend this
data set, we downloaded another set of proteomes (downloads
were made in October 2008)4 from viruses that are known to
infect mammalians (n= 904). We used the HLA-peptide binding
predictors (see above) to screen all possible unique virus-derived
9-mer peptides.

PEPTIDE REPERTOIRE OVERLAP
We define the peptide repertoire overlap between two HLA alleles
in the same HLA-A-B haplotype, Fp, as the fraction of overlap-
ping ligands between these two HLA class I molecules among

4www.ebi.ac.uk
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all of their ligands: Fp =
A
⋂

B
A
⋃

B , where A and B are the ligand

sets for HLA-A and -B molecule, respectively. Fp= 1 implies that
the HLA-A and HLA-B molecules belonging to the same hap-
lotype have the same epitope repertories while Fp= 0 indicates
completely different peptide repertoires for two HLA molecules.

RESULTS AND DISCUSSION
DETERMINING HLA-A-B HAPLOTYPES
The “true” HLA haplotypes can be determined either by mol-
ecular haplotyping or family-based segregation studies (23–25).
However, both approaches are expensive and laborious, and there-
fore, statistical methods are typically used to infer haplotypes from
datasets covering large population of individuals with known HLA
genotypes (26). Several methods have been proposed to infer HLA
haplotypes from genotype data, and in recent studies the perfor-
mance of two most commonly used approaches, EM algorithm
based (implemented in Arlequin V3.0), and the Bayesian algo-
rithm based (implemented in PHASEV2.1.1),have been compared
(27, 28). Unfortunately, neither of the methods could infer all
of the known haplotypes: incorrect haplotypes were estimated
in more than 30% of the cases. However, once the sample size
increases, the power of these statistical methods is expected to
increase tremendously.

National marrow donor program2 provides, to our knowl-
edge, the largest repository of HLA-typed donors. Here use of
statistical methods should become more reliable (16): for the
HLA-A-B haplotype, the total chromosome counts (2N) for the
four major ethnic groups exceeds 2000. On the NMDP webpage3,
the high-resolution allele and haplotype frequencies [estimated
by EM method, (18, 19)] are available (17). Focusing on HLA-A-B
haplotypes, the most common haplotypes found in US popula-
tion (separated into four main ethnic groups) are summarized
in Table 1 (adopted from bioinformatics.nmdp.org, December
2007 version). Alternatively Allele frequencies web server1, pro-
vides allele frequencies established in smaller, but probably better
defined studies (29).

In the NMDP database 660 possible haplotypes are reported
for European Americans. However, many of these haplotypes are
bound to be falsely predicted, e.g., due to the limited number of
individuals carrying particular combinations of specific HLA mol-
ecules. To decrease the amount of wrongly identified haplotypes
in our analysis, we apply a rather strict criterion for considering
a predicted haplotype as a “true” haplotype: we demand a posi-
tive LD value that is significantly different than zero (p < 0.01, see
Materials and Methods). This criterion decreases the number of
haplotypes to 60 for European Americans. These 60 haplotypes
are estimated to cover 58% of the population (see Table 2), i.e.,
current statistical methods and data sets (even the large reposi-
tories like NMDP) remain rather limited in providing the HLA
haplotype diversity of a population. For other ethnical groups, the
number of reliable haplotypes drops to 30–40 per ethnic group,
even though the number of possible haplotypes was the same or
higher (see Table 2 and footnote text 3). The population coverage
in non-European groups was lower, 30–40% of their respective
populations, possibly due to the lower number of individuals
with known HLA-typing. All together we detected 120 reliable
unique haplotypes by summing over these ethnical groups (the

Table 1 | Occurrences of the three most common HLA-A-B frequency

ranked haplotypes in four major ethnic groups in US (adopted from

bioinformatics.nmdp.org).

EUR AFA API HIS

HLA-A HLA-B F (%) Rank F (%) Rank F (%) Rank F (%) Rank

0101 0801 9.55 1 1.50 6 0.41 46 2.21 2

0201 4402 5.70 3 1.33 9 0.17 130 1.94 4

0201 4501 0.05 200 1.66 3 – – 0.23 105

0201 5101 2.00 9 0.61 26 0.91 25 2.20 3

0207 4601 – – – – 3.34 2 – –

0301 0702 6.01 2 1.73 2 0.26 82 1.92 5

2902 4403 2.38 7 1.08 15 0.03 433 2.54 1

3001 4201 – – 2.96 1 – – 0.40 50

3303 4403 – – 0.09 261 2.94 3 0.16 156

3303 5801 0.08 162 0.28 88 4.53 1 0.10 230

EUR, Caucasian; AFA, African; API, Asian; HIS, Hispanic. F stands for population

frequency in percentages.

Table 2 | Numbers of different haplotypes with a significantly positive

LD in four major US ethnic groups.

Ethnicity Haplotype # (%)

EUR 60 (57.7)

API 34 (35.4)

HIS 43 (33.5)

AFA 43 (33.7)

Population coverage in percentages is given within parenthesis.

full list of haplotypes can be found in Table S1 in Supplementary
Material).

PEPTIDE REPERTOIRE OF AN HAPLOTYPE
Having identified the HLA-A-B haplotypes for the US popula-
tion, we next estimated the overlaps between peptide repertoires
of HLA-A and -B molecules that belong to the same haplotype.

We used an in silico approach and predicted the peptide reper-
toire of all HLA-A and HLA-B alleles that are part of the 120
predicted haplotypes, using the proteomes of common viruses
(see Table S2 in Supplementary Material) and HLA-peptide bind-
ing predictor NetMHCpan (15, 30) (see Materials and Methods).
NetMHCpan is the only prediction system available right now that
can reliably predict the peptide binding affinities for the large set
of HLA-A and HLA-B molecules we are taking into account in
this study. The analysis of the 120 significant haplotypes demands
predictions for 39 HLA-A and 63 HLA-B molecules. This predic-
tor assigns an IC50 value to each peptide-HLA pair, which can
be used as a predicted binding affinity. Using the widely accepted
IC50 value of 500 nM as a threshold to distinguish binders from
non-binders, generated a large variation in the predicted reper-
toire sizes of different HLA molecules (20–6574 peptides for the
viral set listed in Table S2 in Supplementary Material), which could
strongly bias our results. As the physiologically relevant IC50 val-
ues are difficult to estimate for each HLA molecule, we have chosen
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a simplified approach and define the peptide repertoire as the top
1% peptides with the highest HLA binding affinities for each HLA
molecule. This approach removes the potential bias introduced
by different repertoire sizes, but ignores the fact that some HLA
molecules can be more specific than others, and therefore present
much fewer peptides.

The unique haplotypes listed in Table S1 in Supplementary
Material have an average peptide overlap of 1.1% (with a standard
deviation of 1.8%, and a median of 0.44%) using top 1% thresh-
old. The distribution of the overlaps is given in Figure 1A, and
varies somewhat among the haplotypes. Out of 120 haplotypes,
36 (30%) have non-overlapping peptide repertoires, at least for
the common viruses that we tested (see Table S1 in Supplemen-
tary Material). Only for five haplotypes is the repertoire overlap
higher than 5%, and HLA-A0101-B1517 with an overlap of 11.8%
is the highest. HLA-A0101-B1517 is a rare haplotype and occurs
only in Asian Americans with a population frequency of 0.4%.
To test whether or not rare haplotypes tend to have larger over-
laps than common haplotypes, we weighted the overlaps found in
Figure 1A with the population frequency of the HLA-A-B hap-
lotypes (Figure 1B). Since the weighted overlaps remain very
similar to the unweighted overlaps (Figures 1A,B), there is no
evidence for a trend of rare haplotypes having the largest overlaps.
In line with this, the frequency of a haplotype is only weakly cor-
related with the degree of peptide overlap between the haplotype’s
HLA-A and HLA-B molecules (r =−0.08, p= 0.4, Spearman rank
correlation). Apparently, there is no selection pressure increasing
the frequency of the haplotypes with a small peptide repertoire
overlap.

These results were obtained using the top 1% peptides with
the highest HLA binding affinities as the set of presented peptides
per molecule. Using the set of common viruses listed in Table
S2 in Supplementary Material, this threshold results in approxi-
mately 570 predicted binders per HLA molecule. To test whether
the results presented in Figure 1A would be sensitive to the num-
ber of peptides, we collected proteomes for a much larger set
of mammalian viruses (n= 904), which contains approximately
three million unique peptides of nine amino acids. Using the same
1% threshold for this larger set, we predict for each HLA mole-
cule the extended peptide repertoire and calculate the overlaps as
explained before. The distribution of the overlaps hardly changes
despite the fact that we enlarged the presented peptide repertoire
60-fold per molecule (see Figure S1 in Supplementary Material).
As the results presented in Figure 1A seem fairly insensitive to the
number of peptides used, we perform the rest of the analysis on
the small data set of common viruses.

To test whether or not HLA binding motifs affect haplo-
type compositions requires comparison of the peptide overlaps
of “true” haplotypes with those of “random” haplotypes. To do
this, we reshuffled HLA-A and HLA-B molecules in the 120 “true”
haplotypes to calculate an expected peptide repertoire overlap for
randomly made haplotypes. Although the HLA molecules in ran-
dom haplotypes can have overlaps up to 28% in their peptide
repertoires (see Figure 1C and results not shown), the distribution
of the overlaps is not significantly different from the distribution
given in Figure 1A. The set of random haplotypes was gener-
ated 100 times, and in none of these cases was the distribution

significantly different from the one given in Figure 1A (using a
Kolmogorov–Smirnov test). Finally, we calculated a weighted pep-
tide repertoire overlap for the random haplotypes by assuming that
the frequency of a random haplotype is simply the multiplication
of the frequency of their HLA-A and HLA-B alleles (i.e., assuming
a complete lack of linkage disequilibrium). Again, the distribution
of weighted overlap of random haplotypes (Figure 1D) is not dif-
ferent from that of the real haplotypes (Figure 1B). Taken together,
these results suggest that HLA-A and -B in pairs in general have
distinct peptide binding preferences, and that a small overlap is not
a unique property of the HLA molecules having a strong linkage
disequilibrium.

The overlap distribution presented in Figure 1 seems to be in
contradiction with earlier results, which estimated cross loci pep-
tide overlaps of 23–44% (7, 9). However, this overlap was estimated
at the population level, i.e., these percentages reflect the fraction
of the peptide repertoire of an HLA-A molecule which is also
expected to be presented by at least one HLA-B molecule in the
population (and vice versa). Within an individual having maxi-
mally two different HLA-A and HLA-B molecules, the overlaps
should remain much lower than the population based overlaps. In
addition, one needs to realize that the low overlaps presented in
Figure 1 depend on the threshold used to define the peptide reper-
toire of an HLA molecule. When we use a higher threshold of 2
or 5% the average overlap increases to 2.3 and 5.9%, respectively
(with the standard threshold of 1%, the average overlap was 1.1%,
see above). However, the choice of the threshold hardly affects our
main result, namely that the HLA-A and -B pairs that are in a
linkage disequilibrium do not have more distinct binding motifs
than random HLA-A/B pairs (Figure 1).

CONCLUSION
We hypothesized that it should be advantageous to have HLA mol-
ecules with distinct binding specificities combined in a haplotype,
because during a viral infection such haplotypes would give an
individual a larger epitope repertoire than haplotypes contain-
ing HLA molecules with similar binding motifs during a viral
infection. To test this hypothesis, we used the high-resolution data
available in the NMDP database on haplotype frequencies, and
employed state of the art peptide-HLA binding prediction tools.
We find that for all the haplotypes we could reliably identify in the
US population, their HLA-A and HLA-B molecules present largely
distinct set of peptides (Figure 1A). However, this turned out to
be a generic property of HLA-A and HLA-B molecules: when we
compared random HLA-A and -B pairs we find a very similar
distribution of the presented peptide overlaps (Figure 1C). More-
over, there is no evidence for selection as there is no correlation
between the population frequency of the HLA-A-B haplotypes
and the overlap in the peptide repertoires of their HLA-A and
HLA-B molecules. Taken together, these results suggest the com-
plementarity of binding motifs is a general property of HLA-A
and HLA-B molecules, and that complementarity does not affect
the HLA haplotype composition. We were not able to specifically
test the effect of complimentary binding motifs in the context
of autoimmunity and cancer, as for both cases it remains unclear
which set of human proteins should be taken as possible auto anti-
gens. Complimentary binding motifs are expected to increase the
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FIGURE 1 | Distribution of the presented peptide overlap (given in
percentages, see Materials and Methods) between HLA-A and
HLA-B molecules belonging to the same haplotype. (A) The
distribution of the peptide overlaps for the 120 unique haplotypes we
identified in the US population. (B) The distribution in A is weighted with
the frequency of the haplotype in the population. If a haplotype was
found in more than one ethnicity in US, we have taken the maximum
frequency into account, normalizing the frequencies such that the sum

remains one. In (C) we plot the overlaps found in artificially generated
haplotypes (created by reshuffling the HLA-A and -B molecules from the
120 unique haplotypes). This plot is representative of 100 sets of
artificially generated haplotypes. (D) The weighted peptide overlaps for
the artificial haplotypes, where we estimate the frequency of the
haplotype as the multiplication of the frequency of HLA-A and HLA-B
molecule in the population (normalized to let the sum of the frequencies
of the artificial haplotypes remain one).

number of potential self antigens, which could increase the risk
of autoimmunity. Finally, the frequency of an HLA haplotype is
determined by complex interactions with many different factors,

one example is the correlation between birth weight and particular
haplotypes (31). Our results suggest that complimentary binding
motifs of HLA molecules during viral infections play a minor role,
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if any, compared to these other factors in the evolution of HLA
haplotype frequencies.

ACKNOWLEDGMENTS
This study was financially supported by the University of Utrecht
through a High Potential grant. The funders had no role in
study design, data collection, and analysis, decision to publish or
preparation of the manuscript.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at
http://www.frontiersin.org/Journal/10.3389/fimmu.2013.00374/
abstract

REFERENCES
1. Carrington M, Nelson GW, Martin MP, Kissner T, Vlahov D, Goedert JJ, et al.

HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science
(1999) 283:1748–52. doi:10.1126/science.283.5408.1748

2. Apanius V, Penn D, Slev PR, Ruff LR, Potts WK. The nature of selection on
the major histocompatibility complex. Crit Rev Immunol (1997) 17:179–224.
doi:10.1615/CritRevImmunol.v17.i2.40

3. Boehm T, Zufall F. MHC peptides and the sensory evaluation of genotype. Trends
Neurosci (2006) 29:100–7. doi:10.1016/j.tins.2005.11.006

4. De Boer RJ, Borghans JAM, van Boven M, Kesmir C, Weissing FJ. Heterozy-
gote advantage fails to explain the high degree of polymorphism of the MHC.
Immunogenetics (2004) 55:725–31. doi:10.1007/s00251-003-0629-y

5. O’Sullivan D, Arrhenius T, Sidney J, Del Guercio MF, Albertson M, Wall M,
et al. On the interaction of promiscuous antigenic peptides with different
DR alleles. Identification of common structural motifs. J Immunol (1991)
1950(147):2663–9.

6. Axelsson-Robertson R, Weichold F, Sizemore D, Wulf M, Skeiky YA, Sadoff J,
et al. Extensive major histocompatibility complex class I binding promiscuity for
Mycobacterium tuberculosis TB10.4 peptides and immune dominance of human
leucocyte antigen (HLA)-B*0702 and HLA-B*0801 alleles in TB10.4 CD8 T-
cell responses. Immunology (2010) 129:496–505. doi:10.1111/j.1365-2567.2009.
03201.x

7. Frahm N, Yusim K, Suscovich TJ, Adams S, Sidney J, Hraber P, et al. Extensive
HLA class I allele promiscuity among viral CTL epitopes. Eur J Immunol (2007)
37:2419–33. doi:10.1002/eji.200737365

8. Nakagawa M, Kim KH, Gillam TM, Moscicki A-B. HLA class I binding promis-
cuity of the CD8 T-cell epitopes of human papillomavirus type 16 E6 protein.
J Virol (2007) 81:1412–23. doi:10.1128/JVI.01768-06

9. Rao X, Hoof I, Costa AI, van Baarle D, Kesmir C. HLA class I allele promiscuity
revisited. Immunogenetics (2011) 63:691–701. doi:10.1007/s00251-011-0552-6

10. Carrington M. Recombination within the human MHC. Immunol Rev (1999)
167:245–56. doi:10.1111/j.1600-065X.1999.tb01397.x

11. Begovich AB, McClure GR, Suraj VC, Helmuth RC, Fildes N, Bugawan TL, et al.
Polymorphism, recombination, and linkage disequilibrium within the HLA class
II region. J Immunol (1992) 1950(148):249–58.

12. Smith WP,Vu Q, Li SS, Hansen JA, Zhao LP, Geraghty DE. Toward understanding
MHC disease associations: partial resequencing of 46 distinct HLA haplotypes.
Genomics (2006) 87:561–71. doi:10.1016/j.ygeno.2005.11.020

13. Madeleine MM, Johnson LG, Smith AG, Hansen JA, Nisperos BB, Li S, et al.
Comprehensive analysis of HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-
DQB1 loci and squamous cell cervical cancer risk. Cancer Res (2008) 68:3532–9.
doi:10.1158/0008-5472.CAN-07-6471

14. Albanidou-Farmaki E, Deligiannidis A, Markopoulos AK, Katsares V, Farmakis
K, Parapanissiou E. HLA haplotypes in recurrent aphthous stomatitis: a mode
of inheritance? Int J Immunogenet (2008) 35:427–32. doi:10.1111/j.1744-313X.
2008.00801.x

15. Hoof I, Peters B, Sidney J, Pedersen LE, Sette A, Lund O, et al. NetMHCpan, a
method for MHC class I binding prediction beyond humans. Immunogenetics
(2009) 61:1–13. doi:10.1007/s00251-008-0341-z

16. Maiers M, Gragert L, Klitz W. High-resolution HLA alleles and haplotypes in
the United States population. Hum Immunol (2007) 68:779–88. doi:10.1016/j.
humimm.2007.04.005

17. Kollman C, Maiers M, Gragert L, Müller C, Setterholm M, Oudshoorn M, et al.
Estimation of HLA-A, -B, -DRB1 haplotype frequencies using mixed resolu-
tion data from a National Registry with selective retyping of volunteers. Hum
Immunol (2007) 68:950–8. doi:10.1016/j.humimm.2007.10.009

18. Long JC, Williams RC, Urbanek M. An E-M algorithm and testing strategy for
multiple-locus haplotypes. Am J Hum Genet (1995) 56:799–810.

19. Excoffier L, Slatkin M. Maximum-likelihood estimation of molecular haplotype
frequencies in a diploid population. Mol Biol Evol (1995) 12:921–7.

20. MacNamara A, Kadolsky U, Bangham CR, Asquith B. T-cell epitope prediction:
rescaling can mask biological variation between MHC molecules. PLoS Comput
Biol (2009) 5:e1000327. doi:10.1371/journal.pcbi.1000327

21. Buus S, Lauemoller SL, Worning P, Kesmir C, Frimurer T, Corbet S, et al. Sen-
sitive quantitative predictions of peptide-MHC binding by a “Query by Com-
mittee” artificial neural network approach. Tissue Antigens (2003) 62:378–84.
doi:10.1034/j.1399-0039.2003.00112.x

22. Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, et al.
Reliable prediction of T-cell epitopes using neural networks with novel sequence
representations. Protein Sci (2003) 12:1007–17. doi:10.1110/ps.0239403

23. Crawford DC, Nickerson DA. Definition and clinical importance of haplotypes.
Annu Rev Med (2005) 56:303–20. doi:10.1146/annurev.med.56.082103.104540

24. Yan H, Papadopoulos N, Marra G, Perrera C, Jiricny J, Boland CR, et al. Conver-
sion of diploidy to haploidy. Nature (2000) 403:723–4. doi:10.1038/35002251

25. Douglas JA, Boehnke M, Gillanders E, Trent JM, Gruber SB. Experimentally-
derived haplotypes substantially increase the efficiency of linkage disequilibrium
studies. Nat Genet (2001) 28:361–4. doi:10.1038/ng582

26. Niu T. Algorithms for inferring haplotypes. Genet Epidemiol (2004) 27:334–47.
doi:10.1002/gepi.20024

27. Bettencourt BF, Santos MR, Fialho RN, Couto AR, Peixoto MJ, Pinheiro JP, et al.
Evaluation of two methods for computational HLA haplotypes inference using
a real dataset. BMC Bioinformatics (2008) 9:68. doi:10.1186/1471-2105-9-68

28. Castelli EC, Mendes-Junior CT, Veiga-Castelli LC, Pereira NF, Petzl-Erler ML,
Donadi EA. Evaluation of computational methods for the reconstruction of
HLA haplotypes. Tissue Antigens (2010) 76:459–66. doi:10.1111/j.1399-0039.
2010.01539.x

29. Middleton D, Menchaca L, Rood H, Komerofsky R. New allele frequency
database: http://www.allelefrequencies.net. Tissue Antigens (2003) 61:403–7.
doi:10.1034/j.1399-0039.2003.00062.x

30. Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, et al.
NetMHCpan, a method for quantitative predictions of peptide binding to any
HLA-A and -B locus protein of known sequence. PLoS One (2007) 2:e796.
doi:10.1371/journal.pone.0000796

31. Capittini C, Pasi A, Bergamaschi P, Tinelli C, De Silvestri A, Mercati MP, et al.
HLA haplotypes and birth weight variation: is your future going to be light or
heavy? Tissue Antigens (2009) 74:156–63. doi:10.1111/j.1399-0039.2009.01282.x

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 23 July 2013; paper pending published: 28 August 2013; accepted: 31 October
2013; published online: 14 November 2013.
Citation: Rao X, De Boer RJ, van Baarle D, Maiers M and Kesmir C (2013) Com-
plementarity of binding motifs is a general property of HLA-A and HLA-B molecules
and does not seem to effect HLA haplotype composition. Front. Immunol. 4:374. doi:
10.3389/fimmu.2013.00374
This article was submitted to T Cell Biology, a section of the journal Frontiers in
Immunology.
Copyright © 2013 Rao, De Boer, van Baarle, Maiers and Kesmir. This is an open-
access article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

www.frontiersin.org November 2013 | Volume 4 | Article 374 | 137

http://www.frontiersin.org/Journal/10.3389/fimmu.2013.00374/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2013.00374/abstract
http://dx.doi.org/10.1126/science.283.5408.1748
http://dx.doi.org/10.1615/CritRevImmunol.v17.i2.40
http://dx.doi.org/10.1016/j.tins.2005.11.006
http://dx.doi.org/10.1007/s00251-003-0629-y
http://dx.doi.org/10.1111/j.1365-2567.2009.03201.x
http://dx.doi.org/10.1111/j.1365-2567.2009.03201.x
http://dx.doi.org/10.1002/eji.200737365
http://dx.doi.org/10.1128/JVI.01768-06
http://dx.doi.org/10.1007/s00251-011-0552-6
http://dx.doi.org/10.1111/j.1600-065X.1999.tb01397.x
http://dx.doi.org/10.1016/j.ygeno.2005.11.020
http://dx.doi.org/10.1158/0008-5472.CAN-07-6471
http://dx.doi.org/10.1111/j.1744-313X.2008.00801.x
http://dx.doi.org/10.1111/j.1744-313X.2008.00801.x
http://dx.doi.org/10.1007/s00251-008-0341-z
http://dx.doi.org/10.1016/j.humimm.2007.04.005
http://dx.doi.org/10.1016/j.humimm.2007.04.005
http://dx.doi.org/10.1016/j.humimm.2007.10.009
http://dx.doi.org/10.1371/journal.pcbi.1000327
http://dx.doi.org/10.1034/j.1399-0039.2003.00112.x
http://dx.doi.org/10.1110/ps.0239403
http://dx.doi.org/10.1146/annurev.med.56.082103.104540
http://dx.doi.org/10.1038/35002251
http://dx.doi.org/10.1038/ng582
http://dx.doi.org/10.1002/gepi.20024
http://dx.doi.org/10.1186/1471-2105-9-68
http://dx.doi.org/10.1111/j.1399-0039.2010.01539.x
http://dx.doi.org/10.1111/j.1399-0039.2010.01539.x
http://www.allelefrequencies.net
http://dx.doi.org/10.1034/j.1399-0039.2003.00062.x
http://dx.doi.org/10.1371/journal.pone.0000796
http://dx.doi.org/10.1111/j.1399-0039.2009.01282.x
http://dx.doi.org/10.3389/fimmu.2013.00374
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HYPOTHESIS ANDTHEORY ARTICLE
published: 30 April 2014

doi: 10.3389/fimmu.2014.00132

Receptor pre-clustering and T cell responses: insights into
molecular mechanisms
Mario Castro1*, Hisse M. van Santen2*, María Férez 2, Balbino Alarcón2, Grant Lythe3 and
Carmen Molina-París3

1 Grupo de Dinámica No-Lineal and Grupo Interdisciplinar de Sistemas Complejos (GISC), Escuela Técnica Superior de Ingeniería (ICAI), Universidad Pontificia
Comillas, Madrid, Spain

2 Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad
Autónoma de Madrid, Madrid, Spain

3 Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK

Edited by:
Rob J. De Boer, Utrecht University,
Netherlands

Reviewed by:
Daniel Coombs, University of British
Columbia, Canada
Barbara Szomolay, University of
Warwick, UK

*Correspondence:
Mario Castro, Universidad Pontificia
Comillas, C/ Alberto Aguilera 25,
Madrid E28015, Spain
e-mail: marioc@upcomillas.es;
Hisse M. van Santen, Centro Biología
Molecular Severo Ochoa, Calle
Nicolás Cabrera 1, Campus de
Cantoblanco, Madrid 28049, Spain
e-mail: hvansanten@cbm.csic.es

T cell activation, initiated byT cell receptor (TCR) mediated recognition of pathogen-derived
peptides presented by major histocompatibility complex class I or II molecules (pMHC),
shows exquisite specificity and sensitivity, even though the TCR–pMHC binding interac-
tion is of low affinity. Recent experimental work suggests thatTCR pre-clustering may be a
mechanism via whichT cells can achieve such high sensitivity.The unresolved stoichiometry
of theTCR makesTCR–pMHC binding andTCR triggering, an open question. We formulate
a mathematical model to characterize the pre-clustering of T cell receptors (TCRs) on the
surface of T cells, motivated by the experimentally observed distribution of TCR clusters
on the surface of naive and memory T cells. We extend a recently introduced stochas-
tic criterion to compute the timescales of T cell responses, assuming that ligand-induced
cross-linked TCR is the minimum signaling unit. We derive an approximate formula for the
mean time to signal initiation. Our results show that pre-clustering reduces the mean activa-
tion time. However, additional mechanisms favoring the existence of clusters are required
to explain the difference between naive and memory T cell responses. We discuss the
biological implications of our results, and both the compatibility and complementarity of
our approach with other existing mathematical models.

Keywords: T cell receptor, clustering, stochastic dynamics, signaling, naiveT cells, memoryT cells

1. INTRODUCTION
A hallmark of the adaptive immune system is the ability of T cells,
making use of the T cell receptors (TCRs) on their surface, to
recognize a given agonist peptide–MHC ligand complex (pMHC)
with high sensitivity (1). Some aspects of TCR–pMHC molecular
interactions that are of current research interest are the frequency
of encounters between T cells and the agonist pMHC, how cell–
cell interactions determine the activation of lymphocytes (2), how
early interactions change the state of the T cell receptor (3), what
are the mechanisms of modulation of receptor–ligand interactions
at cell–cell interfaces (4), and how protein organization in the cell
membrane (for instance, protein islands or lipid rafts) affects the
recognition process (5). Some recent experiments have explored
the role of dimensionality on T cell activation and have highlighted
the significance of the events taking place at the receptor level [see
Refs. (1) and (6) for comprehensive reviews].

These open questions have been addressed with the use
of mathematical modeling. Different theories can be classified
according to the level of description (7). At the individual TCR–
pMHC bond level, the kinetic proof-reading model (8) assumes
that the TCR needs to undergo a series of consecutive (phos-
phorylation) steps before being triggered. Also at the TCR level,
the optimal dwell time model (9) reconciles the concurrence of
different timescales, providing an optimal timescale between the

very short times related to the off rate of TCR–pMHC binding,
and the long times related to kinetic proof-reading mechanisms.
The TCR occupancy model (10) considers the cell as a counting
device in which multiple TCR–pMHC interactions are required
to activate a T cell. In a similar fashion, the serial triggering
model (11) proposed that the same pMHC can engage serially
different TCRs. This model enriches the viewpoint of the TCR
occupancy model, by giving greater relevance to the role of the
pMHC itself. Finally, the serial encounter model (12) and the con-
finement time model (13) combine several of the ideas above and
provide some appealing explanations by relaxing some restrictions
in those models.

While antigen presenting cells (APCs), such as dendritic cells
or B cells, present 103–104 times more self-pMHC than antigenic
pMHC, self-pMHC ligands by themselves do not usually elicit a
T cell response, even though their affinity for TCRαβ is only 10
times lower than the affinity of the antigenic pMHC (14). This
illustrates how a small difference in affinity results in high speci-
ficity, when there is only a few antigenic pMHC molecules in a
background of self-pMHC ligands (15).

The T cell signaling process begins with (extracellular) TCR–
pMHC binding, followed by phosphorylation of the intracellular
ITAM domains of the TCR–CD3 complex. When a TCR binds
a pMHC molecule, the TCRαβ hetero-dimer binds the peptide,
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while the CD4 or CD8 co-receptor binds the MHC molecule. The
binding of the co-receptor activates the tyrosine kinase Lck, which
phosphorylates the ITAMs of the CD3 complex. ITAM phospho-
rylation allows recruitment of intracellular signaling components
that mediate downstream signaling events (16).

It has recently been suggested that, contrary to what happens in
TCR micro-clusters and the immunological synapse, clustering is
not only induced by the ligand but by an avidity maturation mech-
anism (or pre-clustering) (17), allowing the aggregation of chains
of TCRs as long as 20 units (around 200 nm long), and referred to
as nano-clusters (3, 18). Specifically, multimeric TCR–CD3 com-
plexes are activated at low agonistic pMHC concentrations and
monomeric TCRs remain unaffected at low ligand concentration.
The TCR nano-clusters could enhance T cell sensitivity by the
mechanisms proposed in the models of T cell activation (7), as
their existence would reduce the time needed for two (or more)
receptors to aggregate (by diffusion). This pre-cluster formation
could be explained by three different mechanisms (3):

• Multimeric complexes (or clusters) enhance the TCR avidity
toward the ligand, which is expressed in clusters on the surface
of APCs (19–21). At low ligand concentration, only multimeric
TCR clusters are bound to ligand, as TCR monomers require
higher ligand concentration. Monomeric TCRs might only be
activated at high agonist doses.

• Multimeric complexes allow the propagation of the activation
signal from ligand-bound TCRαβ to neighboring receptors in
the same TCR multimer.

• Linear arrays of multimeric TCR complexes help a single pMHC
serially trigger several receptors (11).

The existence of these nano-clusters does not exclude addi-
tional mechanisms of T cell activation, as long as they involve the
cooperation of receptors when they aggregate. Thus, while models
such as kinetic proof-reading [and improvements as described in
Ref. (22)] operate at the level of a single receptor, other models
might be used in combination with the fact that the pre-cluster
distribution of naive and memory T cells is different.

Additionally, the fact that the TCR stoichiometry has not been
resolved under physiological conditions, yet, makes it even more
difficult to understand, at a molecular level, the dynamics of TCR
pre-clustering (23). TCR pre-clustering could be an example of
a more general mechanism of membrane-bound molecular pre-
clustering, as clustering prior to cell–cell interaction has also been
observed on the surface of APCs (19–21). It is worth mentioning
that monomeric TCRs can still be activated at increasing lig-
and concentrations, thus, conferring the T cell with a capacity
to generate a dose-dependent response at very high pMHC doses,
when multimeric TCR–CD3 complexes are already saturated (18).
Such mechanisms have been previously described for chemotactic
bacteria, as a cellular mechanism to control sensitivity (24).

Various mechanisms have already been suggested, at the pop-
ulation, cellular or molecular level, to explain the capacity of T
cells to respond, faster and more strongly, to a second antigenic
encounter. However, the underlying mechanisms of the observed
changes in the sensitivity of the T cell for pMHC ligand-mediated

TCR stimulation (25) have not yet been clearly elucidated. Inter-
estingly, the distribution of clusters in naive and memory T cells
is different: memory T cells accommodate larger linear TCR clus-
ters than naive ones. This could explain why memory T cells elicit
more rapid responses than naive T cells (17) (see Figure 1 below).

In this paper, we explore the consequences of TCR pre-
clustering in signaling and in distinguishing naive from memory
T cell responses. We present some experimentally obtained dis-
tributions of TCR clusters for both types of cells (see Figure 1),
and two complementary theoretical models: (i) a simple model
of receptor oligomerization that describes cluster size distribu-
tions, and (ii) a generalization of the stochastic T cell response
criterion of Ref. (26), to accommodate the hypothesis that the
minimum signaling unit is composed of a TCR receptor cluster
that is bound by the same cross-linked multivalent ligand. We
find that this signaling unit is able to discriminate between ago-
nist and antagonist pMHC ligands (with greater sensitivity than
in the monomeric case), and to explain some of the advantages
that higher cluster sizes can provide to memory T cells. The model
also points at the need to invoke additional cooperativity mecha-
nisms, to explain the experimentally observed role of clustering in
T cell responses (27). Finally, this model of ligand-induced TCR
cross-linking can be relevant in physiological conditions, accord-
ing to the defective ribosomal products (DRiP) hypothesis (28, 29),
which provides a rapid source of peptide precursors to optimize
immuno-surveillance of pathogens and tumors (30).

2. MATHEMATICAL MODELING OF TCR PRE-CLUSTERING
AND T CELL ACTIVATION

2.1. MODEL 1: T CELL RECEPTOR PRE-CLUSTERING
The TCR–CD3 complex consists of the pMHC binding TCRαβ
hetero-dimer, associated with the hetero-dimers CD3γ ε and
CD3δε, and the homo-dimer CD3ζ ζ . Binding of a stimulating
pMHC ligand by the extracellular domain of TCRαβ results in
conformational changes in the intracellular part of the CD3ε
chain, and phosphorylation of the immuno-receptor tyrosine-
based activation motifs (ITAMs) in the intracellular domains
of the CD3γ ε, CD3δε, and CD3ζ ζ dimers, which in turn
lead to initiation of downstream signaling cascades and T cell
activation.

It has long been recognized that the TCR–CD3 complex forms
clusters upon ligand binding (31–36). More recently, it has been
shown that in the absence of stimulating pMHC ligand, TCR–
CD3 complexes are already expressed at the cell surface as a
combination of monomeric and oligomeric TCR complexes or
TCR nano-clusters (18). Electron microscopy (EM) analysis of
immuno-gold-labeled human and murine T cells showed that
these nano-clusters consist of up to 20 TCR–CD3 complexes. The
exact stoichiometry of the nano-clusters has not been resolved yet.

The integrity of TCR nano-clusters depends on cholesterol
present at the cell surface membrane (18). The formation of the
clusters depends, at least, on the trans-membrane region of the
CD3ζ ζ homo-dimer (17), perhaps due to the capacity of ζ ζ
dimers to form dimers of dimers (37). Other possible mecha-
nisms of cluster formation rely on the capacity of the extracellular
domain of TCRα to dimerize (38).
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Castro et al. TCR clustering and T cell response

FIGURE 1 | Distribution ofTCRs at the surface of naive and memory
T cells. Resting naive and memory CD8+ OT-1 T cells were labeled with the
CD3ε-specific mAb 2C11 and 10 nm gold-conjugated protein-A. Cell surface
replicas of the labeled T cells were analyzed by transmission electron
microscopy and the number and size of the observed gold clusters were
recorded. (A) TEM image of surface replicas of a memory and a naive OT-1 T
cell. The insets to the right show an enlargement of the boxed areas.
(B) Quantification (mean±SD) of gold particles in clusters of the indicated

sizes for resting naive T cells (gray bars, 7 cells, 9190 particles) and memory T
cells (black bars, 5 cells, 3001 particles).The inset shows a detailed view of the
distribution of clusters of three or more gold particles and statistical analysis
(2-tailed Student’s t -test: *p<0.05, **p<0.01, and ***p<0.001). All naive
and memory T cells had clusters with gold. However, whereas in naive T cells
the maximum gold cluster size shared by all cells was four, this was eight for
memory T cells. Also clusters bigger than twenty three particles were present
in four out of five memory T cells, and only two out of seven naive T cells.
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Castro et al. TCR clustering and T cell response

This body of experimental evidence allows us to conclude
that multimeric TCR–CD3 complexes are co-expressed with TCR
monomers on the surface of resting T cells.

A simple model of aggregation of TCRαβ units is depicted in
the left panel of Figure 2. Given a chain of length n (with n hetero-
dimers linked), in a small time interval1t, with probability q+1t,
the chain increases to length n+ 1, and with probability q−1t, the
chain decreases to length n− 1. Thus, by probability conservation,
the probability to remain the same length n is 1− (q++ q−)1t.

Mathematically, the dynamics of the process can be described
by a continuous time Markov chain (39) (or birth and death
process, as we assume that polymerization takes place in unit
steps). The state space is {1, 2, 3, . . ., n− 1, n, n+ 1, . . .}, where
the number denotes the number of TCRs in a cluster:

1
q−
�
q+

2
q−
�
q+

3
q−
�
q+
· · ·

q−
�
q+

n − 1
q−
�
q+

n
q−
�
q+

n + 1 · · · .

The forward Kolmogorov equations for the probability of
having a cluster of size n are given by (40)

dpn(t )

dt
= q+pn−1(t )+ q−pn+1(t )− (q+ + q−)pn(t ) , ∀n ≥ 2,

dp1(t )

dt
= q−p2(t ) − q+p1(t ).

The stationary probability distribution is then given by

lim
t→+∞

pn(t ) ≡ πn =
bn−1(1− b)

(1− bNmax )
,

b < 1 , n ∈ {1, 2, 3, . . . , Nmax} , (1)

with b = q+
q−

, and πn the probability (in thermodynamic equi-

librium) to have a cluster of size n. When b< 1 (the number of
clusters with a given size, n, decreases as n increases), and taking
into account that peripheral T cells have around Nmax ' 3× 104

receptors, the latter expression can be further simplified to

πn = bn−1(1− b) , b < 1 , n ∈ {1, 2, 3, . . .} . (2)

2.2. MODEL 2: A BIVALENT MODEL FOR T CELL ACTIVATION
The TCR–pMHC binding model introduced in Ref. (26) consid-
ered monovalent pMHC ligands binding to TCR monomers on the
surface of a T cell. Monovalent ligands have been reported to elicit
a T cell response (41–43), but only when they are immobilized on
a surface (which makes it difficult to assess whether they are truly
monovalent or not). Yet, multivalent receptor–ligand interactions
are required to elicit T cell responses in both CD4+ and CD8+ T
cells. In what follows, and supported by a body of experimental
work (3, 24, 44), we adopt the hypothesis that the minimum acti-
vating unit is a TCR–pMHC cross-linked dimeric complex (31,
45–47). We make use of the binding model (Model 2) with pMHC
dimers (ligands) and dimeric TCRs (receptors), described in the
right panel of Figure 2.

Gold-labeling experiments support the existence of nano-
clusters with more than two TCRs, yet it can be shown (see Section
5.2) that the key parameter of the mathematical model is the frac-
tion of monomeric to multimeric TCR clusters. Thus, without loss
of generality, we will assume that all TCR clusters are dimeric.

The biochemical reactions encoded by the right panel of
Figure 2 are as follows:

• A (bivalent) ligand can bind a free receptor with monomeric
binding reaction rates (kon and koff). Although not shown in
the figure, we allow for a second ligand to bind the free receptor
of the cluster. However, at low concentrations of ligands, this
reaction can be safely neglected.

• Cross-linking of a singly bound ligand follows with rates k2

(forward reaction) and k−2 (backward reaction).
• If the complex formed by the ligand cross-linked to the dimeric

TCR cluster lasts at least a time τ , dwell time, we count that
event. When we reach N such events, we will assume that a
T cell response is initiated. The rationale behind this T cell
response criterion follows the work of Palmer et al. (48), where
the concepts of minimum dwell time and productive binding
were introduced. This model combines aspects of the kinetic
proof-reading (8) and the serial triggering models (7, 11). The

FIGURE 2 | Oligomerization and signaling models. Left panel:
oligomerization model not mediated by ligand (Model 1). We assume that
receptors are able to diffuse and aggregate to an existing cluster. However,
we exclude the possibility of clusters with size larger than one to diffuse.
Clusters grow one monomeric unit at a time. Right panel: reactions included
in the stochastic activation model (Model 2). Ligands in solution are able to

attach monovalently to any receptor in a cluster (top reaction). In addition,
ligand-induced TCR cross-linking can occur once a ligand is bound to a TCR
in a given nano-cluster (bottom reaction). Following Ref. (26), once the
bivalently bound ligand has been attached for a time τ , we count that state
as a signaling unit. After N of these units have been generated, the cell
becomes activated.
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minimum dwell time for a TCR–pMHC complex is the time the
complex must remain bound in order to reach a level of ITAM
phosphorylation, which will allow TCR triggering. Any binding,
which persists for longer than the minimum dwell time is classi-
fied as a productive binding [see Refs. (48) and (26) for further
details].

• From an immunological perspective, the relevant parameter is
the mean time to signal initiation, or MTSI (26). Namely, the
MTSI is the average time needed for a T cell response according
to the criterion that at least N TCR dimers should be bivalently
engaged to a bivalent ligand (pMHC) for at least a time τ .

Here we assume that N is around 10–100. That is, 10–100 TCRs
are required for signaling and NB= b×NR is of the order of 104,
with NB the total number of clusters on the T cell surface. This
means, under the assumptions of Model 2, that at most, there can
be N= 100 internalization events, as this is the number of trig-
gered TCRs. Thus, in this approximation, the loss of TCR due to
internalization after triggering can be safely neglected. Neverthe-
less, internalization is an important step in early signaling, and
a proper mechanistic model to justify the value of τ will require
internalization to be considered. This analysis is out of the scope
of this article.

We implement these reactions as a Markov process, and solve
them numerically using the standard Gillespie algorithm (49), and
with the parameters summarized in Table 1. We have made use of
three different ligands: 4A, 4P, and 4N, which were also used in
Ref. (26). For these ligands, that bind the same TCR with differ-
ent affinities, a simple estimation of the number of cross-linking
events required to elicit a T cell response is summarized in Table 2.

There is some evidence that,under physiological conditions, the
chance of two specific peptides being presented by two MHC mol-
ecules in sufficient proximity and long enough to act as a dimer is
very small (46). This will make ligand-induced TCR cross-linking
a rare event. However, some recent experimental work on the dis-
tribution of cognate pMHC molecules on the surface of APCs
shows that both for MHC class I (virus infection models), and for
MHC class II (antigen uptake via the endocytic route) clusters of
cognate pMHC can be detected (19–21).

We also note that ligand concentration is not the only fac-
tor that depends on physiological conditions. According to the
DRiP hypothesis (28, 29), rapid viral antigen presentation is possi-
ble because antigenic peptides originate from defective ribosomal
products that have short half-lives. Although this phenomenon
affects the time between viral challenge and antigen presentation,
we assume it is independent of the subsequent signaling dynamics
of T cell activation.

3. RESULTS
3.1. DISTRIBUTION OF TCR CLUSTERS
The mathematical model described in Section 2.1, or Model 1,
allows us to obtain the value of b that best fits the experimental
data. We have used a weighted (by the variance) minimum-square
regression to fit the experimental distributions to equation (2).
This kind of fit minimizes the value of χ2. Thus, in Figure 3, we
show the agreement between theory and experiment, with values:
bnaive= 0.32 and bmemory= 0.55. The difference between bnaive

Table 1 | Summary of the parameters used in the stochastic

simulations.

Parameter Value Comment

NA 6.023×1023 Avogadro’s number

NR 30,000 Average number of TCRs per T cell (34)

V 50µl Volume of the experiment

NC 105 cells Number of T cells in the experiment

VC V /NC Average extracellular volume per cell

k−2 koff Cross-linking off rate

k2 koff (kd /kdimer
d ) Cross-linking ratea

N 10 Minimum number of bound dimer-bivalent

clusters to elicit a T cell response

τ 1–4 s Dwell time

For typical values of the dissociation rate, kd, we find that k2 is about 10–50 times

koff. We have assumed k−2 = koff following Ref. (44). When not explicitly shown,

we have used the same parameters as in Ref. (26).
aThe cross-linking rate k2 is adapted from Ref. (44) for bivalent receptors.

Table 2 | Estimated mean number of cross-linking events,

N ′ ' N e2k−2τ , required to elicit aT cell response (SP thymocytes).

Ligand N ′

τ (s) N=10 N=100

4P 1 3 12

(kon=153,691 M−1 s−1) 4 3 13

(koff=0.0169 s−1) 8 3 14

4A 1 7 58

(kon=157,533 M−1 s−1) 4 ~103 ~104

(koff=0.8664 s−1) 8 ~106 ~107

4N 1 ~107 ~108

(kon=149,385 M−1 s−1) 4 ~1030 ~1031

(koff=8.6643 s−1) 8 ~1060 ~1061

and bmemory can be explained by the existence of larger (or at least
more localized) lipid rafts on the membrane of memory T cells (50,
51). Thus, the rates q± could be the effective combination of two
mechanisms: one related to the diffusion of receptors on the mem-
brane, and the other related to the aggregation of the receptors at
the molecular level. The presence of cholesterol on the membrane
changes the diffusion coefficient of the TCR receptors, as receptor
diffusion within the raft is inhibited due to protein anchorage (52)
and, thus, stabilizes the formation of clusters (a larger value of b
means that, once two receptors are embedded in the same lipid
raft, it is more difficult for them to become separated from each
other).

A consequence of Model 1 is that, as the stationary probabilities
need to sum up to one, the fraction of clusters of size larger than
one is, precisely, b. This fraction is 72% higher for memory T cells
than for naive T cells: bmemory/bnaive= 1.72.

3.2. MEAN TIME TO SIGNAL INITIATION
In Figures 4A–D, we show how the stochastic criterion is able
to provide a ligand hierarchy according to their potency. Namely,
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FIGURE 3 | Comparison between the experimental distribution of
clusters (see also Figure 1) and those from Model 1 for (A) naiveT
cells and (B) memoryT cells. The theoretical distribution has been

fitted to equation (2) using a weighted (by the variance)
minimum-square regression. The fitted values are bnaive =0.32 and
bmemory =0.55.

FIGURE 4 | Dependence of the mean time to signal initiation
(MTSI),T (N, τ ) to have N cross-linked ligand–receptor complexes
bound for at least a dwell time τ for different model parameters as
shown in every panel. The results have been obtained by making use
of a Gillespie algorithm, after averaging over 100 realizations for each

set of the parameters, summarized inTable 2 (a python code for the
stochastic integration is available upon request). Units of time are
seconds. All parameters are taken fromTables 1 and 2 except
(A) N =10, τ =1 and k 2 =10× k off; (B) N =10, τ =1 and k 2 =40× k off;
(C) N =10, τ =4 and k 2 =10× k off; (D) N =10, τ =4 and k 2 =40× k off.
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the most agonistic ligand, 4P, elicits a T cell response in times of
the order of a few seconds in all cases. On the contrary, the most
antagonistic ligand, 4N, takes extremely large times to do so (in
practical terms, this means it does not elicit a T cell response).
Thus, TCR clustering can enhance the potency of ligands, when
compared to the monomeric case (26), as experimentally observed
and theoretically shown.

Following a similar approach to that of Ref. (26), we can derive
an approximate formula for the mean time to signal initiation
(MTSI), T (N, τ ), for different ranges of ligand concentration, ρ.
We write (see Figure 5A and Section 5.3 for further details):

T (N , τ) '


τ at high concentration

τ +
[

N exp(2k−2τ)

2ρNB konk2

]1/2 at intermediate

concentration

τ +
N exp(2k−2τ)

4ρNB kon(k2/k−2)
at low concentration

(3)

These three regimes correspond to different immunological
scenarios. In the case of high concentration of ligand, ligand is
in great excess, so that the required number of signaling units is
reached, almost as soon as the first signaling unit is formed (time
of order τ ). At low ligand concentration, the dynamics is lim-
ited by the first binding event, as cross-linking occurs in a slower
timescale. So, the MTSI has the same functional form as that for the
monomeric case (26). Finally, for intermediate ligand concentra-
tion, the competition between binding and cross-linking implies a
more complicated mathematical relationship. Of greater relevance
to the discussion is the nature of the ligand (with different kon and
koff rates), and the number of TCR clusters on the membrane of
the T cell (encoded in the parameter NB= b×NR, with NR, the
average number of TCRs per T cell, see Table 1).

An expression for the variance of the time to signal initiation
(TSI) cannot be provided in a closed form [as done in Ref. (26)].
However, the fact that the variance decreases as the ligand concen-
tration increases, suggests that the mathematical formula for the
variance in the monovalent case can provide an upper bound to
the present (dimeric) case.

Using equation (3),we also can deduce the role of pre-clustering
in the signaling time, or MTSI. As the number of bivalent clusters is
b×NR, the larger b is, the shorter the response time becomes. The
model predicts that, for physiological conditions (not too high lig-
and concentrations), the ratio of the MTSI for naive and memory
T cells is inversely proportional to the ratio of their corresponding
values of b. Namely, memory cells would respond up to 72% faster
than naive ones (Figure 5B).

4. DISCUSSION
TCR triggering mechanisms are currently under debate [see, for
example, Ref. (53) and (7) for recent reviews]. TCR clustering
may be invoked as a description of the experimental results (27).
The requirement for multivalent engagement of TCRs by pMHC
ligands in CD4+ T cells has been widely shown (45, 47, 54, 55).
The same requirement was shown in CD8+ T cells by Stone and
Stern (56).

In this paper, we have made use of the concept of mean time
to signal initiation (MTSI or stochastic criterion) as a method
to quantify the effect of TCR clustering on the timescales of T
cell responses and, thus, to compare the behavior of naive and
memory T cells. This criterion has also allowed us to compare
the results in Section 3 for dimeric binding with those of Ref.
(26) for monomeric binding. The introduction of the cross-linked
ligand–receptor complex as the minimum signaling unit gives the
response greater sensitivity to small differences in ligand affinity.

A recent and novel feature of TCR immunology is the existence
of TCR nano-clusters that are pre-formed, independently of ligand
(3). This suggests that a simple stoichiometric clustering model
(oligomerization of free TCRs diffusing on the T cell membrane)
is enough to account for the distribution of TCR nano-clusters.
In the case of naive T cells, Model 1 predicts an effective non-
dimensional parameter, b= q+/q−, that allows us to explain the
experimentally observed TCR cluster distributions. The presence
of larger lipid rafts on the membrane of memory T cells might pro-
vide support for the different values of b for naive and memory
cells, bnaive and bmemory, respectively. It has recently been shown
that receptor diffusion within the raft is inhibited due to protein
anchorage (52). This reduction in the TCR diffusion coefficient

FIGURE 5 | (A) Comparison of the numerical solution of Model 2 (Gillespie algorithm with the parameters summarized inTable 2) and the approximate solution
[equation (3)] for ligand 4P and the same parameters as in Figure 4. (B) Comparison of the mean MTSI for naive (red dashed line) and memory (solid black line)
T cells.
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would increase the time required for the receptor to escape from
the raft [in a similar fashion as other escape problems (57)]. This
escape time is inversely proportional to the diffusion coefficient
itself. A smaller TCR diffusivity, as would be the case for memory
T cells, will imply a larger residence time in the raft, which in turn
will increase the probability of receptor aggregation in a given TCR
cluster. A more detailed model of TCR diffusion and aggregation
on the T cell membrane will be the subject of future work.

Equation (3) shows the explicit dependence of the MTSI, T (N,
τ ), on the parameter NB, for given values of N and τ . NB is the
average number of dimeric receptor clusters per T cell, so that
NB= b×NR, with NR, the average number of TCRs per T cell
(see Table 1). For large ligand concentration, the predicted T cell
response time for memory and naive T cells is the same, and is
equal to τ . In the case of intermediate concentrations, the MTSI
is proportional to 1

√
b

. Finally, for low ligand concentration the

MTSI is proportional to 1
b . This implies that, at low ligand con-

centration, TCR pre-clustering alone can only account for at most
72% of the reduction in the response time between memory and
naive T cells. This behavior is illustrated in Figure 5A. This differ-
ence is not so large as to be able to account for the observed higher
responsiveness of memory T cells. Our results, thus, point to the
need for additional mechanisms beyond TCR pre-clustering.

A potential candidate to explain the large differences between
memory and naive T cell responses is the conformational change
of the CD3 complex (58). This conformational change is essen-
tial to enable ITAM phosphorylation and, thus, the transfer of the
TCR signal from the ecto-domain to the cytoplasmic tail of the
TCR (58). Conformational changes in the CD3 complex occur as
a result of the αβ hetero-dimer binding to pMHC. These con-
formational changes allow the subunits of the CD3 complex (the
γ ε and δε hetero-dimers and the ζ ζ homo-dimer) to become
accessible to Lck, which can then phosphorylate their cytoplasmic
domains at the ITAMs, leading to T cell signaling (59). In this
way, the ligand-induced conformational change of the receptors
can be propagated to all the receptors in the same cluster, so that
larger clusters would benefit from this conformational change as a
cascade [see, for example, Ref. (60) and references therein]. Thus,
differences in the distribution of cluster sizes could, indeed, explain
the immunological differences between memory and naive cells.

Other membrane receptors also exhibit pre-clustering and
ligand-induced receptor cross-linking. For instance, in the case
of the vascular endothelial growth factor receptor (VEGFR), it has
been shown (61) that there are two distinct pathways to receptor
dimerization: (i) dynamic pre-dimerization (as the one described
in Model 1), and (ii) ligand-induced receptor dimerization. The
main conclusion in Ref. (61) is that both mechanisms are almost
indistinguishable at low ligand concentration. However, the first
mechanism is more sensitive to changes in the binding affinity at
large ligand concentration. Although the biological system stud-
ied in Ref. (61) is different from the T cell receptor considered
here, their conclusions might be generalized as both receptors are
tyrosine kinases.

Bachmann et al. (62, 63) considered a model of diffusion and
ligand-induced TCR clustering. Their model suggests that the exis-
tence of large enough clusters greatly inhibits subsequent multimer

diffusion, thus, reducing the relevance that this mechanism might
have. This inhibition might be experimentally tested by exploiting
the differences between naive (small and few clusters) and memory
(large and many clusters). It will be interesting to make use of the
models introduced in this paper to investigate the different roles of
ligand binding and cellular activation (62), and TCR turnover (64).

Finally, the existence of TCR pre-clusters [and the knowledge
of their membrane distribution given by πn, equation (2)] can be
considered in the kinetic-segregation model (65). In this model,
diffusion out of close-contact zones would be inhibited by the exis-
tence of nano-clusters, thus, enhancing the number of triggered
receptors. In a similar way, consecutive receptor phosphorylation
events (66) in TCR nano-clusters would also amplify receptor
signaling.

5. MATERIALS AND METHODS
5.1. EXPERIMENTS
Naive CD8+ OT-1 T cells, which recognize an ovalbumin-derived
peptide presented by the MHC class I molecule H-2Kb, were
isolated from superficial and mesenteric lymph nodes of OT-1
TCR transgenic mice (67), via depletion of CD19+ B cells, CD4+

helper T cells and CD11b+ macrophages, using antibodies and
Dynal magnetic beads (Invitrogen). Memory OT-1 T cells were
generated by adoptively transferring 106 naive OT-1 T cells into
congenic C57BL/6 Ly5.1 Pep3b mice, which were simultaneously
immunized with 107 PFU MVA-OVA (68). After 6 months, rest-
ing memory OT-1 T cells were isolated from the spleen and
lymph nodes of these mice by antibody-mediated depletion of
macrophages, B cells, and CD4+ T cells, followed by separation of
the OT-1 memory T cells from host-derived Ly5.1+ CD8+ T cells
via fluorescence-activated cell sorting, using a Ly5.1-specific anti-
body. Labeling of cells with the CD3ε-specific antibody 2C11 and
10 nm gold-conjugated protein-A, replica generation and analysis
were performed as previously described (17).

5.2. MODELS OF SIGNALING WITH DIMERIC AND TRIMERIC
RECEPTOR CLUSTERS

In Section 2, we introduced a model in which ligands are biva-
lent and receptor clusters are dimeric (that is, composed of two
monomeric TCRs). This is, of course, a first approximation that
neglects the distribution of cluster sizes experimentally observed.
Yet, the results of our mathematical study only change in a quanti-
tative way, but not qualitatively, when we include TCR clusters of
larger sizes. In this Section, we illustrate this by considering a sys-
tem in which clusters of size 1, 2, and 3 coexist and the ligands are
bivalent. Table 3 provides the notation introduced to describe the
molecular species considered in the model, as well as a graphical
representation.

At large initial ligand concentration, under the stochastic crite-
rion, the MTSI tends to τ . On the other hand, at low initial ligand
concentration, the number of receptors, compared to the number
of ligands, is so large that we can neglect molecular species x4, y4,
y6, and y7, which involve more than one bivalent ligand. This has
also been confirmed experimentally. Given our stochastic T cell
response criterion, in this case, the signaling units correspond to
molecular species x5, y5, and y7. Molecular species z1 and z3 do
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Table 3 | Summary of variables for a model in which clusters of size 1,

2, and 3 coexist.

Variable Description Molecular

representation

z1 Free monomeric receptor

z2 Free ligand (dimer)

z3 Ligand-bound to a monomeric receptor

x1 Free dimeric cluster

x2 Same as z2 (defined for convenience of

notation)

x3 Ligand singly bound to a dimeric cluster

x4 Two ligands bound to a dimeric cluster

x5 Cross-linked ligand in a dimeric cluster

y1 Free trimeric receptor

y2 Same as z2 (defined for convenience of

notation)

y3 Ligand singly bound to a trimeric cluster

y4 Two ligands bound to a trimeric cluster

y5 Cross-linked ligand in a trimeric cluster

y6 Three ligands bound to a trimeric cluster

y7 One ligand singly bound to a trimeric

cluster and another cross-linked

All the variables correspond to the total number of molecular species (not

concentrations). Hence, all the rates in the mathematical model have units of s−1.

not contribute to the T cell response and will be neglected in what
follows. Thus, we only need to consider the dynamics of dimeric
and trimeric T cell receptor clusters.

We introduce the total number of signaling units, S5(t ) ≡
x5(t ) + y5(t ). The set of ordinary differential equations for the
model is given by:

ẋ1 = −4k+x1x2 + koff x3,

ẋ2 = −4k+x1x2 + koff x3,

ẋ3 = 4k+x1x2 − koff x3 − k2x3 + 2k−2x5,

ẋ5 = k2x3 − 2k−2x5,

ẏ1 = −6k+y1y2 + koff y3,

ẏ2 = −6k+y1y2 + koff y3,

ẏ3 = 6k+y1y2 − koff y3 − 2k2y3 + 2k−2y5,

ẏ5 = 2k2y3 − 2k−2y5,

where k+= kon/(VNA), V is the volume of the experiment and
NA is Avogadro’s number.

Given the symmetry of the problem, and in the limit of low
initial ligand concentration, we will assume that the ratio of x3

to y3 is that of the initial ratio of free TCR dimers to free TCR
trimers, namely,

y3

x3
'
π3

π2
= b ⇒ y3 ' b x3 , (4)

where we have made use of equation (2) to conclude π3
π2
= b. Thus,

the total number of signaling units, S5(t ), obeys the following
differential equation

Ṡ5 = ẋ5 + ẏ5 = k2 (1+ 2b) x3 − 2 k−2 S5 . (5)

Finally, in the low ligand concentration limit as above, let us
introduce S3 ≡ x3 + y3. It is easy to show that equation (5)
reduces to

Ṡ5 = k2
1+ 2b

1+ b
S3 − 2 k−2 S5 , (6)

which is identical to the differential equation for x5 above, but with
S5,3 replaced by x5,3, respectively. This means that, except for a pre-
factor 1+2b

1+b [which, for b ∈ (0, 1), is between 1 and 3/2], the study
of dimeric and trimeric clusters is reduced to the dimeric case.

5.3. A SIMPLE FORMULA FOR THE MTSI
The basic idea behind the stochastic criterion is to count the cumu-
lative number of events that may contribute to signaling (26). Here,
we calculate the mean number of cross-linking events up to time
t, C(t ), as the integral,

C(t ) = k2

∫ t

0
x3(s) ds . (7)

It is possible to obtain an expression for x3(t ) with the approx-
imation that the product x1(t )x2(t ) is constant, so that the pair
of equations for x3(t ) and x5(t ) can be solved exactly. This
yields (69):

C(t ) = k2

[
c1

λ1
(λ1 + 2k−2)(e

λ1t
− 1)

+
c2

λ2
(λ2 + 2k−2)(e

λ2t
− 1)+ a1t

]
, (8)

where

c1 =
−4λ2konρNB

(λ2 − λ1)(4konρk2 + 2koff k−2 + 8konρk−2)
,

c2 =
4λ1konρNB

(λ2 − λ1)(4konρk2 + 2koff k−2 + 8konρk−2)
,

λ1,2 =
1

2
(−4konρ − koff − k2 − 2k−2

±
[
(4konρ + koff − k2 − 2k−2)

2
+ 4koff k2

]1/2
)

,

a1 =
8k−2konρNB

4konρk2 + 2koff k−2 + 8konρk−2
,

a2 =
4k2konρNB

4konρk2 + 2koff k−2 + 8konρk−2
,
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and NB is the number of dimeric receptors. The MTSI is
then given by the solution of the equation C(T (N, τ )–τ )=
N exp(2k−2τ ).

The expressions in equation (3) are obtained from equa-
tion (8) in the appropriate regimes. At low ligand concentra-
tion, C(t ) is simply proportional to time: C(t ) ' k2a1t , so
that C(T− τ )= k2a1(T− τ )=N exp(2k−2τ ). When λ1,2τ� 1,
on the other hand, the first non-zero term in a Taylor expansion of
C(t ) in time is quadratic: C(t )∝ t 2. This provides the exponent
1/2 in the second line of equation (3).
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The peripheral T cell repertoire is sculpted from prototypic T cells in the thymus bearing
randomly generated T cell receptors (TCR) and by a series of developmental and selec-
tion steps that remove cells that are unresponsive or overly reactive to self-peptide–MHC
complexes.The challenge of understanding how the kinetics ofT cell development and the
statistics of the selection processes combine to provide a diverse but self-tolerant T cell
repertoire has invited quantitative modeling approaches, which are reviewed here.
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INTRODUCTION
Conventional (CD4+ and CD8+) T cells are an integral part
of adaptive immune systems in vertebrates. A key stage in their
development is the creation of the T cell receptor (TCR) through
a stochastic process of gene rearrangement. The resulting pre-
selection TCR repertoire has the potential to recognize a very large
array of peptides derived both from self and from foreign organ-
isms, presented on Major Histocompatibility Complex (MHC)
molecules on the surfaces of other cells. Much of T cell develop-
ment occurs in a specialized organ in the chest called the thymus,
within which this diverse potential repertoire of TCR is vetted. A
process referred to as positive selection removes cells with TCR
conformations that are generally non-responsive to self-peptide–
MHC ligands (self-pMHC), and negative selection removes cells
that are overly reactive to self-pMHC and pose a threat of autoim-
mune responses. The post-selection repertoire exported from the
thymus comprises T cells that are largely non-responsive to self,
yet capable of responding with remarkable specificity to foreign
peptides.

There is a very extensive literature relating to thymic develop-
ment and selection [for reviews, see for example Ref. (1–3)], but
here we summarize the key ideas briefly (Figure 1). Conventional
T cells begin life as lymphoid progenitors, which migrate from
the bone marrow to the inner, cortical region of the thymus and
begin a process of proliferation and maturation. Early in develop-
ment in the cortex thymocytes are referred to as double negative
(DN), lacking expression of the CD4 and CD8 co-receptors that
are involved in TCR signaling. The TCR comprises two chains and
is formed by a multi-step gene rearrangement process that first
generates the TCRβ, γ , and δ chains (a small proportion of cells
diverge at this stage to seed the γ δ T cell lineage) and then the
TCRα chain at around the transition from the DN to CD4+CD8+

(double positive, DP) stage. TCRαβ cells then migrate among
cortical thymic epithelial cells and dendritic cells, auditioning for
the ability to recognize self-pMHC. There is evidence that DP cells
with non-functional TCR can undergo repeated TCRα rearrange-
ments (4) to re-audition. Positively-selected cortical thymocytes
begin negative selection and eventually move to the outer cap-
sule of the thymus, the medulla. There they complete negative
selection through interactions with medullary thymic epithelial
cells and dendritic cells. TCRαβ thymocytes, which recognize self-
peptides presented on MHC class I or class II below an acceptable
threshold of reactivity develop into the CD8 SP (single-positive,
CD4−CD8+) or CD4 SP (CD4+CD8−) lineages, respectively, and
are eventually exported into the peripheral circulation as naive
T cells.

The topic of thymic selection has received substantial atten-
tion from the immunological modeling community, perhaps for
two main reasons. First, selection has widely been viewed as a
well-delineated optimization problem – how to craft a TCR reper-
toire that covers the space of possible pMHC ligands as widely
as possible, while preserving sufficient specificity to discriminate
between self and foreign (and between different foreign) peptides?
This question naturally invites quantitative arguments. Second,
the biology is well-characterized – a relatively small number of
cell types and modes of interaction appear to be involved, and
large amounts of experimental data are available. These simplify
and constrain the construction of models.

Modeling studies have focused on many aspects of thymic selec-
tion but many questions and uncertainties remain. What are the
rates and efficiencies of passage through the different phases of
development and selection, and in what thymic microenviron-
ments do each take place? How do thymocytes integrate signals
received from interactions with pMHC to make fate decisions?
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FIGURE 1 | Stages in the development of CD4 and CD8T cells in the
thymus.

What are the relative contributions of the MHC itself and its asso-
ciated peptide to TCR signaling and fate determination? What
influence do each of these have on the post-selection repertoire’s
diversity and coverage of the pMHC universe, and its ability to dis-
criminate between self and foreign? How complete is the removal
of potentially self-reactive clones? How many TCR interactions
contribute to a thymocyte’s fate decisions? What evolutionary
pressures have determined the typical number of MHC alleles we
possess? There have been many different theoretical approaches to
these questions – from mean-field population dynamic models of
progression through developmental stages, to probabilistic models
of selection, to explicitly spatial models of migration within the
thymus.

This review groups studies of these topics into broadly labeled
categories, but in some cases the grouping is arbitrary – many of
these questions are related and have been addressed either alone or
in combination. The review has a bottom-up structure, beginning
with an overview of experimental quantification of selection and
modeling of thymocyte population dynamics. It then moves to
studies of higher-level properties of the T cell repertoire, such as
TCR cross-reactivity, and concludes with the problem of optimal
within-individual MHC diversity.

THE POPULATION DYNAMICS OF THYMOCYTES
Basic elements of a quantitative understanding of thymic devel-
opment are the steady-state population sizes of different develop-
mental stages, the mean times to transit between them and the
proportion surviving at each stage, which we refer to as the effi-
ciencies of selection. While some quantities can be experimentally
determined, mathematical models have helped us develop a more
complete description of the kinetics of selection, both for the thy-
mocyte population as a whole and for the CD4 and CD8 lineages
in isolation.

To estimate the parameters of a dynamical system usually
involves observing its response to perturbations. One method is
to follow cohorts of cells as they progress through development
using intra-thymic injection of a dye or radioisotope label (5–8).
Arguably this method is less disruptive than cell transfers, but the
uptake of marker can be heterogeneous (5,7) and measurements of

death rates using injected dyes rather than congenic markers may
be confounded by loss of label (9). More recently, methods have
included using GFP (green fluorescent protein) expressed during
TCR rearrangement, its decaying intensity then a marker for time
spent in development (10); inducible TCR signaling can be used to
arrest, release, and follow cohorts of cells from the early DP stage
(11); and small numbers of labeled thymocytes isolated at different
developmental states can be followed after intra-thymic injection
(11, 12). The population dynamics have also been exposed by tran-
siently depleting thymocytes and observing the system’s return to
equilibrium (13). Various experimental systems, with or without
associated dynamical models, are in general agreement over several
quantitative aspects of thymic development but inconsistencies
and uncertainties remain.

SELECTION EFFICIENCIES AND CELL FLUXES
Thymocytes begin to select against self-pMHC ligands at the DP
stage following TCR rearrangement and so we focus on survival,
proliferation, and differentiation from this stage onward. The pro-
portion of DP cells that reach maturity (that is, survive both
positive and negative selection) is widely agreed to be 5% or less
(6, 11, 13–16). Within this pruning process, the general view is that
positive selection is the most stringent, with 75–80% of cells fail-
ing to progress from the earliest DP stage, suggesting the majority
of TCR generated are unable to recognize peptides in conjunc-
tion with MHC class I or II to any useful degree (11, 13, 15, 17,
18). Many studies have estimated that between 20 and 50% of
positively-selected thymocytes then survive negative selection (11,
17, 19–22), although Itano and Robey (8) estimated a selection
efficiency as high as 90% for DP cells into the CD4 SP lineage.

The rate of production of mature CD4 and CD8 cells in the
thymi of young adult mice is roughly 1% of total thymocytes or
1− 3× 106 cells/day, a figure arrived at by a variety of labeling
methods (5–7). Egerton et al. (6) estimated this to be just over 3%
of the rate of entry into the DP population, meaning that fueling
this trickle of output requires that roughly 30% of all thymo-
cytes enter the DP stage each day. This again illustrates the extent
of the filtering of the pre-selection repertoire that appears to be
required to produce a functional and self-tolerant population of
naive T cells. The thymus gradually involutes and its rate of output
declines with age in both mice (23) and in humans (24), indicat-
ing that the bulk of the peripheral T cell repertoire is probably
generated early in life.

THE MAJORITY OF THYMOCYTE DIVISION LIKELY OCCURS
PRE-SELECTION
Labeled nucleotide uptake assays have revealed that substantial
proliferation of thymocytes occurs before selection on self-pMHC
ligands begins, stopping at or around the time of TCR rearrange-
ment at the late DN/early DP stage (6, 25, 26). However, it is
proliferation following TCR rearrangement that is most relevant
for understanding how repertoire diversity is generated. Division
during selection means a smaller proportion of TCR clonotypes
may pass selection than measures of percentage survival suggest
(27). The extent of division early in selection is unclear – estimates
of the proportion of newly generated DP cells that are dividing
have ranged from 11 to 68% (6, 25, 28), and CFSE labeling in
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in vitro thymic organ cultures showed up to 5 divisions from DP
onward (29). However, the DP population comprises cells pre-
and post-TCR rearrangement, and there appears to be very little
proliferation within the more mature DP population (6, 11, 15).
There is a low level of proliferation during or just before the SP
stage (11, 13, 25, 30), with CD8 SP more prone to division than
CD4 SP (10).

Perhaps the most reliable experimental measure of average lev-
els of proliferation during selection uses T cell receptor excision
circles (TRECs). TRECs are circular DNA fragments that are stable
remnants of the recombination events that generate the TCR and
are shared randomly between daughter cells on division. The mean
TREC content per cell is a rough measure of the mean number of
divisions that have taken place since the TCR was generated. One
caveat is that TREC studies are used most commonly in humans
and much of what we discuss here derive from studies in mice.
Another is that standard TREC measurements contain no infor-
mation about the variance of the division number, and may gloss
over even quite extreme heterogeneity in division patterns. Never-
theless a study of human infants observed 1–2 divisions on average
between TCR rearrangement at the CD3low CD4+CD8+ stage and
mature CD4 or CD8 SP; once shortly after TCR rearrangement,
and another at the CD8 (but not CD4) SP stage (31). The high
TREC content they observed at the early DP stage may reflect
multiple rearrangements taking place in order to generate a func-
tional TCRα-chain. In line with these results, the TREC content of
naive CD31+CD4+ recent thymic emigrants in human infants is
~0.1–0.9/cell (32), suggesting that up to three divisions take place
on average between TCR rearrangement and export to the periph-
ery, although this may include some post-thymic proliferation and
so is an upper limit on the extent of intra-thymic division.

TURNOVER RATES AND TRANSIT TIMES
Experimental estimates of the times taken to transit differ-
ent developmental stages (immature DP→mature DP→ SP→
Export) are variable, particularly within the SP population (6, 10,
12, 25). Possible reasons for these discrepancies include differ-
ent labeling protocols, different gating strategies defining thymic
subpopulations, heterogeneity of cell populations, and differences
in the kinetics of MHC class I-restricted and class II-restricted
lineages. It has also been unclear whether selection is a “con-
veyor belt,” first-in first-out, or has a more stochastic “lucky dip”
nature (25). From a modeling perspective these are two points
on a continuum. If an experimentally identifiable developmen-
tal stage comprises several shorter, sequential differentiation steps,
the variance in the transit time through that stage is lowered with
respect to a single-step model of transit. The more obligate steps,
the more conveyor-belt-like the system appears.

There is general agreement that the transition from non-
dividing mature DP to SP takes on average 3–4 days (6, 12, 15,
28), although it has been argued that it takes significantly longer
to reach CD8 SP than CD4 SP (33). This transition is depen-
dent on TCR signaling (15, 34). Observing a well-defined delay in
the appearance of labeled SP cells, Egerton et al. (6) argued for a
first-in-first-out kinetic in the DP population. This suggests DP
cells must transit through a number of obligate steps. Subsequent
experimental and modeling studies have addressed this, and are

discussed below. The same study estimated a mean SP residence
time of ~12 days, comparable to other estimates of the medullary
residence time (6, 28). McCaughtry et al. (10) argued that this is
an overestimate of the time mature conventional SP T cells take
to develop, because the SP population is heterogeneous, also con-
taining Treg, NKT, and γ δ T cells, which turn over more slowly.
They estimated SP CD4/CD8 residence times to be 4.4/4.6 days.
Saini et al. (33) arrived at similar estimates. As for DP cells, there
are may be several developmental stages within the SP population
and so it seems unlikely that SP residence times are exponentially
distributed.

Stritesky et al. (12) estimated the total rate (cells per unit time)
at which cells are negatively selected to be almost six times greater
than the rate of positive selection, and found that both processes
occur predominantly at the DP stage. Converting these figures into
the relative efficiencies of positive and negative selection requires
knowledge of how long cells spend in each selecting phase. If
indeed positive selection is the more stringent, their result indi-
cates that negative selection must take place over a relatively short
timescale within the DP compartment. This is supported by a
recent study observing negative selection of DP thymocytes taking
place over ~12 h (35).

Interpreting data on transit or residence times can be problem-
atic when both death and differentiation are taking place, as they
clearly are at the DP stage(s) of development. If death and differen-
tiation are modeled as independent processes, then at equilibrium
transit rates through a compartment are not necessarily the same
as turnover rates. If cells are maturing at rateµ and dying at rate δ,
the population turns over at rateµ+ δ and the expected time a cell
spends in that compartment is 1/(µ+ δ). However, the mean time
that successfully differentiating cells spend in each compartment
is shorter because it is conditioned on survival, and is µ/(µ+ δ)2

(if cells are capable of maturing but are simultaneously at risk of
dying, those that successfully mature tend to do so early). This
difference can be quite substantial, as we see below.

KINETIC MODELS OF THYMIC DEVELOPMENT
Data from these experimental studies and others have invited the
use of population dynamic models to infer the kinetics of develop-
ment. In the first studies to model thymic development, Mehr and
collaborators utilized ordinary differential equation (ODE) mod-
els of the flow from DN→ early DP→ late DP→CD4/CD8 SP
(36, 37). They utilized measures of steady-state population sizes
and parameters either inferred from data or explored systemati-
cally to ask questions about the underlying dynamics. Mehr et al.
(36) argued that positive selection likely involves triggering of pro-
liferation as well as rescue from death, and while they were unable
to use the steady-state data to make strong statements about the
timing of positive versus negative selection, they inferred that most
death at the DP stage is due to failure to positively select, consistent
with many experimental and subsequent modeling studies.

There is evidence from fetal thymic organ cultures that popu-
lations of mature CD4+ T cells resident in the thymus may enrich
for the CD4 lineage while reducing thymic output. Mehr et al. (37)
used a similar model with these data to propose that the mature
resident cells increase survival of developing single-positive CD4
T cells while reducing proliferation or increasing the rate of
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differentiation of DP cells. They suggest that mature CD4 T cells
exert their influence by restricting the number of available pMHC
ligands in the thymus, which could simultaneously reduce pro-
liferation of DP cells (lowering thymic output) and decrease the
stringency of negative selection (increasing the efficiency of mat-
uration into the mature SP state). Again, these conclusions were
reached using data from the thymus at steady-state.

Mehr and collaborators also studied the seeding of the cor-
tical stroma with bone marrow-derived progenitor cells using
a combination of modeling and experiment. They showed how
migration between niche sites explained the competitive advantage
of younger progenitors over older (38, 39), and that reconstitution
of the progenitor population following irradiation is limited by
damage to stromal niches and incumbent, surviving cells (40).

Thomas-Vaslin et al. (13) studied naive T cell homeostasis
from the thymus through to the periphery. They induced systemic
depletion of T cells for 7 days through expression of a suicide gene
in dividing cells, and followed the kinetics of reconstitution. To
interpret these data they developed a multi-compartment ODE
model of T cell development, with a finer-grained treatment of
transit through the DN, DP, and SP stages. In their model exten-
sive proliferation occurs through the DN to early DP, with the latter
population dividing 5 times. Their best-fitting model assumes all
cell death (positive and negative selection) takes place at the late
DP stage. They estimated 5% of total thymocytes (DN, DP, and
SP) or ~3× 106 are exported as naive SP cells per day, and that
93% of DP thymocytes are lost, in line with existing estimates, and
again suggesting that the bulk of negative selection occurs at DP.
The mean times spent overall in the early DP (dividing), late DP
(selecting), and SP compartments were estimated to be 1.2, 2.7,
and 5.8 days respectively.

Sinclair et al. (11) used a different experimental system, with
controllable TCR signaling that allowed arrest and release of cells
at the early DP stage, and used a multi-compartment ODE model
to quantify transit dynamics and selection efficiencies. Rather than
simply early or late, they broke the DP stage into a branched devel-
opmental progression defined by the expression levels of CD5 and
the TCR (33). In their schema, DP1 thymocytes are pre-selection;
progression to DP2 requires a positively-selecting TCR signal; DP2
thymocytes consist of class I- and class II-restricted thymocytes
in the first 12–48 h of development; and DP3 thymocytes are pre-
dominantly MHC class I-restricted cells that can select into CD8SP
only. Thus cells destined for CD4SP transit DP1-DP2 only, and
CD8SP transit through DP1, DP2, and DP3.

Sinclair et al. (11) estimated that ~75% in DP1 fail to progress
to DP2, reflecting failure to positively select and dying of neglect.
Overall, 5% of DP cells become CD4SP and ~2% become CD8SP,
and so ~94% of DP cells are lost. They also saw relatively low levels
of cell death in the SP compartment. These results suggest again
that the bulk of negative selection occurs before cells transition to
SP. They saw very little proliferation in their system, using a variety
of methods, and so did not model cell division. Mean residence
times in DP1 and DP2 were 3.5 and 1.4 days, respectively, with
the smaller CD8 lineage spending an additional 7 days in DP3.
They estimated 23% of all thymocytes at DP and SP enter the
DP compartment per day. These selection efficiencies and the net
flux agree with other estimates. Accounting for the selection bias

on maturing cells, the model predicts that successful thymocytes
spend on average 1.3 days in DP1+DP2, 4.5 days in DP3. SP4 and
SP8 residence times were 5 and 3.7 days, respectively, with very
little cell death occurring. Their analysis therefore suggests that
CD4SP/CD8SP cells take ~6.3/9.5 days from entry into DP1 to
export.

MIGRATION WITHIN THE THYMUS AND THE TIMING OF POSITIVE AND
NEGATIVE SELECTION
From the perspective of modelers attempting to connect mod-
els of thymocyte dynamics to data, it is important to under-
stand when and where the different phases of development and
selection occur. Selection begins in the thymic cortex, where the
majority of thymocytes perform undirected random walks (41)
encountering pMHC on cortical thymic epithelial cells. Sensitiv-
ity to medullary chemokine receptor signals begins to increase
immediately following receipt of a positive selection signal and
positively-selected cortical thymocytes eventually display rapid,
directed motion toward the medulla (41), where they encounter
pMHC on medullary thymic epithelial cells and dendritic cells.
Negative selection takes place in the medulla (35, 42–44) but
also late in migration through the cortex (45) and possibly even
throughout development (46). The mapping between these migra-
tory and selecting processes to developmental stages is not clearly
defined. Cells undergoing negative selection in the medulla include
DP populations (35), indicating that maturation from DP to SP
does not coincide precisely with the cortical–medullary transition
but further supporting the conclusion that the extensive cell loss at
the DP stage comes from failure of both positive and negative selec-
tion. Further, antigen-presenting cells in the cortex and medulla
appear to differ in their ability to provide positive or negative
selection signals, either through differences in pMHC expression
or diversity, or levels of co-stimulation (47–51). It seems therefore
that negative selection at the DP stage takes place in at least two
distinct spatial and TCR-stimulatory environments.

MODELS OF SELECTION WITHIN THE CORTEX AND MEDULLA
Motivated by this, Faro et al. (52) took a different perspective;
rather than partitioning selecting thymocytes into developmental
stages, they used a probabilistic model to describe selection within
the cortex and the medulla. They aimed to quantify the number
of selecting events, the number of selecting APC encounters and
pMHC engagements, and the efficiencies of positive and nega-
tive selection in each region. Using the experimental estimates of
overall selection efficiencies, and one experimental estimate of the
efficiency of negative selection in the medulla, they inferred that
most thymocyte death occurs by failure to positive select in the
cortex, and cells are ~10 times more likely to be deleted (neg-
atively selected) in the medulla than in the cortex. With these
efficiencies, through a parameter search, they were able to infer
the number of ligands each thymocyte selects on in each spa-
tial compartment. They came to the striking conclusion that for
each cortical thymocyte selection takes places on <60 pMHC lig-
and interactions, likely in order to achieve in their model the
required high level of failure to positively select. However, this
needs to be reconciled with the ~3-day mean lifetime of cells at
DP1, which suggests cells have far more opportunities to positively
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select, either through repeated encounters with APC or through
repeated rearrangements of the TCRα chain [see Ref. (53) and refs
therein], before dying of neglect.

IDENTIFYING THE SOURCE OF THE CD4:CD8 LINEAGE BIAS IN THYMUS
CD4 SP outnumber CD8 SP by roughly 4:1 in the thymi of many
species. Using time courses of development in control mice and
those lacking MHC class I or class II, Sinclair et al. (11) estimated
the CD4 and CD8 lineage-specific selection efficiencies. In control
animals, the highest death rate was at the positively-selected DP2
stage, and was substantially greater for MHC class I-restricted cells.
MHC class I- and class II-restricted cells are indistinguishable at
DP1 and DP2, but they were able to back-calculate the rates of pro-
duction of precursors of the two lineages after TCR rearrangement,
and found they were comparable. This suggests that the CD4:CD8
asymmetry in the thymus derives in large part from more strin-
gent selection acting on MHC class I-restricted cells and not from
any significant asymmetry in the predisposition of randomly gen-
erated TCR to recognize MHC class I or class II. Theirs is a model
of CD4/CD8 lineage commitment in which the ability of a DP
thymocyte to recognize MHC class I or class II dictates whether it
will progress to the CD8 or CD4 lineages, respectively (8, 54). This
is contrast to a less efficient, selective process in which a thymo-
cyte’s decision to downregulate either CD4 or CD8 expression is
stochastic and decoupled from MHC preference, such that poten-
tially viable TCR may fail positive selection [see, for example Ref.
(55, 56); and Ref. (57) for a discussion of a hybrid mechanism].
Mehr et al. (36) proposed a purely instructive model of selection,
in which pre-selection thymocytes are in principle able to recog-
nize both MHC class I or II, and concluded that the most likely
explanation of the CD4 bias is a difference in the per capita rates of
maturation from DP into the two lineages, rather than differences
in death rates.

The majority of models discussed here assume that thymocytes
undergo screening independently. Mehr et al. (36, 37) implic-
itly allowed for competition with density-dependent proliferation
rates at each developmental stage. However, there is some evidence
that the probabilities of maturation can be impacted by compe-
tition between thymocytes, both globally and in lineage-specific
ways. The efficiency of selection of transgenic TCRs varies with
their abundance and with the availability of cognate pMHC (15,
58–60), and the selection of polyclonal MHC class I-restricted
thymocytes is more efficient in the absence of MHC class II and
vice versa (11). These observations suggest that selection efficien-
cies may be limited by competition both within and between
lineages for access to pMHC or other resources needed for selec-
tion, and so may impact on the CD4:CD8 ratio emerging from
the thymus. Two studies have used explicitly spatial, agent-based
models of thymocyte migration and development to investigate
this issue. Souza-e Silva et al. (61) modeled the movement of
DN, DP, and CD4 SP and CD8 SP populations and their interac-
tions with thymic epithelial cells (TEC) and chemokine gradients,
using a 2D model. The structure of the epithelial networks was
derived from histological samples from both mice and infant
humans. Parameters were chosen to give agreement with published
data regarding the repopulation of the thymus after sublethal
irradiation, although a sensitivity analysis was not performed. In

their model the CD4:CD8 ratio emerges as a result of competi-
tion for access to TEC and stochastic variation in the duration
of signaling, which has been associated with CD4/CD8 lineage
commitment (62). Their simulations also reproduce an observed
variation in the CD4:CD8 ratio as irradiated thymi reconstitute
and, in their model, the degree of competition increases. Efroni
et al. (63) also took an agent-based approach and concluded that
MHC class I and class II ligands on TECs are limiting. If contin-
ued access to pMHC stimulation is required for survival, and class
I restricted cells stay conjugated to MHC for longer than MHC
class II-restricted cells, exclusion of competitors leads to a higher
death rate of cells developing into the CD8 lineage and a skewing
of the CD4:CD8 ratio. Such a competitive model is an experimen-
tally testable explanation of the differential death rates observed
by Sinclair et al. (11).

CHARACTERISTICS OF THE TCR REPERTOIRE
Various summary statistics can be used to describe T cell pop-
ulations pre- or post-selection. The diversity (or the repertoire)
usually denotes the total number of distinct TCR sequences or
clonotypes. The cross-reactivity measures a TCR’s capacity for dis-
crimination, and is quoted as either the average number or the
proportion of different pMHC that one TCR responds to above
some defined functional threshold. Specificity is inversely related to
cross-reactivity. A mirror quantity is the precursor frequency, also
referred to as the response frequency – the average proportion
of all TCR capable of recognizing one pMHC. Further, selection
operates in the context of an individual’s own MHC alleles. MHC
restriction measures the degree to which a given TCR is limited to
recognizing peptides presented by one or more self-MHC; and
alloreactivity is the proportion of TCR that respond to a for-
eign MHC, which is relevant for transplantation of tissues from
one individual to another. In the sections that follow we describe
how theoretical models have been used to understand how these
quantities are linked and constrained by thymic selection.

TCR CROSS-REACTIVITY
A diverse TCR repertoire seems to be a requirement for coverage of
pMHC shape space. However, the number of theoretically possible
pMHC complexes appears to be far greater than any individual’s
capacity for unique TCR clonotypes (64–66); a simple calcula-
tion for just one MHC class I variant, assuming it presents 2% of
all possible 9-residue peptides, yields 209

× 0.02 ' 1010 possible
pMHC, compared with the roughly 5× 107 naive CD8 T cells in a
mouse. To minimize the probability that any given foreign pMHC
will escape detection by the immune system, some degree of TCR
cross-reactivity therefore seems beneficial. Mason (64) used a vari-
ety of methods and data sources to estimate that one MHC class
I-restricted T cell responds to between 106 and 107 nonamer pep-
tides, or one in 103 to 104 pMHC using the theoretical estimate of
the potential pMHC diversity; and Ishizuka et al. (65) used pep-
tide libraries to estimate more directly that one CD8 T cell clone
responds to roughly 1 in 3× 104 peptide–MHC class I ligands.
On the other hand, the average degree of cross-reactivity seems
necessarily constrained from above, to avoid excessive deletion of
the repertoire and to preserve specificity for self/non-self discrim-
ination. It therefore seems plausible that evolutionary pressures

www.frontiersin.org February 2014 | Volume 5 | Article 13 | 153

http://www.frontiersin.org
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yates Theories and quantification of thymic selection

might have optimized this trade-off and determined the degree to
which TCR can respond to multiple pMHC.

OPTIMAL LEVELS OF TCR CROSS-REACTIVITY – PROBABILISTIC
ARGUMENTS
Several variants of essentially the same argument predict that the
diversity of self-peptides involved in selection is the strongest influ-
ence on the optimum level of TCR cross-reactivity (64, 67–70).
One version of the argument is as follows. The proportion of
the positively-selected T cell repertoire R0 that avoids deletion, f,
decreases with both the number of self antigens N s and the cross-
reactivity r, f = (1− r)Ns which is approximately exp(−rNs) for
r . 1/Ns . A pathogen escapes immune recognition if all f R0 sur-
viving unique clonotypes fail to recognize (cross-react with) all x
epitopes it generates, with probability

PE = (1− r)f R0x
' exp(−rf R0x) (1)

where again the approximation holds if r . 1/(f R0x). This ignores
MHC restriction, but including this refinement yields similar
conclusions (67). Using the expression for f,

R0 ' − log(PE )
exp(rNs)

rx
. (2)

This equation connects the repertoire before negative selection
R0, the probability of immune escape PE and the pre-selection
cross-reactivity r. R0 is relatively insensitive to PE but very sensi-
tive to the diversity of self, N s . In this model, then, the strongest
determinant of the size of the pre-selection repertoire is the diver-
sity of self antigens, N s , and not the requirement for minimizing
the probability that a pathogen escapes detection (67).

The three-way relation expressed by equation (2) can then be
used to estimate the optimal cross-reactivity under different evo-
lutionary constraints. Suppose the potential repertoire size R0

is relatively conserved and evolution has selected for the small-
est PE by tuning TCR cross-reactivity; in this case, the optimal
cross-reactivity is simply the inverse of the number of distinct
self-pMHC involved in selection, r = 1/N s . The same value of r
arises if evolution is assumed to minimize the required repertoire
size R0, whatever the value of PE (67). Thus the more diverse the
self-peptides involved in thymic selection, the more specific (less
cross-reactive) the TCR needs to be. The same result can be derived
in a very general way using extreme-value theory (70), requiring
only the assumption that the negative selection threshold in the
thymus is equal to the activation threshold in the periphery.

The induction of tolerance in the thymus is likely incomplete
and there may be mature lymphocytes that are able to recognize
self-peptides not involved in thymic selection. Borghans and De
Boer (71) argued that to minimize the probability of these cells
mounting a cross-reactive autoimmune response to this “ignored
self” while responding to a pathogen demands higher levels of
specificity than predicted by the simplest models. In this model,
optimal cross-reactivity is then modulated by the potential diver-
sity of the repertoire; the greater the number of possible T cell
clonotypes, the lower cross-reactivity is required.

Percus et al. (72) took a different approach to studying opti-
mal cross-reactivity, prompted by the observation that the sizes

of the binding sites of the TCR and the B cell receptor (anti-
bodies) are similar, at roughly 15 amino acids. They concluded
that this size is large enough to provide discriminatory power but
small enough that there is sufficient cross-reactivity for coverage
of foreign antigen shape space. Interestingly this result does not
arise from the demand for self–non-self discrimination, but rather
from the constraint of the observation that the B and T cell reper-
toires comprise ~107 different receptors. However, this diversity
itself may be derived from the self-tolerance arguments described
above (64, 67–69). It has since been established that substantially
fewer peptide residues are involved in TCR recognition. Burroughs
et al. (73) analyzed the proteomes of humans and several microor-
ganisms and showed that even the seven exposed (non-anchor)
residues of the nine-mer peptides bound to one MHC class I allele
may promote self/non-self discrimination, with<0.5% overlap in
these sequences between humans and different microorganisms.

CONVERGENT ESTIMATES OF LEVELS OF NEGATIVE SELECTION
Several of these studies concluded that at the optimal level of
cross-reactivity the probability of negative selection is roughly
63%, making various assumptions regarding the magnitude of
parameters and maximizing the probability that the post-selection
repertoire mounts a response to a foreign pMHC. However, the
probability of negative selection can be derived without any
assumptions regarding parameter values. From above, the frac-
tion of the positively-selected repertoire with cross-reactivity r that
survives deletion on N s self-peptides is f = (1− r)Ns . The prob-
ability that the post-selection repertoire R= fR0 fails to recognize
one given foreign pMHC is given by equation (1) with x = 1,

PE = (1− r)f R0 = (1− r)R0(1−r)Ns
. (3)

This is minimized with respect to r at r = 1− exp(− 1/Ns),
exactly (the optimal cross-reactivity r ' 1/Ns then obtains if
Ns � 1). So if evolution acts on cross-reactivity to minimize the
probability of foreign pMHC escaping detection, the fraction of
the positively-selected repertoire that survives negative selection
is then simply f = (1− r)Ns = exp(−1) ' 0.37, or ' 63% of
positively-selected thymocytes are deleted.

Mason (64) arrived at the same result assuming heuristi-
cally that the quantity to be maximized is the “reactivity” of the
repertoire, proportional to the number of peptides each T cell
can recognize multiplied by the proportion surviving negative
selection;

Reactivity ∼ Cross-reactivity

× P(survive negative selection) ∼ r × (1− r)Ns .

Maximizing this reactivity is equivalent to minimizing the
probability of escape in equation (3) when r is assumed to be small.
There, using the Taylor expansion gives PE ' 1 − rR0(1− r)Ns ,
and so the probability of responding (1− PE ) is ~rR0(1− r)Ns ,
or Mason’s reactivity. Since r is small, the probability of negative
selection is (1− r)Ns ' exp(−rNs) and so the reactivity is pro-
portional to r exp(− rNs), which is maximal with respect to r when
argument of the exponential is −1. Thus again f ' 0.37 and the
optimal cross-reactivity r ' 1/Ns .
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An essentially identical argument applies to negative selection
of B cells (67, 69). This estimate of f is remarkably consistent with
estimates of levels of negative selection in the thymus from several
experimental and population dynamic modeling studies (11, 17,
19–22).

ALTERNATIVE TREATMENTS OF CROSS-REACTIVITY
These models assume a universal cross-reactivity parameter r, but
T cells may have the capacity to modulate their activation thresh-
olds in response to their signaling environment (74, 75). Motivated
by this, Scherer et al. (76) developed a model in which T cells tune
their activation thresholds (and thus their cross-reactivity) to the
level of their strongest interaction with self-pMHC during selec-
tion. If combined with a deletion mechanism that removes cells
with activation thresholds so high as to be judged functionally
inert, this model appears to be a more efficient mechanism of
thymic selection than the standard clonal deletion model. Scherer
et al. showed that the tuning model increases the probability of
mounting an immune response to a given pathogen epitope, given
a pre-selection repertoire size R0, and the number of self-pMHC
ligands involved in selection, Ns. The improvement offered by the
tuning model is most striking for small pre-selection repertoires,
R0 � Ns , but disappears for R0 � Ns . The latter inequality
likely holds for mice and humans; the potential number of unique
TCR sequences exceeds the estimated 103–105 self-peptides able
to be presented by a given MHC allele (73, 77, 78). Further, equa-
tion (1) predicts that at the optimal cross-reactivity r = 1/Ns,
the probability of one epitope (x = 1) escaping recognition is
PE = exp(−R0/eNs) where e is the base of the natural logarithm.
For PE < 0.05, expected in humans and mice, requires R0 & 10Ns .
Despite this, Scherer et al. (76) argue that the tuning model is
a more parsimonious mechanism of self-tolerance in the thy-
mus than the standard model of deletion based on evolutionarily
optimized cross-reactivity.

Finally, many of these arguments assumed thymic selection
alone optimizes cross-reactivity, but the requirement for memory
T cells to discriminate between different pathogens may impose a
further constraint of its own (79, 80).

EXPLORING CROSS-REACTIVITY WITH SEQUENCE-BASED MODELS OF
THYMIC SELECTION
A series of related papers by Detours, Perelson, and Mehr (27, 81–
83) used a model of TCR–pMHC interactions to understand at
a more mechanistic level how cross-reactivity, alloreactivity, and
MHC restriction emerge in the post-selection repertoire. Here
we focus on their treatment of TCR cross-reactivity, and return
to alloreactivity and MHC restriction in the next section. Their
starting point was an established model of protein binding (81,
84). They described the interaction between the variable region of
the TCR and its pMHC ligand with strings of digits, and binding
strengths between each digit pair were determined by the degree of
complementarity between their binary representations (81). MHC
and peptide contributed additively to the affinity of the interaction,
the quantity assumed to drive selection. Given the number of digits
ascribed to the polymorphic MHC residues in contact with the
TCR, and the number of digits representing the peptide, selection
could be performed on a randomly generated TCR repertoire using

randomly generated peptide–MHC complexes. Affinity thresholds
were then adjusted to give stringencies of positive and negative
selection similar to those observed experimentally.

To circumvent the computational costs of selection using real-
istic numbers of peptides and unique pre-selection TCRs, they
derived expressions for the mean-field predictions of the model
for given parameter sets. This has the advantage of yielding
population-level statements, which average over all possible TCR,
MHC, and peptide sequences.

Detours and Perelson (82) estimated the precursor frequency,
the proportion of naive T cells able to respond to a particu-
lar foreign pMHC. Experimental estimates of this quantity lie
in the range 10−6–10−4 (85–89). They term this the response
frequency, R, and found it to be strongly and inversely related
to the number of selecting self-pMHC ligands. Since precursor
frequency is positively correlated with cross-reactivity (64), this
result is in keeping with the theoretical studies discussed above
(64, 67–70). It is also consistent with observations that reper-
toires selected on a restricted range of peptides exhibit higher
cross-reactivity than normal (90–92). For R to lie in the observed
range constrains the number of distinct peptides each MHC can
present to be of the order 103–105, in line with estimates for
murine MHC class I (77), MHC class II (78), and human MHC
class I (73).

To explore the effect of thymic selection on specificity in more
detail, Chao et al. (93) revisited the complementary digit-string
model. Again peptide and MHC were assumed to contribute addi-
tively to an antigenic distance from the TCR, which was inversely
related to affinity or the strength of a selecting signal. They con-
firmed that negative selection reduced the coverage of peptide
space, defined as the proportion of peptides that are recognized
on the selecting MHC. This was equivalent to a reduction in the
cross-reactivity of the repertoire; it reduced the mean antigenic
distance to foreign pMHC complexes.

Chao et al. (93) then used the model to address the question
of why the number of pMHC that one T cell is able to respond to
varies widely across TCR (94). Their simulations suggested that the
degree of cross-reactivity to a foreign peptide was inversely related
to the peptide’s similarity to self, which can be understood with the
following argument. In their model, in the pre-selection repertoire
a TCR’s affinity for the MHC and peptide portions of its ligand are
uncorrelated. Selection introduces an inverse correlation between
a TCR’s affinity for its selecting MHC and its strongest affinity
for self-peptide; to select, a TCR’s strongest interaction with self
must lie between the positive and negative selecting thresholds.
(The narrower the range of affinities defining the selecting region,
the stronger this correlation will be.) Selected T cells with high
affinity for MHC then have a relatively low affinity for the self-
peptide component and require only weak binding to foreign
peptide to be activated (activation in their model is defined to
be an interaction above the negative selection threshold). These
cells are therefore cross-reactive to foreign peptides. Conversely,
selected TCR that bind relatively weakly to MHC have higher
affinity to self and require strong binding to foreign peptide for
activation, and therefore have more specificity for foreign antigen.
Thus it emerges from their model that a TCR’s specificity to foreign
peptide is positively correlated to its affinity for self-peptide; or
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equivalently, a TCR’s cross-reactivity is positively correlated with
its affinity for MHC.

The effect of negative selection on cross-reactivity can be under-
stood with a similar argument. A TCR with high affinity for MHC
will survive negative selection only if it has low affinity to all self-
peptides, which is unlikely. Negative selection therefore enriches
for cells with lower affinity for MHC, which from the argument
above tend to be less cross-reactive. This reduction in coverage
means specificity to foreign peptide must be increased.

Kosmrlj et al. (95) used a more physical, mechanistic approach
to understanding how negative selection increases specificity,
with the aim of characterizing the properties of the amino acid
sequences of specific and cross-reactive TCR. Using the Miyazawa–
Jernigan matrix (96) to quantify the interaction energies of pairs of
amino acids, they extended the digit-string model to calculate the
binding affinities between the peptide and the CDR3 region of the
TCR, with a constant contribution from the MHC. (The variable
peptide element of the pMHC ligand can be assumed to include
the polymorphic MHC residues; thus their model may allow for
MHC restriction, although this was not discussed.) Košmrlj et al.
(97) presents an analytical treatment of the model.

They observed that TCRs selected against multiple peptides on
the same MHC had peptide contact residues enriched in weakly
interacting amino acids. In their model this arises by a sort of
buffering mechanism – such sequences are able to withstand mul-
tiple substitutions in the peptide sequence to which they bind
most strongly, and so are more resistant to negative selection than
those TCR with strongly binding residues. For these TCR to sur-
vive selection requires that the invariant MHC contribution to the
binding energy is of moderate strength – contributing sufficiently
to favor positive selection but well below the negative selection
threshold.

Kosmrlj et al. (95) argue that it is this enrichment for weakly
binding TCR driven by negative selection that underlies antigen
specificity. Antigen recognition is assumed to occur when a TCR
signal exceeds the negative selection threshold made up by several
interactions. This requires the peptide to contain several amino
acids capable of binding the most strongly to the generally weakly
binding TCR contact residues. Each contributes significantly to the
total binding energy, and so any mutation to the peptide sequence
has a high probability of abrogating recognition. Thus there is a
restricted peptide signature or “barcode” required to trigger the
TCR. In their model, TCR selected against a single pMHC were
enriched slightly for strongly interacting amino acids. For these
TCR, they argue, fewer amino acids contribute on average to the
binding energy, triggering is more robust to mutations in the
peptide sequence, and so the TCR is more cross-reactive. Thus
again the argument emerges that the cross-reactivity is inversely
related to the diversity of self driving selection. Kosmrlj et al.
(98) employed this idea to put forward an explanation of why
the population of elite-controllers of HIV infection is enriched
for the HLA-B57 allele. Using a predictive peptide binding algo-
rithm they argued that HLA-B*5701 binds a lower diversity of
self-peptides than average. Cytotoxic T cells restricted to this allele
are then expected to be more cross-reactive than average and so
are more resistant to virus mutations that might otherwise escape
CTL control.

Chao et al. (93) and Kosmrlj et al. (95) took different
approaches to the problem of how negative selection increases
specificity. They came to the common conclusion that the most
specific TCR are those with low to intermediate affinity to MHC –
high enough to have a reasonable probability of passing positive
selection, but low enough to avoid negative selection by allow-
ing headroom for the additional contribution from the peptide
component. The greater this headroom, the smaller the propor-
tion of peptides that can trigger activation and so the greater the
specificity.

THE EMERGENCE OF SPECIFICITY IN AVIDITY-BASED MODELS OF
SELECTION
Van den Berg et al. (99) developed a statistical framework to
study the question of how specificity and self-tolerance can derive
from a pre-selection repertoire of relatively promiscuous TCR.
In their formalism, T cell activation is avidity-based and related
to the rate of TCR triggering. Their starting point is that TCRs
are degenerate and low affinity, binding weakly to many pMHC.
TCR perceive an average signal derived from endogenous self-
pMHC, and are triggered only by pMHC with sufficiently high
prevalence and affinity to be visible above this background. The
authors introduce the concept of an antigen presentation pro-
file (APP), characterizing the abundances of different pMHC
on antigen-presenting cells (APC). Positively-selected cells are
selected against a given number of APC each with distinct APPs.
In their framework, negative selection acts only on ubiquitous
peptides presented on all APCs, and decisions are made on the
basis of the entire APP of one APC. TCR that are triggered by
this constitutive self-background are deleted. This filtering acts to
sharpen the boundary between triggering rates, which give low
and high activation probabilities, and so specificity can emerge
even from a highly degenerate TCR. Interestingly they predict that
negative selection does not have to be particularly stringent to
generate an acceptably self-tolerant repertoire. Nevertheless in this
model the selected repertoire may still be reactive to self-peptides
expressed heterogeneously in the thymus, and in particular to
peptides expressed at high levels only on certain cell types. Van
den Berg and Rand (100) review avidity-based models of ligand
discrimination.

ALLOREACTIVITY AND MHC RESTRICTION
A high proportion (1–24%) of peripheral T cells are reactive to
peptides presented on a foreign MHC allele (101–103), reflected
clinically by acute T cell mediated rejection of grafts from MHC-
mismatched donors. These promiscuous “allogenic” responses
contrast with the low precursor frequency (10−6–10−4) in nor-
mal immune responses to peptides presented by an individual’s
own MHC. Allogenic responses are also apparently counter to the
notion of MHC restriction. Reconciling these results may tell us
great deal about the relative contributions of peptide and MHC
binding motifs to the TCR signals driving selection, and how this
breakdown influences the coverage and cross-reactivity of the T
cell repertoire.

Detours and Perelson (82) used their digit-string model of
TCR–pMHC interactions, described above, to show how the
probabilities of responsiveness to self and foreign MHC emerge.
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Mean alloreactivities of 1–2% arose naturally, at the lower end
of the range of experimental estimates, and they showed that the
alloreactivities of the pre- and post-selection repertoires are simi-
lar, as observed experimentally (17, 22). In essence, the modeling
supports the hypothesis that the greater degree of alloreactivity
than response frequency arises simply because many more pMHC
ligands can be generated from one MHC than can be generated
from one peptide (104). In other words, each TCR is triggered by
ligands in a subset of pMHC shape space; one particular MHC
along with its associated diversity of peptides will cover a far
greater region of shape space than covered by one peptide and
all the self-MHC alleles capable of presenting it; a given MHC will
then stimulate far more of the T cell repertoire than will a given
peptide.

They found that alloreactivity correlates with the extent of neg-
ative selection and inversely to the degree of MHC restriction.
It can be seen intuitively how this emerges from their model. If
negative selection is weak, positive selection must be correspond-
ingly stringent in order to yield the selection efficiencies observed
experimentally (3–5%). Stringent positive selection imposes an
imprint of self-MHC on the repertoire – only those TCRs that
bind strongly to self-MHC residues survive. The strength of bind-
ing to a randomly generated MHC not involved in selection (i.e.,
a foreign MHC) is then on average lower to that of self-MHC in
the post-selection repertoire. This difference increases, and thus
alloreactivity decreases, as the required strength of binding to
self-MHC increases.

This trade-off between alloreactivity and restriction might be
expected as they appear to be in conflict. However, experimen-
tal estimates of these two quantities are variable. The conclusions
described above were derived analytically from a model captur-
ing the mean-field behavior of the digit-string selection process,
but did not deal with the variance in these measures of the
repertoire outputs across specific simulations or experimental sys-
tems. The final study of the series (83) took a simulation-based
approach, explicitly performing repertoire selection on random
TCR and pMHC populations. This confirmed the inverse correla-
tion between alloreactivity and MHC restriction and yielded suf-
ficient variability to account for restriction ranging from absolute
to partial in different settings.

Overall the digit-string model explored by Detours and col-
leagues yields remarkable agreement with many observations.
Their model of TCR–pMHC binding is highly abstracted, but
appears to be a powerful one. In part this might be because the
relevant quantities for selection in their model are the minimum
and maximum binding affinities that each TCR experiences during
exposure to large samples of randomly generated pMHC strings.
These two quantities will be drawn from extreme-value distribu-
tions, which should be insensitive to the distribution of binding
strengths of randomly chosen TCR–pMHC pairs (70, 105). The
additivity of the MHC and peptide contributions to the fate-
determining signal is likely the most questionable assumption,
as the authors point out. Fate decisions may be based on the
sum of several TCR interactions (which means for example that
positive selection may occur though proximal binding of multiple
low-affinity ligands) and so an avidity-based model may be more
appropriate. Another caveat is that the population-average model

assumes that positive selection takes place on at most one MHC
allele, which we will also return to.

INSIGHTS INTO FATE DETERMINATION MECHANISMS FROM
STOCHASTICITY IN SELECTION
Regulatory T cells (Treg) are a distinct lineage of CD4SP cells
thought to lie at the higher end of the spectrum of acceptable
self-reactivity and play a crucial role in the control of autoim-
munity and tolerance to innocuous antigens. Many experimental
studies of Treg development have shown that cells with the same
TCR can develop into conventional and regulatory T cells within
the same selecting environment [see, for example, Ref. (58, 106)],
illustrating again, as represented in so many models, the stochastic
nature of selection. There are at least two possible sources of this
stochasticity. In a purely selective model precursors with identi-
cal TCR might be predisposed to the conventional or Treg fates
through natural variation in expression of factors involved in lin-
eage commitment. In a purely instructive model, cells within a
clone are uncommitted, and intra-clonal heterogeneity in fate may
derive from variation in the experience of each thymocyte during
selection – most likely because each encounters a different random
sample of self-peptides.

Bains et al. (107) used a probabilistic, instructive model that
reflects this view of fate determination driven entirely by anti-
genic experience during selection, in conjunction with data from
Ref. (58) to infer the number of pMHC binding events involved
in fate determination. In that study, the numbers of conventional
and Treg cells with a transgenically expressed TCR were measured
for varying abundances of that TCR’s agonist peptide on thymic
epithelial cells. Conventional cell numbers declined monotonically
with agonist abundance, while Treg increased and then decreased.
Thus as agonist abundance increased, it appeared that T cells were
initially diverted into the Treg lineage, before the risk of deletion
through exposure to agonist dominated. Using this information
and a simple graphical argument they were able to infer that fate
decisions could not be affinity-driven (that is, made on the basis of
a single pMHC interaction) unless TCR sensitivity varies during
development, for which there is evidence [see Ref. (107) and ref-
erences therein]. This model also explains apparently paradoxical
observations regarding the effect of partial and full TCR agonists
on the efficiency of Treg production (108).

THE LIMITS OF NEGATIVE SELECTION
The potentially very large number of unique self-pMHC prompts
the question of whether it is possible to tolerize thymocytes to all
self-peptides within the timescale of thymic development. Müller
and Bonhoeffer (109) studied this problem. Using constraints
from the mouse proteome and the efficiencies of peptide pro-
duction and binding to MHC, they estimated an upper limit
of approximately 5× 106 possible self-pMHC class I complexes.
Notably, this diversity of self is several orders of magnitude lower
than figures derived from the simple combinatoric arguments (64,
66) and is more closely aligned with an estimate that ~105 different
nine-mers derived from the human proteome are expected to bind
to one human MHC class I allele (73). The key quantity in Müller
and Bonhoeffer’s calculation is the probability P that a given self-
pMHC is presented by any given APC in sufficient numbers for
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negative selection to occur. The probability that a thymocyte spe-
cific for this (and only this) self-pMHC escapes negative selection
is PE in their notation – distinct from the probability of immune
escape discussed above – and PE= (1− P)n, where n is the number
of unique APC encountered during selection. In this model, PE is
extremely sensitive to the number of copies h of a given self-pMHC
that an APC needs to present in order to cause deletion – vary-
ing h between 15 and 1500 gives values of PE between 10−11 and
0.8. Favoring the higher estimates of h, Müller and Bonhoeffer
(109) concluded that negative selection on the potential diversity
of self is likely to be very leaky. Instead, they suggest thymic selec-
tion operates on a restricted subset of self-pMHC, a constraint
imposed by the number of APCs encountered during selection.
This requires that further tolerogenic mechanisms operate in the
periphery to prevent autoimmune response to self antigens not
encountered in the thymus (53, 70).

To support their argument, Müller and Bonhoeffer (109)
reverted to the older model of cross-reactivity and selection to gen-
erate another estimate of the number of selecting ligands using the
observed efficiency of negative selection. Recall that the probability
of thymocyte with cross-reactivity r escaping negative selection on
N s unique selecting ligands is P = (1− r)Ns ' e−rNs . Using the
estimate of r = 2× 10−5 (88), and P ' 0.33, they obtain Ns ' 105

unique selecting self-pMHC, or ~4% of the putative total number
of self-pMHC. This estimate is consistent with those of Detours
et al. (27). Both studies assume that this cross-reactivity r of thy-
mocytes with self-pMHC is equal to the cross-reactivity of mature
naive T cells to foreign pMHC. Since negative selection likely acts
as a filter to reduce cross-reactivity in the post-selection repertoire
(see above), this assumption is moot. But the need to meet the
empirical constraint e−rNs ' 0.33 implies that higher values of
r would reduce the number of unique selecting ligands N s even
further.

A subsequent exchange (110, 111) discussed the assumption
that each TCR negatively selects only on a single self-pMHC lig-
and. Müller and Bonhoeffer (111) argued that in the Bernoulli
trial model of cross-reactivity and selection, a 33% probability of
survival implies that another third of all thymocytes were reac-
tive to one self-pMHC only, giving some quantitative support to
their original model. The discussion also addressed whether N s

is constrained by the residence time in the thymus or is a result
of restricted presentation of self antigens. Müller and Bonhoeffer
(111) favored the latter, presuming that evolution has optimized
the thymic residence time for the purposes of efficient selection
on a subset of self-peptides. More recently it has been argued that
incomplete depletion of self-reactive cells in the thymus may be
sufficient for robust self/non-self discrimination in the periphery,
if interactions facilitating consensus between T cells are required
for the initiation or suppression of immune responses (70).

OPTIMALITY OF INDIVIDUAL MHC DIVERSITY –
CONSTRAINTS ARISING FROM THYMIC SELECTION
The polymorphism of the MHC is huge, with hundreds of alle-
les identified at the HLA-A, HLA-B, and HLA-DR loci in humans
(MHC is referred to as HLA in humans but hereon the term MHC
is generally used, for simplicity). This diversification is thought
not to have occurred by genetic drift but by two non-exclusive

mechanisms. Heterozygote advantage (112, 113) suggests that
individuals expressing more unique MHC alleles gain fitness by
being able to present a larger array of pathogen peptides. Overall
the evidence for heterozygote advantage in experimental models of
infection is equivocal, though, and it has been argued with a quan-
titative model that this mechanism alone is insufficient to explain
the extent of allelic diversity (114). Another theory is that MHC
polymorphism is maintained by frequency-dependent selection
under pathogen pressure, in which rare alleles confer protection
against pathogen subversion of peptide presentation by commonly
expressed alleles (115).

Intriguingly, individuals possess only a small proportion of all
MHC alleles. Heterozygous humans possess six at the major HLA-
A, HLA-B, and HLA-C loci, which code for MHC class I molecules
that present peptides to CD8+ T cells, and six to eight at the HLA-
DP, HLA-DQ, and HLA-DR MHC class II loci, which present to
CD4+ T cells. A common explanation for this restricted within-
individual diversity is that it derives from the need to generate a
broad, functional, and self-tolerant TCR repertoire in the thymus
without excessive negative selection (116, 117). The qualitative
argument is as follows. If n is the number of MHC alleles per
person, then increasing n both increases the diversity of pathogen-
derived peptides that can be presented and increases the proba-
bility that a thymocyte will be able to obtain positively-selecting
signals. On the other hand, higher n will also increase the range
of self-peptides that can be presented. This will increase the strin-
gency of negative selection, leading to inefficient generation of T
cells in the thymus and potential gaps in the repertoire’s coverage of
peptide space. The observed number of different MHC molecules
per individual may result from a trade-off between these demands.

The nature of MHC restriction needs to be considered care-
fully in these arguments. If restriction is absolute and each TCR
recognizes only one MHC allele, increasing the number of alle-
les per person simply increases the size and diversity of the T cell
repertoire with no cost because selection operates on each MHC-
restricted subset of the pre-selection repertoire independently. In
this case an upper limit to within-host MHC diversity might derive
only from the need for APC to display sufficient numbers of pep-
tides in conjunction with each MHC molecule to reliably mediate
selection or immune activation. The trade-off evident in the quali-
tative argument above arises when MHC restriction is not absolute
and thymocytes are capable of being positively and/or negatively
selected on more than one allele.

Woelfing et al. (118) provide an excellent review of theoretical
approaches to understanding intra-individual MHC diversity, but
we outline the key results here. Nowak et al. (119) were the first
to assess the qualitative trade-off argument using a mathematical
model. In their analysis they defined h and f to be the propor-
tions of T cells capable of being positively and negatively selected,
respectively, by a given MHC allele. If an individual expresses n
distinct MHC alleles, they argue that the proportion of the T cell
repertoire surviving selection is

(1− (1− h)n)(1− f )n .

The first term represents positive selection; (1− h)n is the prob-
ability that a TCR fails to be selected by any MHC. The second term
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represents negative selection; (1− f)n is the probability that a TCR
is not negatively selected by any MHC. The proportion of the
repertoire surviving is maximized at n= (1/h)log(1+ h/f). They
argue that h≤ f, supported by the experimental and modeling
consensus is that positive selection is more stringent than negative
selection. This gives n~1/f. However, using only the assumptions
that hn � 1, or that it is rare for a TCR to be positively selected on
more than one MHC allele, and that the proportion of all peptides
that can bind to a given MHC is� 1, they calculate that n= 2/f
maximizes the probability of a response to a randomly chosen
foreign pMHC.

Borghans et al. (120) pointed out that this model contains
an inconsistency, which allows for cells that fail to be positively
selected on one MHC to be negatively selected by the same MHC.
They denoted p and n to be the unconditional probabilities that
one TCR is positively and negatively selected by a given MHC mol-
ecule. Then n< p, because the number of cells that fail negative
selection on one MHC is necessarily smaller than the number that
audition for it following positive selection on that same MHC. The
proportion of the original repertoire that survives is then

(1− n)M − (1− p)M . (4)

This model effectively lowers the stringency of negative selec-
tion expressed in Nowak et al. (119) and so reduces the cost of
increasing the number of MHC alleles. They estimated the proba-
bilities p and n were 0.01 and 0.005 respectively, using the known
efficiencies of positive and negative selection in mice with known
numbers of MHC alleles. The optimal value of M for these para-
meter values is far larger than observed allele numbers; conversely,
asking what values of p and n correspond to the observed ranges
of M being optimal leads to unrealistic levels of positive and neg-
ative selection. Their analysis therefore questions the trade-off
hypothesis as an explanation of limited MHC diversity.

They suggest alternatives. They estimate that existing typical
numbers of MHC alleles together with TCR cross-reactivity may
be “good enough” for maximizing the probability of responding
to a foreign peptide on self-MHC – in this case the selective pres-
sure for increasing MHC alleles is weak or absent. Alternatively,
increased numbers of MHC alleles may increase the risk of autoim-
munity through cross-reactivity of T cells responding to antigen
that have not been fully tolerized to self. Finally, limited numbers
of MHC alleles may allow for sufficient densities of pMHC on the
surface of antigen-presenting cells to be able to efficiently select
and activate MHC-restricted T cells.

MHC restriction is not absolute in the models described above,
although it holds approximately for positive selection when the
per-allele positive selection probability p is small. However, there
is evidence to suggest that MHC restriction is not manifest strongly
at the positive selection stage. Zerrahn et al. (22) observed that a
relatively large proportion of TCR still positively select when a
single type of pMHC was expressed in the thymus. In that study,
pre-selection TCRs had approximately a 5% chance of respond-
ing to a given class II MHC, independently for different alleles,
validating one of the assumptions of these simple probabilistic
selection models. On similar lines, Huseby et al. (92) found that
the positively-selected repertoire contains TCR with a high degree

of cross-reactivity across MHC alleles, and suggested that MHC
restriction emerges as a result of negative selection. Finally, the
high degree of alloreactivity suggests that positive selection is only
weakly MHC-restricted, and that failure to positive select reflects
a generic inability to bind to MHC.

Motivated by this possibility, Woelfing et al. (118) revisited
these probabilistic models. They assumed positive selection is
highly degenerate with respect to MHC and that even very weak
cross-reactivity with any allele is sufficient. Under this assump-
tion, one of the presumed advantages of high MHC diversity is
removed. Maximizing the probability of mounting an immune
response, they estimated the optimal MHC diversity to be in a
physiological range of 3–25.

Van den Berg and Rand (121) used a very different and sophisti-
cated approach to the same optimality problem using a mechanis-
tic, stochastic model of TCR triggering rather than the probabilis-
tic repertoire-based models described above. Considering negative
selection only, they concluded that limited individual MHC diver-
sity is beneficial for self–non-self discrimination. The essence of
their mathematical argument is that restricting the “diversity of
foreign” is the key to increasing the signal-to-noise ratio for aTCR
attempting to discriminate a foreign peptide from the background
of self. This is achieved with a combination of limiting the num-
ber of MHC alleles each TCR can recognize (MHC restriction) and
limiting the number of peptides that can be presented from one
protein on one MHC allele (“peptide selectivity”) to be roughly
one. However, the need to ensure that every foreign protein is
represented requires multiple MHC alleles, placing a theoretical
lower bound on their number. An upper bound comes from the
requirement that the density of relevant pMHC ligands must not
fall too low on the surface of an APC, similar to the suggestion in
Borghans et al. (120) – if a given pMHC is diluted by too many
MHC, the relevant TCR will experience fluctuations in signaling
that may reduce its discriminatory power. They conclude that of
the order 10 MHC alleles is optimal. Notably, as in Ref. (118), this
estimate arises without any constraints from positive selection.

SUMMARY
This review has outlined how several relatively simple descriptions
of single TCR–pMHC interactions have been used to understand
aspects of TCR repertoire development. However, the discussion
is necessarily incomplete. In particular, there is an extensive lit-
erature exploring the molecular mechanisms by which individual
or collections of TCR discriminate between ligands of different
affinities [see, for example, Ref. (100, 122–126)], which has direct
relevance to thymic selection. It remains unclear how proximal
TCR signals derived from multiple and diverse pMHC ligands
can drive the emergence of specificity and MHC restriction in
the post-selection repertoire, although the models of selection on
ensembles of ligands have made steps in this direction (99, 121).
Are repeated super-threshold contacts required for negative selec-
tion, or is a single encounter with a high affinity ligand sufficient
to cause deletion?

Many of the models discussed here assume that a single interac-
tion above a minimum signaling threshold is sufficient for positive
selection. However, there is evidence that repeated or sustained
TCR signaling is required during the DP stage for positive selection
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to occur [see, for example, Ref. (17, 127)]. This may explain find-
ings that positive and negative selection take place concurrently
(46).

Overall it is remarkable how much insight into the quantitative
aspects of thymic selection has emerged from highly abstracted
models. However, there remain a lot of open areas for research,
and many of the questions raised in the introduction are still unre-
solved. Regulatory T cell development in particular has received
very little attention from modelers, and already it appears that
the simplest extension to the simple probabilistic fixed-threshold
model to include a fixed range of affinity or avidity for Treg
selection is not sufficient to explain many experimental obser-
vations (107). The task of synthesizing and reconciling the huge
diversity of experimental data related to thymic development is a
daunting one, but the information available is perhaps currently
underexploited by theorists.
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Cells of the mature αβ T cell repertoire arise from the development in the thymus of bone
marrow precursors (thymocytes). αβ T cell maturation is characterized by the expression of
thousands of copies of identical αβ T cell receptors and the CD4 and/or CD8 co-receptors
on the surface of thymocytes. The maturation stages of a thymocyte are: (1) double nega-
tive (DN) (TCR−, CD4− and CD8−), (2) double positive (DP) (TCR+, CD4+ and CD8+), and
(3) single positive (SP) (TCR+, CD4+ or CD8+).Thymic antigen presenting cells provide the
appropriate micro-architecture for the maturation of thymocytes, which “sense” the signal-
ing environment via their randomly generated TCRs. Thymic development is characterized
by (i) an extremely low success rate, and (ii) the selection of a functional and self-tolerantT
cell repertoire. In this paper, we combine recent experimental data and mathematical mod-
eling to study the selection events that take place in the thymus after the DN stage. The
stable steady state of the model for the pre-DP, post-DP, and SP populations is identified
with the experimentally measured cell counts from 5.5- to 17-week-old mice.We make use
of residence times in the cortex and the medulla for the different populations, as well as
recently reported asymmetric death rates for CD4 and CD8 SP thymocytes. We estimate
that 65.8% of pre-DP thymocytes undergo death by neglect. In the post-DP compartment,
91.7% undergo death by negative selection, 4.7% become CD4 SP, and 3.6% become
CD8 SP. Death by negative selection in the medulla removes 8.6% of CD4 SP and 32.1%
of CD8 SP thymocytes. Approximately 46.3% of CD4 SP and 27% of CD8 SP thymocytes
divide before dying or exiting the thymus.

Keywords: thymocytes, negative selection, positive selection, death by neglect, mathematical model, steady state

1. INTRODUCTION
T cells are a major component of the adaptive immune system that
play a crucial role in protection against a wide variety of pathogens.
The T cell receptor (TCR) is generated by somatic recombination
and has a vast potential to recognize foreign organisms. T cells
do not recognize pathogens directly, but rather through binding
pathogen fragments displayed by major histocompatibility com-
plex (MHC) proteins on the surface of antigen presenting cells
(APCs). Since MHC molecules are highly polymorphic, useful
T cells must be selected for in each individual of the species.
These T cells must have lineage specific effector functions that may
include direct lysis, production of cytokines, and ability to regulate
immune responses. Furthermore, some T cells have the potential
to drive dangerous autoimmune responses (1). For all of these rea-
sons, the development of a T cell repertoire is a highly specialized
and tightly regulated process (2, 3). It takes place in a dedicated
organ, the thymus, where unique properties of the microenvi-
ronment ensure the production of functional, yet self-tolerant T
cells (4–6).

Multi-potent precursors travel from the bone marrow to the
thymus through the blood. When they enter the thymus, the pre-
cursors that commit to the T cell lineage [or canonical early T cell
progenitors (7)], after a 2 week period on average, transition from

the double negative (DN) stage, where they do not express the co-
receptors CD4 and CD8, to the double positive (DP) stage, where
they express both co-receptors (6). At this stage, the majority of the
cells have made productive TCR gene rearrangements and express
a fully formed αβ TCR on the cell surface. DP cells are located in
the cortex region of the thymus, where they use their TCR to sur-
vey self-peptides presented by MHCs on cortical thymic epithelial
cells (cTECs) (8). DPs that recognize self-peptide-MHC complexes
with low affinity undergo positive selection, whereas those with
high affinity are deleted by negative selection (3). Those DP that
fail to recognize self-peptide-MHC will undergo apoptosis in a
process referred to as death by neglect. The DP cells that are posi-
tively selected will then transition to the single positive (SP) stage,
where they express either the CD4 or CD8 co-receptor, depending
upon their MHC class specificity (9). MHC class specificity also
dictates gene expression changes that will ultimately determine
the effector functions of that T cell: generally, cytotoxicity for CD8
T cells and cytokine production for CD4 T cells. All positively
selected cells, whether MHC class I or class II specific, up-regulate
the chemokine receptor CCR7, which facilitates their migration
to the medulla, where they undergo further selection events. The
medulla contains medullary epithelial cells (mTECs) that express
tissue-restricted antigens regulated by the nuclear factor Aire (10).
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Exposure to tissue-restricted antigens allows for further deletion
of T cells specific for self-antigens they may encounter in the
periphery. Finally, those cells that have been positively selected,
yet have avoided negative selection, will mature and migrate to the
periphery (11).

Previous efforts to develop mathematical models of thymic
selection have been based on deterministic approaches or cellular
automata simulations. These studies have shown the importance
of (i) thymic antigen diversity on the size of the selected T cell
repertoire (12), (ii) death rates for the more differentiated thy-
mocyte subsets (13), (iii) thymocyte proliferation and residence
times (14), (iv) epithelial networks for thymocyte development
and migration (15), (v) thymocyte competition for antigen (16),
(vi) self-pMHC complexes expressed on dendritic cells (DCs)
(17), (vii) receptor–ligand binding affinity (18), and (viii) a sharp
threshold in TCR-ligand binding affinity that defines the bound-
ary between negative and positive selection (19). Recent work by
Ribeiro and Perelson (20) supports the need to develop appropri-
ate mathematical models to interpret T cell receptor excision cir-
cles (or TREC) data, which are used to quantify thymic export (20).
Sinclair et al. in Ref. (21) bring together experimental immunol-
ogy with mathematical modeling to conclude that CD8 precursor
thymocytes are more susceptible to death than CD4 precursors.
This asymmetry in the death rates underlies the experimentally
observed CD4:CD8 T cell ratio in the periphery.

Previous experimental studies have tried to determine the num-
ber of cells going through positive and negative selection in the
thymus. However, reports estimating the relative number of cells
undergoing negative selection compared to positive selection have
been widely variable. Some find that very few cells undergo neg-
ative selection; others find that two times more cells undergo
negative selection than positive selection (22–25). In this report,
we develop a deterministic mathematical model of T cell develop-
ment in the thymus. Some of us recently published a report where
we used a novel approach (Bim−/−Nur77GFP mice) that allowed
us to calculate the number of cells undergoing positive and nega-
tive selection (26). Using previously published data on the relative
life-span of DP and SP cells, we estimated the hourly rate of both
positive and negative selection (26). In this manuscript, we make
use of (i) a subset of this experimental data, and (ii) the asymmet-
ric death rates observed for CD4 and CD8 precursor thymocytes
(21), to develop two mathematical models that will enable us to
estimate selection rates in the cortex and the medulla, and provide
a quantitative measure for the stringency of thymic selection. The
first model (see Section 2.1) allows the identification of the fol-
lowing parameters: DN thymocyte influx into the cortex, pre-DP
and post-DP death rates, and pre-DP and post-DP differentiation
rates. Under the assumption of asymmetric death rates for the CD4
and CD8 SP thymocytes (21), we extend the first model to provide
estimates for the following medullary rates (see Section 2.2): CD4
and CD8 SP death, proliferation, and maturation rates.

2. MATERIALS AND METHODS
2.1. A FIRST MODEL OF THYMIC DEVELOPMENT AFTER THE DN STAGE
In this section, we introduce a deterministic model of thymocyte
development after the DN stage. This first model will be required
to calibrate the parameter values of the second model introduced

in Section 2.2. In particular, and as described in Section 3.2, the
first model allows the identification of parameter values for the
following rates: φ,µ1,µ2, ϕ1, and ϕ2.

This mathematical model makes use of a data set obtained
from the analysis of eight C57BL/6 wild type and Bim deficient
mice (average age 9 weeks), that express a Nur77GFP transgene
to indicate TCR signal strength experience (26). Flow cytomet-
ric analysis, as described in that study, used standard markers to
define various stages of T cell development in the thymus. The
Nur77GFP reporter and Bim deficiency were novel modifications
that allowed us to quantify cells that normally would be deleted
by strong TCR signaling. In the mathematical model, we consider
the following thymocyte populations: n1, the population of pre-
selection DP thymocytes (double positive), that are TCRβ low and
CD69low (26), n2, the population of post-selection DP thymo-
cytes, that are TCRβ+ and CD69high (26), and n3, the population
of mature SP (single positive) thymocytes.

We assume that DN thymocytes differentiate to become pre-
selection DP thymocytes with rate (cells/day)φ. We further assume
that after the DN stage, thymocyte cell fate is determined by the
TCR signal, which a given thymocyte has received. Sinclair et al.
used CFSE labeling to show that there is no proliferation at the
post-DP stage (see Figure A1 of their manuscript) (21). Stritesky
et al. looked at proliferation in the post-DP pool with BrdU label-
ing, and found no evidence (26). We have, thus, only included
proliferation in the SP thymocyte population (21, 26). The three
populations, n1, n2, and n3, are involved in the following selection
events in the cortex and the medulla (see Figure 1):

• ∅
φ
−→ n1 – flux of DN thymocytes into compartment n1,

• n1
ϕ1
−→ n2 – differentiation from pre-DP (n1) to post-DP (n2)

thymocytes induced by TCR signal,

• n1
µ1
−→ ∅ – death by neglect of pre-DP thymocytes due to lack

of (or weak) TCR signal,

• n2
ϕ2
−→ n3 – differentiation from post-DP (n2) to SP (n3)

thymocytes sustained by intermediate TCR signal,

• n2
µ2
−→ ∅ – apoptosis of post-DP (n2) thymocytes due to strong

TCR signal,

• n3
ϕ3
−→ periphery – exit of SP thymocytes (n3) to the periphery

(thymic maturation),

• n3
λ3
−→ 2 n3 – proliferation of SP thymocytes (n3) in the medulla,

and
• n3

µ3
−→ ∅ – apoptosis of SP (n3) thymocytes due to strong TCR

signal.

The time evolution of the three populations can be described by
the following set of ordinary differential equations (ODEs), which
are based on the selection events described above:



dn1

dt
= φ − ϕ1n1 − µ1n1 ,

dn2

dt
= ϕ1n1 − ϕ2n2 − µ2n2 ,

dn3

dt
= ϕ2n2 − ϕ3n3 − µ3n3 + λ3n3 .

(1)
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FIGURE 1 |Thymic development as hypothesized in the first
model. The flux, φ, represents the differentiation of DNs into
pre-DPs. Pre-DP thymocytes have two fates: further differentiation
into the post-DP pool (ϕ1) or death by neglect (µ1). Post-DP

thymocytes have two fates: further differentiation into the SP pool
(ϕ2) or death by apoptosis (µ2). Finally, SP thymocytes have three
fates: maturation and exit into the periphery (ϕ3), death by apoptosis
(µ3), or proliferation (λ3).

We are interested in studying the steady state of these popu-
lations, as the experimental data correspond to population cell
numbers in the three stages (pre-DP, post-DP, and SP) for a steady
state thymus (26). The steady state of the system of equations
[equation (1)] is given by:

n∗1 =
φ

ϕ1 + µ1
, n∗2 =

n∗1ϕ1

ϕ2 + µ2
, n∗3 =

n∗2ϕ2

ϕ3 + µ3 − λ3
. (2)

This unique steady state exists if and only if ϕ3+µ3− λ3> 0,
so that we have n∗3 > 0. In order to study the linear stability of the
steady state, we calculate A, the Jacobian matrix of equation (1), as
follows:

A =

 −(ϕ1 + µ1) 0 0
ϕ1 −(ϕ2 + µ2) 0
0 ϕ2 −(ϕ3 + µ3 − λ3)

 . (3)

A is also the Jacobian matrix at the steady state n∗ =
(n∗1 , n∗2 , n∗3 ), as the system of ODEs [equation (1)] is linear.
The three eigenvalues of A are given by (as the matrix is lower
triangular):

β1 = −(ϕ1+µ1) , β2 = −(ϕ2+µ2) , β3 = −(ϕ3+µ3−λ3) .

Therefore, the steady state [equation (2)] is stable, if and only
if, ϕ3+µ3− λ3> 0, which is also the condition for its existence.
We conclude this section with the analytical solution of the system
of ODEs [equation (1)], given initial conditions, which provides
the time evolution of the three thymocyte populations:

n1(t ) = n∗1 + n1(0) e−(ϕ1+µ1)t ,

n2(t ) = n∗2 +
n1(0) ϕ1

[(ϕ2 + µ2)− (ϕ1 + µ1)]
e−(ϕ1+µ1)t

+ n2(0) e−(ϕ2+µ2)t ,

n3(t ) = n∗3 +
n1(0) ϕ1

[(ϕ2 + µ2)− (ϕ1 + µ1)]
(4)

×
ϕ2

[(ϕ3 + µ3 − λ3)− (ϕ1 + µ1)]
e−(ϕ1+µ1)t

+
n2(0) ϕ3

[(ϕ3 + µ3 − λ3)− (ϕ2 + µ2)]
e−(ϕ2+µ2)t

+ n3(0) e−(ϕ3+µ3−λ3)t ,

where n1(0), n2(0), n3(0) represent the initial conditions for the
thymocyte populations. Note that in the late time limit, that is,
if t→+∞ and ϕ3+µ3− λ3> 0, then n1(t ) → n∗1 , n2(t ) → n∗2
and n3(t )→ n∗3 , as it is the unique stable steady state.

2.2. A SECOND MODEL OF THYMIC DEVELOPMENT AFTER THE DN
STAGE: CD4 AND CD8 SP THYMOCYTES

As described in Section 2.1, the first deterministic model will allow
us to calibrate some of the parameters of a more comprehensive
model, which we now introduce. We subdivide the SP thymocyte
population in two classes: CD4 SP and CD8 SP thymocytes. This
is an extension of the model introduced in the previous section,
and is motivated by the fact that experimentally, SP thymocytes
express either the CD4 or the CD8 co-receptor. We now have four
different thymocyte populations to consider: n1, the population of
pre-selection DP (double positive) thymocytes, n2, the population
of post-selection DP thymocytes, n4, the population of mature
CD4+ SP (single positive) thymocytes, and n8, the population of
mature CD8+ SP (single positive) thymocytes.

As described in the previous section, we assume that DN thy-
mocytes differentiate to become pre-selection DP thymocytes with
rate (cells/day) φ, and that after the DN stage, thymocyte cell
fate is determined by the TCR signal, which a given thymocyte
has received. Thus, the four populations, n1, n2, n4, and n8, with
n3= n4+ n8, are involved in the following selection events in the
cortex and the medulla (see Figure 2):

• ∅
φ
−→ n1 – flux of DN thymocytes into compartment n1,

• n1
ϕ1
−→ n2 – differentiation from pre-DP (n1) to post-DP (n2)

thymocytes induced by TCR signal,
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FIGURE 2 |Thymic development as hypothesized in the second model.
We assume there is a flux, φ, that represents the differentiation of DNs into
pre-DPs. Pre-DP thymocytes have two fates: further differentiation into the
post-DP pool (ϕ1) or death by neglect (µ1). Post-DP thymocytes have three

fates: further differentiation into the SP pool as CD4 SPs (ϕ4), or CD8 SPs (ϕ8),
or death by apoptosis (µ2). Finally, CD4 or CD8 SP thymocytes have three
fates: maturation and exit into the periphery (ξ 4) or (ξ 8), death by apoptosis
(µ4) or (µ8), or proliferation (λ4) or (λ8).

• n1
µ1
−→ ∅ – death by neglect of pre-DP thymocytes due to lack

of (or weak) TCR signal,

• n2
ϕ4
−→ n4 – differentiation from post-DP (n2) to CD4+ SP (n4)

sustained by intermediate TCR signal,

• n2
ϕ8
−→ n8 – differentiation from post-DP (n2) to CD8+ SP (n8)

sustained by intermediate TCR signal,

• n2
µ2
−→ ∅ – apoptosis of post-DP (n2) thymocytes due to strong

TCR signal,

• n4
ξ4
−→ periphery – exit of CD4+ SP thymocytes (n4) to the

periphery (thymic maturation),

• n8
ξ8
−→ periphery – exit of CD8+ SP thymocytes (n8) to the

periphery (thymic maturation),

• n4
λ4
−→ 2 n4 – proliferation of CD4+ SP thymocytes (n4) in the

medulla,

• n8
λ8
−→ 2 n8 – proliferation of CD8+ SP thymocytes (n8) in the

medulla,

• n4
µ4
−→ ∅ – apoptosis of CD4+SP (n4) thymocytes due to strong

TCR signal, and

• n8
µ8
−→ ∅ – apoptosis of CD8+SP (n8) thymocytes due to strong

TCR signal.

We assume that all model parameters are positive, that is, µ1,
µ2, µ4, µ8, ϕ1, ϕ2, ϕ4, ϕ8, ξ 4, ξ 8, φ, λ4, λ8> 0, and note that
the parameters and thymocyte populations of the first and second
model are related by the following equations:

ϕ2 = ϕ4 + ϕ8 , ξ4 n4 + ξ8 n8 = ϕ3 n3 ,

µ4 n4 + µ8 n8 = µ3 n3 , λ4 n4 + λ8 n8 = λ3 n3 . (5)

The time evolution of the four populations can be described by
the following set of ODEs:

dn1
dt = φ − ϕ1n1 − µ1n1 ,

dn2
dt = ϕ1n1 − (ϕ4 + ϕ8)n2 − µ2n2 ,

dn4
dt = ϕ4n2 − ξ4n4 − µ4n4 + λ4n4 ,

dn8
dt = ϕ8n2 − ξ8n8 − µ8n8 + λ8n8 .

(6)

We are interested in studying the steady state of these popu-
lations, as the experimental data correspond to population cell
numbers in the four stages (pre-DP, post-DP, CD4 SP, and CD8
SP) for a steady state thymus (26). The steady state of the system
of equations [equation (6)] is given by:

n∗1 =
φ

ϕ1 + µ1
, n∗2 =

n∗1ϕ1

ϕ4 + ϕ8 + µ2
,

n∗4 =
n∗2ϕ4

ξ4 + µ4 − λ4
, n∗8 =

n∗2ϕ8

ξ8 + µ8 − λ8
. (7)

This unique steady state exists if and only if ξ 4+µ4− λ4> 0
and ξ 8+µ8− λ8> 0, so that we guarantee n∗4 > 0 and n∗8 > 0. In
order to study the linear stability of the steady state, we calculate
B, the Jacobian matrix of equation (6), as follows:

B =


−(ϕ1 + µ1) 0 0 0

ϕ1 −(ϕ4 + ϕ8 + µ2) 0 0

0 ϕ4 −(ξ4 + µ4 − λ4) 0

0 ϕ8 0 −(ξ8 + µ8 − λ8)

 .

(8)

B is also the Jacobian at the steady state n∗ = (n∗1 , n∗2 , n∗4 , n∗8 ),
as the system of ODEs is linear. The four eigenvalues of B are
given by:

β1 = −(ϕ1 + µ1) , β2 = −(ϕ4 + ϕ8 + µ2) ,

β3 = −(ξ4 + µ4 − λ4) , β4 = −(ξ8 + µ8 − λ8) .

Therefore, the steady state equation (6) is stable if and only if
ξ 4+µ4− λ4> 0 and ξ 8+µ8− λ8> 0, which is also the condi-
tion for its existence. We conclude this section with the analytical
solution of the system of ODEs equation (6), given initial condi-
tions, which provides the time evolution of the four thymocyte
populations:

n1(t ) = n∗1 + n1(0) e−(ϕ1+µ1)t ,

n2(t ) = n∗2 +
n1(0) ϕ1

[(ϕ4 + ϕ8 + µ2)− (ϕ1 + µ1)]
e−(ϕ1+µ1)t

+ n2(0) e−(ϕ4+ϕ8+µ2)t ,
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n4(t ) = n∗4 +
n1(0) ϕ1

[(ϕ4 + ϕ8 + µ2)− (ϕ1 + µ1)]

×
ϕ4 + ϕ8

[(ξ4 + µ4 − λ4)− (ϕ1 + µ1)]
e−(ϕ1+µ1)t

+
n2(0) ξ4

[(ξ4 + µ4 − λ4)− (ϕ4 + ϕ8 + µ2)]
e−(ϕ4+ϕ8+µ2)t

+ n4(0) e−(ξ4+µ4−λ4)t ,

n8(t ) = n∗8 +
n1(0) ϕ1

[(ϕ4 + ϕ8 + µ2)− (ϕ1 + µ1)]

×
ϕ4 + ϕ8

[(ξ8 + µ8 − λ8)− (ϕ1 + µ1)]
e−(ϕ1+µ1)t

+
n2(0) ξ8

[(ξ8 + µ8 − λ8)− (ϕ4 + ϕ8 + µ2)]
e−(ϕ4+ϕ8+µ2)t

+ n8(0) e−(ξ8+µ8−λ8)t ,
(9)

where n1(0), n2(0), n4(0), n8(0) represent the initial conditions for
the thymocyte populations. Note that in the late time limit, that
is, if t→+∞ and ξ 4+µ4− λ4> 0 and ξ 8+µ8− λ8> 0, then
n1(t ) → n∗1 , n2(t ) → n∗2 , n4(t ) → n∗4 , and n8(t ) → n∗8 , as it is
the unique stable steady state.

3. RESULTS
3.1. PARAMETER ESTIMATION FOR THE FIRST MODEL (MEANS)
In this section, we make use of previously published experimental
data (26) that provide thymocyte cell counts for the three subsets
considered in the first model: pre-DPs, post-DPs, and SPs. The
original experiments have been carried out for two types of mice:
wild type mice (Bim+/−) and Bim deficient mice (Bim−/−). In
this paper, we will only be considering the wild type experimental
results. The data will allow us to provide experimental estimates
for the steady state thymocyte cell counts: n∗1 , n∗2 , n∗3 . Note that,
in order to estimate rates (with units of inverse time), thymo-
cyte cell counts are not enough. Thus, we will make use of the
additional knowledge provided by experimentally determined res-
idence times for each population, τ i, with i= 1, 2, 3. If we make use
of the model (see Section 2.1), the residence time in compartment
i can be expressed as:

τi =
1

ϕi + µi
, for i ∈ {1, 2, 3} .

The experimental data (see Table 1) correspond to the num-
ber of cells (thymocytes) at steady state (26), in each of the
thymic compartments considered in the mathematical models (see
Sections 2.1 and 2.2), and for eight different mice (j= 1, 2, . . ., 8).

We have made use of the following average residence times in
each compartment (27–29)

τ1 = 60 h = 2.5 days , τ2 = 16 h = 0.67 days ,

τ3 = 96 h = 4 days .

In order to derive estimates for the model parameters, we have
carried out the following steps:

1. We make use of the experimentally determined mature SP thy-
mocyte flux from the medulla to the periphery, which has been
estimated to be 1–4× 106 cells per day (14, 26, 30). This flux
corresponds to about 1% of thymocytes leaving the thymus
every day (30). Given this flux, which we denote by φout, n∗3 ,
and the fact that φout = ϕ3 n∗3 , we can obtain an estimate for
ϕ3. We have chosen φout to be 2.5× 106 cells per day (14, 30).

2. Given τ 3, ϕ3, and the fact that τ3 =
1

µ3+ϕ3
, we can obtain an

estimate for µ3.
3. Given τ 1, n∗1 , and the fact that n∗1 = φ τ1 , we can obtain an

estimate for φ.
4. We also have n∗2 = ϕ1 τ2 n∗1 , which, in principle, allows us to

estimate ϕ1. We make use of linear regression techniques to do
so (31, 32).

Let us introduce a1 by the following equation, a1 =
n∗2
n∗1

, and

make use of the experimental data to write: n∗,i2 = a n∗,i1 + ε
i ,

for i= 1, 2, . . ., 8. Thus, the squared error is given by:

E(a1) =

8∑
i=1

(n∗,i2 − a1 n∗,i1 )
2

.

We minimize E(a1) with respect to a1, that is dE
da1
= 0.

Solving for a1, we obtain:

a1 =

∑8
i=1 n∗,i1 n∗,i2∑8
i=1 (n

∗,i
1 )

2 .

Table 1 | Experimental steady state thymocyte cell counts for the wild type pre-DP, post-DP, CD4 SP, and CD8 SP populations.

Mouse n∗

1 (pre-DP) (cells) n∗

2 (post-DP) (cells) n∗

3 (SP) (cells) n∗

4 (SP CD4) (cells) n∗

8 (SP CD8) (cells)

1 82.58×106 9.30×106 18.36×106 13.85×106 4.51×106

2 142.19×106 19.94×106 26.20×106 18.73×106 7.46×106

3 89.00×106 5.98×106 15.98×106 11.88×106 4.10×106

4 29.32×106 2.09×106 5.61×106 4.40×106 1.21×106

5 29.32×106 2.09×106 5.61×106 4.40×106 1.21×106

6 51.26×106 5.93×106 9.01×106 6.85×106 2.16×106

7 64.48×106 6.81×106 11.64×106 9.03×106 2.61×106

8 218.94×106 15.42×106 40.20×106 29.46×106 10.74×106

Mean 88.39×106 8.45×106 16.57×106 12.33×106 4.25×106

Standard deviation 60.11×106 5.89×106 11.05×106 7.94×106 3.12×106

The bold font highlights the mean and the standard deviation from the individual mice data.
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Given a1, we can then estimate ϕ1 from the equation
ϕ1 =

a1
τ2

.

5. Given τ 1, ϕ1, and the fact that τ1 =
1

µ1+ϕ1
, we can obtain an

estimate for µ1.
6. We are now left with three remaining parameters: ϕ2, µ2, and
λ3. Given the experimental constraints on τ 1, τ 2, and τ 3, we
assume that the average time to proliferate, 1/λ3, cannot be
<7 days. Therefore, we consider λ3 to be constrained in the
interval [1/7, τ−1

3 ], with time measured in days. We sample
equally spaced values for λ3, and for each value, we compute

ϕ2 =
n∗3 (ϕ3+µ3−λ3)

n∗2
. The ratio a2 =

n∗3
n∗2

is computed using the

linear regression method described above (see Figure 3). In
this way, we obtain an estimate for ϕ3. We note that the p-
values for a1 and a2 are given by 7.57× 10−3 and 6.85× 10−3,
respectively (both smaller than the significance level α= 0.05).

7. Given τ 2, ϕ2, and the fact that τ2 =
1

µ2+ϕ2
, we can obtain an

estimate for µ2.
8. From steps 6 and 7 above, we have generated (a table of) val-

ues for ϕ2 and µ2, given a fiducial value for λ3 in the interval
[1/7, τ−1

3 ]. The mice considered in the experimental study are
5.5–17 weeks old, and their thymus is in steady state (26). Thus,
we expect that the parameter values can only be accepted if the
corresponding system of ODEs attains steady state by 3 weeks.
Therefore, we only accept parameter values which provide thy-
mocyte cell counts at time t= 21 days that are within one
standard deviation from the experimentally determined values
(see Table 1). That is, we impose for the given parameter set that
the mathematically predicted value ni(t= 21 days) belongs to
the interval n∗i ±σi , with i= 1, 2, 3, and where n∗i is the (exper-
imental) mean number of cells in compartment i, and σ i is the
(experimental) standard deviation in compartment i, as given
in Table 1.

We obtain the following parameter values:

φ = 35.350× 106 cells/day , µ1 = 0.263 day−1 ,

µ3 = 0.099 day−1 , ϕ1 = 0.137 day−1 , ϕ3 = 0.151 day−1 ,

and

µ2 ∈ [1.295, 1.443] day−1 , ϕ2 ∈ [0.050, 0.198] day−1 ,

λ3 ∈ [0.143, 0.250] day−1 .

These parameters imply the following thymic selection rates:

3.1.1. Death rates
9.7× 105 cells/h die by neglect in compartment 1 (µ1 n∗1 ),
4.8× 105 cells/h die by negative selection in compartment 2
(µ2 n∗2 ), and 6.9× 104 cells/h die by negative selection in
compartment 3 (µ3 n∗3 ).

3.1.2. Differentiation rates
5.0× 105 cells/h are positively selected in compartment 1, that is,
become post-DP from pre-DP (ϕ1 n∗1 ), 4.4× 104 cells/h are posi-
tively selected in compartment 2, that is, become SP from post-DP
(ϕ2 n∗2 ), and 1.0× 105 cells/h leave compartment 3 to go to the
periphery (ϕ3 n∗3 ).

FIGURE 3 | Linear regression plots for the first model.

3.1.3. Proliferation rate
1.3× 105 cells/h proliferate in compartment 3 (λ3 n∗3 ).

We have also computed the stringency of thymic selection,
which we define as given by the ratio:

ϕ3 n∗3
φ
= 6.79% .

Finally, we have computed the (per cell) probability to die, given
that the cell is in compartment i (i= 1, 2, 3), as well as the (per
cell) probability to proliferate in the medulla. We have obtained:

p1 =
µ1

µ1 + ϕ1
= 65.8% , p2 =

µ2

µ2 + ϕ2
= 91.7% ,

p3 =
µ3

µ3 + ϕ3 + λ3
= 22.9% , q3 =

λ3

µ3 + ϕ3 + λ3
= 42.2% .

3.2. PARAMETER ESTIMATION FOR THE SECOND MODEL (MEANS)
In this section, we make use of previously published experimental
data (26) that provide thymocyte cell counts for the four subsets
considered: pre-DPs, post-DPs, CD4 SPs, and CD8 SPs. We only
make use of the experimental data for the wild type mice. The data
will allow us to provide experimental estimates for the steady state
thymocyte cell counts: n∗1 , n∗2 , n∗4 , n∗8 . As described in Section 3.1,
we also need residence times for each population subset, τ i, with
i= 1, 2, 4, 8. If we make use of the model (see Section 2.2), the
residence time in compartment i can be expressed as:

τi =
1

ϕi + µi
, for i ∈ {1, 2} , and

τi =
1

ξi + µi
, for i ∈ {4, 8} .

Recent experimental data provide support for asymmetric
death rates in the CD4 and CD8 SP compartments (21). The
estimated death rates for CD4 and CD8 SP thymocytes are1

µ4= 0.04 day−1 and µ8= 0.11 day−1. We also make use of the
estimates derived in Section 3.1 for φ, µ1, µ2, ϕ1, and ϕ2. Finally,

1Private communication from Ben Seddon and Andy Yates.
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the average residence times in each compartment, as described in
Section 3.1, are given by:

τ1 = 60 h = 2.5 days , τ2 = 16 h = 0.67 days ,

τ4 = 96 h = 4 days , τ8 = 96 h = 4 days .

In order to derive estimates for the model parameters, we have
carried out the following steps:

1. Given τ 4, µ4, and the fact that τ4 =
1

µ4+ξ4
, we can obtain an

estimate for ξ 4.
2. In the same way, given τ 8,µ8, and the fact that τ8 =

1
µ8+ξ8

, we

can obtain an estimate for ξ 8.
3. We are now left with four remaining parameters:ϕ4,ϕ8,λ4, and
λ8. We know that ϕ2=ϕ4+ϕ8. We sample ϕ4 in the interval
[0, ϕ2], where ϕ2 is the mean value of the interval obtained in
Section 2.1, and for each fiducial value for ϕ4, we compute the
corresponding value for ϕ8.

4. Given τ 4, ϕ4, and the fact that n∗4 =
n∗2ϕ4

τ−1
4 −λ4

, we can compute

the fraction a3 =
n∗2
n∗4

by linear regression (see Figure 4), and

thus obtain an estimate for λ4. Note that we will reject values
of λ4 that imply the proliferation time is larger than 7 days (see
Section 3.1).

5. In Section 3.1, we obtained an estimate for the mean of λ3, and
we know that λ4 n∗4 + λ8 n∗8 = λ3 n∗3 . As before, we can com-

pute the fractions a4 =
n∗4
n∗8

and a5 =
n∗3
n∗8

by linear regression

(see Figure 4), and thus obtain an estimate for λ8. Note that
we will reject values of λ8 that imply the proliferation time is
larger than 7 days (see Section 3.1). We note that the p-values
for a3, a4, and a5 are given by 8.43× 10−3, 3.33× 10−7, and
4.56× 10−8, respectively (smaller than the significance level).

6. From steps 3, 4, and 5 above, we have generated (a table of) val-
ues forϕ8,λ4, andλ8, given a fiducial value forϕ4 in the interval

[0, ϕ2]. As discussed in Section 3.1, we only accept parameter
values which provide thymocyte cell counts at time t= 21 days
that are within one standard deviation from the experimentally
determined values (see Table 1).

We obtain the following parameter values:

µ4 = 0.04 day−1 , µ8 = 0.11 day−1 ,

ξ4 = 0.21 day−1 , ξ8 = 0.14 day−1 ,

and

ϕ4 = 0.070 day−1 , ϕ8 = 0.054 day−1 ,

λ4 = 0.216 day−1 , λ8 = 0.093 day−1 .

These parameters imply the following thymic selection rates:

3.2.1. Death rates
2.05× 104 cells/h die by negative selection in compartment 4
(µ4 n∗4 ) and 1.95× 104 cells/h die by negative selection in
compartment 8 (µ8 n∗8 ).

3.2.2. Differentiation rates
2.50× 104 cells/h are CD4 positively selected in compartment 2,
that is, become CD4 SP from post-DP (ϕ4 n∗2 ), 1.90× 104 cells/h
are CD8 positively selected in compartment 2, that is, become
CD8 SP from post-DP (ϕ8 n∗2 ), 1.08× 105 cells/h leave compart-
ment 4 to go to the periphery (ξ4 n∗4 ), and 2.48× 104 cells/h leave
compartment 8 to go to the periphery (ξ8 n∗8 ).

3.2.3. Proliferation rates
11.10× 104 cells/h proliferate in compartment 4 (λ4 n∗4 ) and
1.60× 104 cells/h proliferate in compartment 8 (λ8 n∗8 ).

FIGURE 4 | Linear regression plots for the second model.
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We can compute the stringency of thymic selection, defined by
the ratio:

ξ4 n∗4 + ξ8 n∗8
φ

= 8.96% .

We can provide an estimate for the cortical positive selection
probabilities, that is the (per post-DP cell) probability to become a
CD4 SP or a CD8 SP, and the probability to be negatively selected
in the cortex. We have obtained:

s4 =
ϕ4

µ2 + ϕ4 + ϕ8
= 4.7% , s8 =

ϕ8

µ2 + ϕ4 + ϕ8
= 3.6% ,

p2 =
µ2

µ2 + ϕ4 + ϕ8
= 91.7% .

Finally, we have computed the (per cell) probability to die, given
that the cell is in compartment i, as well as the (per cell) probability
to proliferate in the medulla. We obtain:

p4 =
µ4

µ4 + ξ4 + λ4
= 8.6% , q4 =

λ4

µ4 + ξ4 + λ4
= 46.3% ,

p8 =
µ8

µ8 + ξ8 + λ8
= 32.1% , q8 =

λ8

µ8 + ξ8 + λ8
= 27.0% .

These probabilities imply that the probability to exit the thy-
mus as a mature CD4 thymocyte (that has already reached the

medulla) is given by 100−(8.6+46.3)
100 , which is 45.1%, and the proba-

bility to exit as a mature CD8 thymocyte (that has already reached

the medulla) is given by 100−(32.1+27.0)
100 , which is 40.9%.

3.3. SENSITIVITY ANALYSIS
In this section, we explore the sensitivity of the parameters to
perturbations in the experimental data. For the first model, the
experimental data are given in terms of the following eight
quantities:

θ = (τ1, τ2, τ3,φout, a1, a2, n̄3, n̄1) ,

where a1, a2 are the coefficients of the linear regression of
n∗2
n∗1

and
n∗3
n∗2

, respectively, and n̄i is the experimental mean value of ni.

We perturb each entry of the vector θ by adding and sub-
tracting 10% of its value. Therefore, we now have two values
for θ i, equal to θi +

1
10θi and θi −

1
10θi . Consequently, we have

28 sets of θ , which will be used to compute the corresponding
model parameters as described in Section 3.1. Parameter val-
ues will only be accepted if they provide a stable solution before
t= 21 days.

For the second model, the experimental data is given in terms
of the following seven quantities:

θ = (τ4, τ8,µ4,µ8, a3, a4, a5) ,

where a3, a4, a5 are the coefficients of the linear regression of
n∗2
n∗4

,
n∗4
n∗8

, and
n∗3
n∗8

, respectively. We have made use of the means of

the following parameters of the first model: φ, ϕ1, µ1, ϕ2, µ2, λ3.

Table 2 | Means, 95% trimmed and minimum–maximum intervals of

the model parameters.

Parameter Mean value 95%Trimmed

interval

Minimum–maximum

interval range

φ 35.86×106

cells/day

(35.65×106,

35.07×106) cells/day

(28.93, 43.21×106)

cells/day

ϕ1 0.139 day−1 (0.138, 0.140) day−1 (0.112, 0.167) day−1

ϕ2 0.136 day−1 (0.134, 0.139) day−1 (0.041, 0.274) day−1

ϕ4 0.140 day−1 (0.136, 0.145) day−1 (0.060, 0.264) day−1

ϕ8 0.134 day−1 (0.129, 0.138) day−1 (0.010, 0.214) day−1

µ1 0.265 day−1 (0.263, 0.267) day−1 (0.196, 0.333) day−1

µ2 1.372 day−1 (1.365, 1.378) day−1 (1.083, 1.618) day−1

µ4 0.040 day−1 n/a (0.036, 0.044) day−1

µ8 0.110 day−1 n/a (0.099, 0.121) day−1

λ4 0.181 day−1 (0.179, 0.184) day−1 (0.116, 0.226) day−1

λ8 0.085 day−1 (0.080, 0.090) day−1 (0.078, 0.092) day−1

ξ4 0.231 day−1 (0.230, 0.233) day−1 (0.229, 0.233) day−1

ξ8 0.152 day−1 (0.150, 0.154) day−1 (0.149, 0.155) day−1

We perturb each entry of the vector θ as described above. There-
fore, we have 27nϕ4 sets of θ , with nϕ4 , the number of different
values considered for ϕ4 in the interval (0, ϕ2). Parameter val-
ues will only be accepted if they provide a stable solution before
t= 21 days.

The results of the sensitivity analysis, with 95% trimmed
intervals2 and minimum–maximum interval ranges, are given in
Table 2.

3.4. VARIABILITY IN THE SELECTION RATES
The (trimmed and minimum–maximum) intervals derived in
Section 3.3 allow us to estimate the variability in the different
selection rates discussed in Sections 3.1 and 3.2. For example,
given variations in the parameters, the corresponding variations
in the selection rates can be shown to be:

1pi =
1

(µi + ϕi)
2 (ϕi1µi + µi1ϕi) for i = 1, 2 , (10)

1p3 =
1

(µ3 + ϕ3 + λ3)
2 [(ϕ3 + λ3)1µ3 + µ31ϕ3 + µ31λ3] ,

(11)

1q3 =
1

(µ3 + ϕ3 + λ3)
2 [λ31µ3 + λ31ϕ3 + (µ3 + ϕ3)1λ3] ,

(12)

1si =
1

(µ2 + ϕi + ϕj)
2 [ϕi1µ2 + ϕi1ϕj

+ (µ2 + ϕj)1ϕi] for i = 4, j = 8 or i = 8, j = 4 ,
(13)

1pi =
1

(µi + ξi + λi)
2 [µi1ξi + µi1λi

+ (ξi + λi)1µi] for i = 4, 8 , (14)

2We define the 95% trimmed interval to be the result of the sensitivity analysis after
trimming the lower and upper 2.5% of values.
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1qi =
1

(µi + ξi + λi)
2 [λi1ξi + λi1µi

+ (ξi + µi)1λi] for i = 4, 8 . (15)

We present in Table 3 the variability of the selection rates.

4. DISCUSSION
We have brought together experimental data with a mathemati-
cal compartment model [similar to other progression models of
CD4 and CD8 T cell development (13, 14, 18, 21, 33)] to provide
estimates for the selection events that take place in the thymus.
We have made use of a range of experimental data: (i) steady state
thymocyte cell counts (26), mean residence times in each com-
partment (27–29), murine thymic export rate (14, 26, 30), and
recently reported asymmetric death rates for the CD4 SP and CD8
SP thymocytes (21). Our preliminary results support the unex-
pectedly high death rate in the post-DP thymocyte population
observed in Ref. (21). We note that our approach is unrelated
to that of Sinclair et al. both experimentally and mathematically
(21). This rate, µ2, has been estimated to be at least an order of
magnitude larger than any of the other death rates in the pre-
DP, CD4 SP, or CD8 SP pools (see Table 2). In terms of selection
rates, our analysis yields the following: pre-selection thymocytes
(pre-DPs) have a 65.8% probability of dying by neglect in the
cortex, and a 34.2% probability of becoming post-selection thy-
mocytes (post-DPs). At the post-selection stage, post-DPs have a
91.7% probability of dying by negative selection (apoptosis) in
the cortex, a 4.7% probability of becoming CD4 SPs, and a 3.6%
probability of becoming CD8 SPs. In the medulla, CD4 SPs have
an 8.6% probability of dying by negative selection (apoptosis),
whereas CD8 SPs have a 32.1% probability of dying by negative
selection. CD4 SPs have a 45.1% probability of exiting the thymus
and reaching the periphery as mature thymocytes, whereas that
probability for CD8 SPs is only 40.9%. Finally, the data supports
some level of cellular proliferation in the medulla, with CD4 SPs
having a 46.3% probability of proliferation and CD8 SPs a 27%
probability.

Earlier work by Mehr and collaborators combined experi-
mental and theoretical approaches to estimate thymic selection
rates (13, 33), neglected death rates in the medulla, but consid-
ered potential feedback from mature T cells. In agreement with
these authors, our results indicate that thymocyte death is high-
est at the post-DP stage. However, as death in the medulla had
been neglected, these authors concluded that the CD4:CD8 ratio
in SP thymocytes is determined by the differentiation rates. In
this paper, we have made use of CD4 and CD8, or medullary,
death rates, which allowed us to directly compare cortical (DP) to
medullary (SP) death rates. Furthermore, our approach allowed
us to conclude that medullary, or SP, death was due to negative
selection, as it was rescued by Bim deficiency (26). Sinclair et al.
also recently addressed the temporal dynamics of thymic selection
using an unrelated approach (both experimentally and mathe-
matically) (21). While their experimental approach did not allow
them to distinguish death by negative selection from death by
other mechanisms, their overall finding was consistent with ours,
that thymocyte death is highest at the post-DP stage.

Table 3 | Selection rate values (initial and after perturbation) and their

variability intervals.

Rate Initial

value (%)

After

perturbation (%)

1 Value

(%)

1 Min–max

(%)

p1 65.8 65.66 ±0.76 ±20.55

p2 91.7 90.98 ±0.49 ±17.28

p3 22.91 24.07 ±0.90 ±28.22

q3 42.24 41.74 ±0.99 ±30.53

s4 4.69 8.51 ±0.80 ±15.16

s8 3.61 8.13 ±0.79 ±15.03

p4 8.59 8.84 ±0.37 ±4.91

q4 46.29 40.07 ±1.29 ±20.49

p8 32.12 31.71 ±2.25 ±35.37

q8 27.0 24.5 ±3.58 ±64.81

Further attempts to quantify thymic selection rates making use
of mathematical models also include those of Faro et al. (12). The
mathematical model developed by Faro and collaborators does
not include time dynamics, but describes the relationship between
the number of selecting ligands and the probability of selection
of a given thymocyte. Thomas-Vaslin et al. (14) obtained esti-
mates of thymic selection rates, using an experimental procedure
that temporarily blocks thymic output and a mathematical model
in which rates of transit from compartment to compartment
depend on the number of cell divisions. Their model can capture
the thymic “conveyor belt” (34, 35) scheme, but requires more
differential equations and more parameters than equation (6).
Despite the differences between their theoretical and experimen-
tal models and ours, similar estimates for thymic selection rates
are found. For example, we estimate that 1.2 million post-DP
become CD4 SP thymocytes per day and 0.5 million post-DP
become CD8 SP thymocytes per day; their estimates are 0.9 and
0.2 million, respectively. Finally, we estimate that 2.6 million CD4
SP thymocytes per day and 0.6 million CD8 SP thymocytes per
day exit the thymus. Their estimates are 2.4 and 0.5 million,
respectively.

Our estimates of how many CD4 and CD8 SP thymocytes
survive and exit the thymus reflect the skewed CD4:CD8 SP thy-
mocyte ratio observed in C57BL/6 mice, which is approximately
4:1 (36). This ratio is similar to the reported CD4:CD8 ratio of
recent thymic emigrants (37), and raises the question of what
accounts for the CD4 bias. While we were able to determine death
and differentiation rates for both CD4 and CD8 SP thymocytes
(see Table 2), our experimental approach did not allow us to deter-
mine what fraction of the post-DP pool was MHC class I versus
II restricted. Therefore, we could not address the issue of when
and how the CD4:CD8 bias becomes established. The approach
of Sinclair et al., which used MHC class I and class II deficiency,
allowed them to address this question. Their data suggest that the
skewed CD4:CD8 ratio reflects asymmetry in post-selection DP
death rates, rather than more efficient positive selection of CD4
compared to CD8 thymocytes (21). Yet, the parameter estimation
allows us to compare the following different CD4:CD8 ratios (see
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Section 3.2): (i) the CD4:CD8 ratio of positive selection in the
post-DP pool (differentiation from post-DP to either CD4 SP or
CD8 SP) is given by ϕ4

ϕ8
≈ 5 : 4, (ii) the CD4:CD8 ratio in the SP

pool is given by
n∗4
n∗8
≈ 3 : 1, and (iii) the CD4:CD8 ratio of posi-

tive selection in the SP pool (differentiation from SP to peripheral

early thymic emigrants) is given by
ξ4n∗4
ξ8n∗8
≈ 4 : 1. Our observa-

tions indicate that the CD4 bias is progressively established, as the
thymocytes mature from the post-DP stage until the exit of the SP
stage to migrate to the periphery.

Our mathematical analysis has also allowed us to estimate the
stringency of thymic selection, defined by:

σ =
ξ4 n∗4 + ξ8 n∗8

φ
= 8.96% ,

that is, the ratio between the number of thymocytes per unit time
that exit the thymus and the number of thymocytes per unit time
that enter the pre-DP stage. The sensitivity analysis described in
Section 3.3 allows us to provide a value of 1σ = 0.2%, where
we have made use of the minimum–maximum interval ranges
(see fourth column of Table 2). A different measure of stringency
could be based on the probability of a cell surviving the maturation
process. In our notation, this would correspond to the following:

(1− p1)× (1− p2)× (1− p3) = 2.19% .

We note that this measure of stringency is the probability of
not dying in any of the three compartments considered in the
model (pre-DP, post-DP, and SP). As discussed in Appendix A.1,
and given that in the SP pool, thymocytes may proliferate, there
is a need to consider this special case. Our estimates suggest that
a population of 103 pre-DP thymocytes will yield 69 CD4 and 25
CD8 SP thymocytes that leave the medulla to get incorporated into
the peripheral naive T cell pool (see details in Appendix A.1).

The sensitivity analysis (see Section 3.3) and the variability of
the selection rates derived from it (see Section 3.4) give us the con-
fidence to conclude, that our parameter estimation is robust. We
are aware that the experimental data we have made use of [steady
state thymocyte cell counts (26)] do not provide the exquisite time
resolution described in Ref. (21). However, the supporting math-
ematical model described in Section 2.2, allows us to obtain the
time evolution of the thymocyte populations, once the parameters
have been estimated. In Figure 5, we plot the time evolution of
the total number of cells in each compartment of the mathemat-
ical model: pre-DP, post-DP, CD4 SP, and CD8 SP thymocytes.
We start with no cells at time zero, ni(t= 0)= 0 for i= 1, 2, 4, 8.
Trajectories have been plotted for a period of 6 weeks and have
been computed for every permutation of the parameter set pre-
sented in Table 2. The subset of parameters shared with the simple
model (φ, ϕ1, µ1, µ2), were fixed at their mean values. Thus, 548
distinct parameter sets were generated. The system of equations
(6) was solved using a fourth order Runge–Kutta method (Python
source code).

FIGURE 5 |Time evolution of the thymocyte populations in the second model. The different trajectories correspond to the parameter values and ranges
described inTable 2.
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The approaches introduced in this paper have shed some
light on the probabilities and timescales that characterize cellu-
lar fate in the thymus after the DN stage. We plan to generalize
the mathematical model introduced here, making use of experi-
mental data for the strength of TCR binding in Nur77GFP mice
(26), to investigate issues such as the death rate in the post-
DP pool and the CD4:CD8 ratio. Our model assumes that all
progenitors in a particular pool behave with identical kinetics,
i.e., move through the various stages of selection at the same
rate. Future model refinements will come from consideration
of the heterogeneity of the pools, which are known to include
cells that will become iNKT cells, regulatory T cells, and intra-
epithelial lymphocytes (2). It is also possible that progenitors of
the same general class move through the selection process with
different kinetics (34). The models introduced here can serve
as a first step to study human thymic selection, although com-
prehensive data on human thymic subsets, their sizes, and res-
idence times are not yet available. It would be of great interest
to apply the model to data on thymic subsets and cellularity in
children, keeping in mind that residence times of human sub-
sets may differ from murine ones (38). Finally, we note that we
have not mentioned the relevance of cytokines, such as IL-7,
during thymic development. Some differences have already been
described for the role of IL-7R in human versus mouse T cell
development (38, 39). We hope in the near future to combine
mechanistic mathematical models of IL-7 and IL-7R (40) with
the T cell development model introduced here to address these
issues.
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APPENDIX
A.1. STRINGENCY OF THYMIC SELECTION: A STOCHASTIC MODEL
In this section, we present the details that allow us to compute
the stringency of thymic selection for the mathematical model
considered in Section 2.2.

Let us assume that at time t= 0, there exists a single T cell in
a given compartment. In our case, the compartment can be the
pre-DP, post-DP, or SP (either CD4 SP or CD8 SP) stages. The
cell, at any time, may die (with rate, µ), divide (with rate, λ), and
produce two daughter cells, or leave the compartment (with rate,
ξ) to enter a different compartment. The waiting times for each
event are assumed to be exponentially distributed, and daughter
cells are assumed to behave identically to the initial single cell.
We introduce the bivariate Markov process {X(t ), Y (t )}t≥0, where
X(t ) is the number of cells in the compartment at time t, and Y (t )
is the number of cells which have left the compartment (to enter
a different compartment). Our aim is to calculate the expected
number of cells (and variance) that leave the compartment.

State probabilities for the Markov process are defined as
follows (41)

p(x ,y)(t ) = Prob{X(t ) = x , Y (t ) = y|X(0) = 1, Y (0) = 0} ,
(A1)

and transition probabilities for this process are defined as fol-
lows (41)

p(w ,z),(x ,y)(1t ) = Prob{X(t +1t ) = w ,

Y (t +1t ) = z |X(t ) = x , Y (t ) = y}

=



λx1t + o(1t ), if w = x + 1, z = y ,

µx1t + o(1t ), if w = x − 1, z = y ,

ξx1t + o(1t ), if w = x − 1, z = y + 1 ,

1− (λ+ µ+ ξ)x1t + o(1t ), if w = x , z = y ,

o(1t ), if w , z otherwise .
(A2)

The Kolmogorov (or master) equation for this process is given
by (41)

dp(x ,y)(t )

dt
= λ (x − 1)p(x−1,y)(t )+ µ (x + 1)p(x+1,y)(t )

+ ξ (x + 1)p(x+1,y−1)(t )− (λ+ µ+ ξ) x p(x ,y)(t ) .
(A3)

Let mX(t ) be the expected number of cells in the compart-
ment under consideration, and mY(t ) be the expected number
of cells which have left the compartment. Similarly, let mXX(t )
be the expectation of the random variable X(t )2, mXY(t ) be the
expectation of the random variable X(t )Y (t ), and mYY(t ) be the
expectation of the random variable Y (t )2. Then, making use of
the probability generating function technique (41), we derive the
time evolution for the first two moments of the system:

dmX (t )

dt
= (λ− µ− ξ)mX (t ) , (A4)

dmY (t )

dt
= ξmX (t ) , (A5)

dmXX (t )

dt
= 2(λ− µ− ξ)mXX (t )+ (λ− µ− ξ)mX (t ) , (A6)

dmXY (t )

dt
= (λ− µ− ξ)mXY (t )+ ξ [mXX (t )−mX (t )] , (A7)

dmYY (t )

dt
= ξ [2mXY (t )+mX (t )]. (A8)

Given that we start with a single cell, the expected number of
cells at time t is given by

mX (t ) = e(λ−µ−ξ)t . (A9)

Under the restriction λ<µ+ ξ , the expected number of cells
tends to zero as t→+∞. This implies that all cells from the single
T cell progenitor either die or leave the compartment for suffi-
ciently large times. The expected number of cells which leave the
compartment is given by

mY (t ) =
ξ

µ+ ξ − λ

[
1− e(λ−µ−ξ)t

]
. (A10)

As t→+∞, the expected number of cells to leave the compart-
ment can be shown to be

lim
t→+∞

mY (t ) =
ξ

µ+ ξ − λ
. (A11)

We now solve the remaining ODEs equations (A6–A8), to find

mYY (t ) =
2λξ 2

(λ− µ− ξ)3

[
1

2
e2(λ−µ−ξ)t

− e(λ−µ−ξ)t
]

−
4λξ 2

(λ− µ− ξ)2

(
t −

1

λ− µ− ξ

)
e(λ−µ−ξ)t

+
ξ

λ− µ− ξ
e(λ−µ−ξ)t −

2λξ 2

(λ− µ− ξ)3

−
ξ

λ− µ− ξ
. (A12)

It, therefore, follows that the random variable Y (t ), which
represents the number of cells leaving the compartment under
consideration, has the following variance (in the limit t→+∞)

σ 2
Y = lim

t→∞

[
mYY (t )−mY (t )

2]
=

2λξ 2

(µ+ ξ − λ)3
+

ξ

µ+ ξ − λ

−
ξ 2

(µ+ ξ − λ)2
. (A13)

A.2. STRINGENCY OF THYMIC SELECTION IN THE FOUR
COMPARTMENT MODEL

The previous example can easily (but laboriously) be extended to
the mathematical model introduced in Section 2.2.

We may evaluate the expected number of, for example, CD4+

T cells produced by a single pre-DP progenitor (or more gener-
ally N pre-DP progenitors). We only present the time evolution
of the moment generating function. The deterministic equations
describing the mean and variance of the numbers of cells in each
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compartment (pre-DP, post-DP, SP CD4, and SP CD8) are left for
the reader to derive. When counting the number of CD4+ T cells
leaving the thymus, the moment generating function satisfies the
following partial differential equation

∂M

∂t
= µ1(e

−θ1 − 1)
∂M

∂θ1
+ ϕ1(e

−θ1 eθ2 − 1)
∂M

∂θ1

+ (µ2 + ϕ8)(e
−θ2 − 1)

∂M

∂θ2
+ ϕ4(e

−θ2 eθ4 − 1)
∂M

∂θ2

+ µ4(e
−θ4 − 1)

∂M

∂θ4
+ λ4(e

θ4 − 1)
∂M

∂θ4

+ ξ4(e
−θ4 eθ8 − 1)

∂M

∂θ4
. (A14)

The symmetry of the mathematical model implies that an
equivalent equation for the number of CD8+ T cells leaving the
thymus can be obtained by interchanging the indexes 4 and 8.
For our derived parameter set, the previous equation allows us to
conclude that the expected number of CD4+ T cells, a single thy-
mocyte in the pre-DP compartment produces, is 0.069 (standard
deviation 0.96), whereas the expected number of CD8+ T cells
which leave the thymus is 0.025 (standard deviation 0.59).

To put this into perspective, a population of 103 pre-DP thy-
mocytes is expected to produce 69 CD4+ T cells which leave the
thymus (standard deviation 66), and 25 CD8+ T cells (standard
deviation 41). More generally, a population of N pre-DP thymo-
cytes is expected to produce 0.069N CD4+ T cells and 0.025N
CD8+ T cells.
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Flow cytometry-based analysis of lymphocyte division using carboxyfluorescein succin-
imidyl ester (CFSE) dye dilution permits acquisition of data describing cellular proliferation
and differentiation. For example, CFSE histogram data enable quantitative insight into cellu-
lar turnover rates by applying mathematical models and parameter estimation techniques.
Several mathematical models have been developed using different types of deterministic
or stochastic approaches. However, analysis of CFSE proliferation assays is based on the
premise that the label is halved in the two daughter cells. Importantly, asymmetry of pro-
tein distribution in lymphocyte division is a basic biological feature of cell division with the
degree of the asymmetry depending on various factors. Here, we review the recent litera-
ture on asymmetric lymphocyte division and CFSE-based lymphocyte proliferation analysis.
We suggest that division- and label-structured mathematical models describing CFSE-
based cell proliferation should take into account asymmetry and time-lag in cell proliferation.
Utilization of improved modeling algorithms will permit straightforward quantification of
essential parameters describing the performance of activated lymphocytes.

Keywords:T cells, CFSE assay, asymmetric division, mathematical modeling

INTRODUCTION
The ability of the immune system to protect the host organism
against live-threatening infections and tumors directly depends
on the reactivity of lymphocytes to antigenic stimulation, with a
key role of clonal T cell responses (1). The perception of infec-
tions as a race between the invading pathogen and immunity
suggests that it is the knowledge of the proliferation and death
rates of T cells which provides a quantitative basis for assessing
the quality of the host immunity (2). For almost 20 years, flow
cytometry-based analysis of intracellular fluorescent dye distrib-
ution has been used to assess the proliferative performance and
differentiation patterns of lymphocytes (3–5). Since the prototype
dye for this analysis is CFSE, the assay is commonly referred to
as CFSE dilution assay or – more simply – CFSE assay. A quanti-
tative characterization of T cell turnover which can be elaborated
from time series of CFSE histograms ranges from“static”measures
such as precursor cell frequency or mean generation number, to
“dynamic”parameters characterizing the cell cycle progression and
apoptosis rates (6). However, estimation of turnover parameters
requires formulation of mathematical models of cell growth which
can take various forms and differ in their complexity depending
on the parameters of interest and the richness of the available data
[comprehensively reviewed by De Boer and Perelson (7)]. Impor-
tantly, current approaches to the analysis of CFSE proliferation
data are based on the assumption that cell division is symmetric,
i.e., the fluorescent label is halved in the two daughter cells (3, 5,
7–9). However, a random and uneven partition of mass between
the sister cells is considered as an axiom in cell biology since many
years (10). Although the detailed knowledge of the intracellular

reactions which affect the turnover and intracellular heterogene-
ity of CFSE labeled proteins is currently limited (11), it is broadly
accepted that CFSE binds indiscriminately to intracellular proteins
and the fluorescence intensity of any single cell is roughly propor-
tional to the total number of CFSE molecules bound to proteins
within that cell (12). The latter study proposed a method for the
analysis of CFSE-labeling experiments which also considered the
possibility of an unequal division of CFSE molecules between the
daughter cells.

The inequality of the mass (protein) distribution to the daugh-
ter cells directly suggests that CFSE labeled proteins are unequally
partitioned between daughter cells. Indeed, recent studies describ-
ing T cell activation showed that asymmetric cell division can
be an inherent part of T cell growth and differentiation (13–16).
However, direct experimental evidence for asymmetric partition
of CFSE between daughter cells is still missing. Nevertheless,
the existing deterministic mathematical frameworks should be
amended to facilitate a quantitative analysis of CFSE-based lym-
phocyte proliferation when asymmetry of cell division associated
with unequal partition of CFSE labeled proteins between the two
daughter cell results in a poor resolution of divisional clusters
in CFSE histograms. Here, we briefly summarize recent findings
describing asymmetric lymphocyte division and progress in the
analysis of CFSE-based lymphocyte activation. Moreover, cell pro-
liferation is not an instantaneous process and it takes a finite time
for a cell to progress from the G1-phase of the cell cycle to the
completion of the M-phase. The duration of the continuous pro-
gression is called a time-lag and in general, needs to be explicitly
parameterized in the model equations. Finally, we suggest that

Frontiers in Immunology | T Cell Biology September 2013 | Volume 4 | Article 264 | 178

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/T_Cell_Biology/10.3389/fimmu.2013.00264/abstract
http://www.frontiersin.org/T_Cell_Biology/10.3389/fimmu.2013.00264/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=GennadyBocharov&UID=77618
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=TatyanaLuzyanina&UID=105904
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JovanaCupovic&UID=100164
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=BurkhardLudewig&UID=30392
mailto:bocharov@inm.ras.ru
http://www.frontiersin.org/T_Cell_Biology
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bocharov et al. Modeling of asymmetric lymphocyte division

mathematical models describing CFSE-based lymphocyte prolif-
eration should consider both asymmetry in division and time-lag
in proliferation.

ASYMMETRIC LYMPHOCYTE DIVISION
Symmetric or asymmetric cell divisions refer to the mode of cell
division which results in two phenotypically identical- or different-
daughter cells, respectively. The phenotypic features could be the
cell size, cell surface receptors, intracellular components such as
proteins (including those labeled with CFSE), transcription fac-
tors, or messenger RNA (17). Hence, these phenotypic differences
provide the basis for the functional differences in the daughter
cells, i.e., their cell fates.

Following encounter with their antigen displayed in the context
of major histocompatibility complex molecules, naïve T lympho-
cytes go through well-orchestrated series of divisions generating
different populations of cells that fulfill immediate effector func-
tions or generate long-lived immunological memory. Two basic
models explain the generation of such functionally distinct T cell
phenotypes. According to the “one naïve cell – one fate” model,
naïve lymphocytes are instructed to generate either effector or
memory progeny (18). In this model, instruction of T cells, for
example, is achieved through interaction with professional APCs
(19). Hence, to preserve the instructing signal(s) received dur-
ing activation and to maintain equality of the cells throughout
division, T cells should divide in a symmetric fashion. The alter-
native model proposes asymmetric cell division as the mechanism
that allows naïve T cells to give rise to two different daughter
cells. These are referred to as proximal or distal daughter cell
depending on their proximity to the APC. Such asymmetric T
cell division represents a process that allows single cells to give rise
to two, phenotypically and functionally different daughter cells,
and thereby permits diversification of cell populations. In other
words, one of the daughter cells inherits the potential to differen-
tiate into full effector cell (proximal daughter), while the second
daughter maintains the stemness of the mother cell. This prin-
ciple feature of asymmetric cell division has also been described
in developmental studies examining neurogenesis (20). Likewise,
adaptation of adult tissues to changing environmental conditions
such as the content of the gut requires rapid adaptation of one
cell fraction while other cells maintain their high proliferative
potential (21).

The processes involved in activation and differentiation of T
cells, for example during infection have to swiftly generate cells
with direct effector function to efficiently restrict viral replication
(1). At the same time, some T cells should retain their ability to
proliferate in order to prevent exhaustion of certain T cell subsets
(22) and to facilitate generation of long-lived memory T cells (23).
Indeed, Chang et al. (13) demonstrated that division of CD8+ T
cells specific for a viral peptide leads to the generation of daugh-
ter cells with different characteristics. CFSE-based assays revealed
that asymmetry is established already during the first round of
division and is dependent on the presence of the cognate anti-
gen (13). Assessment of the protein content in the daughter cells
generated during the first cell division showed that asymmetry
established during mitosis is preserved throughout cytokinesis.
Moreover, proximal and distal daughter cells exhibit different

protein expression profiles and functional properties with proxi-
mal daughter cells exhibiting higher immediate protective capacity
(13). The finding that proximal daughter cells exhibit higher CD8
co-receptor and LFA-1 expression facilitating formation of more
frequent and longer lasting interactions with antigen presenting
APCs (14) further emphasized that asymmetric division critically
determines both T cell phenotype and function.

Asymmetric cell division is not only an important feature of
CD8+ T cell activation (13, 14), but also occurs during the activa-
tion and differentiation of CD4+ T cells (13, 24) and B cells (25,
26). While naïve CD8+ T cells require only one or only few encoun-
ters with APCs to proliferate and differentiate into effector cells,
naïve CD4+ T cells depend on multiple encounters in order to dif-
ferentiate and to exhibit specialized effector functions (27). Hence,
it is likely that CD4+ T cells acquire their distinct phenotypes,
e.g., Th1, Th2, or Th17, through multiple sequential asymmet-
ric cell divisions. However, recent studies suggest that asymmetric
cell division cannot be considered as the only mechanism that
leads to the profound heterogeneity of T cell lineages (16). Thus,
more research is required to resolve the contribution of sequen-
tial asymmetric T cell division to the generation of diverse T cell
phenotypes. We suggest that a combination of CFSE-based T cell
proliferation analysis with mathematical modeling may help – at
least in part – to clarify this issue.

CURRENT MATHEMATICAL MODELS FOR CFSE-BASED
LYMPHOCYTE PROLIFERATION ANALYSIS
Several mathematical models have been established for the analysis
of CFSE-based proliferation assays (7, 9, 12, 28–32). The existing
modeling frameworks can be subdivided on the basis of the major
requirements for CFSE histogram data processing into two main
categories (Table 1). The first group requires a decomposition of
the CFSE histograms characterizing the distribution of cells with
respect to the fluorescent dye into the distinct generations of cells.
The procedure is based on fitting the CFSE histogram with a series
of log-normal Gaussian distributions differing in their means and
standard deviation and is implemented in commercially available
standard software packages. Importantly, the assignment of dis-
tinct cell generations to CFSE clusters has remained an empiric
process which depends heavily on initial labeling homogeneity,
label degradation, cellular auto-fluorescence, and other factors
including experimental skills of the researcher (33). As long as
the division is symmetric (or almost symmetric) (Figure 1A),
these factors can be tuned in a proper way to enable resolution
of successive generations as distinct CFSE clusters (Figure 1B).
Under these conditions a range of existing mathematical models
can be tuned to estimate the turnover parameters of the stimulated
lymphocyte population. The key features of the corresponding
families of the models are outlined in Table 1, rows one to three.
These models describe the population dynamics of cells which
differ in the number of completed divisions and ignore the het-
erogeneity of the cells within a generation with respect to the CFSE
content. The immunologically relevant issues that were addressed
with the models of this group include regulatory effects of IL-2
on the T cell responses (34, 35), regulation of hematopoietic stem
cells cycling (36), and kinetics of mouse erythroid progenitor cell
differentiation (37).
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Table 1 | Major features of mathematical models describing CFSE-based proliferation assays.

Cell proliferation model1 Input data Estimated parameters Mathematical approach2 Primary sources

A–B state model Generation

structure

Division entry-, apoptosis-

rates, duration of division

DDE Nordon et al. (6), Ganusov et al. (28)

G0 model Generation

structure

Division entry-, apoptosis rates,

duration of division

hPDE Bernard et al. (51)

Random birth-death Generation

structure

Division-, apoptosis rates,

progressor fraction

ODE, IE, branching

processes

Ganusov et al. (28), Yates et al. (29),

Lee et al. (30), Zilman et al. (31), Hyrien

et al. (41), Veiga-Fernandes et al. (52),

Revy et al. (53), Hawkins et al. (54)

Random birth-death,

CFSE-structured

CFSE

histograms

Division-, apoptosis-, CFSE

decay rates

hPDE Luzyanina et al. (38)

Random birth-death,

generation-, CFSE-structured

CFSE

histograms

Division-, apoptosis-, CFSE

decay rates, auto-fluorescence

hPDE Hasenauer et al. (40), Banks et al. (32)

Asymmetric division,

G0-model, generation-,

CFSE-structured

CFSE

histograms

Asymmetry, division-,

apoptosis-, CFSE decay rates,

time-lag of proliferation

hPDE See text for details

1The following notations are used: “A–B state model” refers to the model of cell cycle in (55) in which the intermitotic period is composed of an A-state (major part

of G1-phase) and a B-phase (conventional S, G2, and M phases); “G0 model” refers to the view of the cell cycle with two states (47), i.e., resting- (G0) and cycling-

states (G1, S, G2, M). Conceptually, it is equivalent to the A–B state model. “Random birth-death” model refers to a discrete compartmental (generation structured)

model of cycling cells (56). “Generation structured” refers to the mathematical model in which the cell population is decomposed into cohorts of cells which differ

with respect to the number of completed division cycles; “CFSE-structured” represents the mathematical description of cell population in which the distribution

(heterogeneity) of cells with respect to the fluorescence intensity is followed by considering the cell distribution function.
2DDE, delay differential equations; hPDE, hyperbolic partial differential equations; ODE, ordinary differential equations; IE, integral equations.

The second group of models which refer directly to the CFSE
histograms seems to be more appropriate when the generational
structure of the labeled population cannot be easily resolved
(Table 1, rows four to five). The initially proposed model describes
the evolution of the labeled cells distribution with respect to the
CFSE level (38). Although this and similar models proved to be
functional in estimating the proliferation- and death rates as func-
tions of the structure variable directly from the histogram data (38,
39), the problem of translating the estimated functions into bio-
logically meaningful parameters still requires the knowledge of the
division structure of the lymphocyte population. A major break-
through in the improvement of the distributed parameter models
for the dynamics of heterogeneous CFSE labeled cell populations
were recently proposed division- and label-structured mathemat-
ical models (32, 40). The major potential of this framework as an
analytical tool is based upon the following features: (i) no need
for CFSE histogram decomposition, (ii) characterization of cell
growth in terms of generation dependent division- and death rates,
(iii) an explicit form of the dependence of solution on the turnover
parameters.

Another class of recently developed mathematical models
which allow a direct fitting of the CFSE histograms is based on
branching processes (12, 41). The approach allows for proba-
bilistic characterization of cell activation, proliferation, and death
from the CFSE dilution data and does not require the assump-
tion about equality of CFSE division between the two daughter
cells.

The first and the second group of models rely on the premise
of symmetric cell division. However, tracing proliferation of other
cell types such as cancer cells has been reported to be difficult
(42) due to poorly resolved peaks of the different cell genera-
tions. Since cytokinesis is not perfect, it was suggested that the two
daughter cells are unlikely to inherit exactly half of the CFSE flu-
orescence dye of the mother cell. An increase in the degree of the
asymmetry of mass partition between daughter cells and hence
disparate distribution of fluorescently labeled proteins should
result in a poorer resolution of generational clusters as shown
in Figures 1C,D for lower asymmetry and in Figures 1E,F for
higher asymmetry. This in turn will lead to the generations over-
lap in CFSE histograms thus posing a limit to experimentalists’
ability to resolve the individual generations using conventional
decomposition methods.

MODELING ASYMMETRIC DIVISION OF CFSE LABELED T
CELLS
We have been recently dealing with the analysis of the prolifer-
ative performance of monoclonal CD8+ T cells recognizing an
H2-Kb-binding epitope derived from the S protein of the mouse
hepatitis virus (MHV). Clearance of MHV during acute infec-
tion is achieved through the combined action of type I interferons
(43) and CD8+ T cells (44). Moreover, CD8+ T cells essentially
contribute to control of the virus during persistent infection, for
example in the central nervous system (45). We have initiated a
project on the generation of avidity-tuned, antigen-specific T cells
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FIGURE 1 | Impact of asymmetry inT cell division impinges on
fluorescent protein partition between daughter cells. (A,B) Symmetric
cell division with equal distribution of the fluorescent dye between daughter
cells (A) and modeled time course analysis of T cell proliferation as
determined by flow cytometry [(B), solid black lines]. Dashed red lines in (B)
indicate the evolution of CFSE intensity of the cohorts (generations) of cell
which differ in the number of completed divisions with the assumption of
symmetric division. (C,D) Asymmetric cell division with “low” asymmetry
(C) and modeled flow cytometric time course analysis of CFSE dilution [(D),
solid black lines] that corresponds to an asymmetry 46/54% [(D), dashed
red lines describe the CFSE distributions for cell cohorts differing in terms of
the completed divisions]. (E,F) T cells dividing with “high” asymmetry (E)
and corresponding model-generated flow cytometric CFSE dilution patterns
[(F), solid black lines] with asymmetry values of 42/58% describing the
behavior of the T cells in this setting [(F), dashed red lines describe the cell

cohorts corresponding to different generations]. (G) Schematic
representation of the structure of a mathematical approach which considers
the division- and CFSE label-heterogeneity of proliferating cells as well as
asymmetry and time of cell division. Some cells from the cohort of cells
which completed “i” divisions are activated (αi characterizes the activation
rate) and progress through the cell cycle (τi stands for the duration of the
progression through S-G2-M phases), resulting to the generation of
daughter cells which differ with respect to their CFSE content. Asymmetric
mitosis refers to cell division which results into appearance of two
phenotypically different daughter cells with a smaller and larger cell mass,
respectively. These cells are characterized by an unequal amount of CFSE
labeled proteins (m1 and m2 =1−m1, describe the fractions of CFSE from
the mother cell inherited by the two daughter cells). The natural decay of the
CFSE fluorescence intensity is taken into account (kx – stands for an
exponential decay of CFSE loss).
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for adoptive transfer as an option to augment antiviral immune
responses during chronic infection. To this end, MHV-specific T
cell receptors (TCRs) were cloned and tested in retrogenic sys-
tems (46). In vitro re-stimulation of the CFSE labeled monoclonal
CD8+ T cells showed that CFSE dilution was characterized by
broadly varying patterns from highly distinct peaks to poorly
resolved generational clusters. We propose that an explicit con-
sideration of the asymmetry in protein partition between the
daughter cells facilitates a consistent mathematical description of
CFSE histogram time series data (Figure 1G). The appropriate
mathematical framework should describe the population of CFSE
labeled T cells by the distribution of cells with respect to CFSE
amount (unit of intensity, UI). The subpopulations differ in terms
of completed rounds of division and are further distinguished in
resting and proliferating states, with the respective notation and i
standing for the generation (number of completed divisions), t –
for time and x – for CFSE amount per cell. A conceptual scheme
of the modeling approach is shown in Figure 1G suggesting that
such a model can be naturally formulated as an extension of a
generation- and division-structured population balance model
with the cell cycle represented according to the G0 model (47)
and the division asymmetry explicitly taken into account.

Under conditions of symmetric CD8+ T cell division with the
difference of protein partition between the sister cells being equal
to zero (i.e., every daughter cell inherits half of the fluorescently
labeled proteins of the mother cell), the model should predict
clearly distinct generations (Figure 1B, dashed red lines). If the
division is “weakly” asymmetric, i.e., the protein partition between
the sister cells is different, the width of the CFSE distribution of
the successive generations should become broader (Figure 1D,
dashed red lines). Further increase in the degree of the asymmetry
would result in a substantial overlap of the distinct cell generations
(Figure 1F, dashed red lines). Obviously, this type of behavior of T
cells – and other cells such as tumor cells needs to be regarded as a
cause of a poor resolution of the generations in CFSE histograms
(Figures 1D,F, solid black lines) thus creating an obstacle on the
application of standard CFSE analysis tools.

The fitting of mathematical models for asymmetric cell division
as conceptualized in Figure 1G to the time series data provides a
tool for the estimation of the cell physiology parameters such as: (i)
the generation-specific activation and death rates (αi, βi); (ii) the
duration of the division cycle characterized by the time-lag (τi);
(iii) the division asymmetry factors (m1+m2= 1), specifying the
fraction of proteins which is inherited by the first and the sec-
ond daughter cells, respectively; and (iv) the natural decay of the
CFSE fluorescence intensity of the labeled cells (parameterized as

kx). Taken together, asymmetric cell division improves assessment
of T cell performance parameters from CFSE-based proliferation
assays, even under conditions of poorly separated peaks.

CONCLUDING REMARKS
It is considered that the regulation of cell expansion and differ-
entiation can occur by modulating the degree of asymmetry of
cell divisions (17). It has been clearly shown that T lymphocyte
division in response to pathogen exhibits unequal partitioning of
proteins that mediate signaling and cell fate determination (13).
Hence, asymmetric T lymphocyte division provides an additional
mechanism for generating functionally heterogeneous popula-
tions of CD8+ T cells both in primary and memory adaptive
immune responses (48). Since a precise mechanistic link between
the quantitative differences in partitioning of specific proteins
between daughter cells and the developmental path of antigen-
specific T cells remains to be established (49), mathematical mod-
eling is now a key “instrument” for understanding the regulation
of individual cell fates (15, 16, 50).

The addition of asymmetric T cell division to the analysis
of CFSE-based proliferation data fills important gaps as it: (i)
allows one to estimate the proliferation parameters for asymmet-
rically dividing cells directly from CFSE histograms with poorly
resolved generations peaks and (ii) introduces a quantitative para-
meter which characterizes the difference in the partition of the
fluorescent proteins between daughter cells and can be directly
estimated from the same CFSE dilution data. A further question
in CFSE analyses open for examination is the interplay between
experimental variability, biological variability, and model parsi-
mony. We expect that new mathematical tools for the analysis
of a fundamental property of cell division, i.e., the phenotypic
identity or differences of the daughter cells known as asymmetry,
will be developed and introduced into daily experimental work.
Thereby, a better understanding of the diversity and mechanisms
underlying activation and homeostasis of T cell responses will be
achieved.
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Dynamic modeling of lymphocyte behavior has primarily been based on populations based
differential equations or on cellular agents moving in space and interacting each other.
The final steps of this modeling effort are expressed in a code written in a programing
language. On account of the complete lack of standardization of the different steps to
proceed, we have to deplore poor communication and sharing between experimentalists,
theoreticians and programmers. The adoption of diagrammatic visual computer language
should however greatly help the immunologists to better communicate, to more easily
identify the models similarities and facilitate the reuse and extension of existing software
models. Since immunologists often conceptualize the dynamical evolution of immune sys-
tems in terms of “state-transitions” of biological objects, we promote the use of unified
modeling language (UML) state-transition diagram. To demonstrate the feasibility of this
approach, we present a UML refactoring of two published models on thymocyte differentia-
tion. Originally built with different modeling strategies, a mathematical ordinary differential
equation-based model and a cellular automata model, the two models are now in the same
visual formalism and can be compared.

Keywords: state-transition diagram, computer modeling, cell dynamics, agent-based model, complex system

The perspective is to encourage immunologists involved into
mathematical modeling or software productions, to adopt a visual
graphical language, here mainly the unified modeling language
(UML) “state-transition” diagram to ease the communication, the
reuse and the extension of their models.

COMPLEXITY OF THE IMMUNE SYSTEM
The immune system is a complex biological adaptive, highly
diversified, robust and resilient system, characterized by com-
plexity at different levels. Lymphocytes are the central actors of
the immune system, in the middle of a multi-scale biological
organization, “from molecule to organism”. Multi-scale modeling
remains a challenge, as for other biological systems (1). Despite
recent systems biology initiatives to understand and model the
immune system (2), we are still far from having the appropri-
ate tools to understand its dynamics and to easily communicate
among various researchers who observe this system at different
levels of granularity and attempt through software modeling to
answer different questions. Several complementary experimen-
tal methods and models have been used to explore lymphocyte
dynamics and turnover (3, 4) and to model it in health, aging and
diseases (5).

DRAWBACKS OF CURRENT DYNAMICS LYMPHOCYTE
MODELING AND EVOLUTION
System dynamics models deal with time, formalized with two dis-
tinct concepts as “discrete time,” by a succession of time points
and intervals, or as “continuous time” (6). Models of lympho-
cyte population dynamics and turnover (3) have primarily been
based on mechanistic reconstruction with continuous time mod-
els. The fluxes of cell populations are then described by differen-
tial equations. These mathematical models describe for example
the thymocyte differentiation and selection (7), until the thymic
export (8–10), the homeostasis of CD4/CD8 T cells (11, 12), the
CD8 immune response (13, 14), or the Bromodeoxyuridine or
deuterium labeling (15) to account for turnover. Up to now, sim-
ulations and validation of some of these models reveal interesting
T cell dynamics properties: how the system grows, self-maintains
as well as the effects of perturbations, i.e. how the system reacts to
antigens, collapses and reorganizes. However, integrating the het-
erogeneity of cell populations, phenotypes, lineages, cell location
and interactions, cell differentiation across generations (16) in the
different biological, and time scales, is problematic in such a math-
ematical form, which make these models particularly difficult to
handle.
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The evolution of homogeneous mathematical model of cell
populations (17) toward “spatialized,” discrete, and heteroge-
neous software models (18) has allowed the reproduction and
observation of more detailed and thus complex behaviors. For
example, this made possible to model lymphocyte dynamics from
thymic selection (19, 20) up to quantitative modeling of immune
responses, as extensively reviewed (21) with development of agent-
based and automata models (22). However,both population-based
mathematical model (a top-down approach) and discrete cell-
based model (a bottom-up approach) and the various platforms
developed have limitations (23). Conversely, the Statecharts lan-
guage (24) and the visual reactive tools (25) such as biocharts (26)
and reactive animation applied to various systems (27) developed
by Harel et al. are a powerful way to simulate complex dynam-
ical biological behavior with more didactic representation than
equations. Such models have revealed emergent properties during
thymic differentiation (28) pancreatic islet organogenesis but also
the immune response in lymph node (29).

LACK OF INTEROPERABILITY, UNDER-USE OF SOFTWARE
MODELS
Although in Immunology there is more than 20-years tradition
of software and mathematical modeling, very few of them have
been the object of further exploitation once published and made
available (30). Models are often under-used because experimen-
talists can be reluctant to entertain mathematical formalization
and because published models are largely disposable: rapidly
forgotten after being published, instead of providing a founda-
tion to build upon. Moreover, the various expressions of these
models with different mathematical descriptions, programing lan-
guages, software libraries and graphical packages, require much
effort in understanding and running the software and prevent
interoperability.

USING VISUAL LANGUAGE TO COMMUNICATE AND
EXECUTE MODELS
Immunologists often conceptualize the dynamical evolution of
their systems in terms of “state-transitions” of biological objects
and do it by means of personalized and informal graphical illus-
trations. Thus, the adoption of a more formal and standard type
of state-transition diagram could improve the current situation to
not only help biologists to better understand each other but also to
facilitate the production and the reading of software code execut-
ing these visual transitions, at level of populations or agents (31).

Thus, in this paper, we promote the development and
usage of a visual, computational approach more comprehensible
than mathematical equations and programing instructions. This
should improve our understanding of lymphocyte dynamics, the
exchange on this understanding and simplify the implementation
of models by non-specialists delivered from the production of exe-
cutable code or mathematical equations, to concentrate to in silico
experiments.

LEVEL OF ABSTRACTION AND MULTI-SCALE MODELING
A model describes a complex system from the “real word” and
thus requires abstraction. This abstraction is performed as the
immunologist decides about an experimental protocol in order to
observe selected objects at different scales and to follow them in

time and space. For example, the capacities of the immune system
to preserve the homeostasis and to provide rapid adaptation to an
antigen and anamnestic responses can be observed at the organism
level, through physiological or pathological clinical observations
that relate to lower scale levels. At molecular level, the somatic
generation of the diversity of an immuno-receptor, as the TCR,
allows for a dynamic network of interactions with antigens. At the
cell level, this leads to clonal selection, activation and division. At
the organ level, the fluidity of the system insures constant tissue
redistribution of cells and molecules, cell migration from thymus
to spleen and lymph nodes.

Thus, models of lymphocyte population dynamics and
turnover consist in reconstructing the components or “entities”
of the system across various scales, from molecules to organisms,
to determine the relations/interactions through space (varying
from micrometer to meters) and “processes” through time (vary-
ing between microseconds to years) as explained below. However,
the formalization and abstraction of the immune objects as enti-
ties undergoing processes, with the help of spatial and dynamic
ontologies, respectively defined as SNAP and SPAN (32), as well
as cell/molecule interactions (33), is rarely done, maintaining
a language-barrier between biologists and theoreticians. In the
following, some examples will be given to help the immunolo-
gists with the transition between current mathematical models to
computer ones and with the terms currently used in modeling.

DEFINE ENTITIES, STATES, LOCATION, INTERACTIONS, GRANULARITY
The immune “entities” could be described according to the lan-
guage used by the modeler. A cell exists in one “state”: it could be
quiescent or in a given phase of the cell cycle or dead. In addition
the phenotype and/or a function of a cell define a given state, as
CD4 helper T cells. Cells are “located” in various tissues and are
in “relation” with other entities. Finally, cells can be considered at
various level of “granularity.” For example, T lymphocyte popula-
tions are“aggregation”of T cells according to criteria of phenotype,
structure or function, although heterogeneity still prevails inside
these populations at lower granularity. Accordingly, cells can be
modeled at population level (with continuous model as ordinary
equation) or at cell level according to space (with discrete model
as automata or multi-agent system).

DEFINE PROCESSES
According to ontologies, cells participate to various processes, such
as division,activation,differentiation, interaction,clonotype selec-
tion, apoptosis or migration. According to the states of the cells,
their evolution can thus be modeled as “state-transition” that can
be applied to various processes in parallel: for example, a thymo-
cyte can differentiate while migrating in cortex and medulla. Note
that processes at other levels like molecular or organ levels can
similarly be described and modeled. Finally, all these process will
determine the global cell dynamics and turnover.

THE UNIFIED MODELING LANGUAGE FOR HIGH-LEVEL
MODELING
“High-level programing languages” are based on abstraction and
use of natural language that is easier to understand as compared
to “low level programing language,” based on codes. Thus,
visual modeling language considers biological-object as concep-
tual abstract-objects that endure processes. The level of abstraction
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allowed by these diagrams makes possible to distinguish more eas-
ily the“entities”as T cells and the“processes”that occur at different
levels such as differentiation, migration and cell cycle. Moreover,
such “state-transition diagrams” allow computing parallel path-
ways at various scales to avoid redundancy that is inherent in the
formal description of multi-level, heterogeneous and concurrent
systems and to model heterogeneity in a very simplified and eco-
nomical form (as compared to mathematical equations) (31).We
have thus used the well-established Unified Modelling Language
(UML – a sofware standard) that still remains approachable to
the lab-immunologist, convenient for the theoretician and that
can be directly adopted for the high-level graphical depiction (31,
34). The adoption of UML state-transition diagrams that tran-
scends any programing language or computer platform, will allow
both experimentalists and theorists to work together at a higher
level than writing software code or mathematical equations. This
final step is progressively more and more automatized out of
the diagrams. Example of basic transformations of mathemati-
cal equations into state-transition diagrams including elementary,
parallel, independent, or coupled state transition have been given
(31), to familiarize biologists with the general approach.

REFACTORING FROM LOW LEVEL (CODE, EQUATIONS) TO
HIGH-LEVEL (DIAGRAM) MODELING LANGUAGES
To convince the immunologist of the feasibility of this approach
as well as the benefit gained by adopting it, we sketch in the rest
of the paper how existing “low level programed” immune models
should gain in readability and accessibility by adopting a “high-
level graphical” representation under the form of “state-transition
diagrams.” We present a “refactoring” of two published models of
T cell biology in the thymus. Refactoring consists in restructuring
the code or equations of a model to improve its expression, read-
ability and extensibility, without changing its external behavior.
One model consists in cell population differentiation modeling
with differential equations (continuous model). The other one is
a discrete model. Originally it was an automata model consisting
of a discrete lattice, where each site (cell) in a given state, follows
some rules in space and time that depends on local neighbors
(18). It has been refactorized as an agent-based model (ABM),
depicting individual cell behavior through thymus differentia-
tion and migration. It would be much too long and redundant
to describe in details the behavior of these two models. We do not
pretend here to modify at all the results obtained by the running of
these models (the readers interested in these results are invited to
access the original papers). We have just reshape them into a state-
transition diagrammatic form that allows execution of simulations
reproducing the original results with similar parameter values.

POPULATION-BASED MODEL DESCRIBING THE CONVEYOR-BELT T CELL
DIFFERENTIATION IN THYMUS
The original model (8) is a compartmentalized ordinary differen-
tial equation (ODE) model, rather complex to read and manage by
immunologists. This model reflects the conceptual“conveyor belt”
model of thymic T cell differentiation, schematically represented
by immunologists by the continuous ordered transition of cells
through the different stages with time (35–37). Figure 1 represents
a biological schema, originally published and the“state-transition”
description of the model (in a UML state-transition diagram) as

it is proposed now. Although the original model is composed of
30 differential equations, the whole mathematical description and
the code that captures it, can easily be deduced and regenerated
from the Figure 1. Conversely, the mathematical equations can
be automatically generated from the state-transition diagram as
previously described (38). In essence, the model is summarized
by the input, transition and output from the thymus, by “parallel
processes” that occur concomitantly, as differentiation, cell cycle,
proliferation and death, and by exit from the thymus. Note that
these parallel processes concern various biological levels and time
scales. The “differentiation” process represents each stage of the
conveyor belt, from double negative (DN) to single positive (SP)
cells, with flows into and from a particular stage according to the
general equation:

dxi
/

dt = 2γ pxi−1 −
(
p + d + u (i)

)
xi

p, d, and u represent proliferation, death, and differentiation,
respectively, and xi represents the ith stage. The model mainly con-
sists of constant hematopoietic progenitor influx in thymus (Sn);
differentiation between thymocyte developmental phenotypes DN
and double-positive (DP) cells differentiation into CD4+ or CD8+

cells, then egression of SP stage, either, to the periphery [Us4(i),
Us8(i)]; proliferation [Pn(y), Pp(y), and Ps(y)]; positive and neg-
ative selection (a4, a8); and natural cell death (Dn, Dp, and Ds).
In parallel, the “cell cycle” is represented: the cell switches between
quiescence (G0) and cycle with division (S/M). The parameter γ

set to 1 represents the cell division into two daughter cells. There
is the possibility to induce a perturbation into the system through
the specific depletion of T cells entering the S/M cycle phase (p), if
γ is set to 0. This represents the presence or absence of a pharmaco-
genetic conditional treatment by ganciclovir that induces apopto-
sis related to the incorporation of a nucleotide analog during DNA
elongation. This rule applies to all cell populations except in late
DP quiescent cells as indicated in the schema. The “proliferation”
depicts that the daughters of a proliferating cell transit into the
next generational compartment, except during treatment (γ= 0)
when dividing cells die by apoptosis and are lost from the model.
The parameter u is an increasing function of generation (G1 to
n), making cells more likely to differentiate between phenotypic
compartments as they progress through the cell generations.

The parallelism in this graphical model largely simplifies the
original formulation of ODEs while remaining faithful to it. Hier-
archy and compound states are present again clearly reducing the
diagram clutter. Other representation of the model depicting the
differentiation with linear cell generations is also possible (31).

DISCRETE MODEL DESCRIBING THE DIFFERENTIATION ALONG THE
MIGRATION OF T CELLS IN THE THYMUS IN A 2-D ENVIRONMENT
The original model (20) is a discrete-based “cellular automata”
computer model. The model depicts the behavior of individual
thymocytes that evolve in the 2-D epithelial cell network, guided
by chemokines gradients. The current model (Figure 2) is now an
Agent-Based Model (ABM). Again, the interested reader is referred
to the original paper for a detailed understanding of the simula-
tion. Although available for download, the 40 pages of FORTRAN
source code are far from easy to understand. After refactoring, the
transition rules of any agent (thymocytes) map onto a parallel
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FIGURE 1 | Refactoring the continuous population (ODE) conveyor-belt
model of thymocyte differentiation (8) into a computer executable visual
language:The «biological schema »of thymocyte dynamics originally
proposed is transformed into a UML state-transition diagram. This
diagram represents the evolution of cell populations in the thymus,
represented by their state from DN to SP, with UML figuration of the input

(close circle arrow) and output representing death and thymus exit (open
circle arrow) and transitions (oriented arrows). Parallel processes (underlined
with red box) as differentiation, cell cycle and proliferation are depicted more
explicitly in this representation than with the original 30 mathematical
equations. Annotation with the proliferation and death rates values indicated
in each state are values from the best scenario observed in the original paper.

state-transition diagram. The conception of the state-transition
diagram, as done here, should considerably improve the under-
standing of the model (even for the original programmer) allowing
the researchers to progress further with the existing simulator. A
complete description of the model includes additional implemen-
tation details that are abstractions of the mechanisms behind cell
decisions to differentiate. The parallel state-transition diagram
represents the different simultaneous transitions taking place in
the model and coded as various cellular automata rules: a cell in
the model as it differentiates transits in successive states, it may be
bound or not to thymic epithelial cells via TCR/MHC, it moves and
may be located into one of several anatomical compartments of
the thymus. As indicated in the boxes, the gradient of chemokines
(k) orients the migration of cells for each specific stage of dif-
ferentiation, and chemokines are localized in specific areas of the
thymus. A T cell sums up the time and number of interactions
with the same or different epithelial cells. This sum value deter-
mines whether the T cell is positively or negatively selected. DP and
SP phenotypes have their own threshold parameters. They cannot
differentiate until they cross a threshold number of interactions.
If, after a given time, a DP cell has not reached this threshold,
it enters apoptosis by neglect. If the time is too long, it is neg-
atively selected. A threshold parameter simulates the phenotype
decision. With this “signal-duration” hypothesis, long duration
TCR-MHC interactions promote the CD4 phenotype and short
duration promotes the CD8 phenotype.

It is important to notice that both refactored models,
population-based and ABM can now be compared, are directly
executable and can provide simulations of physiology, pathologies,
and treatment, while not being the scope of this paper. Moreover,
their parameters can be automatically tuned to fit experimental
data. Any ABM model can also be run as a population version
to save time in simulation (McEwan et al., manuscript in prepara-
tion). Moreover, the flexibility of these diagrams allows assembling
the parts of the biological puzzle piece after piece and improving
the models.

PERSPECTIVES
As shown here, state-transition diagrams can represent high-
level semantics suitable to clarify immunological concepts and
to aid communication among interdisciplinary researchers. It
can also represent low levels quantitative information suitable
for individual-based ABM and population-based ODE model-
ing. Organization of immune knowledge using a standardized,
diagrammatic formal language should greatly improve knowl-
edge integration at multi-scale levels and sharing between experi-
mentalist and theoretician collaborators, rendering their software
more readable, scalable, and usable. We are currently working
on ways of automatically generating executable code out of these
state-transition diagrams. State-transition diagrams supports the
extension and interoperability of published models. This will help
for dynamic computational modeling of lymphocyte behavior
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FIGURE 2 | Refactoring the automata single-cell model of thymocyte
differentiation and migration (20) into a computer executable visual
language. The 40 pages of Fortran code is transformed in computer UML
state-transition diagram. This diagrams describes the experimentally
observable heterogeneity, and the biologically relevant parallel processes
(underlined in red box). As in Figure 1, input, output, and oriented
transitions are described in the state-transition diagram. Parallel
state-transitions represent the evolution of single cells in the thymus,

represented by their differentiation from DN to SP stage, sequential
binding event of TCR/MHC peptide on epithelial cells, thymic location,
egression of cell when matured. Additional qualitative abstractions for
computational model of individual cells in semi-realistic environment are
represented by the 2-D array: cells are allowed migrating sequentially
through the epithelial cell network (black network) across the various
thymic areas, guided by chemokine gradients CXCL12 (red), CCL19/CCL21
(green), S1P (blue).

in health and diseases, and for “in silico” experiments to pre-
dict and explain the puzzling T cells dynamics and the effect of
immunological perturbations.
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The size and composition of the T lymphocyte compartment is subject to strict homeo-
static regulation and is remarkably stable throughout life in spite of variable dynamics in
cell production and death during T cell development and immune responses. Homeosta-
sis is achieved by careful orchestration of lymphocyte survival and cell division. New T
cells are generated from the thymus and the number of peripheral T cells is regulated by
controlling survival and proliferation. How these processes combine is however very com-
plex. Thymic output increases in the first year of life and then decreases but is crucial for
establishing repertoire diversity. Proliferation of new naive T cells plays a crucial role for
maintaining numbers but at a potential cost toTCR repertoire diversity. A mechanistic two-
compartment model of T cell homeostasis is described here that includes specific terms
for thymic output, cell proliferation, and cell death of both resting and dividing cells. The
model successfully predicts the homeostatic set point for T cells in adults and identifies
variables that determine the total number of T cells. It also accurately predicts T cell num-
bers in children in early life despite rapid changes in thymic output and growth over this
period.

Keywords: naiveT cells, homeostasis, CD4T cells, mathematical modeling, mechanistic modeling, children

INTRODUCTION
The naive T cell compartment in humans is generated early in
development by the thymus and then maintained throughout life
by continued export from the thymus and cell division in the
periphery. In adult humans, the naive T cell compartment is com-
prised of roughly 1011 cells circulating between the blood and the
peripheral lymphoid organs. It is estimated to comprise at least
108 different T cell receptor specificities (1) providing a broad
spectrum of protection in a diverse pathogen environment. The
size and composition (T cell receptor diversity) of the naive T cell
compartment are subject to strict homeostatic regulation and are
remarkably stable throughout adult life despite changing rates of
cell production and death during T cell development and immune
responses (2, 3). Homeostasis is achieved by control of lympho-
cyte survival and cell division. Naive T cell survival and peripheral
cell division depends on access to the cytokine IL7 (4–7) and TCR
signals (8, 9) through contact with self-peptide MHC (spMHC)
on dendritic cells (10). In lymphoreplete mice, naive T cells are
largely non-cycling (11) whereas homeostatic cell division plays an
important role in maintaining naive T cell homeostasis in humans,
where cell division is evident in the naive pool (12, 13).

In children, homeostatic control of the T cell compartment may
be affected by both the growth of the child with the accompany-
ing increased blood volume (14) and changes in thymic output,
which increases to a maximum over the first year of life and then
declines to reach an approximately steady level by the age of about
20 years (15). As a result, the CD4 naive T cell count (cells/µl) in
children declines over the first 10–20 years of life whereas the total
number of naive CD4 cells increases as the child grows (Figure 1).

This raises important questions about whether the homeostatic
mechanisms themselves change during early life or whether the
numbers of naive CD4 T cells observed are determined only by
the changes in thymic output and growth.

To date, our understanding of the processes controlling sur-
vival and proliferation of T cells has been largely qualitative and
detailed quantitative knowledge of how homeostatic responses
result in the observed equilibrium of the T cell pool with a given
size and composition is lacking. Here, a two-compartment math-
ematical model of homeostasis is presented incorporating specific
terms for thymic export into the naive CD4 compartment, rates
of entry into cell division and death (survival) rates for both
the resting and dividing cell compartments. In this sense, the
model can be considered as mechanistic in comparison to empir-
ical or descriptive models where the parameters have no direct
biological meaning. The results illustrate the importance of T
cell dynamics for the maintenance of constant naive CD4 T cell
numbers in adults and the growth of the T cell compartment in
children.

MATERIALS AND METHODS
A MODEL OF NAIVE T CELL HOMEOSTASIS
T cell homeostasis can be described using a two-compartment
model of resting and dividing cells with input from the thymus
into the resting compartment as shown in Figure 2 (16, 17). In
this model we will consider only naive CD4 T cells assuming no
antigenic stimulation and maturation of naive to memory cells.
The same model could in principle also be applied to memory
cells and CD8 T cells.
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Hapuarachchi et al. Modeling naive T cell homeostasis

FIGURE 1 | Changes in naive CD4T cell concentration and total whole body numbers with age. Taken from Bains et al. (14).

FIGURE 2 | Scheme for two-compartment model of homeostasis.

This model can be expressed mathematically using two coupled
ordinary non-linear differential equations:

dX

dt
= θ+ 2rY − λ(X+Y )X − δ(X+Y )X

dY

dt
= λ(X+Y )X − rY − µ(Y )

where X is the number of non-dividing (resting) T cells and Y the
number of cells undergoing cell division (Figure 2). The parame-
ter θ represents T cell export from the thymus, λ the rate at which
resting cells enter cell division, r the rate at which dividing cells
return to the resting state, δ the death rate of resting cells, and µ

the death rate of dividing cells. λ, r, δ, and µ are all first order rate
constants, in units of day−1, whereas θ is a zero-order constant, in
units of cells day−1.

To develop this model, it is important to have biologically
appropriate forms for each of these parameters. Thymic output
is known to vary with age with a maximum at about 1 year, which
then declines rapidly until about 20 years of age and more slowly
thereafter (15, 18). The value of θ for a 20 year old has been esti-
mated to be 3× 108 CD4 T cells day−1 (15). This value was used
for modeling CD4 T cell homeostasis in a young adult. In chil-
dren, the value of θ changes rapidly with age. An expression for
θ from 0 to 20 years was determined as described previously (15).

An appropriate form for the rate of entry into cell cycle λ is (19)

λ = λ0 exp [−N (t )/ε ]

where N (t )=X(t )+Y (t ), i.e., the total number of T cells at
time t.

This expression is based on competition between resting naive T
cells for signals to enter cell division: TCR signaling by self-peptide
MHC and resources such as IL7 (4, 5, 8, 9, 20, 21). The term λ0

represents the intrinsic ability of a T cell to respond under condi-
tions of no competition (very few cells or an unlimited supply of
homeostatic proliferative signals such as IL7), ε is proportional to
the amount of resource (IL7) available and N is the total number
of T cells competing for the resource. The rate of entry into cell
cycle therefore deceases exponentially with decreasing resource or
increasing cell number. The rate at which dividing cells return to
the resting state r is determined by the length of time taken for
one division [known to be about 6 h (19)] and experimental evi-
dence that in homeostatic cell division cells return to the resting
state after one division (19, 22). The death rate µ of activated T
cells takes the form µ=µ′ Y, which represents density-dependent
AICD (activated induced cell death) by Fas–Fas ligand interactions
(23, 24). Finally, the death rate of resting cells δ takes the form

δ = δ0 exp [N (t )/ρ ] .
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Hapuarachchi et al. Modeling naive T cell homeostasis

Table 1 | Parameter values used for the model.

Parameter Description Value

Θ Thymic output for adult 20 years old 3×108 cells day−1 (15)

λ0 Rate of entry into cell cycle with

infinite resource

0.055 cell−1day−1

ε Resource for entry into cell cycle 1

δ0 Death rate of resting cells with

infinite resource

0.02 cell−1day−1

ρ Resource for resting cell survival 100

r Rate of return from dividing to

resting state

4 day−1 (every 6 h)

µ Death rate of dividing cells 15 day−1

Similar to λ, this term is also derived from the reported depen-
dence of cell survival on competition for a survival signal such
as IL7 (resource) where δ0 is the intrinsic ability of a cell to die
under conditions of no competition (very few cells or an unlim-
ited supply of the survival signal) and ρ is proportional to the
amount of available resource providing the survival signal (IL7)
(21). Parameter values used in the model are shown in Table 1.

The model was solved numerically using NDSolve, the propri-
etary numerical ODE solver in Mathematica that automatically
selects the most appropriate method and adapts the step size so
that the estimated errors are within the specified tolerance.

RESULTS
HOMEOSTATIC SET POINT IN ADULTS
The homeostatic set point for adults was examined by testing the
behavior of the model starting with cell numbers well below and
above the equilibrium and with an adult thymic output of 3× 108

cells day−1 (15). Initial conditions were 0 dividing cells and either
0.01 or 2 (×1011) resting cells. As shown in Figure 3, a stable
equilibrium of total naïve CD4 T cell numbers (resting plus divid-
ing) was obtained at just over 1011 cells, after 200–300 days (see
also Figure 1). A Jacobian analysis showed that the solutions were
stable over a wide range of parameter values for r (>0.281), µ′

(<106.79), ε (<1.01), and λ0 (>1.05× 10−14) and stability did
not depend on thymic output (θ), δ0, or ρ.

The ratio of dividing to resting cells is shown in Figure 4.
With lymphopenic starting conditions of 0.01 (×1011) resting
cells, the proportion of proliferating cells (blue curve) increased
very rapidly from 0 to 0.013 and then slowly declined over about
200 days to reach an equilibrium at about 0.5%. In contrast, under
starting conditions of excessive T cells, the ratio of dividing to
non-dividing cells increased rapidly at first from 0 to about 0.2%
and then slowly to reach the same equilibrium of about 0.5%. This
equilibrium point is consistent with a low level of cell division in
the naive compartment of adult humans as reported previously
(25, 26).

EFFECTS OF COMPETITION FOR SURVIVAL AND DIVISION SIGNALS
Next, we investigated the effect of the amount of resource avail-
able for cell division (ε) and cell survival (ρ) (Figure 5). Consistent

FIGURE 3 | Dynamics of naive CD4T cell homeostasis in adults
predicted by the model. Starting with 0.01- or 2-fold the approximate
number of naive CD4 T cells in a replete young adult, an equilibrium of
about 1011 cells is reached within 200–300 days. Parameter values are given
inTable 1.

FIGURE 4 | Ratio of dividing to resting cells predicted by the model.
Starting with 0.01×1011 (blue curve) or 2×1011 (red curve) the approximate
ratio of dividing to resting cells changes over time to reach an equilibrium of
about 0.4%. As expected, the proportion of proliferating cells is greater
when the initial cell number is low. Parameter values used in the model are
the same as in Figure 3.

with competition between naive CD4 T cells for a resource such
as spMHC and/or IL7 in order to survive and undergo cell divi-
sion, the number of cells at homeostatic equilibrium decreased as
the resource terms ε for proliferation and ρ for survival decreased.
Interestingly, the rate of entry into cell cycle was significantly more
sensitive than survival to changes in resource concentration, con-
sistent with different thresholds for proliferation and survival as
previously described (27).

T CELL HOMEOSTASIS IN CHILDREN
Having established the behavior of the two-compartment model
for naive CD4 T cell homeostasis in adults, we sought to deter-
mine whether it could also be used to explain the changes in T cell
numbers that occur during childhood. During the first few years
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of life as thymic output changes and children grow, the naive CD4
T cell concentration decreases while the total number increases
(Figure 1). The question is whether the homeostatic mechanism
described by the model is in itself enough to explain these vari-
ations, or whether different and changing mechanisms apply in
children. To examine this question, the model was used to predict
the concentration of naive CD4 T cells in cells/µl of blood by con-
verting total numbers to concentration using the estimated blood
volume of children at different ages (14). In addition, the changes
in thymic output that occur over the first few years of life with
a peak at 1 year and then a decline (15) were incorporated into
the model. The prediction from the model was then simply com-
pared without parameter fitting to data collected from a cohort of
healthy children (born to HIV infected mothers) from the Euro-
pean Collaborative Study on HIV infected pregnant women and
their children (28) (Figure 6). As can be seen, the model pre-
dicted the concentration of T cells over the first 3 years of life

extremely well suggesting that the homeostatic mechanisms in
children and adults are essentially the same with the only differ-
ence being thymic output and growth with a concomitant increase
in blood volume.

DISCUSSION
The two-compartment mathematical model presented here is
based on the known biology of naive T cell homeostasis. It is
derived from an earlier simple model that ignored thymic out-
put and competition for resources (17, 24). Although only naive
CD4 T cells are considered here, the same model would essentially
be applicable to CD8 T cells. Naive single positive CD4 T cells
enter the peripheral pool from the thymus at rates ranging from
4× 108 to 2× 109 day−1 depending on age from 0 to 20 years,
with a peak of 2× 109 day−1 at about 1 year of age (15). In addi-
tion to thymic output, maintenance of the naive T cell pool in
humans also depends on peripheral T cell division (13). Naive T

FIGURE 5 | Effect onT cell dynamics of changes in resource concentration for entry into cell division (ε) and survival (ρ). Other parameters are as in
Table 1. It is noteworthy that the homeostatic equilibrium is more sensitive to changes in the resource parameter (ε) for entry into cell division than the
parameter (ρ) for survival.

FIGURE 6 | Naive CD4T cell concentrations (cells/µl of blood) predicted by the model for children aged 0–3 years (red curve) compared with clinical
data for normal children.
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cell entry into cell division occurs in response to TCR signaling
by self-peptide MHC and signals provided by IL7 (4–9, 29). Com-
petition for these resources determines the rate of entry (19, 29).
Similarly, survival depends on signaling by IL7 albeit at a different
concentration threshold than for proliferation (27). The rate of
exit from the cell cycle was taken from the approximate time taken
to complete cell division [6 h (19)] and the death rate of the cells
in cycle was modeled by the described Fas/Fas ligand mechanism
of activated cells (24).

The mathematical model described here consists of two cou-
pled non-linear differential equations representing resting and
dividing cell compartments with parameters for thymic export,
entry into cell division, return to the resting state and death (at dif-
ferent rates) of resting and dividing cells. Exponential forms were
used for entry into cell division and death of cells in the resting
compartment to represent the known competition for resources
for cell proliferation and survival. Alternative functional forms
for density dependence may be worth exploring in the future. The
model is a mechanistic model based on the known biology of naïve
T cell homeostasis so that the different parameters all have a bio-
logical interpretation as indicated in the methods. An alternative
but non-mechanistic mathematical model of T cell homeostasis
has been described (30), which depends on assumptions about
the inheritability of life spans and it cannot therefore be easily
compared to the model we describe here. Rather, in our model
proliferation and death rates depend on competition for resources
as supported by experimental evidence. Our model does however
assume the naïve T cell population is homogeneous without tak-
ing into account clonal diversity and it would be of interest in the
future to develop stochastic ODEs or agent based models.

When T cell export from the thymus was kept constant to rep-
resent a young adult, simulated T cell numbers converged from
either low or high initial levels to a stable homeostatic equilibrium
consistent with cell numbers in a normal, healthy adult. This is
concurrent with the increase in T cells observed in response to
lymphopenia and the decrease following T cell expansion after
infection (16, 17). Consistent with previous studies, the death
rate of proliferating cells is higher than that of resting cells in
our model (31). The death rate of resting cells found here also
agrees approximately with experimental results (32–34). The aver-
age time between cell divisions was about 50 days compared to
60 days in the model described by Yates (31). Another interesting
aspect of these results was the interdivision time of cells, calculated
to be around 30 days. This is comparable to the results of deu-
terium labeling experiments, which suggest an average of 26 days
(16, 17, 34, 35).

The results obtained by altering parameter values gave a clear
indication of the effect of the different rates of cell death and
proliferation. The corresponding expected rise and fall in the set
point of the T cell pool was reassuring. This set point appeared
to be more sensitive to increments in the death rate of resting
cells than to increases of the same order in the activation rate.
Importantly, the T cell numbers at equilibrium decreased as the
resource term for entry into cell division (ε) or the resource term
for rescue from cell death (ρ) decreased although the equilibrium
was less sensitive to changes in the resource required for survival
(Figure 5). The sensitivity of the homeostatic T cell equilibrium to

a resource, such as IL7, is potentially important for understanding
conditions resulting in reduced CD4 T cell numbers, such as HIV,
and the degree of recovery after treatment with antiretroviral ther-
apy (ART). In a recent study, the degree of CD4 T cell recovery in
children on ART was correlated with the initial (pre-ART) CD4 T
cell count and the length of time between infection (at birth) and
the commencement of treatment (36). One explanation for this
finding is that HIV infection compromises lymph node structure
and hence the ability to provide resources required for homeosta-
tic T cell division (37, 38). The two-compartment model could
then be a valuable tool for exploring T cell homeostasis in HIV
and other conditions such as T cell reconstitution following stem
cell transplantation.

The other question addressed by the model was whether the
incorporated biological mechanisms were in themselves sufficient
to explain the known decrease in naive CD4 T cell concentration
over the first few years of life when T cell export from the thymus
increases to a maximum at 1 year of age and then declines, and the
child is growing in size with an accompanying increase in blood
volume (Figure 1). Total naive CD4 T cell numbers obtained from
the model were converted into T cell concentration in the blood
using blood volume/age data (14). The model’s predictions were
found to agree very well with real data from a cohort of chil-
dren aged 0–3 years (Figure 6): the two-compartment model was
able to reproduce the initial rise and subsequent slow decline in
T cell count observed in healthy individuals over 0–3 years. These
findings suggest that the changes in CD4 T cell counts in young
children can be explained simply by the change in thymic output
and body size as they grow and does not require any additional
developmental changes to homeostatic mechanisms. It is impor-
tant to point out that the thymic export model does not take
memory cells into account. However, the proportion of memory
cells in the CD4+ T cell pool in children is relatively small and
therefore should not have a significant effect on these results (39).

In conclusion, we have presented a mechanistic two-
compartment model of naive T cell homeostasis based on the
known biology, which reproduces results obtained by other meth-
ods with good accuracy. It is likely to be an appropriate model for
investigations of T cell reconstitution and homeostasis in diseases
such as HIV, in patients given bone marrow transplantation and
even for understanding reconstitution after thymic transplants for
athymic patients with DiGeorge syndrome.
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We develop a mathematical model of the peripheral naive T cell population to study the
change in human naiveT cell numbers from birth to adulthood, incorporating thymic output
and the availability of interleukin-7 (IL-7). The model is formulated as three ordinary differ-
ential equations: two describe T cell numbers, in a resting state and progressing through
the cell cycle. The third is introduced to describe changes in IL-7 availability. Thymic output
is a decreasing function of time, representative of the thymic atrophy observed in aging
humans. Each T cell is assumed to possess two interleukin-7 receptor (IL-7R) signaling
thresholds: a survival threshold and a second, higher, proliferation threshold. If the IL-7R
signaling strength is below its survival threshold, a cell may undergo apoptosis. When the
signaling strength is above the survival threshold, but below the proliferation threshold,
the cell survives but does not divide. Signaling strength above the proliferation threshold
enables entry into cell cycle. Assuming that individual cell thresholds are log-normally dis-
tributed, we derive population-average rates for apoptosis and entry into cell cycle. We
have analyzed the adiabatic change in homeostasis as thymic output decreases. With a
parameter set representative of a healthy individual, the model predicts a unique equilib-
rium number of T cells. In a parameter range representative of persistent viral or bacterial
infection, where naive T cell cycle progression is impaired, a decrease in thymic output
may result in the collapse of the naive T cell repertoire.

Keywords: IL-7, T cell, homeostasis, threshold, IL-7R, mathematical model, thymic output

1. INTRODUCTION
The number of naive T cells in the periphery is determined by a
balance between cell loss (death or differentiation) and cell renewal
due to cell division and thymic export (1, 2). In humans, at least,
the decline in thymic export occurs mainly in childhood, from
about a year of age until 20 years of age, when the number of naive
T cells is increasing (3). In adults, the decline in thymic export is
much less pronounced but the number of naive T cells is, more
or less, constant (4). Survival of the naive T cell population in the
periphery depends on both common gamma chain cytokines and
weak “tonic” signals induced by recognition of self-peptides by the
T cell receptor (TCR) (5, 6). IL-7 is required for the homeostatic
expansion of naive CD8+ and CD4+ T cells in lymphopenic hosts,
while naive T cells disappear over a 1-month period upon adoptive
transfer into IL-7 deficient (IL-7−) hosts (7–9).

Signals from recognition of self-peptides bound to major histo-
compatibility complex (sp-MHC), and IL-7, promote cell survival.
Naive T cell survival is impaired when removing access to one of
these signals (10–14). Of interest are the mechanisms by which
these signals are regulated, and that result in a stable number of
naive T cells throughout the lifetimes of mice and humans. In this
paper, we focus on IL-7 as a master regulator of naive T cell sur-
vival (15). IL-7 is produced by stromal cells in tissues, including
fibroblastic reticular cells, marginal reticular cells, and lymphatic
endothelial cells (16). These cells produce very small amounts of
IL-7 messenger RNA, consistent with IL-7 protein levels limiting

T cell expansion. IL-7 is a heparin-sulfate binding protein, and as
such, it will bind extra-cellular matrix surrounding stromal cells.
Thus, the interaction between naive T cells and stroma controls
their homeostasis (17). Recognition of higher affinity, non-self-
peptides by the T cell receptor induces naive T cells to undergo
an alternative, IL-7 independent, survival program dependent on
IL-2 (18).

Naive CD8+ T cell responses depend on the amount of IL-7 cells
are exposed to (19). At low IL-7 concentrations (<10−2 ng ml−1),
cell viability was impaired; at higher concentrations (>1 ng ml−1)
cells were observed to proliferate in response to IL-7. This dif-
ference might arise from changes in the strength of the IL-7R
induced signal the cell receives. For an individual cell, IL-7R
induced signaling must be greater than some threshold to prevent
the accumulation of pro-apoptotic proteins. Similarly, IL-7R sig-
naling must be greater than a second, higher, threshold to induce
cell division. Heterogeneity at the single cell level in IL-7 signaling
thresholds (a property reported to depend on expression of IL-
7R), resulted in differential survival and division (19). Although
these observations are based on two different CD8+ T cell receptor
transgenic mice, it is assumed that the key principles regarding T
cell survival will be found in the repertoire of naive CD4+ and
CD8+ T cells.

We introduce a deterministic mathematical model of the naive
T cell population to study the change in human naive T cell
numbers from birth to adulthood. We will assume cell survival
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depends on the availability of IL-7. We do not include availability
of sp-MHC as a variable within the model, but assume sp-MHC
availability is sufficient to allow cell survival and proliferation,
in conjunction with sufficient IL-7 stimulus. We also make the
approximation that heterogeneity is constant with changes in age.
For a mathematical study of the impact sp-MHC availability has
on clonal diversity, the reader is referred to Stirk et al. (20, 21).
Our model is a mathematical description of the homeostasis of
the naive T cell repertoire, but does not consider stimulation by
foreign antigens.

2. MATERIALS AND METHODS
2.1. A MATHEMATICAL DESCRIPTION OF THE SIZE OF THE

PERIPHERAL NAIVE T CELL POPULATION
Stochastic processes provide a method of treating each cell as a dis-
tinct, countable object, and permit a more realistic model than a
deterministic characterization. Fluctuations in the number of cells
can be considered but, in a non-linear stochastic model, approxi-
mations are often made to facilitate the analysis. In the linear noise
approximation (22), for example, fluctuations are assumed to be

of order �
1
2 for a system of size �. The human peripheral T cell

compartment is estimated to contain of the order of 1011 T cells
(3). Letting the system size be the average number of naive T cells
in humans, we find O(�)= 1011 cells, and correspondingly, fluc-
tuations are expected to be typically 105

− 106 cells in magnitude.
That is, we expect fluctuations of approximately 0.001% in the size
of the human naive T cell pool due to stochasticity in the per cell
division and death rates. Based on these considerations, adopting
a deterministic approach to describe the total human peripheral
naive T cell population is reasonable.

We assume peripheral naive T cells are either in a resting state,
or proceeding through the cell cycle. The deterministic variables
R(t ) and C(t ) are introduced to model the total number of T cells
in the resting and cycling states, respectively. The variable I (t ) is
introduced to model the concentration of IL-7. The deterministic
approach we take does not consider any notion of space. Indeed,
this approach is tantamount to assuming the resource, IL-7, is
shared equally amongst all cells. Competition for the resource is
introduced only so far as each cell acts to reduce the global con-
centration of the resource. Resting cells may receive a signal which
induces them to proceed through one round of division. Upon
completion of the cell cycle, a cycling cell produces two daughter
cells in the resting compartment. Resting cells are assumed to die
if the IL-7 induced survival signal is insufficient; cells may also
die during cell cycle. The input of cells from the thymus into the
resting compartment, in keeping with observations in humans, is a
decreasing function of time (23, 24). Production of IL-7 is related
to the size of the lymphatic system architecture, which we estimate
from the body mass of an individual. In the absence of T cells, IL-7
is assumed to be degraded and/or consumed by other cell types at
a constant rate. Upon signal induction through the IL-7 receptor,
IL-7 is assumed to be consumed by the T cell. A diagrammatic
representation of the model is given in Figure 1.

2.2. IL-7 SIGNALING AND HETEROGENEITY IN IL-7 THRESHOLDS
In the model, IL-7 signaling is assumed to be uniform across
the population. Yet, we introduce heterogeneity in the signaling

FIGURE 1 | Diagrammatic illustration of the deterministic model. T cells
leaving the thymus enter the resting naive peripheral pool. Cells in either a
resting or cycling state may die. The rate of death from the resting state
depends on the availability of the resource (IL-7), whereas the death rate for
cycling cells is constant. Resting cells enter the cell cycle at a rate that
depends on the availability of the resource (IL-7). Cycling cells produce two
daughter cells in the resting state upon completion of the cell cycle.

thresholds for survival and proliferation. Let S(t ) be the aver-
age signaling strength across the naive T cell population. Each
cell experiences the same strength of signaling for a given con-
centration of IL-7, I (t ). We relate the internal signaling to the
concentration of IL-7 by the equation

S (t ) =
600I (t )

0.025+ I (t )
. (1)

The functional form and constants of this relationship are
derived from the study of IL-7 receptor dynamics summarized in
the Appendix. We assume each individual cell possesses a unique
pair of thresholds for survival and proliferation. Furthermore, we
assume, in the continuous limit, that these thresholds are distrib-
uted log-normally across the entire population of cells. The use of
log-normal distributions guarantees, first of all, that all signaling
thresholds are positive real numbers. Secondly, the log-normal dis-
tribution ensures that no cell can survive or divide independently
of IL-7.

Let the random variable 2s represent the survival threshold,
and let2p represent the proliferation threshold. We write

2s ∼ log N
(

log θs ,
1

2α2

)
, 2p ∼ log N

(
log θp ,

1

2α2

)
,

α ∈ R+. (2)

The respective probability density functions are

p2x (θ) =
α
√
πθ

exp
[
−
(
α
(
log θ − log θx

))2
]

, x = s, p. (3)

Estimates for θ s and θp are obtained from the model summa-
rized in the Appendix. Lauffenburger et al. found a significant
change in cell viability for both OT-1 and F-5 T cells at around
10−2.5 ng ml−1 IL-7 (19). Proliferation of OT-1 cells occurred
above 1 ng ml−1 IL-7. We estimate the equilibrium signaling at
these concentrations as 60 and 600 units, respectively, setting
θ s= 60 and θp= 600. Modeling heterogeneity in IL-7 responses
by assuming heterogeneity in the IL-7 signaling thresholds, allows
us to avoid modeling the naive population using either: (i) a PDE

Frontiers in Immunology | T Cell Biology December 2013 | Volume 4 | Article 434 | 198

http://www.frontiersin.org/T_Cell_Biology
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reynolds et al. Modeling naive T cell dynamics

approach, where heterogeneity is continuous across the popula-
tion of cells, or (ii) describing each subset of cells sharing common
thresholds with its unique governing set of ODEs. However, these
approaches present an obvious avenue for further research beyond
the scope of this paper.

2.2.1. Death rate of resting cells
Suppose each T cell in the naive population is a distinct mem-
ber possessing a unique signaling threshold for survival. As in the
previous section, we assume these signaling thresholds are dis-
tributed log-normally (in the continuous limit). We suppose the
death rate of an individual cell is Boolean, in the sense that if
the global signaling strength is greater than the cell’s individual
survival threshold, then the cell can survive indefinitely. Similarly,
if the signaling strength is below the survival threshold, the cell
will undergo apoptosis at a rate µR. The death rate for cell i with

survival threshold θ (i)s , is given by

fs
(

S (t ) , θ (i)s

)
=

{
µR if S (t ) < θ

(i)
s ,

0 if S (t ) ≥ θ (i)s .
(4)

In the continuous limit (assuming signaling thresholds are dis-
tributed log-normally), the average death rate for the population
of naive T cells is given by

µ̄R (S (t )) =

∫
∞

0
fs (S (t ) , θ) p2s (θ) dθ =

∫
∞

S(t )
µRp2s (θ) dθ ,

=
1

2
µR

[
1− erf

(
α
(
log S (t )− log θs

))]
, (5)

where p2s (θ) is the probability density function of the random
variable2s, defined by equation (3) with x = s.

2.2.2. Rate of entry into cell cycle
Analogous to Section 2.2.1, we assume each T cell in the naive
population is a distinct member possessing a unique signaling
threshold for proliferation. We let the individual rate of entry into
cell cycle be given by

fp
(

S (t ) , θ (i)p

)
=

{
0 if S (t ) < θ

(i)
p ,

ρ if S (t ) ≥ θ (i)p .
(6)

Assume, in the continuous limit, the signaling threshold for
entry into the cell cycle is represented by the random variable2p,
defined in equation (2), with probability density function p2p (θ)

(equation (3), x = p). The average rate of entry into cell cycle is
given by

ρ̄ (S (t )) =

∫
∞

0
fp (S (t ) , θ) p2p (θ) dθ =

∫ S(t )

0
ρp2p (θ) dθ ,

=
1

2
ρ
[
1+ erf

(
α
(
log S (t )− log θp

))]
. (7)

2.2.3. Cell cycle progression
Cycling cells take on average λ−1 days to complete the cell cycle.
After a cell divides, both daughter cells are produced in the resting
state and require a second signal before they can progress through
another round of cell division. Cell cycle may be interrupted
resulting in the death of the cell. Such death events occur at a
rate µC.

2.2.4. Thymic export
We assume thymic output to be a decreasing function of time. In
particular, we use the functional form given by Bains et al. (3). Let
us introduce the thymic output function, v(t ), as follows

ν (t ) = 2.32× 108 exp
(
−1.1× 104t

)
+ 1.15× 108 exp

(
−1.6× 107t 2) , (8)

where t corresponds to the age of the individual, measured in
days. A plot of this function is shown in the left panel of Figure 2.
The function was chosen by Bains et al. to describe the rate of
thymic export of CD4+ T cells. We use the same function to
describe the export rate of all naive T cells (CD4+ or CD8+ T cells).
This approximation is justified since we require the absolute cell
count to roughly approximate the cell count observed in humans
(indeed, such an observation is likely subject to large differences).
Of interest later in the paper is the relative variation of cell num-
bers with different choices of parameter values. For our purposes,
the important feature of v(t ) is that it is a decreasing function of
time.

2.2.5. Internalization of IL-7
We use the model summarized in the Appendix to estimate the rate
of IL-7 internalization. The total number of IL-7 molecules inter-
nalized by a single T cell in 1 day, exposed to IL-7 at concentration
I ng ml−1, is described by the function

6.7I (t )

2+ I (t )

(
3+

5

I (t )+ 3× 10−2

)
× 103 cell−1 day−1 . (9)

It is reported IL-7 has a molecular mass of 17 kDa
(≈2.8× 10−11 ng) (25). Based on this, we define the per cell rate
of IL-7 internalization to be

2I (t )

2+ I (t )

(
3+

5

I (t )+ 3× 10−2

)
× 10−7 ng day−1 cell−1 .

In order to convert the rate of change of mass to the rate of
change of concentration, we must choose a volume for the system.
Naive T cells are typically found in the lymph nodes, spleen, and
gut of the human body. We shall make the rough estimation that
the total volume is of the order of 1 l. This implies the rate of IL-7
internalization by all naive T cells in the population is given by

γ (I (t ))R (t ) =
2I (t )

2+ I (t )

(
3+

5

I (t )+ 3× 10−2

)
× 10−10R (t ) ng ml−1 day−1, (10)

where R(t ) is the number of resting naive T cells. The IL-7
internalization rate, γ (I (t )), is shown in the middle panel of
Figure 2.
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Reynolds et al. Modeling naive T cell dynamics

FIGURE 2 | Left panel: rate of thymic export. Plot of equation (8). Middle panel: IL-7 internalization rate. Plot of the function γ (I(t )). Right panel: plot of the
function m(s) (equation (11)), a model for the average body mass of male individuals.

2.2.6. Production of IL-7
We assume the rate of IL-7 production is proportional (with pro-
portionality constant β̂) to the body mass of an individual. To
estimate average body mass we use the model given by Burmaster
and Crouch (26). The explicit relationship between mass and age
is given by the function m(s) as follows

m(s) = exp
[
4.1+ 1.4× 10−2s − 1.5× 10−4s2

−2.0 exp
[
−s
(
0.15− 1.4× 10−2s + 9.8× 10−4s2)]] ,

(11)

where s is age measured in years. A plot of this function is given
in the right panel of Figure 2. The rate of IL-7 production is given
by the function

β (t ) = β̂m (365t ) , (12)

where t denotes age as measured in days.

2.2.7. Intra-cellular degradation of IL-7
We assume IL-7 is degraded and internalized by other cell types at
a constant rate. We let the degradation rate of IL-7 be denoted by
the parameter δ.

2.2.8. Deterministic mathematical model
From the above assumptions, the system of differential equations
governing the behavior of the naive T cells (resting and cycling)
and the concentration of IL-7 is given by

dI (t )

dt
= β (t )− γ (I (t ))R (t )− δI (t ) , (13)

dR (t )

dt
= ν (t )− [ρ̄ (S (t ))+ µ̄R (S (t ))] R (t )+ 2λC (t ) ,

(14)

dC (t )

dt
= ρ̄ (S (t ))R (t )− (µC + λ)C (t ) . (15)

This system is subject to the initial conditions I 0, R0, and C0.

3. RESULTS
3.1. PARAMETER ESTIMATES
The function describing the rate of internalization of IL-7, equa-
tion (10), and the signaling relation, equation (1), were both esti-
mated from our studies of IL-7 receptor dynamics in naive T cells
(summarized in the Appendix). In the same study we have esti-
mated the average signaling thresholds to be, respectively, θ s= 60
and θp= 600. Our estimate for θp was found to be close (θp≈ 585,
which we have rounded to 600) to the limit of the signaling func-
tion equation (1), as I (t )→+∞. These estimates imply that, on
average, approximately half of the naive T cell population does
not proliferate in response to excess IL-7 when receptor dynamics
is in equilibrium. Such a finding is consistent with the observa-
tions made by Lauffenburger et al. in the experiments described
in Ref. (19). In these experiments, F-5 T cells did not proliferate
(whereas OT-1 cells did proliferate), even in excess amounts of IL-
7. Estimates for the IL-7 average signaling thresholds, θ s and θp,
have been based on OT-1 cells. However, we note that changes to
these thresholds only result in quantitative differences, provided
θ s<θp.

We assume cycling naive T cells take 12 h to complete the
cell cycle and produce two daughter cells (λ−1

= 0.5 day). Rest-
ing naive T cells are assumed to die after 2 days of IL-7 starva-
tion

(
µ−1

R = 2 day
)
. We, furthermore, set the rate of entry into

cell cycle to be ρ= 5 day−1. Cycling cells are assumed to die
at rate µC= 1 day−1 in healthy individuals, whereas we choose
µC= 3 day−1 (>λ) to be representative of cell cycle impairment.
These parameters have been estimated from the literature. We note
that the model behavior we discuss in the following sections was
found to be robust to changes in these parameters. Robustness
was concluded since a 10-fold change in each or any combination
thereof, of these four parameters did not change the qualitative
behavior of the model, provided the relation λ>µC (or λ<µC)
was maintained. We examine the changes in model behavior aris-
ing from altering the relative values of λ and µC in the following
sections.

We choose δ such that δI (t ) is similar in magnitude to
γ (I (t ))R(t ), when R(t )≈ 1011, and I (t )≈ 10−2 ng ml−1. The
proportionality constant β̂ is chosen such that we observe
O(1011) naive T cells in equilibrium at 20 years of age (for
I (t )≈ 10−2 ng ml−1). We had the least inclination when choosing
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Reynolds et al. Modeling naive T cell dynamics

Table 1 | Parameter choices for the mathematical model.

Parameter Value Units

θs 60 Signaling units

θp 600 Signaling units

α 2 (Log signaling units)−1

β̂ 0.2 10−12 ml−1 day−1

δ 500 day−1

λ 2 day−1

ρ 5 day−1

µR 0.5 day−1

µC 1 day−1

the parameter α. This parameter describes the spread in the indi-
vidual signaling thresholds across the naive T cell population. We
choose α= 2, however this choice has no justification from the
literature. The parameter set is summarized in Table 1.

3.2. THERE EXISTS A UNIQUE AND STEADY STATE WHEN λ>µC

Let us suppose changes in thymic output and IL-7 production
occur in time scales slower than those of the changes in the num-
ber of naive T cells. Under this assumption, we look for adiabatic
solutions of the system as follows:

0 = β (t )− γ
(

Î (t )
)

R̂ (t )− δÎ (t ) , (16)

0 = ν (t )−
(
ρ̄
(

Ŝ (t )
)
+ µ̄R

(
Ŝ (t )

))
R̂ (t )+ 2λĈ (t ) , (17)

0 = ρ̄
(

Ŝ (t )
)

R̂ (t )− (µC + λ) Ĉ (t ) . (18)

For the parameter set studied, the relative error between this
solution and the exact solution is within 3% for the resting naive
T cell population and the concentration of IL-7, and within 14%
for the cycling T cell population (see Figure 3).

All numerical results presented in the paper have been obtained
with a Python code1: differential equations (13), (14), and (15)
have been solved using a fourth-order Runge-Kutta scheme.
Quasi-stationary solutions were found using the scipy.optimize
package. Bifurcation plots were computed using a bisection
scheme to search for multiple solutions of equation (21) in the
interval [0,1]. Corresponding T cell numbers were calculated using
equations (19) and (20).

Notice that the adiabatic solution for both cell types is uniquely
defined for a given value of cytokine concentration, Î (t ), namely

R̂ (t ) =
β (t )− δÎ (t )

γ
(

Î (t )
) , (19)

Ĉ (t ) =
ρ̄
(

Ŝ (t )
)

µC + λ

β (t )− δÎ (t )

γ
(

Î (t )
) . (20)

1Python code available upon request.

The problem of finding adiabatic solutions can then be reduced
to finding solutions, Î (t ), to the one-dimensional equation

ν (t ) γ
(

Î (t )
)

β (t )− δÎ (t )
= µ̄R

(
Ŝ (t )

)
+

(
1−

2λ

λ+ µC

)
ρ̄
(

Ŝ (t )
)

. (21)

By construction,γ (Î (t )) is a monotonically increasing function
of Î (t ). Furthermore, the existence of positive adiabatic solutions
requires β(t ) > δÎ (t ). Therefore, for a fixed time t, the left-hand
side of equation (21) is an increasing function of Î (t ). For λ>µC,
the right-hand side of equation (21) is a monotonically decreasing
function of Î (t ). Lastly, γ (Î (t )) = 0 for Î (t ) = 0, and the limit as
Î (t )→ 0 of the right-hand side is equal to µR. It follows that the
intersection of the left and right sides must be unique and positive.
We deduce that for λ>µC there exists a unique adiabatic solution
to the system (see left plot of Figure 4). This solution is stable
for the parameter set given in Table 1. We have also numerically
explored parameter space, but have not found a parameter set for
which this solution is unstable. In Figure 5 we present numeri-
cal solutions to equations (13–15), computed with a fourth-order
Runge-Kutta method implemented in Python. Initial conditions
were chosen to be the adiabatic solutions of equations (16–18)
at t = 0.

3.3. THERE EXIST TWO STEADY STATES WHEN λ<µC

Let us now consider the case λ<µC. The right-hand side of equa-
tion (21) is no longer a decreasing function of Î (t ). We find
there may exist up to three solutions Î (t ), two of which may
be stable simultaneously, whilst the third is unstable (see right
plot of Figure 4). Further examination (by numerically finding
all solutions using the bisection method) of the model reveals a
saddle-node bifurcation as thymic output changes with age (see
left panel, Figure 6). We assume that individuals with (around)
1011 naive T cells are healthy, in the sense that they have a suf-
ficient number of T cells to provide protection against immune
challenges. When a cell in cycle is more likely to die than to
produce two daughter cells, we define cell cycle progression to
be impaired. Mathematically, this corresponds to λ<µC. When
cell cycle progression is impaired, the model predicts an indi-
vidual may possess a healthy number of T cells, thereby being
immuno-competent, up until the age at which the model bifur-
cates. For the parameter set we have investigated, this bifurca-
tion is inevitable given the estimated decline in thymic output
established by Bains et al. (3). Indeed, for a given parameter
set, from the known rate at which thymic output declines, one
can estimate the age at which the model bifurcates. The bifur-
cation results in a decrease in the naive T cell population size
of approximately two orders of magnitude, that is, following the
bifurcation we expect roughly 99 out of every 100 naive T cells to
be lost.

4. DISCUSSION
In a healthy individual, it is reasonable to expect that naive T cells
entering the cell cycle are more likely to complete division and pro-
duce two daughter cells, than to die during the division process.
Therefore, we suppose the parameter relation λ<µC represents a
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FIGURE 3 | Relative error between the adiabatic solution and the exact solution, where initial conditions were chosen to be equal to the adiabatic
solution at time t = 0.

FIGURE 4 | Left panel: for λ>µC (t = 25 years), the right-hand side
of equation (21) is a decreasing function of I (t ) (red line). There
exists a unique, asymptotically stable solution Î(t) found at the
intersection of the solid black and red lines. Right panel: there exist

three intersections between the red and solid black lines when λ<µC

for t =25 years. We require β(t) > γ (Î(t)) for existence of stable
solutions, therefore we neglect all intersections with the dashed
black line.

FIGURE 5 | Numerical solutions to equations (13–15) for λ>µC. Initial
conditions are chosen to be the adiabatic solutions of equations (16–18) at
t =0. We observe a large increase in the naive T cell population from birth to

adulthood. During this period we see a 107-fold increase in the number of
cycling cells, resulting from increased IL-7 availability and reduced thymic
output. IL-7 availability increases continually as the individual ages.

healthy individual. We have shown, under this hypothesis, that the
model allows a single asymptotically stable adiabatic solution. The
total number of naive T cells per kilogram of body mass was found

to increase over the first 18 years of life and decrease thereafter. The
decline in this ratio for adults is seemingly a consequence of the
reduction in thymic output.
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FIGURE 6 | Left panel: bifurcation diagram for varying the parameter v (t ) for λ<µC. Right panel: bifurcation plot as a function of varying the rate of IL-7
production. Thymic export is fixed at v (60 years).

The number of cycling naive T cells in adiabatic conditions was
found to increase from practically 0 (approximately 0.75 cells)
cells at birth to 107 cells by adulthood. Whilst the number of
cycling cells increased thereafter, the increase was at a markedly
slower rate. The increase in the number of cycling cells is probably
due to the decline in thymic output, wherein competition for IL-7
decreases. Despite the increase in the cycling population, the num-
ber of cells in cycle is several orders of magnitude smaller than the
resting population. For adults, this proportion is approximately
[0.01, 0.04]% of the total naive population.

When cell cycle is impaired (λ<µC), the model exhibits a
saddle-node bifurcation as thymic output declines. For the para-
meter set investigated, the two adiabatic solutions are generally
separated by two orders of magnitude. This feature motivates the
following theoretical scenario: suppose a healthy individual expe-
riences some event which causes naive cell cycle progression to
become impaired at 18 years of age. The model predicts the naive T
cell repertoire will experience a dramatic reduction in cell numbers
at roughly 33 years of age. See Figure 7 for the full solution of the
model illustrating this scenario. From an immunological perspec-
tive, this scenario is interesting because the noticeable effect of the
event (the dramatic loss of naive T cells) occurs roughly 15 years
later than the event itself (naive cell cycle progression to become
impaired at 18 years of age). Indeed, it is the reduction in thymic
output that triggers the loss rather than the event itself. If the
thymus was not atrophic, the loss in naive T cells would not occur.

Suppose now we fix thymic output at a constant rate and let
the cell cycle be impaired. The model undergoes a saddle-node
bifurcation as the rate of IL-7 production changes. More specif-
ically, the model bifurcates, resulting in a decrease in the total
number of T cells, as a consequence of increasing IL-7 produc-
tion. Intuitively, this can be understood as follows: for increased
IL-7 production, the rate of entry into cell cycle is enhanced,
however, since cells are more likely to die in cell cycle than to
produce two daughter cells, the enhanced rate of entry into cell
cycle actually serves to decrease the total amount of naive T cells.
The bifurcation diagram for this scenario is shown in the right
panel of Figure 6. We found the critical value of this bifurcation
decreases with thymic output. In the limiting case, corresponding
to thymic output at 60 years of age, we found this critical value
to be approximately 9.1 ng ml−1. Consider again the theoretical

scenario in which a healthy individual undergoes an event result-
ing in cell cycle impairment at 18 years of age. Suppose now at
age 25 the same individual undergoes some treatment to limit IL-
7 production to 8 ng ml−1, corresponding to thymic production
at approximately 11 years of age. The T cell count is reduced by
approximately 60%. This reduction is a significant improvement
on the 99% T cell loss in the untreated individual at 33 years of
age. For this theoretical scenario, the model predicts limiting IL-
7 availability will partially avoid the dramatic T cell loss arising
from reducing thymic export when the cell cycle is impaired. See
Figure 8 for the full model solution in the treated individual.

In the model presented here we have neglected the fact naive
T cells become activated in response to recognition of ligand spe-
cific to their unique TCR. Research by Koenen et al. has shown T
cell survival is IL-7 independent following T cell activation (18).
Suppose now we include a term in the governing ODEs to rep-
resent differentiation of naive T cells into cells with a different
phenotype, such as activated T cells. Assuming no reversion back
to the naive phenotype, such a term would appear in the model
as a loss term equivalent to the death rate µ̂R(S(t )). The simplest
approach to including differentiation (due to activation) would
be to assume naive T cells differentiate into activated T cells at a
constant rate proportional to the rate of antigenic challenge. In
this case, we would replace the term µ̂R(S(t )) by µ̂R(S(t ))+ µD ,
where µD is constant. Consider again the red curves in Figure 4.
The differentiation term will cause a translation in the red curve
of length µD up the vertical axis. For λ>µC, there still exists a
unique solution, however there will be a quantitative change in
comparison to the case when µD= 0. When λ<µC, there still
exists the possibility of a saddle-node bifurcation for a general
parameter set. For the parameter set we have investigated, there
exists a maximum value µ∗D , for a given time t, such that we can
find more than one solution. For differentiation rates µD > µ∗D ,
we can only find a unique solution corresponding to the stable
adiabatic one, in which we have reduced T cell numbers.

In this paper we have developed and analyzed a determinis-
tic mathematical model of a population of naive T cells, whose
survival depends on the availability of the cytokine IL-7. We have
shown this model predicts a stable population of cells when cell
cycle progression is healthy. More interestingly, when cell cycle
progression is impaired, our results indicate declining thymic
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Reynolds et al. Modeling naive T cell dynamics

FIGURE 7 |Theoretical scenario in which we set µC = 3 at 18 years of age. At roughly 33 years of age the model bifurcates resulting in a dramatic loss of
naive T cells.

FIGURE 8 | At age 18 the individual experiences some event resulting in
impaired cell cycle progression. At age 25 the individual undergoes
treatment to limit IL-7 production to levels comparable to those at 11 years of

age. Whilst the T cell count is reduced, this attrition is a significant
improvement on the reduction observed when the individual has not received
treatment (see Figure 7).

output may result in a dramatic loss in the number of naive T
cells. Furthermore, we have been able to establish that limiting IL-
7 production partially rescues this decline. However, our study has
been restricted to naive T cells and we have not taken into account
the accumulation of memory T cells as an individual ages. Mem-
ory T cells are generated in response to antigen or homeostatic
cytokines (27), and during repeated homeostasis-driven divisions
of naive T cells (28). Previous studies have shown the percent-
age of memory T cells increases with age, yet the percentage of
naive T cells decreases with age (29). CD4+ memory T cells also
require IL-7 for survival and proliferation in the periphery (30). In
the case of CD8+ memory T cells, IL-15 is largely responsible for
their peripheral survival, but IL-7 may also be required. It is, then,
reasonable to assume that memory T cells compete for the IL-7
required for naive T cell survival. At least, that is, for those memory
T cells which access IL-7 in the same tissues as naive T cells, such
as the lymph nodes. As mentioned before, memory T cells can be
derived from repeated divisions of naive T cells (31). In our model,
the naive T cells that will acquire a memory-like phenotype first
are those with low IL-7 survival and proliferation thresholds. We
would expect, then, that over time the ratio of naive to memory

T cells would decrease. Furthermore, the naive population would
lose those cells with lowest survival and division thresholds. Given
the distribution of signaling thresholds in our model, we would
expect to see a shift to the right for the distribution of both survival
and signaling thresholds. This shift, which implies that on average
naive T cells require a higher concentration of IL-7 to enter cell
cycle with age, together with the additional competition from an
increasing memory population, is expected to cause a decrease in
the total number of naive T cells and the percentage of naive T
cells in cell cycle. These considerations might help explain the dis-
crepancy between our model and data showing a reduction in the
percentage of naive T cells expressing Ki67+ during childhood2.
There is support for the fact that childhood might be the phase in
which most memory T cells are acquired (3). Indeed, it might be
that the model presented here, better describes the total number
of T cells that require IL-7, naive and memory, rather than just
the naive T cell pool alone. This, however, would require a more
detailed analysis, out of the scope of this paper.

2Our current model suggests the percentage of naive T cells in cell cycle is increasing.
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Many different receptor-mediated signals are integrated by T
cells in their micro-environment, such as cytokines, adhesion
molecules, T cell receptors, and co-receptors (CD28, CTLA-4).
However, the survival of naive T cells, the focus of this paper, has
been shown to depend on IL-7 and low level TCR stimulation
(8, 9, 15, 32). Other cytokines, such as IL-15, play a significant
role in the homeostasis of memory CD8+ T cells (33). Given the
experimental support for the hypothesis that IL-7 is critical for the
homeostatic proliferation and the survival of naive T cells, in this
first model we have neglected other signals (7).

Previous mathematical models of naive T cell homeostasis have
focused on the relative contribution of thymic export and cell divi-
sion in the periphery (3, 34, 35). These models conclude that in
humans, thymic export makes an important contribution to the
size of the naive T cell population in early life (<20 years of age),
whereas later in life the number of naive T cells is maintained
by homeostatic proliferation in the periphery. Some recent stud-
ies have measured the relative contribution of thymic export by
examining the average number of TRECs in naive T cells (3, 35,
36). The use of mathematical models has allowed these groups to
infer the relative (young versus old) kinetics for naive T cells, based
on experimental estimates of the total number of naive T cells and
recent thymic emigrants (3, 34, 35). In the model introduced here,
we have aimed to provide a mechanistic perspective by investi-
gating at the molecular and cellular levels, the role IL-7 plays in
regulating the homeostasis of naive T cells (37). The increase in the
proportion of cycling cells in our model is in agreement with pre-
vious experimental studies (38). Our study suggests the increase
in peripheral division rates can be explained by the availability of
IL-7, which is a consequence of a combined effect: (i) an increased
net IL-7 production as an individual ages, and (ii) a reduction of
recently exported thymocytes competing for this resource.
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APPENDIX
A.1. A MODEL OF IL-7R DYNAMICS
In this section we present a summary of a stochastic model in
which we consider the number of IL-7 receptors on the surface of
naive T cells. This study is used to derive equations (1) and (9) in
the main text. The model has been formulated as a continuous time
Markov process. We consider the number of receptors on a single
naive T cell. For our purposes, we present the mean field approx-
imation to the model with which we estimate the parameters. We
introduce the following four variables:

• m1(t ) – the total number of IL-7 receptors on the surface of a
naive T cell,

• m2(t ) – the number of unbound internalized receptors,
• m3(t ) – the number of bound internalized receptors,
• m4(t ) – the quantity of IL-7 induced signal.

We assume, in equilibrium, the fraction of surface receptors
bound to IL-7 is given by fI. The system of ODEs denoting the
mean field approximation to the stochastic model is given by:

dm1 (t )

dt
= φ e−m4(t )/κ + ξU m2 (t )+ ξB m3 (t )

−
[
σU

(
1− fI

)
+ σB fI

]
m1 (t ) , (A1)

dm2 (t )

dt
= σU

(
1− fI

)
m1 (t )− (ξU + ζU )m2 (t ) , (A2)

dm3 (t )

dt
= σB fI m1 (t )− (ξB + ζB)m3 (t ) , (A3)

dm4 (t )

dt
= ϕ m3 (t )− χ m4 (t ) . (A4)

A.2. REDUCED MODEL IN THE CASE WHEN I = 0
Consider a T cell in an IL-7 free medium with initial conditions
such that the IL-7 induced signaling vanishes and the number of
IL-7:IL-7R internal complexes is zero. Then the mean field model
can be reduced to the following set of ODEs:

dm1 (t )

dt
= φ + ξU m2 (t )− σU m1 (t ) ,

dm2 (t )

dt
= σU m1 (t )− (ξU + ζU )m2 (t ) .

This reduced system is governed by four parameters φ, ξU, σU,
and ζU, and possesses the following stable steady state:

m∗1 =
φ (ξU + ζU )

σU ζU
,

m∗2 =
φ

ζU
.

We assume in the reduced model 10% of the total number
of receptors are internalized in equilibrium. We set m∗1 = 9m∗2 .
Based on the measurements of Singer et al. (39), we shall assume

4× 104 receptors in total when the reduced model is in steady
state. Therefore, we let

φ (ξU + ζU )

σU ζU
= 3.6× 104, (A5)

φ

ζU
= 4× 103 . (A6)

In Ref. (40), cells were cultured with the translation inhibitor
cycloheximide (CHX) to prevent transcription of the IL-7 recep-
tor. Total expression of the IL-7 receptor was measured over several
time points, from which the authors estimate the half-life of the
receptor in an unstimulated cell to be approximately 24 h.

In the reduced model, all receptors are guaranteed to be
degraded in a finite amount of time. The expected time for a
receptor, that is initially on the cell surface, to be degraded in the
lysosome is given by

τ1 =
ζU + σU + ξU

σU ζU
.

Assuming exponential decay, the half-life for a receptor to
undergo lysosomal degradation, starting on the cell surface, is then
given by

t 1
2
=
ζU + σU + ξU

σU ζU
log 2 .

Thus, we can write

ζU + σU + ξU

σU ζU
log 2 = 24 h . (A7)

Combining equations (A5), (A6), and (A7) we find

ζU ≈ 0.29 h−1 ,

φ ≈ 1.2× 103 receptors h−1 ,

ξU + 0.29 h−1
≈ 9σU .

The value of ξU relative to ζU effectively dictates the ratio of
receptors which are degraded to those recycled back to the cell
surface. We assume the system has evolved to minimize waste of
functional proteins and tentatively let ξU>ζU. That is, we assume
that a greater fraction of receptors are recycled back to the surface
of the cell. We somewhat arbitrarily set

ξU = 1 h−1
⇒ σU ≈ 0.14 h−1 .

A.3. RECEPTOR-LIGAND KINETICS
Suppose the number of surface receptors is constant and denoted
by RT. Let us also assume the extra-cellular concentration of IL-7 is
constant and denoted by I. Define RB(t ) to be the number of IL-7
receptors bound to IL-7. Note that we assume the time to recruit
the common gamma chain, γc , is negligible. Then, we can describe
changes in the number of bound complexes by the following ODE

dRB (t )

dt
= k+ [RT − RB (t )] I − k−RB (t ) ,

www.frontiersin.org December 2013 | Volume 4 | Article 434 | 207

http://www.frontiersin.org
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reynolds et al. Modeling naive T cell dynamics

FIGURE A1 | Diagrammatic representation of the transition probabilities of the stochastic model for the IL-7 and IL-7 receptor system.

where k+ and k− are, respectively, the binding and unbinding
rates of the IL-7:IL-7R receptor-ligand system. We assume the
timescales for this reaction are faster than the timescales for
changes in receptor numbers, such that we can consider these reac-
tions to be in equilibrium. This ODE has a unique stable steady
state:

R∗B =
RT I

k−
k+
+ I
= fI RT .

The Appendix for Ref. (41) provides estimates for k+ and k−,
from which we set k+= 1 nM min−1 and k−= 0.1 min−1. It is
reported IL-7 has a molecular mass of around 17 kDa, from which
we estimate the ratio k−/k+≈ 1.7 ng ml−1.

A.4. EARLY INTERNALIZATION EVENTS
In Ref. (40), surface receptor expression was assessed in human
thymocytes. It is reported, cells in 50 ng ml−1 IL-7 culture down-
regulated IL-7R expression. A 20% reduction was observed after
10 min. Using the above estimate for k−/k+, we find fI|I=50≈ 0.97.
Based on this,we can neglect internalization of the unbound recep-
tor. In the first 10 min,we shall also neglect recycling and inhibition
of receptor transcription. We assume surface receptor expression
loss is modeled by the ODE

dm1 (t )

dt
= φ − σBm1 (t ) .

Given initial surface expression levels equal to m1(0), this ODE
has solution

m1 (t ) =
φ

σB
+

[
m1 (0)−

φ

σB

]
eσB t . (A8)

We assume the previous estimates obtained from the reduced
model for m1(0) and φ. That is, we let m1(0)= 3.6× 104 receptors
and φ= 1.2× 103 receptors h−1. Then using the above expression

for m1(t ) equation (A8), we obtain an estimate for σB. We find
σB≈ 1.4 h−1. The authors of Ref. (40) estimate the half-life of the
IL-7 receptor in cells treated with CHX, cultured in 50 ng ml−1, to
be approximately 3 h. The expected time to lysosomal degradation
for a surface receptor is given by

τ2 =

[
σU

(
1− fI

)
+ (ξU + ζU )

]
(ξB + ζB)+ σB fI (ξU + ζU )

σU
(
1− fI

)
ζU (ξB + ζB)+ σB fI (ξU + ζU ) ζB

≈
1.3 h−1 (ξB + ζB)+ 1.7 h−2

4.6× 103 h−2 (ξB + ζB)+ 1.7 h−2ζB
.

Assuming exponential decay, with a half-life of 3 h, we find
ξB≈ 0.2ζB+ 0.3 h−1. Again, without a direct measurement, let us
set ξB= 1 h−1, to obtain an estimate for ζB≈ 3.5 h−1.

A.5. REMAINING PARAMETERS
Consider the observation of an approximately 98% reduction
in surface receptor expression following overnight culture in
6 ng ml−1 IL-7 made in Ref. (39). We let m∗1

∣∣
I=6 = 0.02 m∗1

∣∣
I=0 =

0.02φ(ξU+ζU )
σU ζU

≈ 763 receptors. We set the derivatives equal to zero

in the system of ODEs equations (A1–A4), and manipulate the
resulting system of equations to obtain

φ exp

(
−

ϕσB fI
χκ (ξB + ζB)

m∗1

)
=

[
σU

(
1− fI

)
+ σB fI −

σU
(
1− fI

)
ξU

ξU + ζU
−
σB fI ξB

ξB + ζB

]
m∗1 ,

(A9)

⇒ exp

(
−1.9× 102 receptors

ϕ

χκ

)
≈ 0.54 ,

⇒
ϕ

χκ
≈ 3.2× 10−3 receptors−1.
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Table A1 | Parameter estimates obtained from the mean field model of

IL-7 receptor dynamics.

Parameter Value Units

φ 1.2×103 rec h−1

κ 103 sig

ξU 1 h−1

ξB 1 h−1

σU 0.14 h−1

σB 1.4 h−1

k−/k+ 1.7 ng ml−1

ζU 0.29 h−1

ζB 3.5 h−1

ϕ 0.61 sig rec−1 h−1

χ 0.19 h−1

We let sig be the units of the signaling and rec be the units of surface receptor

numbers.

From the steady solutions of ODEs equations (A3) and (A4),
we find

m∗4 =
φσB fI

(ξB + ζB) χ
m∗1 ≈ 1.9× 102 receptors

ϕ

χ
.

We use this expression to rearrange equation (A9) in terms of
m∗4 . This gives

exp

(
−

m∗4
κ

)
≈ 9.1

m∗4
κ

.

Solving the above expression numerically, we find m∗4/κ ≈ 0.1.
We estimate a value for χ based on the observation that following
culture in 6 ng ml−1 IL-7, mRNA levels took approximately 12 h
to return to 99% of the control levels. The transcription rate is
given by φexp(−m4(t )/κ). We again assume the IL-7 induced sig-
nal decays according to the equation m4(t )=m4(0)e−χ t, where

m4(0)= 0.1. Combing these assumptions with the experimental
observations, we have

φ exp

[
−

m4 (0) exp (−12χ)

κ

]
= 0.99φ,

from which we findχ ≈ 0.19 h−1
⇒ϕ≈ 6.1× 10−4 receptors−1 h−1

κ . The parameter κ was chosen to be 1000. This choice was made
from the stochastic model: κ = 1000 is the minimum value (to the
nearest power of 10) such that fluctuations in the signaling quan-
tity are greater than zero for low (10−2 ng ml−1) concentrations of
IL-7. Using this value for κ , we find φ≈ 0.61 h−1. The parameter
estimates are summarized in Table A1.

A.5.1. Changes in the concentration of IL-7
The functional form

S =
aI

b + I
(A10)

is used to approximate the numerical solution of m∗4 as a function
of the concentration of IL-7. Using this function we find a≈ 600
signaling units and b≈ 0.025 ng ml−1. In a similar manner we use
the functional form

R = c +
d

e + I
(A11)

to approximate the numerical solution of m∗1 as a function of the
concentration of IL-7. We find c ≈ 600 receptors, d ≈ 1000 recep-
tors ng ml−1 and e ≈ 0.03 ng ml−1. The number of IL-7 molecules
internalized by each T cell per day is assumed to be the same as the
number of internalized IL-7:IL-7R complexes per day. We let the
complex internalization rate, as a function of I, be given by

24σB fI m∗1 (I ) ≈
6.7I

2+ I

(
3+

5

3× 10−2 + I

)
× 103 molecules cell−1 day−1. (A12)
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The adaptive immune system reacts against pathogenic nonself, whereas it normally
remains tolerant to self.The initiation of an immune response requires a critical antigen(Ag)-
stimulation and a critical number of Ag-specific T cells. Autoreactive T cells are not
completely deleted by thymic selection and partially present in the periphery of healthy
individuals that respond in certain physiological conditions. A number of experimental and
theoretical models are based on the concept that structural differences discriminate self
from nonself. In this article, we establish a mathematical model for immune activation in
which self and nonself are not distinguished. The model considers the dynamic interplay
of conventional T cells, regulatory T cells (Tregs), and IL-2 molecules and shows that the
renewal rate ratio of resting Tregs to naïve T cells as well as the proliferation rate of acti-
vated T cells determine the probability of immune stimulation. The actual initiation of an
immune response, however, relies on the absolute renewal rate of naïveT cells.This result
suggests that thymic selection reduces the probability of autoimmunity by increasing the
Ag-stimulation threshold of self reaction which is established by selection of a low num-
ber of low-avidity autoreactiveT cells balanced with a proper number ofTregs.The stability
analysis of the ordinary differential equation model reveals three different possible immune
reactions depending on critical levels of Ag-stimulation: a subcritical stimulation, a thresh-
old stimulation inducing a proper immune response, and an overcritical stimulation leading
to chronic co-existence of Ag and immune activity.The model exhibits oscillatory solutions
in the case of persistent but moderate Ag-stimulation, while the system returns to the
homeostatic state upon Ag clearance. In this unifying concept, self and nonself appear
as a result of shifted Ag-stimulation thresholds which delineate these three regimes of
immune activation.

Keywords: immune activation, autoimmunity, autoreactive T cells, regulatory T cells, central tolerance, peripheral
tolerance

INTRODUCTION
The immune system is continuously exposed to a wide variety of
disturbances. Such disturbances are recognized by T cells via anti-
gen presentation. Antigen presentation is a process in which anti-
gen presenting cells (APC) capture the antigens, break them into
small peptides, couple them with MHC molecules, and present
them on the cell surface, thus enabling their recognition by T cells
(1–3). The majority of disturbances that the immune system deals
with are pathogenic nonself-antigens. Since the APCs break down
the nonself-antigens into smaller peptides and present them on
their surface, presented peptide of nonself might have overlaps
with self-peptides (4, 5).

In addition, rapidly evolving nonself pathogens, such as Hepati-
tis C virus, might acquire similarities to self-antigens (6). Apart
from nonself, altered self such as cancer cells is also a distur-
bance that has to be recognized by the immune system. Therefore,

an ideal immune system has to find a solution for dealing with
nonself, self-similar nonself, and self-disturbances (Figure 1).

As a general solution, the immune system generates T cell clones
with random specificities that could potentially recognize any pep-
tides, including self-peptides. The classical idea that the T cell
repertoire has to be self-tolerant and T cells should not react to
self-peptides, assumes that self-reactive T cells should be elimi-
nated. This assumption is partially true, as T cell clones which fully
recognize self-peptides in the thymus undergo clonal deletion, in
the so-called negative selection process (7, 8).

The self-tolerance resulting from negative selection is called
central tolerance. A stringent central tolerance induction and dele-
tion of all autoreactive T cells is believed to create holes in the
specificity space of the T cell repertoire (9, 10) by prohibiting
immune responses against self-similar nonself and altered self.
Hence, a too stringent central tolerance does not seem beneficial.
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Khailaie et al. Modeling immune activation

FIGURE 1 | Conceptual figure of different disturbances in the immune
system. Pathogenic nonself-disturbances are recognized and attenuated by
nonself-specific T cells. However, recognition and attenuation of altered self
and self-similar nonself-disturbances is challenging for the immune system
due to the existence of self-tolerance mechanisms; without self-specific
immune cells, the immune system is not able to initiate an immune
response against these disturbances.

In line with this idea, there is evidence that negative selection only
partially deletes autoreactive T cells because availability of self-
peptides required for negative selection in the thymus is limited
and T cells spend only a limited time in the process of thymic
selection (11–13). Autoreactive T cells escaping negative selection
have been shown to be involved in autoimmunity (14). They nor-
mally exist in healthy individuals and are quiescent in steady state
conditions in the presence of their cognate self-antigen (15).

Escaped autoreactive T cells are under the control of peripheral
tolerance. A prominent mechanism of peripheral tolerance among
others [reviewed in Ref. (16)] is induced by CD4+ Foxp3+ regu-
latory T cells (Tregs) (17). The majority of these cells, known as
natural Tregs, are hypothesized to be selected from autoreactive T
cells in thymus (18, 19). The main role of Tregs is the regulation
of the immune response by suppression of the effector functions
of conventional T cells (Tconv).

Despite the necessity of suppression by Tregs for avoiding
autoimmunity (20, 21), production of too large numbers of Tregs
in the thymus might prevent beneficial effector responses. There-
fore, a too stringent peripheral tolerance induction by selection of
large numbers of Tregs in the thymus does not seem favorable.

In view of this background, how does the immune system
balance the tolerance mechanisms in order to ensure immune
responses to any kind of disturbances including self-disturbances,
yet staying tolerant to self in healthy homeostasis? Here, we address
this question by using a mathematical model of immune activa-
tion that relies on identical components for self and nonself, i.e.,
using the same set of ordinary differential equations. The model
considers the thymic production of Tregs and Tconvs as well as
the dynamic interplay between Tregs, Tconvs, and IL-2 molecules
in the presence of antigen(Ag)-stimulation in the periphery. The
model is exploited to reveal the parametric regime of the immune
system in which an immune response against self is restricted, but
not impossible.

The interplay between Tregs and Tconvs during immune
responses is a topic of extensive mathematical modeling (22–28).
León and co-workers (22) proposed a series of models for studying
immune tolerance by considering APCs, Tconvs, and Tregs. Their
models rely on the assumption that regulatory interaction between

Tregs and Tconvs takes place only in simultaneous conjugation
with an APC. As a result of this assumption, efficient suppression
of Tconvs requires a minimum population of Tregs per APC (29).
As an extension, a crossregulation model is proposed by Carneiro
and co-workers (26) in an attempt to incorporate Tregs in a coher-
ent theory of the immune system. According to their model that
shows a bistable behavior, immunity to a given Ag arises as compet-
itive exclusion of Tregs by the expansion of Tconvs and tolerance
results from limited APC availability or above threshold Treg num-
bers. Since the interactions between Tregs and Tconvs is assumed
to depend on the density of the APCs, increasing the APC avail-
ability decreases the simultaneous conjugate formation of Tregs
and Tconvs with the same APCs and hence, it is sufficient to break
the immune tolerance.

An alternative concept was brought forward in a model pro-
posed by Carneiro and co-workers (23) that assumes APC-
independent interactions between Tconvs and Tregs for immune
suppression which will be also used in our model. A direct inter-
action of Tconvs and Tregs was identified by experiments (30).
The authors concluded that efficient immune suppression still
requires a minimum population of Tregs regardless of the number
of APCs.

In contrast to the aforementioned studies, we do not consider
the conjugate formation of Tregs and Tconvs with APCs and there-
fore, there is not a competition between these cells for Ag. Instead,
the role of APCs is indirectly captured by an Ag-stimulation factor
which is the activation rate of naïve T cells and resting Tregs with
identical Ag-specificity by APCs bearing their cognate Ag. In addi-
tion, we explicitly consider the dependency of Tregs on Tconvs
through the growth factor IL-2.

Burroughs and co-workers (24) investigated Treg-induced inhi-
bition of cytokine secretion by effector T cells. By assuming that
Tregs are activated by self Ag and locally maintained by nonlinear
competition for tissue-derived cytokines that are solely utilized
by Tregs, the authors analyzed the role of local active Treg popula-
tion size in the balance between suppressor and effector responses.
Stimulation of Tregs and Tconvs is described by independent para-
meters. In contrast to their model, thymic output maintains the
homeostatic population of Tregs in our model. Another essential
difference is that Ag-stimulation of Tregs and Tconvs is described
with a unified self-nonself concept and Tregs are assumed to also
respond to nonself Ag-stimulation (31).

Parametric steady state analysis of the model provides insights
about the physiological range of model parameters, and deter-
mines the overall conditions under which immune responses
against self are possible. Furthermore, the impact of model para-
meters on the requirements for the initiation of immune reactions
against self is analyzed. The model proposes that disturbed home-
ostatic balance between autoreactive T cells and Tregs increases
the susceptibility to autoimmunity or cancer.

RESULTS
The mathematical model is constructed starting from a simple
model of the immune response including essential components
only. Then, additional complexity is incrementally added to the
model to a degree allowing for validation and analysis of tol-
erance versus immunity. The scheme of the complete model is
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Khailaie et al. Modeling immune activation

FIGURE 2 | Model of dynamic interplay between conventional T cells and
regulatory T cells. Nonself-specific as well as some self-specific thymocytes
that survived negative selection and were not selected as Tregs enter the
periphery as naïve T cells. A part of detected autoreactive thymocytes
differentiate into Tregs in the thymus and reside in the periphery in resting
state. Upon Ag-stimulation by APCs, naïve T cells and resting Tregs become

activated. In contrast to activated T cells, activated Tregs do not secrete IL-2,
but both activated populations proliferate in dependence on the presence of
IL-2 (46). Activated Tregs suppress activated T cells in a cell-contact-
dependent and cytokine-driven manner. Activated T cells undergo Fas-
induced apoptosis by interacting with each other (fratricide). In contrast, Tregs
are resistant to Fas-induced apoptosis (68).

depicted in Figure 2. The model is conceptually independent of
the self/nonself nature of the immune response, and differences of
the immune responses against self versus nonself are reflected in
different parameter values of the same model.

AN IMMUNE RESPONSE REQUIRES SUFFICIENT DIVISION AND IL-2
SECRETION RATE OF ACTIVATED T CELLS
Immune responses arise from massive proliferation of activated T
cells and their subsequent effector function. Our simplest model
attempts to capture the dynamic characteristics of an activated T
cell population (T ):

dT

dt
= aIT − bT

dI

dt
= dT − eIT − f I

(1)

Activated T cells have a mean lifespan 1/b and secrete IL-2 (I )
with rate d. Available IL-2 decays with rate f and is consumed by
activated T cells with rate e. Activated T cells are able to proliferate
(with rate aI ) in the presence of IL-2. This IL-2 dependent prolif-
eration rate is considered as a linear function of IL-2 in model (1).
The impact of considering a nonlinear proliferation rate (a Hill-
function of IL-2) instead of the linear term aIT is given in Section
“Nonlinear Proliferation Rate of Conventional and Regulatory T
Cells” in Appendix.

Steady state analysis of the model (1) is given in Section “Steady
State Analysis of Model (1)” in Appendix. This model has two
equilibrium points:

(T1, I1) = (0, 0), (T2, I2) =

(
bf

ad − be
,

b

a

)
(2)

By assuming the biological range of parameters (all parameters
are positive), the trivial equilibrium point (T 1, I 1) is stable and the

nontrivial equilibrium (T 2, I 2) is unstable. T 2 is positive if and
only if:

ad − be > 0 (3)

The unstable equilibrium point imposes a threshold for initial
conditions of the model in which the activated T cells prolifer-
ate unlimitedly, which in this simplest model, corresponds to an
efficient immune response. This can be visualized by the phase
portrait of the model as shown in Figure 3A. The condition (3)
imposes a quality constraint on activated T cell clones to enter a
highly proliferative state and implies that among T cell clones that
are in the activated state, only the T cell clones with a sufficiently
high proliferation rate (a) or IL-2 secretion rate (d) are able to
contribute to the immune response against Ag. Since both, the
proliferation and IL-2 secretion rate of activated T cells depend on
the affinity/avidity of their TCR to the presented Ag (32–34), con-
dition (3) implies that the existence of T cell clones with sufficiently
high specificity for the presented Ag is required for induction of
an immune response. Similar implications were derived from a
model that considers a nonlinear IL-2 dependent proliferation rate
of activated T cells (Nonlinear Proliferation Rate of Conventional
and Regulatory T Cells in Appendix).

The major focus of central tolerance is to eliminate T cells that
are self-specific. Therefore, it is unlikely that highly self-specific
T cells escape from central tolerance, as they are more effectively
detected and eliminated in the thymus (12, 34). It is thus expected
that autoreactive T cells in the periphery are less aggressive than
the ones that undergo clonal deletion in the thymus, and may not
fulfill condition (3).

INITIATION OF AN IMMUNE RESPONSE REQUIRES A MINIMUM
HOMEOSTATIC POPULATION OF NAÏVE T CELLS AND ANTIGEN
STIMULATION
Continuous thymic production of naïve T cells maintains the
peripheral number and diversity of mature naïve T cells (35),
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Khailaie et al. Modeling immune activation

although other mechanisms such as stimulation of T cells with
self-antigens and IL-7 have been shown to be involved (36). Upon
Ag-stimulation by activated APCs, naïve T cells with high avidity to
the presented Ag become activated. Here, we take into account the
dynamics of the naïve T cell population (N ) and T cell activation
by Ag-stimulation (β), as described in equations (4). We assume
that naïve T cells with identical Ag-specificity have a homeosta-
tic population in the periphery that is established by naïve T cell
renewal (by rate N 0) and natural cell death (with rate g ):

dN

dt
= f (N ) = N0 − gN − βN

dT

dt
= aIT − bT + βN

dI

dt
= dT − eIT − f I

(4)

T cell activation k(t ) is defined as

k(t ) = βN (t ) (5)

Steady state analysis of model (4) is given in Section “Steady
State Analysis of Model (4)” in Appendix. This model has either
2 or no equilibrium points dependent on the steady state value of
T cell activation (k). According to the bifurcation diagram of the
model depicted in Figure 3B, which is obtained by treating k as
bifurcation parameter, model (4) has no equilibrium points for:

k > k− =
adf

e2

(
1−

√
1−

be

ad

)2

(6)

which corresponds to the unlimited proliferation state of activated
T cells. Therefore, condition (6) has to be satisfied for initiation of
an immune response. However, according to model (4), the steady
state value of T cell activation (k) is limited by naïve T cell renewal
(N 0) and Ag-stimulation (β):

k =
βN0

g + β
(7)

Therefore, according to equations (6) and (7), there exists an
Ag-stimulation range

β >
g k−

N0 − k−
(8)

in which an immune response is initiated if:

N0 > k− (9)

Condition (9) implies that the renewal rate of naïve T cells
plays a critical role for the initiation of immune responses. In
other words, without a sufficient renewal rate of naïve T cells,
the immune response cannot be initiated by any Ag-stimulation.
Instead, Ag-stimulation results in a subcritical immune response
which is interpreted as insufficient for pathogen clearance. By
increasing the proliferation rate or IL-2 secretion of activated T
cells or the renewal rate of naïve T cells, the threshold of Ag-
stimulation required for initiation of an immune response is
decreased [equations (6) and (8)]. Therefore, central tolerance
is able to tune the initiation criterion of self reaction not only
by limiting the quality of autoreactive T cells, but additionally
by restricting the renewal rate of autoreactive T cells. As central
tolerance does not limit nonself-specific T cells, according to the
model, these cells exhibit a lower threshold of activation by nonself
Ag-stimulation.

FRATRICIDE: A MECHANISM TO LIMIT BUT NOT TO SUPPRESS
IMMUNE RESPONSES
The immune response in model (4) is characterized by unlimited
proliferation of activated T cells which is physiologically unreal-
istic. The linear death term of natural death of activated T cells
in model (4) is not sufficient to limit proliferation, and requires a
nonlinear limiting factor. A potential mechanism of limiting the
immune response is activation-induced cell death (AICD) in acti-
vated T cells, known as fratricide (37). Upon T cell activation,
death ligand (FasL) and receptor (Fas) proteins are expressed on

FIGURE 3 | (A) Qualitative phase portrait of model (1): the stable manifold of
saddle node defines a threshold for the initial conditions that allow for
unlimited proliferation of activated T cells. (B) Bifurcation diagram of

model (4) by treating k as bifurcation parameter. Stable and unstable
equilibrium points are shown by black and red lines, respectively. For k > k−,
the immune response enters the regime of unlimited proliferation.
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Khailaie et al. Modeling immune activation

the surface of T cells. Followed by expression of these proteins,
T cells eliminate themselves in a cell-contact-dependent manner.
The fratricide mechanism is modeled by a nonlinear death term
(cT 2), as proposed by Callard et al. (37):



dN

dt
= f (N ) = N0 − gN − βN

dT

dt
= aIT − bT − cT 2

+ βN

dI

dt
= dT − eIT − f I

(10)

The steady state analysis of model (10) is provided in Section
“Steady State Analysis of Model (10)” in Appendix. This model
has either 3 or 1 equilibrium points, depending on the value of
fratricide death rate c. The bifurcation diagram of the model (10)
with respect to c is depicted in Figure 4A for (β = 0). When c
satisfies

c < c− = f −1
(√

ad −
√

be
)2

(11)

the stable equilibrium point (T 3) exists and corresponds to a sat-
urated population of activated T cell. When the conditions (3)
and (11) are fulfilled, the model (10) exhibits the bifurcation dia-
gram plotted in Figure 4B with respect to the steady state value
of T cell activation (k). The fratricide mechanism added a large
stable equilibrium point (T 3) to the model which imposes a sat-
uration level to the activated T cell population. The larger the c,
the smaller the saturated population of activated T cells is. Simi-
lar to model (4), model (10) shows an initiation threshold of the
immune response (k > ki). Despite solving the issue of unlim-
ited proliferation of activated T cells by the fratricide mechanism,
model (10) bears a hysteresis characteristic so that the immune

response cannot be suppressed when Ag-stimulation (β) is
removed.

DYNAMIC INTERPLAY OF ACTIVATED T CELLS AND TREGS
Tregs are essential in maintaining self-tolerance and immune
homeostasis by preventing autoimmunity and limiting chronic
inflammation in the periphery. However, they might also limit
beneficial responses by inducing tolerance to pathogens (38, 39)
or limiting anti-tumor immunity (40, 41). One functional role of
Tregs is to shut down the cell-mediated immune response via cell-
contact-dependent and inhibitory cytokine-driven suppression of
activated T cells (42). Two different subsets of Tregs were iden-
tified. Natural Tregs are the dominant subset of peripheral Tregs
(43) and are selected in the thymus. In our model, we consider
only natural Tregs and neglect the induced Treg subset that dif-
ferentiates from naïve T cells. Like for naïve T cells, the thymus
contributes to the renewal of resting Tregs

(
N̂
)

by continuously
selecting them from thymocytes. The renewal of resting Tregs is
assumed to occur by rate N̂0. Since we are interested in the relative
renewal of resting Tregs and naïve T cells, we assume that:

N̂0 = λN0 (12)

Tregs remain in the resting state until they are stimulated by
Ag (β) and become activated in a TCR-dependent manner. The
dynamic population of the resting Treg compartment is assumed
to be the same as the naïve T cell compartment in (4) and (10)
(dN̂/dt = f (N̂ )). Activated Tregs (R) are assumed to suppress
activated T cells (by rate γ ). Survival and proliferation of activated
Tregs depends strictly on IL-2, produced by activated non-Tregs
(44–46). The IL-2 dependent proliferation rate of Tregs is con-
sidered as a linear function of IL-2 (see Nonlinear Proliferation
Rate of Conventional and Regulatory T Cells in Appendix for a
nonlinear case). In contrast to activated T cells, activated Tregs

FIGURE 4 | (A) Bifurcation diagram of model (10) with β =0 using the
fratricide death rate c as bifurcation parameter. No immune response
exists for fratricide death rates larger than c− due to extensive
activation-induced cell death. The trivial equilibrium point is omitted in
this figure. (B) Bifurcation diagram of model (10) using k as bifurcation

parameter: an immune response can be initiated for large values of k.
However, due to hysteresis characteristic in this model, the immune
response is not suppressed after decreasing T cell activation (k ). Stable
and unstable equilibrium points are shown by black and red lines,
respectively.
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lack the ability to secrete IL-2 (47). The relative proliferation
rate of activated Tregs and activated T cells is controlled by the
parameter ε:

dT

dt
= aIT − bT − cT 2

− γRT + βN

dR

dt
= εaIR − bR + βN̂

dI

dt
= dT − eI (T + R)− fI

(13)

The parameters are given in Table 1 and the model components
are illustrated in Figure 2. Treg activation k̂(t ) is defined as

k̂(t ) = βN̂ (t ) (14)

According to equations (7) and (12), the steady state value of
Treg activation (̂k) is given by

k̂ = λ
βN0

g + β
= λk (15)

The equilibrium points of model (13) are given in Section
“Steady State Analysis of Model (13)” in Appendix. By incor-
porating the Treg compartment to model (10), two additional
equilibrium points (T 4 and T 5) emerged for β = 0. The equilib-
rium point of interest (T 4), which depends on the Treg-associated
parameters (ε, γ ), has an impact on the topological changes of
the phase portraits of the model under variations of the bifur-
cation parameter k. The value of ε and γ are assumed to be in
a range where the model does not inherit the hysteresis char-
acteristics of immune responses from model (10) in which the
immune response is not suppressed after resolving Ag-stimulation
(β). Then, the bifurcation diagrams of model (13) for two different
values of λ are obtained by treating k as the bifurcation parameter
(Figure 5). Depending on the value of k, the model has either 5 or
3 equilibrium points.

By varying the relative renewal rates of resting Tregs and naïve
T cells [λ in equation (12)] a λth can be found, so that no immune

response can be initiated for any value of k, if λ>λth (Figure 5A).
For λ<λth (Figure 5B), there exists a T cell activation threshold
(ki) such that for k > ki the immune response can be initiated.
However, in contrast to model (10), the immune response is com-
pletely suppressed by activated Tregs if k decreases to a lower value
than ki (gray region in Figure 5B). For persistent Ag-stimulation
with k > ki, two scenarios are possible. An oscillating immune
response is induced when k remains in the range of ki< k < ks

(red region in Figure 5B). For k > ks the immune response is sup-
pressed after its initiation to a minor immune response with an
activated T cell population T 4 due to over-suppression of activated
T cells by over-activation of Tregs (magenta region in Figure 5B).
In the latter case (k > ks), despite proper T cell stimulation, only a
minor immune response is induced (and antigen is not cleared).
Instead a chronic co-existence of antigen and inefficient immune
activity is established. Therefore, according to the model, a range of
T cell and Treg activation (ki< k < ks) exists in which an efficient
immune response is induced. Outside of this range, the antigen
persists because of under-stimulation of naïve T cells, or over-
stimulation of Tregs. According to equation (7), the existence of
Ag-stimulation thresholds β i and βs which correspond to the val-
ues of ki and ks, respectively, depends on the renewal rate of naïve
T cells (N 0); β i exists if N 0> ki and βs exists if N 0> ks. Increas-
ing the renewal rate of naïve T cells reduces the Ag-stimulation
required for initiation(β i)/over-suppression(βs) of the immune
response.

The peak immune response depends on the value of the
Treg-associated equilibrium point (T 4) which in turn depends
on Treg-associated parameters. However, the fratricide-associated
equilibrium point (T 3) is a limiting factor for the maximum
population of activated T cells if the fratricide death rate (c) is
sufficiently high.

According to our model, sufficient activated Tregs are required
to suppress the proliferative response of activated T cells. These
are supplied by two processes: Treg activation (̂k) which depends
on Ag-stimulation (β), and Treg proliferation which depends on
the IL-2 secretion by activated T cells. With a low Ag-stimulation
and insufficient Treg activation (̂k = βN̂ ), Treg proliferation has
to account for immune suppression. Since Treg proliferation is

Table 1 | Parameters used for model analysis.

Parameter Value Description Dimension

a 0.4 Proliferation rate of activated T cells molecules−1time−1

b 0.1 Natural death rate of activated T cells and Tregs mime−1

c 10−5 Fratricide death rate of activated T cells cells−1time−1

d 0.01 IL-2 secretion rate by activated T cells molecules cells−1time−1

e 0.01 IL-2 consumption rate by activated T cells and Tregs cells−1time−1

f 1 IL-2 decay rate time−1

g B Natural death rate of naïve T cells and resting Tregs time−1

β [0,∞) Ag-stimulation of naïve T cells and resting Tregs time−1

γ 0.1 Treg-mediated suppression rate cells−1time−1

ε 0.6 Proliferation rate ratio Treg/Tconv –

N0 4 Renewal rate of naïve T cells cells time−1

λ 0.006, 0.02 Relative renewal rate of resting Tregs and naïve T cells N̂0/N0 –

N̂0 λ N0 Renewal rate of resting Tregs cells time−1
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FIGURE 5 | Bifurcation diagram of model (13) using k as the
bifurcation parameter with (A) λ = 0.02 and (B) λ = 0.006. Stable and
unstable equilibrium points are drawn by black and red solid lines,
respectively. Dashed black lines represent the stable limit cycles by
showing the maximum and minimum populations of oscillating activated T
cells for persistent k. Depending on the values of λ and k, an immune

response is not initiated (gray), is initiated (red) or over-suppressed
(magenta). With parameter values given inTable 1, the threshold becomes
λth =0.01183. The time-courses of the activated T cell population T (t ) were
deduced from a numerical solution of model (13) with zero initial
conditions and persistent β. The unstable negative equilibrium point (T 5) is
not shown in the plots.

dependent on the availability of IL-2, sufficient activated T cells are
required to secrete IL-2 and induce immune suppression. There-
fore, activated T cells undergo the proliferation up to a level that
sufficient IL-2 is available for Treg proliferation and subsequent
immune suppression. In contrast, by facilitated Treg activation
(̂k), less Treg proliferation is required for suppressing activated
T cells which means that the dependency of immune suppres-
sion on proliferation of activated T cells decreases. Consequently,
by increasing Ag-stimulation (β) in the range of β i<β <βs

(red region in Figure 5B), Treg activation (̂k) increases as well
which results in a reduced maximum population of activated T

cells (Figure 5B, dashed black line) and an increased frequency
of oscillations. By further increasing Ag-stimulation to β >βs

(magenta region in Figure 5B), Treg activation (̂k) completely
prevent oscillating immune response.

In the same way, by increasing the relative homeostatic popu-
lation of resting Tregs and naïve T cells (λ>λth), Treg activation
increases up to a level that Treg suppression does not depend on the
proliferative response of activated T cells. Thus,activated T cells are
not able to enter the massive proliferation for any Ag-stimulation
level, as shown in Figure 5A. Similar results were derived from a
model that considers a nonlinear IL-2 dependent proliferation rate
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of activated T cells and Tregs (see Nonlinear Proliferation Rate of
Conventional and Regulatory T Cells in Appendix).

DISCUSSION
In this study, a model of the dynamic interplay between effec-
tor and regulatory immune responses was examined to investigate
the requirements for the initiation of an immune response by
Ag-stimulation. The model unifies several components developed
in previous studies, such as IL-2 dependent proliferation of T
cells (48), fratricide-induce programed cell death (37), IL-2 com-
petition between activated T cell and activated Tregs (24), and
Treg-mediated immune suppression (23, 24, 28). Homeostatic
division of T cell compartments was not considered in the present
study, such that the main renewal source of T cells in the absence
of Ag-stimulation is the thymus. While the presented model is
still simplifying the real situation in many aspects, the stability
analysis revealed a number of reasonable results matching many
experimental findings and allowing for an analysis of reasons for
immune failure and autoimmunity.

The model predicts three qualitatively different immune
responses depending on the level of antigenic stimulation. At first,
a threshold stimulation β i is required in order to get an immune
response at all. Secondly, in a limited range of Ag-stimulation
β ∈ (β i, βs) an efficient immune response is induced. Tregs limit
the duration of the immune response. If the antigen was cleared by
the first immune response, further immune activity would be sup-
pressed by Tregs. However, if the first peak of the immune response
fails to clear the antigen, but keeps the antigen in the stimulation
range β i<β <βs, the immune system attempts to clear the anti-
gen with subsequent immune responses, which corresponds to the
oscillatory solution depicted in Figure 5B. If the immune response
failed to control the antigen spread, antigenic stimulation would
be further increased toβ >βs, leading to the third class of immune
responses. Tregs are over-stimulated and suppress immune activ-
ity. In this situation, a chronic persistence of the antigen would
develop. Treg-mediated over-suppression of immune responses
in chronic infections is well-established (reviewed in Ref. (49)).
According to our model, depletion of resting Tregs restores the
immune response by transiently decreasing λ and by this increas-
ing βs. This notion is consistent with the experimental model of
chronic infections according to which depletion of Tregs results
in the restoration of effector immune response and restriction
of antigen spread (50, 51). A key feature of our model is that
the immune response does not rely on a stable equilibrium point
with a dominant population of activated T cells which is typi-
cally derived from existing bistable models. It rather relies on a
transient response (or stable limit cycles in the case of persistent
Ag-stimulation) which originates from T-cell-mediated suppres-
sion and IL-2 consumption by Tregs. Moreover, the role of Tregs
in the chronic state of the immune response is not represented by
available models.

According to our model, the qualitatively different immune
responses and their requirements are dependent on the quality
and quantity of Tconv and Treg clones responding to the Ag-
stimulation. The proliferation rate of activated T cells, which
depends on their avidity to the stimulating antigen determines the
existence of an Ag-stimulation threshold (β i) which is required

for the initiation of an immune response. The absolute renewal
rate of naïve T cells (N 0) adjusts the Ag-stimulation threshold β i,
which exists when the renewal rate of resting Tregs remains below
a threshold value (λ<λth). Further Treg-associated parameters,
namely the proliferation rate of Tregs (ε) and the Treg-mediated
suppression rate (γ ), also affect the existence and the level of the
Ag-stimulation required for initiation (β i) and over-suppression
(βs) of immune responses. By increasing the proliferative (ε) and
suppressive (γ ) activity of Tregs,β i increases, whereasβs decreases
up to a level where the initiation of an immune response is
completely impossible for any Ag-stimulation. Interestingly, when
proliferation rate of activated Tregs exceeds the one for activated
T cells (ε > 1) a massive proliferation of activated T cells is still
required for subsequent immune suppression by Tregs. Thus, IL-
2 secretion by sufficiently large numbers of activated T cells is a
strict requirement for immune suppression. Note also that with-
out Tregs, a return to the homeostatic state is not possible, even
when the antigen was cleared.

Considering all aforementioned parameters controlling the ini-
tiation of an immune response, is it beneficial for the immune sys-
tem to completely avoid self reaction, or is there a benefit in allow-
ing self reaction? Clearly, autoreactive T cells exist in the periphery
of healthy individuals as a normal component of the T cell reper-
toire (12, 14, 52, 53). These cells respond to self-tissue destruction
even in the presence of Tregs and without genetic predisposition to
autoimmunity (15). Although the activation of autoreactive T cells
has been shown to be involved in autoimmunity (12), several lines
of evidences indicate that these cells are required for limiting self-
destruction by supporting self-regenerative processes (54–56). In
addition, the anti-tumor immune responses evoked by autoreac-
tive T cells are beneficial (34, 57). Therefore, it seems unlikely that
autoreactive T cells escaping from the thymus are simply a result of
thymic selection error that can disturb self-tolerance under certain
physiological conditions. Instead, these evidences imply that ben-
eficial self reaction is allowed in the immune system. According to
the mathematical model, immune reactions against self are only
possible with a critical homeostatic population of autoreactive T
cells (or sufficient renewal rate N 0) which is balanced by a proper
number of Tregs (λ<λth) which corresponds to region (C) or
(D) in Figure 6. Since the T cell repertoire is normally stimulated
with an endogenous level of self-antigens in the periphery which
does not evoke any self reaction, the Ag-stimulation threshold for
initiating an immune response (β i) should be sufficiently high in
comparison to a typical nonself Ag-stimulation. According to our
model, this is achieved by ensuring a low renewal rate (N 0) of low-
avidity autoreactive T cells and a high, but balanced renewal rate
of Tregs (high λ but lower than λth). In other words, according to
Figure 6, by choosing N 0 close to ki and higher value of ki which
is obtained by higher λ, a large Ag-stimulation threshold (β i) for
the initiation of immunity against self can be achieved.

Aging of the immune system, the so-called immunosenescence,
is characterized by involution of thymus, decreased number of
thymic output, contraction in T cell diversity, and disturbed T cell
homeostasis which all result in attenuated immune function and
susceptibility to infectious diseases and cancer in the elderly (58,
59). By decreasing thymic output, the homeostatic population of
some T cell clones diminishes which leads to the creation of holes
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FIGURE 6 |The balance between renewal rate of naïve T cells and
restingTregs. The relative renewal rate of naïve T cells and resting Tregs
(λ = N̂0/N0) determines the existence of an immune response. The
initiation of an immune response requires a sufficient renewal rate of
naïve T cells (N0). (A) For λ>λth, the immune response does not exist for
any value of N0 and Ag-stimulation (β). (B) For N0 < ki, no immune response
can be initiated for any value of β. (C) For N0 > ki, immune response can be
initiated for β >β i. In this regime, the Ag-stimulation that results in
over-suppression of immune response (βs) does not exist. (D) In this
regime, immune response is initiated for β >β i, and is over-suppressed for
β >βs. Note that ki and ks are dependent on the value of λ. For any point in
the plane (e.g., blue point), the values of k ∗s and k ∗i are obtained by
projecting the intersections of the line created by connecting the point to
the origin (slope= λ*) with the nonlinear curves N0 = ki(λ) and N0 = ks(λ)
onto the N0-axis. By decreasing λ*, the effective range of T cell activation
(k ∗s − k ∗i ) or equivalently, the effective range of Ag-stimulation (β∗s − β

∗

i )

which evoke immune response without over-suppression increases. We
hypothesize that a healthy individual bears the potential to evoke self
reaction and therefore its immune system is located in parametric regime
(C) or (D); however, higher self Ag-stimulation compared to nonself
Ag-stimulation is required for initiating immune response due to low
renewal rate of autoreactive T cells (N0).

in the T cell repertoire (60). According to our model, a decreased
renewal rate of a naïve T cell clone (N 0) per se could prevent an
immune response or increase the Ag-stimulation level required for
initiation of an immune response. In addition, as shown in many
studies, the frequency of Tregs increases with age (61, 62) which
results in a disturbed balance between the population of naïve T
cells and resting Tregs (increased λ). In line with these results, in
the mathematical model an increased λ prevents the initiation of
an immune response corresponding to the age-related immune
hyporesponsiveness in infection and cancer.

Based on the reasonable and physiologically realistic results that
we could derive from the model, we dare to speculate about the
self versus nonself concept emerging from the model. As men-
tioned before, the naïve T cells and resting Tregs are two major
components of the immune reaction. The model does not dis-
tinguish self and nonself, but rather derives different responses
to self and nonself from quantitative differences in the nature
of Ag-stimulation. According to the model, by adjusting differ-
ent parameters, different requirements in terms of Ag-stimulation

level are found for the initiation of immune responses to self versus
nonself. If the immune system responds according to a universal
set of Ag-stimulation thresholds, regardless of whether the stim-
ulus arises from self or nonself-antigens, a change of systemic
parameters can lead to immune failure or autoimmunity. Self is no
more considered as self if it exceeds an Ag-stimulation threshold
determined by the stringency of central and peripheral tolerances.
Similarly, nonself is considered as self if it does not properly stimu-
late the T cell repertoire. Autoimmunity might occur due to either
a failure in tuning the Ag-stimulation threshold by the thymus
that leads to unwanted self reaction in the periphery, or a chronic
self Ag-stimulation in the periphery that leads to an oscillating
self reaction and tissue destruction like in type 1 diabetes (63) and
multiple sclerosis (64). Cancer or chronic infection would arise
as the result of an imbalance in central and peripheral tolerances
such as insufficient release of autoreactive T cells as well as high
production or induction of Tregs that results in over-suppression
of immune responses.

An early elegant mathematical modeling study analyzed a series
of models to investigate self/nonself discrimination by T cells with-
out explicitly considering suppressive Tregs (48). As a result of their
critical assumption that memory cells accumulate in poor stimula-
tory conditions, the authors suggested that due to high stimulation
by self antigens the lack of memory accumulation for T cell clones
with high affinity to self accounts for self-tolerance. Also in our
model, a high self Ag-stimulation (β >βs in Figure 5B) results
in over-activation of Tregs and by this in over-suppression of self
reaction. In both models an increased stimulation by self anti-
gen would not lead to autoimmunity. The fact that autoreactive T
cells do respond in the presence of Tregs when their stimulatory
requirements are provided (15) makes it unlikely that this is the
mechanism of self-tolerance induction. In the framework of our
model, the view is supported that immune tolerance is induced
by an increased stimulation threshold for self antigen and keeping
self Ag-stimulation in a subcritical regime (β <β i).

Undoubtedly, other mechanisms besides clonal deletion and
Treg selection in the thymus also contribute to the fine tuning of
the Ag-stimulation threshold required for initiation of immune
reactions to self and nonself, such as anergy in the periphery (65)
or activation threshold tuning in the thymus (66, 67). However,
our simple model emphasizes the subtle balance between the gen-
eration of Tregs and autoreactive T cells which are both needed for
beneficial autoimmunity. The model supports the view according
to which self and nonself do not differ on a qualitative level. It
is rather quantitative differences of the immune status and Ag-
stimulation level that determine which molecule is treated as self
or nonself.
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APPENDIX
A.1. STEADY STATE ANALYSIS OF MODEL (1)
The equilibrium points of model (1) can be obtained from the following:

Equilibrium points =

(T1, I1) = (0, 0)

(T2, I2) =

(
bf

ad − be
,

b

a

)
(A1)

For a positive nontrivial equilibrium point (T 2, I 2), we have to assume that:

ad − be > 0 (A2)

The stability of equilibrium points can be determined from the sign of real part of eigenvalues of Jacobian matrix (J ). An equilibrium
point is stable if all the eigenvalues of J evaluated at the equilibrium point have negative real parts, and it is unstable if at least one of
the eigenvalues has a positive real part.

Jacobian Matrix J =

[
aI − b aT
d − eI −eT − f

]
(A3)

Characteristic Equation Q(λ) = det

{[
λ− aI + b −aT
−d + eI λ+ eT + f

]}
= λ2

+
[
eT + f + b − aI

]
λ+

[
−af I+ beT + bf − adT

]
= 0

(A4)

The eigenvalues (λ1,2) of J for trivial equilibrium point (T 1, I 1) are obtained by solving the characteristic equation (A4):

λ1,2
∣∣
(T1,I1) : Q (λ)

∣∣
(T1,I1)

= λ2
+
(
f + b

)
λ+ bf = 0 (A5)

By checking Routh–Hurwitz stability Criterion (RHC) it can be easily confirmed that the eigenvalues have negative real parts since
all the coefficients of polynomial Q(λ) are positive, and hence, the trivial equilibrium point (T 1, I 1) is locally stable. For stability of
nontrivial equilibrium point, the characteristic equation (A4) is evaluated and solved in (T 2, I 2):

λ1,2
∣∣
(T2,I2) : Q (λ)

∣∣
(T2,I2)

= λ2
+

(
afd

ad − be

)
λ− bf = 0 (A6)

With the assumption (A2), the coefficient of λ is positive. The sign of Q(λ) coefficients change only once and hence, there exists one
positive eigenvalue. Therefore, the nontrivial equilibrium point (T 2, I 2) is a saddle point and unstable.

A.2. STEADY STATE ANALYSIS OF MODEL (4)
The equilibrium points of model (4) with definition of T cell activation (k(t )) given in equation (5) can be obtained from the following

N =
N0

g + β
=

k

β
(A7)

I =
dT

eT + f
=

bT − k

aT
(A8)

(ad − be)T 2
+
(
ek − bf

)
T + fk = 0 (A9)

By keeping the assumption (A2), if the coefficient of T in (A9) is negative, the equilibrium points (T ), if exist, will be positive:

ek − bf < 0→ k <
bf

e
(A10)
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Otherwise, the equilibrium points will be negative. According to equation (A8), for T ≥ 0, I ≥ 0. Now, let’s check the condition for
existence of equilibrium points:

1 = 0→
(
ek + bf

)2
− 4afdk =

(
ek + bf + 2

√
afdk

)
︸ ︷︷ ︸

>0

(
ek + bf − 2

√
afdk

)
︸ ︷︷ ︸

=0

= 0 (A11)

(
ek + bf − 2

√
afdk

)
= 0→ k+ =

adf

e2

(
1+

√
1−

be

ad

)2

, k− =
adf

e2

(
1−

√
1−

be

ad

)2

(A12)

The model does not have any equilibrium points for k−< k < k+, and two equilibrium points otherwise. It can be verified that by
keeping assumption (A2), we always have:

0 < k− <
bf

e
< k+ (A13)

Therefore, for 0< k < k−, condition (A10) is satisfied and the model has two positive equilibrium points and for k > k+, condition
(A10) is not satisfied and model has two negative equilibrium points. Let’s assume that the model has two positive equilibrium points
(1> 0 and 0< k < k−). In the following, the linear stability of equilibrium points is analyzed:

Jacobian Matrix J =

−g − β 0 0
β aI − b aT
0 d − eI −eT − f

 (A14)

Characteristic Equation Q (λ) = det


λ+ g + β 0 0
−β λ− aI + b −aT

0 −d + eI λ+ eT + f


=
[
λ+

(
g + β

)] [
(λ− aI + b)

(
λ+ eT + f

)
+ aT (eI − d)

]︸ ︷︷ ︸
Q∗

= 0
(A15)

The model has one negative eigenvalue λ=−(g +β) for all equilibrium points. For the other two remaining eigenvalues, polynomial
Q* has to be checked for existence of positive eigenvalue.

Q∗ = λ2
+
[
eT + f + b − aI

]︸ ︷︷ ︸
U

λ+
[
−af I+ beT + bf − adT

]︸ ︷︷ ︸
V

= 0 (A16)

From equation (A8) it can be easily verified that b− aI > 0 and hence, coefficient U is positive. Therefore, the stability depends on
the sign of coefficient V.

V = −af I+ beT + bf − adT
I=

dT
eT+f

−−−−−→ V = −
afd

eT + f
T − (ad − be)T + bf (A17)

V1 = TV = −
afd

eT + f
T 2
−
[
(ad − be)T 2

+
(
ek − bf

)
T + fk

]︸ ︷︷ ︸
According to (A9)→=0

+k
(
eT + f

)
(A18)

V2 =
1

k
(
eT + f

)V1 = −
af

kd

(
dT

eT + f

)2

+ 1
I=

dT
eT+f

−−−−−→ V2 = −
af

kd
I 2
+ 1 (A19)

According to equations (A8) and (A9), the equilibrium values of I are:

I2 =
1

2

((
ek + bf

)
+
√
1

af

)
, T2 =

k

b − aI2
, N2 =

N0

g + β
(A20)

I1 =
1

2

((
ek + bf

)
−
√
1

af

)
, T1 =

k

b − aI1
, N1 =

N0

g + β
(A21)
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where I 2> I 1 and:

1 =
(
ek + bf

)2
− 4f kad =

(
ek − bf

)2
− 4f k (ad − be) (A22)

Next, the sign of V 2, which is similar to V 1 and V, has to be checked in the equilibrium points. For the larger equilibrium point
(T 2, I 2):

V2
∣∣I2 = −

1

2f kad

[
e2k2
+ 2ekbf + ek

√
1+ b2f 2

+ bf
√
1− 4f kad

]
= −

1

2f kad

[
1+

(
ek + bf

)√
1
]

︸ ︷︷ ︸
+

< 0
(A23)

V 2, V 1, and V are negative for (T 2, I 2). Therefore, the model in this equilibrium point has a positive eigenvalue and it is locally unstable.
For (T 1, I 1),

V2
∣∣I1 = −

√
1

2f kad

[√
1−

(
ek + bf

)] According to (A22)
========= −

√
1

2f kad

[√(
ek + bf

)2
− 4f kad−

(
ek + bf

)]
︸ ︷︷ ︸

−

> 0 (A24)

V 2, V 1, and V are positive for (T 1, I 1). Therefore, all the eigenvalues of the model in this equilibrium point are negative and it is
locally stable.

Next, let’s assume that k > k+ which means that the equilibrium points exist and the steady state values of T are negative, whereas
the equilibrium values of I is positive. According to equation (A8), coefficient U in equation (A16) is negative since:

T =
k

b − aI
< 0→ b − aI < 0, I =

dT

eT + f
> 0

dT<0
−−−→ eT + f < 0 (A25)

Therefore, the model at least has one positive eigenvalue in the equilibrium points. Let’s check the sign of coefficient V in the
equilibrium points:

V = −af I+ beT + bf − adT
T=

k
b−aI

− f (aI − b)+ (ad − be)
k

aI − b
(A26)

V2 = (aI − b)V aI−b>0
− f (aI − b)2 + (ad − be) k

aI−b=−
k
T
− f

k2

T 2
+ (ad − be) k

V3 =
T 2

f k2
V2 = −1+

(
ad − be

fk

)
T 2 (A27)

The sign of V 3 in equation (A27) which is the same as the sign of V in equation (A16) can be determined by substituting T with its
equilibrium values from equation (A9):

V3
∣∣T2 =

1

4 (ad − be) fk
[21+ 2

√
1
(
bf − ek

)
]︸ ︷︷ ︸

sign?

(A28)

According to equation (A13) and reminding that k > k+, it can be verified that V 3 or equivalently V is positive. Therefore, the
equilibrium point (T 2, I 2) has one positive eigenvalue and is unstable. For (T 1, I 1),

V3
∣∣T1 =

1

4 (ad − be) fk
[21+ 2

√
1
(
ek − bf

)︸ ︷︷ ︸
+

]

︸ ︷︷ ︸
+

(A29)

V 3 and equivalently, V are positive and therefore, the equilibrium point (T 1, I 1) has one positive eigenvalue and it is unstable.
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A.3. STEADY STATE ANALYSIS OF MODEL (10)
The equilibrium points of model (10) for β = 0 can be obtained from the following

(T1, I1, N1) =

(
0, 0,

N0

g

)
(A30)

N2,3 : N2,3 =
N0

g
(A31)

T2,3 : ceT 2
+ (cf + be − ad)T + bf = 0,


T3 = −

1
2ce

[
−
(
cf + be − ad

)
+
√
1
]

T2 = −
1

2ce

[
−
(
cf + be − ad

)
−
√
1
]

1 = (cf + be − ad)2 − 4cf be

(A32)

I2,3 : I2,3 =
cT2,3 + b

a
(A33)

According to equation (A32), the nontrivial equilibrium points, if available, are positive only if:

cf + be − ad < 0 (A34)

The condition of the existence of positive equilibrium points can be obtained from equation (A32):

1 =
(
cf + be − ad

)2
− 4cebf = f 2c2

− 2f (ad + be) c + (ad − be)2 ≥ 0 (A35)

According to equation (A35), the nontrivial equilibrium points exist only if:

{c < c−} ∪ {c > c+} (A36)

where c− =

(√
ad −

√
be
)2

f

 <
ad − be

f
=

(√
ad +

√
be
) (√

ad −
√

be
)

f

 <
c+ =

(√
ad +

√
be
)2

f

 (A37)

Therefore, according to conditions (A34) and (A36) and inequality (A37), the two positive equilibrium points exist only if:

0 < c < c− (A38)

Next, we assume that the condition (A38) is satisfied, and we analyze the stability of the equilibrium points:

Jacobian Matrix J =

−g − β 0 0
β aI − b − 2cT aT
0 d − eI −eT − f

 (A39)

Characteristic Equation:

Q(λ) = det


λ+ g + β 0 0
−β λ− aI + b + 2cT −aT

0 −d + eI λ+ eT + f


=
[
λ+ g + β

]λ2
+
[
eT + f + b − aI + 2cT

]︸ ︷︷ ︸
U

λ+
[
−af I+ 2ceT 2

+ beT + bf + 2cf T− adT
]︸ ︷︷ ︸

V


(A40)

All the equilibrium points have a negative eigenvalue λ=−g −β. For the sign of other eigenvalues, the sign of coefficients of the
characteristic equation has to be checked in equilibrium points. These coefficients are positive for the trivial equilibrium point and
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therefore, all eigenvalues have negative real value. Hence, the trivial equilibrium point is stable. For stability analysis of nontrivial
equilibrium points, the sign of U and V in equation (A40) has to be analyzed:

U = eT + f + 2cT + (b − aI )
(A33): b−aI=−cT

eT + f + cT > 0 (A41)

Coefficient U is positive for the positive equilibrium points. Therefore, their stability depends on the sign of V in equation (A40):

V = f (b − aI )+ 2ceT 2
+ beT + 2cfT − adT

(A33): b−aI=−cT
2ceT 2

+ (be − ad)T + cfT (A42)

= ceT 2
+
[
ceT 2
+
(
cf + be − ad

)
T + bf

]︸ ︷︷ ︸
According to (A32): =0

−bf = ceT 2
− bf (A43)

V
∣∣T3 =

1

2ce

1− (
cf + be − ad

)︸ ︷︷ ︸
According to (A34): <0

√
1

 > 0 (A44)

The sign of V for the larger equilibrium point is positive and hence, this equilibrium point is stable.

V |T2
=

√
1

2ce

√1+ (
cf + be − ad

)︸ ︷︷ ︸
According to (A34): <0


︸ ︷︷ ︸

According to (A32):<0

< 0 (A45)

The sign of V for the smaller equilibrium point is negative and therefore, this equilibrium point is unstable. The equilibrium points
of the model with β > 0 and by considering βN (t )= k(t ) are obtained by solving:

− ceT 3
−
(
cf + be − ad

)
T 2
+
(
ek − bf

)
T + kf = 0 (A46a)

I =
dT

eT + f
(A46b)

By keeping the assumptions (A2) and (A38), the equation (A46a) has either one positive real equilibrium point or three positive
real equilibrium points depending on the value of k. The stability of equilibrium points that are obtained from (A46a) and (A46b) by
varying the value of k is hard to be checked analytically; instead, it is analyzed numerically by solving equation (A40).

A.4. STEADY STATE ANALYSIS OF MODEL (13)
The equilibrium points of model (13) for βN (t )= k(t )= 0 can be obtained from the following

(T1, I1, R1, N1) =

(
0, 0, 0,

N0

g

)
(A47)

T2,3 : ceT 2
2,3 + (cf − ad + be)T2,3 + bf = 0, I2,3 =

dT2,3

eT2,3 + f
, R2,3 = 0, N2,3 =

N0

g
(A48)

T4 =
b(eR5 + f )

εad − be
, I4 =

b

εa
, R4 =

(
b

ε

)(
−ε(cf + be − ad)+ be(ε − 1)− ε(εad − be)

cbe + γ (εad − be)

)
, N4 =

N0

g
(A49)

T5 = 0, I5 =
b

εa
, R5 =

−f

e
, N5 =

N0

g
(A50)

The sign of the equilibrium point T 4 changes by changing the Treg-associated parameters (ε, γ ). T 4 is positive if

εad − be > 0, R > −
f

e
(A51)

or

εad − be < 0, R < −
f

e
(A52)
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The physiologically relevant regime of the model occurs by satisfying the condition (A51) which means both T 4 and R4 are positive.
The equilibrium points of model (13) for β N (t )= k(t ) 6= 0 can be obtained from the following

N =
βN0

g + β
(A53)

R =
−λk

εaI − b
(A54)

T =
−I

(
−eλk + f εaI − bf

)
(εaI − b) (−d + eI )

(A55)

P5I 5
+ P4I 4

+ P3I 3
+ P2I 2

+ P1I + P0 = 0 (A56)

where

P5 = a3f ε2e (A57)

P4 = −bf ε2a2e + cf 2ε2a2
− kε2a2e2

− a3f ε2d − 2 a2f ε be − a2e2λ kε (A58)

P3 = be2λ kε a − 2 cf 2ε ab + ae2λ kb + 2 a2f ε bd + γ λ kf ε ae + ab2fe + bf ε2a2d

+ 2 kε2a2de − 2 ceλ kf ε a + 2 b2f ε ae + a2eλ kε d + 2 kε abe2 (A59)

P2 = 2 ceλ kbf − 4 kε abde − γ λ kbfe − b2e2λ k − kb2e2
− beλ kε ad − b3fe − aeλ kbd + cb2f 2

+ ce2λ2k2
− ab2fd − kε2a2d2

− γ λ2k2e2
− 2 b2f ε ad − γ λ kf ε ad (A60)

P1 = γ λ
2k2ed + b2eλ kd + 2 kb2de + 2 kε abd2

+ b3fd + γ λ kbfd (A61)

P0 = −kb2d2 (A62)

A.5. NONLINEAR PROLIFERATION RATE OF CONVENTIONAL AND REGULATORY T CELLS
In the models (1), (4), (10) and (13) it is assumed that proliferation rate of Tconvs and Tregs is a linear function of IL-2. This simplifying
assumption is made in order to allow parametric stability analysis of the model in a closed form and to find explicitly the dependency
between parametric variations and topological changes of the model. Here, we show that the simplifying assumption does not affect
the three regimes of qualitative immune responses that could be derived from the model. The linear IL-2-dependent proliferation rate
is replaced with a nonlinear function of IL-2, named8 (I ) in models (1), (4), and (13):


dT

dt
= 8(I )T − bT + k

dI

dt
= dT − eIT − fI

(A63)

where8 (I ) is considered as a Hill-function of IL-2

8(I ) = a
I n

hn + I n
(A64)

The models (1) and (A63) are compared by steady state analysis. The equilibrium points of the modified model (A63) (with
k = βN0

g+β = 0) are

(T1, I1) = (0, 0) (A65)

(T2, I2) =

 f I2

d − eI2
, h

(
b

a − b

) 1
n

 (A66)

The nontrivial equilibrium point (T 2, I 2) is positive and biologically meaningful only if

(a − b)dn
− benhn > 0 (A67)
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Khailaie et al. Modeling immune activation

The local stability of the equilibrium points can be determined by obtaining the eigenvalues from the characteristic equation:

Characteristic Equation Q(λ) = det

{[
λ− a I n

hn+I n + b −aT nhnI n−1

(hn+I n)2

−d + eI λ+ eT + f

]}
(A68)

= λ2
+

[
eT + f − a

I n

hn + I n
+ b

]
λ

+

[(
−a

I n

hn + I n
+ b

) (
eT + f

)
+ aT

nhnI n−1

(hn + I n)2
(−d + eI )

]
= 0 (A69)

By checking Routh–Hurwitz stability Criterion (RHC) it can be easily confirmed that the eigenvalues have negative real parts for
trivial equilibrium point since all the coefficients of polynomial Q(λ) are positive, and hence, the trivial equilibrium point (T 1, I 1) is
locally stable. For checking the stability of the nontrivial equilibrium point, the characteristic equation (A69) is evaluated in (T 2, I 2):

λ1,2|(T2,I2) : Q(λ)|(T2,I2) = λ
2
+
[
eT2 + f

]︸ ︷︷ ︸
U

λ+

[
−

nbhnT2

I2(hn + I2
n)
(d − eI2)

]
︸ ︷︷ ︸

V

= 0 (A70)

By assuming the condition (A67), the coefficients U and V are positive and negative respectively. Therefore, the sign of the coef-
ficients of Q(λ) (U and V ) changes only once and hence, there exists an eigenvalue with positive real part. Therefore, the nontrivial
equilibrium point (T 2, I 2) is a saddle node and unstable.

Similar to the model (1), the stable manifold of saddle node in the model (A63) defines a threshold for the initial conditions that
allow for unlimited proliferation of activated T cells. By comparing the conditions (A67) and (3), the dependencies of these conditions
to the model parameters, specifically the proliferation rate (a) and IL-2 secretion rate (d), are positively correlated. In other words,
in both models, only T cell clones with sufficiently high proliferation rate (a) and/or high IL-2 secretion rate (d) are able to undergo
major T cell proliferation.

For k 6= 0, the equilibrium points of the model (A63) are obtained from the following equations:

T =
f I

d − eI
(A71)

I :
[
(a − b)f − ke

]
I n+1
+ [kd] I n

−
[
hn(bf + ke)

]
I + kdhn

= 0 (A72)

The stability of equilibrium points is analyzed by evaluating the characteristic equation and is shown in Figure A1 for parameter
values given in Table 1 and Hill-function parameters n= 2 and h= 0.5. By comparing the bifurcation diagram in Figures A1 and 3B,
the qualitative similarity between model (4) and (A63) is evident. This qualitative similarity also holds true between model (13) and
the following model: 

dT

dt
= 8(I )T − bT − cT 2

− γRT + k

dR

dt
= ε8(I )R − bR + βN̂

dI

dt
= dT − eI (T + R)− f I

(A73)

where8 (I ) is identical to (A64).
The equilibrium points of model (A73) are calculated and their stability is analyzed by deriving the characteristic equation of the

model and obtaining the eigenvalues. By keeping assumption (12), the bifurcation diagrams of model (A73) for two different values of
λ are obtained by treating k = βN0

g+β > 0 as the bifurcation parameter (depicted in Figure A2). Depending on the value of k, the model

has either 8 or 6 equilibrium points (4 or 2 equilibrium points with T > 0, identical to model (13)) with parameter values given in
Table 1 and Hill-function parameters n= 4 and h= 1. The additional equilibrium points resulted from considering the Hill-function
nonlinearity are all in the negative space of the model variables. As it can be seen from Figure A2, similar to the model (13), the three
qualitatively different responses still could be derived from the modified model. It is clear that the value of ki, ks, and λth are different
from their corresponding values in the model (13).

In summary, imposing the nonlinear IL-2 dependent proliferation rate of cells results in a more restricted condition for initiation
of an immune response in comparison to the linear IL-2 dependent proliferation rate, namely the requirement of higher T cell avidity
(higher a and d), higher Ag-stimulation (increased β i), and lower Treg/Tconv ratio (lower λth); but three qualitatively different immune
reactions depending on the critical levels of Ag-stimulation could still be derived, very similar to model (13).
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Khailaie et al. Modeling immune activation

FIGURE A1 | Bifurcation diagram of model (A63) with Hill-function parameters n = 2 and h = 0.5 by treating k as bifurcation parameter. Stable and
unstable equilibrium points are shown by black and red lines, respectively. For k > k−, the immune response enters the regime of unlimited proliferation. The
unstable negative equilibrium point is omitted in this figure.

FIGURE A2 | Bifurcation diagram of model (A73) with Hill-function
parameters n = 4 and h = 1 using k as the bifurcation parameter with
(A) λ = 0.0016 and (B) λ = 0.0008. Stable and unstable equilibrium points are
drawn by black and red solid lines, respectively. The stable limit cycles are not
shown for all value of ki < k < ks except for k =12. Depending on the values
of λ and k, an immune response is not initiated (gray), is initiated (red) or

over-suppressed (magenta). With parameter values given inTable 1 and
Hill-function parameters n=4 and h=1, the threshold becomes λth = 0.00111.
The time-courses of the activated T cell population T (t ) were deduced from a
numerical solution of model (A73) with zero initial conditions and persistent β.
The negative equilibrium points which are all unstable are not shown in the
plots.
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Recent studies show that naïve T cells bearing identical T cell receptors experience het-
erogeneous differentiation and clonal expansion processes. The factors controlling this
outcome are not well characterized, and their contributions to immune cell dynamics are
similarly poorly understood. In this study, we develop a computational model to elaborate
mechanisms occurring within and between two important physiological compartments,
lymph nodes and blood, to determine how immune cell dynamics are controlled. Our multi-
organ (multi-compartment) model integrates cellular and tissue level events and allows us
to examine the heterogeneous differentiation of individual precursor cognate naïveT cells to
generate both effector and memoryT lymphocytes. Using this model, we simulate a hypo-
thetical immune response and reproduce both primary and recall responses to infection.
Increased numbers of antigen-bearing dendritic cells (DCs) are predicted to raise produc-
tion of both effector and memoryT cells, and distinct “sweet spots” of peptide-MHC levels
on those DCs exist that favor CD4+ or CD8+ T cell differentiation toward either effector
or memory cell phenotypes. This has important implications for vaccine development and
immunotherapy.

Keywords: two-compartment model, lymph nodes, blood, agent-based, circulation, systems biology, dendritic cells,
cognate

INTRODUCTION
Antigen-presenting cells (APCs), especially dendritic cells (DCs),
process antigens and carry information from sites of infection to
secondary lymphoid organs, such as lymph nodes (LNs) (1). T
cells are produced in the thymus and are deployed into blood
circulation to recognize millions of different epitopes from path-
ogenic organisms; each T cell is hardwired to have one type of T
cell receptor (TCR) that recognizes a single pattern (i.e., “cognate”
with respect to a specific antigen) (2). The frequency of particu-
lar cognate T cells is as low as 10−5–10−6 (3, 4). Through high
endothelial venules (HEVs), T cells are recruited to LNs, where
they are exposed to antigenic peptides presented by MHC mol-
ecules expressed on DCs – this initiates the adaptive immune
response (5–9). LNs are organized such that when T cells travel
through they can be efficiently scanned by DCs to identify that
rare cognate encounter (10–12). Such encounters result in binding
of cognate T cells to DCs and subsequent activation and prolifer-
ation of the T cells. The expanded T cell population differentiates
into two classes: effector cells, which perform immediate killing
and cytokine secretion functions, and memory cells, which are
reserved for long-term protection (13, 14). These cells move out
of LNs via efferent lymphatics (ELs) into blood circulation (15).
Through the blood, effector T cells reach sites of infection while
memory T cells continue to recirculate and await a potential sec-
ondary infection for which they will wage a faster and stronger
recall response (16, 17). A snapshot of the trafficking of these cells
is shown in Figure 1. The immune system responds differently

to different antigenic materials; however, the same set of machin-
ery is engaged to face each challenge. Thus, there should be a
general program adaptively guiding the behavior of this system.
In this study, we focus on cellular-mediated events shared among
immune responses during the initiation of adaptive immunity and
generation of immune memory.

Differentiation of T cells during generation of adaptive and
memory responses is highly heterogeneous, and this heterogene-
ity is may be dependent on the environmental context that each
cell experiences (18, 19). However, the cause of such heterogeneity
is poorly understood. If mechanisms other than mere stochas-
ticity contribute to heterogeneity, it could be possible to more
precisely direct the differentiation to favor the production of the
desired output from an immune response (e.g., effectors in an
immune therapy or memory cells in vaccination) by manipulating
the mechanisms involved. We are interested in which mechanisms
could provide handles for such manipulation. Since T cell prim-
ing occurs in LNs, and blood circulation conveys effector and
memory T cells to locations where they perform their specific
functions, mechanisms in these two organs could be responsible
for the heterogeneous differentiation. The dynamics of T cells in
these compartments will also reflect progression of infection or
effectiveness of vaccinations. Thus, understanding how different
LN and blood mechanisms affect the dynamics of infection and
treatment could help guide immunotherapy and vaccine design.

Computational and mathematical models are widely used in
biological systems to assess hypotheses and generate predictions
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FIGURE 1 |T cell trafficking between compartments. Naïve T cells
circulate between LNs and blood. Upon infection, APCs present antigen to
cognate T cells in LNs to initiate their proliferation and differentiation to
generate effector and memory cells. After entering the blood, effector cells
are recruited to sites to fight ongoing infection, while memory cells
recirculate, awaiting secondary infections.

for experimental validation. Deterministic equation-based mod-
els have been developed to understand the dynamics of T cells
responding to immunogenic antigens, and these models helped
with estimating parameters, determining alternative hypothesis,
and predicting the outcomes of immune responses (20, 21).
Agent-based models (ABMs) have proven convenient in assessing
roles of cellular and molecular level interactions during infec-
tion (22–27). However, because of the extremely low cognate
frequency that exists in primates, these models usually require
large numbers of cells to be simulated and thus are very com-
putationally intensive. In order to capture both heterogeneous
stimuli-sensitive short-term activation events as well as average
long-term dynamics, a model needs to be capable of adapting
itself to both situations.

In this study, we present a hybrid computational model that
uses an agent-based modeling to capture events occurring in a LN
and a non-linear ordinary differential equation (ODE) model to
capture events occurring in the well-mixed compartment of blood.
This model allows us to track a highly stochastic immune response
operating during the first few weeks of an immune response (with
time resolution around seconds), as well as long-term dynamics
afterward (at a time scale of months to years). Using this model,
we assess which mechanisms in both LN and blood compartments
control the differentiation and clonal expansion processes of T cells
and also direct the immune response toward potent effector T cell
output and/or robust memory generation. These findings could
bring insights to vaccine design strategies.

MATERIALS AND METHODS
LN ABM MODEL
Agent-based models are computational models in which individ-
ual agents are represented on an explicitly formulated grid and
they interact with each other according to a defined set of rules
implemented in discrete time steps. As these types of models can
account for spatial-sensitive interactions between DC and cognate
T cells, they are ideal for studying heterogeneous priming and
differentiation of T cells in LNs (23–25, 28, 29).

We previously developed LymphSim, a three-dimensional (3D)
LN computational model capturing dynamics of CD4+ T cells,
CD8+ T cells, and DCs during both steady state and infection
(30). Briefly, cells move on a 3D grid that is shaped like a trun-
cated cone and represents ~1/200 of a primate LN. T cells enter
the LN via HEVs, search for DCs, activate and proliferate to gen-
erate effector cells that exit via ELs. In LymphSim, cell motility
and steady state values in a LN are calibrated to experimental data
with model antigens such as OVA (31), and the dynamics dur-
ing an immune response are not quantitatively fit to any specific
infection. For simplicity, we only include one type of cognate T
cell each for CD4+ and CD8+ T cells in current model, and DCs
present the corresponding antigens on pMHC (peptide-MHC)-
II and pMHC-I for both primary and secondary infections. The
model can be adapted to account for multiple sub-antigens. For
the work herein, this single antigen study is sufficient to address
the key questions under study. A complete list of rules can be found
at: http://malthus.micro.med.umich.edu/lab/movies/3dLN/.

EFFECTOR AND MEMORY T CELL DIFFERENTIATION RULES
In the present study, we modified LymphSim to include two addi-
tional T cell differentiation states: central memory (CM) and
effector memory (EM), for both CD4+ and CD8+ T cells. We
also added rules that govern generation of these memory cells,
and their interaction with other cells (Figure 2).

We based the cell differentiation process on a version of a
“signal-strength model,” in which the overall strength of signal
received by a naïve T cell during DC contact will determine the fate
of cell differentiation (Figure 3) (32–35). A definitive differentia-
tion scheme after T cell priming occurs has not been determined
by experimentation. Previous modeling studies based on exper-
imental data reject memory to effector differentiation in favor
of effector to memory differentiation (20); however, more recent
work showed that differentiation has as its backbone differentia-
tion from naïve to CM precursor to EM precursor to effector (18).
The scheme we use in this study considers effector to EM differen-
tiation, but is still topologically similar to the scheme from (18),
with precursors of both EM and effectors differentiating into these
two subtypes (Figure 3). The difference between the two schemes
is that “effectors” in our model are cells that have differentiated
toward effector phenotype sufficiently so as not to enter into the
CM population, nor have they entered into the EM pool. They are
allowed to exit the LN due to the loss of early activation markers
(CD69), even though these cells do not perform effector functions
until they would reach sites of infection, which is not studied in
this current work.

In our model, a series of probabilistic checkpoints are estab-
lished to determine to which state a cell will proceed (36–39).
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FIGURE 2 |T cell subsets in two-compartments of LNs and blood: N,
naïve; A, activated; CM, central memory; E, effector; EM, effector
memory. Each number indicates a collection of processes occurring in
that step and in different cell types. Naïve T cells are recruited to LN from
blood. In the LN, cognate T cells bind with Ag-DCs and get activated.
Activated T cells proliferate and differentiate into central memory (CM)

and effector cells. CM in the LN can bind to DC and be activated again.
Effector T cells can further differentiate to effector memory (EM) cells.
Naïve, effector, CM, and EM exit LN from EL. Naïve and CM cells
recirculate between LN and blood. Effector and EM are recruited to sites
of infection. EM can covert to CMs. *Memory establishment for CD8+T
cells requires LDCs.

FIGURE 3 | “Signal-strength model” of T cell differentiation. T cells
receive antigenic, co-stimulatory, and inflammatory signals from DC during
priming. In concert, these of stimulations determine the fate of T cell clonal
expansion and differentiation. Greater proliferation correlates with stronger
signal. However, insufficient stimulation results in death by neglect, while
excessive stimulation causes activation induced cell death. Stronger
stimulation also drives T cells toward terminal differentiation and reduces
their memory-forming potential. Please see Section “Effector and Memory
T Cell Differentiation Rules” for a description of differentiation models and
how this was selected.

When a cognate T cell finds an Ag-bearing DC (Ag-DC) or licensed
DC (LDC) in its binding area, the corresponding pMHC value of
the DC is checked to see if a successful binding can be established.
If bound, a T cell continuously accumulates signals from the DC
(40), represented by pMHC levels at each time point. Here, pMHC
level is used as a proxy for the strength of antigenic stimulation
from the DC or LDC. When a T cell unbinds from a DC or LDC,
the accumulated signal value is used to determine whether a T cell
proceeds to an activated state, or returns to a resting state (naïve).
Activated cells go through a set number of rounds of divisions,
after which the accumulated signal level is checked again to decide
if the cell can further differentiate into an effector state. Effec-
tor cells will divide a few more rounds. With given probabilities,
the cells with intermediate differentiation status do not proceed to
effector status, but become CM cells, while those effector cells with
sufficient signals will become EM cells (41–43). The probability of
effector cell converting to EM is estimated between 0.1 and 0.4. CM
T cells can be recruited to LNs from HEVs. These cells act similarly
to cognate naïve T cells. When they detect Ag-DCs or LDCs, CMs
will bind to DC and accumulate signal more efficiently in compar-
ison with naïve cells (44, 45). The rules above apply to both CD4+
and CD8+T cells. Because we developed some of these rules based
on LCMV studies, one difference we captured between these two
cell types is that CD8+ T cells can bind only to LDCs to generate
functional memory cells in the primary response, whereas CD4+
T cells do not have this restriction and can generate memory cells
after binding to both Ag-DCs and LDCs (46).
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Other models of T cell differentiation exist, and some of these
models are not mutually exclusive. We also integrated features
from these models into our rule set, and excluded those that
are inconsistent with current findings or are not applicable to
our model at this stage. A single naïve T cell can produce both
effector and memory progenies (19, 47), so we excluded the pos-
sibility that effector and memory arise from separate precursors.
In the decreasing-potential model (13), the stimulation that T
cells receive during infection drives greater clonal expansion but
reduces their potential to differentiate into memory cells. Some
studies show T cells are committed to massive proliferation after
initial encounters with APCs, and can differentiate into both mem-
ory and effector subsets even if adoptively transferred into hosts
absent of antigen (48). Thus, we limited the signal accumulation
stage to the period of time when a T cell is bound to a DC before
its first division, similar to findings made in B cell expansion (49).
In the asymmetric cell fate model (50), heterogeneity arises from
the unequal distribution of differentiation factors into daughter
cells during division. We will further study this hypothesis as we
incorporate dynamics at molecular level, but currently account for
these asymmetries using phenomenological probabilities.

BLOOD COMPARTMENT SUB-MODEL: ODE AND PARAMETER
ESTIMATION
We developed a blood compartment model by assuming the blood
is a well-mixed, homogenous compartment. We use a system
of non-linear ODEs to capture the dynamics of T cells therein.
Equations for CD4+ T cells are:

dN4

dt
= SN 4 (t )− δN 4N4 + eLN

N 4 (1)

dE4

dt
= − δE4E4 − ξE4E4 + eLN

E4 (2)

dCM4

dt
= − δCM4CM4 + αEM4EM4 + eLN

EM4 (3)

dEM4

dt
= − δEM4EM4 − ξEM4EM4 − αEM4EM4 + eLN

EM4 (4)

N 4, E4, CM4, and EM4 represent the blood concentrations of
naïve, effector, CM, and EM CD4+ T cells, respectively. SN4(t )
is the time-dependent thymus output of naïve CD4+ T cells
(51). The initial output is estimated from healthy 30-year-old
individuals, and declines by 5% per year (52). δN4 is the overall
death rate constant for naïve cells, including homeostatic prolif-
eration and death. We estimated this parameter by assuming a
quasi-equilibrium between thymus output and peripheral loss.
δE4, δCM4, and δEM4 are the death rate constants for effector, CM,
and EM CD4+ T cells, respectively. δE4 and δEM4 account for
the death of circulating effector and EM cells, excluding those
recruited to sites of infection (53). δCM4 reflects the overall loss of
CM cells, including self-renewal and death (53). ξE4 and ξEM4 are
the rate constants for recruitment of CD4+ effectors and EM cells
from blood to sites of infection. As the dynamics at a site of infec-
tion are not considered in this study, these recruitment terms serve
as a sink for the corresponding cell species in the blood compart-
ment. αEM4 is the rate constant for EM cell differentiation into CM

cells (54). The terms eLN
N 4 , eLN

E4 , eLN
CM4,and eLN

EM4 represent rates of
LN net output of corresponding cells. These terms are converted
to the changes in concentration in the blood per time step. For
naïve and CM cells, this is calculated as the difference between the
number of exited and recruited cells. For effector and EM cells,
this is calculated as the number of exited cells. These four terms
are not solved directly in the ODE system but rather are added as
an initial condition before each blood time step is processed in the
computational model. We show them in the equations for com-
pleteness. Similar equations and parameter estimates are written
for CD8+ T cells (see Supplementary Material). Because the CM
CD8+ T cells population is maintained for life, we assume a very
small value for the loss rate constant δCM8, corresponding to half-
life of 20 years (53). See Table S3 in Supplementary Material for a
complete list of parameters, definitions, values, units, and source
references.

TWO-COMPARTMENT HYBRID MODEL
Our goal is to develop a two-compartment computational model
that combines LymphSim and the blood ODE model described
above. Recently, we published other models linking ODEs and
ABMs (55–57). For this study, we use the implementation method
we employed successfully to link a LN compartment with a lung
(56). The LN and blood compartment models are processed
sequentially during each time step of simulation (Figure 4). Dur-
ing the T cell recruitment subroutine of the LN ABM model, the
probability of recruiting T cells of each type/state is calculated
based on their blood concentration levels. At the end of LN com-
partment simulation time step, the LN net output is calculated as
the difference between exited and recruited number of each cell
type and is multiplied by a factor that accounts for physiological
compartment-size scaling from 0.5% back to the entire paracor-
tex and unit conversion from cell number to blood concentration.
This net output is then added to the corresponding variables in
blood compartment ODEs. We have made a few assumptions
regarding how we capture the LN to blood dynamics. First, we are
only modeling dynamics of T cells and DCs within a single LN.
There are ~700 LNs in the human body and they are connected via
an intricate lymphoreticular network. T cells travel between multi-
ple LNs via these lymphatics and eventually enter the blood via the
superior vena cava. We assume that cells exit the LN and enter the
blood compartment immediately, coarse-graining the time spent
in the lymphatic system. However, our cells travel through the
LN and blood in time frames consistent with experimental data
[<24 h; Ref. (58)], accounting for the delay.

For computational efficiency, we use a method we term tun-
able resolution (TR) (manuscript submitted). One of the goals
of TR is to develop multi-scale models with sub-models of dif-
ferent resolutions, so that models can be run with coarse- or
fine-grained alternative versions of sub-models during simulation
to save resources without sacrificing accuracy. Here, for each phys-
iological compartment (blood or LN), there is a computational
switch that allows the model in an automated fashion to bypass
simulation of a given compartment. In this two-compartment
model, we do not have an alternate version of each compart-
ment per se; instead, each compartment can be suspended when
specific criteria are met. For example, during the pre-simulation,
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FIGURE 4 | Simulation procedure using tunable resolution. LN and
blood compartment are processed sequentially in each time step. LNs
recruit cells from blood and put exiting cells into it. The recruitment
probabilities are modified by blood concentration of corresponding cell
types. Each compartment has a switch to determine whether this
compartment is processed in current time step, or will it be bypassed.

the blood compartment is turned off, and the LN is simulated
until a baseline steady state is reached. When an immune response
is occurring, LN and blood compartments are both running to
simulate the immune response in fine-grained, spatially explicit
detail for a time scale of a few weeks. When an active immune
response finishes and there are no Ag-DCs, LDCs, bound, active,
effector, or EM cells in the LN compartment, the LN com-
partment is suspended to allow rapid simulation of the blood
compartment at longer time scales (months to years). When a
secondary infection begins, the LN compartment is switched on
again (Figure 4).

MODEL CALIBRATION
The hybrid model contains 103 parameters that govern mech-
anisms occurring in both physiological compartments and the
interactions between them (see Table S3 in Supplementary Mater-
ial for a complete list of the parameters). For the LN compartment
model, parameters governing T cell motility and trafficking are cal-
ibrated to data as described previously (30). Parameter estimates
for the ODE model in the blood compartment are discussed in
Section “Blood Compartment Sub-Model: ODE and Parameter
Estimation” and Supplementary Material.

To use our model for memory T cell differentiation dynam-
ics, we estimated parameters in our model using the limited data
available in the literature for memory cell generation in LNs.
We estimated parameters governing total production of expanded
cognate CD8+ cells generated in the LN model (Table S3 in Sup-
plementary Material, parameters marked with ‡) to data from
T cell clonal expansion studies in mice using OVA as a stimu-
lating antigen (59). In that study, DCs are ablated at different
time points to show that the duration of antigen presentation
correlates with magnitude of T cell expansion, but a short expo-
sure is sufficient to program CD8+ T cells to differentiate into
both effector and memory subsets (59). We adapted our model
to reflect experimental methods used in these studies. DCs are
removed from the LN grid at indicated time points after the
recruitment during primary challenge (Figure 5A), as was done
experimentally by injecting diptheria toxin (DT) (59). Unlike
rules for LCMV as previously discussed, CD8+ naïve T cells are
allowed to bind both Ag-DC and LDC to be primed and the
enter memory state. This is because in these experiments, DCs
are activated from LPS pulsing or Listeria monocytogenes-OVA.
From our in silico experiments terminating antigen presentation
from DCs at various time points after Ag-DC recruitment, we
predict that the magnitude of the primary response is depen-
dent of the duration of DC presence (Figure 5B). However, a
very short period of stimulation is capable of generating memory
cells, as we see a potent production of antigen-specific CD8+ T
cells after a secondary challenge (Figure 5C). Moreover, it takes
only 3 days for the recall response to exceed the magnitude of
primary response on day 5, indicating a faster reaction to previ-
ously experienced antigens, as observed in vivo. Our simulation
results are comparable to data from the Prlic study (59). The
parameter set we obtained is used as our baseline for simulat-
ing infection scenarios (see below and Table S3 in Supplementary
Material).

SIMULATED INFECTION AND MODEL VALIDATION
We next validated our model with data sets from experimental
studies using LCMV or OVA as stimulating antigens. For each sim-
ulated infection, a 3-day pre-simulation of the ABM LN sub-model
precedes the actual experiment to allow cells to reach a steady state
in terms of quantity and spatial distribution. During this period,
the blood sub-model is suspended, with the naïve CD4+ and
CD8+ T cells concentrations fixed at 450 and 320/mm3, respec-
tively (51, 60). Then Ag-DCs are introduced to stimulate the T cell
response. We represent this by introducing antigen-bearing DCs
in such a way as to mimic an acute infection (23, 25, 30). Ag-DCs
carry and present a unique antigen and are recruited to the LN
compartment for 2 days. These DCs will prime cognate T cells
(cognate frequency is set to 10−4) for about 5 days before they die,
mimicking a hypothetical acute infection. To mimic a hypothetical
secondary infection, Ag-DCs are recruited to the LN again from
day 600 to 602. Each experiment is simulated five times to reduce
aleatory uncertainty.

To confirm that our model produces reasonable dynamics in
the blood compartment, we qualitatively compare the time course
of blood antigen-specific cells to data sets from LCMV studies,
where the measurements are performed in spleen (61–63).
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FIGURE 5 | Expansion of CD8+T cells in simulation. (A) In silico
experimental schemes. Black bars show the duration of Ag-DC presence. In
primary challenge, DC antigen presentation is terminated at time points
indicated on the left. “Control” indicates no termination and DC are allowed
to live their natural lifespan. Recall challenge is given from day 30.
Measurements are taken on day 5 for primary response and day 33 for recall

response, respectively. (B,C) CD8+T cell population in simulated responses
(black bars) and experimental data (white bars) (59). (B) Size of expanded
CD8+T cell population in primary response. Values are measured from day 5
after Ag-DC are recruited to the LN. (C) Size of expanded CD8+T cell
population during recall response on day 33. X -axis value indicates antigen
presentation times in the primary challenge.

For lineage tracing simulations (see Cognate Naïve Cells
Undergo Heterogeneous Expansion), every cognate naïve T cell
recruited to the LN is assigned a unique serial number. This num-
ber is passed to the daughter cells when these labeled T cells
proliferate and differentiate, so T cells sharing the same serial
number belong to the same single-cell derived progeny. When
each differentiated cell exits the LN, its serial number is recorded.
For each individual cognate precursor, the number of descendant
cells and their differentiation states are calculated. Cell progenies
are ranked by the abundance of their progenies, from largest to
smallest. Five replications are performed for this simulation.

We calculate the Index of disparity D between the expanded
populations of different single-cell derived progenies (19), which
is the inverse Simpson diversity index mapped to a 0–1 interval:

D =
N − 1∑N

i=1 f 2
i

N − 1
, (5)

where N is the number of progenies and f is the frequency of each
single-cell derived progeny in the total population.

UNCERTAINTY AND SENSITIVITY ANALYSIS
In this study, our goal is to reproduce patterns of generalized
immune responses. In addition to using parameters estimated
from previous work (see above and Table S3 in Supplemen-
tary Material) and experimental data, we use global uncertainty
and sensitivity analysis (U/SA) to study how particular biological
mechanisms affect simulation outputs (64).

For each set of sensitivity analysis, a list of parameters is cho-
sen, and for each parameter of interest, a range is specified. Latin
hypercube sampling (LHS) is applied to generate the matrix of

parameter values, where each experiment represents one combi-
nation of sampled parameter values. LHS is a stratified sampling
method that requires fewer samples compared with random sam-
pling method but achieves the same accuracy (65). This technique
is particularly helpful for our ABM model where parameter val-
ues need to be estimated from a high-dimensional space (64). The
parameter space is sampled completely and accurately, with a large
sampling size. Each experiment is replicated five times to reduce
aleatory uncertainty from inherent stochastic variations (64). After
the simulation, model readouts are chosen and partial rank corre-
lation coefficients (PRCCs) are calculated between each readout-
parameter pair to assess global sensitivity and detect monotonic
relationship between mechanisms and output of interests.

To study how various mechanisms affect the generation of
memory from within each compartment (blood and LN) as well as
how they influence the other compartment (LN and blood, respec-
tively), we performed intra- and inter-compartment sensitivity
analysis (64). We choose two sets of parameters governing mecha-
nisms in each sub-model and estimated a range for each parameter
(see Table S3 in Supplementary Material). We use LHS to sample
the parameter space and generate 100 or 408 experiments for blood
and LN experiments, respectively. Here we performed 2540 simu-
lations, which provides ample coverage of the space. Sensitivities
of outputs to mechanisms are assessed with PRCCs.

COMPUTATIONAL SIMULATIONS AND IMPLEMENTATION
Our hybrid model is implemented in C++ and runs on Linux/Mac
OS/windows. Documentation and pseudo code are available in the
online Supplement. A Forward Euler method is used to solve the
ODEs. Each time step of the ABM simulation is further divided
into 100 pieces (step size of 0.25 s) to reduce error. Each simulation
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of 350 days (LN sub-model is active for ~40 days) takes 30–40 h
to run.

RESULTS
HEALTHY UNINFECTED BASELINE DYNAMICS OF T CELLS ARE
REACHED WITHOUT SIMULATED ANTIGEN PRESENTATION
Without Ag-DC introduced to the LN, all T cells remain naïve.
The cell dynamics in LN in the absence of any infection present
show that over a short time scale (days to weeks), cells remain
at the steady state of ~170,000, or 4.0× 106 cells/mm3. There is
an equal input/output flow of ~1000 cells per million cells per
minute, and an average transit time of 16 h, which is consistent
with previous data (30). The population of both CD4+ and CD8+
T cells in the blood declines long-term (20 years). By the end of
year 20, the blood concentration of naïve CD4+ T cells drops to
210 mm−3, and that of naïve CD8+ T cell drops to 170 mm−3.
Such long-term decline of naïve T cell number is comparable to
clinical observations (66, 67).

EFFECTOR AND MEMORY T CELL POPULATIONS ARE GENERATED IN A
SIMULATED ACUTE INFECTION
We simulated immune responses to a hypothetical acute infection
by introducing Ag-DCs into the LN compartment to activate cog-
nate T cells as shown in Figure 6A. The cognate frequency is set to
10−4. Figures 6B–E show simulated immune cell dynamics in the
LN and blood compartments.

In the LN compartment, the Ag-DC population increases first.
These DCs scan surrounding CD4+ and CD8+T cells and bind to
their cognate matches. After this binding event, CD4+ and CD8+
T cells begin to proliferate and differentiate into active and effec-
tor T cells. After day 2, the influx of Ag-DCs to LN stops, and the
number of Ag-DCs begins to decline (Figure 6A). At the same
time, differentiated effector CD4+ T cells license Ag-DCs, further
increasing their surface pMHC levels and stimulation strength,
enabling them to allow CD8+T cell memory potential. Because we
assume that CD8+ T cell memory establishment requires LDCs,
the appearance of CM and EM CD8+ T cells is delayed as com-
pared with corresponding CD4+T cells. After differentiation from
the active state, effector,CM,and EM cells can exit the LN from ELs,
resulting in the decline of these populations within the LN. The
system eventually returns to baseline, but CMs can still recirculate
through LN (Figures 6B,C).

In the blood compartment, the concentrations of effector,
CM, and EM cell populations increase as they exit the LN
(Figures 6D,E). The total concentration of both CD4+ and CD8+
Ag-specific T cell (effector, EM, and CM) peaks at about day 6 and
8, respectively (0.91 mm−3 for CD4+ T cells and 2.49 mm−3 for
CD8+ T cells). The lifespans of effector cells are relatively short.
These cells either die, or are recruited to sites of infection, bring-
ing about a contraction phase characterized by a decline of total
blood Ag-specific T cells. However, about 5% of the peak level is
maintained in the memory cell class, especially CM cells in the

FIGURE 6 | Primary response dynamics of immune cells in LN and blood
during a hypothetical acute infection (log scale). (A–C) Number of
dendritic cells, CD4+ and CD8+T cells of different subsets in the LN

compartment. (D,E) Concentration of CD4+ and CD8+T cells of different
subsets in the blood compartment. (A) Model input of DCs representing a
hypothetical acute infection, such as LCMV and (B–E) output.
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long-term as their lifespan is longer than EM cells. In the blood,
some of the EM cells convert to CM cells, while others are recruited
away to sites of infection (Figures 6D,E). While there are no data
from primates on these dynamics, our results are qualitatively in
accordance with experimental data from mouse LCMV studies
(61–63).

IMMUNE CELLS REACH HIGHER LEVELS DURING A RECALL RESPONSE
AS COMPARED TO A PRIMARY RESPONSE
To understand the dynamics of a recall response, we simulated
a scenario where Ag-DCs are introduced from day 0 to 2 in an
initial round of infection (the same as that of Section “Effector
and Memory T Cell Populations are Generated in a Simulated
Acute Infection”). Once that infection dampens and immune cells
return to a resting state, we introduce a second round of challenge
by recruiting Ag-DCs from day 600 to 602. We challenge with the
same antigen and use the same cognate frequency for naïve cells,
but CM populations are maintained in the blood after the primary
response. The resulting dynamics of Ag-specific T cells occurring
in blood are shown in Figure 6.

As above, the primary response is initiated after the first round
of Ag-DC input. Blood Ag-specific T cell numbers rise as the
response continues and peak at day 6 and 8. After the peak, effector
and EM T cells decline while the CM cell population is main-
tained. On day 600, the blood concentration of CM CD4+ T cells
has dropped from 0.059 to 0.023 mm−3, while the CM CD8+ T
cell population remains at 0.16 mm−3. The stable maintenance
of CD8+memory and decline of CD4+memory is in agreement
with mouse LCMV infection data (53). During the recall response,
because of a memory cell population generated during the primary
response that can faster and more strongly respond to the same
antigen, both CD4+ and CD8+ T cells in the blood exceed peak
levels of their primary response, peaking at 1.07 mm−3 for CD4+
and 6.05 mm−3 for CD8+ T cells. The recall response is more
than twice as large as primary response for CD8+ T cells, but
only marginally increased (18%) for CD4+ T cells. Such differ-
ences in CD4+ and CD8+ recall responses have been observed in
LCMV experiments as well (68). After the recall response, higher
levels of CM cells are maintained as compared to following the
primary response (Figure 7). After the recall response ceases, the

FIGURE 7 | Simulated cell dynamics in the blood compartment
during a primary and recall response to a hypothetical acute
infection (log scale). (A) Concentration of CD4+T cells of different

subsets in the blood. (B) Concentration of CD8+T cells of different
subsets in the blood. The left parts of the graphs are identical to those of
Figure 6.
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blood concentrations of CM cells are 0.094 and 0.84 mm−3 for
CD4+ and CD8+ T cells, respectively. These results indicate that
the antigen-specific immune memory is reinforced after the sec-
ond round of challenge, as the central memory population formed
in the primary challenge gets further expanded during the second
round of challenge.

COGNATE NAÏVE CELLS UNDERGO HETEROGENEOUS EXPANSION
Recent lineage tracing studies showed that CD8+ T cells have a
heterogeneous differentiation pattern (18, 19). Because the LN
compartment of our model is agent-based, it is possible to track
the fate of each individual cell during a simulated infection. We
take advantage of this feature to validate our model using data
from these recent studies.

Figure 8 shows our lineage tracing analysis for the primary
response. The fraction of each single-cell derived progeny in the
total population is shown in Figure 8A for CD8+ and Figure 8E
for CD4+T cells. For both CD4+ and CD8+T cells, a small num-
ber of progenies have a large expanded population. The average
size of the largest population is ~2000 for CD4+T cells and ~8000
for CD8+T cells. However, the majority of derived progenies have
intermediate to small population sizes, with about 50 for CD4+
T cells and 200 for CD8+ T cells. The maximum population size
of CD8+ T cell is 50-fold larger than the median. The index of
disparity in our simulations is 0.81 for CD8+ T cells, close to
the range of 0.85–0.95 shown in Ref. (19). These results indicate
our model matches well with the heterogeneous differentiation
experimental observations. While the corresponding experimen-
tal studies were performed only for CD8+ T cells, we are able to
use our model to simulate the dynamics of CD4+ T cells as well.
Our model predicts less heterogeneity for CD4+ T cells, with an
index of disparity of 0.82 and a 50-fold difference between largest
and median progenies (Figure 8F).

We also assessed the composition of these sub-populations.
In Figures 8C,G, the proportion of CM cells of each single-
cell derived progeny is plotted against the population size. These
results suggest that progenies with a higher proportion of CM cells
tend to have a smaller expanded population during the primary
response. We calculated the Spearman correlation coefficients
between each subtype and the total number of expanded cells
(Figures 8D,H). The correlations are strong between effectors and
overall total population size, but weak between CM and the overall
population size. This is comparable to the results from Ref. (18).
Thus, in addition to our other findings, these results confirm those
previously identified (18, 19) that the magnitude of the primary
response for single-cell derived progenies might not be the sole
predictor of immune memory. We next study, which mechanisms
influence the heterogeneous differentiation and clonal expansion
processes of T cells.

ANTIGEN PRESENTATION BY DCs INFLUENCES OUTCOME OF AN
IMMUNE RESPONSE
It is no surprise that antigen stimulation plays a crucial role in
T cell activation and differentiation (35, 69). However, it is dif-
ficult to conduct experiments that quantitatively determine the
mechanism of dependency. Here we varied the number of Ag-
DCs recruited to LN in a range of 50–300 and the levels of pMHC
molecules on the surface Ag-DCs from 100 to 300, and analyzed
how they influence production of effector and CM cells. Model
pMHC levels are used as a proxy for DC stimulation strength.
Results are shown in Figure 9.

Increasing the number of Ag-DC recruitment promotes the
output of both effector and memory T cells from the LN. The
number of Ag-DC has a larger impact when the pMHC molecule
levels are low. This result indicates that more Ag-DCs are bene-
ficial for the production of higher levels of effector and memory

FIGURE 8 | Heterogeneity of expandedT cell families. Upper panel: CD8+
T cells. (A) Sizes of expanded CD4+T cell population from each single-cell
derived progeny (strain), represented as fraction of total expanded population
as done in Buchholz et al. (18) and Gerlach et al. (19). (B) Maximum and
median size of CD4+T cell progenies. (C) Correlation between population

size and the percentage of central memory cells. Each dot represents
progeny of a single-cell derived progeny. (D) Spearman correlation of CM,
EM, and effector CD4+T cell number versus total expanded population.
(E–H) Prediction of CD4+ T cell heterogeneity in clonal expansion. The four
panels correspond to the same readouts as for panels A–D.
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FIGURE 9 | SimulatedT cell differentiation is influenced by number of
DCs and number of pMHC molecules displayed. X -axis: number of
pMHC molecules on an Ag-DC. Bar color: number of Ag-DCs recruited to

the grid. (A,B) Number of central memory (CM) cells produced. (C,D)
Number of effector cells produced. (E,F) Fraction of CM cells in the
expanded population.

cells, but this benefit is diminished when pMHC molecule levels
are high.

Interestingly, for each subset of cells, the effects of increased
pMHC molecule levels on the surface of DCs are different. pMHC
levels are always negatively correlated with CM output of CD4+
T cells (Figure 9A). However, the highest numbers of effector
CD4+ T cell output are reached at intermediate levels of pMHC
(Figure 9C). CD8+ T cells are affected in a different pattern.
Intermediate levels of pMHC are required for higher CM pro-
duction (Figure 9B). Our explanation for this difference is that
we defined our rules based on LCMV experiments and other
studies suggesting that CD8+ T cell memory establishment is
dependent on DC licensing by effector CD4+ T cells, and inter-
mediate levels of pMHC are required so that LDC numbers will
not be the bottleneck for memory CD8+ T cell production. Also

different than CD4+ T cells, effector CD8+ T cell output first
increases with pMHC levels on DCs and then remains relatively
stable (Figure 9D). The fraction of CM among total expanded
population is shown in Figures 9E,F.

In general, our simulations suggest that in order to obtain
high CD4+ T CM cell production, DCs with lower pMHC lev-
els should be provided. However, DCs with high pMHC levels
maximize CD8+ effector output. CD4+ effectors and CD8+ CM
T cells require intermediate pMHC levels. Increased recruitment
of Ag-DC boosts all four subsets to different extents.

SENSITIVITY ANALYSIS DETECTS MECHANISMS CORRELATED WITH
STRENGTH OF RECALL RESPONSES
We also studied how other mechanisms, such as thresholds of dif-
ferent checkpoints in the LN, conversion rates of EM to CM, and
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recruitment rate to sites of infection from the blood, shape model
outputs (see Table S3 in Supplementary Material for parameters
varied. The mechanisms they control are explained in the col-
umn “description”). We performed intra- and inter-compartment
sensitivity analysis (see Materials and Methods), and PRCCs were
calculated to assess the monotonic correlation between values of
the parameters governing these mechanisms, and outputs includ-
ing: LN production and blood concentration of effector and CM
cells in both primary and recall responses (Tables 1–3).

We found that production of effector cells in primary responses
is most sensitive to the following mechanisms: binding time (neg-
atively correlated, Tables 1 and 2), the probability of effectors
differentiating into EM (negatively correlated, Tables 1 and 2), and
extra recruitment in inflammation (positively correlated, Tables 1
and 2). In addition, CD4+ T cell effector output negatively corre-
lates with the stimulation threshold for priming but positively
correlates with the threshold for differentiation into effectors
(Tables 1 and 2); CD8+ T cell effector cell output negatively cor-
relates with extra recruitment of CD4+ T cells (Tables 1 and 2).
Generation of CM cells during a primary response is sensitive to

a similar set of mechanisms, along with some additional ones:
CD4+ T cell CM output is negatively affected by the efficiency
of CM cells to accumulate stimulation signal; CD8+ T cell CM
output is positively correlated with threshold to become effectors
(Tables 1 and 2). Interestingly, in the recall response, the mecha-
nisms to which effector cell production are sensitive are consistent
with that of those affecting effector cells and CM cells during pri-
mary responses. For instance, the LN output of effectors in the
recall response has a more significant negative correlation with
EM differentiation probability than in the primary response, blood
CM concentration. This is in accordance with the intuition that
a strong recall response requires both memory generation dur-
ing a primary response and priming efficiency during secondary
challenge.

We then perform an inter-compartment sensitivity analysis
by comparing how the readouts for the same cell types from
both LN and blood are affected by corresponding LN and blood
mechanisms. LN mechanisms affect both LN and blood outputs
in similar ways, but only blood outputs are sensitive to blood
mechanisms (Table 3). The recruitment rates of effector cells to

Table 1 | PRCC results: tracking sensitivity of outputs of LN cells to LN mechanisms.

Primary Recall

Mechanism PRCC Significance Mechanism PRCC Significance

CD4+ EFFECTOR GENERATED FROM LN

Bind time −0.90 −−− Bind time −0.82 −−−

Probability EM −0.73 −−− Probability EM −0.64 −−−

Priming checkpoint threshold −0.42 −−− Priming checkpoint threshold −0.40 −−−

CM bind time −0.29 −− CM bind time −0.37 −−−

DC licensing probability −0.26 −− DC licensing probability −0.29 −−

Extra recruitment 0.38 +++ Efficiency CM −0.27 −−

Effector checkpoint threshold 0.67 +++ Extra recruitment 0.35 +++

Effector checkpoint threshold 0.61 +++

CD4+ CM GENERATED FROM LN

Bind time −0.88 −−− Bind time −0.62 −−−

Priming checkpoint threshold −0.70 −−− Priming checkpoint threshold −0.48 −−−

Efficiency CM −0.29 −− CM bind time −0.44 −−−

CM bind time −0.26 −− Efficiency CM −0.33 −−−

Extra recruitment 0.33 +++ Extra recruitment 0.26 ++

Effector checkpoint threshold 0.81 +++ Effector checkpoint threshold 0.61 +++

CD8+ EFFECTOR GENERATED FROM LN

Extra recruitment (CD4) −0.56 −−− Probability EM −0.74 −−−

Bind time −0.41 −−− Extra recruitment (CD4) −0.56 −−−

DC licensing prob. −0.25 −− Bind time (CD8) −0.37 −−−

Probability EM −0.25 −− DC licensing probability −0.21 −−

CD8+ CM GENERATED FROM LN

Bind time −0.71 −−− Efficiency CM −0.42 −−−

Priming checkpoint threshold −0.71 −−− CM bind time −0.35 −−−

CM bind time −0.19 − Priming checkpoint threshold −0.22 −

Extra recruitment 0.30 ++ Bind time −0.18 −

Effector checkpoint threshold 0.77 +++ Prob. EM 0.33 +++

Effector checkpoint threshold 0.35 +++

−/+, p < 0.001, with negative or positive correlation;−−/++, p < 10−6, with negative or positive correlation;−−−/+++, p < 10−9, with negative or positive correlation.
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Table 2 | PRCC results: tracking sensitivity of concentrations of cells in Blood to LN mechanisms.

Primary Recall

Mechanism PRCC Significance Mechanism PRCC Significance

CD4+ EFFECTOR CONCENTRATION

Bind time −0.83 −−− Bind time −0.71 −−−

Probability EM −0.74 −−− Probability EM −0.67 −−−

Priming checkpoint threshold −0.42 −−− DC licensing probability −0.39 −−−

DC licensing probability −0.41 −−− CM bind time −0.38 −−−

CM bind time −0.29 −− Priming checkpoint threshold −0.35 −−−

Extra recruitment 0.32 +++ Efficiency CM −0.25 −−

Effector checkpoint threshold 0.64 +++ Extra recruitment 0.27 ++

Effector checkpoint threshold 0.53 +++

CD4+ CM CONCENTRATION

Bind time −0.89 −−− Bind time −0.70 −−−

Priming checkpoint threshold −0.71 −−− Priming checkpoint threshold −0.53 −−−

Efficiency CM −0.30 −− CM bind time −0.43 −−−

CM bind time −0.26 −− Efficiency CM −0.33 −−−

Extra recruitment 0.33 +++ Extra recruitment 0.26 ++

Effector checkpoint threshold 0.81 +++ Effector checkpoint threshold 0.66 +++

CD8+ EFFECTOR CONCENTRATION

Extra recruitment (CD4+) −0.57 −−− Probability EM −0.72 −−−

Bind time −0.31 −−− Extra recruitment (CD4+) −0.55 −−−

DC licensing probability −0.28 −− Bind time (CD8+) −0.28 −−

Probability EM −0.27 −− DC licensing probability −0.23 −

Bind time (CD4+) 0.18 +

CD8+ CM CONCENTRATION

Probability EM −0.78 −−− Probability EM −0.82 −−−

Bind time −0.53 −−− Extra recruitment (CD4+) −0.42 −−−

Priming checkpoint threshold −0.39 −−− Bind time −0.38 −−−

Extra recruitment (CD4+) −0.37 −−− Efficiency CM −0.30 −−

Effector checkpoint threshold 0.52 +++ CM bind time −0.27 −−

Priming checkpoint threshold −0.25 −−

Effector checkpoint threshold 0.39 +++

−/+, p < 0.001, with negative or positive correlation;−−/++, p < 10−6, with negative or positive correlation;−−−/+++, p < 10−9, with negative or positive correlation.

Table 3 | PRCC results: tracking sensitivity of concentrations of cells in blood to blood mechanisms.

Primary Recall

Mechanism PRCC Significance Mechanism PRCC Significance

CD4+ EFFECTOR CONCENTRATION

Recruit to site of infection (ξE4) −0.79 −−− Recruit to site of infection (ξE4) −0.54 −−

CD4+ CM

Recruit to site of infection (ξEM4) −0.39 − Probability EM 0.44 +

Probability EM −0.80 +++

CD8+ EFFECTOR CONCENTRATION

Recruit to site of infection (ξE8) −0.39 − Recruit to site of infection (ξE8) −0.43 −

Recruit to site of infection (ξEM8) −0.36 −

Probability EM 0.72 +++

CD8+ CM CONCENTRATION

Recruit to site of infection (ξEM8) −0.41 − Recruit to site of infection (ξEM8) −0.45 −

Probability EM 0.93 +++ Probability EM 0.83 +++

−/+, p < 0.001, with negative or positive correlation;−−/++, p < 10−6, with negative or positive correlation;−−−/+++, p < 10−9, with negative or positive correlation.
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sites of infection reduce blood effector levels. Conversion rates
from EM to CM induce both blood CD4+ and CD8+ T cell CM
levels. Also, our predictions suggest that dynamics occurring in
blood do not significantly affect dynamics occurring in LNs dur-
ing both primary or recall responses, as no significant correlation
is detected.

DISCUSSION
Single cognate naïve T cells have been known to be able to gener-
ate both memory and effector progenies. Moreover, recent studies
further demonstrated that the fate of identical naïve cells is hetero-
geneous. By understanding which mechanisms contribute to this
heterogeneity and in which way they are contributing, it is possi-
ble to manipulate the priming environment so that differentiation
of activated precursor cells can be routed to favor generation of
a desired population toward specific needs. For example, in the
context of vaccination, establishing a significant antigen-specific
CM population has a high priority. On the other hand, massive
production of effector cells could be the key issue considered when
using immunotherapies against active diseases. Our new findings
suggest that pMHC number on the surface of APCs provides such
a handle; and using our model we can enhance the production
of specific T cell types (CD4+/CD8+, effector/memory) in dif-
ferent ideal ranges. By fitting our model to data collected from
experiments designed for a specific antigen, we will be capable
of making quantitative predictions of DC stimulation levels that
maximize the generation of particular subsets of T cells, which are
most relevant to the circumstances.

In order to study how mechanisms in LN and blood influence
the generation of effector and memory T cells, we developed a
hybrid model with both LN and blood compartments to simulate
immune responses in both primary and recall challenges. Using
this model, we generated T cell dynamics in blood and LN during
infections that are similar to murine models (61–63) and also can
capture heterogeneous differentiation observations of individual
cognate naïve T cells (18, 19). Furthermore, our model predicts
that the outputs of different subsets of T cells that arise during
immune responses, including effector and memory, CD4+, and
CD8+ T cells, respond differently to the amount of stimulation
they receive from antigen-bearing DCs during priming. Simula-
tions showed that CD4+ CM T cell generation is maximized at
low pMHC-II levels, and intermediate pMHC-II levels result in
the highest number of effector CD4+ T cell generation. However,
further increases in pMHC-II levels reduce generation of both
effector and CM CD4+ T cells. On the other hand, intermediate
pMHC-I level is required to generate the highest levels of CD8+
CM cells, and high pMHC-I level favors CD8+ T effector cell
generation.

Results from our previous study using a 2D model showed
pMHC levels always compensate for DC numbers to induce effec-
tor T cell production (25) in a trade-off fashion. We find a similar
trend herein for CD8+ T cells, and for CD4+ T cells, when DC
numbers are small. But when DC numbers are large, high pMHC
levels are playing an opposite (for CD4+ T cell) or insignificant
(for CD8+ T cell) role. This can be explained by the findings from
our 3D LN model (30), that DC searching time for T cells is far

more efficient in a 3D model environment than 2D. Thus, even for
high total DC numbers in the 2D study, there are likely insufficient
DCs, suggesting what we observed in the 2D model represents only
the case with relatively low DC numbers in 3D.

While our model is able to make some important predictions,
further development to include more detail regarding events dur-
ing antigen presentation is called for. First, DCs are known to
be a heterogeneous population, with subsets of cells diversified
in origin and function. Different DC subsets are differentially
involved in T cell priming. For example, lymphoid organ-resident
DCs are specialized for cross-presentation, while inflammatory
DCs stimulate TH17 polarization (70, 71). Furthermore, the stim-
ulation that T cells receive from DCs are also combinations of
multiple signals, including TCR avidity, co-stimulation regula-
tion, and environmental, such as inflammatory cytokine profiles.
Reducing these signals to a general stimulation signal package
represented with pMHC levels as done here helps conceptual-
ize the question and generate theoretical insights; nonetheless,
adding these details will confer power for predicting more precise
manipulations of the immune response. Harnessing the power
of both mathematical and computational modeling and wet-lab
investigation, our systems biology approach can eventually pro-
vide guidance for clinical practices in an era of personalized
medicine.
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T and B cell repertoires are collections of lymphocytes, each characterized by its antigen-
specific receptor. We review here classical technologies and analysis strategies developed
to assess immunoglobulin (IG) and T cell receptor (TR) repertoire diversity, and describe
recent advances in the field. First, we describe the broad range of available methodolog-
ical tools developed in the past decades, each of which answering different questions
and showing complementarity for progressive identification of the level of repertoire alter-
ations: global overview of the diversity by flow cytometry, IG repertoire descriptions at the
protein level for the identification of IG reactivities, IG/TR CDR3 spectratyping strategies,
and related molecular quantification or dynamics of T/B cell differentiation. Additionally,
we introduce the recent technological advances in molecular biology tools allowing deeper
analysis of IG/TR diversity by next-generation sequencing (NGS), offering systematic and
comprehensive sequencing of IG/TR transcripts in a short amount of time. NGS provides
several angles of analysis such as clonotype frequency, CDR3 diversity, CDR3 sequence
analysis, V allele identification with a quantitative dimension, therefore requiring high-
throughput analysis tools development. In this line, we discuss the recent efforts made
for nomenclature standardization and ontology development. We then present the vari-
ety of available statistical analysis and modeling approaches developed with regards to
the various levels of diversity analysis, and reveal the increasing sophistication of those
modeling approaches. To conclude, we provide some examples of recent mathematical
modeling strategies and perspectives that illustrate the active rise of a “next-generation”
of repertoire analysis.

Keywords: diversity analysis, immune receptors, next-generation sequencing, modeling, statistics, gene nomen-
clature, B cell repertoire,T cell repertoire

INTRODUCTION
T and B cell repertoires are collections of lymphocytes, each
characterized by its antigen-specific receptor. The resources avail-
able to generate the potential repertoires are described by the
genomic T cell receptor (TR) and immunoglobulin (IG) loci.
TR and IG are produced by random somatic rearrangements of
V, D, and J genes during lymphocyte differentiation. The prod-
uct of the V-(D)-J joining, called the complementarity deter-
mining region 3 (CDR3) and corresponding to the signature
of the rearrangement, binds the antigen and is responsible for
the specificity of the recognition. During their differentiation,
lymphocytes are subjected to selective processes, which lead to
deletion of most auto-reactive cells, selection, export, and expan-
sion, of mature T and B cells to the periphery. Primary IG and

TR repertoires are therefore shaped to generate the available
peripheral or mucosal repertoires. In addition, several differ-
ent functional T and B cells subsets have been identified, with
differential dynamics and antigen-specific patterns. These avail-
able repertoires are dramatically modified during antigen-driven
responses especially in the inflammatory context of pathogen
infections, autoimmune syndromes, and cancer to shape actual
repertoires. When considering the importance of efficient adap-
tive immune responses to get rid of infections naturally or to avoid
auto-reactive damages, but also for therapeutic purposes such as
vaccination or cell therapy, one realizes the relevance of under-
standing how lymphocyte repertoires are selected during differ-
entiation, from ontogeny to aging, and upon antigenic challenge.
However, immune repertoires of expressed antigen receptors are
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built by an integrated system of genomic recombination and con-
trolled expression, and follow complex time-space developmental
patterns. Thus, an efficient repertoire analysis requires both (1)
methods that sample and describe the diversity of receptors at
different levels for an acceptable cost and from a little amount
of material and (2) analysis strategies that reconstitute the best
multidimensional picture of the immune diversity from the
partial information provided by the repertoire description as
reviewed in Ref. (1). In the following sections, we summarize
technologies developed over the past decades to describe lympho-
cyte repertoires and we present the growing number of analysis
tools, evolving from basic to sophisticated statistics and mod-
eling strategies with regards to the level of complexity of the
data produced.

METHODS DEVELOPED TO DESCRIBE THE IG AND TR
REPERTOIRES
B and T lymphocyte repertoires can be studied from different
lymphoid tissues and at various biological levels, such as cell mem-
brane or secreted proteins, transcripts or genes, according to the
techniques used. Fluorescence microscopy or flow cytometry tech-
niques allow to track and sort particular cell phenotypes and to
quantify the expressed repertoire at the single-cell level with V
subgroup-specific monoclonal antibodies. Alternatively, the IG or
TR diversity may be also analyzed using proteomics methods from
either the serum (for IG) or dedicated cell extracts. Finally, molec-
ular biology techniques assess the repertoire at the genomic DNA
or transcriptional levels, qualitatively and/or quantitatively.

ANALYSIS OF IG AND TR REPERTOIRES AT THE PROTEIN LEVEL
Flow cytometry single-cell repertoire analysis
The frequency of lymphocytes expressing a given IG or TR can
be determined using flow cytometry when specific monoclonal
antibodies are available. This technique allows for the combined
analysis of the antigen receptor and of other cell surface mark-
ers. Currently, using flow cytometry, up to 13 parameters can be
routinely studied at once, reaching 20 parameters with the last
generation flow cytometers and 70–100 parameters with mass
cytometry (2). Seminal studies in mice using specific anti-TRBV
antibodies have led to the characterization of the central tolerance
selection processes that occur in thymus (3–5). Later on, a com-
prehensive description of the human TRBV repertoire was setup
(6), when monoclonal antibodies became available for most of the
TRBV subgroups. Repertoire analysis with flow cytometry pro-
vides a qualitative and quantitative analyses of the variable region,
often done on heterogeneous cell populations, in order to deci-
pher, for example, selection events related to aging, perturbations,
and treatments (7). However, this technology is naturally limited
by the availability of specific monoclonal antibodies, and does not
address more detailed issues such as junction diversity. Further-
more, polymorphism of the IG or TR genes (8, 9) may constitute a
serious limitation for a systematic survey using these approaches.

Proteomic repertoire analysis for serum immunoglobulins
Recent developments of proteomics tools now offer sensitivity
levels applicable to IG repertoire analysis. Such a description at
the protein level takes into account all post transcriptional and
translational modifications.

PANAMA-blot technology. A semi-quantitative immunoblot,
called the PANAMA-blot technique (10), allows for the identifica-
tion of the antibody reactivities present in collection of sera (or
cell culture supernatant) against a given source of antigens (10–
12). Briefly, a selected source of antigens is subjected to preparative
SDS-PAGE, transferred onto nitrocellulose membranes, then incu-
bated with the serum to be tested allowing for the revelation of the
bound antibodies using an appropriate secondary antibody cou-
pled to alkaline phosphatase. Computer-assisted analysis of the
densitometric profiles allows for the rescaling and the quantitative
comparison of patterns of antibody reactivity from individuals in
different groups. A large amount of data is generated when test-
ing a range of sera against various sources of antigens. Statistical
analyses are included in the PANAMA-Blot approach (as described
further). This global analysis helped to reveal that the IgM reper-
toire in mice is selected by internal ligands and independent of
external antigens (13).

This method can also lead to identify IG reactivity patterns
specific for a type of pathology or clinical status and has been
applied to both fundamental and clinical analysis. In particular, it
was used to analyze human self-reactive antibody repertoires and
their potential role for down-modulating autoimmune processes
(14–16).

Antigen micro-array chips. More recently, antigen micro-array-
based technology coupled to a complex two-way clustering bioin-
formatics analysis was developed to evaluate the serum repertoire
antibodies from diabetes-prone individuals and revealed their
predictive or diagnostic value. In brief, a range of antigens (pro-
teins, peptides, nucleotides, phospholipids. . .) were plated onto
glass plates and incubated with sera from individuals (human
diabetes patients or mice in an experimental model of dia-
betes). The intensity of reactivity of the serum IG for each
peptide was determined and scored against the control reactiv-
ity. Clustering analysis was then implemented to determine a
potential antigen signature that significantly sorts out diabetes
from non-diabetes individuals. In this way, it was found that
the patterns of IgG antibodies expressed early in male NOD
mice can mark susceptibility or resistance to diabetes induced
later and that it is different than the pattern characteristic of
healthy or diabetic mice after disease induction (17). Similarly,
this clustering approach was applied in humans to successfully
separate human subjects that are already diabetic from healthy
people (18).

REPERTOIRE ANALYSIS AT THE GENOMIC DNA LEVEL
Other strategies that cover IG or TR repertoire analyses have been
developed at the genomic DNA level. Firstly, CDR3 spectratyping
studies (detailed in the following section) have been carried out at
the DNA level mostly to address issues related to B or T cell devel-
opment (19, 20). More recently, an original multiplex genomic
PCR assay coupled to real-time PCR analysis was developed to
provide a comprehensive description of the mouse T cell receptor
alpha (TRA) repertoire during development (21). Although these
approaches can be applied to all IG isotypes and TR, they have
not been used as much as transcript CDR3 spectratyping due to
sensitivity and heterozygosity issues.
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Immunoglobulin or T cell receptor repertoires can also be
assessed by following the diversity of rearrangement deletion
circles. Since they are produced by the V-(D)-J recombination
machinery when the joint signal is formed and diluted in daugh-
ter cells, they give a good representation of recently generated
T or B cells. This technique has been particularly useful for
describing the restoration of T cell diversity following highly
active antiretroviral therapy in HIV-infected patients (22) and
has been used to model thymic export (23, 24) as well as to
demonstrate continued contribution of the thymus to reper-
toire diversity, even in older individuals (25). It also reveals
that thymic output is genetically determined, and related to
the extent of proliferation of T cells at DN4 stage in mice
(26). However, their analysis does not provide much insight
into the level of diversity since the signal joint does not vary
for a given combination of genes. Therefore, the interest of
such analyses is reached when combined with CDR3 spec-
tratyping analyses to know whether a repertoire perturbation is
rather attributable to newly produced T cells or peripheral T
cell proliferation.

V-(D)-J JUNCTION ANALYSIS OF IG AND TR TRANSCRIPT REPERTOIRES
Original molecular-based strategies for analyzing repertoire diver-
sity relied on cloning and hybridization of molecular probes spe-
cific for IGHV gene subgroups first by RNA colony blot assay (27).
This led to the observation that IGHV gene usage is characteristic
of mouse strain and is a process of random genetic combination by
equiprobable expression of IGHV genes (28). The study of selec-
tion processes revealed that the IGHV region-dependent selection
determines clonal persistence of B cells (29) and that selection with
age leads to biased IGHV gene expression (30).

In situ hybridization on single-cells revealed that during mouse
ontogeny and early development of B cells in bone marrow,
there is a non-random position-dependent IGHV gene expression,
favoring D-proximal IGHV gene subgroup usage (31). Thereafter,
sequencing of PCR-amplified cDNA collections were obtained
from samples of interest. Although fastidious, these early studies
have been useful in defining the basis of human IG and TR reper-
toires in terms of overall distribution, CDR3-length distribution,
and V-(D)-J use (32–35), sometimes leading to the identifica-
tion of new IG or TR genes. Later, more practical techniques
have been developed for large-scale analysis of lymphocyte reper-
toires, such as quantitative PCR, micro-array, and junction length
spectratyping, as described below.

Quantitative RT-PCR for repertoire analysis
In parallel to qualitative CDR3 spectratyping techniques (see
section below), quantitative PCR strategies were developed (36).
Coupling the two techniques for all V domain-C region combi-
nations provides a complete qualitative and quantitative picture
of the repertoire (37–39) described by up to 2,000 measurements
per IG isotype or TR for one sample. With the development of
real-time quantitative PCR, this approach opened the possibil-
ity for a more precise evaluation of repertoire diversity (39–41).
Complementary tools have been also developed in order to allow
normalization of spectratype analysis such as studies by Liu et al.
(42) and Mugnaini et al. (43).

Matsutani et al. (44) developed another method to quantify
the expression of the human TRAV and TRBV repertoires based
on hybridization with gene specific primers coated plates. The
cDNA from PBMC extracted RNA are ligated to a universal adap-
tor which allows for a global amplification of all TRAV or TRBV
cDNAs. The PCR products are then transferred onto microplates
coated with oligonucleotides specific for each TRAV or TRBV
regions, and the amount of hybridized material is quantified. This
technique was used to analyze the TR repertoire diversity of trans-
planted patients (45) and adapted to the study of mouse TRAV
and TRBV repertoires (46). VanderBorght et al. also developed a
semi-quantitative PCR-ELISA-based method for the human TRAV
and TRBV repertoire analysis (38). The combined usage of digoxi-
genin (DIG)-coupled nucleotides and DIG-coupled reverse TRAC
or TRBC primers allowed for a quantitative measurement of the
amount of amplified DNA by a sandwich ELISA.

Du et al. (47) later setup a megaplex PCR strategy to char-
acterize the antigen-specific TRBV repertoire from sorted IFNγ-
producing cells after Mycobacterium infection. The clonotypic
TRBV PCR products were used for Taqman probes design to
quantify the expression of the corresponding clonotypes from
ATLAS-amplified SMART cDNAs.

Direct measurement of lymphocyte diversity using micro-arrays
Another technology, similar to the one just discussed, has been
developed by the group of Cascalho et al. which allows for a direct
measurement of the entire population of lymphocyte-receptors.
This is accomplished by hybridization of lymphocyte-receptor
specific cRNA of a lymphocyte population of interest to random
oligonucleotides on a gene chip; the number of sites undergoing
hybridization corresponds to the level of diversity. This method
was validated and calibrated using control samples of random
oligonucleotides of known diversity (1, 103, 106, 109) (48, 49)
and successfully demonstrated that central and peripheral diversi-
fication of T lymphocytes is dependent on the diversity of the
circulating IG repertoire (49, 50). Similarly, a highly sensitive
micro-array-based method has been proposed to monitor TR
repertoire at the single-cell level (51).

CDR3 spectratyping techniques
Immunoscope technology. Among various techniques used to
analyze the T or B cell repertoires, Immunoscope, also known
as CDR3 spectratyping (52, 53) consists in the analysis of the
CDR3-length usage so that antigen-specific receptor repertoires
can be described by thousands of measurements. In the case of
naive murine repertoires, T cell populations are polyclonal and
analysis typically yields eight-peak regular bell-shaped CDR3 dis-
plays (wrongly assumed to be Gaussian), each peak corresponding
to a given CDR3-length. When an immune response occurs, this
regular polyclonal display can be perturbed: one can see one or sev-
eral prominent peaks that correspond to the oligoclonal or clonal
expansion of lymphocytes. A complete description of this tech-
nique and its applications to clinical studies has been published
elsewhere (54).

In the original Immunoscope publication, Cochet et al. (55)
analyzed the T cell repertoire after the immunization of mice with
the pigeon cytochrome c. They provided the first description of

Frontiers in Immunology | T Cell Biology November 2013 | Volume 4 | Article 413 | 246

http://www.frontiersin.org/T_Cell_Biology
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Six et al. Next-generation repertoire

an ex vivo follow-up of a primary T cell specific response in a
mouse model. Their second paper analyzed the average CDR3-
lengths as a function of TRBV-TRBJ combinations. In particular,
the authors found a correlation between TRBV CDR1 and major
histocompatibility (MH) haplotype (52). This group later pub-
lished a large amount of original studies in various models such as
lymphocyte development (40, 56–63), kinetics of antigen-specific
responses (64–67), viral infection (68, 69), autoimmunity (70,
71), tumor-associated disease (72), and analysis of allogeneic T
cell response and tolerance after transplantation (73). Notably,
the combination of CDR3 spectratyping with flow cytometry-
based IG or TR V frequency analysis provides a more compre-
hensive assessment, such as in Pilch et al. (74). For example,
such an approach revealed the constriction of repertoire diver-
sity through age-related clonal CD8 expansion (75). Similarly,
a combination of CDR3 spectratyping, flow cytometry, and TR
deletion circle analysis has allowed to define age-dependent inci-
dence on thymic renewal in patients (76) or to evaluate the effects
of caloric restriction in monkeys to preserve repertoire diversity
(77). CDR3-length spectratyping was also used in other mod-
els, such as rainbow trout, to analyze TRB repertoire and its
modifications induced by viral infection (78–80). While no tool
such as monoclonal antibodies to T cell marker(s) was avail-
able in this model, this approach demonstrated that fish could
mount specific T cell responses against virus, which could be
found in all individuals (public clonotypes) or not (private clono-
types). Similar strategies, developed by other groups (81) and
following the same approach in parallel, analyzed the IG reper-
toire in Xenopus at different stages of development, describing a
more restricted IG junction diversity in the tadpole compared to
the adult.

Gorski et al. (82) developed their own CDR3 spectratyping
technique to analyze the complexity and stability of circulating
αβT cell repertoires in patients following bone marrow transplan-
tation as compared to normal adults. They showed that repertoire
complexity of bone marrow recipients correlates with their state
of immune function; in particular, individuals suffering from
recurrent infections associated with T cell impairment exhibited
contractions and gaps in repertoire diversity. The detailed proce-
dure for this technique has been published in Maslanka et al. (83).
A variation of this technique has been reported later by Lue et al.
(84), relying on a compact glass cassette, a simpler device than the
usual automated plate DNA sequencers.

Alternative technologies. Alternative CDR3 spectratyping tech-
niques have been described such as single-strand conformation
polymorphism (85–87) and heteroduplex analysis (88–91). These
methods differ from the CDR3 spectratyping/Immunoscope tech-
nique mostly in the way PCR products are analyzed by performing
non-denaturing polyacrylamide electrophoresis. The main advan-
tage of these techniques is a more direct assessment of clonal
expansion since PCR products migrate according to their con-
formation properties; therefore, presence of a predominant peak
is strongly indicative of clonality when a smear migration pat-
tern indicates polyclonality. However, these techniques have been
less widely used probably because of the difficulty to make clear
correlations between the expanded peaks across samples.

Another original alternative technique has been described by
Bouffard et al. (92), analyzing products obtained after in vitro
translation of PCR-amplified TR-specific products by isoelec-
tric focusing. With this technique, clonality can also directly be
assessed by looking at the obtained migration profile.

IG/TR REARRANGEMENT SEQUENCING: FROM CLONING-BASED- TO
NEXT-GENERATION-SEQUENCING
In order to get a better description of IG/TR diversity at the
nucleotide sequence level, thus providing fine-tuned description
of the actual diversity, Sanger sequencing approaches relying on
bacterial cloning of rearrangements were performed in physiolog-
ical conditions globally (60, 93–99) or partially to characterize
particular expansions identified by other technologies such as
CDR3 spectratyping (40, 59, 100–102), flow cytometry (103). They
were also used in pathological/infectious conditions (104–107)
sometimes leading to antigen-specific T cell TR identification and
quantification through the combination of antigen-specific T cell
stimulation and cytometry-based cell sorting, anchor-PCR, and
bacterial cloning-based sequencing (108).

These studies pioneered the description of the repertoire and
provided fruitful information regarding the extent and modifi-
cation of the diversity. However, besides being time and cost-
extensive, such approaches have allowed for the analysis of 102–103

sequences, far under the estimated diversity reaching 106–107

unique clonotypes in mice and humans (40, 59, 109).
In the last decade, DNA sequencing technologies have made

tremendous progresses (110) with the development of so called
next-generation sequencers, already reaching four generations
(111). Those instruments are designed to sequence mixtures of
up to millions of DNA molecules simultaneously, instead of indi-
vidual clones separately. Second generation sequencers became
affordable in the last 5 years and have been used for immune reper-
toire analysis, starting with the seminal work of Weinstein et al.
(112) where the IG repertoire of Zebrafish has been described
by large-scale sequencing. Consequently, exploratory works by
other groups provided an overview of the complex sequence land-
scape of immune repertoires in humans (113–118). More recent
work aimed at addressing fundamental questions such as lineage
cells commitment (119–122), generation of the diversity processes
(123–125), and diversity sharing between individuals (126, 127).
Finally, the power of this technology has been validated in the
clinic as well (128, 129).

As seen above for other technologies, combinations of
approaches have been applied to NGS. Notably, deep sequencing
has been used in combination with CDR3-length spectratyp-
ing by some groups to study human (130) or rainbow trout IG
(131) repertoire modifications after vaccination against bacteria
or viruses. In the latter, pyrosequencing performed for relevant
VH/Cµ or VH/Cτ junctions identified the clonal structure of
responses, and showed, for example, that public responses are
made of different clones identified by (1) distinct V-(D)-J junc-
tions encoding the same protein sequence or (2) distinct V-(D)-J
sequences differing by one or two conservative amino acid changes
(131) as described for public response in mammals (132, 133).
These studies showed that NGS and traditional spectratyping
techniques lead to remarkably similar CDR3 distributions.
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Several NGS have been developed in the past years using dif-
ferent sequencing technologies characterized with different speed,
deepness and read length. Metzker thoroughly reviewed their prin-
ciples and properties (134). Among them, three platforms, all
offering benchtop sequencers with reduced cost and setup, fit with
immune repertoire analysis in terms of read length and deepness.
The 454/Roche platform uses pyrosequencing technology (135),
which combines single nucleotide addition (SNA) with chemolu-
minescent detection on templates that are clonally amplified by
emulsion PCR and loaded on a picotiter plate. Pyrosequencing
currently has a 500 bp (GS Junior) to 700 bp (GS FLX) sequenc-
ing capacity with a respective deepness of 150,000–3,000,000 reads
per run (134). The Illumina/Solexa platform technology is based
on cyclic reversible termination (CRT) sequencing (an adaptation
of Sanger sequencing) performed on templates clonally amplified
on solid-phase bridge PCR. Protected fluorescent nucleotides are
added, imaged, delabeled, and deprotected cyclically (134), pro-
viding a deeper sequencing (from 15 to 6 billion reads per run for
the MiSeq to the HiSeq2500/2000) of shorter reads (100–250 bp
for the very recent MiSeq) with the possibility to perform pair-
end sequencing (two-side sequencing) to increase the read length
after aligning the generated complementary sequences. A more
recent platform, Ion Torrent/Life Technologies using an imaging
free detection system may open a new era in terms of deepness
(one billion reads per run) of 200 bp reads (136) in a very short
time and on a benchtop sequencer. Importantly, depending on the
technology, errors due to the PCR-based sample preparation and
the sequencing are of major concern. Bolotin et al. (137) evaluated
this issue on TR repertoire analysis of the same donor performed
on the three platforms described previously; algorithms for error
correction have been developed. Indeed, PCR- and sequencing-
related errors represent the major concern for immune repertoire
diversity analysis as they may generate artificial diversity. Illumina
and 454 appear to be the most robust technologies, with Illumina
having the highest throughput and 454 generating the longest
reads. The currently available Ion Torrent platform, although
very promising, has been shown to display the highest rate of
errors in TR (137) and bacterial DNA (138) sequencing. How-
ever, such error corrections must be used with caution since they
may inadvertently underestimate repertoire diversity by removing
rare sequences.

With the power of such approach for genomics and transcrip-
tomics studies in general, constant improvements are achieved to
increase the sequencing deepness and read length as well as to
reduce the cost, therefore offering multitude of biological explo-
rations (139). NGS now permits a comprehensive and quantitative
view of IG and TR diversity by combining and improving the
sensitivity of classical approaches with accurate and large-scale
sequencing. NGS has the power to identify IG or TR specific
for given antigens (in combination with antigen-specific assays)
and to define more complex signatures (i.e., TR sets) related to
disease and/or treatment from heterogeneous T and B cell pop-
ulations. Still, most of the deep sequencing efforts have been
limited to only one chain of the receptor at the repertoire level
(usually the β chain for TR and the heavy chain for IG). Indeed,
current high-throughput approaches do not allow one to assign
which combination of chains (TRA and TRB, or IGH and IGK

or IGL) belong to which cell (140). A recent development by
DeKosky et al. proposed a reasonably high-throughput technology
to assess massively paired IG VH and VL from bulk population
(141). In parallel, Turchaninova et al. (142) have proposed a sim-
ilar approach for the paired analysis of the TRA and TRB chains.
The parallel development of high-throughput microfluidic-based
single-cell sorting will certainly push forward new developments
in the field (143).

However, despite the technological advance, studies so far
have mainly reported CDR3 counting and identification of major
expansions. The complexity of immune repertoires is still a mat-
ter that such approach cannot completely overcome, due to the
paucity of powerful analytical methods. Besides data manage-
ment tools, studies are now starting to extract most of the benefit
from such approach to model the immune repertoire diversity
and dynamics (144), an approach that may help in understand-
ing the interplay between cells and repertoire shaping. Accurate
and powerful statistical analyses are required to manage such
amount of information. Current state will be reviewed in the
following sections.

POTENTIAL AND GENOMIC REPERTOIRES: A QUESTION OF
ONTOLOGY AND ORTHOLOGY
Immune repertoires sensu stricto are expressed by lymphocyte
clones, each carrying a single receptor for the antigen. Such recep-
tors comprise IG and TR in jawed vertebrates (8, 9) and VLR in
Agnathans (145). The sequences of these receptors are available
in databases such as GenBank or EMBL, which are difficult to use
for transversal studies due to inconsistent annotation. The IMGT®
information system (see below) has largely solved this problem set-
ting standardized gene nomenclatures, ontologies and a universal
numbering of the IG/TR V and C domains, thus giving a com-
mon access to standardized data from genome, proteome, genetics,
two-dimensional, and three-dimensional structures (146). The
accuracy and the consistency of the IMGT® data are based on
IMGT-ONTOLOGY, the first, and so far, unique ontology for
immunogenetics and immunoinformatics (147).

With the development of high-throughput sequencing, large
numbers of new sequences of antigen receptor genes have become
available, which can be classified into different categories: genomic
sequences of IG or TR (in germline configuration in genome
assemblies) or fragments of IG/TR transcripts, containing the
CDR3 or not. Also, these datasets can be produced from species
newly sequenced, as well as from new haplotypes of well-described
species.

The annotation of such sequences remains an open question.
Manual annotation is not applicable, and no good automated
approach has been validated yet. A relevant annotation of these
massive datasets will require the integration of genomic and
expression data with existing standardized description charts, as
offered by IMGT®. A standardized annotation is an important
issue since it facilitates the re-utilization of datasets and com-
parison of analyses. Thus, the description of IG and TR poly-
morphisms, the integration of repertoire studies with structural
features of antigen-specific domains, and even the usage of new
genes in genetic engineering rely on a common standard for
nomenclature, numbering, and annotation (147).
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To take advantage of the current standards that have been
established from classical sequencing data during the last 25 years,
new, fast, reliable, and human-supervised annotation methods
will have to be developed, integrating directly high-throughput
sequence information from the increasing number of deep
sequencing platforms and technologies, at different genetic lev-
els (genome, transcriptome, clonotype repertoires). Along this
line, IMGT/HighV-QUEST offers online tools to the scientific
community for the analysis of long IG and TR sequences from
NGS (148).

Special attention can be paid to the orthology/paralogy rela-
tionships between similar antigen receptor genes from differ-
ent species. These characteristics are essential to understand the
dynamics of IG and TR loci. In fact, with many important
lymphocyte subsets characterized by canonical/invariant antigen
receptors, such relationships are critical to transfer functional
knowledge between models. Importantly, the phylogenetic analy-
ses required to reconstitute the evolution of antigen receptor genes
are based on multiple alignments, the quality of which is highly
dependent on common numbering and precise annotation of
sequences.

As far as immune repertoires are characterized by the diversity
of receptors specifically binding antigen/pathogen motifs to initi-
ate a defense response, they might not be limited to lymphocyte
diversifying receptors, e.g., IG, TR, and VLR. The particularity of
these systems is a somatic diversification combined to a clonal
structure of the repertoire, each lymphocyte clone expressing the
product of a recombination/hypermutation and/or conversion
process. However, many other arrays of diverse receptors bind-
ing or sensing pathogens have been discovered in metazoans, in
invertebrates as well as in vertebrates.

In some cases, their diversity is really “innate,” i.e., encoded
in the genome as multiple genes produced by duplications. Fish
NLR, finTRIMs, and NITR, primate KIR, chicken CHIR, or TLR
in sea urchin, constitute good examples of such situations. While
these repertoires may appear as relatively limited, polymorphism
within populations, and differential expression of receptors per
cell upon stimulation represent complex issues, which fall well
into “traditional” repertoire approaches.

In other cases, receptors are subject to diversification processes
much faster than gene duplication, which does not comply with
a clonal selection pattern. The best examples are probably the
DSCAM in arthropods, which hugely diversify by alternative splic-
ing of exons encoding half-IgSF domains (149, 150), and the
FREP lectins in mollusks, of which sequences are highly variable
at the population level, and even between parents and offspring
produced by auto-fecundation (151).

The number of such “innate” repertoires which are not
expressed by clonally selected lymphocytes will likely increase with
deep sequencing of new genomes/transcriptomes, as illustrated by
a recent report from mussel (152). A good example of the impor-
tance of a proper structural description of key domains of recep-
tors is provided by the extensive analysis of LRR motifs in studies
on TLR evolution (153, 154). Further insights into the functions
of such diverse proteins will be provided by the characterization
of their expressed (available) repertoire, at different levels such as
single-cells, cell populations, and animal populations.

Such analyses will require precise identification of genes and
sequences as well as mutations, and a standardized approach of
nomenclature and structural description will be as useful as it
is for the vertebrate IG and TR sequences. Importantly, these
receptors are made of a small number of structural units, such
as IgSF domain or LRR domains, which suggests that standardized
system(s) for sequence annotation could be developed following
IMGT standards (155).

STATISTICAL ANALYSIS AND MODELING OF IMMUNE
REPERTOIRE DATA
STATISTICAL REPERTOIRE ANALYSIS
The description of the repertoire modifications using flow cytom-
etry or Immunoscope provided clear-cut and detailed insight into
the clonal expansion processes during the responses against a
defined antigen (64, 66). However, it is difficult to identify the
relevant alterations of the repertoires in more complex situations
such as pathogen infections or variable genetic backgrounds. For
example, it appeared impossible to identify all significant modi-
fications of TRB Immunoscope profiles during cerebral malaria
by direct ocular comparison (107). Different methods were there-
fore developed to extract from IG and TR repertoire descriptions
the relevant information, to encode it as numerical tables and to
analyze them with statistical models.

CDR3 spectratype perturbation indices
Since the initial description of the CDR3 spectratyping tech-
nique, different scoring indices were developed or derived
from the literature: “relative index of stimulation” (RIS)
(55), “overall complexity score” (156), Reperturb (157), “com-
plexity scoring system” (158), COPOM (159), Oligoscore
(160), TcLandscape (161), “spectratype diversity scoring
system” (162), Morisita-Horn index and Jaccard index (95–97),
“absolute perturbance value” (163). A comparative review of
such scoring strategies was published by Miqueu et al. (164).

In particular, the perturbation index Reperturb was devel-
oped by Gorochov et al. to perform TR repertoire analysis in
HIV patient during progression to AIDS and under antiretrovi-
ral therapy. They could show drastic restrictions in the CD8+

T cell repertoire at all stages of natural progression that per-
sisted during the first 6 months of treatment. In contrast, CD4+ T
cell repertoire perturbations correlated with progression to AIDS
with a return to a diversified repertoire in good responders to
treatment (157).

Soulillou et al. refined this approach by combining the quali-
tative information obtained with usual CDR3 spectratyping with
quantitative information of TRBV usage obtained by real-time
quantitative PCR. They devised a four-dimension representation
that represents TRBV subgroups, CDR3-length and percentage of
TRBV use on three axis chart in addition to a color-coded rep-
resentation of the CDR3 profile perturbation. Using this original
approach, they were able to show that graft rejection is associ-
ated with a vigorous polyclonal accumulation of TRBV mRNA
among graft-infiltrating T lymphocytes, whereas in tolerated grafts
T cell repertoire is strongly altered (161, 165). Their study puts
the emphasis on the importance of not only qualitative but also
quantitative analysis of lymphocyte repertoires.
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Platforms for repertoire data management and statistical analysis
Several platforms have been developed and rely mostly on CDR3
spectratyping and sequencing data, with recent developments to
manage and analyze NGS data.

The ISEApeaks strategy and software were developed in order
to satisfy the needs for efficient automated electrophoresis data
retrieval and management (160, 166). ISEApeaks extracts peak
area and length data generated by software used to determine
fragment intensity and size. CDR3 spectratype raw data, con-
sisting of peak areas and nucleotide lengths for each V-(D)-J-C
combination, is extracted, smoothed, managed, and analyzed. The
repertoires of different samples are gathered in a peak database
and CDR3 spectratypes can be analyzed by different perturba-
tion indices and multivariate statistical methods implemented in
ISEApeaks. We have applied our ISEApeaks strategy in several
studies. In an experimental model of cerebral malaria, we estab-
lished a correlation between the quality of TR repertoire alterations
and the clinical status of infected mice, whether they developed
cerebral malaria or not (107). We contributed to the characteriza-
tion of the membrane-associated Leishmania antigens (MLA) that
stimulates a large fraction of naive CD4 lymphocytes. Repertoire
analyses showed that MLA-induced T cell expansions used TR
with various TRBV rearrangements and CDR3 lengths, a feature
closer to that of polyclonal activators than of a classic antigen
(167). We also revealed repertoire age-related perturbations in
mice (7). ISEApeaks functions for statistical analysis was success-
fully applied to analyze the TR repertoire in fish as shown by our
detailed analysis of the TRB repertoire of rainbow trout IELs, per-
formed in both naive and virus-infected animals. Rainbow trout
IEL TRBV transcripts were highly diverse and polyclonal in adult
naive individuals, in sharp contrast with the restricted diversity
of IEL oligoclonal repertoires described in birds and mammals
(102). More recently, our study of the CD8+ and CD8− αβ T cell
repertoire suggests different regulatory patterns of those T cell pat-
terns in fish and in mammals (168). ISEApeaks was also used to
implement a new statistically based strategy for quantification of
repertoire diversity (159).

Kepler et al. described another original statistical approach for
CDR3 spectratype analysis, using complex procedures for testing
hypotheses regarding differences in antigen receptor distribution
and variable repertoire diversity in different treatment groups.
This approach is based on the derivation of probability distri-
butions directly from spectratype data instead of using ad hoc
measures of spectratype differences (169). A software (called SpA)
implementing this method has been developed and made avail-
able online (170). This approach has been used in a longitudinal
analysis of TRBV repertoire during acute GvHD after stem cell
transplantation (171).

Another group (163) reported the development of a new soft-
ware platform, REPERTOIRE, which allows handling of CDR3
spectratyping data. This software implements a perturbation index
based upon an expected normal Gaussian distribution of CDR3
length profiles.

Owing to the complexity and diversity of the immune sys-
tem, immunogenetics represents one of the greatest challenges
for data interpretation: a large biological expertise, a considerable
effort of standardization, and the elaboration of an efficient system

for the management of the related knowledge were required.
To answer that challenge, IMGT®, the international ImMuno-
GeneTics information system®(http://www.imgt.org), was cre-
ated in 1989 by one of the authors (146). Overtime, it devel-
oped standards that, since 1995, have been endorsed by the
World Health Organization-International Union of Immunolog-
ical Societies (WHO-IUIS) Nomenclature Committee and by the
WHO-International Nonproprietary Names (INN) (172–175).
IMGT® comprises seven databases (sequence, gene, and struc-
ture databases), 17 online tools and more than 15,000 pages of
web resources. Among the databases, IMGT/LIGM-DB, the data-
base for nucleotide sequences (170,685 sequences from 335 species
as of July 2013) and IMGT/GENE-DB, the gene database (3,081
genes and 4,687 alleles) are of great interest for repertoire analy-
sis. Freely available since 1997, IMGT/V-QUEST is an integrated
system for the standardized analysis of collections of IG and TR
rearranged nucleotide sequences (176, 177). A high-throughput
version, IMGT/HighV-QUEST (148), has been released in 2010
for the analysis of long IG and TR sequences from NGS using
the 454 Life Sciences technology. In the same line, other analy-
sis tools are becoming available showing the renewed interest for
repertoire analyses and modeling consecutive to NGS technology
developments (178–181).

Altogether, these efforts highlight the relevance of developing
more efficient and powerful technologies for the evaluation of
repertoire diversity. Notably, two successful French biotech com-
panies (TcLand, Nantes; ImmunID, Grenoble) were created in
the field of repertoire analysis, using different technologies. In
collaboration with ImmunID, we have proposed a novel strategy
for statistical modeling of T lymphocyte repertoire data obtained
in humans and humanized mice. With this model, we revealed
that half of the human TRB repertoire, in terms of propor-
tion of TRBV-TRBJ combinations, is genetically determined, the
other half occurring stochastically (182). In addition, the biotech-
nology company “Adaptive” and the “Repertoire 10K (R10K)
Project” have been recently founded by researchers respectively
from the Fred Hutchinson Cancer Research Center (Seattle and
Washington) and the HudsonAlpha Institute (Huntsville). Both
have developed platforms (immunoSEQ®, iRepertoire®) provid-
ing researchers with a global analysis of the T or B cell receptor
sequence repertoires (183). However, despite the power of this
technology, studies are still limited by the ability to process the
complexity of the information provided. Specific software devel-
opments for the automatic treatment and annotation of IG and
TR sequences and the statistical modeling of repertoire diversity
can still be improved.

Multivariate analysis
As mentioned above, the PANAMA-Blot technique also includes
statistical analysis of the data. Multi-parametric analysis was intro-
duced to compare the global reactivity of antibodies of different
individuals in different groups with a given antigenic extract. This
analysis has been successfully implemented to identify reactivity
patterns specific for a given pathology or clinical status (10–12,
14, 15, 184). Similarly, multi-parametric analysis was also applied
to TRBV spectratype analysis in an experimental cerebral malaria
model (107).

Frontiers in Immunology | T Cell Biology November 2013 | Volume 4 | Article 413 | 250

http://www.imgt.org
http://www.frontiersin.org/T_Cell_Biology
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Six et al. Next-generation repertoire

Hierarchical clustering or classification algorithms have
become very popular with the growing of micro-array-based tran-
scriptome analysis. Although still uncommon for immune reper-
toire analysis, such approaches have been employed to categorize
large sets of repertoire data without a priori (17, 102, 107).

Diversity indices
The concept of immune repertoire has been devised to describe the
diversity of cells involved in the immune system of an individual
(1). As described above, different scoring systems were developed
to assess this diversity, some are heuristics but others have been
borrowed from theoretical ecology and evolution. As reviewed
by Magurran (185), the Shannon entropy, introduced by Claude
Shannon in 1948 for the information theory, is the most used
because it not only integrates the number of different species
but also the relative proportion of each of these species. In 1961,
Alfred Rényi generalized this entropy to a family of functions, like
Species Richness, Simpson, Quadratic, and Berger–Parker indices,
for quantifying the diversity, the uncertainty or randomness of a
system. Most of these indices are implemented in the free software
application Estimates (http://purl.oclc.org/estimates) (186). Alto-
gether, these diversity indices constitute a collection of tools with
their own sensitivity to the variety and the relative abundances
of the species that are perfectly suitable for assessing immune
repertoire diversity. Indeed, the very famous index of variabil-
ity proposed by Kabat and Wu (187) corresponds to the ratio
of Species Richness and Berger–Parker indices. In 1990, Jores
et al. showed that the resolving power of this Wu-Kabat vari-
ability coefficient can be enhanced by increasing the weight on
the frequency distribution of the amino acids in the formula
(188). This approach inspired Stewart et al. (189) to use the
Shannon entropy to demonstrate that TR amino acid composi-
tion is significantly more diverse than that of IG. In the same
way, CDR3 spectratyping data can be analyzed using the relative
abundance of each peak within CDR3 length global distribution.
By doing so, we adjusted the original Shannon entropy, making
it reaching its maximum for a Gaussian distribution, to com-
pare the CDR3 length diversity of splenic IgM, IgD, and IgT
in infected Teleost Fish (131). Recently, the Gini index, used in
ecology or economics to measure the equality of distributions,
was applied to individual TR clones and compared naive and
memory repertoires (190). The development of deep sequenc-
ing techniques ignited a renewed interest in IG/TR repertoire.
Indeed, several studies used high-throughput analysis to describe
TR repertoire of key T cell subsets in human peripheral blood
(115, 126, 191). This approach assessing the repertoire diver-
sity from the relative abundance of each species in the global
distribution can be decomposed hierarchically into components
attributable, respectively, to variations in TRBV-TRBJ combina-
tions and in CDR3-length (113, 117). However, most of these
studies have been limited to the counting of the observed unique
clonotypes. Beside the species richness, ecology-derived indices
have also been applied to assess and compare immune repertoire
diversity. Föhse et al. (119) used the Morisita-Horn similarity
index to compare regulatory T cell repertoires between several
lymphoid organs. In addition, Simpson diversity index, associ-
ated with Shannon entropy, was used to monitor TR repertoire

diversity of HIV-specific CD8 T cells during antiretroviral ther-
apy (192) but also to quantify TR repertoire recovery in the blood
after allogeneic hematopoietic stem cell transplantation (128). In
the same manner, Koning et al. (193) used Shannon’s and Simp-
son’s indices to show the role for the peptide component of the
peptide-MH1 complex on the molecular frontline of CD8+ T
cell–mediated immune surveillance, by comparing the repertoire
diversity of CD8+ T cell populations directed against a variety of
epitopes. In parallel, using Simpson’s index as a metric allowed
Johnson et al. (194) to model mathematically the naïve CD4 T
cell repertoire contraction with age leading them to conclude
that diversity plummet observed around the age of 70 could be
correlated to cell-intrinsic mutations affecting cell division rate
or death.

MODELING STRATEGIES
Modeling approaches have a strong tradition in immunology, usu-
ally at the boundary with other disciplines such as physics (195).
Before deep sequencing data was available, general design prin-
ciples were proposed as desirable features of immune repertoires,
with implications for the observed repertoire diversity and dynam-
ics (196–198). Many efforts have involved the modeling of immune
cell dynamics and the effects of antigens on repertoire diversity,
using differential equations descriptions of the population dynam-
ics (199–201). Recognition in the immune system is often studied
both theoretically and experimentally by probing the dynamics
of cells with a specific type of receptor with respect to infections
(202). Alternatively one can look at the response of a small set of
chosen receptors to a specific pathogenic challenge, or careful bio-
chemical investigation of particular receptor/antigen pairs (203,
204). Much work has been devoted to systems-biology approaches
to signal processing in immune cells, as reviewed in Germain et al.
(205) and Emonet and Altan-Bonnet (206). Here we focus on
approaches inspired by recent advances in sequencing technolo-
gies (112, 113, 115, 116, 125, 191, 207, 208) that have opened
the way for data-driven modeling of the immune repertoires and
interactions between receptors and antigen.

A common modeling approach for describing receptors at the
amino acid level is to choose a relevant interaction parameter (e.g.,
chemical affinity or hydrophobicity) and assign it a simplified
digit-string representation (209). These methods are extensions
of the string model, which describes both receptor and epitopes
as strings of length L, with values chosen from natural num-
bers, and quantify their interaction by the match between the
two strings (197, 210, 211). Such quantitative, physically inspired
descriptions of immune receptors, despite the arbitrary choice of
interaction coordinates, have proven a valuable first step in statis-
tically describing recognition in T cells (195, 212–215). Recently,
lower hydrophilicity of regulatory vs. conventional T cells was
suggested from CDR3 sequencing (216).

High-throughput sequencing of immune receptors raises spe-
cific challenges compared to traditional genomic sequencing. It is
harder to distinguish sequencing errors from new polymorphisms,
since no corresponding pre-existing sequence exists. One of the
most interesting regions when studying diversity is the CDR3 with
its many insertions and deletions added to the germline sequence.
These regions are often hard to align to the genomic templates, or
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with each other (217). Therefore, extra care is needed when gener-
ating and analyzing sequence data. Not all sequencing technologies
are equally good for all purposes (218): while 454 sequencing gives
longer reads than Illumina it is known to have a greater probability
of frameshift errors. In addition, primer-dependent PCR amplifi-
cation biases require that raw sequence counts be normalized using
control experiments (112) in order to accurately report clone sizes,
as demonstrated by spike-in experiments (219). In TR repertoire
studies, this is circumvented by using 5′RACE which provides an
unbiased amplification of fully rearranged sequences, as recently
demonstrated for TRB V-(D)-J transcripts (191).

Despite sequencing issues, statistical algorithms are often able
to extract information from the data. Many studies of diversity
focus on the V, D, and J gene usage of each rearranged sequence.
Algorithms and tools have been developed to rapidly identify the V,
D, and J genes for massive numbers of sequences (148, 178, 181). In
many cases however, the assignment of a D gene to each sequence
read is unreliable if the D region is too short owing to extensive
trimming. Mora et al. (217) learned from data and analyzed statis-
tical models of the D gene flanked by its junctions. These models
are based on the principle of maximum entropy and make minimal
assumptions about the mechanisms of diversity – they only rely on
the observed frequencies of amino acid pairs along the sequence.
These models were used to describe global features of the sequence
ensemble, such as the probability distribution following Zipf ’s
law (220) – the observation that the probability of sequences is
inversely proportional to their frequency-rank, or the observation
of peaks of frequency in sequence landscape as possible signa-
tures of past pathogenic challenges. Recently, the estimation of
repertoire diversity and clonal size distribution were analyzed by
Poisson abundance models (221) and simple bivariate-Poisson-
lognormal (BPLN) parametric model for fitting and analyzing TR
repertoire data was proposed (222). Similarly, network analysis of
IG repertoire from Weinstein et al. study revealed the possibility
to identify subgroups of individuals on the basis of IG network
similarity (223).

The task of characterizing the CDR3 at the nucleotide level
is made difficult by the fact that a deterministic assignment
of the V-(D)-J recombination process is impossible, because
any given sequence can be generated by many possible recom-
bination processes. A previous study proposed a probabilistic
model of nucleotide trimming of rearranged TR genes derived
from a benchmark data set of TRA and TRG V-(D)-J junc-
tions obtained by comparison to the germline genes in the
IMGT® tools (224). Recently a statistical method based on the
expectation-maximization algorithm was proposed to circumvent
this issue and to extract the statistical properties of junctional
diversity accurately from data (124). Applying it to human non-
productive DNA sequences gave insight into a universal generation
mechanism, reproducible from individual to individual. It was
shown that each sequence could potentially be generated by the
equivalent of ∼30 equally likely ways by convergent recombi-
nation. This method showed that the potential diversity of the
recombination machinery was equivalent to ∼1014 equally likely
sequences (and a practically infinite total number of possible
sequences), much more than the estimated 1012 T cells that a
single human body can hold. The frequencies of the V, D, and

J genes is non-uniform, even at the level of recombination, sug-
gesting underlying physical mechanisms at work. Ndifon et al.
(125) proposed a polymer model that accounts for the likelihood
of connecting given genomic fragments, giving insight into the
mechanistic process.

One of the ultimate goals of deep repertoire sequencing is to
find signatures of the repertoire’s response to its antigenic environ-
ment. A combination of clustering methods and tree reconstruc-
tion techniques have been developed (225, 226) to identify lineages
in B cells and study the response to pathogenic challenges. Statisti-
cal methods have been devised to detect and quantify the extent of
antigen-driven selection acting on B cells, by analyzing the patterns
of hypermutations in a Bayesian framework, with applications to
deep sequencing data (227, 228).

A lot remains to be done in terms of both data-driven and small-
scale models of repertoire-antigen interactions. Ultimately, a close
collaboration and development of experimental techniques and
models can shed light on how selection at different stages shapes
the repertoire, how affinity maturation changes the diversity and
the link between sequence diversity and function.

FUTURE PROSPECTS OF BIOMATHEMATICAL ANALYSIS OF
REPERTOIRE DATA
One of the current challenging issues in antigen-specific reper-
toire analysis is the development of relevant statistical analysis
strategies. Biologists are usually keen on parametric tests, such
as ANOVA, t -test, Fischer’s test, among others. However, such
statistical methods assume that the inherent probability distri-
bution of the observed variable follows a normal distribution.
Rock et al. (229) described that the distribution of the TR diver-
sity is far from following this distribution, thus they proposed
the use of non-parametric tests. Nevertheless, different groups are
dealing with this issue in order to determine the relevant way to
analyze repertoire diversity data and to propose new biostatistics
strategies, including principal component analysis, discriminant
analysis, hierarchical clustering, specific statistics (164, 169).

In fact, the traditional use of statistics in biology aims at the
falsification of a defined hypothesis, i.e., at validating significant
differences between defined situations. The recent development
of “systems immunology” reverses this point of view and estab-
lishes a new usage of multi-parametric statistical approaches to
represent the biological data by projections and “landscapes” in
the N-dimensional space of considered parameters (230). Thus,
the traditional description of separate repertoires for distinct cell
subsets defined from a few markers is being replaced by overlap-
ping clouds of data, setting the limits of the different classifica-
tion groups (tissue of origin, infection contexts, combination of
marker expression, repertoire expression. . .). Moreover, repertoire
diversity technologies can now be combined to complementary
approaches to decipher the complexity of lymphocyte populations,
such as microwell array cell culture and high-resolution imag-
ing (231), mass cytometry (232, 233), cellular barcoding (234),
intravital imaging (235, 236), single-cell gene expression (237).
In addition, high-throughput repertoire descriptions will enrich
mathematical and computer models of lymphocyte repertoire
diversity and dynamics such as those proposed by Mehr (238),
Ciupe et al. (239), or Stirk et al. (240).
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As advocated by others, the concepts developed by systems
biology, such as the signatures emerging from clustering and the
modularity regulating gene networks, will probably need to be
adapted to the constraints of immunology data (241). However,
this is probably through this kind of representation that global
analysis of immune repertoires will have to be addressed (242).

The upcoming challenge is now to merge data produced
through the different technological approaches available to achieve
full integration of these data and make them available for inter-
active meta-analysis. This necessitates more than the simple jux-
taposition of annotated raw data but rather requires (1) the cod-
ification and standardization of this multi-level data and (2) the
integration of complexity science into immunology. Along this
line, recent developments of multi-parametric flow cytometry
naturally led to systematic clustering and multivariate statistical
analysis approaches for searching functional signatures (2, 232,
233, 243–245).
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High-throughput sequencing has the power to reveal the nature of adaptive immunity as
represented by the full complexity of T-cell receptor (TCR) and antibody (IG) repertoires,
but is at present severely compromised by the quantitative bias, bottlenecks, and accu-
mulated errors that inevitably occur in the course of library preparation and sequencing.
Here we report an optimized protocol for the unbiased preparation of TCR and IG cDNA
libraries for high-throughput sequencing, starting from thousands or millions of live cells
in an investigated sample. Critical points to control are revealed, along with tips that allow
researchers to minimize quantitative bias, accumulated errors, and cross-sample contam-
ination at each stage, and to enhance the subsequent bioinformatic analysis. The protocol
is simple, reliable, and can be performed in 1–2 days.

Keywords:TCR repertoires, BCR repertoires, NGS applications, cDNA libraries, MiTCR, IG repertoires,T-cell receptor,
T-cell receptor repertoire

INTRODUCTION
Next generation sequencing (NGS) technologies opened a breath-
taking opportunity to perform deep analysis and comparative
studies of the T-cell receptor (TCR) and antibody (IG) repertoires
of the human donors and model animals, as well as of the vari-
ous sorted, separated, or cultured lymphocyte subsets of interest
(1–13). Still, rational NGS-analysis of such immune repertoires is
critically dependent on the library preparation protocols, starting
from a lymphocytes/PBMC sample and ending with the amplifi-
cation of individual TCR/IG segment encoding molecules on the
solid phase of a sequencing machine. Multiple sampling bottle-
necks, PCR biases, and cross-contamination at different stages lie
in wait to trick a researcher on his way to get the deep, clear, and
congruent data.

While studying autoimmunity and hematopoietic stem cell
transplantation therapy (10, 14–17), we have optimized cDNA-
based protocol that allows unbiased pre-sequencing amplification
of the human and murine,alpha- and beta-TCR,as well as IG heavy
chain gene libraries. The protocol employs a specific oligonu-
cleotide to prime cDNA synthesis, and template switching effect to
form a universal 5′-adapter and to introduce sample barcode at the
very first stage of library preparation. Subsequent two-step PCR
amplification is performed with universal pairs of primers for the
whole library using step-out plus PCR-suppression effect (18) on
the 5′-end and nested PCR (19) on the 3′-end of the library (16).

This approach allows efficient and unbiased amplification
of millions of the TCR/IG mRNA molecules in only 27–30

(21–24 considering dilution factor, see below) PCR cycles, thus
providing sufficient starting material for the deep NGS-analysis of
complex lymphocyte samples. Current protocol is optimal for the
sequencing on Illumina MiSeq/HiSeq platforms and Roche 454
platforms.

Here we report the upgraded and tested protocol in a ready-to-
use format with the technical details required for the method to
be easily and uniformly reproduced in any laboratory.

ADVANTAGES OF cDNA LIBRARIES AND 5′-TEMPLATE
SWITCH
Starting with cDNA synthesis using 5′-template switching (16, 20,
21) has at least two decisive advantages in comparison with the
genomic DNA-based approaches (2, 12).

First, the whole diversity of variable chains (up to approxi-
mately 100 different V gene segment variants1, can be amplified
using just a pair (for TCRs) or a simple multiplex set (for IGs)
of oligonucleotides, specific to the template switch adapter on the
5′-end and to the constant gene segments on the 3′-end of the
library (Figure 1).

In contrast, the approaches starting with the genomic DNA
require multiplex primer sets to be used both at the 5′ V gene seg-
ments’ end, and at the 3′ introns/J-segments end of the library (2).
Moreover, a subsequent nested PCR amplification, which requires

1http://www.imgt.org/
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V                    NDN     J                                    C

1st strand cDNA synthesis 

with template switch

primer for 

cDNA synthesis

1st PCR

TCR/IG alpha/beta/heavy/light chain mRNA

nested primer 1

CCCC

AAAAAAAA

5' adapter

GGGG

2nd PCR

Step-out primer 1

CDR3

Region required for the identification of CDR3 and V and J gene segments

V                    NDN     J          

XXXXX

XXXXX

XXXXX

(N)2-4XXXXX

template-free 

added Citosines

XXXXX(N)2-4XXXXX

XXXXX(N)2-4

covered by paired end sequence 

Region covered by 150 nt sequncing from Illumina primer

XXXXX(N)2-4XXXXX

Illumina adapters ligation

and amplification 

Region covered by 100 nt sequncing from Illumina primer*

Illumina adpater Illumina adpater

nested primer 2Step-out primer 2

XXXXX(N)2-4

XXXXX(N)2-4

FIGURE 1 | Flow-chart of the library preparation protocol from
RNA and to NGS-ready PCR product. XXXXX: optional sample
barcodes (see Sample Barcoding in Appendix for details and
Supplementary Material for barcodes). *For TCR alpha/beta profiling

with 100 nt sequencing length, multiplexed J-segment-specific
primers should be used as a reverse primer in the second PCR
amplification step as described in section “Next Generation
Sequencing Options.”

another set of multiplex primers, can be necessary to obtain pure
TCR or IG library from genomic DNA. Multiplexing inevitably
leads to dramatic bias in relative efficiency of amplification of
different variable segments and thus to the loss of quantitative
information, and complete loss of some of the rare clonotypes
(10, 16, 22, 23).

Second, abundant copies of mRNAs encoding TCR or IG chains
comprise an essential portion of the total lymphocyte RNA. This
practically results in an efficient amplification of a deep library
starting from 106 mRNA molecules from a 3 µg of total RNA sam-
ple purified from three million PBMC cells (10). cDNA synthesis
reaction can be performed in a volume of 10–15 µl in a single PCR
tube (see Protocol), allowing multiple parallel experiments to be
carried out.

In contrast, amplification of the TCR/IG library starting from
15 µg of genomic DNA of the same three million PBMC sample
requires PCR to be carried out in larger volumes (since no more
than 0.5 µg of genomic DNA can be taken for a 50 µl PCR reac-
tion), and still does not provide comparable PCR efficiency, i.e.,
essential portion of the original sample diversity is lost due to the
stochastic character of PCR, inevitably missing rare molecules.

LIMITATIONS OF THE USE OF cDNA LIBRARIES AND
5′-TEMPLATE SWITCH
We have recently demonstrated that cDNA-based template switch-
ing protocol is highly quantitative at the ensemble level – the level
of relative TRBV gene segments’ frequencies (10). Indeed, PCR
bias is minimized and the whole approach is quite quantitative
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in respect of relative abundance of mRNA molecules at start and
sequencing reads at the end of analysis pipeline. However, it should
be noted that individual T-cell or B-cell clones can potentially be
characterized by higher or lower expression levels of TCR or IG
mRNA (24, 25). This limitation should be kept in mind when
using NGS data for the estimation of particular lymphocyte clones’
relative abundance.

It is generally important that the cells being analyzed “feel fine”
and contain a sufficient amount of TCR/IG mRNA. Therefore, it
is preferable to purify total RNA from a freshly isolated cell sample
for the native analysis. For the frozen samples, overnight incuba-
tion of thawed cells in presence of IL2 (Roche, 15 U/ml) leads to
at least twofold increase of TCR genes RNA expression levels (our
unpublished observations).

Differences in the efficiency of reverse transcription and tem-
plate switching may lead to a different number of cDNA molecules
read per T- or B-cell. Therefore, it is important to use the same
reverse transcriptase and 5′-template switch adapter and carry out
all the procedures in identical experimental conditions to obtain
results that can be further accurately compared at the deep level
(e.g., in an analysis of relative diversity of naïve T cells or a PBMC
sample, etc.).

EXPERIMENTAL DESIGN: CELLS, NUMBERS, AND
BOTTLENECKS
The desirable depth of TCR or IG repertoire analysis depends on
the particular experimental questions raised. For example,applica-
tion of the current protocol for the deep analysis of a PBMC sample
containing 106 T cells will provide quantitative data on those TCR
clonotypes that constitute at least 0.01–0.1% of all T cells in a
sample (100–1000 T cells) (10). The majority (>95%) of TCR
clonotypes constituting at least 0.001% (at least 10 T cells) will
be sequenced, while approximately 20–40% of TCR clonotypes
represented by a single T cell in a sample may be lost (estimated
according to our quantitative experiments, depends on the reverse
transcriptase used). Preferably, all the synthesized cDNA should
be used for the first PCR amplification step. Second PCR should
result in sufficient amount of target PCR product in a reasonable
number of amplification cycles (see Protocol). The desirable num-
ber of output CDR3-containing high quality sequencing reads is
at least 2× 106 per sample (see Protocol and Expected Results).

Much smaller bottleneck limits should be quite sufficient for the
majority of the experimental tasks concerning more specific sub-
populations of lymphocytes characterized by lower diversity [such
as sorted antigen-specific T cells (26) or B cells (27)]. For example,
10,000 lymphocytes, 10 ng high quality total RNA, no more than
21 first PCR cycles, no more than 20 s PCR cycles (see Protocol and
Expected Results), and at least 30,000 CDR3-containing sequenc-
ing reads (ideally 100,000 reads to achieve over-sequencing) per
sample may be sufficient to identify most TCR/IG clonotypes in a
low-complexity sample. It is preferable to use reverse transcriptase
with high 5′-template switching efficiency (e.g., SMARTScribe,
Clontech) when small cell samples/RNA amounts are analyzed.

EXPERIMENTAL DESIGN: SAMPLE BARCODES,
MULTIPLEXED SEQUENCING, CROSS-CONTAMINATION
Since as few as 30,000 sequencing reads per sample may be
sufficient for many experimental tasks in immune repertoire’s

profiling, and, for example, paired end 150 bp Illumina MiSeq
run can produce more than five million good quality TCR/IG
CDR3 reads, a researcher may be often interested in sequenc-
ing multiple samples in a single run. At the same time, ligat-
ing Illumina sample barcodes to 10 or more samples is rather
expensive and laborious. Our design suggests that sample bar-
codes can be introduced within the 5′-template switch adapter
during cDNA synthesis and/or second PCR amplification steps
(see Figure 1). Samples with the barcodes inside can be then
combined in equal (or unequal, if it is desirable to get more
reads for some samples) proportions, and Illumina adapters
can be ligated to the resulting pooled PCR library of approxi-
mately 500–600 bp length (see Protocol and Sample Barcoding in
Appendix).

Sample barcodes on both ends of the library allow to eliminate
most cross-contaminations between the samples sequenced in the
same run/lane that may occur during the amplification of the com-
bined sample after adapters’ ligation, and potentially in course of
bridge amplification on the solid phase of the sequencing machine.

To avoid contamination on the earlier stages of pre-sequencing
library preparation, all procedures, including: RNA purification,
cDNA synthesis, first and second PCR preparation – should be
performed in separate clean PCR boxes.

PROTOCOL
PREPARING STARTING MATERIAL – TOTAL RNA
1. Use standard Trizol (Invitrogen) or QIAzol (QIAGEN), or other

analogous protocol for RNA isolation. Alternatively,use RNeasy
kit (QIAGEN), or other column-based RNA isolation method.
Depending on the starting material, consider the following
RNA purification procedures:
A. For small amount of whole blood (less than 100 µl) use

1 ml of Trizol or specific RNA isolation kits (for example,
QIAamp RNA Blood Kit, QIAGEN).

B. For large amount of whole blood, preferably perform
preliminary PBMC separation using standard procedures
(Ficoll density gradient separation) and proceed to C.

C. For large amount of white blood cells, use 1 ml of Trizol
(per up to 107 cells). If using column-based RNA isola-
tion method for the large amount of cells, DNase treatment
is necessary (according to a manufacturer protocol) since
large amounts of genomic DNA significantly affect cDNA
synthesis.

D. For small amount of cells (below 100,000 live cells, for
example, sorted or bead-separated T or B cells), preferably
perform isolation of total RNA shortly after cell acquisi-
tion, in order to minimize loss of live cells and mRNA.
When using Trizol protocol, add a co-precipitant (e.g., Pel-
let Paint, Millipore) to the aqueous phase before adding
isopropyl alcohol. It is highly desirable that the precipitant
forms a single well-defined spot. This provides confidence
that some portion of the material will not be washed off by
EtOH. Do not discard EtOH used to wash the sample until
you are convinced that library preparation has been per-
formed successfully, since some portion of RNA can remain
in EtOH.

All the cell/RNA isolation, cDNA synthesis and first PCR prepa-
ration steps should be carried out in a clean DNA/RNAase free
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room or a PCR box with no contact with any TCR-containing
PCR products to prevent contamination. Standard RNA sam-
ples handling precautions should be used (gloves, labcoats,
filtered tips, and certified RNAase free reagents) to avoid RNA
degradation.

Time: 1–2 h.
Pause: RNA can be stored in 70% ethanol at−70°C for at least
a year.

cDNA SYNTHESIS AND TEMPLATE SWITCH
2. Mix the following in a final volume of 4 µl in a sterile

thin-walled reaction tube (mix1).

Component Amount, µl Final concentration*

RNA 1–3 Maximum 2 µg

cDNA synthesis

primer(s) (20 µM)**

0.5–1.5 (0.5 each) 1 µM for each primer

mQ 0–2.5

*Final concentration/amount in 10 µl after adding mix2 (see Step 5).

**See Table 1 for primers used. Simultaneous synthesis of TCR alpha and beta

cDNA is possible (tested for both human and mouse) in case if limited starting

material is available. Simultaneous synthesis of IgA, IgM, and IgG heavy chains

cDNA is also possible (tested for human).

Put no more than 1.5–2 µg of total RNA per 10 µl of final
reaction volume. For the extra-deep profiling use propor-
tional volume to obtain cDNA from desired amount of
starting RNA.

3. Place the reaction tube(s) into a thermal cycler and incubate
for 4 min at 70°C and then for 2 min at 42°C to anneal synthesis
primer(s).

4. While incubating, mix the following in a separate tube in a final
volume of 6 µl (mix2).

Component Amount, µl Final concentration*

First strand buffer (5×, Evrogen or

Clontech)

2 1×

DTT (20 µM) 1 2 µM

5′-template switch adapter (10 µM) 1 1 µM

dNTP solution (10 mM each) 1 1 mM each

Mint reverse transcriptase (10×,

Evrogen) or SMARTScribe reverse

transcriptase (10×, Clontech)

1 1×

*Final concentration in 10 µl after adding mix 2.

5. Add mix2 to mix1 and mix by pipetting, incubate 40–60 min at
42°C.
Reverse transcriptases are heat sensitive. Allow the mixture to
chill to 42°C after first step denaturation at least for 2 min as
described.
Reverse transcriptases are not equal in their 5′-template
switching activity. We have extensive experience with Mint

and SMARTScribe reverse transcriptases that provide reliable
5′-template switching.

6. (Optional, for Mint Reverse transcriptase only, to enhance tem-
plate switching activity) Add 5 µl of IP solution (Evrogen) and
incubate at 42°C for additional 1 h.

7. (Optional, see Unique Molecular Identifiers in Appendix) Add
1 µl of Uracyl DNA glycosylase (5 U/µl, New England Biolabs)
and incubate 1 h at 37°C.

Time: 2–3 h.
Pause: although cDNA is generally stable, we prefer not to
store cDNA longer than several hours at +4°C for the deep
profiling experiments. Freezing small amounts of cDNA is
undesirable.

FIRST PCR AMPLIFICATION
8. In a sterile thin-walled tube(s) mix the following in a final

volume of 25 µl.

Component Amount, µl Final concentration

First strand cDNA 1

Tersus buffer (10×, Evrogen) 2, 5 1×

dNTP (2.5 mM each) 1, 5 0.15 mM each

Primer smart20 (10 µM) 1 0.4 µM

Reverse primer(s) (10 µM)* 1–3 (1 each) 0.4 µM (each)

Tersus polymerase mix (50×,

Evrogen)

0.5 1×

mQ 17.5–15.5

*SeeTable 1 for primers used. Simultaneous amplification ofTCR alpha and beta

cDNA is possible (tested for both human and mouse) in case if limited starting

material is available. Simultaneous amplification of IgA, IgM, and IgG heavy chains

cDNA is also possible (tested for human).

Put no more than 1 µl of cDNA from the synthesis reac-
tion per 25 µl PCR reaction volume. For the deep profiling,
use proportional number of tubes to amplify all the cDNA
obtained.
Polymerase with high fidelity and processivity should be used
for amplification.

9. Carry out 18 (when starting from large amount of cells) or 21
(when starting from small amount of cells) cycles of ampli-
fication using the following program: 95°C for 20 s, 65°C for
20 s, 72°C for 50 s.

10. Combine all the first step PCR products and purify a portion
using the QIAquick PCR purification Kit (or other column-
based purification system).

Time: 2–3 h.
Pause: purified first PCR product can be stored at −20°C for
a month as a source for the re-amplification of material in the
second PCR.

SECOND PCR AMPLIFICATION
11. Mix the following in a sterile thin-walled tube in a final volume

of 25 µl.
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Component Amount, µl Final concentration

Purified first PCR product 1

10× polymerase buffer (e.g., Tersus

buffer, Evrogen)

2.5 1×

dNTP (2.5 mM each) 1.5 0.15 mM each

Primer Step1 (10 µM) 1 0.4 µM

Reverse primer (10 µM)* 1 0.4 µM

50× polymerase (e.g., Tersus

polymerase, Evrogen)

0.5 1×

mQ 17.5

*SeeTable 1 for primers used. For primer design options see Sample Barcoding,

Unique Molecular Identifiers, and Introducing Diversity at the Ends of the Library

in Appendix. In case of simultaneous cDNA synthesis and first PCR amplification

of TCR alpha and beta chain libraries, second PCR for TCR alpha and beta chain

libraries preparation should be performed in separate reactions. Use an aliquot of

purified first PCR product to generateTCR beta library (with beta specific primer)

and TCR alpha library (with alpha specific primer).

Polymerase with high fidelity and processivity should be used
for amplification.

12. Carry out amplification using the following program: 95°C
for 20 s, 65°C for 20 s, 72°C for 50 s, 9–12 cycles (up to 18–
20 cycles if starting from minimal amounts of RNA); final
elongation at 72°C for 5 min).
Purify the PCR products using QIAquick PCR purification Kit
(or other column-based purification system) at the same day.
This step is important since it removes the residual enzyme
activities that can damage the obtained PCR library.

Time: 2 h.
Pause: libraries can be stored at −20°C for weeks before
adapter ligation.

MIXING THE BARCODED SAMPLES FOR MULTIPLEX SEQUENCING
In order to combine several PCR libraries with pre-introduced
sample barcodes (see Figure 1 and Sample Barcoding in Appendix
for possible options), perform the following:

13. Determine the concentration of each library using the QuBit
Fluorometer.

14. Combine samples in a sterile microcentrifuge tube propor-
tionally to the desirable amount of sequencing reads per
sample. A total amount of PCR products should be approx-
imately 0.5–1 µg (specify the required amount of the PCR
product in a sequencing center).

Alternatively, each sample can be ligated to sequencing adapters
with different sample barcodes separately. Samples are mixed in
desirable proportions before sequencing.

NEXT GENERATION SEQUENCING OPTIONS
Design of the current protocol is optimized for the Illumina paired
end 2× 150 nt (or 2× 300 nt for IGs) sequencing as the most
reliable way to obtain unbiased TCR/IG repertoire. The paired end

sequencing is obligatory when double sample barcodes (see and
Sample Barcoding in Appendix) and/or unique molecular identi-
fiers (see Unique Molecular Identifiers in Appendix) are used. If
no unique molecular identifiers are used, and sample barcoding is
used on the 3′-end of the library only (Figure 1), then single end
sequencing is possible. However, only half of obtained sequencing
reads will contain the CDR3 region.

Protocol also suits well the Roche 454 sequencing technology.
Frequent length-errors in reading homogenous oligonucleotide
stretches on this platform should be kept in mind, and proper
error-correction algorithms utilized (10).

In order to use Illumina paired end 2× 100 nt sequenc-
ing for TCRs, the only required modification is that multi-
plexed J-segment-specific primers should be used instead of the
reverse primer in the second PCR amplification step. This minor
multiplexing within limited number of PCR cycles does not
lead to essential quantitative bias and allows sequence to start
closer to the CDR3 region of interest, as described (10, 16).
For IG’s heavy chain, the universal J-segment-specific primer
(Table 1) is close to CDR3 already and no modifications are
necessary.

Alternative strategy is that sequences for Illumina flow cell and
custom sequencing primers can be introduced in the course of
amplification (not shown on Figure 1). Although potentially ben-
eficial, it requires thorough design in cooperation with sequencing
centers.

This protocol is not adopted for Ion Torrent as these sequenc-
ing machines have limitations in the maximal length of ana-
lyzed sequencing library. Multiplex PCR mix for the V-segment
is required for Ion Torrent library preparation, albeit leads to
significant quantitative bias during amplification (10).

To provide better cluster differentiation, ask sequencing facility
to spike the library with 10–30% of PhiX and/or design primers
as described in Introducing Diversity at the Ends of the Library in
Appendix.

Size selection on agarose gel after ligation of adapters is
strongly recommended since even minor amounts of short non-
specific PCR products can significantly reduce target sequences
output.

SOFTWARE ANALYSIS OF NGS DATA
Output NGS data on TCR/IG profiling contain numerous
errors accumulated during reverse transcription, PCR ampli-
fication, and sequencing. For the latter, higher Phred quality
score only means lower frequency of sequencing errors. Thus,
high sequence quality does not guarantee absence of sequenc-
ing errors. Generally, the more we sequence, the more erro-
neous TCR/IG variants we generate. Without appropriate error-
correction, NGS data can generate artificial TCR/IG diversity
exceeding the native diversity of complex input library up to
several-fold (10).

Several approaches were proposed to correct the PCR and high
quality sequencing errors in TCR datasets, suggesting to filter off
low frequency TCR variants (8), to filter off the low abundance
variants with single mismatch comparing to the major clonotypes
(7), or to correct single mismatch errors in germline segments by
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Table 1 | Oligonucleotides.

Primer Application Sequence*,**

FIRST STRAND cDNA SYNTHESIS

Switch_oligo 5′ adapter: template switch adapter, universal for all libraries AAGCAGTGGTATCAACGCAGAGTAC(XXXXX)TCTT(rG)5
SmartNNN Alternative template switch adapter with unique molecular

identifier (see Unique Molecular Identifiers in Appendix),

universal for all libraries

AAGCAGUGGTAUCAACGCAGAGUNNNNUNNNNUNNNNUCTT(rG)5

AC1R Primer for cDNA synthesis, human TCR alpha mRNA ACACATCAGAATCCTTACTTTG

BC1R Primer for cDNA synthesis, human TCR beta mRNA CAGTATCTGGAGTCATTGA

Mus_alfa_synt1 Primer for cDNA synthesis, mouse TCR alpha mRNA TTTCGGCACATTGATTTG

BC_mus_syn1 Primer for cDNA synthesis, mouse TCR beta mRNA CAATCTCTGCTTTTGATG

HCA-rt Primer for cDNA synthesis, human IgA heavy chain mRNA GTCCGCTTTCGCTCCAGG

HCM-rt Primer for cDNA synthesis, human IgM heavy chain mRNA GATGTCAGAGTTGTTCTTG

HCG-rt Primer for cDNA synthesis, human IgG heavy chain mRNA GTGTTGCTGGGCTTGTG

FIRST PCR AMPLIFICATION

Smart20 Step-out primer 1. Anneals on the switch_oligo, universal for all

libraries

CACTCTATCCGACAAGCAGTGGTATCAACGCAG

AC2R Nested primer 1, human TCR alpha library TACACGGCAGGGTCAGGGT

BC2R Nested primer 1, human TCR beta library TGCTTCTGATGGCTCAAACAC

Mus AV2 rev Nested primer 1, mouse TCR alpha library GGTGCTGTCCTGAGACCGAG

BC4_mus_Rev Nested primer 1, mouse TCR beta library GATGGCTCAAACAAGGAGACC

HCA-n1 Nested primer 1, human IgA heavy chain library GCGATGACCACGTTCCCATCT

HCM-n1 Nested primer 1, human IgM heavy chain library GTGATGGAGTCGGGAAGGAAG

HCG-n1 Nested primer 1, human IgG heavy chain library GAAGTAGTCCTTGACCAGGCA

SECOND PCR AMPLIFICATION

Step_1 Step-out primer 2, from the Smart20, universal for all libraries (N)2–4(XXXXX)CACTCTATCCGACAAGCAGT

Hum bcj Nested primer 2, human TCR beta (N)2–4(XXXXX)ACACSTTKTTCAGGTCCTC

Hum acj Nested primer 2, human TCR alpha (N)2–4(XXXXX)GGGTCAGGGTTCTGGATAT

Mus bcj Nested primer 2, mouse TCR beta (N)2–4(XXXXX)GGAGTCACATTTCTCAGATCCT

Mus acj Nested primer 2, mouse TCR alpha (N)2–4(XXXXX)CAGGTTCTGGGTTCTGGATGT

IGHJ-r1 Nested primer 2, human IG heavy chain (universal for IgA, IgG,

and IgM)

(N)2–4(XXXXX)GAGGAGACGGTGACCRKGGT

*XXXXX: optional sample barcode (see Figure 1, and Sample Barcoding in Appendix for details and Supplementary Material for barcodes). U=dU (deoxyuridine).

**(N)2–4 – optional. Random nucleotides (“N”) are introduced at the 5′ end of final library in order to generate diversity for better cluster identification on Illumina

sequencer (see Introducing Diversity at the Ends of the Library in Appendix for details).

mapping to the major clonotypes (10). Low quality sequences can
be either filtered off (7, 8) or mapped to the high quality ones in
order to rescue quantitative information (10).

There are currently three available software packages for
NGS TCR data analysis: IMGT/HighV-QUEST web service2,
Decombinator (28), and our new software, named MiTCR3 (29).
Note that IMGT/HighV-QUEST is limited to only 50,000–150,000
sequences per batch and thus it is hardly suitable for the analysis
of deep NGS profiling data. MiTCR is the only software package
that considers sequence quality, performs correction of PCR and
sequencing errors, and rescues low quality sequencing data. Two
basic error-correction modes are currently implemented, aiming
either to eliminate maximal number of accumulated errors, or
to preserve maximal original TCR diversity, albeit with less effi-
cient error-correction. Moreover, analysis parameters can be tuned

2http://www.imgt.org/IMGTindex/IMGTHighV-QUEST.html
3http://mitcr.milaboratory.com/

by user in a wide range to obtain optimal result for the particu-
lar experimental task. Output format is a tab-delimited file or a
special *.cls file for the MiTCR-Viewer software (Figure 2).

EXPECTED RESULTS
RNA
The quality and quantity of obtained RNA is critical for the library
generation. Quality of total RNA is evaluated by two visible bands
on electrophoresis (or two highest peaks on Agilent Bioanalyzer)
corresponding to 18S and 28S rRNA. The relative amount of two
bands should be between 1:2 and 1:1. The expected yield is 1–
3 µg of total RNA from one million of PBMC when using Trizol
protocol. If starting material is limited (10,000 cells or less) RNA
should be completely used in one cDNA synthesis reaction without
analyzing by electrophoresis.

NUMBER OF PCR CYCLES
In order to preserve natural TCR/IG diversity of the sample it is
important to minimize the number of PCR cycles used for library
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FIGURE 2 | MiTCR-viewer outputs for the analyzedTCR beta dataset. (A) Table with clonotypes. (B) In silico spectratyping.

preparation. In our system, maximal number of PCR cycles should
be 18 for the first and 12 for the second amplification step if
starting from 2 µg of total RNA. A well visible band is observed

on electrophoresis after 12 cycles of second PCR amplification
(that is at least 50 ng of PCR product per 25 µl reaction). For a
minimum amount of starting material (below 10,000 cells) the
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maximum number of PCR cycles should be 21 for the first and
18–20 for the second amplification step. If the number of cycles
needed to obtain a visible band is higher, this may indicate that low
number of molecules has successfully entered amplification, thus
leading to uncertain detection of CDR3 clonotypes of the input
sample.

SEQUENCING OUTPUT AND ANALYSIS
With the use of the proposed protocol, at least three million of
high quality CDR3-containing sequencing reads from a paired end
MiSeq run and at least 100 million CDR3-containing sequenc-
ing reads from one lane of paired end HiSeq 2,000/2,500 run
are expected. The number of different clonotypes depends on
the nature and amount of starting material. For example, pro-
filing of 5–10 million human PBMC cells using 1/10 of HiSeq
2000 Illumina lane (at least 10 million CDR3-containg reads) can
yield from 0.5 to 2.5 million TCR beta CDR3 clonotypes after
appropriate error-correction.
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APPENDIX
SAMPLE BARCODING
When sequencing multiple samples, it is recommended to intro-
duce sample barcodes during the library preparation process. This
allows to minimize cross-sample contamination and to treat all
samples as the single one when ligating Illumina adapters. It is
possible to introduce sample barcodes on different stages (See
Figure 1). One of the best ways is to use 5′-template switch adapters
with built-in sample barcodes, thus labeling each sample at the
very first library preparation step. Alternatively/additionally, 5′-
end sample barcode can be introduced at the 5′-end of the Step-out
primer 2 (see Table 1). We also recommend introduction of sample
barcodes within the reverse primers used in the second amplifi-
cation step (hum bcj, hum acj, mus bcj, mus acj, or IGHJ-r1, see
Table 1). Using this approach, each sample is barcoded at both
ends of the library. This is crucial when accurate comparison of
two or more samples is required, as we observe different levels of
swapping ends between molecules in course of standard Illumina
library preparation stage and presumably on the solid phase of the
sequencer, during bridge amplification. For your convenience, we
have generated a list of 5-nucleotide sample barcodes, which differ
from each other by at least two nucleotides (see Supplementary
Material), thus minimizing the chance of barcode misinterpre-
tation if the single error occurs during sample preparation or
sequencing.

UNIQUE MOLECULAR IDENTIFIERS
Unique molecular identifiers can be introduced as random
oligonucleotides at the very first amplification (or cDNA synthesis)
step of library preparation (30). Each molecule that successfully
enters amplification becomes labeled by a unique combination
of nucleotides – a molecular identifier. Thus each TCR/IG CDR3
sequence variant in the output NGS dataset is characterized by a
number of distinct molecular identifiers indicating the number of
such cDNA molecules that have entered the PCR amplification.

This approach allows to correct the PCR bias that occurs dur-
ing amplification and to count mRNA/cDNA molecules of each
type directly, which makes the TCR/IG repertoire analysis even
more quantitative. Unique molecular identifiers consisting of 12
random nucleotides (which give approximately 17 million unique
variants) can be introduced within the 5′-template switch adapter
(Table 1, SmartNNN). This template switch adapter also contains
multiple deoxyuridine nucleotides. After cDNA synthesis, Ura-
cyl DNA glycosylase treatment allows to eliminate SmartNNN,
thus preventing possible exchange of unique molecular identifiers
during following PCR amplification (30).

INTRODUCING DIVERSITY AT THE ENDS OF THE LIBRARY
The common problem with sequencing PCR products by Illu-
mina is the presence of the same nucleotides in the beginning of
most sequencing reads. This can lead to a fail of a sequencing
run as Illumina software cannot discriminate adjacent clusters,
which produce identical fluorescent signals during the first sev-
eral sequencing cycles. The common solution used by sequenc-
ing centers is spiking the sequencing library by PhiX library
containing random DNA fragments. However, in this case, the
number of obtained target sequences is decreased by at least
30%. To avoid this problem we introduce two to four random
nucleotides (“N”) to the 5′ end of the primers used in the sec-
ond amplification step (see Table 1). Preferably, the number of
“N” nucleotides flanking the library should be different for the
samples mixed on the same Illumina lane, in order to generate
additional diversity of starting sequencing steps and to avoid iden-
tical nucleotides being present in the same positions, which may
alter Illumina sequencing quality. If one sample is sequenced per
Illumina lane and no sample barcodes are used, it is recommended
to use a mixture of three identical primers, each containing a
different number of “N” nucleotides at the 5′ end – e.g., (N)2

Step1/(N)3 Step 1/(N)4 Step1, the same with the reverse primer
(see Table 1).
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In order to recognize and combat a diverse array of pathogens the immune system has a
large repertoire of T cells having unique T cell receptors (TCRs) with only a few clones spe-
cific for any given antigen. We discuss how the number of different possibleTCRs encoded
in the genome (the potential repertoire) and the number of different TCRs present in an
individual (the realized repertoire) can be measured. One puzzle is that the potential reper-
toire greatly exceeds the realized diversity of naïve T cells within any individual. We show
that the existing hypotheses fail to explain why the immune system has the potential to
generate far more diversity than is used in an individual, and propose an alternative hypoth-
esis of “evolutionary sloppiness.” Another immunological puzzle is why mice and humans
have similar repertoires even though humans have over 1000-fold more T cells. We dis-
cuss how the idea of the “protecton,” the smallest unit of protection, might explain this
discrepancy and estimate the size of “protecton” based on available precursor frequencies
data. We then consider T cell cross-reactivity – the ability of a T cell clone to respond to
more than one epitope. We extend existing calculations to estimate the extent of expected
cross-reactivity between the responses to different pathogens. Our results are consistent
with two observations: a low probability of observing cross-reactivity between the immune
responses to two randomly chosen pathogens; and the ensemble of memory cells being
sufficiently diverse to generate cross-reactive responses to new pathogens.

Keywords: αβ T cell, repertoire, precursor frequency, cross-reactivity, pathogen recognition

1. INTRODUCTION
The clonal selection theory of adaptive immunity requires that the
immune system is able to produce a large and diverse repertoire
of immune cells (clones), with each cell expressing a receptor with
different antigenic specificity (1, 2). Following infection, the few
clones that are specific for the antigens expressed by the pathogen
proliferate and differentiate into effector cells which control the
infection. Subsequently, the maintenance of an increased number
of these pathogen-specific cells results in long-lasting immuno-
logical memory (3–5). Accurate quantification of changes in the
numbers of antigen-specific cells during infection and vaccina-
tion, together with advances in molecular and cellular biology, has
allowed us to make considerable progress toward understanding
the dynamics of the generation of immune responses (3, 6, 7)
and the requirements for pathogen control (8, 9). Furthermore,
deep sequencing technology has provided a first quantitative snap-
shot of the diversity of immune cells (10, 11). These technological
advances set the stage for understanding the relationship between
the diversity of immune cells (the repertoire) and immune pro-
tection from an extensive array of pathogens to which we are
exposed.

We begin by outlining our current understanding of T cell
receptor diversity and discussing problems associated with the
quantification of the T cell repertoire. Next, we explore how diverse
the immune system needs to be by exploring the relationship

between the diversity of the T cell repertoire and its ability to
provide protection from pathogens. Finally we consider how the
degree of specificity of T cells (often defined by measuring how
cross-reactive they are) affects the relationship between the reper-
toire and host response to a given pathogen. We focus on αβ T
cells and the term “T cell” refers to the CD8 subpopulation of T
cells unless we explicitly specify a different subpopulation.

We have intentionally used simple models and calculations
because, in the absence of detailed information on the terms and
parameters, simpler models frequently generate more robust qual-
itative results than complex models (12, 13). The focus of the paper
is to highlight the limitations arising from uncertainties in cur-
rent estimates of parameters, and in particular to gain maximum
insight from the one key parameter – the precursor frequency of
T cells specific for different epitopes – that can be accurately mea-
sured. Throughout this paper we emphasize current puzzles and
problems and, where possible, suggest new approaches to solving
them.

2. MEASURING THE DIVERSITY OF THE T CELL REPERTOIRE
2.1. WHAT IS THE POTENTIAL REPERTOIRE?
T cells develop from progenitor cells in the thymus where the
germline T cell receptor (TCR) α and β genes undergo somatic
recombination of the V-J and V-D-J gene segments, respectively
(14, 15). The antigenic specificity of each T cell is determined
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by the amino acid sequence of these rearranged TCR genes, and
in particular by the hypervariable complementarity determining
region 3 (CDR3) that mostly account for direct contacts with
peptides presented on major histocompatibility complex (MHC)
proteins, and is encoded by the junction of the V, (D), and J gene
segments (16). The diversity of generated TCR genes is therefore
due to: (1) selection of one from a number of possible V, D, and J
gene segments, (2) semi-random cleavage of recombination hair-
pin intermediates, and (3) N-nucleotide addition and subtraction
at the junction of V, D, and J genes (17, 18). Finally, the pairing of
different α and β chains to generate a functional receptor results
in additional diversity (19).

How many different T cell receptors can be generated? The first
steps toward understanding the magnitude of the diversity of the
T cell repertoire came from the pioneering studies that identified
the molecular mechanisms involved in the recombination of V,
(D), and J gene segments and N-region diversification described
above for the generation of the α and β TCR chains (14, 15, 19). It
was estimated that these processes together with pairing between
different α and β chains could give rise to around 1015 possible αβ
TCR (19). The question of the potential number of TCR sequences
has recently been revisited and significantly larger estimates for
the diversity of the TCR β chain were obtained (20, 21). Muru-
gan et al. (21) used statistical analysis of non-productive TCR β
chain to conclude that the CDR3 (variable) region of the TCR β
chain alone has a potential diversity of ~1014 different sequences.
They used empirical β chain data to show that N-nucleotide inser-
tions at the V-D and D-J junctions are uncorrelated, their length
distributions are nearly identical and their lengths could exceed
six nucleotides which was assumed in previous estimates (19).
We might expect that a similar analysis would result in upward
revision for the potential diversity of the α chain (though the esti-
mates of diversity would increase less than for the β chain because
the α chain has only one V-J junction). This will result in a truly
enormous potential repertoire of over 1020 for the αβ TCR.

2.2. WHAT IS THE REALIZED REPERTOIRE IN AN INDIVIDUAL?
Only mature T cells that have passed thymic selection (naïve T
cells) can be employed in immune responses for protection against
pathogens. Thus, in order to understand the balance between
diversity and protection, the most important measurement is the
“realized” T cell diversity in an individual (i.e., the actual number
of different TCR in the mature T cell compartment).

The diversity of the naïve T cell repertoire was initially esti-
mated prior to the advent of deep sequencing technologies by
the use of spectrotyping, which involved amplifying mRNA from
particular V-J sequence combinations, separating the amplified
products on the basis of size, and exhaustive conventional sequenc-
ing of a particular length CDR3 product. The diversity of TCR
sequences in this sample was then extrapolated to the total T cell
population.

2.2.1. TCR diversity and clone size in humans
Arstila et al. (22) used spectrotyping to estimate that there are 106

β chains in the blood each pairing on average with at least 25 dif-
ferent α chains, and consequently proposed a lower bound to the
estimate of the T cell repertoire in humans of around 2.5× 107

specificities. Advances in deep sequencing have confirmed that
estimation of β chains is in the range of 1− 4× 106 (20, 23, 24).

There is however considerable uncertainty about the extent to
which 2.5× 107 specificities underestimates the diversity of T cells
in humans (25, 26). A repertoire of 2.5× 107 suggests a naïve
clone size on average of over 4× 103 cells (>1011/(2.5× 107)).
This could happen if each clone gets produced multiple times or
if once produced a given clone would undergo about 12 rounds of
division. The first scenario is unlikely, given the very large estimates
of potential diversity (19–21). If the second scenario happens, it
must occur in the periphery. Expansion of clones in the thymus
would result in a much lower frequency of detectable T cell recep-
tor excision circles (TRECs) in the naïve pool of recent thymic
emigrants than is currently observed (27–29). Arstila et al. points
out that naïve T cells in the periphery could divide more than 12
times during a human lifespan (26). However, as the total num-
ber of naïve T cells remains relatively stable (because division is
balanced by death) changes in clone size would have to arise from
stochastic drift and this seems unlikely.

2.2.2. TCR diversity and clone size in mice
Interestingly, it was estimated that TCR β chain diversity in mouse
spleen is quite similar to the one measured in human blood. The
β chain repertoire of 5− 8× 105 specificities with each variable
domain of β chain sequence being shared by 30–40 T splenocytes
have been reported using spectrotyping technology (30). Pairing
with α chain was estimated to add a factor of 2.4 and resulted in
total αβ TCR diversity of 2× 106. Taking into account that there
are 2× 107 splenocytes it was estimated that the clone size of αβ
TCR is equal to 10 cells (30). The bias in recombination and α-β
TCR pairing will likely affect the T cell clone size. A recent study
that enumerated the number of naïve T cells specific for differ-
ent epitopes suggests that there are between 15 and 1500 unique
cells in the mouse spleen specific for any given epitope, implying
that the number of naïve cells with a given TCR α-β combina-
tion is very small, and indeed that most clonotypes have clone
size of one (31, 32). This is in contrast with the earlier estimates
that suggest an average clone size of 10 cells/clone in the spleen
(30). Consequently, it brings the repertoire in the spleen toward
the total number of naïve T cells in the spleen, and increases the
lower bound of the total αβ T cell repertoire in the mouse by an
order of magnitude. In this case the estimate of 2× 107 specifici-
ties becomes very close to a lower bound estimation for human T
cell repertoire.

2.2.3. Limitations in estimates of realized diversity
Current estimates of the realized diversity are lower bounds. The
limitations of these studies is the lack of information on the pairing
of different TCR α and β chains. Bulk sequencing of a single chain,
or even of both TCR α and β chains, is not sufficient to inform us
of the potential diversity (33). In principle this problem could be
comprehensively addressed by single cell sequencing that would
obtain linked α and β chain sequences, but this remains techni-
cally and financially infeasible for the large sample sizes required to
evaluate naïve repertoires with high diversity (34); the cost of sin-
gle cell sequencing remains at $1 per cell, making the analysis of T
cells from a single mouse more than a $10 million experiment! Oil
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emulsion lysis strategies (35) combined with micro-sequencing
have increased the capacity of such single-cell studies, but these
still are only able to capture <1% of the total naïve T cell reper-
toire in a single mouse. New techniques or methods need to be
developed.

In order to have an accurate and comprehensive quantitative
description of diversity, it is important to define what we mean
by diversity. We can describe T cell repertoire diversity in terms
of summary measures of diversity borrowed from the ecologi-
cal literature. This includes enumerating the number of distinct
clones or computing the Simpson diversity index (36) that takes
into account the number of clones and their frequencies. However
these summary approaches compress all of the diversity infor-
mation into a single number. A more comprehensive statistical
approach retains the frequency distribution of different clone sizes.
In Figure 1 we show a plot of the frequency distribution of β chain
sequences in the mouse naïve T cells using preliminary data. We
find a majority of β chain sequences are present at low frequencies
and fewer sequences occurring at much higher frequencies. A key
problem is that we do not know the α chain sequences pairing
with each of these β chains, and this restricts our ability to infer
diversity of T cells from these observations.

Several clones in Figure 1 have very high frequencies and the
exact underling mechanisms are not known. The sequences which
are more common (generated more frequently) are more likely to
be shared between different individuals. It was reported that inbred
mice and individuals with the same MHC share some T cells with
identical receptors (11, 20, 37, 38). These constitute “public” T cell
clones, in contrast with the majority of the T cell clones that are
unique to an individual and comprise the “private” part of a reper-
toire response. In general, the frequency of public TCR clonotypes
exceeds what is expected if T cells were chosen at random with
equal probability from the total potential repertoire, and perhaps
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FIGURE 1 | Plot of the frequency distribution in the β chain sequences
of naïve CD8 T cells. Naïve (CD44lo) CD8 T cells from C57Bl/6 mice were
isolated by magnetic beads and >98% purity confirmed by flow cytometry.
Genomic DNA was subjected to TCRβ V-J multiplex DNA sequencing and
the distribution of unique in-frame CDR3 sequences is plotted. We note
that the term “clone” on the x and y axis labels refers to clones based on β
chain sequences alone.

not surprisingly, the clone size of public T cells is higher than that
of private T cells in the naïve T cell repertoire [(33); Blattman
et al. unpublished results]. This has been suggested to arise due
to MHC restriction during thymic selection, biased frequencies of
recombination, as well as degeneracy in the genetic code which
allows more than one nucleotide sequence to give rise to the same
amino acid sequence (33, 39). The factors involved in the evolu-
tion and/or selection of public T cell clonotypes and their possible
role in the control of infections remain puzzling questions.

In summary we have estimates of the potential repertoire of
upward of 1020 TCR. The estimates of the realized repertoire
suggest lower bounds of 2.5× 107 and 2× 106 in humans and
mice. Two puzzles which we will address are: why humans and
mice might have similar repertoire sizes (Section 3.2); and why
the potential repertoire so greatly exceed the realized repertoire
(Section 3.3).

3. UNDERSTANDING DIVERSITY, THE REPERTOIRE AND
CROSS-REACTIVITY

In this section we use quantitative calculations to explore the con-
sequences of the observations on the repertoire described in the
previous section. We begin by looking at whether the diversity of
the repertoire may be explained by the relationship between diver-
sity and protection. We then address questions associated with our
current understanding of repertoire diversity and cross-reactivity.

3.1. RELATIONSHIP BETWEEN DIVERSITY AND PROTECTION
Clearly a large repertoire is required to generate a T cell response
to a diverse array of pathogens. However, to our knowledge, few
empirical studies consider the relationship between the repertoire
and protection. To some extent the paucity of experiments on
this topic is because of difficulties in quantifying the repertoire
(see earlier discussion). Studies on mice, expressing a single fixed
transgenic TCR chain (either α or β) that measure the number
of different paired endogenously recombined TCR chains, have
shown that pairing is not completely random, as these mice express
repertoires of reduced diversity and altered V gene usage (40–43).
However, even in these mice there is still sufficient diversity to
generate effective, albeit reduced, responses to control pathogen
infections.

A relatively simple calculation can be made to estimate how
diverse the TCR repertoire needs to be in order to provide reli-
able protection following infection with a pathogen. To provide
protection against a pathogen there must be some number of
clones present in the repertoire that are specific for that pathogen.
Here, we extend the logic outlined in (44, 45). Let R be the T cell
repertoire and let pi be the probability that a randomly chosen
TCR binds to ith of the k epitopes derived from a given pathogen
(i= 1:k). Note that pi is also equal to the precursor frequency of T
cells for ith epitope. A pathogen is not detected if all R naïve T cell
clones fail to recognize it, and this will happen with probability.

PE = (1− p1)
R(1− p2)

R ... (1− pk)
R

≈ exp(−p1R) exp(−p2R)... exp(−pk R) = exp

−R
k∑

i=1

pi


(1)

Frontiers in Immunology | T Cell Biology December 2013 | Volume 4 | Article 485 | 272

http://www.frontiersin.org/T_Cell_Biology
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zarnitsyna et al. Immune repertoire and T cell cross-reactivity

10

9

8

7

6

5

4

3

2

1

6.0 5.5 5.0 4.5 4.0

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Log precursor frequency p

L
o
g
R
e
p
e
rt
o
ir
e
R

Log Probability of being undetected PE

FIGURE 2 |The probability a pathogen is not detected, PE, as a function
of the log of the precursor frequency p and the log of the naïve T cell
repertoire R . The numbers on the contour lines in the plot indicate log PE

values. Black color corresponds to the values of PE below the threshold of
10−10.

which gives

R =
− ln(PE )∑k

i=1 pi

(2)

Equation (2) tells us how big the repertoire must be to detect at
level PE. Figure 2 shows how the probability that a pathogen is
not detected by the immune system depends on the repertoire size
and the total precursor frequency p=

∑
pi . There is a very rapid

decline in the probability of not being detected once the product
of p and R becomes sufficiently large. We should note that PE is
often termed as the “probability of escape” but it should not be
confused with the usage of the term “escape” that refers to the
generation of escape mutants in T cell epitopes after recognition
has already occurred following infections such as HIV.

If we know the precursor frequencies for pathogen epitopes and
total number of epitopes we can relate the probability of being not
detected to the repertoire R. We have much more accurate esti-
mates for precursor frequencies against specific epitopes than for
repertoire sizes (31, 46, 47). A recently developed method that
combines pMHC tetramer staining with magnetic particle-based
cell enrichment allows for the direct measurement of the frequency
of naïve cells to different epitopes for both mice and humans
(31, 48). Figure 3 shows the density distribution of naïve T cell
precursor frequencies for different CD8 T cell epitopes in mice
determined by this cell enrichment method using MHC tetramers
complexed with different class I-restricted peptides (31). The total
number of responded cells per mouse (naïve precursor frequency
multiplied by total CD8 T cell number) varied from 15 in response
to the L-338:Db epitope of LCMV to 1500 in response to an epitope
from the murine cytomegalovirus (31). These estimates concur
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FIGURE 3 | Density distribution plotted from the precursor frequencies
of naïve CD8 T cells for different epitopes reported in (31). The tick
marks on the top of the x-axis indicate individual epitopes. Note the log
scale on the x-axis.

with previous in vivo estimates of precursor frequencies. These
studies transferred different numbers of naive epitope-specific T
cells and measured the proportion of the response arising from
expansion of host versus donor cells following virus infection (46,
47). The effect of changing precursor frequencies on the proba-
bility of been undetected, PE, is given by equation (2) and plotted
in Figures 2 and 4. Note, that precursor frequencies plotted in
Figure 3 are likely biased toward immunodominant epitopes.
Immunodominance is a complex issue, and the major factors that
affect the magnitude of the T cell response to a particular epitope
include: the processing and presentation of peptide on MHC (i.e.,
the amount of epitope); the number of precursor cells for this epi-
tope; their affinities for the epitope; the extent of their recruitment
and competition between the T cells for this and other pathogen
epitopes (31, 49–51).

3.2. SCALING AND THE CONCEPT OF A “PROTECTON”
We now consider the scaling of the repertoire with the size of
the organism. A few pathogen-specific precursors in a tadpole are
likely to be able to mount a faster and more effective response
than the same number of cells in an elephant (52). Langman
and Cohen proposed the basic functional unit, the “protecton,”
capable of providing robust protection. They suggested a tadpole
(smallest vertebrate) has a single “protecton,” and the number of
“protectons” scales with the size of an organism. Localized infec-
tions are surveyed by a draining lymph node rather than the entire
immune system and thus we expect this unit should contain at
least one “protecton.” Clearly the calculations for PE (how diverse
the immune system needs to be to recognize pathogens) pertains
to the “protecton” [see equations (1) and (2)].

Lets estimate the diversity in a “protecton.” Figure 4 shows
how the probability of being undetected depends on the size of
the repertoire R for different total precursor frequencies. The pre-
cursor frequency of T cells specific for a pathogen is, to a first
approximation, the sum of the precursor frequencies for that
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FIGURE 4 | Probability that a pathogen is not recognized PE (y-axis) is
plotted as a function of the repertoire (x-axis) for indicated
pathogen-specific precursor frequencies (gray lines). LCMV case
(p=4×10−5) is shown in red color.

pathogen’s different epitopes presented by MHC proteins. This
can be estimated for LCMV by combining reported naïve precur-
sor frequencies for few measured epitopes (31) and measurements
of the fraction of the total LCMV specific responses which is
directed against these epitopes (53). This gives us a total pre-
cursor frequency for LCMV specific T cells equal to ~4× 10−5,
and from Figure 4, a level of protection PE= 10−3 (i.e., 1 in 1000
“protectons” will fail to recognize LCMV) requires the repertoire
in the “protecton” to be about 1.7× 105. In order to know the
level of protection against diverse pathogens we need to know the
distribution of precursor frequencies to pathogens. The existing
data gives us lower bounds (because only cells specific for a few
epitopes are measured) to the precursor frequencies of viruses
such as MCMV (~1.3× 10−4), Influenza (~4× 10−5), Vaccinia
(~1.1× 10−4), RSV (~4.5× 10−5), HSV (~2.9× 10−5), and VSV
(~10−5) (31). The precursor frequencies for those viruses are com-
parable or greater than that for LCMV with the exception of VSV
and HSV for which only single epitope data were reported in (31).
If this trend holds (i.e., the precursor frequency per pathogen is
>10−5) it might suggest that having a repertoire of 7× 10−5 is suf-
ficient to give robust protection at the level PE= 10−3, and thus
define the size of the “protecton.” For PE one order of magnitude
lower and higher, i.e., PE= 10−4

− 10−2 will require a repertoire
of ~9× 105

− 5× 105, suggesting that our estimate is quite robust
to changes in PE (see Figure 4). We can expect the area of local
surveillance (a small lymph node) in mice to have at least this
number of different T cells.

How much bigger should the total repertoire size be so that the
area corresponding to one“protecton,”randomly filled with T cells
from the total circulating cells, has a relatively low number of clone
repeats? We estimated that if f is a fraction of clone repeats in the
“protecton” area with m cells, the total repertoire size R is bounded
as (1− f)(m− 1)/(2f)<R< (m− 1)/(2f). For example, for 5 or
10% of clone repeats in m we will have a multiplication factor
for m for the total diversity in the ranges ~9.5− 10 or ~4.5− 5,
respectively. To derive this formula we used two assumptions: first,
the clones are equal in size and second, the size of total repertoire
multiplied by clone size is much bigger than the size m. These

calculations show that the total diversity doesn’t need to be much
higher than the diversity in a “protecton.”

Several theoretical papers previously estimated that the reper-
toire of B and T cells scales as ln(cM ), where c is a constant and
M is the mass of an organism (45, 54). It was also estimated that
humans should have B cell repertoire 2–5 times larger than mice
(45) and similar reasoning could be apply to T cell repertoire.
The diversity of the repertoire is linked to clone size and it was
estimated that the size of T cell clones should scale as M and, cor-
respondingly, the total number of T cells should scale as Mln(cM )
(45). Wiegel and Perelson’s estimate shows that the repertoire in a
human need not be much higher than that in a mouse even though
the number of naïve cells in these organisms differs by over 103

fold [mice have ~108 T cells (30, 46) and humans between 1011

and 1012 T cells (22, 55, 56)].
Another reason for why humans need a more diverse reper-

toire than mice pertains to the number of pathogens to which
they are exposed. As humans live longer than mice, other factors
being equal, they will be exposed to more pathogens and require
a lower PE.

3.3. EVOLUTIONARY CONSIDERATIONS: WHY ENCODE SUCH A
DIVERSE POTENTIAL REPERTOIRE?

The calculations described in the previous section are consistent
with the diversity of the repertoire that is observed in mice and
humans (22, 30) (lower bound diversity in the range of 2× 106

to 2.5× 107 unique αβ T cells), and the diversity is sufficient to
generate a low probability that a given pathogen is not detected
(PE< 10−4). What those estimations don’t explain is why the
immune system is able to generate a potential diversity of more
than 1015 T cell specificities (19–21) that is vastly in excess of the
realized repertoire?

Let’s consider a number of potential explanations for why
the potential repertoire needs to be much larger than the real-
ized repertoire. One simplistic explanation takes into account the
observation that most of the generated progenitor T cells are
deleted during positive and negative selection in the thymus. If a
fraction f of the T cells generated in the thymus gets selected (i.e.,
pass positive or negative selection) then the potential repertoire
should be (1/f) times the peripheral repertoire. Since only 3–5%
of T cells pass thymic selection (57, 58), the potential repertoire
need only be at most 33-fold higher than the realized repertoire,
thus ruling out this explanation.

A second potential reason is the need to successfully recognize
peptides in the context of the hundreds of MHC alleles in the
population. The reported extent of thymic selection (see previous
paragraph) allows us to reject this hypothesis – different cells may
be selected in different MHC backgrounds but in all cases 3–5%
of T cells pass thymic selection.

A third potential reason is the need to prevent pathogen escape
mutations – mutations in an epitope that prevent it from being
recognized by the immune system. To a first approximation hav-
ing more than one epitope is the key factor that prevents escape – if
the pathogen has k epitopes the probability of escaping all epitopes
declines asµk, whereµ is the probability of mutation leading to the
loss of one epitope. The number of epitopes to which a response
is generated involves many factors such as immunodominance,
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MHC diversity, and T cell diversity. The relationship between these
quantities is not understood and we do not know the contribution
of T cell diversity to immunodominance due to problems in esti-
mating TCR diversity described above. However from Figure 4 we
note that the repertoire is sufficiently large to enable robust detec-
tion of subdominant epitopes in a biologically reasonable range of
precursor frequencies [Figure 2; (31)].

A fourth potential reason considers the temporal aspect and
changes in the repertoire over the lifespan of an individual. Thymic
emigration results in a constantly changing repertoire over time.
The total number of different T cells present in the individual over
its lifespan could be much greater than its repertoire at any given
time. In humans, for example, if we assume that thymic emigration
is of the order of 107

− 108 cells per day (59, 60) then the realized
repertoire over a lifespan might be as much as 1012 specificities
which is much closer to the potential repertoire. There are two
problems with this approach. First, it does not explain why mice
have about the same potential repertoire as humans since a similar
calculation for mice would result in a realized repertoire over the
lifespan several orders of magnitude lower than humans. This is
because both mice thymic output of the order of 106 cells per day
(61–63) and lifespan are smaller than for humans. Second, protec-
tion is related to the repertoire at a given time point. Changing the
particular clones in the repertoire over time does not help unless
the relevant clones are present at the time of infection or generated
during the infection and consequently able to help with clearance
of the pathogen. The continual influx of cells of new specificities
is thus unlikely to be of significance for acute infections which are
relatively brief, but has been suggested to contribute to the mainte-
nance of the response during persistent infections (64–66). In the
case of persistent infections, however, an occasional new pathogen-
specific clone is unlikely to clear the infection if the much larger
number of clones at the onset were not able to do so – and the new
clone is likely to be exhausted rapidly. Finally, temporal aspects
could change the total repertoire if we consider the sum of both
naïve and memory compartments. As naïve cells convert to mem-
ory cells each time we confront an infection, the replenishment
of naïve compartment with the cells of new specificities would
increase the total repertoire (naïve plus memory compartments).
However, even if the memory compartment is as diverse as the
naïve, the total diversity would increase at most by a factor of 2 in
comparison to the naïve compartment alone. Taken together we
don’t expect temporal aspects to account for the differences in the
sizes of the potential and realized repertoires.

We now describe a new evolutionary explanation that we call
“evolutionary sloppiness.” The process of generation of diversity
by recombination and N nucleotide addition and deletion are
sloppy processes. To reduce the amount of diversity that can be
generated might require putting additional costly constraints on
these processes. This would explain why organisms are able to
generate far more TCR diversity (in excess of 1015 TCR) then is
needed. Finally we note that not all aspects of biology result in
perfectly optimized solutions (67).

Additionally, it has been suggested that the thymus is an energy-
and resource-expensive organ (68) but these energetic costs have
yet to be quantified. Energetic costs to cell production and thymic
selection would favor expansion of clones after thymic selection

(i.e., to have an amplifier). This amplification could take place
in the thymus or periphery and would scale with the size of the
organism. This would result in clone sizes in men being ~1000-fold
higher than in mice, which is unlikely (see discussion on TRECs
in Section 2.2.1). Accurate estimates for clone sizes in humans and
mice should allow us to resolve this question.

3.4. T CELL CROSS-REACTIVITY
Cross-reactivity is related to the observation that a given T cell can
respond to more than one epitope, including epitopes that show
strong sequence homology or completely unrelated (69–76). As
might be expected the frequency of the former is higher than that
of the latter. Flexible TCR-pMHC binding sites were suggested as a
possible structural explanation for known high degree of αβ TCRs
cross-reactivity to different pMHCs (77–80). Cross-reactivity can
also arise in T cell clones with incomplete allelic exclusion at the
α chain loci resulting in one β chain pairing with two different
α chains. An upper bound on the frequency of such clones was
estimated to be 30% (81–83).

The pioneering experiments of Selin and Welsh (69) found that
the CD8 T cell responses of mice to pathogens such as the Pichinde
virus (PV), Vaccinia virus (VV), and Lymphocytic choriomenin-
gitis virus (LCMV) showed high levels of cross-reactivity. They
found that prior vaccination with one of these viruses expanded
a specific CD8 T cell subset that could be boosted during stimu-
lation by the other viruses and showed an unexpectedly complex
relationship between the responses to different viruses with asym-
metry depending on the order of viral exposure (infection A
followed by B stimulated different cross-reactivity than B followed
by A) (69, 71, 84). In a very recent paper (80) the cross-reactivity
studies were extended to analysis of the CD4 T cell repertoire
against pathogens to which individuals had never been exposed.
Surprisingly, they found that a large fraction of the CD4 T cells
specific for these pathogens exhibited a memory phenotype and
suggested that they had been generated by cross-reactive responses
to other previously encountered pathogens including heterologous
infections or environmental antigens.

The extent of cross-reactivity between the immune responses
to different pathogens is of practical importance. Murine stud-
ies have not only demonstrated the presence of T cells that could
cross-react between different pathogens such as PV,VV,and LCMV,
but also showed that this cross-reactivity affected pathogenesis
during subsequent infection (84–86). If these occurrences of cross-
reactive responses are rare, then the examples above are simply
interesting curiosities. If, on the other hand, cross-reactivity is
common then we would need to move from our current paradigm,
which looks at each infection independent of other infections, to a
more complex view that incorporates the terms for the interactions
between the immune responses to different pathogens. Thus a key
step is to quantify the extent of cross-reactivity in the immune
responses to different pathogens.

How can we predict the level of cross-reactivity between two
pathogens? The current approach is based on the observation that
number of possible peptide-MHC complexes is much larger than
the total number of T cells, suggesting that a given T cell must be
able to recognize many different peptide-MHC (i.e. have a high
level of cross-reactivity) (87, 88). However it is not clear how these
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parameters can be measured. We propose an alternative calcula-
tion that allows estimation of the extent of cross-reactivity from
the precursor frequency of T cells for pathogens – a parameter that
can be reliably determined. Using slightly modified notation from
(87) we first define four parameters:

R Repertoire (the number of clonotypically different naïve T cells
in the repertoire)
r The number of different T cell clonotypes that will respond to
the same peptide
N The total number of potentially immunogenic foreign peptides
in the environment
n The number of different peptides to which a single T cell
clonotype will respond

These four parameters are linked by the conservation equa-
tion (87):

rN = nR (3)

Lets suggest that a given pathogen has k epitopes to which T
cells can mount a response. For a given T cell, the probability
to recognize at least one epitope from a given pathogen could be
written as:

1−
[

1−
n

N

]k
(4)

The probability that the same T cell will recognize at least one
epitope on each of two pathogens with k epitopes (i.e., will be
cross-reactive) will be a square of expression equation (4) and the
probability to find at least one cross-reactive clone is equal to:[

1−
[

1−
n

N

]k
]2

× R (5)

Note, that in derived equation (5) we don’t know the parame-
ters k, n, and N which makes it very difficult to apply directly.
Interestingly, for one epitope (k = 1) and with application of
cross-reactivity equation (3) the equation (5) simplifies to:[

1−
[

1−
n

N

]]2
×R =

[
1−

[
1−

r

R

]]2
×R =

[ r

R

]2
×R (6)

Under the assumption that all naïve T cells able to respond to a
given epitope are clonotypically different, which is supported by
recent data (31, 80), we can think of r/R as a precursor frequency
for a given epitope. The problem of estimating cross-reactivity in
this case will be similar to the problem of estimating the proba-
bility of randomly choosing a two-colored ball from an urn when
the frequencies of each of two colors are known. Interestingly, the
measured naïve precursor frequencies for different immunogenic
epitopes are similar for mice and humans and range from 1 to
100 cells per million cells (31). According to equation (3), this
similarity immediately implies that cross-reactivity of each T cell
receptor, n, is in the same range for mice and humans.

For the case when k> 1, we could not directly use the formula
(5), due to unknown parameters, but can use a simple probabilis-
tic calculation based on sampling multiple colored balls. We can

write the frequency of cross-reactive cells between two randomly
chosen pathogens (A and B) in terms of the precursor frequencies
of T cells to these two pathogens, pA and pB, and the total number
of cells T:

Expected number of cross-reactive cells = pApB × T (7)

and if we have clones of same size equal to T /R,

Expected number of cross-reactive clones = pApB × R (8)

where R equals the repertoire (the number of different T cell clones
in each individual). When the average number of cross-reactive
clones is less than one, equation (8) gives us the probability of
observing a cross-reactive response between two pathogens in a
single individual. We can use this framework together with the
data on precursor frequencies (31) described in Figure 2 to get
an estimate of the extent of cross-reactivity between the responses
to unrelated pathogens. As described earlier we have an approxi-
mate precursor frequency per epitope of 10−5, and a precursor
frequency per pathogen, with LCMV as an example, of about
4× 10−5. If we assume there are about 2× 107 naïve CD8 T cells
per mouse (89) then the number of cross-reactive cells between
two unrelated pathogens will be ~0.032, which suggests cross-
reactivity is very rare (a single cross-reactive clone will be found
<4% of the time). In order to observe cross-reactivity between two
random pathogens in a mouse we would need to have a precursor
frequency per pathogen of at least 2.2× 10−4, assuming that pre-
cursor frequencies are similar for both pathogens. There are quite
a few reported examples of cross-reactive T cell responses to differ-
ent pathogens. In addition to the experiments of Selin and Welsh
(69), cross-reactivity has been reported between influenza virus
and hepatitis C virus (72), EBV (73) or HIV (74), LCMV and vac-
cinia virus (75), and coronavirus and human papillomavirus (76).
It remains to be seen if the observed cases of cross-reactivity arise
from a reporting bias (failure to observe cross-reactivity between
two pathogens is unlikely to be reported) or because some of the
assumptions of our model are incorrect and need to be modified.
For example, we assume all T cell clones have the same level of
cross-reactivity – and introducing heterogeneity may dramatically
increase the chances to observe cross-reactivity.

Even if cross-reactive T cell responses to two specific pathogens
are rare, the accumulation of many successive infections could
result in fairly frequent cross-reactivity between a new pathogen
and sum of all the pathogens the individual has previously encoun-
tered. This is what was observed when T cell precursor frequencies
were measured for novel pathogens in blood from adults (80).
The precursor frequency for cells recognizing a self-antigen or an
unexposed viral epitope was the same as earlier estimated in mice
and humans (31) and ranged from one to ten cells per million of
CD4 T cells. The surprise was that over half of the precursor cells
specific for novel pathogens such as HIV (to which an individual
had never been exposed) were of the memory phenotype (80),
suggesting that they may have arisen as a consequence of exposure
to a different previously encountered pathogen(s). Alternatively,
these memory cells could be pseudo-memory cells acquired via
the process known as “homeostatic proliferation” and driven by
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interaction with low-affinity self pMHCs that previously induced
positive selection (90–94).

The Su et al. paper (80) raised an interesting question: why
do memory cells invariably contribute about 50–80% of the pre-
cursors to pathogen the individual has never encountered? One
possibility is that the memory repertoire is sufficiently large to be
“complete.” In this case if we draw the same amount of cells from
either naïve or memory compartments (or mixture from both) we
will have the same precursor frequency for a pathogen. Then the
relative contribution of naïve and memory cells to precursors is
equal to their relative frequencies, and is scaled by the stimulation
threshold which is known to be lower for memory cells.

We note that our equation (7) allows an estimation of cross-
reactivity for unrelated pathogens or peptides and, based on
reported precursor frequencies for different epitopes, we expect
cross-reactivity to be rare. Several studies allowed to estimate the
rate of cross-reactivity for closely related peptides. Su et al. (80)
identified potential pathogens responsible for generating T cells
cross-reactive to HIV in HIV-negative individuals as follows: they
generated clones from the HIV precursors and identified two epi-
topes to which these clones were specific. Then using a BLAST
search of pathogen sequences they identified 24 sequences similar
to the two HIV epitopes. About 21% of the HIV clones responded
to two of the BLAST sequences corresponding to environmen-
tal pathogens. This number is comparable to result obtained in
the earlier study, which showed that although the majority of 171
generated variant peptides of strongly immunodominant HLA-
A2-restricted HIV gag epitope were able to bind HLA-A2, only
one third were recognized by specific T cells (95). These two
studies may give the rate of cross-reactivity for closely related pep-
tides (21–33%) and could be particularly important in the context
of a variable virus with an increased rate of mutations within
epitopes (96).

Cross-reactive responses may be of clinical importance in
the generation of pathology and autoimmunity. Several stud-
ies pointed that cross-reactivity may be the cause of increased
immunopathology during successive unrelated viral infections
(84–86) or as a result of application of T cell based therapy (97,
98). Expansion of cross-reactive T cell clones due to previous infec-
tions may underlie autoimmune diseases (99–101). Sometimes a
pathogen epitope stimulates T cells in the context of a different
MHC from the self-epitopes that react with these T cells, for exam-
ple, Epstein-Barr virus EBN13-HLA-B8-specific cytotoxic T cells
were shown to cross-react with a variety of self peptides presented
by HLA-B35 (102). Together these observations point out that
cross-reactive T cell responses might operate on different levels
and much remains to be done to understand the extent of cross-
reactivity and how it may differ in CD8, CD4, and regulatory
populations of T cells.

4. SUMMARY
We have reviewed current estimates of the T cell repertoire and
identified their key limitations. Further progress will require the
development of methods to determine the pairing of TCR α and β
chains and thus more accurate quantification of the T cell diversity.
Current estimates raise the puzzling question of why the potential
repertoire is many orders of magnitude greater than the realized

repertoire. We suggest that existing hypotheses are not able to
explain this puzzle and have proposed an alternative hypothesis of
“evolutionary sloppiness.”

One of the interesting observation that became obvious from
our estimations is that precursor frequency per pathogen inher-
ently links the TCR diversity and cross-reactivity which allows to
predict the level of cross-reactivity between two random pathogens
or unrelated peptides. Our estimates suggest that although cross-
reactivity is a rare event for immunologically naïve individuals,
probability to see the cross-reactive memory T cells becomes very
high with an increase in successive infections.

Finally we note that we need to move from our current
paradigm, which looks at each infection independent of other
infections, to a more complex view that incorporates the terms
for the interactions between the immune responses to different
pathogens.
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A commentary on

Mother and child T cell receptor reper-
toires: deep profiling study
by Putintseva EV, Britanova OV, Staroverov
DB, Merzlyak EM, Turchaninova MA,
Shugay M, Bolotin DA, Pogorelyy MV,
Mamedov IZ, Bobrynina V, Maschan M,
Lebedev YB and Chudakov DM. Front
Immunol (2013) 4:463. doi:10.3389/ fimmu.
2013.00463

It has been reported that human TCR
repertoires commonly carry so-called pub-
lic clonotypes – CDR3 variants that are
often shared between individuals. Cross-
comparison of individual immune reper-
toires has previously revealed the existence
of a population of TCR beta CDR3 vari-
ants that are identical at the amino acid
level for any two donors (1–3). The lower
bound for the total overlap between any
two given donors’ TCR beta repertoires
within their CD8+ naïve T cell subset has
been estimated as ~14,000 identical amino
acid CDR3 variants based on compari-
son of 200,000–600,000 individual TCR
beta clonotypes (1). Here, we have used
deep profiling data consisting of 1–2× 106

individual TCR beta clonotypes that we
obtained from healthy donors (4) to bet-
ter estimate the total overlap between TCR
beta repertoires for any two individuals.

The apparent paradox is, that the deeper
we sequence, the larger is the percentage of
observed overlapping clonotypes between
the two repertoires, since the number of
possible element pairs between the two
sets grows geometrically. To demonstrate
this, we analyzed TCR beta repertoires
for 12 unrelated pairs assembled from
a total of nine human donors [adults

and children, see Ref. (4) for details].
We plotted the number of identical vari-
ants found in samples of increasing size,
with up to 106 unique CDR3 sequences
randomly drawn from the repertoires of
each individual in a given pair (Figure 1).
For every pair, the number of shared
clonotypes grew geometrically with the
arithmetic growth of the sample size
(Figures 1A–C, colored lines); at maxi-
mum sequencing depth (~1× 106 unique
sequences/donor), we observed an aver-
age of ~72,000, 68,000, and 6,000 CDR3
variants that were respectively identical at
the amino acid, amino acid only/non-
nucleotide and nucleotide level. This
exceeds previous estimates (1) by several-
fold. The greatest overlap was between
two donors from whom we obtained
~1× 106 and 1.7× 106 CDR3 variants,
where we observed 113,000, 108,000, and
11,000 identical clonotypes at the amino
acid, amino acid only/non-nucleotide and
nucleotide level, respectively.

The lower bound on total individual
TCR beta repertoire diversity has previ-
ously been estimated to be 5× 106 unique
clonotypes [Ref. (5) and our unpublished
data]. With that in mind, we extrapo-
lated our intersection curves by fitting
them to a power law model [Y = aXb,
as in Ref. (1)], which yielded coefficient
“b” close to 2.0 and R2 > 0.999 for all
cases (Figures 1A–C, dashed lines). We
estimated that the total overlap of the
TCR beta CDR3 repertoires for two indi-
viduals constitutes ~2,200,000, 2,060,000,
and 180,000 variants, i.e. 44.1, 41.3, and
3.6% of a given individual’s sequence
diversity at the amino acid, amino acid
only/non-nucleotide, and nucleotide level,
respectively.

Thus, the real paradox is that nearly
half of the TCR beta CDR3 repertoire
is functionally identical between any two
individuals, in spite of the fact that the
theoretical diversity that can be achieved
by TCR beta variants has been esti-
mated to be ~5× 1011 sequences (1, 6).
The results from our extrapolation are
direct and evident. We took numer-
ous precautions to exclude contamina-
tion in our work, including sequencing
of pair-analyzed donor repertoires in sep-
arate Illumina lanes (4). Even if con-
taminations were present, these would
not affect overlap at the amino acid
only/non-nucleotide level (Figure 1B).
Furthermore, we performed CDR3 extrac-
tion and error correction with MiTCR
(http://mitcr.milaboratory.com/) using the
stringent ETE algorithm, which elimi-
nates 98% of PCR and sequencing errors
with minimal loss of natural TCR beta
diversity (7).

Such large overlap between individuals
suggests the existence of a rather limited
pool of frequently used functional CDR3
sequences. To further investigate this, we
calculated the lower and upper bounds of
the Chao richness estimate as described in
Ref. (8) based on the numbers of single-
tons and doubletons (sequences observed
in one and two individuals, respectively)
in 12 paired donors’ samples. From this
model, we obtained a confidence interval
of 1.2× 107 to 5.4× 107 unique amino acid
CDR3 sequences, at a significance level of
α= 0.001.

These findings represent a shift in our
understanding of human adaptive immu-
nity. It now appears likely that recombi-
natorial biases (3, 9) and thymic selec-
tion (4, 10, 11) shape our repertoires so

www.frontiersin.org December 2013 | Volume 4 | Article 466 | 281

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Journal/10.3389/fimmu.2013.00466/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MikhailShugay&UID=104866
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=EkaterinaPutintseva&UID=104902
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MikhailPogorelyy&UID=102817
http://www.frontiersin.org/people/IlgarMamedov/126348
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DmitriyChudakov&UID=78041
mailto:chudakovdm@mail.ru
http://dx.doi.org/10.3389/fimmu.2013.00463
http://dx.doi.org/10.3389/fimmu.2013.00463
http://mitcr.milaboratory.com/
http://www.frontiersin.org
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shugay et al. Overlap of TCR beta repertoires

 200

 2,000

 20,000

 200,000

 2,000,000

 50,000  500,000 5,000,000

O
v
e

rl
a

p
, 

A
A

 s
e

q
u

e
n

ce
s

Sample size, unique AA sequences

A

 200

 2,000

 20,000

 200,000

 2,000,000

 50,000  500,000 5,000,000

O
v
e

rl
a

p
, 

A
A

 n
o

t 
N

T
 s

e
q

u
e

n
ce

s

Sample size, unique AA sequences

B

 10

 100

 1,000

 10,000

 100,000

 50,000  500,000 5,000,000

O
v
e

rl
a

p
, 

N
T

 s
e

q
u

e
n

ce
s

Sample size, unique NT sequences

C D

 1,000

 10,000

 100,000

 1,000,000

 10,000,000

1 10

N
u

m
b

e
r 

o
f 

cl
o

n
o

ty
p

e
s

Number of samples where detected

FIGURE 1 | Overlap of individualTCR beta CDR3 repertoires grows
geometrically with the number of sequence pairs sampled. Plots
indicate the number of shared sequences for 12 unrelated donor pairs in
relation to sample size at the level of (A) all amino acid sequences,
(B) amino acid sequence only, excluding matches with identical nucleotide
sequences, and (C) nucleotide sequences. Each of the 12 colored lines
represents the observed overlap between randomly drawn samples of

unique CDR3 variants for a different pair of unrelated donors. To
extrapolate the predicted level of overlap if the full individual TCR beta
repertoires were to be sampled, we plotted fittings of averaged data with a
power law (Y = aXb) as dashed lines. (D) We plotted the degree to which
unique clonotypes were shared among our nine donors, and found that
the frequency with which TCR beta clonotypes occur in human repertoires
is distributed according to a power law.

tightly that the majority of TCR beta CDR3
variants expressed by naïve T cells leaving
the thymus are chosen from a “short-list”
of just under 108 amino acid variants –
even shorter than the 2× 109 “effective
sequence space” estimated by Robins and
colleagues (1).

Nevertheless, the repertoire has a com-
plex structure and those clonotypes that
are characterized as low-complexity [see
figure 7 in Ref. (4)] predominantly form
the backbone of the shared clonotype
pool. Interestingly, when we examined
the intersection of all nine donor sam-
ples, we found that the number of

donors in which a given clonotype can
be detected is distributed according to
a power law, with a degree of −2.95
and R2

= 0.99 (Figure 1D). These find-
ings confirm the fractal structure of the
human TCR beta repertoire that deter-
mines the landscape of shared clonotypes
(1–3, 12), and may reveal a more com-
plex picture with the deeper profiling
experiments.
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Reduction in T cell receptor (TCR) diversity in old age is considered as a major cause for
immune complications in the elderly population. Here, we explored the consequences
of aging on the TCR repertoire in mice using high-throughput sequencing (TCR-seq). We
mapped the TCRβ repertoire of CD4+ T cells isolated from bone marrow (BM) and spleen
of young and old mice.We found thatTCRβ diversity is reduced in spleens of aged mice but
not in their BM. Splenic CD4+T cells were also skewed toward an effector memory pheno-
type in old mice, while BM cells preserved their memory phenotype with age. Analysis of
Vβ and Jβ gene usage across samples, as well as comparison of CDR3 length distributions,
showed no significant age dependent changes. However, comparison of the frequencies
of amino-acid (AA) TCRβ sequences between samples revealed repertoire changes that
occurred at a more refined scale. The BM-derived TCRβ repertoire was found to be similar
among individual mice regardless of their age. In contrast, the splenic repertoire of old mice
was not similar to those of young mice, but showed an increased similarity with the BM
repertoire. Each old-mouse had a private set of expanded TCRβ sequences. Interestingly,
a fraction of these sequences was found also in the BM of the same individual, sharing
the same nucleotide sequence. Together, these findings show that the composition and
phenotype of the CD4+ T cell BM repertoire are relatively stable with age, while diver-
sity of the splenic repertoire is severely reduced. This reduction is caused by idiosyncratic
expansions of tens to hundreds ofT cell clonotypes, which dominate the repertoire of each
individual. We suggest that these private and abundant clonotypes are generated by spo-
radic clonal expansions, some of which correspond to pre-existing BM clonotypes. These
organ- and age-specific changes of theTCRβ repertoire have implications for understanding
and manipulating age-associated immune decline.

Keywords: TCR repertoire, aging, immune niche, clonal dominance, high throughput sequencing, TCR-seq, CD4+
T cells

INTRODUCTION
Effective T cell immunity is founded on a diverse T cell-receptor
(TCR) repertoire. This diversity, generated by the V(D)J recom-
bination mechanism in the thymus (1), is essential for coping
with the plethora of invading and fast evolving pathogens. Loss
of diversity, whether naturally occurring with age (2) or induced
(3), is associated with increased susceptibility to infections, as
well as reduced responses to vaccination (4, 5). One of the most
dramatic manifestations of aging on the immune system is thy-
mus involution. Toward old age, both in human and mice (6),
the thymic epithelial tissue is replaced by connective and adi-
pose tissue (7), causing reduction in de novo production of
naive T cells through differentiation of precursor cells. Without
thymic activity, naïve T cells are thought to be generated only
through homeostatic proliferation of existing single-positive T
cells (CD4+ and CD8+ T cells). In adult humans, this is the
main mechanism for maintenance of the naïve T cell pool, while

in mice there is evidence of lingering thymic output of naïve T
cells (8).

Although both the phenotypic balance between memory and
naïve T cells as well as the ratio of CD4+ to CD8+ T cells do not
alter drastically with age (9), this does not indicate that the TCR
repertoire is static (10). By using spectratyping to measure the dis-
tributions of TCR lengths across Vβ chains, studies have shown
that both the CD8+ and CD4+ TCR repertoires in old mice were
skewed compared to young mice (11). Moreover, the perturbations
in CDR3 lengths were idiosyncratic to each individual. Deviations
from the normal distribution for CDR3 lengths are assumed to
be caused by massive T cell expansions during aging both in mice
and humans (12). These changes in the composition of the TCR
repertoire with aging can create vulnerability to pathogens, such
as influenza (13), by providing incomplete clonal coverage.

The bone marrow (BM) is considered as the principal immune
niche for both CD4+ and CD8+ memory T cells (14). Following
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massive clonal expansion during primary immune response
against a pathogen, the contraction phase leaves only a small frac-
tion of antigen-specific memory T cells. These long-lived cells
reside mainly in the BM and represent the main T cell reservoir
for secondary responses. In line with these observations, the BM
was proposed as a “nest” for memory T cells (15), which can be
expanded by homeostasis-driven proliferation for fighting viral
infections (16), tumor (17), and even age-related cognitive loss
(18, 19). It was demonstrated that antigen-specific CD4+ T lym-
phocytes which relocate throughout life to the BM have a slow
turnover, but can fast react as professional memory CD4+ T cells,
when stimulated (14).

Although effects of aging on TCR diversity have been evalu-
ated in antigen-specific clones (10), it is still unclear what global
changes the TCR repertoire undergoes during lifespan. These
large-scale changes have been studied mostly using spectratyp-
ing (20, 21), a technique that maps the repertoire with very low
resolution. Furthermore, the differences between immune niches,
such as the BM and spleen (SPL), in terms of their distinct TCR
repertoires and their development with age remain to be explored.

Here we show that the TCRβ repertoire of CD4+ T cells is
shaped both by their immunological niche and by age. We used
high throughput sequencing to map the murine TCRβ repertoire,
of both splenic and BM-derived CD4+ T cells. Aged mice display
a marked reduction in diversity of splenic T cells, while diversity
of BM-derived T cells is relatively constant with age. Moreover,
the TCRβ repertoire of splenic T cells in aged mice becomes more
similar to the repertoire of BM-derived T cells. The loss of diversity
in old mice is associated with expansion of tens to hundreds T cell
clones, and occurs in parallel to segregation of the repertoires of
different mice, creating distinct and private immune signatures in
each aged individual. Finally, we evaluated clonal expansion and
convergent recombination (22) in aging in order to find evidence
for the mechanism that creates private repertoires in old age. We
show multiple occurrences of sharing at the nucleotide (nt) level
between TCR sequences derived from BM T cells and from mas-
sively expanded SPL T cell clones of the same aged animal. These
results suggest that the degenerate repertoire in old age is shaped
by rare events of massive clonal expansions which allow distinctive
T cell clones to dominate the immune repertoire of individuals.

MATERIALS AND METHODS
ANIMALS
Inbred male 6- to 8-week-old C57BL/6 mice were supplied by the
Animal Breeding Center of The Weizmann Institute of Science.
Inbred male 17- to 20-months-old C57BL/6 mice were supplied
by the National Institute on Aging (NIA). Aged mice were allowed
1 month adaptation period following shipment from the NIA to
our laboratory. All animals were handled according to regulations
formulated by The Weizmann Institute’s Animal Care and Use
Committee and maintained in a pathogen-free environment.

SAMPLE PREPARATION AND CD4+ T CELLS ISOLATION
Prior to tissue collection, mice were intracardially perfused with
PBS. Spleens were mashed with a syringe plunger and treated with
ammonium-chloride potassium (ACK) lysing buffer to remove
erythrocytes. BM was extracted from the femur and tibiae of

the mice. Single-cell suspensions of the samples were loaded on
MACS column (Miltenyi Biotec) and CD4+ T cells were isolated
according to manufacturer’s protocol.

FLOW CYTOMETRY AND ANALYSIS
The following fluorochrome-labeled mAbs were used accord-
ing to the manufacturers’ protocols: PercpCy5.5-conjugated anti-
TCRβ, PE-conjugated anti-CD4, FITC-conjugated anti-CD44, and
APC-conjugated anti-CD62L (BD Pharmingen and eBioscience).
Cells were analyzed on an LSRII cytometer (BD Biosciences)
using FACSDiva (BD Biosciences) and FlowJo (Tree Star) soft-
wares. In each experiment, relevant negative-control groups and
single-stained samples for each tissue were used to identify the
populations of interest and to exclude others.

LIBRARY PREPARATION FOR TCR-SEQ
All libraries in this work were prepared and pre-processed as pub-
lished (23). Briefly, we extracted total RNA from CD4+ T cells
(from spleen or BM) of C57BL/6 mice using RNeasy Mini Kit (Qia-
gen). The RNA was reverse transcribed using SuperScript II reverse
transcriptase (Invitrogen) and a TCR Cβ-specific primer linked to
the 3′-end Illumina sequencing adapter. The resulting cDNA was
then amplified using PCR (Phusion; Finnzymes) with a Cβ-3′adp
primer and a set of 23 Vβ-specific 5′ primers, each of which was
anchored to a restriction site sequence for the ACUI restriction
enzyme. PCR products were then cleaned using QIAquick PCR
purification kit (Qiagen), followed by enzymatic digestion with
ACUI (New England BioLabs). The ACUI enzyme was used to
cleave the amplicons such that sequencing starts closer to the V-D
junction region. This allows for good coverage of CDR3β with a
single Illumina read. This was followed by ligation of a 5′ Illumina
adaptor (T4 ligase; Fermentas), which also contained a 3-nt tag
for sample multiplexing. A second round of PCR amplification
was performed, using primers for the 5′ and 3′ Illumina adapters.
Final PCR products were run on a 2% agarose gel, cut at the desired
length, and purified using Wizard SV Gel and PCR Clean-Up Sys-
tem (Promega) to produce the final library. The libraries were
sequenced using Genome Analyzer II (Illumina).

PRE-PROCESSING AND ERROR CORRECTION FOR RAW READS
We filtered out raw reads containing bases with Q-value≤30, and
then separated the remaining reads according to their barcodes.
Then, we aligned the reads to each of the germline Vβ/Jβ gene
segments from IMGT (24) using the Smith–Waterman algorithm.
Each read was assigned its best-aligning Vβ/Jβ if the number of
matching nt (alignment length) was above a threshold: 11 nt for
Vβ, 9 nt for Jβ. To reduce the effect of sequencing errors, we clus-
tered (hierarchically) reads assigned the same Vβ and Jβ genes to
correct up to 2 nt misincorporation errors. Then, we annotated
the sequences by matching the Dβ to the junction, identifying
deleted/inserted nt and elongated the read to its full CDR3β length
(by IMGT convention). Finally, we translated the nt sequences into
amino acid (AA) CDR3β. For the entire analysis here, we used
only sequences that are fully annotated (V, J segments assigned),
are in-frame (i.e., they encode for a functional peptide, without
stop codons), have a cluster size of at least two and have less than
2 bp enzyme cleavage error. We also corrected the copy-number,
to adjust for PCR and sub-sampling bias, as published (23).
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STATISTICAL ANALYSIS
All statistical analysis was performed using R Statistical Software (R
(25)). We also used ShortRead package (26) for the pre-processing
pipeline, “ineq” package (27) to calculate the Gini coefficient and
“ggplot2” (28) for generating figures. Statistical tests performed
are stated in the text.

RESULTS
DIVERSITY OF THE SPLENIC TCRβ REPERTOIRE IS COMPROMISED IN
OLD MICE
We aimed to explore the changes in the repertoire landscape at old
age, with emphasis on evaluating the diversity of the TCR reper-
toire. To accomplish this, we measured using TCR-seq the TCRβ

repertoire in mice from two age groups: 6–8 weeks old (termed
“young,” n= 3) and 17–20 months old (“old,” n= 3). In addition,
to evaluate the differences between immune organs, we isolated
CD4+ T cells from the SPL and BM of each mouse. Properties
of all samples are detailed in Table 1. On average, we have ∼2e6
sequence reads that have passed the quality threshold (see Mate-
rials and Methods), for each sample. These quality-filtered reads
produced an average of ∼2.8e5 reads that could be annotated
with full CDR3β sequence properties (see Materials and Methods),
including translation to an in-frame AA sequence. BM samples
resulted in about 10-fold less annotated reads compared with
SPL samples. In total, we have found 108,124 distinct CDR3β AA
sequences in these 12 samples.

To evaluate the diversity of TCR sequences in the samples, we
first checked the cumulative frequencies of clonotypes, ordered by
their rank. Hence, we sorted all of the AA clonotypes by their fre-
quency in ascending order. To adjust for varying sample size, we
normalized the rank between 0 (the rarest clone) to 1 (the most
abundant clone). We then calculated the mean cumulative fre-
quency for increasing rank bins across mice belonging to the same
group (Figure 1A). In this representation, also known as a Lorenz
curve, a repertoire that has maximal diversity (i.e., all clonotypes
are present in equal frequency), will be plotted as a straight line
across the diagonal. In contrast, a skewed repertoire (i.e., few and
very abundant clonotypes dominate the sample) will deviate below
the diagonal with a sharp incline only toward the higher ranks. We
observe that the most skewed repertoire belongs to the old SPL,
while BM from young mice is the most diverse of the repertoires
studied here. The old SPL repertoire had a decreased diversity
compared with that of the young SPL, while the BM repertoire
showed only a slight decrease in diversity with age.

As another measure for repertoire skewness, we applied the
Gini coefficient for inequality, used to measure evenness of wealth
distribution in economics, which was applied recently for eval-
uation of TCR repertoire diversity (29). High values of the Gini
coefficient, which ranges from 0 to 1, are indicative of a skewed
repertoire. We calculated the Gini coefficient for each of the sam-
ples and grouped the results by organ and age (Figure 1B). The
Gini coefficient is highest for the old SPL group, consistent with
the Lorenz curve. The decline in clonal equality with age is evi-
dent in the spleen (p < 0.05, Student’s t test), but not in the BM
(p= 0.42).

We used an additional metric for measuring diversity in TCR
samples, the Simpson’s diversity index (30, 31). This metric takes

Table 1 | Sample properties.

Sample

name

Age

group

Organ Raw reads Total

annotated

Unique

reads

ySP1 Young Spleen 2,653,822 1,075,670 77,991

ySP2 Young Spleen 804,529 134,372 12,298

ySP3 Young Spleen 1,426,160 470,363 32,293

yBM1 Young BM 1,538,612 84,111 6,167

yBM2 Young BM 1,211,410 4,492 722

yBM3 Young BM 2,857,600 65,879 6,183

oSP1 Old Spleen 4,325,524 459,288 18,363

oSP2 Old Spleen 2,790,495 384,664 17,004

oSP3 Old Spleen 2,226,719 579,364 9,594

oBM1 Old BM 1,747,231 16,653 1,443

oBM2 Old BM 2,036,502 87,758 8,964

oBM3 Old BM 1,533,444 52,905 4,076

into account both the number of unique clonotypes and their
relative frequency. The Simpson’s diversity index represents the
probability that any two clonotypes randomly drawn from the
sample will have different sequences. The Simpson index ranges
from 0 to 1, with 1 representing maximal diversity, i.e., all clono-
types are present in equal sizes. For each sample, we calculated the
mean Simpson’s diversity index for 500 randomly sampled clones
in 1,000 iterations (Figure 1C). Consistent with our observation
for the skewness of the repertoire in old mice, the old SPL group
has a significantly lower diversity compared with the young SPL
[p < 0.001, permutations test, see Ref. (30)]. To conclude, we find
that the diversity of the splenic TCRβ repertoire is significantly
reduced at old age, based on the three analysis methods. Reduc-
tion in the diversity of the BM repertoire is minimal and not
statistically significant with current sample sizes.

SPLENIC CD4+ T CELLS ARE SKEWED TOWARD AN EFFECTOR MEMORY
PHENOTYPE
Next, we wished to determine whether these two immunologi-
cal compartments, SPL and BM, age differently in terms of the
memory phenotype of CD4+ T cells. Using flow cytometry, we
measured the proportions of effector memory (TEM) and central
memory (TCM) phenotypes in the CD4+ memory T cell com-
partment (Figure 1D). We found that TEM CD4+ T cells are
significantly more abundant in spleens of old mice (93.5± 2.7%)
compared to young mice (76.7± 1.8%). Increase in the effector
phenotype could point to expansion driven by antigen-specific
responses and suggests that these CD4+ TEM cells contribute to
the skewed repertoire we observe in old spleen. No significant
change in TEM/TCM balance was observed in BM samples between
age groups (Figure 1D), suggesting maintenance of the phenotypic
balance in the BM niche.

ORGAN SPECIFIC PATTERNS OF Vβ AND Jβ SEGMENT USAGE ARE
CONSTANT WITH AGE
We next examined how the gene segment usage changes with
aging (Figures 2A,B). Qualitatively, the Jβ distributions look sim-
ilar in all samples, with few segments that differ in frequency
between spleen and BM. For example, Jβ1.3 is over-expressed

Frontiers in Immunology | T Cell Biology November 2013 | Volume 4 | Article 379 | 286

http://www.frontiersin.org/T_Cell_Biology
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shifrut et al. TCR diversity loss in aging

FIGURE 1 |TCRβ repertoire is less diverse in the spleens of old mice.
(A) Skewness of the TCRβ repertoire for CD4+T cells from spleen and
BM of young and aged mice. For each mouse, clonotypes were ordered
by frequency. We then compared the cumulative frequency at each rank
(normalized to sample size). From the curves, which represent the mean
for each group, we observe that old SPL has the most skewed
repertoire. (B) Gini coefficient per group. Horizontal lines represent the
mean for each group and dots are individual samples. Old SPL group has
the highest values, thus it is the most skewed. (C) Simpson’s diversity

index calculated for each mouse (dots). Horizontal lines represent the
mean for each group. The old SPL group has a significantly lower
diversity than the young SPL group. (D) Phenotypic changes of CD4+
memory T cells in aging. Top panels show flow cytometric gating
strategy. Old spleen samples have significantly higher percentage of
effector memory T cells compared to young spleen samples (bottom
panels and bar graph). BM samples have similar central/effector memory
ratios across age groups (mean±SE of each group (n=4–5 per group;
**P < 0.01; Student’s t test).

in SPL samples (both young and old) compared to BM samples,
whereas Jβ2.7 is under-expressed in SPL samples. The Vβ distri-
butions vary between samples to a larger extent, evidenced also
by the overall lower correlation scores (Figure 2C). Inter-group
correlations in gene segment usage (Figure 2D) show similarity
between organ specific repertoires across age, which is higher than
between repertoires of different organs within age groups. Thus,
gene segment usage is more similar between young and old BM
samples, and between young and old SPL samples; it is less similar
between BM and SPL samples, both in young and aged mice. This
suggests that the tissue microenvironment plays a major factor in
shaping of the TCRβ repertoire.

Spectratyping analysis is often used to test for skewness and
clonal dominance in TCR repertoires. Thus, we generated virtual
spectratypes of CDR3 length distributions for sequences grouped

by their Vβ segment. Specifically, as our analysis detected skew-
ness in old SPL samples, we aimed to test if a particular CDR3
length was dominant in that age group (see Figure 2E for rep-
resentative plots). This analysis revealed length distributions that
are largely homogenous across samples, with neither significant
changes in skewness nor enrichment of a specific CDR3 length.
Thus, coarse analysis of the CD4+ TCR repertoire, comparing
gene segment usage as well as spectratyping analysis, could not
explain the measured loss in diversity in aged mice.

BM TCR REPERTOIRES ARE SIMILAR BETWEEN MICE AND AGE
GROUPS, WHILE SPL TCR REPERTOIRES CHANGE AND BECOME
PRIVATE WITH AGE
TCR-seq allows for comparison of repertoires at a higher resolu-
tion, beyond gene segment usage or CDR3 length distributions,
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FIGURE 2 | Vβ and Jβ usage in aged mice. (A,B) Each bar represents the
mean frequency of a gene segment in that group of mice. Error bars are
SEM. (C) Pairwise correlations of Vβ and Jβ usage between all pairs of mice.
We observe higher correlations between mice in Jβ usage (upper triangle)
compared to Vβ usage (lower triangle). (D) Correlation of the gene segment
usage between all pairs of mice averaged over groups. We detect a general

high correlation in the data, with inter-tissue similarity across age groups.
BM=bone marrow, SPL= spleen, n=3 for all groups. (E) “Virtual”
spectratypes. Each bar represents the relative frequency of a particular CDR3
length (in amino acids) for three representative Vβ segments, stated above
each panel, measured across individual SPL samples. No significant changes
could be detected in CDR3 length distributions across age groups.

by analysis at the level of individual TCR sequences. Hence, we
assessed similarity between samples by comparing frequencies
of overlapping clonotypes. This comparison is more stringent
than measuring Vβ/Jβ usage, as we search for the same exact AA
clonotypes and compare their observed frequency in each pair of
samples. We find that, in accordance to our findings for the Vβ/Jβ
usage, all BM samples, regardless of age, display a high similarity

in the frequencies of shared AA clonotypes (Figure 3A). We also
notice that the old SPL group is non-homogenous, i.e., the inter-
sample similarity (between individuals) is lower when compared
to that found in the young SPL group. To further illustrate this
point, we calculated the mean of all pairwise correlation coeffi-
cients for each group comparison (e.g., young SPL vs. old SPL,
young SPL vs. old BM, etc.). This analysis estimates the overall
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FIGURE 3 | Comparison of theTCR repertoires in different tissues and
age groups at the level of AA clonotypes. (A) For each pair of mice, we
calculated the Spearman’s correlation for frequencies of clonotypes that are
shared by that pair. As the frequency distribution of TCR repertoire is
over-dispersed, we used the log-transformed values as input for the rank
correlation test. The BM groups have high similarity between the samples,
and also between age groups. (B) For each group of mice (n=3), we
averaged the correlation scores of (A). Scores along the diagonal indicate the
intra-group similarity. Again, the homogeneity in the BM samples within

groups and across age is evident. In addition, the repertoire of the old SPL
group has a higher correlation with the young BM and old BM groups, and a
low intra-group correlation. (C) Sharing of clones between samples. From
each sample, we randomly chose 300 AA clones and calculated pairwise
sharing. The values represent the fraction of the sample that is shared
between any particular pair, averaged over 100 iterations. BM repertoires
show high level of sharing between individual mice and across age groups.
(D) A comparison of sharing between BM and SPL repertoires within the
same animal or from different animals (Mixed).

similarity between groups (off-diagonal elements in the matrix of
Figure 3B) and also between samples from the same group (diag-
onal elements, Figure 3B). We observe that the old SPL group
has the lowest within-group correlation, and that it is similar to
some degree to the young BM and old BM groups, but not to the
young SPL group. This suggests that, in aged mice, some clones
that were resident in the BM at younger age have migrated to
the spleen. BM samples are similar both between and within age
groups (Figure 3B).

As another measure for similarity, we evaluated the number
of overlapping sequences between pairs of samples. In order
to control for different sample sizes (Table 1), we randomly
sampled a collection of 300 clonotypes from each sample and
tested how many of these clonotypes are shared between all
possible pairs of samples. We iterated this test 100 times to reduce

sampling noise and calculated the mean for each pair of sam-
ples (Figure 3C). We found that the fraction of shared clones
within the BM samples is higher than within SPL samples of
both age groups. Average sharing of 10% was found between
the young BM samples and 9% between the old BM samples.
Sharing between SPL samples was much lower (1% for young
SPL samples and 3% for old SPL samples). Moreover, 10% of
clones are shared on average between young and old BM sam-
ples, whereas only 1% are shared between young and old SPL
samples. This supports our previous results showing that aging of
the immune system affects the composition of the SPL repertoire,
but has little influence on the repertoire of BM-resident CD4+

T cells.
We next focused on the inter-tissue sharing of clones by com-

paring the overlap between SPL and BM repertoires from the same
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animal, to the overlap observed between SPL and BM repertoires
taken from different animals (Figure 3D). In general, there are
more clones shared across niches in old animals compared to
young animals. Interestingly, we notice that in two out of three
old mice, more clones are shared between SPL and BM repertoires
that are derived from the same animal, compared with SPL and
BM repertoires that are derived from different animals. However,
we do not observe this pattern in young animals. These results
suggest that with age, a private set of clones is expanded in each
individual, contributing to the reduction in SPL repertoire diver-
sity. Furthermore, as the overlap between the repertoires of the
spleen and BM niches increases in old age, the repertoire of the
whole animal becomes less diverse and degenerate.

CLONAL DOMINANCE IS PREVALENT IN SPLENIC CD4+ T CELLS FROM
OLD MICE
Following our observation that the repertoire of splenic T cells
from old mice becomes less diverse, private and more similar to
the BM repertoire, we next focused on analysis of properties of
specific clones that contribute to these phenomena. To that end,
we first pooled the top 300 AA clonotypes from each sample to a
unified list of 2,108 unique AA sequences. Then, we clustered the
log-transformed frequencies for all the sequences in the unified
list across all samples (Figure 4A). We observe that young SPL
samples share many of these top clonotypes, indicating a baseline
similarity in the repertoire of young mice. In contrast, the old SPL
samples are distinct from each other and each individual presents
a unique subset of highly abundant clonotypes, which have inter-
mediate to low frequencies in the young SPL. Furthermore, BM
samples from old mice share several abundant clones with their
paired SPL samples, consistent with the intra-mouse sharing we
observed above (Figure 3D).

To reveal if the sharing of AA clonotypes in the old mice sam-
ples is also present at the nt level, we picked three representative
AA clonotypes that are shared between the SPL and BM samples
of old mice (Figure 4B). Strikingly, we found that in all three cases
the same nt sequence encodes the AA clonotype that is highly fre-
quent in both the SPL and BM. This is a strong indication that the
event of clonal expansion occurred for a particular T cell clone,
causing clonal dominance in aged mice, which is evident in both
BM and SPL of the animal. In contrast, AA clonotypes that are
highly frequent in young SPL samples typically show high conver-
gent recombination where many nt sequences encode for the same
AA clonotype (Figure 4B).

Following this observation, we extended this analysis and
counted the number of nt clones that are shared between BM and
SPL of the same animal, which are not shared by any other sample
(SPL or BM) from other animals. We find that more nt sequences
are shared exclusively between the BM and SPL of the same animal
in old mice, but not in young mice (Figure 4C). This reflects again
the private repertoires generated in old age, in parallel with the
increased similarity between the BM and SPL repertoires.

These results suggest that expanded clonotypes in aged mice
show clonal dominance, that is, the same TCR nt sequence is
responsible for most observed TCRs that have the same AA
sequence. To test this hypothesis, we directly calculated clonal
dominance in old mice compared to young mice. For each mouse,

we considered only the 300 most abundant AA clonotypes that
are encoded by at least two distinct nt sequences. Then, we cal-
culated the ratio between frequencies of the most abundant nt
sequence and the least abundant nt sequence encoding each AA
clonotype (Figure 4D). In the old SPL group, there is over a 100-
fold difference on average, between the maximal frequency and
the minimal frequency of nt sequences coding for the same AA
sequence. This ratio, R, is significantly higher in old SPL samples
(R= 116) than in young SPL (R= 36). The ratio in the BM is low
for both age groups (R= 13 for young BM and R= 16 for old BM).
This supports the hypothesis that expanded clonotypes in the old
SPL represent events of massive clonal expansion of a particular T
cell clone.

Finally, to illustrate the global changes that the repertoire
undergoes with aging, we plot the number of unique nt sequences
encoding for the same AA clonotype (convergent recombination
level) against the frequency of that clonotype, for all AA clonotypes
from all spleen samples (Figure 4E). We notice that the old SPL
group contains a subset of clonotypes that are highly expanded and
have low to moderate convergent recombination (encoded by up
to 10 different nt sequences). Clonotypes with similar properties
are not found in the young SPL group. This supports the hypoth-
esis that sporadic clonal expansion is a major factor in shaping the
repertoire in old mice. Also, there are very few clonotypes (n= 3,
0.007% of the clonotypes) with convergent recombination higher
than 10 in the old SPL group, whereas in the young SPL group
there are many such clonotypes (n= 152, 0.16%).

DISCUSSION
The immune system undergoes changes with aging, contributing
to an overall increase in neurodegenerative diseases and decrease
in autoimmune inflammatory diseases. In addition, susceptibility
to infectious diseases inclines with age (32) due to a combination
of several factors such as immune senescence (33), transcriptional
changes (34), and loss of de novo production of naïve T cells (35).
Aged individuals are particularly vulnerable to newly encountered
pathogens, as TCR diversity is severely diminished in old age. Here
we explored the consequences of aging on the TCR repertoire in
mice, with focus on the underlying causes for loss of diversity.

We applied TCR-seq on CD4+ T cells isolated from the BM
and spleen of young and aged mice. First, our focus was on mea-
suring diversity across all samples. As observed before for CD8+

T cells (20), we found that the diversity of the splenic CD4+ T
cell compartment also declines in aged mice. Reduced diversity
was revealed both by high Gini inequality coefficient and a low
Simpson diversity index. However, in BM samples only a minor
reduction of diversity was detected with aging, which was not
statistically significant. Examining the memory phenotype of the
CD4+ T cells in these two niches revealed a similar pattern; while
in the spleen the memory phenotype of the cells strongly shifted
toward effector memory during aging, the proportions of effector
and central memory T cells in the BM remained constant. This
can be attributed to the nature of the BM immune niche as an
immune privileged hematopoiesis site (36), allowing maintenance
of only a small subset of T cell clonotypes thus less affected by
clonal attrition. Clonal expansion in the BM may be inhibited due
to the abundance of quiescence-inducing signals which prevent
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FIGURE 4 |TheTCRβ repertoire of old mice is shaped by private clonal
expansions. (A) Top 300 ranking AA clonotypes from all samples (total of
2,108 clonotypes) were clustered using Euclidian distance. Paired samples
from the same animal are adjacent to each other. In old SPL there are
subsets of enriched clones, which are unique to each mouse. Also, part of
that subset is present in high frequency in the matching BM sample from
the same animal (black frames). (B) Frequencies of four selected AA
clonotypes across all samples. Stacked bars show the nt sequences,
uniquely colored, that encode the AA sequence stated above the panel. Top
3 panels show representative clonotypes that are expanded and private in
SPL and BM of old mice. Remarkably, these AA sequences are encoded by
the same nt sequence in the spleen and BM of these animals. The bottom
panel shows a typical abundant AA clonotype in young SPL samples,
showing a high level of convergent recombination across most samples in
which it is found. (C) Sharing of top 300 nt sequences between SPL and
BM of the same animal. For each mouse, we calculated the number of

exclusively shared nt sequences. The Venn diagram (left) shows an example
in which 44 sequences are exclusively shared by BM and SPL of old mouse
#1, and are not found in any other sample. Bar plot (right) shows that there
are on average more exclusively shared nt sequences within SPL and BM of
the same animal in old mice compared to young mice. Error bars indicate
standard error. (D) Evaluation of clonal dominance. Bars show the average
ratio between the frequency of the most frequent and the least frequent nt
sequence encoding for the same AA sequence. Values were calculated for
the top 300 AA clonotypes from each sample. The ratio is significantly
higher in old SPL samples compared to young SPL (p < 0.05, Student’s t
test), suggesting clonal dominance. (E) Convergent recombination (# of nt
sequences encoding each AA sequence) of AA clonotypes is plotted against
their frequency. In old SPL the scatter shows a subset of high frequency
clones that are encoded by less than 10 nt sequences (lower-right
quadrant). In contrast, in young SPL many clonotypes show high
convergent recombination (upper-left quadrant).

extensive proliferation of stem/progenitor cells, found in the BM
as a hematopoietic niche (37).

We next evaluated the patterns of gene segment usage in our
dataset. Consistent with our previous observation (23), Jβ usage is
similar across samples and is not influenced significantly by tissue
specificity or age. In general, the highest correlation in Vβ and Jβ

usage is observed between the BM samples from both age groups,
indicating a relatively stable TCR repertoire in the BM niche across
age. However, analysis of distributions of gene segment usage and
of CDR3 length do not show significant age-related differences
that can explain the observed loss of splenic repertoire diversity.
Thus, certain aspects of repertoire dynamics can be evaluated only
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with increased resolution, achieved by high throughput methods
such as TCR-seq. This may have masked clear detection of decline
in repertoire diversity with age in the CD4+ compartment in pre-
vious studies that used spectratyping for evaluation of repertoire
diversity (21, 38).

Gene segment usage only partially depicts the set of specificities
encompassed by the TCR repertoire, thus we focused on the deep-
est functional level of the repertoire, the CDR3 AA sequence. Here,
the similarity between the repertoires of BM niches, even between
young and old mice, is emphasized. AA clonotypes in the BM are
shared and their frequencies are well-correlated across the samples
from different individuals, and also across age groups. This sup-
ports the notion of a relatively static composition of clonotypes
in the BM niche which maintains the structure of the TCR reper-
toire of BM-resident CD4+ T cells. In contrast, the SPL samples
from aged mice display very distinct repertoires, evidenced by a
low intra-group correlation for frequencies of shared AA clono-
types and a low sharing of TCR sequences between mice of this
group. This suggests that the loss of diversity we detect in old
mice is manifested by private immune responses during lifetime,
where in each individual a particular subset of TCR specificities
is amplified to dominance. This is in agreement with the pattern
observed in antigen-specific response in aged mice (10) but on a
more global scale. We observe tens to hundreds of clones that
are private and significantly expanded in each old individual’s
spleen, indicating that decline in repertoire diversity is caused
by expansion of a large number of clones through life. More-
over, the repertoire of the old spleen becomes more similar to
that of the BM in the aged mice. Of note, in two out of three
aged mice, more clonotypes are shared between BM and SPL
niches of the same animal compared with sharing between dif-
ferent animals. This trend of exclusive sharing between BM and
SPL niche of the same animal is not evident in any of the three
young mice. Together with the larger similarity between reper-
toires of the SPL niche in aged mice to that of the BM, this
suggests that specific clones from the BM niche expanded sig-
nificantly in the periphery, contributing to a skewed, degenerate,
and private repertoire in the old SPL. Our phenotypic analysis
(Figure 1D) suggests that these expanded clones acquire an effec-
tor memory phenotype in the old spleen, but more specific analysis
is required to validate this hypothesis. In addition, extending our
dataset to include additional mice could provide further evidence
for the private repertoires in the aged spleen, and for increased
similarity between BM and SPL repertoires that we observe in
aged mice.

Lastly, we focus on those clones that are common to SPL and
BM tissues of aged mice, but exclusive to each animal. We detect
clonal dominance in these expanded groups of cells, with the
same nt sequence present in high frequency in both niches. The
chance of this expansion to occur in two independent events of
clonal expansion is highly unlikely. As we find the same exact nt
sequence in the BM and SPL of the same animal, we propose that
sporadic clonal expansion is the mechanism that shapes the TCR
repertoire in aging. This clonal dominance can be realized in the
aging immune system, as the “void” created by clonal senescence
and exhaustion (39) is more easily filled with rapidly dividing T
cell clones. A similar phenomenon was described in other models

of similar low grade, chronic sterile innate inflammation, such
as obesity, where TCR repertoire is restricted (40). The mech-
anisms that generate these rare expansions can be response to
self-antigens (18), latent infections (32), or driven by accumulating
mutations (41).

In summary, we showed that diversity of the splenic CD4+

TCR repertoire declines with age, while the BM repertoire remains
largely unchanged. Our results suggest that with age, the TCRβ

repertoire of each individual focuses on a certain subset of few
hundreds clones out of the potential repertoire, and there is large
variability between the subset each individual maintains. This
attrition can be explained by a reduction in thymic output of
naïve cells with age along with sporadic clonal expansion, which
contribute to the clonal dominance we observe in old mice. As
a consequence, this phenomenon should be considered when
addressing vaccination of the elderly population.
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The relationship between maternal and child immunity has been actively studied in the
context of complications during pregnancy, autoimmune diseases, and haploidentical trans-
plantation of hematopoietic stem cells and solid organs. Here, we have for the first time
used high-throughput Illumina HiSeq sequencing to perform deep quantitative profiling of
T cell receptor (TCR) repertoires for peripheral blood samples of three mothers and their
six children. Advanced technology allowed accurate identification of 5×105 to 2×106 TCR
beta clonotypes per individual. We performed comparative analysis of these TCR reper-
toires with the aim of revealing characteristic features that distinguish related mother-child
pairs, such as relative TCR beta variable segment usage frequency and relative overlap
of TCR beta complementarity-determining region 3 (CDR3) repertoires. We show that
thymic selection essentially and similarly shapes the initial output of the TCR recombi-
nation machinery in both related and unrelated pairs, with minor effect from inherited
differences.The achieved depth ofTCR profiling also allowed us to test the hypothesis that
mature T cells transferred across the placenta during pregnancy can expand and persist
as functional microchimeric clones in their new host, using characteristic TCR beta CDR3
variants as clonal identifiers.

Keywords: TCR repertoires, NGS, maternal-fetal exchange, public clonotypes, T cell receptor, haploidentical
transplantation, autoimmune diseases, microchimerism

INTRODUCTION
Closeness and relationship between mother and child immunity
have been the focus of studies of pregnancy (1), autoimmunity
(2–4) and haploidentical transplantations of hematopoietic stem
cells (HSCs) (5), and solid organs (6, 7).

In recent years, the potential of next-generation sequencing
(NGS) to reveal the full complexity of human and mouse immune
receptor repertoires has inspired numerous efforts to develop opti-
mal techniques for achieving large-scale T cell receptor (TCR)
and antibody profiling (8–12) and to decipher various aspects
of adaptive immunity (8, 9, 11, 13–17). With appropriate library
preparation methods (18), NGS techniques now make it possible
to perform quantitative analysis of hundreds of thousands or mil-
lions of distinct TCR beta complementarity-determining region
3 (CDR3) variants. This individual diversity of TCR beta CDR3
variants, which is generated in the course of V-D-J recombination
and the random addition and deletion of nucleotides in the thy-
mus, largely determines the whole diversity of naïve T cells and
specificity of T cell immune responses (19, 20).

In the present study, we have used deep NGS profiling to com-
pare TCR beta repertoires of mothers and their children. We
achieved a profiling depth of 500,000–2,000,000 unique TCR beta
CDR3 clonotypes per donor, and performed comparative analy-
sis with the aim of revealing specific features of TCR repertoires

that distinguish related mother-child pairs from unrelated indi-
viduals, and how these familial repertoires manifest the influence
of inherited factors, such as the elements of TCR recombination
machinery and human leukocyte antigens (HLA). By comparing
out-of-frame (i.e., non-functional and thus not subjected to selec-
tion) and in-frame TCR beta repertoires, we also show the extent
of the impact of thymic selection and the common trends in how
this process shapes individual repertoires.

Additionally, the profiling depth that we achieved allowed us to
look for the potential presence of maternal or fetal microchimeric
T cell clones that may have transmigrated through the placenta as
mature α/β T cells and which subsequently persist in both related
donors, by using characteristic TCR beta CDR3 variants as clonal
identifiers.

MATERIALS AND METHODS
SAMPLE COLLECTION
This study was approved by the ethical committee of the Fed-
eral Scientific Clinical Center of Pediatric Hematology, Oncology,
and Immunology. Blood donors provided informed consent prior
to participating in the study. Ten milliliters of peripheral blood
samples were obtained from nine systemically healthy Caucasian
donors: three mothers (average age 40± 4 years) and their six chil-
dren (average age 11± 4 years). Peripheral blood mononuclear
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cells (PBMCs) were isolated by Ficoll-Paque (Paneco, Russia) den-
sity gradient centrifugation. Total RNA was isolated with Trizol
(Invitrogen, USA) in accordance with the manufacturer’s protocol.

CONTAMINATION PRECAUTIONS
T cell receptor beta libraries were generated in clean PCR hoods
with laminar flow, using reagents of high purity and pipette tips
with hydrophobic filters. As an additional precaution, we gener-
ated the TCR beta libraries for the two groups being compared –
mothers and their children – a month apart, and sequenced the two
libraries in two separate Illumina runs to guarantee the absence of
inter-library contamination during amplification or on the solid
phase of the sequencer.

PREPARING cDNA LIBRARIES FOR QUANTITATIVE TCR BETA PROFILING
cDNA-based library preparation was performed essentially as
described previously (9, 12, 16, 18, 21, 22). Briefly, we used the
Mint kit (Evrogen, Russia) for first-strand cDNA synthesis. For
each donor sample, the whole amount of extracted RNA was used
for cDNA synthesis, with 1.5 µg of RNA per 15 µl reaction volume.
We incubated the mixture of RNA and priming oligonucleotide
BC_R4_short (GTATCTGGAGTCATTGA), which is specific to
both variants of the human TCR beta constant (TRBC) segment,
at 70°C for 2 min and 42°C for 2 min for annealing. We then added
the 5′-adapter for the template switch. The reaction was carried out
at 42°C for 2 h, with 5 µl of IP solution added after the first 40 min.

Further cDNA library amplification was performed in two
sequential PCRs using Encyclo PCR mix (Evrogen). To capture
the maximum number of input cDNA molecules, we used the
whole amount of synthesized cDNA for the first PCR amplifi-
cation. The first PCR totaled 18 cycles with universal primers
M1SS (AAGCAGTGGTATCAACGCA) and BC2R (TGCTTCT-
GATGGCTCAAACAC), which are respectively specific to the 5′-
adapter and a nested region of the TRBC segments. The primer
annealing temperature was set at 62°C. The products of the
first PCR were combined, and a 100-µl aliquot was purified by
QIAquick PCR purification Kit (Qiagen) and eluted by 20 µl of
EB buffer.

The second PCR amplification was performed for 8–10 cycles
with a mix of TCR beta joining (TRBJ)-specific primers and the
universal primer M1S ((N)2–4(XXXXX)CAGTGGTATCAACGCA
GAG), which is specific to the 5′-adapter and is nested relative
to the M1SS primer used in the first PCR amplification. XXXXX
represents a sample barcode introduced in the second PCR, and
(N)2–4 are random nucleotides that were added in order to gen-
erate diversity for better cluster identification during Illumina
sequencing. Primer annealing temperature was set at 62°C.

ILLUMINA HiSeq SEQUENCING
PCR products carrying pre-introduced sample barcodes were
mixed together in equal ratio for each of the two groups (moth-
ers and children). Illumina adapters were ligated according to the
manufacturer’s protocol using NEBNext DNA Library Prep Mas-
ter Mix Set for Illumina (New England Biolabs, USA). Generated
libraries were analyzed using two separate Illumina HiSeq 2000
lanes in separate runs with 100+ 100 nt paired end sequencing
using Illumina sequencing primers. Raw sequences deposited in
NCBI SRA database (PRJNA229070).

NGS DATA ANALYSIS
TCR beta variable (TRBV) segment identification [using IMGT
nomenclature (23)], CDR3 identification (based on the sequence
between conserved Cys-104 and Phe-118, inclusive), clonotype
clusterization and correction of reverse transcription, PCR, and
sequencing errors were performed using our MiTCR software
(24)1. The sequencing quality threshold of each nucleotide within
the CDR3 region was set as Phred >25, with low-quality sequence
rescue by mapping to high-quality clonotypes. The strictest “elim-
inate these errors”correction algorithm was employed to eliminate
the maximal number of accumulated PCR and sequencing errors.

STATISTICAL ANALYSIS
We used Jensen–Shannon divergence (JS), which is a symmetrized
version of the Kullback–Leibler divergence (KL), to quantify the
similarity between the clonotype TRBV gene usage distribution in
related and unrelated mother-child pairs. JS and KL are defined as
follows (25):

JS (P , Q) =
1

2

(
KL

(
P ,

P + Q

2

)
+ KL

(
Q,

P + Q

2

))
,

KL (P , Q) =
∑

i

pi log2
pi

qi
.

Where P and Q correspond to the TRBV gene segment fre-
quency distributions of the two individuals being analyzed, and pi

and qi stand for the frequency of a particular TRBV gene segment
in the first and second individual, correspondingly. For statistical
comparison of the JS among related and unrelated mother-child
pairs, we used two-tailed, unpaired Student’s t -test with P-values
<0.05 considered significant. To account for multiple testing,
Bonferroni-corrected P-values were used.

We used linear regression to analyze dependency between
TRBV-CDR3/CDR3 overlap ratio and the number of shared major
histocompatibility complex I (MHC-I) alleles, and calculated the
Pearson correlation coefficient. The linear model:

TRBV− CDR3/CDR3 overlap ratio = b0+ b1

× [Number of shared MHC alleles]

was fit using the least-squares method. Linear regression and cor-
relation analysis were performed using R programing language2.

FACS ANALYSIS
We used the following anti-human antibodies: CD3-PC7 (clone
UCHT1, eBioscience), CD27-PC5 (clone 1A4CD27, Invitrogen),
CD4-PE (clone 13B8.2, Beckman Coulter), CD45RA FITC (eBio-
science, clone JS-B3). An aliquot of PBMC was incubated with
antibodies for 20 min at room temperature, washed twice with
PBS and analyzed via Cytomics FC 500 (Beckman Coulter).

HLA TYPING
The samples were HLA-typed using SSP AllSet Gold HLA-ABC
Low Res Kit and SSP AllSet Gold HLA-DRDQ Low Res Kit
(Invitrogen) and results were processed using UniMatch software.

1http://mitcr.milaboratory.com/
2http://www.R-project.org/
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RESULTS
We obtained at least 1× 107 TCR beta CDR3-containing sequenc-
ing reads for each mother and about 3× 106 reads for each child.
MiTCR software analysis yielded 500,000–2,000,000 distinct TCR
beta CDR3 clonotypes per donor (Table 1) – representing a sig-
nificant portion of the total TCR beta diversity for an individual,
which lower bound estimate constitutes ~4 million (8). We then
subjected these individual TCR beta datasets to comparative analy-
sis in an effort to identify features that distinguish TCR beta
repertoires of related mother-child pairs.

TRBV GENE USAGE
We analyzed the relative usage of TRBV gene segments in
mother-child pairs at three levels (see Figure 1):

Out-of-frame TCR beta variants
The influence of genetic effects on the recombination machinery,
which determines the relative frequencies of TRBV gene segment
usage in TCRs generated before selection in the thymus, should
be reflected by out-of-frame TCR variants that are not subjected
to the pressure of further selective processes. Due to nonsense-
mediated decay mechanisms, RNA-based libraries generally con-
tain a low percentage of out-of-frame TCR beta variants (9, 12,
26, 27). Nevertheless, out-of-frame CDR3 sequences constituted
~2.5% of all clonotypes (Table 1) – 16,048–45,300 clonotypes
per donor – which is sufficiently abundant to perform statistical
analysis. These subsets were used to compare TRBV gene segment
usage in related and unrelated mother-child pairs before thymic
selection.

At this level of out-of-frame non-functional TCR beta variants,
Jensen–Shannon divergence in TRBV gene usage was compara-
ble for related and unrelated mother-child pairs, albeit with a
non-significant increase in divergence for the latter (Figure 2A;
Figures 3A,B, first 2 bars).

Low-frequency in-frame clonotypes
The pressure of thymic selection can be tracked by comparing
TRBV gene segment usage in out-of-frame TCR beta variants
relative to those variants represented in naïve T cells. In this work,
we did not perform separate TCR profiling of FACS-sorted naïve T
cells. We aimed to achieve maximal depth of analysis, and sought

to avoid the loss of cells and RNA and general quantitative biases
that inevitably arise from the cell sorting process. We estimated
the pool of TCR beta clonotypes that predominantly belong to
the naïve subset as follows. We used FACS analysis to identify the
percentage of naïve CD27highCD45RAhigh CD3+ T cells for each
donor (28). This analysis demonstrated that naïve T cells consti-
tute 40–73% of the T cell population in children and 27–55% of
the T cell population in mothers (Table 1; Figure 1). Since each
naïve T cell clone is usually represented by minor numbers of
TCR-identical cells in an individual (29), for the purposes of bulk
analysis, we hypothesized that the subset of the low-frequency
clonotypes that occupies the same share of homeostatic space as
the FACS-determined share of naïve T cells for that particular
donor (433,293–1,797,650 clonotypes per donor) predominantly
includes naïve T cells.

At this level of low-frequency, in-frame TCR beta clonotypes,
TRBV gene segment usage was significantly less divergent com-
pared to out-of-frame TCR beta variants, both in related and
unrelated pairs (Figures 2B and 3). Additionally, TRBV gene
segment usage was significantly more similar for related versus
unrelated pairs (Figures 3A,B, bars 3, 4). In accordance with
JS analysis, comparison within related triplets revealed equal-
ization of the usage of particular TRBV gene segments in low-
frequency, in-frame TCR clonotypes compared to out-of-frame
TCR variants (Figure 4). For example, in each triplet, we saw
the usage of TRBV gene segments 12-3, 12-4, 20-1, 21-1, and
23-1 equalize in the low-frequency TCR beta clonotypes pool.
We also observed an equalizing decrease in TRBV 7-3 usage in
triplets A and C, and an equalizing increase in TRBV 28 usage in
triplet B.

Notably, the observed changes in TRBV gene segments usage
were generally similar in different unrelated donors (compare
Figures 4A–C), and the convergence of TRBV usage after thymic
selection (difference of out-of-frame versus in-frame TRBV usage
divergence) was not significantly dependent on the number of
shared HLA alleles (R= 0.12, P = 0.63).

High-frequency in-frame clonotypes
The influence of antigen-specific reactions on selection of TRBV
gene segments could be tracked by comparing TRBV gene usage
in naïve and antigen-experienced T cells. Following the same logic

Table 1 | Sequencing results:TCR beta reads and clonotypes.

Donor Sex Age Paired end

sequencing

reads

TCR beta CDR3-

containing reads

(%)

TCR beta

clonotypes

before error

correction

FinalTCR

beta

clonotypes

% Of out-of-frame

clonotypes

of all clonotypes

% Of naïve

T cells of all

T cells

(FACS analysis)

% Occupied by

>0.001%

clonotypes,

of all reads

Mother A F 36 13,656,054 12,513,543 (91.6) 2,044,290 1,708,037 2.7 55.0 19.4

Mother B F 43 13,872,805 12,901,795 (93.0) 1,213,738 918,557 2.6 27.3 46.2

Mother C F 43 11,167,059 10,038,463 (89.9) 2,180,886 1,978,745 3.0 39.4 38.2

Child A1 M 11 4,687,578 2,889,352 (61.6) 756,772 729,800 2.6 57.2 16.4

Child A2 M 9 4,202,419 2,467,388 (58.7) 558,173 535,283 2.4 43.0 28.2

Child B1 M 16 4,830,536 3,173,376 (65.7) 821,908 790,592 3.2 60.9 17.2

Child B2 M 10 4,615,093 3,009,961 (65.2) 545,730 517,410 2.3 40.1 34.3

Child C1 F 6 6,081,365 3,940,367 (64.8) 1,104,982 1,060,854 2.3 73.7 13.9

Child C2 M 16 4,564,646 3,008,748 (65.9) 785,164 760,572 2.6 63.7 19.7
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FIGURE 1 | Representation ofT cell clones of different size in
individualTCR beta repertoires. Colored bars represent the share of
clonal space occupied by clones of given type (classified by size) for each
of the nine donors. Light green bars represent the share of naïve
CD27highCD45RAhigh T cells as determined by FACS analysis. Dashed lines

indicate the share of low-frequency TCR beta clonotypes equivalent to
this population in each individual, which were included in “low-frequency
in-frame clonotypes” analysis. Square brackets indicate the share
occupied by high-frequency T cell clones each representing >0.001% of
all T cells.

that we used above for the approximate identification of the subset
of naïve TCR beta clonotypes,we hypothesized that the most abun-
dant clonotypes predominantly represent antigen-experienced T
cell clones. We defined this population as clones representing
>0.001% of all CDR3 sequences. Thus, the lower bound for this
group was approximately an order of magnitude greater than the
upper border set for the low-frequency clones in a given donor’s T
cell pool (Figure 1). Such delineation with a gap between the two
subsets minimized“contamination”by naïve TCR beta clonotypes.
Still, the pool of high-frequency in-frame clonotypes could con-
tain a portion of naïve clonotypes with TCR beta CDR3 sequence
variants of low complexity, that are repetitively produced in thy-
mus due to the convergent recombination events and thus may be
highly represented (15).

This set of the 2,803–8,285 most abundant clonotypes per
individual cumulatively occupied 13.9–46.2% of the homeosta-
tic T cell space in each donor. These high-frequency TCR beta
clonotypes were generally characterized by increased variability in
TRBV gene segment usage,and related and unrelated mother-child
pairs were nearly indistinguishable (Figure 2C; Figures 3A,B, bars
5, 6).

OVERLAP OF TCR BETA REPERTOIRES FOR RELATED AND UNRELATED
MOTHER-CHILD PAIRS
Several studies in recent years have revealed that unrelated individ-
uals widely share TCR beta repertoires (13–15, 30–32). However,
it is presently unclear whether the repertoires of haploidentical
individuals are characterized by a higher level of overlap com-
pared to unrelated donors. Additionally, for related mother-child
pairs, shared TCR beta variants could conceal microchimeric T
cell clones that have been physically shared across the placenta
(see below).

To address these questions, we performed comparative analy-
sis of TCR beta repertoire overlap for related and unrelated
mother-child pairs by quantifying CDR3 variant identity at the
amino acid level, at the nucleotide level, and at the nucleotide
level in conjunction with identical TRBV and TRBJ gene segment
usage (i.e., fully identical TCR beta chains). We measured over-
laps separately for low-frequency and high-frequency in-frame
clonotypes (as delineated in Figure 1), and all in-frame clonotypes.
Table 2 shows raw, non-normalized numbers of CDR3 vari-
ants shared on average by related and unrelated mother-child
pairs.
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FIGURE 2 | Relative similarity ofTRBV gene segments usage
analyzed using the Jensen–Shannon divergence method for
(A) out-of-frameTCR beta variants; (B) Low-frequency in-frameTCR
beta clonotypes; and (C) high-frequency in-frameTCR beta
clonotypes. The central dot in each diagram represents Mother

(A) (orange), (B) (blue), or (C) (green). Surrounding dots represent the
six children. Related children are shown in the same color as their
mothers. The closer the “child” dot is to the central “mother” dot, the
lower the Jensen–Shannon divergence (i.e., more similar TRBV gene
segment usage).

For comparative analysis of relative overlap between subsets
of different size, we normalized the number of identical CDR3
variants based on the sizes of the cross-compared samples as
follows:

Formula 1: [normalized overlap between TCR sets A and B]

= [overlap between TCR sets A and B]/([number of

clonotypes in set A] × [number of clonotypes in set B]).

Normalized results are plotted in Figure 5. For all CDR3 cate-
gories, the degree of overlap was always slightly higher for related

pairs, but this difference never approached a significant level com-
pared to unrelated pairs. The highest level of overlap was observed
for high-frequency clonotypes, in agreement with the previous
work (15).

WITHIN AMINO ACID CDR3 OVERLAPS OF EXPANDED CLONOTYPES,
PERCENTAGE OF CLONOTYPES WITH IDENTICAL TRBV GENES IS
INCREASED FOR RELATED MOTHER-CHILD PAIRS
The CDR3 region is considered to form interactions mainly with
antigenic peptide, while CDR1 and CDR2 encoded in the TRBV
segment are mostly responsible for MHC recognition (33–35).
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FIGURE 3 | Mean Jensen–Shannon divergence forTRBV gene segment
usage for related (R, gray) versus unrelated (UR, blue) mother-child
pairs, with SD. Bonferroni-corrected P -values are provided to account for
multiple testing. (A) Comparison of TRBV gene segment usage frequencies
at the level of distinct TCR beta clonotypes (but not sequencing reads, so
that the influence of relative TCR beta clonotype size within a given
repertoire is excluded). (B) Comparison of TRBV gene segment usage

frequencies at the level of sequencing reads, i.e., considering relative
abundance of clonotypes in peripheral blood. The lower the
Jensen–Shannon divergence, the more similar the TRBV gene segment
usage. *Denotes statistical significance. See Figure 1 for delineation of low-
and high-frequency clonotypes. Please note that “All in-frame clonotypes”
include not only low-frequency and high-frequency clonotypes, but also the
medium-frequency ones.

Some TRBV segments have nearly identical sequences taking
part in CDR3 formation, so two different TRBV segments can
often give rise to the same CDR3 amino acid sequence. How-
ever, in two individuals with similar or identical HLA alleles,
proliferating antigen-specific clones with the same TRBV seg-
ment and CDR3 amino acid sequence that recognize the same
peptide-MHC complex can be preferentially activated (36). There-
fore, since related mother and child pairs share at least 50%
of their HLA alleles, we could expect that antigen-experienced
clones with identical amino acid CDR3 variants that recognize
the same antigenic peptide should more often carry the same
TRBV segment encoding CDR1 and CDR2 responsible for MHC
recognition.

To verify this hypothesis, we analyzed various repertoire pairs
comprising the 10,000 most abundant amino acid CDR3 clono-
types from each individual and computed overlap in terms of
shared amino acid CDR3 sequences and shared amino acid CDR3
sequences carrying the same TRBV segment (i.e., identical CDR1,
2, and 3). We then determined the ratio of TRBV-CDR3 over-
lap to CDR3 overlap for each mother-child pair. In all cases,
the ratio was greater for related mother-child pairs (1.3-fold,
±0.16, Figure 6A). Moreover, we observed significant positive
correlation of this ratio with the number of shared MHC-
I alleles between individuals (R= 0.62, P < 0.006, Figure 6B;
Table 3).

SELECTION IN THE THYMUS DECREASES AVERAGE CDR3 LENGTH
COMPARED TO THE INITIALLY GENERATED REPERTOIRE
Comparison of the out-of-frame and in-frame CDR3 repertoires
revealed that the former are characterized by higher average length

(45.6± 0.4 versus 43.3± 0.2) and an increased number of added
nucleotides (8.6± 0.2 versus 7.4± 0.1, see Figure 7A), in both
mothers and children.

This finding indicates that, upon recombination, the initially
generated TCR beta CDR3 repertoire (the parameters of which
are preserved in the non-functional out-of-frame repertoire) is
characterized by higher average length, while further selection in
thymus essentially shapes the repertoire toward lower CDR3 length
and fewer added nucleotides.

SEARCHING FOR MICROCHIMERIC CLONES TRANSFERRED ACROSS
THE PLACENTA AS MATURE T CELLS
It is well established that mother and child exchange cells across the
placenta during pregnancy (37–42), and that the progeny of these
migrating cells persist in the new host for decades after gestation
(43–45).

Most authors agree that lymphoid progenitor cells commonly
cross the placenta to populate the new host (45–48). Some obser-
vations also indicate that mature T cells can transmigrate through
the placenta (see Discussion). However, it remains to be deter-
mined whether the transferred mature T cells (hereinafter referred
to as mature-microchimeric T cells) can further persist and serve
as functional T cell clones in their new host.

We hypothesized that the present deep sequence analy-
sis of such a substantial portion of the maternal and fetal
TCR repertoire (including the absolute majority of proliferated
antigen-experienced T cell clones) could reveal the presence of
transferred and multiplied functional T cell populations, albeit
without the immediate ability to distinguish the direction of
transfer (i.e., maternal versus fetal microchimerism). Indeed,
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FIGURE 4 |TRBV gene segment usage in functional low-frequencyTCR
beta clonotypes in comparison to out-of-frameTCR variants. Colored bars
indicate the representation of a particular TRBV gene segment family in
out-of-frame TCR variants from each individual. Lines represent alterations in

TRBV gene segment representation in functional low-frequency TCR beta
clonotypes relative to out-of-frame TCR variants. (A), (B), and (C) depict TRBV
gene segment usage for related donors from family (A), (B), and (C),
respectively.

microchimeric T cell clones that were initially transferred across
the placenta as mature T cells (mature-microchimeric T cell
clones) within a given mother-child pair should be characterized

by the same TCR beta CDR3 nucleotide sequence and the same
TRBV and TRBJ gene segments, which therefore could serve as a
clone-specific identifier.
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Table 2 | Average number of sharedTCR beta CDR3 clonotypes in related and unrelated pairs.

Pairs Amino acid Nucleotide NucleotideTRBV,TRBJ identical

Low-

frequency

High-

frequency

All

clonotypes

Low-

frequency

High-

frequency

All

clonotypes

Low-

frequency

High-

frequency

All

clonotypes

Related 71,714±25,890 117±34 83,257±26,056 4,938±2,237 69±7 8,407±3,396 2,015±893 40±10 3,456±1,359

Unrelated 68,979±18,822 99±15 80,304±18,626 4,640±1,587 59±12 7,955±2,227 1,823±624 31±11 3,135±897

Nucleotide CDR3 clonotypesAmino-acid CDR3 clonotypes
TRBV-, TRBJ - identical nucleotide
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FIGURE 5 | Normalized overlap of individualTCR beta repertoires. Overlaps are shown at the level of CDR3 amino acid sequences, nucleotide sequences,
and nucleotide sequences with identical TRBV and TRBJ segments; for related (gray) versus unrelated (blue) mother-child pairs; and for low-frequency,
high-frequency, and all in-frame clonotypes. The number of intersections was normalized as described in Formula 1. R, related pairs; UR, unrelated pairs.
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FIGURE 6 | Amino acidTRBV-CDR3/CDR3 overlap ratio. (A) The ratio
of TRBV-CDR3 overlap to CDR3 overlap for all possible mother-child pairs,
based on the 10,000 most highly represented clonotypes from each
donor. Related mother-child pairs had a higher ratio relative to children
with either of the unrelated mothers. (B) The number of shared MHC-I

alleles in mother-child pairs correlates with the TRBV-CDR3/CDR3 overlap
ratio for the 10,000 most abundant CDR3 clonotypes. Solid line displays
linear regression fit; the Pearson correlation coefficient was 0.62
(P < 0.006). Related and unrelated pairs are shown in gray and black,
respectively.
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Table 3 | HLA typing.

HLA-A HLA-B HLA-C DRB1 DRB3 DRB4 DQB1

Mother A 02, 24 15, 57 03, 06 07, 14 01–03 01 03, 05

Mother B 02, 23 44, 51 02, 04 07, 11 01–03 01-02 02, 03

Mother C 01, 11 08, 35 04/08, 07 01, 03 01–03 – 02, 05

Child A1 02, 25 15, 18 03, 12 04, 14 01–03 01–02 03, 05

Child A2 02, 02 15, 44 03, 05 11, 14 01–03 – 03, 05

Child B1 02, 23 38, 44 04, 12 07, 13 01–03 01–02 02, 06

Child B2 02, 23 27, 44 02, 04 07, 11 01–03 01–02 02, 03

Child C1 02, 11 35, 38 04, 12 01, 13 01–03 – 05, 06

Child C2 02, 11 35, 38 04, 12 01, 13 01–03 - 05, 06

However, ~40% of the CDR3 nucleotide variants shared
between any two individuals were characterized with the same
TRBV and TRBJ gene segments, in similar numbers for both
related and unrelated mother-child pairs. This means 1,766–
5,410 shared clonotype variants across different donor pairs
(Table 2; Figure 5). This widespread sharing of identical TCR
beta nucleotide variants makes the TRBV-CDR3-TRBJ identifier
insufficient to distinguish clones that were physically transferred
across the placenta as mature T cells with recombined TCRs
from public TCRs resulting from independent convergent recom-
bination events (15, 32). Thus, if mature-microchimeric T cell
clones are present, they are concealed amongst the overwhelming
majority of natural public TCRs, and additional characteristics are
needed to delineate them.

It has been reported that public TCR beta clonotypes are gener-
ally characterized by a low number of added nucleotides in CDR3
(i.e., low complexity) (14, 15, 32). We therefore used the num-
ber of added nucleotides as an additional selective characteristic
that essentially determines the probability of convergent recom-
bination events leading to CDR3 variants that are identical at the
nucleotide level (32, 49). Comparison of this characteristic for all
TCR beta CDR3 nucleotide variants and those TRBV-CDR3-TRBJ
nucleotide variants that were shared between unrelated mother-
child pairs revealed that the latter were characterized by much
lower numbers of added nucleotides (Figure 7A).

The transfer of mature T cells across the placenta should not be
dependent on CDR3 length or the number of added nucleotides.
In humans, it has been demonstrated that there is no significant
difference between adult blood and cord blood samples in the
mean number of added nucleotides (50). Therefore, this char-
acteristic should be essentially identical for both feto-maternal
and materno-fetal mature-microchimeric T cell clones and for
the general TCR beta repertoire. If the TCR beta repertoires
of related mother-child pairs carry mature-microchimeric T cell
clones of interest, we would expect to observe shaping of the added
nucleotide curve proportional to the contribution of such clones
to the repertoire overlap (Figure 7B).

The sensitivity of this method to the percentage of mature-
microchimeric T cell clones in the shared TCR beta population is
therefore limited by the natural dispersion of the added nucleotide
curves for unrelated pairs. For example, if mature-microchimeric
T cell clones contribute ~0.3% of the TRBV-CDR3-TRBJ over-
lap for a mother-child pair (i.e., ~10 out of 3,000 overlapping

clonotypes, out of the ~1× 106 total clonotypes sequenced from
each donor), the shape of the added nucleotide curve would be
indistinguishable from that of an unrelated donor pair – and
therefore below the sensitivity threshold of this method. In con-
trast, the presence of 100 mature-microchimeric T cell clones out
of 3,000 clonotypes (i.e., 3.3% of shared variants) per pair of
related donors could be clearly distinguished (Figure 7B), and
this can therefore be considered as the approximate sensitivity
limit of the method. We subsequently determined that the pres-
ence of mature-microchimeric T cell clones is undetectable in all
cases, based on the added nucleotide curves for overlapping TRBV-
CDR3-TRBJ nucleotide sequences for our six related mother-child
pairs (Figure 7C). Correspondingly, the average numbers of added
nucleotides in the shared TRBV-CDR3-TRBJ nucleotide variants
were indistinguishable for related versus unrelated mother-child
pairs (data not shown).

The above-described comparison of added nucleotide curves
was performed at the level of distinct TCR beta clonotypes, but
not sequencing reads, so that the influence of each T cell clone’s
relative representation within the repertoire was excluded. Similar
albeit noisier results we have obtained when performing the same
analysis at the level of sequencing reads (i.e., taking into account
relative clonal size).

As such, we have not identified any meaningful difference
between the subsets of shared TRBV-CDR3-TRBJ nucleotide vari-
ants for related versus unrelated mother-child pairs that would
allow us to establish detection of a subpopulation of mature-
microchimeric T cells that have been systemically shared dur-
ing pregnancy as mature naïve or memory T cells, and which
subsequently have engrafted and survived for years.

DISCUSSION
TRBV GENE USAGE
For out-of-frame TCR beta variants, which are not expressed and
thus avoid any selection, TRBV gene usage was slightly more simi-
lar but generally comparable for related versus unrelated mother-
child pairs (Figures 2A and 3). This indicates that inherited mater-
nal factors associated with the TCR recombination machinery are
insufficient to yield the essentially similar TRBV gene segment
selection in the child.

Remarkably, both within related and unrelated pairs, TRBV
gene segment usage in low-frequency in-frame TCR beta clono-
types was more similar compared to that in the out-of-frame TCR
beta variants (Figure 3). The equalization of the usage of TRBV
gene segments in functional TCR variants (Figure 4) is probably a
manifestation of selective pressure during thymic T cell selection,
which should distinguish TRBV gene usage in functional TCRs
from that preserved in unselected, out-of-frame TCR beta variants.
This pressure on relative TRBV usage frequencies was prominent
and led to significant convergence in both related (P = 0.0006)
and unrelated (P = 0.0015) pairs, indicating that thymic selec-
tion essentially and similarly shapes the initial output of the TCR
recombination machinery at the population level.

Interestingly, thymic selection also essentially filters out the
longest CDR3 variants with large numbers of added nucleotides,
as can be concluded from our comparison of non-functional out-
of-frame and in-frame TCR beta CDR3 repertoires (Figure 7A).
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FIGURE 7 | Added nucleotide curves. (A) Average distribution of added
nucleotides within CDR3 for individual TCR beta repertoires (in-frame: black
solid line; out-of-frame: black dashed line) and for TCR beta clonotypes shared
between unrelated individuals (gray). (B) Modeling of added nucleotide
curves for shared TRBV-CDR3-TRBJ variants between mother-child pairs
based on input of mature-microchimeric TCR beta CDR3 variants in different
proportions. This was derived from the curves in (A), which depict added
nucleotide distributions for shared clonotypes between unrelated individuals

(gray; equivalent to near-zero contribution to shared clonotypes) and for any
individual repertoire (black; equivalent to 100% contribution to shared
clonotypes), mixed in different proportions. Lines represent model input
where mature-microchimeric TCR beta is equal to 100, 33, 3.3, or 0.3% of
shared clonotypes. Shaded region shows the range for unrelated pairs. Inset
shows a magnified view. (C) Added nucleotide curves for TRBV-CDR3-TRBJ
variants shared in each related mother-child pair. Shaded region shows the
range for unrelated pairs.
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Since TRBV gene segments encode the fragments of TCR chains
that interact with MHC (33–35), we would expect that related
mother-child pairs, being haploidentical (i.e., sharing at least 50%
of HLA alleles), are characterized by more similar TRBV gene seg-
ment usage frequencies at the level of functional T cells compared
to unrelated donor pairs due to the impact of identical HLA genes
in thymic selection. Indeed, we observed that differences in TRBV
gene segment usage in related versus unrelated pairs became more
pronounced and statistically significant (P = 0.02) at the level of
low-frequency, in-frame TCR beta CDR3 clonotypes (Figure 3).
However, the general direction of TCR beta repertoire shaping
was similar for related and unrelated donors, suggesting that the
pressure of thymic selection is relatively homogenous in the popu-
lation. The strength of this general pressure was far greater relative
to the specific changes that were characteristic of related donors,
which only added a minor codirectional trend (Figures 3 and 4).

The subset of high-frequency TCR beta clonotypes was char-
acterized by increased variability in TRBV segment usage, and
related and unrelated mother-child pairs were indistinguishable at
this level (Figures 2C and 3). This is presumably due to the fact that
different antigen specificities (but not TRBV segment interaction
with MHC) play a dominant role in the priming and expansion
of T cell clones, and this semi-random process negates the initial
correlations that we observed in TRBV gene usage at the level of
naïve T cells.

It should be noted, however, that the above analysis refers to
low- and high-frequency clonotypes, which do not fully coincide
with the naïve and antigen-experienced T cell subsets, respectively.
It was previously demonstrated in other studies that recombina-
torial biases might result in relatively high frequencies for certain
naïve T cell clones, whereas some memory T cell clones may occur
at relatively low frequencies (11, 14, 15). Moreover, these studies
have shown a substantial overlap between the naïve and memory T
cell repertoires, which suggests that a number of TCR beta CDR3
clonotypes could be associated with both subsets, being paired
with either the same or alternative TCR alpha chains.

OVERLAP OF TCR BETA REPERTOIRES
We observed the greatest relative overlap of TCR beta reper-
toires among high-frequency clonotypes. This observation can
be explained by the presence of common expanded antigen-
experienced clonotypes recognizing the same antigens, as well as
of high-frequency naïve clonotypes carrying the TCR beta CDR3
sequence variants of low complexity that are repetitively produced
in thymus and may be highly represented both within and between
individuals (15).

In all comparisons, only slightly higher numbers of shared
clonotypes were observed in related versus unrelated mother-child
pairs (Figure 5). This observation is in agreement with the previ-
ous report by Robins et al. where the overlap in the naïve CD8+
CDR3 sequence repertoires was suggested to be independent of
the degree of HLA matching based on results obtained from
three related donors (14). Here, we have achieved a more accu-
rate comparison by studying a larger cohort of related donors,
using unbiased library preparation techniques, sequencing the
samples being compared on separate Illumina lanes to protect
from potential cross-sample contamination on the solid phase

and performing deeper individual profiling. Even with these vari-
ous methodological improvements, we still observed only a subtle
trend toward increased TCR beta repertoire overlap in related
individuals.

However, among the shared high-frequency amino acid CDR3
variants, the percentage of TRBV-CDR3 identical clonotypes was
always higher for related pairs compared to unrelated ones, and
correlated with the number of identical MHC-I alleles (Figure 6).
This finding indicates that optimal recognition of the particular
peptide-MHC complex often requires full functional convergence
of the TCR beta chain, leading to an increased share of TRBV-
identical common CDR3 variants in individuals carrying the same
HLA alleles. Notably, this phenomenon was observed for bulk T
cell populations, where the input of CD8+ T cells was sufficient
to provide correlation. This correlation would probably be much
higher if we were to specifically analyze sorted CD8+ T cells.

SEARCHING FOR PERSISTENT MATURE-MICROCHIMERIC CLONES
In humans, maternal T cells are present in different fetal tissues (46,
48, 51), and may be present in the cord blood at a frequency of
0.1–0.5% of total T cells (48, 52). This can represent hundreds
of thousands or millions of cells, of which many are likely to
be memory T cells (52) capable of further clonal proliferation.
Transmigration of maternal differentiated effector/memory Th1
and Th17 cells through the placenta was recently demonstrated in
mouse models (53). Transfer of mature T cells is also possible in the
opposite direction, and the presence of fetal microchimeric CD4+
and CD8+ T cells was registered in maternal blood during nor-
mal pregnancy in humans, predominantly in the third trimester
(41) when mature α/β T cells are circulating in the fetus at sig-
nificant numbers (54). Such mature-microchimeric T cell clones
could further affect immunity to solid tumors (55, 56), influence
transplantation tolerance (7), cause autoimmune diseases (3, 4,
43, 56–59), or protect the child against infections he/she has never
encountered before.

Recent work has demonstrated that, in general, experienced
clonal T cells commonly persist in the body for many years (17,
60). We have observed more than 20,000 TCR beta clonotypes that
persisted in a patient for at least 7 years – from 2005 until 2012 –
even after the patient underwent autologous HSC transplantation
in 2009 [Ref. (16) and our unpublished data]. Similarly, naïve T
cell clones persist in the body for many years after loss of thymus
functionality (61). Therefore, if the engraftment of mature T cell
clones transferred from mother to child and/or vice versa is a sys-
temic process, we could expect to be able to verify the presence
of such clones by using characteristic TCR beta CDR3 variants as
clonal identifiers.

In our repertoire analysis, we did not observe mature-
microchimeric T cell clones at a level of methodological sensitivity
of ~100 mature-microchimeric clones per 106 analyzed TCR beta
clonotypes. Still, this does not preclude the existence of mature
T cell-based maternal or fetal microchimerism at levels below
the sensitivity achieved in the current study, in minor number
of individuals, or in pathological conditions such as autoimmune
disease.

It should be noted that deep TCR beta profiling methodol-
ogy presently appears to be insufficiently sensitive for identifying
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particular expanded mature-microchimeric T cell clones, due to
the general abundance of common identical TCR beta clonotypes.
The following combination of methods could offer a potential
way forward: (1) deep TCR beta profiling suggesting the pres-
ence of a particular expanded mature-microchimeric T cell clone,
preferably with many added nucleotides within CDR3; (2) cell
sorting using a TRBV family specific antibody in order to enrich
for the hypothetical microchimeric clone of interest; and (3) real-
time PCR confirmation of increased microchimerism in the sorted
sample.

We also believe that further development of NGS profiling
methods – especially in combination with the use of live cell-
based emulsion PCR to identify paired TCR alpha-beta chains (62),
and to potentially identify TCR beta chains paired with specific
HLA molecules serving as an internal marker of microchimeric
clones – should greatly facilitate future studies of mature T cell
microchimerism in health and disease.

ACKNOWLEDGMENTS
We are grateful to M. Eisenstein for the English editing. This
work was supported by the Molecular and Cell Biology pro-
gram RAS, Russian Foundation for Basic Research (12-04-33139,
13-04-01124, 12-04-00229, 13-04-00998), and European Regional
Development Fund (CZ.1.05/1.1.00/02.0068).

REFERENCES
1. Zenclussen AC. Adaptive immune responses during pregnancy. Am J Reprod

Immunol (2013) 69:291–303. doi:10.1111/aji.12097
2. Nelson JL, Furst DE, Maloney S, Gooley T, Evans PC, Smith A, et al.

Microchimerism and HLA-compatible relationships of pregnancy in sclero-
derma. Lancet (1998) 351:559–62. doi:10.1016/S0140-6736(97)08357-8

3. Sarkar K, Miller FW. Possible roles and determinants of microchimerism in
autoimmune and other disorders. Autoimmun Rev (2004) 3:454–63. doi:10.
1016/j.autrev.2004.06.004

4. Lepez T, Vandewoestyne M, Hussain S, Van Nieuwerburgh F, Poppe K, Velke-
niers B, et al. Fetal microchimeric cells in blood of women with an autoimmune
thyroid disease. PLoS One (2011) 6:e29646. doi:10.1371/journal.pone.0029646

5. Stern M, Ruggeri L, Mancusi A, Bernardo ME, De Angelis C, Bucher C, et al. Sur-
vival after T cell-depleted haploidentical stem cell transplantation is improved
using the mother as donor. Blood (2008) 112:2990–5. doi:10.1182/blood-2008-
01-135285

6. Burlingham WJ, Benichou G. Bidirectional alloreactivity: a proposed
microchimerism-based solution to the NIMA paradox. Chimerism (2012)
3:29–36. doi:10.4161/chim.21668

7. Jankowska-Gan E, Sheka A, Sollinger HW, Pirsch JD, Hofmann RM, Haynes
LD, et al. Pretransplant immune regulation predicts allograft outcome: bidirec-
tional regulation correlates with excellent renal transplant function in living-
related donor-recipient pairs. Transplantation (2012) 93:283–90. doi:10.1097/
TP.0b013e31823e46a0

8. Robins HS, Campregher PV, Srivastava SK, Wacher A, Turtle CJ, Kahsai O, et al.
Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta
T cells. Blood (2009) 114:4099–107. doi:10.1182/blood-2009-04-217604

9. Mamedov IZ, Britanova OV, Bolotin DA, Chkalina AV, Staroverov DB, Zvya-
gin IV, et al. Quantitative tracking of T cell clones after haematopoietic stem
cell transplantation. EMBO Mol Med (2011) 3:201–7. doi:10.1002/emmm.
201100129

10. Nguyen P, Ma J, Pei D, Obert C, Cheng C, Geiger TL. Identification of errors
introduced during high throughput sequencing of the T cell receptor repertoire.
BMC Genomics (2011) 12:106. doi:10.1186/1471-2164-12-106

11. Warren RL, Freeman JD, Zeng T, Choe G, Munro S, Moore R, et al. Exhaus-
tive T-cell repertoire sequencing of human peripheral blood samples reveals
signatures of antigen selection and a directly measured repertoire size of at least
1 million clonotypes. Genome Res (2011) 21:790–7. doi:10.1101/gr.115428.110

12. Bolotin DA, Mamedov IZ, Britanova OV, Zvyagin IV, Shagin D, Ustyugova
SV, et al. Next generation sequencing for TCR repertoire profiling: platform-
specific features and correction algorithms. Eur J Immunol (2012) 42:3073–83.
doi:10.1002/eji.201242517

13. Venturi V, Price DA, Douek DC, Davenport MP. The molecular basis for public
T-cell responses? Nat Rev Immunol (2008) 8:231–8. doi:10.1038/nri2260

14. Robins HS, Srivastava SK, Campregher PV, Turtle CJ, Andriesen J, Riddell SR,
et al. Overlap and effective size of the human CD8+ T cell receptor repertoire.
Sci Transl Med (2010) 2:47ra64. doi:10.1126/scitranslmed.3001442

15. Venturi V, Quigley MF, Greenaway HY, Ng PC, Ende ZS, McIntosh T, et al.
A mechanism for TCR sharing between T cell subsets and individuals revealed
by pyrosequencing. J Immunol (2011) 186:4285–94. doi:10.4049/jimmunol.
1003898

16. Britanova OV, Bochkova AG, Staroverov DB, Fedorenko DA, Bolotin DA, Mame-
dov IZ, et al. First autologous hematopoietic SCT for ankylosing spondylitis: a
case report and clues to understanding the therapy. Bone Marrow Transplant
(2012) 47:1479–81. doi:10.1038/bmt.2012.44

17. Klarenbeek PL, Remmerswaal EB, ten Berge IJ, Doorenspleet ME, Van Schaik
BD, Esveldt RE, et al. Deep sequencing of antiviral T-cell responses to HCMV
and EBV in humans reveals a stable repertoire that is maintained for many years.
PLoS Pathog (2012) 8:e1002889. doi:10.1371/journal.ppat.1002889

18. Mamedov IZ, Britanova OV, Zvyagin IV, Turchaninova MA, Bolotin DA, Putint-
seva EV, et al. Preparing unbiased T cell receptor and antibody cDNA libraries
for the deep next generation sequencing profiling. Front Immunol (2013) 4:456.
doi:10.3389/fimmu.2013.00456

19. Nemazee D. Receptor editing in lymphocyte development and central tolerance.
Nat Rev Immunol (2006) 6:728–40. doi:10.1038/nri1939

20. Venturi V, Rudd BD, Davenport MP. Specificity, promiscuity, and precursor
frequency in immunoreceptors. Curr Opin Immunol (2013) 25(5):639–45.
doi:10.1016/j.coi.2013.07.001

21. Douek DC, Betts MR, Brenchley JM, Hill BJ, Ambrozak DR, Ngai KL, et al.
A novel approach to the analysis of specificity, clonality, and frequency of HIV-
specific T cell responses reveals a potential mechanism for control of viral escape.
J Immunol (2002) 168:3099–104.

22. Britanova OV,Staroverov DB,Chkalina AV,Kotlobay AA,Zvezdova ES,Bochkova
AG, et al. Single high-dose treatment with glucosaminyl-muramyl dipeptide is
ineffective in treating ankylosing spondylitis. Rheumatol Int (2011) 31:1101–3.
doi:10.1007/s00296-010-1663-3

23. Lefranc MP, Giudicelli V, Busin C, Malik A, Mougenot I, Dehais P, et al. LIGM-
DB/IMGT: an integrated database of Ig and TcR, part of the immunogenetics
database. Ann N Y Acad Sci (1995) 764:47–9. doi:10.1111/j.1749-6632.1995.
tb55805.x

24. Bolotin DA, Shugay M, Mamedov IZ, Putintseva EV, Turchaninova MA, Zvya-
gin IV, et al. MiTCR: software for T-cell receptor sequencing data analysis. Nat
Methods (2013) 10(9):813–4. doi:10.1038/nmeth.2555

25. Lin JT. Divergence measures based on the Shannon entropy. IEEE Trans Inf
Theory (1991) 37:145–51. doi:10.1109/18.61115

26. Wang J, Vock VM, Li S, Olivas OR, Wilkinson MF. A quality control path-
way that down-regulates aberrant T-cell receptor (TCR) transcripts by a mech-
anism requiring UPF2 and translation. J Biol Chem (2002) 277:18489–93.
doi:10.1074/jbc.M111781200

27. Bhalla AD, Gudikote JP, Wang J, Chan WK, Chang YF, Olivas OR, et al. Non-
sense codons trigger an RNA partitioning shift. J Biol Chem (2009) 284:4062–72.
doi:10.1074/jbc.M805193200

28. Favre D, Stoddart CA, Emu B, Hoh R, Martin JN, Hecht FM, et al. HIV disease
progression correlates with the generation of dysfunctional naive CD8(low)
T cells. Blood (2011) 117:2189–99. doi:10.1182/blood-2010-06-288035

29. Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P. A direct
estimate of the human alphabeta T cell receptor diversity. Science (1999)
286:958–61. doi:10.1126/science.286.5441.958

30. Venturi V, Chin HY, Asher TE, Ladell K, Scheinberg P, Bornstein E, et al. TCR
beta-chain sharing in human CD8+ T cell responses to cytomegalovirus and
EBV. J Immunol (2008) 181:7853–62.

31. Li H, Ye C, Ji G, Han J. Determinants of public T cell responses. Cell Res (2012)
22:33–42. doi:10.1038/cr.2012.1

32. Li H, Ye C, Ji G, Wu X, Xiang Z, Li Y, et al. Recombinatorial biases and con-
vergent recombination determine interindividual TCRbeta sharing in murine
thymocytes. J Immunol (2012) 189:2404–13. doi:10.4049/jimmunol.1102087

www.frontiersin.org December 2013 | Volume 4 | Article 463 | 305

http://dx.doi.org/10.1111/aji.12097
http://dx.doi.org/10.1016/S0140-6736(97)08357-8
http://dx.doi.org/10.1016/j.autrev.2004.06.004
http://dx.doi.org/10.1016/j.autrev.2004.06.004
http://dx.doi.org/10.1371/journal.pone.0029646
http://dx.doi.org/10.1182/blood-2008-01-135285
http://dx.doi.org/10.1182/blood-2008-01-135285
http://dx.doi.org/10.4161/chim.21668
http://dx.doi.org/10.1097/TP.0b013e31823e46a0
http://dx.doi.org/10.1097/TP.0b013e31823e46a0
http://dx.doi.org/10.1182/blood-2009-04-217604
http://dx.doi.org/10.1002/emmm.201100129
http://dx.doi.org/10.1002/emmm.201100129
http://dx.doi.org/10.1186/1471-2164-12-106
http://dx.doi.org/10.1101/gr.115428.110
http://dx.doi.org/10.1002/eji.201242517
http://dx.doi.org/10.1038/nri2260
http://dx.doi.org/10.1126/scitranslmed.3001442
http://dx.doi.org/10.4049/jimmunol.1003898
http://dx.doi.org/10.4049/jimmunol.1003898
http://dx.doi.org/10.1038/bmt.2012.44
http://dx.doi.org/10.1371/journal.ppat.1002889
http://dx.doi.org/10.3389/fimmu.2013.00456
http://dx.doi.org/10.1038/nri1939
http://dx.doi.org/10.1016/j.coi.2013.07.001
http://dx.doi.org/10.1007/s00296-010-1663-3
http://dx.doi.org/10.1111/j.1749-6632.1995.tb55805.x
http://dx.doi.org/10.1111/j.1749-6632.1995.tb55805.x
http://dx.doi.org/10.1038/nmeth.2555
http://dx.doi.org/10.1109/18.61115
http://dx.doi.org/10.1074/jbc.M111781200
http://dx.doi.org/10.1074/jbc.M805193200
http://dx.doi.org/10.1182/blood-2010-06-288035
http://dx.doi.org/10.1126/science.286.5441.958
http://dx.doi.org/10.1038/cr.2012.1
http://dx.doi.org/10.4049/jimmunol.1102087
http://www.frontiersin.org
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Putintseva et al. Mother and child TCR repertoires

33. Hogquist KA, Baldwin TA, Jameson SC. Central tolerance: learning self-control
in the thymus. Nat Rev Immunol (2005) 5:772–82. doi:10.1038/nri1707

34. Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides,
and coreceptors. Annu Rev Immunol (2006) 24:419–66. doi:10.1146/annurev.
immunol.23.021704.115658

35. Garcia KC, Adams JJ, Feng D, Ely LK. The molecular basis of TCR germline bias
for MHC is surprisingly simple. Nat Immunol (2009) 10:143–7. doi:10.1038/ni.
f.219

36. Miles JJ, Douek DC, Price DA. Bias in the alphabeta T-cell repertoire: impli-
cations for disease pathogenesis and vaccination. Immunol Cell Biol (2011)
89:375–87. doi:10.1038/icb.2010.139

37. Desai RG, Creger WP. Maternofetal passage of leukocytes and platelets in man.
Blood (1963) 21:665–73.

38. Herzenberg LA, Bianchi DW, Schroder J, Cann HM, Iverson GM. Fetal cells in the
blood of pregnant women: detection and enrichment by fluorescence-activated
cell sorting. Proc Natl Acad Sci U S A (1979) 76:1453–5. doi:10.1073/pnas.76.3.
1453

39. Iverson GM, Bianchi DW, Cann HM, Herzenberg LA. Detection and isolation
of fetal cells from maternal blood using the flourescence-activated cell sorter
(FACS). Prenat Diagn (1981) 1:61–73. doi:10.1002/pd.1970010111

40. Nelson JL. Your cells are my cells. Sci Am (2008) 298:64–71.
41. Adams Waldorf KM, Gammill HS, Lucas J, Aydelotte TM, Leisenring WM, Lam-

bert NC, et al. Dynamic changes in fetal microchimerism in maternal peripheral
blood mononuclear cells, CD4+ and CD8+ cells in normal pregnancy. Placenta
(2010) 31:589–94. doi:10.1016/j.placenta.2010.04.013

42. Nelson JL. The otherness of self: microchimerism in health and disease. Trends
Immunol (2012) 33:421–7. doi:10.1016/j.it.2012.03.002

43. Evans PC, Lambert N, Maloney S, Furst DE, Moore JM, Nelson JL. Long-term
fetal microchimerism in peripheral blood mononuclear cell subsets in healthy
women and women with scleroderma. Blood (1999) 93:2033–7.

44. Maloney S, Smith A, Furst DE, Myerson D, Rupert K, Evans PC, et al.
Microchimerism of maternal origin persists into adult life. J Clin Invest (1999)
104:41–7. doi:10.1172/JCI6611

45. Loubiere LS, Lambert NC, Flinn LJ, Erickson TD,Yan Z, Guthrie KA, et al. Mater-
nal microchimerism in healthy adults in lymphocytes, monocyte/macrophages
and NK cells. Lab Invest (2006) 86:1185–92.

46. Gotherstrom C, Johnsson AM, Mattsson J, Papadogiannakis N, Westgren M.
Identification of maternal hematopoietic cells in a 2nd-trimester fetus. Fetal
Diagn Ther (2005) 20:355–8. doi:10.1159/000086812

47. Khosrotehrani K, Leduc M, Bachy V, Nguyen Huu S, Oster M, Abbas A, et al.
Pregnancy allows the transfer and differentiation of fetal lymphoid prog-
enitors into functional T and B cells in mothers. J Immunol (2008) 180:
889–97.

48. Mold JE, Michaelsson J, Burt TD, Muench MO, Beckerman KP, Busch MP, et al.
Maternal alloantigens promote the development of tolerogenic fetal regulatory
T cells in utero. Science (2008) 322:1562–5. doi:10.1126/science.1164511

49. Murugan A, Mora T, Walczak AM, Callan CG Jr. Statistical inference of the gen-
eration probability of T-cell receptors from sequence repertoires. Proc Natl Acad
Sci U S A (2012) 109:16161–6. doi:10.1073/pnas.1212755109

50. Hall MA, Reid JL, Lanchbury JS. The distribution of human TCR junctional
region lengths shifts with age in both CD4 and CD8 T cells. Int Immunol (1998)
10:1407–19. doi:10.1093/intimm/10.10.1407

51. Jonsson AM, Uzunel M, Gotherstrom C, Papadogiannakis N, Westgren M.
Maternal microchimerism in human fetal tissues. Am J Obstet Gynecol (2008)
198(325):e321–6.

52. Burlingham WJ, Nelson JL. Microchimerism in cord blood: mother as anticancer
drug. Proc Natl Acad Sci U S A (2012) 109:2190–1. doi:10.1073/pnas.1120857109

53. Wienecke J, Hebel K, Hegel KJ, Pierau M, Brune T, Reinhold D, et al. Pro-
inflammatory effector Th cells transmigrate through anti-inflammatory envi-
ronments into the murine fetus. Placenta (2012) 33:39–46. doi:10.1016/j.
placenta.2011.10.014

54. Haynes BF, Martin ME, Kay HH, Kurtzberg J. Early events in human T cell
ontogeny. Phenotypic characterization and immunohistologic localization of
T cell precursors in early human fetal tissues. J Exp Med (1988) 168:1061–80.
doi:10.1084/jem.168.3.1061

55. Gadi VK. Fetal microchimerism in breast from women with and without breast
cancer. Breast Cancer Res Treat (2010) 121:241–4. doi:10.1007/s10549-009-
0548-1

56. Fugazzola L, Cirello V, Beck-Peccoz P. Fetal microchimerism as an explanation
of disease. Nat Rev Endocrinol (2011) 7:89–97. doi:10.1038/nrendo.2010.216

57. Willer CJ, Sadovnick AD, Ebers GC. Microchimerism in autoimmunity and
transplantation: potential relevance to multiple sclerosis. J Neuroimmunol
(2002) 126:126–33. doi:10.1016/S0165-5728(02)00048-6

58. Adams KM, Nelson JL. Microchimerism: an investigative frontier in autoimmu-
nity and transplantation. JAMA (2004) 291:1127–31. doi:10.1001/jama.291.9.
1127

59. Lambert NC, Erickson TD, Yan Z, Pang JM, Guthrie KA, Furst DE, et al. Quan-
tification of maternal microchimerism by HLA-specific real-time polymerase
chain reaction: studies of healthy women and women with scleroderma. Arthri-
tis Rheum (2004) 50:906–14. doi:10.1002/art.20200

60. Naumova EN, Gorski J, Naumov YN. Two compensatory pathways maintain
long-term stability and diversity in CD8 T cell memory repertoires. J Immunol
(2009) 183:2851–8. doi:10.4049/jimmunol.0900162

61. den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mogling R, De Boer AB,
et al. Maintenance of peripheral naive T cells is sustained by thymus output in
mice but not humans. Immunity (2012) 36:288–97. doi:10.1016/j.immuni.2012.
02.006

62. Turchaninova MA, Britanova OV, Bolotin DA, Shugay M, Putintseva EV,
Staroverov DB, et al. Pairing of T-cell receptor chains via emulsion PCR. Eur
J Immunol (2013) 43(9):2507–15. doi:10.1002/eji.201343453

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 18 July 2013; accepted: 03 December 2013; published online: 25 December
2013.
Citation: Putintseva EV, Britanova OV, Staroverov DB, Merzlyak EM, Turchaninova
MA, Shugay M, Bolotin DA, Pogorelyy MV, Mamedov IZ, Bobrynina V, Maschan M,
Lebedev YB and Chudakov DM (2013) Mother and child T cell receptor repertoires:
deep profiling study. Front. Immunol. 4:463. doi: 10.3389/fimmu.2013.00463
This article was submitted to T Cell Biology, a section of the journal Frontiers in
Immunology.
Copyright © 2013 Putintseva, Britanova, Staroverov, Merzlyak, Turchaninova,
Shugay, Bolotin, Pogorelyy, Mamedov, Bobrynina, Maschan, Lebedev and Chudakov.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Immunology | T Cell Biology December 2013 | Volume 4 | Article 463 | 306

http://dx.doi.org/10.1038/nri1707
http://dx.doi.org/10.1146/annurev.immunol.23.021704.115658
http://dx.doi.org/10.1146/annurev.immunol.23.021704.115658
http://dx.doi.org/10.1038/ni.f.219
http://dx.doi.org/10.1038/ni.f.219
http://dx.doi.org/10.1038/icb.2010.139
http://dx.doi.org/10.1073/pnas.76.3.1453
http://dx.doi.org/10.1073/pnas.76.3.1453
http://dx.doi.org/10.1002/pd.1970010111
http://dx.doi.org/10.1016/j.placenta.2010.04.013
http://dx.doi.org/10.1016/j.it.2012.03.002
http://dx.doi.org/10.1172/JCI6611
http://dx.doi.org/10.1159/000086812
http://dx.doi.org/10.1126/science.1164511
http://dx.doi.org/10.1073/pnas.1212755109
http://dx.doi.org/10.1093/intimm/10.10.1407
http://dx.doi.org/10.1073/pnas.1120857109
http://dx.doi.org/10.1016/j.placenta.2011.10.014
http://dx.doi.org/10.1016/j.placenta.2011.10.014
http://dx.doi.org/10.1084/jem.168.3.1061
http://dx.doi.org/10.1007/s10549-009-0548-1
http://dx.doi.org/10.1007/s10549-009-0548-1
http://dx.doi.org/10.1038/nrendo.2010.216
http://dx.doi.org/10.1016/S0165-5728(02)00048-6
http://dx.doi.org/10.1001/jama.291.9.1127
http://dx.doi.org/10.1001/jama.291.9.1127
http://dx.doi.org/10.1002/art.20200
http://dx.doi.org/10.4049/jimmunol.0900162
http://dx.doi.org/10.1016/j.immuni.2012.02.006
http://dx.doi.org/10.1016/j.immuni.2012.02.006
http://dx.doi.org/10.1002/eji.201343453
http://dx.doi.org/10.3389/fimmu.2013.00463
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/T_Cell_Biology
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 11 December 2013

doi: 10.3389/fimmu.2013.00439

Mathematical models of the impact of IL2 modulation
therapies on T cell dynamics
Kalet León*, Karina García-Martínez andTania Carmenate

Systems Biology Department, Center of Molecular Immunology, Habana, Cuba

Edited by:
Carmen Molina-Paris, University of
Leeds, UK

Reviewed by:
Tomasz Zal, University of Texas MD
Anderson Cancer Center, USA
Joseph Reynolds, University of
Leeds, UK

*Correspondence:
Kalet León, Systems Biology
Department, Center of Molecular
Immunology, 216 Street, PO Box
16040, Atabey, Habana 11600, Cuba
e-mail: kalet@cim.sld.cu

Several reports in the literature have drawn a complex picture of the effect of treatments
aiming to modulate IL2 activity in vivo. They seem to promote either immunity or toler-
ance, probably depending on the specific context, dose, and timing of their application.
Such complexity might derive from the pleiotropic role of IL2 inT cell dynamics.To theoret-
ically address the latter possibility, our group has developed several mathematical models
for Helper, Regulatory, and Memory T cell population dynamics, which account for most
well-known facts concerning their relationship with IL2. We have simulated the effect of
several types of therapies, including the injection of: IL2; antibodies anti-IL2; IL2/anti-IL2
immune-complexes; and mutant variants of IL2. We studied the qualitative and quantita-
tive conditions of dose and timing for these treatments which allow them to potentiate
either immunity or tolerance. Our results provide reasonable explanations for the existent
pre-clinical and clinical data, predict some novel treatments, and further provide interesting
practical guidelines to optimize the future application of these types of treatments.
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INTRODUCTION
Several reports in the literature have drawn a complex picture of
the effect of treatments aiming to modulate IL2 activity in vivo.
These treatments seem to promote either immunity or tolerance,
probably depending on the specific context, dose, and timing of
their application.

Treatments that increase IL2 activity, simply by injecting it,
have been shown to potentiate the immune response to vaccines
(1–4) and are a current medical practice to enhance the nat-
ural anti-tumor immunity in patients with melanoma. However,
several reports in the literature have shown that HIV (5–8) and
melanoma (9) patients treated with IL2, experience an increase in
CD4+ CD25+ FoxP3+ regulatory T cells, which typically mediate
natural immune tolerance. Moreover, several pre-clinical studies
have further documented a tolerogenic effect of IL2. Injections
of IL2 have been shown to prevent or ameliorate autoimmune
responses in mice (10–12). Treatments which reduce natural IL2
activity, by sequestering it with anti-IL2 monoclonal antibodies,
have been shown to induce autoimmune responses (13). And
treatments intending to block IL2 activity, with non-depleting
anti-IL2-receptor antibodies, are showed to have anti-tumoral
effects (14). Nevertheless, in the clinical practice non-depleting
anti-IL2-receptor antibodies are used to ameliorate the autoim-
mune reaction in patients with neoplasia, autoimmune diseases,
and organ allograft rejection (15).

Further complexity to the latter picture has been recently added
with the pre-clinical assessment of treatments based on immune-
complexes formed by IL2 and monoclonal antibodies anti-IL2.
This treatment shows a much more potent in vivo effect than IL2
alone, appears again to potentiate either immunity (16, 17) or tol-
erance (18), depending on the specific antibody used to form the

immune-complexes. In particular, the specific epitope in the IL2
recognized by the antibody has been postulated as critical for this
phenomenon (19, 20).

IL2 interacts with many different cells types, which express the
three known chains of the IL2 receptor. Particularly relevant and
complex is its relationship with the population dynamics of the
CD4 T lymphocytes. IL2 was originally described as a potent CD4+

T cell growth factor (21), which should in consequence enhance
overall T cell immunity. However, several experiments have shown
lately a critical role for this cytokine in the survival and prolifer-
ation of the CD4+CD25+FoxP3+ T cells (regulatory T cells) (22,
23), which mediate the maintenance of natural and induced toler-
ance. The CD4+CD25−FoxP3− T cells (helper T cells) have been
identified as the principal source of IL2 in vivo (24), suggesting that
the regulatory T cells have to sequester the IL2 produced by these
cells in order to proliferate and survive (25). Moreover, in vitro
and in vivo experiments have shown that regulatory T cells inhibit
the production of IL2 by the helper T cells (26), limiting in this
way their own source of this essential cytokine. Thus, overall, it
seems that IL2 has a dual role on its circuit of interactions with
CD4+ T cells. It could promote the proliferation of the helper T
cells, which may drive effective immunity and foster IL2 produc-
tion. But, it could also promote the expansion of regulatory T cells,
which may turn off the immune reaction, as well as the IL2 pro-
duction on its own. The dynamic balance between these opposite
forces might explain the complexity observed in the effect of treat-
ments that modulate IL2 activity, either sequestering it or further
increasing it.

To theoretically address the latter hypothesis, our group has
developed mathematical models for Helper, Regulatory, and Mem-
ory T cells dynamics, which account for most well-known facts
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relative to their relationship with IL2. We have simulated the effect
of several types of therapies including the injection of: IL2; anti-
bodies anti-IL2; IL2/anti-IL2 immune-complexes, and mutants
variants of IL2. We studied the qualitative and quantitative con-
ditions of dose and timing for these treatments which allow them
to potentiate either immunity or tolerance. Our results provide
reasonable explanations for the existent pre-clinical and clinical
data, predict some novel treatments, and further provide interest-
ing practical guidelines to optimize the future application of these
types of treatments.

MATERIALS AND METHODS
INTRODUCTION TO THE MATHEMATICAL MODEL
The mathematical model used in this paper is based on the one
developed in Ref. (27) to describe the interaction between IL2 and
helper (E) and regulatory (R) CD4+ T cells and memory CD8+

T cells inside a lymph node. The model includes several physical
compartments, which minimally capture the bio-distribution of T
cells, IL2, and antibodies in the immune system (see Figure 1). It
includes several compartments, which represent different lymph
nodes, where T cells are confined interacting with each other’s,
with the antigen presenting cells (APCs) and available soluble
molecules. It includes also a compartment representing the blood
(i.e., the circulatory system), which contains only soluble mol-
ecules, IL2, mutant variants of IL2 or anti-IL2 antibodies. Each
lymph node in the system is connected to the blood compartment,
allowing the free exchange of these soluble molecules.

DYNAMICS IN THE BLOOD COMPARTMENT
The concentration of soluble molecules in the blood compartment
is assumed to decay with a constant characteristic rate, which rep-
resent renal elimination in the kidney. An external source term

for these molecules is added in this compartment to simulate par-
ticular treatment applications. Interaction between free IL2 and
anti-IL2 antibodies are modeled in this and other compartments
as a dynamic equilibrium characterized by a given biding affinity.
Equations for the dynamics in this compartment are presented in
“Dynamics in the Blood Compartment” in Appendix A.

DYNAMICS FOR T CELLS INSIDE LYMPH NODES
The model includes, inside the lymph nodes, the dynamics of
Helper (E), and Regulatory (R) T cells on three different func-
tional states of their life cycle: resting, activated, and cycling cells.
All the interactions involving these T cells occur in the presence
of a constant amount of their cognate APCs and relevant homeo-
static cytokines. The basic processes and interactions included in
the model dynamics for these T cells are (see Figure 2 and (27, 28)
for a more detailed biological explanation, including references to
experiments that sustained their validity):

i. Resting E and R cells are produced at constant rate by the thy-
mus; they die with a constant decay rate; they get activated
(becoming an activated cell) following conjugation to their
cognate APCs. The activation of E cells can be inhibited by the
presence of co-localized R cells on the APCs.

ii. The activated E and R cells could become cycling cells fol-
lowing a dose-dependent response to cytokine derived signals.
The activated R cells get this signal from the interaction with
available IL2 while the E cells could additionally use other
homeostatic cytokines1, which are referred in the model as

1Note that, although other cytokines are able to stimulate Tregs in vitro, several
reports in the literature have indicated IL2 as the key cytokine for the proliferation

FIGURE 1 | Diagram of the processes occurring in the two
compartments considered in the model. At the left side of the diagram
the blood compartment is shown, where soluble molecules related with
IL2 modulatory therapies are introduced and eliminated. This compartment

is in constant molecular exchange with the lymph nodes (right side of the
diagram). In this last class of compartment, occur the processes related
with the dynamics of T cells and their interaction with the IL2 and other
soluble molecules.
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FIGURE 2 | Diagrams of helper (E), regulatory (R), and memory (M)T-cell
life cycle considered in the model. New resting E (EN) and R (RN) cells are
constantly generated by the thymus. These resting T cells become activated
by interaction with their cognate APCs. During activation, E cells produce IL2,
although the whole process can be inhibited by the presence of co-localized R
cells. Activated E (EA) and R (RA) enter the cell cycle (becoming cycling cells)
when receiving enough signal from IL2 or another external cytokine (IL-α) in
the case of E cells. In the absence of enough cytokines, activated T cells

become inactivated, where a fraction of cells simply returns back to the
resting state and the other dies. Cycling E (EC) and R (RC) cells divide with a
constant rate generating two new resting E or R cells, respectively. Memory T
cells are assumed as being always in a sort of naturally activated state (even
without any strong cognate interaction with APCs). Activated M (MA) cells
enter the cell cycle when receiving enough signals from IL2 or another
external cytokine (IL-m). Cycling M cells (MC) divide generating two new
activated M cells.

ILa and are available inside the lymph node in a constant but
limited amount. In the absence of enough cytokine derived
signal, a fraction of the activated E or R cells revert to the
resting state and the remaining fraction just die.

iii. The cycling E and R cells are fully committed to divide, pro-
ducing two new resting cells. Thus, they are presumed to do
so with a constant rate.

The model includes also the dynamics of a generic population
of non-CD4 T cells, which binds weakly to the existent APCs, but
proliferates in response to IL2 signal, with similar sensitivity than
the activated helper CD4+ T cells. This cells (referred as M cells)
represent, the memory CD8+CD44+ T cells, which can prolifer-
ate in response to IL2 without any requirements of activation by
cognate APCs (see Figure 2).

The dynamics of the number of T cells in the lymph node
compartment, following the process described above, are modeled

and survival of Treg cells in vivo. The group of Freitas (24) have shown that the
absence of CD4+ T cells capable of producing IL2, leads to the absence of Treg
cells and to the development of autoimmunity. Moreover, mice knockouts of IL2
or IL2 receptor components have been shown to lack the accumulation of Tregs
in vivo, exhibiting once more an autoimmune phenotype (48, 49). Interestingly in
these latter scenarios of autoimmune mice, other cytokines besides IL2 are capable
to maintain and expand the auto-reactive helper CD4+ T cells (perhaps IL7, IL15,
or IL21).

with the set of equations presented in “Dynamics of T Cells in the
Lymph Node Compartment” in Appendix B.

DYNAMICS IL2 AND ANTIBODIES ANTI-IL2 INSIDE THE LYMPH NODE
The dynamics of IL2 molecules inside the lymph node takes into
account the role of T cells in the production and degradation of
this cytokine. The following processes are considered in the model
[see Figure 2 and Ref. (27) for a more detailed biological expla-
nation, including references to experiments that sustained their
validity]:

iv. IL2 is produced by E cells upon activation. It is produced
as a burst whenever a resting E cell becomes an activated E
cell. Such production of IL2 is inhibited, together with the E
cell activation, by the presence of co-localized R cells on the
APCs.

v. IL2 is degraded in the lymph nodes, after being internalized
by the T cells in the form of complexes with the IL2 receptor
at their cell surface.

Interactions of IL2 and T cells in the model are based on
the expression by these cells, either in the resting, activated
or cycling state, of different levels of the IL2 receptor. These
receptors mediate the binding of IL2, which provide a stim-
ulatory signal in a dose-dependent fashion to the T cell. In
this model the three known chains of the IL2 receptor, alpha,
beta, and gamma (29) are included. These three chains are
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combined dynamically at the cell surface, upon IL2 binding,
to conform the two known signaling forms of the IL2 recep-
tors. The following processes and known facts are considered
in the model regarding this interaction [see Figure 3 and
Ref. (27)]:

vi. IL2/IL2Receptor complexes formation is modeled as a multi-
step process: free, soluble, IL2 binds initially to the available
free alpha or free beta chains of the receptor, and only then
can form dimers or trimers with the remaining IL2 receptor
chains at the cell membrane. The gamma chain is assumed
to be always in excess compared with the amount of beta
chain bound to IL2, either alone or together with alpha
chain. Therefore gamma chain joins immediately to these
membrane complexes, forming the well known intermediate
(beta-gamma-IL2) or high affinity (alpha-beta-gamma-IL2)
IL2–IL2 receptor complexes.

vii. IL2/IL2Receptor configurations, which include the beta and
gamma chains (high-affinity alpha-beta-gamma, and inter-
mediate affinity beta-gamma receptor), trigger a signal into
the T cells (19). Therefore, in the model, the mean number
of such signaling receptors per activated E cell, R cell, and
M cell are counted. Then, the probability of getting enough
signal as to become a cycling cell, for any particular activated
E, R, or M cell, is computed with a sigmoid dose response
curve, of the mean signaling level. The use of a sigmoid dose

response curve is based on direct experimental observations
on in vitro culture of CD4+ T cells (30) stimulated with
recombinant IL2.

viii. Beta and gamma chain of the IL2 receptor are similarly
expressed by E and R cells in all functional states, but the
expression of the alpha chain is modulated with T cell acti-
vation (31). R cells constitutively express the alpha chain in
the resting state, but further increase its expression level with
activation. E cells do not express the alpha chain in the resting
state, but gain a significant expression level with activation.

ix. The M cells are assumed to express a negligible amount of
the alpha chain of IL2 receptor, but have levels of the beta
and gamma chain which are higher than those of helper and
regulatory T cells (32).

Antibodies anti-IL2 are modeled as molecules that can form
complexes with the IL2, blocking or not its binding to the differ-
ent chains of the IL2 receptor at the T cell surface. IL-2 mutants
are modeled as a molecule bearing similar properties than wild-
type IL-2, but differing in some specific parameter value on each
case. In particular, we simulate the effects of IL2 mutants with an
either reduced or increased Kon for the alpha or beta chains of
the IL2R.

The equations in the model describing the dynamics of the
number of molecules circulating in the Lymph Node (IL2, anti-IL2

FIGURE 3 | Interactions between IL2 andT cells in the model are
mediated by the IL2 receptor (IL2R), which is formed by three chains:
alpha, beta, and gamma chain. These chains are combined dynamically in
multi-step process at the cell surface, upon IL2 binding, to conform the two
known signaling forms of the IL2 receptors: high affinity alpha-beta-gamma

and intermediate affinity beta-gamma receptor. In the model, the mean
number of such signaling IL2-IL2R complexes per activated T cell are counted,
and the probability of becoming a cycling cell is computed with a sigmoid
function of the mean number of bound cytokines signaling receptors per cell
(as shown at the right side of the arrow).
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antibodies, and immune-complexes) and the number of com-
plexes IL2-IL2R and IL2-mAb-IL2R formed in a single cell mem-
brane are described in “Dynamics of Molecules in the Lymph
Node” in Appendix C.

SIMULATION OF DIFFERENT THERAPIES
Four types of treatments are simulated in the model: injections
of IL2; injections of anti-IL2 monoclonal antibodies; injections of
immune complex composed of a mixture of IL2 and anti-IL2 anti-
bodies with a specified constant proportion of them; and injection
of mutant variants of IL2.

Treatments are simulated to represent a continuous infusion
of the involved molecules for a defined period of time. This is
implemented by setting on, transiently, the external source term
of the molecules involved in a specific treatment (i.e., IL2; IL2m;
and/or anti-IL2 antibody). Two parameters always control treat-
ment application: the “dose,” which set up the total amount per
day of IL2, IL2m, and/or anti-IL2 antibody infused; and the “treat-
ment duration,” which set the time period for which continuous
infusion is maintained. In all cases, we explore how the dose and
treatment duration determine the outcome of the system simula-
tion. We study whether or not different treatments can condition
a significant preferential expansion (dominance) of helper T cells
or regulatory T cells or M cells in the system.

PARAMETER AND VARIABLE VALUES IN MODEL SIMULATIONS
Model parameters were previously calibrated in Ref. (27). The
actual values of parameter used in our simulations are provided
in Tables 1–3. The majority of the model parameters are fixed
to values directly taken or derived from available independent
experimental data; just a few parameters remain unknown, and
their influence in result was explored inside a range of biologi-
cally reasonable values. Given the realistic values and units of the
most model parameters used in the simulations, we report in this
paper the values of treatments doses in milligrams and the values
of treatment duration in weeks. However, the reader should note
that our model is only roughly calibrated, thus one should believe
on the order of magnitude and general qualitative trends of the
predicted effects. But, the exact values of dose and treatment dura-
tion reported here to cause a given effect in the simulations should
not be taken as a solid prediction.

The simulations of the model dynamics was implemented using
the program Mathematica v.4.0.

RESULTS AND DISCUSSION
BASIC MODEL AND SIMULATIONS SETUP
The model is setup to study the basic homeostasis of the immune
system of a mouse (27). Therefore the APCs in the model are
interpreted as those APCs, which present self-antigens to T cells
in the absence of infections. In consequence, the CD4+ T cells in
the model are taken to represent the populations of auto-reactive E
and R cells, which significantly recognizes the existent self-antigens
and thus interact with the available APCs.

Two main problems are then studied in the model simula-
tions. (a) The basic dynamics states of the system in the absence
of treatments; and (b) The effect of perturbations which repre-
sent specific IL2 modulation treatments on the stability of these
dynamics states.

TOLERANCE AND IMMUNITY AS THE BASIC MODEL STEADY STATES
(IN THE ABSENCE OF TREATMENT)
The model has two stable steady states which can be interpreted
as natural tolerance and autoimmunity in the system. The steady
state, which is interpreted as an autoimmune state (Figure 4A),
is one where auto-reactive helper cells are significantly expanded
while the auto-reactive Regulatory T cells are outcompeted from
their cognate APCs. This steady state is also characterized by
the existence of high levels of free IL2 and some subsequence
expansion of the memory CD8+ T cells population (M cells) in
the lymph nodes. The steady state, which is interpreted as nat-
ural tolerance in the model, is one where the auto-reactive E
and R cells co-exist in a dynamic equilibrium (Figure 4B). In
this steady state the expansion of the auto-reactive helper cells is
actively controlled by their interaction with the auto-reactive Reg-
ulatory T cells, the amount of free IL2 remains very low and the
size of M cell population remains close to its basal homeostatic
level.

A key dynamical property of the model is the existence of
a parameter regime where these steady states of tolerance and
autoimmunity can co-exist. This is a regime of bistable behav-
ior (Figure 4C), where the model could evolve dynamically into
either to the autoimmune or the tolerant steady state, but depend-
ing on the initial conditions used to seed the simulation without
any change of parameter values (i.e., changing the initial propor-
tion of auto-reactive E to R cells). The model is set to operate
inside this bistable parameter regime. Thus in equilibrium, in the
absence of treatments, the system will be either in the tolerant
or the autoimmune steady state referred above. Such parameter
choice is required to explain properly with the model the results
of adoptive transfer experiments in mice, where transferring dif-
ferent proportions of CD4+CD25− (helper) and CD4+CD25+

(regulatory) T cells into immune deficient mice (those lacking T
cells, Rag−/− or nu−/−), they either reconstitute a normal (toler-
ant to self-antigens) immune system or develop an autoimmune
disease mediated by the uncontrolled expansion of the transferred
auto-reactive CD4+ T cells (28).

Moreover, it is important to note that the model reviewed here
is an extension of the cross-regulation model of immunity, which
studies the interaction of helper and regulatory CD4+ T cells in
the lymph node of the normal mice (33). Interestingly, despite of
substantial increase on the number of variable and parameters, the
new model conserves the three main dynamical properties of the
original one reviewed in Ref. (34). In Ref. (28), three parameter
conditions were presented as necessary in the extended model to
behave as the original model and therefore to explain the same
phenomenology. These conditions are:

(1) Regulatory T cells have to be more efficient using IL-2 at low
concentrations than helper and memory T cells.

(2) The existence of a cytokine alternative to IL-2 that promote
helper T cell proliferation and survival.

(3) The helper cells must become activated and proliferate more
rapidly than Regulatory T cells in conditions of IL-2 excess.

A detailed discussion of the validity of these constrains, from
an experimental point of view, is provided in Ref. (28).
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Table 1 | Variables and parameters appearing in the equations that model the dynamics in the blood compartment.

Variables Definitions

IL2S Total number of IL2 molecules in the blood

IL2mS Total number of IL2m molecules in the blood

AbS Total number of anti-IL2 mAb in the blood

IL2Ab
S Total number of IL2-mAb complexes in the blood

IL2 Total number of free IL2 molecules (non-conjugated to IL2R at the cell membrane) in the lymph node

IL2m Total number of free IL2m molecules (non-conjugated to IL2R at the cell membrane) in the lymph node

Ab Total number of free anti-IL2 mAb (non-conjugated to IL2-IL2R complex at the cell membrane) in the lymph node

IL2Ab Total number of free IL2-mAb complexes (non-conjugated to IL2R at the cell membrane) in the lymph node

Symbolic labels Definitions

j Symbolic label that denotes the different IL2R chains: j = α (alpha chain) and j = β (beta chain)

l Symbolic label that denotes the possible functional states of the T cells: l = N resting state, l = A activated state and l = C cycling state

Parameters Definitions Values used in simulations

Γi External influx of IL2, typically used to simulate IL2 addition treatment –

K pi Rate of IL2 production by helper CD4+ T cells upon activation 103 M/h

K di Elimination rate of IL2 in the blood Ln(2)/10 min

NLN Total number of equivalent lymph nodes considered in the system 10

D il, Dab Diffusion rate for the exchange of IL2 and mAbs, between the blood and peripheral lymph nodes 10−7 L × Ln(2)/10 min

V S, V LN Volume of the blood and lymph node compartments, respectively 2.5×10−3 L, 10−6 L

fve Fraction of the lymph node volume, in which molecules and mAbs can diffuse 0.1

K Ab
on , K Ab

off Association and dissociation constants of IL2-mAb complexes Face alpha mAb: 1.5×105 M−1s−1,

1.4×10−4 s−1; face beta mAb:

2.3×104 M−1s−1, 6.6×10−5s−1

Γmi External influx of IL2m, typically used to simulate IL2 addition treatment –

Γab External influx of mAb, typically used to simulate anti-IL2 mAbs addition treatment –

Kda Elimination rate of mAbs and IL2-mAbs complexes in the blood Ln(2)/3 days

NA Avogadro’s number 6,02×1023 mol−1

RESPONSE TO TREATMENTS THAT MODULATE IL2 CONCENTRATION
In following sections, the effects of different treatments, which
aim to modulate IL2 activity, are studied. Treatments simulate a
continuous infusion for a defined period of time of the involved
molecules (IL2, IL2m, and/or anti-IL2 antibody). Two parame-
ters control their application: the “dose,” which set up the total
amount per day of IL2, IL2m, and/or anti-IL2 antibody infused;
and the “treatment duration,” which set the time period of sus-
tained infusion. Treatments are always applied in a system which
is initially set to a dynamic equilibrium (i.e., either into the tol-
erant or the autoimmune steady state). We systematically study,
whether a given treatment induces a significant change in the ini-
tial proportion of Regulatory (R) versus Helper (E+M) T cells,
both transiently or permanently. We interpret that a treatment

promotes immunity when it induces a transition from the tolerant
steady state (dominated by R cells) to the autoimmune steady state
(dominated by E cells). We interpret that a treatment promotes tol-
erance when it induces a transition from the autoimmune state to
the tolerant steady state.

Simulating the injection of IL2
Simulations of IL2 injections show that, when this treatment is
applied to a system initialized into the autoimmune steady state,
it is unable to take the system into the tolerant steady state, irre-
spectively of the dose and treatment duration chosen. Moreover,
it further promotes the expansion of the auto-reactive E cells
and the M cells (Figure 5) reinforcing transiently the ongoing
autoimmune response. However, when this treatment is applied
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León et al. Modeling the role of IL2 in T cell dynamics

Table 2 | Variables and parameters appearing in the equations that model theT cells dynamics.

Variables Definitions

EN, EA, EC Total number (conjugated plus non-conjugated) of resting, activated, and cycling E cells

RN, RA, RC Total number (conjugated plus non-conjugated) of resting, activated, and cycling R cells

MA, MC Total number (conjugated plus non-conjugated) of activated and cycling M cells

Intermediate variables Definitions

EB
N , EB

A , EB
C Number of resting, activated, and cycling E cells conjugated to APCs

EB
T Total number of conjugated E cells: EB

T = EB
N + EB

A + EB
C

EF
N, EF

A , EF
C Number of resting, activated, and cycling E cells non-conjugated to APCs: EF

l = El − EB
l , ∀l ∈ {N , A, C}

RB
N , RB

A , RB
C Number of resting, activated, and cycling R cells conjugated to APCs

RB
T Total number of conjugated R cells: RB

T = RB
N + RB

A + RB
C

RF
N, RF

A, RF
C Number of resting, activated and cycling R cells non-conjugated to APCs: RF

l = Rl − RB
l , ∀l ∈ {N , A, C}

MB
A , MB

C Number of activated and cycling M cells conjugated to APCs

MB
T Total number of conjugated M cells: MB

T =MB
A +MB

C

MF
A , MF

C Number of activated and cycling M cells non-conjugated to APCs: MF
l =Ml =MB

l , ∀l ∈ {A, C}

F Total number of APC conjugation sites that remain free in the system

SigE, SigR, SigM Number of bound cytokines signaling receptors at the surface of an activated E, R, and M cells

Symbolic labels Definitions

l Symbolic label that denotes the possible functional states of theT cells: l = N resting state, l = A activated state, and l = C

cycling state

Parameters Definitions Values used in

simulations

Γe, Γr Input rate of new resting self-reactive E and R cells from the thymus 2.5×104 cells/day

K E
A , K R

A Activation rate for resting E and R cells conjugated to APCs Ln(2)/2 h, Ln(2)/6 h

K E
P , K R

P , K M
P Division rate for cycling E, R, and M cells Ln(2)/4 h

K E
S , K R

S IL2 signaling-waiting rate for activated E and R cells Ln(2)/2 h

K M
S IL2 signaling-waiting rate for activated M cells Ln(2)/4 h

K E
d , K R

d , K M
d Death rate for free resting E and R cells, and free activated M cells Ln(2)/1 week

A Number of total APCs 2×105

s Total number of conjugations site per APC 5

K E, K R Equilibrium conjugation constants (K on/K off) for E and R cells to the APC conjugation sites K on=10−13 L s−1 cell−1,

Koff=6×10−4 s−1

K M Equilibrium conjugation constants (K on/K off) for M cells to the APC conjugation sites K on=10−13 L s−1 cell−1,

Koff=6×10−3 s−1

αE, αR Fraction of activated E and R cells reverting to the resting state in the absence of cytokine

related signal

0.95

h Hill coefficient at the sigmoid response curve 4

SE, SR, SM Sensitivities thresholds for E, R, and M cells to cytokines signal 500
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León et al. Modeling the role of IL2 in T cell dynamics

Table 3 | Variables and parameters related to dynamics of IL2, IL2R, and mAb complexes formation.

Variables Definitions

CEl
j , CRl

j , CMl
j Number of IL2 molecules bound to j chain of IL2R, at the surface of the indicated T cell type

CmEl
j , CmRl

j , CmMl
j Number of IL2m molecules bound to j chain of IL2R, at the surface of the indicated T cell type

CAbEl
j , CAbRl

j , CAbMl
j Number of IL2/mAb complexes bound to the j chain of IL2R, at the surface of the indicated T cell type

T El , T Rl , T Ml Number of IL2 molecules bound to high affinity IL2R (alpha + beta), at the surface of the indicated T cell type

TmEl , TmRl , TmMl Number of IL2m molecules bound to high affinity IL2R (alpha + beta), at the surface of the indicated T cell type

Intermediate variables Definitions

PEl
j , PRl

j , PMl
j Number of IL2R of j chain free (not bound to IL2), at the surface of the indicated T cell type

SigE, SigR, SigM Number of cytokines signaling receptors at the surface of an activated E, R, and M cells

Parameters Definitions Values used in simulations

K j
off, K j

on Dissociation and association constant of IL2 to the j chain of the IL2R K α
off = 0.6 s−1, K α

on = 107M−1s−1,

K β

off = 3× 10−3s−1, K β
on = 3.4× 106M−1s−1

f j Parameter that control the properties of different IL2m 10−3, 103

N j Switch parameter setting if the mAb blocks (=1) or not (=0) the

interaction of IL2 with the j chain of the IL2R

0, 1

ilaEA , ilaMA Number of cytokine signaling receptors, at the surface of an activated

E and M cells, bounds to an alternative cytokine (not IL2)

108, 107

RaEl , RbEl Total number of alpha and beta chains of IL2R per E cells in the state l RaEN = 10, RaEA = 104, RaEC = 103, RbEl = 103

RaRl , RbRl Total number of alpha and beta chains of IL2R per R cells in the state l RaRN = 104, RaRA =105, RaRC =104, RbRl =103

RaMl , RbMl Total number of alpha and beta chains of IL2R per M cells in the state l RaMl =10, RbMl =104

K αβ
on , K αβ

off Association and dissociation rates for the interaction of free beta chain

to preformed IL2/alpha chain complexes, at the T cell membrane

K αβ
on =2.2 × 10−3s−1, K αβ

off= 3× 10−3s−1

K βα
on , K βα

off Association and dissociation rates for the interaction of free alpha chain

to preformed IL2/beta chain complexes, at the T cell membrane

K βα
on = 0.6× 10−2s−1, K βα

off = 0.6 s−1

K in Internalization (degradation) rate of signaling IL2/IL2R complex by T cells K in=0.04 min−1

to a system initialized in the tolerant steady state it reinforces the
preexistent tolerance, by further expanding the regulatory popu-
lations (Figure 5). Interestingly, increasing the IL2 dose applied to
a preexistent tolerant state could induce immunity by expanding
the M cells; although, this effect is obtained for significantly high
(unrealistic) values of the IL2 dose.

Thus overall in the model, IL2 injections appear to reinforce
the preexistent steady state, this is expanding transiently either the
R or the E cells respectively for a preexistent tolerant or autoim-
mune situation. A closer look to the model behavior qualitatively
explains these results. Briefly: in a preexistent autoimmune steady
state there is an excess of IL2 in the lymph node, thus is not lack of
IL2 what limits regulatory T cell expansion, is their competition
with auto-reactive E cells for the cognate APCs. In consequence
injecting IL2 would never reestablish tolerance. In a preexistent tol-
erant steady state, there is a small amount of IL2 in the lymph node,
which is almost exclusively used by the regulatory T cells, limit-
ing their expansion. The helper T cells do not expand as result of

the direct suppression of their activation exerted by the R cells. In
this situation the injection of IL2, naturally leads to the enhanced
expansion of R cells reinforcing the suppression over the E cells.
Only when the IL2 concentration is extremely high at the lymph
nodes it triggers a significant expansion of the Memory T cells, sig-
naling through the intermediate affinity IL2 receptor beta-gamma.
The excessive expansion of the M cells in the system affects the sup-
pressive interaction between E and R cells at the APCs, since these
cells, although much weakly, also interact with and compete for
the available APCs.

Interestingly the latter model predictions are indeed compati-
ble with existent experimental observations and further provide a
guideline for its future practical application. On the one hand,
the reinforcement of ongoing immune reactions by IL2 injec-
tions, predicted by the model, explains classical observations on
in vivo animal models, where IL2 have been shown to potentiate
immune reactions to viral infection (35) and to well-adjuvated
vaccines (1–3). In these systems the immune response induced to
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León et al. Modeling the role of IL2 in T cell dynamics

FIGURE 4 | Illustration of the steady states obtained from numerical
simulations of the model. (A,B) shows the proportion of the total T cell
number corresponding to helper (E), regulatory (R), and memory (M) T cells.
The situation showed in (A), corresponds to the autoimmune steady state (IS)
where the memory and helper T cells dominate the system. The situation
depicted in (B), correspond to the tolerant steady state (TS) where the

regulatory T cells dominate the dynamics. The graph in (C) illustrates how
these two types of steady state of the system co-exist in the same region of
parameter values (the region of bistability). It is shown how different initial
conditions, changing just the proportion of E, R, and M cells at time t =0,
leads to trajectories taking the system either in the tolerant (TS) or the
autoimmune (IS) steady state.

FIGURE 5 | Effect of injections of IL2, on the proportion of
helper + memoryT cells versus regulatoryT cells [ratio (E + M)/R], in a
system initialized either in tolerant (TS) or the autoimmune (IS) steady
state. The graph shows the ratio (E+M)/R attained in the system right after
5 days of continuous injections of the indicated dose (x axis of the graph) of
an IL2 with either 10 min (thin curves) or 7 h (thick curves) life span in
solution. It can be seen how when the simulations start with a system at
the TS, the ratio (E+M)/R reduce its values for intermediate dose of the
treatment. This is a direct consequence of a preferential expansion of the R
cells in the system. However, if the dose is further increased then the ratio
(E+M)/R is significantly increased. This is a direct consequence of the
expansion of helper and memory T cells, by the treatment application.
When the treatment start on a system at the IS, then increasing the dose
always leads to an increase of the ratio (E+M)/R. This is, it further
increments the number of E and R cells in the system. Interestingly
increasing the life span of the injected IL2 moves to lower values the dose
ranges where treatment is effective, but does not change the qualitative
pattern of response observed.

the involved foreign antigens, which are most probably loosely or
just not controlled by regulatory T cell activity, is further promoted
by the injected IL2. Furthermore, the observed enhancement of

immunity, in these experimental systems, might not relay just
on the model predicted expansion of helper CD4+ T cells. It
might also involve important direct effects of IL2 on memory
CD8+ T cell and/or NK cells, which are known to be relevant
in many of these particular systems. In any case the model here,
will further predict that optimal application of IL2 for the pur-
pose of enhancing immunity, will be obtained when providing IL2
after the immune reaction have already started and never before,
because some reminiscent of immune regulation might still exist
and could be potentiated by the added IL2.

On the other hand, the capacity of IL2 addition to reinforce
natural tolerance mediated by regulatory T cells, predicted by the
model, explains as well several experimental observations. Par-
ticularly, it explains clinical data stating that regulatory T cells
populations are significantly expanded, both in cancer (9, 36) and
HIV (37) patients, treated with IL2. Such effect might be related
to the poor efficacy observed in these clinical applications of IL2.
Particularly, in the case of cancer, less than 20% of the treated
patients show some anti-tumor effect, perhaps, according to the
model here, because just an small fraction of the patients, happen
to have a naturally preexistent immune response against tumor
antigens, which could be further enhanced by the injected IL2. In
the case HIV patients, IL2 based therapy have led to the recovery
of CD4+ T cells counts, but the patients do not seem to recover
their capacity to fight general infections, perhaps, according to the
model here, because this treatment is just reinforcing tolerance
mediated by regulatory T cell activity.

Furthermore, this second model prediction also explains many
results in pre-clinical animal models. It explains, for instance, that
IL2 injections can prevents allograft rejection (10); or attenuate the
induction of Experimental Autoimmune Encephalomyelitis (EAE)
(10); or fully prevent the development of diabetes in the NOD
mice (11). Interestingly, in the EAE and allograft reaction mod-
els the latter effects are observed for scheme of IL2 applications
where this cytokine is injected in the system before implanting
the allogeneic tissue or before inducing the EAE. This is before
the immune/autoimmune reaction has been expanded; i.e., when
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León et al. Modeling the role of IL2 in T cell dynamics

there is a preexistent natural tolerance, mediated by regulatory T
cells, which could be reinforced by the applied treatment. How-
ever, in the NOD mice model, recent data (12) have shown that
IL2 treatment at the onset of diabetes could revert disease devel-
opment. Interestingly, in this “therapeutically relevant scenario”
treatment efficacy is much lower than in the preventive settings.
Only 40–60% of the NOD mice appear to be cured, while 100%
of the NOD mice are diabetes free when treating in the preventive
settings. Whether or not at the onset of NOD mice diabetes the bal-
ance between regulatory T cells and helpers T cells have been fully
disrupted in favor of immunity, just as considered in our model
simulations of an autoimmune disease therapeutic scenario, is a
matter of discussion. Actually Grinberg-Bleyer et al. have shown
that at the onset of NOD diabetes a significant amount of regu-
latory T cells can still be found in the pancreas and its draining
lymph node. Unfortunately in the NOD mice, the acute nature
of diabetes development (with a full irreversible destruction beta
islet) invalidates any displacement of the treatment application
toward a more advanced stage of the disease, to better compare
with our model predictions.

Simulating the injections of different anti-IL2 mAbs
Anti-IL2 antibodies are molecules that form complexes with the
IL2, blocking or not its binding to the different chains of the IL2
receptor at the T cell surface and therefore interfering with the

associated signaling process. Three classes of antibodies are sys-
tematically explored in our simulations following its documented
existence in the literature (20, 38): (1) The anti-IL2 mAbs, which
bind and thus block the site in the IL2 surface implicated on the
interaction with the alpha chain of the IL2 receptor (referred here
as the face alpha mAbs); (2) The anti-IL2 mAbs, which bind and
thus block the site in the IL2 surface implicated on the interaction
with the beta chain of the IL2 receptor (referred here as face beta
mAbs); and (3) the anti-IL2, which block the binding of IL2 to all
chains of the IL2 receptor (referred here as a fully blocking mAbs).

The injection of monoclonal antibodies anti-IL2, in the model
simulations, when applied to a previously tolerant system could
induce a breakdown of tolerance (Figure 6A), with the consequent
transition of the system to the autoimmune steady state. Such
effect can be obtained with the three classes of anti-IL2 mAbs stud-
ied, but it requires a minimal effective dose of the anti-IL2 mAb
and treatment duration (Figure 6A) which varies significantly with
the type of mAbs used. Face alpha mAbs are significantly more
efficient than fully blocking or face beta mAbs (Figure 6A) in this
simulation. Moreover, for the three classes of mAbs studied the
higher the affinity for the IL2 the higher their efficacy in these
simulation (27).

The effect of treatment with anti-IL2 mAbs in a system with
a preexistent autoimmune reaction is also quite significant. In
this case, the treatment is capable of resetting the system into the

FIGURE 6 | Effect of the simulation of treatments of IL2 depletion, using
different anti-IL2 antibodies. mAbs in the simulation, can block the
interaction of IL2 with the alpha (face alpha mAb), or with the beta (face beta
mAb) or with both (fully blocking mAb) chains of the IL2R. The graphs in
(A) corresponds to the case in which the treatment induces a breakdown of
the preexistent tolerant steady state, i.e., a transition to the autoimmune
steady state. The graphs in (B) corresponds to the case in which treatment
induces tolerance, taking into the tolerant steady state, a system initially set

in the autoimmune steady state. Breakdown of a preexistent tolerant state
requires a minimal effective dose of mAb and treatment duration [graph in the
right side of (A)]. In this scenario, face alpha mAbs are more efficient than
face beta or fully blocking mAb. This means that the latter need higher doses
of mAb to achieve a similar effect. Induction of tolerance requires minimum
treatment duration with a mAb dose inside an intermediate window of values
[graph in the right side of (B)]. This effect is obtained when face alpha, face
beta, or fully blocking mAbs are used.
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León et al. Modeling the role of IL2 in T cell dynamics

tolerant steady state (i.e., inducing tolerance) (Figure 6B). This
effect occur under quite restrictive treatment conditions: there is
a minimal treatment duration required and the dose of the anti-
IL2 mAbs used has to be set inside some particular intermediate
range of values (Figure 6B). The tolerogenic effect of the anti-IL2
mAbs is obtained with all type of mAbs (Figure 6B). Differences in
the mAbs affinity and mAbs class strongly change the dose range
where this effect is observed2.

Overall the simulations of IL2 depletion treatments using anti-
IL2 antibodies predict that this type of therapy is able to break a
preexistent tolerant state, inducing an autoimmune response, or
to render tolerant a preexistent autoimmune system. A closer look
to the model behavior qualitatively explains these results as fol-
lows. The injected mAbs appear to sequester the IL2, limiting its
availability to provide signal to the T cells. When the treatment is
applied into an initially tolerant steady state, the initial effective
concentration of IL2 is low and it is further reduced to insignifi-
cant levels, where this cytokine is incapable to signal neither to E,
R, or M cells. Therefore, if the treatment is sustained long enough,
the number of R cells fall down to a minimum determined by the
size of the thymic output, because the proliferation and survival
of R cells is strictly dependent on IL2. But the number of E cells,
on the other hand, set back to a value determined by the avail-
ability of the homeostatic cytokine of ILα, which they could use
as alternative to IL2 signal. Therefore once the injected mAbs are
cleared, the auto-reactive E cells could have some initial advantage
in respect to the R cells, leading the T cell expansion, which drive
the system into the autoimmune steady state. However, when the
treatment is applied to an initially autoimmune system, the effec-
tive concentration of IL2 is quite large and it is reduced by the
presence of the antibody. The efficacy of the mAbs to affect IL2
signaling in the different T cell population is strongly dependent
on its affinity for the IL2 and the side of the IL2 recognized. For
a very high antibody dose, the effective IL2 concentration falls to
negligible values, which as before are unable to signal neither to E,
R, or M cells. Thus the size of the auto-reactive E cell population is
reduced to the value set by the availability of ILα and the number
of R cell remains low in a value determined by the size of thymic
output. When the injected antibody is cleared the system could
return back to the autoimmune equilibrium. However, for some
intermediate doses of the antibody, the effective IL2 concentration
is reduced to values where it is unable to signal on the E and M cells,
but it is still significant for the R cells, which are more sensitive due
to their higher expression of the alpha chain of the IL2 receptor.
Therefore, for these mAbs doses the E cell population is reduced
to the minimal size, which can be sustained by the available ILα.
But the R cells are stimulated to grow forcing the system to switch
into the tolerant steady state.

2Treatment using the face alpha mAbs is the best option (it work for lower MAb dose
windows, example shown in Figure 6B) when the mAb used has an affinity for IL2
lower than 1010 M−1. But the capacity of this mAb to revert an autoimmune state
is completely lost if the mAb affinity for IL2 is assumed to be higher. The face beta
mAbs seems to work well for a larger range of mAbs affinities. Its effect is lost only
for unrealistically high affinities (larger than 1011 M−1) and it is always better than
the one obtained with a fully blocking mAb. In Ref. (27), Figure 7, we presented
results considering a mAb affinity higher than 1010 M−1, where the face alpha mAb
is not effective in reverting an autoimmune state.

The model prediction of a higher efficacy of treatments with
face alpha mAbs, to break a preexistent tolerant steady state, relates
to the impact of this type of mAbs on the dynamics of the M
cells. Face alpha mAbs bind the available IL2 forming immune-
complexes that can still signal through the intermediate affinity
IL2 receptor (beta+ gamma chain). This form of the receptor is
prevalent in the M cells, thus face alpha mAbs partially redirect IL2
signaling into the M cells expanding this population. The growth
of the M cells interferes with the dynamics of CD4+ T cells, i.e., M
cells consume the available IL2 and reduce the capacity of CD4+

T cells to interact with the APCs. The combination of the latter
effects explains the advantage of the face alpha mAb to break a pre-
existent tolerant steady state. On the other hand, the differences
observed between fully blocking and face beta mAbs in the model
simulations (compare dose dependencies in Figure 6), must rely
on the fact that face beta mAbs do not block the interaction with
the alpha chain of the IL2 receptor, conditioning the attachment
of the immune-complexes formed to cells that express this mole-
cule at the cells surface. These interactions significantly alter the
bio-distribution of both the IL2 and the antibody.

Interestingly, the latter model predictions are indeed compat-
ible with existent experimental observations. On the one hand,
the predicted capacity of treatments blocking IL2 activity to
promote autoimmunity/immunity, explains observations where
monoclonal antibodies against IL2 have been shown to promote
effective immune responses to tumors (16) and to induce autoim-
mune disease in naïve mice (13). In both cases, the model explains
the observed effects as being associated to the treatment capacity
to weaken regulatory cell activity, just as argued by their origi-
nal authors. It must be also noted that in these reports the S4B6
anti-IL2 mAbs was used, a mAb which has been recently proven
to block only the interaction of IL2 with the alpha chain of the IL2
receptor (38).

On the other hand, the model predicted capacity of IL2 block-
ing therapies to reestablish tolerance in the context of ongoing
immune/autoimmune reactions, is not documented in the litera-
ture. This model prediction is very interesting from the practical
perspectives for the treatment of autoimmune diseases. How-
ever, the fact that the predicted treatment effect just occurs for
a particular intermediate range of antibody doses, applied dur-
ing a relatively long period of time, makes difficult the practical
implementation of the treatment. To overcome the latter problem
we suggested, based on model simulations, an alternative/simpler
strategy to capitalize this therapeutic effect. A large initial dose
of the mAb could be used, reducing it periodically with a fixed
rate. With this alternative strategy the model predict a much sim-
pler dose dependency (see Figure 7) of treatment efficacy, i.e., the
applied initial dose used must be large enough (as to induce sig-
nificant initial immunosuppression), and the reduction rate used
should be sufficiently slow.

Simulating the injection of IL2/mAb immune-complexes
Immune-complexes of IL2 plus anti-IL2 mAbs (in a 1:2 mAb:IL2
molar proportion), has been recently highlighted as a novel ther-
apeutic strategy (18, 20, 39) which could significantly potentiate
the activity of the IL2 in vivo. Intuitively it should be expected
that the therapy with immune-complexes share properties with
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León et al. Modeling the role of IL2 in T cell dynamics

FIGURE 7 |The graph summarizes the results of simulations of a
model system set initially to the IS and then perturbed with, an initial
dose of the face beta mAb, which is periodically reduced to the half at
the indicated time (x axis). The curve indicates the minimal value of the
initial mAb dose required to induce tolerance (taking the system into the
tolerant steady state) with the applied treatment.

the therapies based on its basic components, but their comparative
efficacy shall depend on the class and the affinity of the mAbs used.

In our simulations, immune-complexes can either reinforce or
weaken a preexistent tolerant steady state depending on the class
of mAb used on its formulation. Figure 5, shows how the injec-
tion of immune-complexes significantly changes the number of
E, R, and M cells in the system initially set to the tolerant steady
state. Immune-complexes formed with beta face or fully blocking
mAbs induce a quite significant transient expansion of Regulatory
T cells (reinforcing the tolerant state). This transient expansion of
the Regulatory T cells is significantly larger than the one induced
by an equivalent treatment with IL2 alone and it is maximal for
mAbs with some intermediate affinity for the IL2 (27). However,
immune-complexes formed with face alpha mAbs have a quite
different effect in these simulations (Figure 8). They could also
expand the R cells, but they expand much more in comparison
the M cells in the lymph node. The capacity of this immune com-
plex to expand M cells became larger as their affinity for the IL2
is increased (27). Interestingly for the three classes of immune-
complexes a sufficiently high dose of the latter treatment could
induce a breakdown of tolerance. But only immune-complexes
based on face alpha mAbs perform better in this task than the
therapy based on the anti-IL2 mAb or the IL2 alone (Figure 9).

When applied to initially autoimmune steady states, all
immune-complexes fail to reestablish tolerance steady state. As
the injection of IL2 the immune-complexes further reinforce a
preexistent autoimmune steady state, expanding the helper and
memory T cells (Figure 8).

Summarizing the results above shows that immune complex
can sometimes synergistically potentiate the effects of IL2 and
mAbs. Complexes based on face alpha mAbs do promote immu-
nity primarily by expanding the M cells, and leading ultimately
to a quite efficient breakdown of a preexistent tolerant steady
state. Complexes based on face beta mAbs, can efficiently rein-
force tolerance expanding significantly the R cells preexistent in

FIGURE 8 | Effect of injections for five days of the indicated doses of
immune-complexes of IL2 plus antibodies anti-IL2, on the ratio of
helper + memoryT cells versus regulatoryT cells [ratio (E + M)/R], in a
system initialized either in tolerant (TS) or the autoimmune (IS) steady
state. Different immune-complexes differ on the class of mAb used to form
it (face alpha, face beta or fully blocking mAbs). immune-complexes are
always formed with a 1:2 molar ratio of mAbs:IL2 and the dose applied is
reported in terms of the mass of IL2 injected. If the simulations start with a
system at the TS, immune-complexes formed with face beta or fully
blocking mAbs reduce the ratio (E+M)/R for some intermediate dose
values and then increases it for higher dose values. This is a pattern of
response, qualitatively similar to that obtained with IL2 injection, but
significantly displaced to the range of lower doses of IL2. If face alpha
mAbs are used to form the complex the pattern of response obtained is
qualitatively different. The ratio (E+M)/R always increase (favoring the
expansion of E and M cells) and the larger the dose applied the larger the
increment. If the simulations start with a system at the IS, all the possible
immune-complexes behave qualitatively like the IL2 alone, they promote in
dose-dependent way a further expansion of E and R cells, increasing the
ratio (E+M)/R.

the tolerant steady state. Face alpha mAbs for immune-complexes
are better with the highest possible affinity, but face beta mAbs
could be better with some intermediate affinity values.

Qualitatively the effects of immune-complexes can be explained
based on two main dynamical properties in the model: (A) In the
immune complex the IL2 is protected from degradation. While
bind to the mAbs the IL2 has a life span of 3 days (like the mAbs),
which is significantly larger than the life span of 10 min reported
for free IL2. (B) Immune-complexes block different sites in the sur-
face of IL2 conditioning its preferential interaction with different
cell populations, accordingly to their differential expression of the
IL2 receptor chains. Face alpha mAbs, form immune-complexes
that bind and signal through the beta+ gamma pair of IL2 recep-
tors. Thus, since beta chain is over-expressed by the M cells, this
complex preferentially redirect the IL2 signal to these cells. Follow-
ing this analysis one could easily explain why this type of immune
complex has a maximal efficiency when the affinity of the face
alpha mAbs used is high. With high affinity mAbs, the IL2 is
more protected from degradation, and the signaling is maximally
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FIGURE 9 |The graph shows the minimal effective dose of mAb (left y
axis) or IL2 (right y axis) versus treatment duration, required to induce
the transition to the IS in a system initialized in theTS, for the
treatment with immune-complexes formed with face alpha mAbs in
the optimal molar proportion 1:2 (mAb:IL2). For direct comparison the
equivalent curves obtained for treatments with the same mAbs alone or
the IL2 alone are also depicted. It can be seen that the injection of this
class of immune complex is more efficient than the injection of the mAb or
the IL2 alone to breakdown tolerance in an initial tolerant system, i.e., it
requires less dose of either the mAbs or IL2 as compared to the
independent treatments.

redirected to the M cells. Face beta mAbs form immune-complexes
unable to signal in any class of IL2 receptor. Thus to mediate any
biological activity this type of complex has to partially dissociate,
working as a controlled source of free IL2. If the affinity of the face
beta mAbs in the complex is too high then the IL2 is never released
and the immune-complexes have no effect at all. If the affinity of
the face beta mAbs is too low, then injecting the complex is like
injecting IL2 alone. However, if the affinity of the face beta mAbs in
the complex is larger than the affinity of the dimeric IL2 receptor
(beta+ gamma chain), but lower than the affinity of the trimeric
IL2 receptor (alpha+ beta+ gamma chain), the IL2 in the com-
plex is easily release to provide signal through the high affinity
trimeric IL2 receptor, but not through the intermediate affinity
dimeric IL2 receptor. In this way the face beta based immune-
complexes provided a preferential signaling to the regulatory cells,
which overexpress the alpha chain of the IL2 receptor.

Interestingly the model results explain available pre-clinical
data on the use of immune-complexes of IL2-anti-IL2 mAbs. Our
observations that immune-complexes formed with face alpha or
face beta mAbs expand different cell populations when injected
in vivo into a normal (tolerant) mouse are fully compatible with
the results reported in Ref. (18, 20, 39). In these experiments,
the S4B6 mAb (a face alpha mAbs) is shown to form immune-
complexes that strongly expands CD8+CD44+ T cells and to a
lesser extent the R cells (20). This face alpha immune complex has
been also used to increment the immune response induced with
a vaccine (17), showing a significantly higher efficiency than IL2
alone. Moreover, the group of Jonathan Sprent have shown that
JES6-1 (originally described as a face beta mAbs (20), although
it has been recently observed that it also blocks the interaction
with CD25, behaving more like a fully blocking mAbs) induce
a larger expansion of Tregs (CD4+CD25+Foxp3+ T cells) than
the injection of IL2 alone in the same experimental setting (20).

Remarkably, this latter type of immune complex has been shown
to reinforce a preexistent tolerance state, preventing graft rejection
or autoimmune disease induction in mice (18). But it showed no
effect when applied in a therapeutic setting, this is just after the
onset of the autoimmune disease or the initiation of skin graft
rejection process (18).

The simulations, however, propose some interesting guidelines
to improve the therapeutic effect of immune-complexes. They pre-
dict that in the case of complexes using face alpha mAbs, the best
strategy is to use mAbs with the higher affinity available. But in
the case of immune-complexes formed with face Beta or fully
blocking mAbs, the use of intermediate affinity mAbs is recom-
mended. Other important prediction of our model simulations is
that treatment with immune-complexes based on face beta or fully
blocking mAbs are useful to reinforce a preexistent tolerant state
preventing the induction of autoimmunity, but it would be quite
inefficient to therapeutically treat an already established autoim-
mune disorder. For the later task, the best strategy would be to
use the anti-IL2 mAbs alone following the strategies described in
Section “Simulating the Injections of Different Anti-IL2 mAbs.”

Simulating the injection of IL2 mutants
Several mutant variants of IL2 have been designed aiming to
improve the therapeutic efficacy of wild-type IL2 in cancer ther-
apy. Most strategies, so far explored, involve the development of
IL-2 variants with an either reduced or increased binding affinity
for the alpha or the beta chain of the IL2R. In this section three
particular classes of mutants are simulated: (a) IL2 Mutant with
a reduced conjugation affinity for the alpha chain of the IL-2R as
the one described in Ref. (40) (referred here as No-alpha mutants);
(b) IL2 Mutant with an increased conjugation affinity for the alpha
chain of IL-2R as the one described in Ref. (41) (referred here as
Alpha-Plus mutants); (c) IL2 Mutant with an increased affinity
for the beta chain of the IL2R as the one described in Ref. (42)
(referred here as Beta-Plus mutant). These three classes of IL2
mutants provide a functional IL2 signal to T cells, since they keep
binding beta and gamma unit of the IL2 receptor (i.e., they are
IL2 agonists). But they might be expected to alter the natural bal-
ance in which wild-type IL2 is consumed by different T cell types,
resulting on a significantly different overall dynamics.

Figure 10A show the effect of injecting different IL2 variants
in a system initially set in the tolerant steady state. As described in
Section “Simulating the Injection of IL2,” injection of wild-type
IL2 transiently reinforce this preexistent tolerant steady state, pref-
erentially expanding the Regulatory T cells in the system. Alpha-
Plus IL2 mutants, exhibit a similar response pattern than wtIL2,
but with an even more marked preferential expansion of the regu-
latory T cells. In contrast, No-Alpha and Beta-Plus mutants show
a completely different response pattern than wild-type IL2. This
class of mutants expand preferentially the helper T cells (E+M),
rather than the regulatory T cells at all injection doses. Moreover
injections of the three classes of mutants, as for the wild-type IL2,
could lead to a breakdown of tolerance in the system when the
dose used is significantly increased. However, the minimal dose
required for such effect is significantly lower for the No-Alpha
mutants and Beta-Plus mutant Figure 10B, than for wild-type IL2
and Alpha-Plus mutants.
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FIGURE 10 |The graph in (A) shows the effect of injections for 5 days at
the indicated dose of different mutant variants of IL2 on the ratio of
helper + memoryT cells versus regulatoryT cells [ratio (E + M)/R], in a
system initialized either in the tolerant (TS) or the autoimmune (IS)
steady state. Mutants differ on their capacity to bind to the different chains of
the IL2R. Alpha-plus and Beta-plus mutants have higher binding affinity than
wild-type IL2 respectively for the alpha chain (f α =1000, f β =1) and the beta
chain (f α =1, f β =1000), while No-alpha mutant lack the binding to the alpha
chain (f α =0.001, f β =1). All mutant variants were simulated with a life span
of 7 h. If the simulations start with a system at the TS, Alpha-plus mutant
reduces the ratio (E+M)/R for some intermediate dose values and then
increases it for higher dose values. This is a pattern of response, qualitatively
similar to that obtained with IL2 injection, although with a slighter wider range

of treatment dose with ratio (E+M)/R reduced from its starting value. If
No-alpha or Beta-plus mutants are used the pattern of response obtained is
qualitatively different. The ratio (E+M)/R always increase (favoring the
expansion of E and M cells) and the larger the dose applied the larger the
increment. If the simulations start with a system at the IS, all the mutants
variants behave like the wild-type IL2, they promote in dose-dependent way a
further expansion of E and R cells, increasing the ratio (E+M)/R. The graph in
(B) shows the minimal effective dose versus the treatment duration, required
to induce the transition to the IS in a system initialized in the TS, for the
treatment with different variants of IL2 mutants. It can be seen that the
injection of No-alpha and Beta-Plus IL2 mutants is more efficient than the
injection of wild-type IL2 alone to breakdown tolerance in an initial tolerant
system, i.e., it requires less dose to achieve a similar effect.

Figure 10A also shows the effect of injecting different classes
of IL2 mutants in a model system initially set in the autoimmune
steady state. In this case the three classes of mutants behave quite
similarly to wild-type IL2, i.e., None of them is able to promote
a transition to a tolerant steady states, at any dose and treat-
ment duration. Moreover, they reinforce the preexistent autoim-
mune steady state, further expanding the Helper and Memory
T cells.

Overall the result in this section show that No-Alpha and
Beta-Plus IL2 mutants behave quite similarly, being significantly
better than wild-type IL2 to promote immunity. While Alpha-Plus
mutants could be slightly better that wild-type IL2 to reinforce a
preexistent tolerant state, expanding more the regulatory T cells.
Qualitatively, the latter results could be easily understood in the
model, by taking into account the differential expression of the
high affinity/trimeric form (alpha+ beta+ gamma) and interme-
diate affinities/dimeric form (beta+ gamma) of the IL2 receptors
on the different T cell populations. Regulatory T cells, relay on
the overexpression of the alpha chain of the IL2R, to have the
highest expression of the high affinity form of the IL2R. Memory
T cells relay in the overexpression of the beta chain of the IL2
R to have the higest expression level of the intermediate affinity
form of the IL2R. The No-Alpha and Beta-Plus mutants have a
similar impact in the balance of use of IL2 related signal in the
model. In both cases the resulting mutants lack the preferential
capacity to signal over Regulatory T cells at low concentration,
which is characteristic of the wild-type IL2. Furthermore they will

preferentially redirect the signal toward the memory T cells, and
strongly promote immunity. As the reverse case the Alpha-Plus
mutant, reinforce the capacity of the wild-type IL2 to signal pref-
erentially over the Regulatory T cells, resulting on a better tool to
reinforce a preexistent tolerance state.

The results obtained above are compatible with existent experi-
mental data. Both No-alpha (40) and Beta-Plus (42) mutants have
been shown to induce a more potent anti-tumoral response than
wild-type IL2 in several transplantable tumor models in mice. The
dynamic effects predicted in silico for these types of IL-2 mutants is
qualitatively similar to those described in Sections “Simulating the
Injection of IL2/mAb Immune-Complexes” for treatments with
immune-complexes of IL-2 and anti-IL-2 mAbs, when face alpha
mAb are used. Indeed No-Alpha mutants can be easily conceptu-
alized as an extreme case of such immune-complexes if the affinity
of the mAbs for the IL2 tends to infinity. From a quantitative point
of view, in the model, IL2 mutants can become as efficient as the
immune-complexes, only when its life span is set to be greater than
24 h. If the life span of the mutant is taken to be of 7 h (the one used
in Figure 10), which is the one reported for a wtIL2 fused to a con-
stant region of IgG (43), then one might need around 5–10 time
more mutant than wtIL2 in the immune-complex to obtain an
equivalent effect. However, since immune-complexes work in vivo
at very low concentrations of IL2, 1–2 micrograms in mice (20),
a quite reasonably small amount of the IL2 mutants would be
required to induce a similar effect. Thus, these IL2 mutants can be
useful tools to promote immunity, for instance to treat tumors or
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to enhance the response to cancer vaccines. It is important to note
that mutants might have some regulatory/developmental advan-
tages as potential drugs in comparison to the immune-complexes,
given the fact that they are single molecules.

The predicted capacity of Alpha-Plus mutants to reinforce pre-
existent tolerant steady state, expanding the regulatory T cells, has
never been evaluated. A mutant variant of IL2 with 1000 times’
higher affinity for the IL-2Ra was developed by Rao et al. (41).
But only the in vitro effect of this mutant on different T cell lines
was evaluated. Potentially the Alpha-Plus mutant could be used
to treat patients that would receive an organ transplant to reduce
the risk of graft rejection. However from a quantitative point of
view the mutant efficacy expanding regulatory T cells is predicted
only as slightly better than that of wild-type IL2. Moreover, it is
quite similar to that obtained with immune-complexes of IL2-
anti-IL2 mAbs formed with face beta or fully blocking mAbs (see
Simulating the injection of IL2/mAb immune-complexes), when
its life span is set to be of around 7 h (the value used in Figure 10).
This is when its life span is similar to that reported for a wtIL2
fused to a constant region of IgG (43). Therefore this Alpha-plus
mutant or just simply the wild-type IL2 fused to Fc of IgG, could
be a reasonable drug to prevent allograft rejection. They might
have a similar effect to that reported for immune-complexes in
mice, but being much simpler drugs to develop. Indeed a ver-
sion of IL2 fused to Fc portions of immunoglobulin is already
available (43).

CONCLUDING REMARKS
Mathematical modeling of the IL2 and T-cell dynamics, consid-
ering the dual role of IL2 in its interaction with regulatory and
helper CD4+ T cells, is able to explain the complexity observed in
the effects of IL2 modulating treatments. In this sense, we show
that the model explains a large amount of available clinical and
pre-clinical data. Moreover, it predicts optimal strategies for the
future application of these treatments:

(A) Mutant variants of IL2, either with reduced affinity for CD25
(the alpha chain of IL2 receptor) or an increased affinity for
CD122 (the beta chain of IL2 receptor), and with an increased
life span in circulation (for instance fusing them to Fc portion
of IgG), are the best strategy to potentiate immunity alone or
in combination with vaccines.

(B) Increasing IL2 life span in circulation, either by fusing it with
larger proteins or forming complexes with mAbs that block
the interaction of IL2 and CD122 (the beta chain of the IL2
receptor), significantly potentiate its capacity to reinforce a
preexistent natural tolerance, further expanding the regula-
tory T cells. This effect might be useful to treat patients that
would receive an organ transplant, reducing the risk of graft
rejection.

(C) Anti-IL2 antibodies which block the interaction of IL2 with
CD122, CD25, or both can be used to treat an ongoing
autoimmune disorder, promoting the induction of tolerance.
The best schedule for this therapy is to start treatment with a
high dose of the mAb (one capable to induce some immune
suppression) and then scale the dose down slowly the dose in
subsequent applications.

Last, but not least, it is important to highlight that our
model has focused on the control that IL2 exerts on T cell cycle
progression, impacting both in T cell proliferation and survival.
We have neglected some other reported roles of IL2 in T cell dif-
ferentiation. For instance, IL2 has been reported to increase the
suppressive capacity of the Regulatory T cells (12); to condition
the differentiation of CD8 T cells into a memory phenotype (44,
45); to induce together with TGFb, the generation of the so called
induced Tregs from naïve CD4+ T cells (46). We believe these
phenomena, although important in some experimental contexts,
are not essential to understands the main phenomenology stud-
ies in this paper. In future studies, the current model could be
extended to include some or all of the above referred interactions
of IL2.

Moreover, severe toxicity, i.e., the appearance of the cytokine
storm and the vascular leak syndrome, is perhaps the major limi-
tation known today of the practical application of IL2 modulation
treatments in clinics. Our model cannot be used to simulate
directly the toxic effects of the different IL2 modulation treatments
studied. It could only be used to predict strategies that optimize
the expected therapeutic efficacy related to the balance between
regulatory and effector CD4+ T cells. However, a recent report by
the group of Boyman (47) has shown that vascular leak syndrome,
which leads to severe pulmonary edema, is caused by the direct
interaction of IL2 with its high affinity receptor expressed in lung
epithelial cells. They demonstrated that treatment with immune-
complexes of IL2+ S4B6 mAbs (anti-IL2 mAb which interferes the
binding of IL2 to the alpha chain of IL2 receptor), prevents vascu-
lar leak syndrome while inducing a potent anti-tumor response.
Furthermore, in Carmenate el al. (40), treatment with IL2 mutants
with a reduced affinity for CD25 (no-alpha mutant) was shown
to be less toxic than treatment with wild-type IL2. These exper-
imental observations support the practical feasibility of some of
our model predictions.
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APPENDIX A
DYNAMICS IN THE BLOOD COMPARTMENT
Equations for the dynamics in the blood compartment are the
following:

dIL2S

dt
= K Ab

off × IL2Ab
S − K Ab

on ×
1

NA × VS
× IL2S

× AbS + NLN ×

(
Dil

IL2

fve× VLN
− Dil

IL2S

VS

)
− Kdi × IL2S + Γi (A1)

dIL2mS

dt
= NLN ×

(
Dil

IL2m

fve× VLN
− Dil

IL2mS

VS

)
− Kdi × IL2mS + Γmi (A2)

dAbS

dt
= K Ab

off × IL2Ab
S − K Ab

on ×
1

NA × VS
× IL2S

× AbS + NLN ×

(
Dab

Ab

fve× VLN
− Dab

AbS

VS

)
− Kda × AbS + Γab (A3)

dIL2Ab
S

dt
= −K Ab

off × IL2Ab
S + K Ab

on ×
1

NA × VS
× IL2S

× AbS + NLN ×

(
Dab

IL2Ab

fve× VLN
− Dab

IL2Ab
S

VS

)

− Kda × IL2Ab
S (A4)

Equations A1–A3 model the dynamics of IL2 (IL2s), IL2 mutant
variants (IL2ms), and anti-IL2 antibodies (Abs) number respec-
tively, while the dynamics of the number of immune-complexes
IL2+ anti-IL2 antibodies (IL2Ab

s ) is modeled by Eq. A4. The vari-
ables and parameters involved in these equations are defined in
Table 1.

Equations A1, A3, and A4 consider the increase in the num-
ber of IL2 and mAbs in the blood due to the dissociation process
of immune-complexes with a constant rate (K Ab

off ), which corre-
sponds to a decrease in the amount of these complexes (first term
in Eqs A1, A3, and A4). The process of formation of immune-
complexes, through the association of IL2 and mAb with a constant
rate (K Ab

on ), is taken into account in the second term in Eqs A1, A3,
and A4. The exchange of molecules between blood and peripheral
lymph nodes is modeled as a simple diffusion process that bal-
ances the molecule concentrations in both compartments (third
term in Eqs A1, A3, and A4; first term in Eq. A2). The number
of molecules decays exponentially with a constant rate (K di, K da),
due to renal elimination in kidney (fourth term in Eqs A1, A3, and
A4 and second term in Eq. A2). Finally, an external source for IL2,
IL2m, and mAbs is considered, which causes an increase in the
number of these molecules in the compartment (last term in Eqs
A1–A3).

APPENDIX B
DYNAMICS OF T CELLS IN THE LYMPH NODE COMPARTMENT
The dynamics of the number of T cells in the lymph node com-
partment, following the process described above, are modeled with
the following set of equations:

d EN

dt
= Γe − K E

A × EB
N ×

(
1−

RB
T

s × A

)(s−1)

+ αE × K E
S ×

(
1−

(SigE)h

(SE)h
+ (SigE)h

)
× EA

+ 2 K E
P × EC − K E

d × EF
N (B1)

d EA

dt
= K E

A × EB
N ×

(
1−

RB
T

s × A

)(s−1)

− K E
S × EA (B2)

d EC

dt
= K E

S ×

(
(SigE)h

(SE)h
+ (SigE)h

)
× EA − K E

P × EC (B3)

d RN

dt
= Γr − K R

A × RB
N + αR × K R

S

×

(
1−

(SigR)h

(SR)h
+ (SigR)h

)
× RA + 2 K R

P

× RC − K R
d × RF

N (B4)

d RA

dt
= K R

A × RB
N − K R

S × RA (B5)

d RC

dt
= K R

S ×

(
(SigR)h

(SR)h
+ (SigR)h

)

× RA − K R
P × RC (B6)

d MA

dt
= −K M

S ×

(
(SigM)h

(SM)h
+ (SigM)h

)
×MA + 2

× K M
P ×MC − K M

d ×MA (B7)

d MC

dt
= K M

S ×

(
(SigM)h

(SM)h
+ (SigM)h

)
×MA − K M

P ×MC (B8)

K E

VLN
= EB

l /(EF
l × F);

K R

VLN
= RB

l /(RF
l × F);

K M

VLN
= M B

l /(M F
l × F) (B9)

F = s × A −
∑

l

EB
l −

∑
l

RB
l −

∑
l

M B
l ;

∀l ∈ {N, A, C} (B10)
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The dynamics of the number of Helper and Regulatory CD4+

T cells, on their three different functional states of their life cycle
[resting (EN, RN), activated (EA, RA) and cycling (EC, RC) cells],
is modeled using Eqs B1–B6, respectively; while the dynamics of
the number of Memory CD8+ T cells on its two functional states
[activated (MA) and cycling (M C) cells] is modeled with Eqs B7
and B8. The process of conjugation of T cells, on their different
functional states, with their cognate APCs is modeled assuming
quasi-steady state equilibrium, which leads to the equations pre-
sented in Eq. B9 [see a more detailed explanation of the derivation
of these equations in (28)]. In Eq. B9, the symbolic label l denotes
the functional state of the cell (l=N : resting, l=A: activated,
l=C : cycling); and the superscript B and F denotes the cells con-
jugated to APC or free, respectively. The definitions of variables
and parameters in Eqs B1–B9 are resumed in Table 2.

Equations B1–B6 considered that resting E and R cells are pro-
duced by the thymus (first term in Eqs B1 and B4), and they die
with a constant rate K E

d and K R
d , respectively (last term in Eqs

B1 and B4). Resting cells become activated after conjugation with
APCs, process which is inhibited in E cells by the presence of co-
conjugated R cells in the same APC (second term in Eqs B1 and
B4; first term in Eqs B2 and B5). Activated T cells require enough
cytokine derived signals to become cycling cells (first term in Eqs
B3 and B6). The fraction of activated cells obtaining these sig-
nals is computed with a sigmoid function of the mean number of
bound cytokines signaling receptors per cell (SigE, SigR). In the
absence of these signals, a fraction α of the activated cells revert
to the resting state (third term in Eqs B1 and B4) and the remain-
ing fraction (1− α) simply die. The cycling E and R cells divide
producing two new resting cells with a constant rate K E

p and K R
p ,

respectively (fourth term in Eqs B1 and B4; second term in Eqs B3
and B6).

The Eqs B7 and B8 describe the dynamics of memory CD8+

T cells. In these equations, is modeled the dynamics of M cells
analogous that for E cells. The only difference is that M cells are
considered pre-activated cells, which become cycling in response
to cytokine signals (first term in Eqs B7 and B8). The cycling M
cells divide producing two new activated cells with a constant rate
K M

p (second term in Eqs B7 and B8). The activated cells die with a

constant rate K M
d (last term in Eq. B7).

APPENDIX C
DYNAMICS OF MOLECULES IN THE LYMPH NODE
The equations in the model describing the dynamics of the number
of molecules circulating in the Lymph Node (IL2, anti-IL2 anti-
bodies, and immune-complexes) and the number of complexes
IL2-IL2R and IL2-mAb-IL2R formed in a single cell membrane
are the following:

dIL2

dt
= K Ab

off × IL2Ab
−

1

NA × fve× VLN
K Ab

on × IL2× Ab

−

(
Dil

IL2

fve× VLN
− Dil

IL2S

VS

)
+ Kpi × K E

A × EB
N

×

(
1−

RB
T

s × A

)(s−1)

+

∑
j

K
j
off

×

[∑
l

(CEl
j ×El)+

∑
l

(CRl
j ×Rl)+

∑
l

(CMl
j ×Ml)

]

−

∑
j

1

NA × fve× VLN
K

j
on × IL2

×

[∑
l

(PEl
j ×El)+

∑
l

(PRl
j ×Rl)+

∑
l

(PMl
j ×Ml)

]
(C1)

dIL2m

dt
= −

(
Dil

IL2m

fve× VLN
− Dil

IL2mS

VS

)
+

∑
j

K
j
off

×

[∑
l

(CmEl
j × El )+

∑
l

(CmRl
j × Rl )

+

∑
l

(CmMl
j ×Ml )

]

−

∑
j

fj ×
1

NA × fve× VLN
K

j
on × IL2m

×

[∑
l

(PEl
j ×El )+

∑
l

(PRl
j ×Rl )+

∑
l

(PMl
j ×Ml )

]
(C2)

dAb

dt
= K Ab

off × IL2Ab
−

1

NA × fve× VLN
K Ab

on

× IL2× Ab−

(
Dab

Ab

fve× VLN
− Dab

AbS

VS

)

+

∑
j

(1− Nj)×

[
K Ab

off ×
∑

l

(CAbEl
j × El

+ CAbRl
j × Rl + CAbMl

j ×Ml)

]

−

∑
j

(1− Nj)×

[
1

NA × fve× VLN
K Ab

on × Ab

×

∑
l

(
CEl

j × El + CRl
j × Rl + CMl

j ×Ml

)]
(C3)

dIL2Ab

dt
= −K Ab

off × IL2Ab
+

1

NA × fve× VLN
K Ab

on

× IL2× Ab−

(
Dab

IL2Ab

fve× VLN
− Dab

IL2Ab
S

VS

)
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+

∑
j

(1− Nj )× K
j
off

×

[∑
l

(CAbEl
j × El )+

∑
l

(CAbRl
j × Rl )

+

∑
l

(CAbMl
j ×Ml )

]
−

∑
j

(1− Nj )

×
1

NA × fve× VLN
K

j
on × IL2Ab

×

[∑
l

(PEl
j × El )+

∑
l

(PRl
j × Rl )

+

∑
l

(PMl
j ×Ml )

]
(C4)

dCmEl
α

dt
= fα × K α

on ×
1

NA × fve× VLN

× IL2m× PEl
α − K α

off × CmEl
α − fβ × K αβ

on

× CmEl
α × PEl

β + K αβ

off × TmEl (C5)

dCmEl
β

dt
= fβ × K β

on ×
1

NA × fve× VLN

× IL2m× PEl
β − K β

off × CmEl
β − fα × K βα

on

× CmEl
β × PEl

α + K βα

off × TmEl − Kin × CmEl
β (C6)

dTmEl

dt
= fβ × K αβ

on × CmEl
α × PEl

β − K αβ

off × TmEl

+ fα × K βα
on × CmEl

β × PEl
α − K βα

off × TmEl

− Kin × TmEl (C7)

dCEl
α

dt
= K α

on ×
1

NA × fve× VLN
× IL2× PEl

α − K α
off

× CEl
α − K αβ

on × CEl
α × PEl

β + K αβ

off × T El

+ (1− Nα)×

(
−

1

NA × fve× VLN
K Ab

on

×CEl
α × Ab+ K Ab

off × CAbEl
α

)
(C8)

dCEl
β

dt
= K β

on ×
1

NA × fve× VLN
× IL2× PEl

β − K β

off

× CEl
β − K βα

on × CEl
β × PEl

α + K βα

off × T El

+ (1− Nβ)×

(
−

1

NA × fve× VLN
K Ab

on

×CEl
β × Ab+ K Ab

off × CAbEl
β

)
− Kin × CEl

β (C9)

dT El

dt
= K αβ

on × CEl
α × PEl

β − K αβ

off × T El + K βα
on × CEl

β

× PEl
α − K βα

off × T El − Kin × T El (C10)

dCAbEl
α

dt
= (1− Nα)×

(
K α

on ×
1

NA × fve× VLN
× IL2Ab

× PEl
α − K α

off × CAbEl
α

)
+ (1− Nα)

×

(
1

NA × fve× VLN
K Ab

on × CEl
α × Ab

−K Ab
off × CAbEl

α

)
(C11)

dCAbEl
β

dt
= (1− Nβ)×

(
K β

on ×
1

NA × fve× VLN

×IL2Ab
× PEl

β − K β

off × CAbEl
β

)
+ (1− Nβ)

×

(
1

NA × fve× VLN
K Ab

on × CEl
β × Ab

−K Ab
off × CAbEl

β

)
− Kin × CAbEl

β (C12)

PEl
α = RaEl − CEl

α − CAbEl
α − T El − CmEl

α − TmEl ,

PEl
β = RbEl − CEl

β − CAbEl
β − T El − CmEl

β − TmEl (C13)

SigE = CEA
β + T EA + CmEA

β + TmEA + CAbEA
β + ilαEA ,

SigR = CRA
β + T RA + CmRA

β + TmRA + CAbRA
β , (C14)

SigM = CMA
β + T MA + CmMA

β + TmMA + CAbMA
β + ilαMA

The dynamics of the number of IL2 (IL2), IL2 mutants (IL2m),
mAbs (Ab), and immune-complexes (IL2Ab) in the lymph node is
modeled using Eqs C1 and C4; while the dynamics of the num-
ber of IL2-IL2R complexes (CE

α , CE
β , T E); IL2m-IL2R complexes

(CmE
α, CmE

β , TmE); and IL2-IL2R-mAbs complexes CAbE
α, CAbE

β

per cell are modeled following equations (22–24); (19–21); and
(25, 26), respectively. Note that, to simplify, we only present here
the equations corresponding to the IL2 and IL2m complexes
formed at the E cell membrane. Equivalent equations are writ-
ten for R and M cells. Algebraic relations are provided in Eqs C13
and C14, for the amount of free alpha (PE

α ) and beta chains (PE
β )

of the IL2 receptor per E cell, and the mean number of bound
cytokines signaling receptors per activated E (SigE), R (SigR), and
M (SigM) cell. Note that, the terms SigE, SigR, and SigM in Eq. C14
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are the one used in the equations for the dynamics of T cells, related
with the process of cells receiving cytokine derived signals from
IL2 or alternative cytokines (see section 1.2). The variables and
parameters used in Ref. (15–28) are defined in Tables 1–3.

In Eqs C1, C3, and C4, the first and second terms cor-
respond to the processes of dissociation and formation of
immune-complexes. Additionally, due to the presence of T cells
in the Lymph Node, we consider in these equations the dissoci-
ation and association processes of IL2 and IL2-mAb complexes
with the alpha or beta IL2R chains in the cell membranes. In
this sense, is taken into account the increase in the amount of
free IL2, IL2m, and immune-complexes, due to the dissociation
process of IL2-IL2R, IL2m-IL2R, and IL2-mAb-IL2R complexes
respectively (third terms in Eqs C1 and C4 and second term in
Eq. C2). On the other hand, the association of free IL2, IL2m,
and immune-complexes to free alpha or beta IL2R chains is con-
sidered to increase the amount of IL2-IL2R and IL2-mAb-IL2R
complexes (fourth terms in Eqs C1 and C4, third term in Eq.
C2). Additionally, is modeled the processes where mAbs can be
dissociated from IL2-mAb-IL2R complexes, increasing the num-
ber of free mAbs (third terms in Eq. C3); and the process where
free mAbs associate to IL2-IL2R complexes in the cell membrane
(fourth terms in Eq. C3). The symbolic labels l and j, appear-
ing in the equations (15–18), denote respectively the functional
state of the cell (l=N : resting, l=A: activated, l=C : cycling) and
the different IL2R chains (j= α alpha chain and j= β beta dimer
chain). Finally, the production of IL2 endogenous by activated E
cells, which can be inhibited during cell activation by the pres-
ence of R cells co-conjugated in the same APC, is considered to
increase the amount of this cytokine in the Lymph Node (last term
in Eq. C1). The properties of different IL2m is controlled in the
model by the parameters fα and fβ which multiply the association
of constant of this molecules to the alpha and beta chain of the
IL2 receptor.

The formation of high affinity IL2-IL2R and IL2m-IL2R com-
plexes in a cell membrane is modeled as a two-step process, using

equations (22–24) and (19–21) respectively. Firstly, free IL2 or
IL2m binds to the available free alpha or beta chains of the
IL2R, forming the intermediate or low affinity IL2-IL2R complexes
respectively (first terms in Eqs C8, C9 and C5, C6), as mentioned
above for the dynamics of IL2. By the corresponding dissociation
process are recovered free molecules and receptor chains (second
term in Eqs C8, C9 and C5, C6). The association process of inter-
mediate or low affinity IL2-IL2R complexes with the remaining
IL2 receptor chain, leads to the formation of high affinity IL2-
IL2R complexes (third term in Eqs C8, C9 and C5, C6), and first
and third terms in Eqs C10 and C7. The dissociation of these com-
plexes is modeled in the fourth term in Eqs C9, C10 and C5, C6
and second and fourth terms in Eqs C10 and C7. The internaliza-
tion of IL2 and IL2m forming complexes with IL2Rs is modeled
considering that it only occurs for signaling IL2-IL2R complexes
requiring binding to the beta chain (last term in Eqs C9, C10 and
C6, C7).

The formation of IL2-mAb-IL2R complexes in the cell mem-
brane is modeled in Eqs C11 and C12, and in the fifth term in
Eqs C8 and C9. In this sense, we consider the association and dis-
sociation processes of free immune-complexes with the alpha or
beta IL2R chains (first term in Eqs C11 and C12); and the same
processes for free mAbs with IL2-IL2R complexes in the cell mem-
brane (fifth term in Eqs C8 and C9); second term in Eqs C11 and
C12). The possibility of formation of intermediate or low affin-
ity IL2-mAb-IL2R complexes depend on the IL2 interface that
mAbs recognize (controlled in simulations by the parameter Nj,
see Table 3). We don’t consider the formation of high affinity IL2-
mAb-IL2R complexes, due to association of antibodies with the
high affinity IL2-IL2R complexes or the association of intermedi-
ate or low affinity IL2-mAb-IL2R complexes with the remaining
IL2 receptor chain, because we are studying mAbs that bind to the
alpha or beta interface of the IL2 which will block the formation
of these complexes. Finally, the internalization of IL2 as immune-
complexes bound to the beta chains of IL2Rs in the cell membrane
is also modeled (last term in Eq. C12).
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To maintain immunological balance the organism has to be tolerant to self while remaining
competent to mount an effective immune response against third-party antigens. An impor-
tant mechanism of this immune regulation involves the action of regulatory T-cell (Tregs).
In this mini-review, we discuss some of the known and proposed mechanisms by which
Tregs exert their influence in the context of immune regulation, and the contribution of
mathematical modeling for these mechanistic studies. These models explore the mecha-
nisms of action of regulatory T cells, and include hypotheses of multiple signals, delivered
through simultaneous antigen-presenting cell (APC) conjugation; interaction of feedback
loops between APC, Tregs, and effector cells; or production of specific cytokines that act
on effector cells. As the field matures, and competing models are winnowed out, it is likely
that we will be able to quantify how tolerance-inducing strategies, such as CD4-blockade,
affect T-cell dynamics and what mechanisms explain the observed behavior of T-cell based
tolerance.

Keywords:Tregs, mathematical models, CD4-blockade, regulation, tolerance

INTRODUCTION
Immunological tolerance can be defined as the state of unrespon-
siveness to an antigen, following prior contact with that antigen,
where the host remains competent to mount an effective immune
response against third-party antigens. Accomplishing therapeutic
induced tolerance has been one of the major goals of immunology
ever since the pioneering work of Medawar and colleagues (1).

There is a need to keep a balance between aggressive cells and
cells that maintain tolerance to self. On occasions this balance
can be disrupted originating either autoimmunity, when mech-
anisms leading to self-tolerance fail, or immunodeficiency and
susceptibility to infection when the immune system is not able to
mount a proper immune response. Usually, however, the immune
system shows a significant capacity for self-tolerance, in spite of
its equally efficient performance in the protection from foreign
microbes. The ability to orchestrate protective immune responses
is also the major hurdle impeding successful transplantation ther-
apies and hinders the efficacy of therapeutic administration of
foreign proteins and genes.

Random rearrangement of T-cell receptors (TCR) during cel-
lular maturation leads to T cells that will recognize self-antigens.

It was a long held assumption that central tolerance, by means of
negative selection of autoreactive lymphocyte clones, could on
its own account for the establishment of self-tolerance. With-
out such a censoring mechanism these autoreactive cells could
eventually lead to autoimmune disease. Indeed thymocytes must
survive the process of negative selection, which eliminates cells
whose TCRs bind too avidly to self-antigens (2–4). The apop-
tosis of these thymocytes will prevent migration of autoreactive
T cells to the periphery and prevent autoimmunity. Conversely,
absence of negative selecting self-peptide-MHC complexes in the
thymic medulla leads to an increase in mature autoreactive T
cells (5, 6).

However, not all self-antigens are presented in the thymus, and
some developing autoreactive T cells never encounter their anti-
gens, eventually migrating to the periphery. Thus, although central
tolerance contributes to the deletion of a large number of poten-
tially autoreactive T cells, some autoreactive clones can be found
in the periphery of healthy individuals (7, 8). There are, there-
fore, mechanisms that operate in the periphery (i.e., outside the
thymus) to establish self-tolerance toward autoreactive clones that
escape thymic negative selection.
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Initially, one such mechanism was thought to be mediated by T-
cell anergy, described as the functional state in which T cells remain
viable but unable to respond to optimal stimulation through the
TCR and co-stimulatory ligands (9), i.e., unable to proliferate or
to produce interleukin-2 (IL-2) (10, 11). The first observation of
anergy was made with purified human CD4+ T cells stimulated
with large quantities of peptide antigens (10). It was noted that
after antigen stimulation there was down-regulation of TCR and
this was associated with the molecular mechanism for anergy (12).
Subsequent studies with mouse CD4+ T cells suggested that occu-
pancy of the TCR without any other signals was responsible for
the induction of this state (13, 14).

Interestingly, anergic T cells were capable of suppress-
ing proliferation of naïve T cells in vitro (15) and in vivo
(16). In addition, anergic T cells have been shown to inhibit
the antigen-presenting function and survival of dendritic cells
(17). These and other observations led to the proposal of
the “civil service model” (18), postulating that antigen-specific
unresponsive cells can interfere with the generation of help
by co-localizing with other T cells and competing for ele-
ments in the microenvironment (such as adhesion molecules or
cytokines).

However, it was not clear how T cells would become anergic
in vivo, and whether such mechanism was enough to maintain
tolerance. More recently, a specific T cell subset, termed regula-
tory T (Treg) cells, gained prominence as being a key mechanism
maintaining peripheral self-tolerance (19, 20). With hindsight, it is
likely that many of the features of anergic T cells are a consequence
of Treg function.

REGULATORY T CELLS
In 1995 Sakaguchi et al. (19) showed that depletion of a minor
population of CD4+ T cells constitutively expressing CD25 [IL-2
receptor α-chain (IL-2Rα)] led to the generation of a spectrum of
autoimmune diseases when transferred to immune-compromised
recipients. In addition, the co-transfer of CD25+ T cells prevented
the pathology.

Based on this CD25 marker, a population of natural (thymus-
derived) regulatory T cells was identified in the resting immune
system, both in mice and in humans (21). Subsequent studies
showed that these cells express forkhead box transcription fac-
tor 3 (Foxp3) and this finding led to the definite establishment
of a Treg subset (22–24). There is now abundant evidence that
these regulatory T cells are actively engaged in the maintenance
of self-tolerance (25). Furthermore, depletion of Foxp3+ Tregs
originates fatal multi-organ autoimmunity. The phenotype of this
disease is virtually indistinguishable from the IPEX syndrome,
caused by Foxp3 mutations in humans and equivalent to the Scurfy
phenotype in mice (26–28).

THYMIC TREG CELLS
The Treg cells that develop in the thymus, first described as nat-
urally occurring regulatory T cells (nTregs) appear to be selected
for self-antigen/MHC expressed by thymic epithelial cells (29, 30),
in a process that requires TCR triggering in the presence of co-
stimulation (31, 32), but dispenses TGF-β and IL-2 (33, 34). Early
studies with Treg cells showed that these cells express CD25, CD5,

and cytotoxic T lymphocyte antigen 4 (CTLA-4), which are all
induced upon TCR stimulation (19).

In the periphery, nTregs represent around 6–10% of the over-
all CD4+ T-cell population. In order to be sustained they need
continuous TCR triggering and co-stimulation in the presence of
IL-2 (35–37), making IL-2 essential for natural Treg pool mainte-
nance in the periphery (38). Comparative analysis of polyclonal
TCR repertoires showed that TCR sequences from Treg cells were
of broader variety and only partially overlapping with the ones
from non-Treg cells (39). Some studies have shown that antigen-
specific Treg cells are more potent at suppressing the induction of
autoimmune disease than polyclonal populations (40). However,
other studies have also shown that polyclonal Tregs are able to
suppress independently of their specificity (41). Thus, Tregs with
one antigen-specificity can suppress effector cells with many other
antigen-specificities by bystander suppression. Moreover, trans-
plantation studies have shown that Tregs can display a phenome-
non called “linked suppression,” where they can be activated in an
antigen-specific manner, and subsequently suppress responses to
unrelated antigens presented by the same cells (42). Tregs show a
third property called infectious tolerance by which one population
of Treg cells creates a regulatory milieu that promotes the out-
growth of a new population of Treg cells with antigen-specificities
distinct from those of the original population, as long as the new
antigen is present in the same tissue as the antigen recognized by
the original Treg cell (43–45).

PERIPHERAL TREG INDUCTION
Besides nTreg, of thymic origin, it has become apparent that
induced regulatory T cells (iTreg) also exist in the periphery (46,
47). After the discovery of the key role for Foxp3 in Tregs, it was
demonstrated that it was possible for non-Treg cells to acquire both
Foxp3 and the regulatory functions associated with it, therefore
becoming Treg cells themselves (46, 48, 49).

It is likely that peripheral induction of iTreg occurs in response
to non-self antigens like food, allergens, and commensal bacte-
ria (39). Early evidence for in vivo peripheral conversion was
derived from adoptive cell transfer experiments in which poly-
clonal CD4+ CD25− naïve T cells were injected into lymphopenic
mice or mice containing a monoclonal T cell repertoire devoid of
nTregs, or when tolerance was imposed on monoclonal popula-
tions without Treg cells (49–51). In these conditions, homeostatic
proliferation of the donor cells could be observed and part of the
donor cell population became CD25+CTLA-4+GITR+Foxp3+

and acquired suppressive activity. Additionally, when congeni-
tally marked CD4+ CD25− T cells were transferred to WT hosts,
10% of those converted into CD4+ CD25+ Foxp3+ T cells, within
6 weeks (52).

It was first shown in vitro that TCR activation in the presence
of TGF-β would lead to Treg conversion (53). Subsequent studies
supported this observation and demonstrated that iTreg conver-
sion could be greatly enhanced by suboptimal TCR signals or a
combination of strong TCR signals with high doses of TGF-β (47,
53–57). In vivo it is possible to induce oral tolerance by giving the
antigen in the drinking water (58), or to induce transplantation
tolerance using non-depleting anti-CD4 at the time of transplan-
tation (48, 59). In both cases, tolerance induction is accompanied
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by induction of Foxp3+ cells, in a process that requires TGF-β. In
addition to these, many other factors influence the induction of
Tregs both in vitro and in vivo, such as the co-stimulation envi-
ronment, the strength of TCR signaling, mTOR inhibition with
rapamycin, and low levels of essential amino-acids (44, 57, 60–69).

MECHANISMS OF ACTION OF TREG CELLS
In spite of intensive study of Tregs and their properties, the specific
mechanisms by which they control immune responses are still not
fully understood. There are several proposed mechanisms with
experimental support, but it is likely that no single mechanism is
responsible for the full range of biological phenomena involving
Tregs (70). And it is also likely that in different milieu distinct
mechanisms and even alternative subsets of regulatory cells are
involved in tuning the immune response (71).

In Figure 1, we summarize five putative mechanisms of Treg
function: (i) modulation of antigen-presenting cell (APC) activ-
ity through Treg engagement of co-stimulatory receptors on the
surface of APC, leading to weak or abrogated signals from APC
to naive/effector cells; (ii) Treg secretion of cytokines, such as
IL10 and TGFβ, suppressing the activity of effector cells and
APC; (iii) under certain circumstances, Tregs could have a direct
cytotoxic effect, through the production of perforin/granzyme
and induction of apoptosis in effector cells; (iv) Tregs may also
cause metabolic disruption, for example stimulating APCs to

produce enzymes that consume essential amino-acids, prevent-
ing naive/effector cell proliferation, and in the presence of TGFβ

may induce the expression of Foxp3 in naive cells (i.e., they become
Tregs); (v) Tregs could also compete with effectors cells for APC
signals or cytokines, such as IL2.

There is mounting evidence [reviewed in (72)] that Treg cells
exert their effects on different cell types, including CD4+ and
CD8+ T cells, B cells, natural killer T cells (NKT), and DCs (70).
The action of Tregs can be mediated by secretion of immuno-
suppressive cytokines, such as IL-10, TGF-β, IL-35, and galectin-1
(72) or by cell-dependent mechanisms through molecules such as
GITR, CTLA-4, CD39, CD73, and LAG-3 (70). The spectrum of
effect of Tregs on their targets goes from modifying the functional
properties of other immune cells, such as down-regulating tran-
scription of IL-2 (70, 71, 73), and other important growth factors;
to actually killing those cells through granzyme B and perforin
(70, 73–77). For example, there is evidence that Tregs can kill both
immature and mature DCs (74).

Furthermore, Tregs may convert APCs to become themselves
immunosuppressive (78). It has also been proposed that Tregs act
by competing with other cells for growth factors, particularly IL-2
(79, 80). One possible outcome of these interactions is that other
cells become themselves Foxp3+ regulatory cells (45).

These and other suppressive mechanisms may be operational
depending on the microenvironment, biological context, and

FIGURE 1 | Putative mechanisms used by regulatoryT cells. (1) Targeting
DCs – modulation of antigen-presenting cell activity through Treg engagement
of co-stimulatory receptors on the DC surface, leading to weak or abrogated
signals to naïve/effector T cells; (2) Metabolic disruption – includes cytokine
deprivation, cyclic AMP-mediated inhibition, and adenosine receptor

(A2A)-mediated immunosuppression; (3) Competition – for critical cytokines,
such as IL-2, or direct disruption of effector cell engagement with APCs; (4)
Cytolysis – direct cytotoxic effect through the production of Granzyme B and
Perforin and consequent apoptosis of effector T cells or APCs; (5) Production
of inhibitory cytokines – including IL-10, IL-35, and TGF-β.
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immune response. For instance, IL-10 producing cells are more
abundant in lamina propria (81, 82) and perforin or granzyme
expressing Tregs are predominant in tumor environments (83).

MATHEMATICAL MODELING
Due to the complexity of the mechanisms and interactions
involved in the processes of immune tolerance, mathematical
modeling has been used as a tool to explore different conceptual
frameworks of immunological tolerance. Many studies have ana-
lyzed the dynamics of thymocyte development, with positive and
negative selection, as a mechanism of central tolerance (84–91).

Many other studies have focused on modeling the putative
mechanisms of Treg suppression in the periphery. In these mod-
els, typically the dynamics of Tregs, effector cells, and APCs are
studied to find the interaction mechanisms in the model that qual-
itatively reflect the experimental knowledge. For the purposes of
this review, we can divide the models proposed in three categories,
although there is overlap between these in some studies: (i) mod-
els that analyze different putative mechanisms of action of Tregs
(Table 1); (ii) models that analyze the effects of Tregs on different
processes, such as the immune response to pathogens and tumors,
or in allergy; and (iii) models that study the maintenance of Tregs
(homeostasis).

MODELS OF THE MECHANISMS OF TREG ACTION
An early model explicitly considering Tregs was developed by León
and collaborators (92). They considered cross-regulation, where
simultaneous conjugation of a Treg and an effector cell on the
same APC can suppress effector function (92, 93). In this model,
regulation could be due to competition for conjugation sites on
the APC, or through inhibitory signals delivered to effector cells on
the same APC, or by inducing conversion of effector cells to a reg-
ulatory phenotype. This model is developed and analyzed in detail
in several subsequent publications (93–95), and it is reviewed in
Carneiro et al. (96). Recently the model was expanded to study the
dual effect of IL2 in promoting immunity and tolerance (97, 98).
Some authors considered in more detail the dynamics of antigen
and APCs, and compared mechanisms where regulatory T cells
suppress APCs function or maturation with models where Tregs
act directly on effector T cells (99). Other models along these lines
included the processes of APC maturation and the differentiation
of T cells into regulatory or effector phenotypes (100), follow-
ing a previous proposal for this interaction (101). Interestingly, in
these models, survival or proliferation of Tregs is dependent on
feedback from effector T-cells, which is in part responsible for the
bi-stability observed that is interpreted as states of tolerance or
immunity.

Another mechanism of peripheral tolerance modeled by sev-
eral authors involves anergy of effector cells (102, 103). This anergy
can be achieved by tuning the threshold for activation, for exam-
ple through repeated encounter with antigen or APC (102–106),
or through modulation by Tregs. Carneiro et al. compared this
mechanism with their previous model of cross-regulation dis-
cussed above (102). Another model that also explores thresholds
for activation, but based on effector T-cell population response
was studied by Burroughs et al. (107, 108). In this model the rel-
ative levels of Tregs and effector T cells depend on the respective

strength of stimulation by antigen, which can be modulated by
IL-2 – this model is reviewed in (109).

Typically these models consider a limited number of cell popu-
lations (3–6) and analyze one mechanism at a time. However, Kim
et al. proposed a detailed model including dozens of cell popu-
lations, with a spatial component (tissue and lymph node), and
considered multiple mechanisms of Treg action simultaneously
(110). At the other end of the spectrum, Abreu et al. proposed a
model where regulation of the immune system was simply based
on cross-recognition of multiple antigens by the same cell, whether
it is an effector, a regulatory, or an APC (111).

MODELS OF THE EFFECT OF TREGS ON THE IMMUNE RESPONSE
The studies discussed so far are mainly concerned with the mech-
anisms defining the interactions of Tregs and effector cells, often
looking for steady states where one or the other population
dominates, interpreted as tolerance or autoimmune states. Other
models analyze the effects of the existence of Tregs on different
processes.

Many of these models explore the system level effects of Treg
failure and the potential development of autoimmunity. One of
the first models to study this was by León et al. (112), where they
analyzed the relationship between infections and autoimmunity in
general. More recent studies analyzed specific autoimmune con-
ditions, such as multiple sclerosis (113, 114) and inflammatory
bowel disease (115). Grosse et al. analyzed the balance of Th1 vs.
Th2 type responses and their control by Tregs in the context of
allergies, with the objective of analyzing immunotherapy proto-
cols (116). Another study looking at immunotherapy protocols, in
this case modulation of IL2 therapy, used a mathematical model of
helper, regulatory, and memory CD4+ T cells (98). These studies
are mostly theoretical. However, one report described an inter-
esting experimental study of mice injected with tolerogenic or
control peptides and followed for 16 days, with serial measure-
ments of different T-cell subsets. These data were then analyzed
with a mathematical model (117).

Some studies have analyzed the interplay between infections
and regulation of the immune response. One of these modeled
the immune decision between attacking or not a given antigen,
based on the network of interactions between Tregs, Th17 cells,
and growing levels of antigen (as in the case of a pathogen) (118).
And a model analyzing the regulation of the immune response in
early HIV infection, through the expansion of specific Tregs, was
recently introduced (119). Finally, León et al. (120, 121) consid-
ered an expansion of their mechanistic model of Treg – T effector
interactions to study the immune response against tumors, and
their control or expansion.

MODELS OF TREG HOMEOSTASIS
An important question that has also been addressed by modeling
studies is the maintenance of a healthy number of Tregs. Sev-
eral studies included the possibility of the Treg population being
maintained in the periphery in part by feedback from the effec-
tor cells (92, 99, 100). One such model (94) studied the effects of
thymic output and positive/negative selection on proper balance
between tolerance and immunity in the periphery, and concluded
that repertoire selection plays an important role in maintaining
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Table 1 | Summary of mechanistic models ofTreg action.

Cell populations considered Mechanisms of regulation of immune response Some properties of the model Reference

APC, Treg, Teff, and Treg, Teff

conjugates on APC

Competition for activation on APC

Tregs inhibit Teff on same conjugate

Treg maintenance is dependent on Teff

Treg inhibit growth of Teff

Treg induce Teff to become Treg

(92–94, 96)

No explicit APC dynamics

As above plus IL2 Competition for IL2 Non-local interactions (97, 98)

Tregs condition APC Model used to study IL2-based therapies

APC and Ag dynamics Tregs directly suppress Teff (specifically and bystander) Bystander effects are important (99)

APC maturation Tregs suppress APC maturation Direct suppression was more effective

T cells are activated into Treg or

Teff by APC stimulation

Antigen Tp become Treg by interaction with resting APC Strength of antigen stimulus is crucial in

defining whether system is in tolerant or

non-tolerant state

(100)
Immature APC, resting APC,

activated APC

Tp become Teff by interaction with activated APC

Teff activates APC

Treg induces activated APC to restPrecursor T cells (Tp), Teff, Treg

Stochastic model of TCR

triggering for T cells (both

thymus and periphery)

Different thresholds for activation vs. anergy, with or

without co-stimulation

Self-reactive cells in periphery are controlled by

a mechanism of reversible anergy

(103)

T cells with tunable activation

thresholds

Model for integration of signals in successive

encounters with APC

Exhibits self-tolerance (102)
“More cells should lead to less anergy,” which

is not seen in adoptive transfer experiments

Inactive and active Treg and Teff Tregs consume IL2 Strength of antigen stimulation (forTreg andTeff)

defines relative levels of those two populations

(107–109)
IL2 for Teff proliferation, also

helps Treg proliferate

Treg inhibit Teff (from active to inactive) proportionally

to Treg numbers

Cytokine (e.g., IL7) for Treg

homeostasis

APC with different antigens

Teff of multiple specificities

Tregs of multiple specificities

Cells interact with extensive cross-reactivity, but

different avidities

Effector functions are the outcome of individual

cellular decisions (based on cross-reactivity)

(111)

A threshold of conjugation time can be identified

that permits self/non-self discrimination

Comparison of some of the models for Treg action discussed in the text. The model by Kim et al. (110) is too complex to fit in this summary table.

that balance. Baltcheva et al. (122) developed a more detailed
model to analyze the life-long dynamics of precursor and mature
CD25+ T cells (Tregs) in humans, including thymic production,
density-dependent homeostasis, and effector T-cell conversion.

CONCLUSION
The field of regulatory T cells, although relatively recent, has had
an explosion of knowledge driven by detailed experimental work
(20, 65, 72, 123, 124). Indeed there are many more studies than
we could possibly review or even allude to in this mini-review.
However, the mechanistic details of this important function of
the immune system are not completely elucidated (72). Many
authors have developed mathematical models of the interactions
between Tregs and effector cells to try to add to our understand-
ing of these mechanisms. Still, there is a lack of true collaborations
between experimental scientists and modelers in this field. Clearly,
more progress would be possible if such integrated teams worked
together, as has been the case in other areas of medicine, e.g., mod-
eling of viral infections (125). As the field matures and competing

models are winnowed out, it is likely that we will be able to quan-
tify how tolerance-inducing strategies, such as CD4-blockade,
affect T-cell dynamics, and what mechanisms explain the observed
behavior of T-cell based tolerance.
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T-cell receptor (TCR) polyclonal matureT cells are surprisingly resistant to oncogenic trans-
formation after retroviral insertion of T-cell oncogenes. In a mouse model, it has been
shown that mature T-cell lymphoma/leukemia (MTCLL) is not induced upon transplanta-
tion of mature, TCR polyclonal wild-type (WT) T cells, transduced with gammaretroviral
vectors encoding potent T-cell oncogenes, into RAG1-deficient recipients. However, fur-
ther studies demonstrated that quasi-monoclonal T cells treated with the same protocol
readily induced MTCLL in the recipient mice. It has been hypothesized that in the TCR
polyclonal situation, outgrowth of preleukemic cells and subsequent conversion to overt
malignancy is suppressed through regulation of clonal abundances on a per-clone basis due
to interactions between TCRs and self-peptide-MHC-complexes (spMHCs), while these
mechanisms fail in the quasi-monoclonal situation. To quantitatively study this hypothesis,
we applied a mathematical modeling approach. In particular, we developed a novel ordinary
differential equation model of T-cell homeostasis, in which T-cell fate depends on spMHC-
TCR-interaction-triggered stimulatory signals from antigen-presenting cells (APCs). Based
on our mathematical modeling approach, we identified parameter configurations of our
model, which consistently explain the observed phenomena. Our results suggest that the
preleukemic cells are less competent than healthy competitor cells in acquiring survival
stimuli from APCs, but that proliferation of these preleukemic cells is less dependent on
survival stimuli from APCs. These predictions now call for experimental validation.

Keywords:T-cell homeostasis,T-cell niche, gene therapy, matureT-cell lymphoma, MTCL

1. INTRODUCTION
Mature T cells are an essential component of the adaptive immune
system. They carry the so-called T-cell receptor (TCR) on their
surface. This receptor enables them to recognize peptides that are
presented to them via major histocompatibility complex (MHC)
molecules on antigen-presenting cells (APCs). A vast number of
different TCRs is expressed in T cells in healthy individuals, esti-
mated to be in the order of 106 in mice (1) and 107 in humans (2).
An individual T cell expresses a single TCR variant, and passes this
variant on to its daughter cells. The set of all T cells expressing the
same TCR is called a T-cell clone (or simply referred to as clone).
The enormous TCR diversity is created during T-cell maturation
in the thymus through genomic rearrangement of the TCR gene
locus (3). A series of selection processes ensures that mature T cells
can bind with low to moderate affinity to self-peptide-MHC com-
plexes (spMHCs) on APCs (4–6). After maturation, T cells enter
the peripheral T-cell pool.

The peripheral T-cell pool is remarkably stable in terms of cell
numbers and clonal diversity throughout the lifetime of mice and
humans. In order to explain this stability, concepts have emerged
that are based on competition between T cells for limiting trophic
resources needed for survival and proliferation (7). The limit-
ing trophic resources can be divided in public and TCR-specific

resources (8). In principle, public trophic resources are equally
accessible to all T cells, and include stimulatory cytokines (e.g.
interleukin 7), nutrients, costimulatory molecules, or physical
space. In contrast, access to TCR-specific resources depends on the
particular TCR that is expressed on a T cell. TCR-specific resources
are represented mainly by stimulatory interactions with APCs due
to binding of the TCR to spMHCs (9–11).

Different spMHCs may vary substantially in their suitability
to mediate a stimulatory interaction for particular T-cell clones.
Consequently, a T-cell niche concept has been proposed, in which
different spMHCs represent distinct T-cell niches (12). The niches
provide vital resources that different T-cell clones compete for. A
particular clone may not receive resources from all niches equally
well. This concept implies that the TCR diversity is stabilized by
the diversity of the available spMHCs (13).

When the regulation of cellular proliferation in the T-cell sys-
tem is corrupted, mature T-cell lymphoma/leukemia (MTCLL)
formation may occur. However, oncogenesis is comparatively rare
in mature T cells. For example, the incidence of B-cell lym-
phoid neoplasms is substantially higher than the incidence of
T-cell/natural killer cell lymphoid neoplasms, as shown in a study
from the United States (26.13/105/year vs. 1.79/105/year (14)).
Furthermore, several studies from the field of retroviral gene
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therapy confirm the relative resistance of mature T cells to onco-
genesis. Despite long follow-up times, retroviral vector-induced
oncogenesis has never been observed in clinical gene therapy tri-
als involving gene-modified mature T cells (15–17). In contrast,
genotoxicity was observed in several studies involving retrovi-
ral gene transfer into hematopoietic stem and progenitor cells
(HSPCs) (18, 19).

Motivated by these observations, we here focus on the analysis
of oncogenesis control in mature T-cell populations.

In order to explicitly investigate the relative resistance of mature
T cells to malignant transformation in a gene therapeutic context,
HSPCS, and mature T cells were exposed to an identical transfor-
mation assay in a defined experimental setting (20). In this assay,
HSPCs and mature T cells were isolated from wild-type mice and
were each transduced independently with high copy numbers of
gammaretroviral vectors encoding potent T-cell oncogenes. Sub-
sequently, the cells were transplanted into immunoincompetent
RAG1-deficient mice. HSPC-transplanted animals consistently
developed MTCLL. In contrast, MTCLL has not been observed
in any of the recipients that were transplanted with mature T cells.
This finding corroborated the relative resistance of mature T cells
to malignant transformation.

In a subsequent study, the impact of TCR diversity on T-cell
resistance to malignant transformation has been further assessed
(21). In this study, T-cell populations were isolated from OT1- or
P14-mice, i.e. mice expressing a transgenic TCR. T-cell popula-
tions from these mouse models are quasi-monoclonal, i.e. they
express predominantly one specific TCR. By applying a simi-
lar, yet refined, transformation assay as in the previous study
MTCLL readily developed in the recipient RAG1-deficient mice
(see Figure 1). Moreover, addition of untransduced TCR poly-
clonal T cells to quasi-monoclonal, transduced cell populations
prevented malignancy development, demonstrating that TCR
polyclonality plays a pivotal role in malignancy control in mature
T cells.

Building on these observations, we hypothesize that in the
TCR polyclonal situation, prohomeostatic signals, due to inter-
actions between TCRs and spMHCs, suppress the outgrowth of
preleukemic T cells (i.e. in this context, T cells that have been
transformed by retroviral insertion of an oncogene), while these
mechanisms fail in the TCR quasi-monoclonal situation, and vig-
orous cell expansion occurs. In this paper, we aim to quantitatively
assess the implications of this hypothesis using a mathematical
modeling approach. Specifically,we develop a mathematical model

of a niche-dependent mature T-cell regulation [similar to previ-
ous published models, e.g. Ref. (22)], which will be applied to
model the physiological situation and MTCLL formation. Using
this model of T-cell homeostasis, we present an in silico simula-
tion scenario that is suited to mimic the experimental procedures
performed by Newrzela et al. (20, 21). In an extensive parameter
screen, we evaluate if, and under which parameter constellations
the experimental observations can be explained.

2. MATERIALS AND METHODS
2.1. MODEL DESCRIPTION
The two major entities in our model are T-cell species (also called
simply species) and T-cell niches (also called simply niches). With
the term species, we refer to a set of T cells that is homogeneous
in terms of our model parameters. In the physiological situa-
tion, a T-cell clone can be represented as a particular species.
However, in order to model the aforementioned experimental sit-
uation (20, 21), we will represent each T-cell clone by two species,
namely a species representing healthy cells within a clone and
a preleukemic species representing cells that potentially give rise
to MTCLL.

Our model is constructed to describe the temporal dynamics
of species abundances, i.e. the number of cells belonging to a par-
ticular T-cell species at any point of time. The number of species
in the system is denoted by the symbol m. The species abundances
at time t are represented by the vector c(t )= (ct(t )) with i= 1,
2, . . ., m. The initial species abundances c(0) are defined by an
m-dimensional vector denoted c0

=
(
c0

i

)
.

In the model, T-cell species compete for resources needed
for survival and proliferation that are supplied by T-cell niches.
The number of niches in the system is denoted by the symbol
n. It is assumed that the niches supply resources at constant
rates, represented by the n-dimensional vector p= (pj), where
j = 1, 2, . . ., n.

The competition for niche resources between species is defined
by the m× n matrix A= [aij], called niche affinity matrix, in which
aij is a measure of the capability of species i to acquire resources
from niche j.

At any time point t, species receive resources from niches
according to instantaneous rates. These rates, which are termed
resource acquisition rates, are stored in an m× n matrix
R(t )= [rij(t )]. rij(t ) denotes the rate at which the i-th species
receives resources from the j-th niche at time t, and is the affinity-
and abundance-weighted proportion of the total rate pj at which

Polyclonal 
mature T cells

LeukemiaTransduction with 
T-cell oncogenes

(NPM/ALK, TrkA)

Rag1 -/-

Rag1 -/- No leukemia

Quasi-monoclonal
mature T cells

FIGURE 1 | Experimental strategy as described in Newrzela et al. (21). TCR quasi-monoclonal T-cell populations transduced with potent T-cell oncogenes
developed mature T-cell lymphoma/leukemia in RAG1-deficient recipient mice, while TCR polyclonal T-cell populations that have been subjected to the same
transformation assay did not.
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niche j provides resources. Thus, rij(t ) is calculated as follows:

rij(t ) =


aij ci (t )

m∑
k=1

akj ck (t )
pj if

m∑
k=1

akj ck(t ) > 0

0 otherwise

The sum of the resource acquisition rates over all niches yields
the net resource acquisition rate for a particular species.

Different T-cell species may differ in the amount of resources
needed to sustain an individual cell. Therefore, we introduce the
m-dimensional vector v= (vi), which we term resource utilization
efficiency. This parameter determines for each species, how many
T cells can be sustained by one resource unit per unit of time. The
product of the resource acquisition rates and the resource utiliza-
tion efficiencies yields the time-dependent carrying capacities of
the individual species, stored in the vector k(t )= (ki(t )):

ki(t ) = vi

n∑
j=1

rij(t )

The carrying capacities indicate how many cells of a given
species can be sustained by the system, given the current resource
distribution among the species. The carrying capacities may
change dynamically in time, as the species abundances vary. The
relation between the actual size of a species and the carrying
capacity determines whether the species abundance decreases or
increases. Due to lack of biological data determining a particular
growth model for T-cell clones, we chose a rather general logistic
growth dynamics, where τ denotes the minimum cell cycle time:

dci(t )

dt
=

{
ci (t )
τ
(1− ci (t )

ki (t )
) if ki(t ) > 0

0 if ki(t ) = 0

We require c0
i , aij, pj, and vi to be greater than or equal to zero,

and τ to be greater than zero.

2.2. PARAMETER CHOICE
In its general form, the model presented in the previous subsec-
tion has nm+ 2m+ n+ 1 scalar parameters. In the following, we
sketch our numerical approach and reparameterize the model in
order to reduce the effective number of parameters.

In our approach, the number of TCR-defined clones is denoted
by q. Each clone is represented by two species (thus m= 2q). With-
out loss of generality, species 1 to q represent the presumably
healthy cells within the q clones (referred to as healthy species)
and species q+ 1 to 2q represent the cells that potentially give
rise to leukemia/lymphoma (referred to as preleukemic species).
The specific case of the monoclonal situation is represented by
setting all but the first healthy and the first preleukemic initial
species abundances to zero (ci= 0 except c1> 0, cq + 1> 0). We
assume that each species may in principle receive a stimulus from
each niche due to unspecific affinity. The magnitude of the unspe-
cific affinity is denoted u(h) for the healthy species and u(p) for
the preleukemic species. In addition, we assume that each species
has a preferred niche, to which it has an additional affinity [spe-
cific affinity, denoted s(h) for the healthy species and s(p) for the

preleukemic species]. Biologically, the specific affinity could be
interpreted as affinity to cognate self-peptide, and the unspecific
affinity as affinity to the MHC itself.

The scalar parameters describing the specific and the unspecific
affinities are used to define the niche affinity matrix A. Formally,

we construct the matrices A(h) =
[

a(h)ij

]
describing the niche

affinities of the healthy species and A(p) =
[

a
(p)
ij

]
describing the

niche affinities of the preleukemic species as follows,

a(h)ij =

{
s(h) + u(h) if i = j

u(h) if i 6= j

a
(p)
ij =

{
s(p) + u(p) if i = j

u(p) if i 6= j

i ∈ {1, 2, ..., q}, j ∈ {1, 2, ..., n}

and use these matrices in order to construct the actual niche
affinity matrix A by vertical concatenation of A(h) and A(p):

A =

[
A(h)

A(p)

]
Furthermore, we introduce the symbols v(h) and v(p) to

describe the resource utilization efficiencies of the healthy and
preleukemic species, respectively. v(h) and v(p) are used to con-
struct the actual resource utilization efficiencies (superscript T
denoting the transpose of a vector):

v = (v(h), . . . , v(h)︸ ︷︷ ︸
q times

, v(p), . . . , v(p)︸ ︷︷ ︸
q times

)
T

Note that no interspecies heterogeneity with respect to the
magnitudes of the specific and unspecific affinities of the healthy
species (s(h), u(h)) and their resource utilization efficiency v(h)

is considered. The same applies to the preleukemic species, with
parameters s(p), u(p), and v(p).

In order to make numerical simulations feasible, while still pre-
serving the niche-based regulation, we are using a system with
100 niches (n= 100) and 100 clones (q= 100), i.e. 200 species
(m= 200) for the numerical simulations.

As mentioned above, the real number of T-cell clones in mice
is estimated in the order of 106, while the total number of T cells
in a mouse is estimated to be in the order of 108 (23). Assuming
that in the physiological situation the number of niches in mice
equals the number of T-cell clones, a niche nourishes 100 cells
on average. Therefore, we consider the niche sizes pj= 100 for all
j = 1, . . ., 100. The minimum cell cycle time τ is set to 8 h as a
rough estimate of vigorous T-cell proliferation (24). Since an ini-
tial exploratory screen did not reveal a qualitative effect of changes
in niche size p and the minimum cell cycle time τ on the model
behavior, we keep p and τ fixed to the above described values.

Additionally, and without loss of generality, we can fix one of
the four niche affinity parameters s(h), s(p), u(h), and u(p) as the dis-
tribution of resources depends on relative affinities only. We chose
to fix the unspecific affinity of the healthy cells u(h)

= 1/n= 0.01
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(n being the number of niches) as our reference. The specific affin-
ity of the healthy species s(h) is set to 1 [except for the results
shown in Figure 6, in which we are also considering the values
s(h)
= 0.2 and s(h)

= 5]. Furthermore, we set the resource utiliza-
tion efficiency of the healthy cells v(h) to 1, thus interpreting the
corresponding value of the preleukemic cells v(p) as a relative
measure compared to the healthy situation.

Hence, at this point the scalar parameters s(p) (specific affin-
ity of the preleukemic species), u(p) (unspecific affinity of the
preleukemic species), v(p) (resource utilization efficiency of the
preleukemic species), and the vector-valued initial condition c0

are not yet fixed. How they are varied in the parameter screen is
described in the following subsection.

2.3. SIMULATION PROCEDURE
2.3.1. Physiological situation
In order to study the behavior of the system, we in silico transplant
500 cells into an empty system. TCR diversities q= 1 and q= 100
are considered. In the TCR polyclonal situation, the initial species
abundances c0 are obtained by distributing the 500 cells according
to a uniform distribution over the healthy species. s(h) is set to 1.
The parameters s(p), u(p), and v(p), which describe the properties
of the preleukemic species, do not influence the model behavior
here, since no preleukemic cells are transplanted into the system.
All other model parameters are fixed to the above described val-
ues. We let the system evolve for 400 time-steps. To demonstrate
the system response to perturbations, we simulate a significant cell
loss by removing 99% of the cells at time t = 200. The simulation
results are presented in subsection 1.

2.3.2. Oncogenic situation
In order to systematically evaluate the effect of the parameters
describing the properties of the preleukemic cells [i.e. their specific
affinity s(p), their unspecific affinity u(p), their resource utilization
efficiency v(p)] and the initial abundances c0, we perform an exten-
sive parameter screen. s(p), u(p), and v(p) are varied in multiples
of their healthy counterparts, ranging from ∼1/40 to ∼40. The
relative distances between two neighboring values is 20%, so that
41 different fold-changes are considered per parameter.

The fraction of transplanted cells that have been transformed
into preleukemic cells is currently not known for the used
experimental protocol. Therefore, we consider three scenarios,
denoted P1, P10, and P100, which consider 1, 10, and 100 initial
preleukemic cells, respectively. All three scenarios are evaluated
for each combination of the specific affinity of the preleukemic
species s(p), their unspecific affinity u(p), and their resource uti-
lization efficiency v(p). All cases are initiated by 500 cells that are
in silico-transplanted into an empty system.

This corresponds to 5 cells per clone in the polyclonal situation
on average, in accordance with the experimental situation (5× 106

transplanted cells, TCR diversity estimated in the order of 106).
In scenario P1, one T cell (0.2%) is assigned to the preleukemic
cell compartment, in scenario P10, 10 T cells (2%), belonging to
10 different species in the TCR polyclonal situation, are assigned
to the preleukemic cell compartment, and in scenario P100, 100
T cells (20%), belonging to 100 different species in the polyclonal
situation. In all three scenarios, the remaining cells are distributed

randomly according to a uniform probability distribution over
the healthy species in the polyclonal situation. In addition to the
polyclonal settings we construct a corresponding monoclonal sit-
uation, in which the fraction of 0.2% (P1), 2% (P10), or 20%
(P100) preleukemic cells is assigned to only a single clone.

The number of parameter sets evaluated in each of the three
scenarios is 413 (since 41 different fold-changes are considered for
s(p), u(p), and v(p)). Hence, in total 3× 413

≈ 2× 105 parame-
ter sets are evaluated for both the polyclonal and the monoclonal
situation.

As we are not primarily interested in transient phenomena but
in the long-term behavior of the system, our aim is the identifica-
tion and characterization of stable steady states, namely whether
the preleukemic cells are able to dominate the system or not. There-
fore, simulations are run until the relative change of all species
abundances between two successive time steps are below 10−6.
For this situation we assume that the system is sufficiently close to
a steady state. If this criterion is not fulfilled after 108 simulation
steps, the current simulation is stopped, and the stability of the
system will be assessed manually.

For each individual parameter set, we evaluate if the corre-
sponding simulations for the mono- and polyclonal situation are
consistent with the experimental phenomena, i.e. if we observe a
stable and considerably enlarged population of preleukemic cells
in the monoclonal situation, and control of the preleukemic cells in
the polyclonal situation (i.e. the contribution of the preleukemic
cell population remains below a certain threshold). The specific
criteria used for the classification are listed in Table 1. If a parame-
ter set fulfills all criteria, we consider it consistent with the observed
phenomena as described in (20, 21).

The simulation results of the parameter screen are presented in
subsection 2.

3. RESULTS
3.1. PHYSIOLOGICAL SITUATION
First, we investigate the behavior of the described system in the
absence of preleukemic cells. As can be seen in Figure 2, the sys-
tem quickly converges to a steady state, both in the mono- and the

Table 1 | Criteria used for classification.

Total cell count Contribution of

preleukemic cells

TCR monoclonal

situation

At least 300% of

physiological cell count

At least 80% of total cell

count

TCR polyclonal

situation

At most 120% of

physiological cell count

At most 50% of total cell

count

A particular tested parameter set is classified as consistent with the experimental

phenomena, if the total cell count and the contribution of the preleukemic cells

fulfill the criteria specified in the table, i.e. a leukemia-like situation in theTCR mon-

oclonal situation, and a state of non-dominance of the preleukemic species in the

TCR polyclonal situation. The total cell count at the steady state is compared to

the physiological cell count, which is established based on the simulations shown

in subsection 1.The contribution of the preleukemic cells is the ratio between the

number of preleukemic cells and the total cell count at the steady state.
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Individual healthy clones

Total cell count

FIGURE 2 | Simulation results of physiological situation. The left panel
documents the dynamic system behavior in the monoclonal situation. In the
right panel, the individual green lines represent the abundance of different
clones. The system quickly converges to a steady state. The total cell count in
the steady state of the physiological situation is indicated by the horizontal

dashed green line at 104. The horizontal red line at 3×104 represents the total
cell count that is required as a minimum in order to qualify a situation as
premalignant. At t =200, 99% of the cells are removed from the system.
Both in the mono- and the polyclonal situation the system quickly
reestablishes the previous steady state.

polyclonal situation. In the polyclonal situation, all clones have
an abundance of 100 cells at the steady state due to the para-
meter symmetry among the healthy species (i.e. all species have
the same specific affinity s(h)

= 1 to their preferred niche, and the
same unspecific affinity u(h)

= 1/n to all niches). The total cell

count at the steady state amounts to v(h) ·
n∑

j=1
pj = 104 both in the

monoclonal and the polyclonal situation. After a perturbation, e.g.
due to cell kill, the system quickly reestablishes its previous state,
unless individual species are completely eliminated within the cell
kill simulation.

The steady state with equal-sized clones is reached regardless
of the initial abundances of the healthy cells, given that the abun-
dances of all healthy species are >0 (data not shown). Transient
changes of the niche sizes or transient addition of niches (e.g. to
model infections) can entail the transient expansion of one more
species/clones (data not shown).

3.2. ONCOGENIC SITUATION
For the oncogenic situation, we evaluate whether a certain pro-
portion of preleukemic cells (represented by the three scenarios
P1, P10, and P100) can develop into a (pre)leukemic situation
in the monoclonal case, while being controlled by healthy com-
petitor cells in the polyclonal case. The evaluation is carried out
based on prespecified formal criteria (see Table 1). In all tested
parameter settings, the steady state (i.e. convergence) criterion is
reached both in the mono- and the polyclonal situation. Figure 3
shows representative simulation results to provide some intuition
about the spectrum of possible simulation outcomes for the three
scenarios P1, P10, and P100.

Out of the ≈2× 105 tested parameter configurations, 1050
parameter sets are consistent with the experimental phenomena

according to the defined criteria (c.f. Table 1). Further, it should be
emphasized that the consistent parameter sets are identifiable as a
confined region in the parameter space in all three scenarios (see
Figure 4) and that the regions in scenarios P1, P10, and P100 over-
lap considerably. In all three scenarios, we identify a region that is
characterized by lowered specific and unspecific affinities as well
as an increased resources utilization of preleukemic compared to
normal T cells. Technically, this refers to triangular prisms in the

u
(p)
low s

(p)
low v

(p)
high octant of the parameter cube (Figure 4). In scenario

P1, the region of consistent parameter sets additionally extends

to the u
(p)
low s

(p)
highv

(p)
high octant. Our results indicate that the overall

systems behavior displays only a minor dependency on the initial
number of preleukemic cells with respect to the phenomena in
focus.

Assessing the set of consistent parameter constellations in more
detail, we find that the resource utilization efficiency parameter for
the preleukemic species v(p) had to be chosen at least three-fold
higher than the resource utilization efficiency for healthy cells, in
order to be consistent with the experimental observations. This is
more clearly seen in Figure 5, which further characterizes the para-
meter sets that are consistent with the predefined criteria. The fact
that a three-fold increase of v(p) is required, directly reflects crite-
rion from Table 1, stating that the cell counts have to be increased
at least three-fold in the monoclonal situation.

Concerning the niche affinities of the preleukemic cells, a clear
pattern can be observed, likewise apparent in Figure 5. In sce-
narios P10 and P100, the specific affinity of the preleukemic cells
s(p) is decreased (i.e. s(p)< s(h)) in all consistent parameter sets.
In scenario P1, however, the specific affinity can be considerably
increased without rendering a tested parameter set inconsistent.
This is due to the fact that in scenario P1, only a single cell is
preleukemic initially. Therefore, the fitness of the preleukemic cell
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FIGURE 3 | Simulation results of three representative parameter sets.
For each scenario, we show the simulation results of one possible
parameter set. The parameter set picked for scenario P1 is not consistent
with the experimental observations as specified inTable 1. The preleukemic
cells expand more than threefold both in the mono- and polyclonal situation.

The parameter set chosen for P10 is also not consistent with the specified
criteria. Using this parameter set, the preleukemic cells are less fit than the
healthy cells, and die out both in the mono- and the polyclonal situation. The
parameter set chosen for scenario P100 is consistent with the specified
criteria.
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FIGURE 4 | 3D scatter plot of consistent parameter sets. Each
tested parameter set can be represented by a point in one of the
three presented cubes, the coordinates representing the fold-changes
of s(p ), t (p ), and v (p ) in comparison with their healthy counterparts s(h),
u (h), and v (h). In the center of each cube, the parameters s(p ), u (p ), and

v (p ) are equal to their counterparts describing the healthy cells. Only
the parameter sets that are consistent with the experimental
observations (criteria inTable 1) are plotted. Transparency is used in
order to give an impression of the shape of the consistent parameter
region.
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FIGURE 5 | Histograms of consistent parameter values. These histograms
show the distribution of the specific affinity of the preleukemic species s(p),
their unspecific affinity u (p), and their resource utilization efficiency v (p) of the

consistent parameter sets. s(p) is decreased in all consistent parameter sets
of scenario P10 and P100, while it is indifferent in scenario P1. u (p) is
decreased and v (p) is increased in all consistent parameter sets.

pool (i.e. proliferative potential) increases only marginally in the
polyclonal situation if the specific affinity of the preleukemic cells
s(p) is increased. In contrast, in scenario P10 and P100, the fit-
ness of the preleukemic cell population in the polyclonal situation
responds more sensitively to an increase of the specific affinity
of the preleukemic cells due the greater TCR diversity within the
preleukemic cell population. Because of that, the preleukemic cells
cannot be controlled by healthy competitor cells in the polyclonal
situation, even if the specific affinity is only mildly increased,
rendering such parameter sets inconsistent.

The unspecific affinity of the preleukemic cells is decreased
in all consistent parameter sets (i.e. u(p)< u(h)). This reduc-
tion generates a disadvantage of preleukemic species for accessing
resources from non-preferred niches, thus prohibiting a dominat-
ing expansion. Nonetheless, the preleukemic species must have at
least some residual unspecific affinity in order to generate results
that are consistent with the experimental situation. Specifically,
the residual unspecific affinity allows them to access resources
from the unprotected niches in the monoclonal situation. With-
out this ability, these cells cannot outgrow the healthy species in
this situation. When comparing the decrease of the specific and the

unspecific affinity of the preleukemic cells (u(p)), it stands out that
in scenarios P10 and P100, the specific affinity of the preleukemic
cells (s(p)) is decreased to a greater degree than the unspecific affin-
ity (u(p)) in all consistent parameter sets. In contrast, the decrease
of the specific affinity of preleukemic cells (s(p)) is greater than
their decrease in unspecific affinity (u(p)) in only ≈30% of the
consistent parameter sets in scenario P1. Hence, if only a single
preleukemic cell is present initially, the ability to receive a stimu-
lus due to interaction with cognate self-peptide may be preserved
or even increased, while in the situation of many initially present
preleukemic cells the simulation results are not consistent with the
experimental phenomena.

Furthermore, our simulations demonstrate that there is a rather
strict functional relation between the unspecific affinity of the
preleukemic cells (u(p)) and their resource utilization efficiency
(v(p)) for all consistent parameters (see Figure 6). In other words,
a certain acquired growth advantage, which is mediated by an
increase in resource utilization (v(p)), requires a corresponding
decrease in the unspecific affinity (u(p)) to guarantee consistency.
Interestingly, the stringency of this relation depends crucially on
the specific affinity of the healthy cells (s(h)). To illustrate this
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FIGURE 6 | Relation between resource utilization efficiency v (p) and
unspecific affinity u(p) in the consistent parameter sets. Here, the
fold-changes of the unspecific affinities of the preleukemic cells u (t ) in the
consistent parameter sets is plotted against their resource utilization

efficiencies v (t ). The relation between these quantities is relatively strict. All
points are contained between two parallel lines. In this plot, we show
additional simulation results, in which also the specific affinity of the healthy
cells s(h) is varied.

relationship, we tested the system behavior also for s(h)
= 0.2 and

s(h)
= 5 in addition to the value s(h)

= 1 used so far. Although vary-
ing values of s(h) do not qualitatively change the system behavior,
the size of the consistent parameter region, i.e. the number of con-
sistent parameter sets, is affected considerably by the particular
choice of s(h): it is larger for s(h)

= 5 and smaller for s(h)
= 0.2.

This can be seen in Figure 6, which illustrates the relationship for
different values of s(h).

Interpreting the specific affinity as affinity to cognate self-
peptide, and the unspecific affinity as affinity to the MHC itself,
the ratio of the specific and the unspecific affinity of the healthy
cells (i.e. s(h)/u(h)) determines how strict the regulation exerted
by the self-peptide defined niches is. If the ratio is large, the niche
regulation is strict, i.e. T cells can hardly access resources from
niches other than their preferred niche. If the ratio is small, T cells
can acquire more resources from niches other than their preferred
niche. Our simulation results indicate that the stronger the niche
regulation (i.e. a larger s(h)), the larger is the consistent parameter
region, and hence the more robust are the modeling results and
the biological behavior of the system.

4. DISCUSSION
Oncogenesis in mature T cells and especially the resistance to
malignant transformation of these cells even in potent oncogenic
transformation assays have raised substantial interest in these cell
populations. In a series of experiments, it has been shown that
the resistance of mature T cells depends on the diversity of the
TCR repertoire. Specifically, MTCLLs could readily be induced
in T-cell populations that are quasi-monoclonal with respect to
their TCR, while oncogenesis occurred only in rare cases in the
TCR polyclonal situation, despite identical experimental condi-
tions (20, 21). This observation led to the hypothesis that in the
polyclonal situation, regulation based on competition for survival

stimuli mediated by interaction between TCRs and spMHCs on
APCs can prevent the expansion of preleukemic cells. Further-
more, the hypothesis implies that this regulation fails in the
quasi-monoclonal situation,and the preleukemic cells expand,and
eventually give rise to overt malignancy.

We have developed and applied a mathematical model of T-cell
homeostasis to qualitatively and quantitatively challenge this con-
cept. In the model, mature T cells compete for resources that are
provided by T-cell niches. Biologically, the resources correspond to
survival stimuli from APCs due to interactions between spMHCs
and the TCR. The different T-cell niches are defined by the dif-
ferent spMHCs found on APCs. Due to differential affinities of
different TCRs to spMHCs, T cells may differ in their capability to
acquire resources from a particular niche.

Within this modeling framework we systematically evaluated
the effect of the model parameters. For each specific parameter set,
we tested if it is consistent with the observed phenomena according
to the criteria in Table 1.

In order to achieve consistency with the criteria, the niche affini-
ties of the preleukemic cells had to be decreased (i.e. s(p)< s(h)

and u(p)< u(h), while their resource utilization efficiency had to
be increased (i.e. v(p)> v(h)). Biologically, this suggests that the
preleukemic cells are less dependent on niche resources (decreased
affinities). In particular, our results predict a stronger decrease of
the specific affinity of the preleukemic cells (s(p)) compared to the
unspecific affinity (u(p)).

This implies that in the presence of healthy competitor cells
with preference for the same niche, the preleukemic cells can be
outcompeted. In the polyclonal situation this preventive effect
acts on almost all niches, thus keeping the preleukemic cells at
a minimum or even making them disappear.

In contrast, in the monoclonal situation the vast majority of
niches is unguarded by healthy cells, and their resources can,
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therefore, be accessed by the preleukemic cells due to their albeit
small, but non-zero unspecific affinity (u(p)). In this situation, the
decrease in the affinities can be compensated by the increase of
the resource utilization efficiency of the preleukemic cells (v(p)).
Metaphorically speaking, the polyclonal healthy competitor cells
protect the niche resources against the aggressive preleukemic cells
in the polyclonal situation. If the polyclonal guards in the form
of healthy competitor cells are not present, the preleukemic cells
are able to claim all or most of the niche resources and promote
MTCLL occurrence.

Transferring our findings back into a mechanistic context,
we speculate that the decreased model affinities correspond to
a down-regulation of TCR-mediated regulations and/or impair-
ment of intracellular TCR signaling, i.e. a reduced T-cell avidity
(25). A more efficient utilization of these signals (i.e. an increase in
v(p)) can be interpreted as a partial independence of preleukemic
cells from environment-mediated growth signals, or as failure
to respond adequately to inhibitory signals. On an intracellu-
lar level this independence might be achieved by a constitutive
up-regulation of growth-promoting pathways.

In order to describe the T-cell system, and in particular the
experiments performed by Newrzela et al. in mathematical terms
we made a number of simplifying assumptions. It is a long-
standing notion that oncogenesis often develops in a multi-step
process (26). Also, in the context of gene therapy, it has been
described that oncogenesis may occur directly (single hit induc-
tion), or may require additional lesions (cooperating hit induction)
(27, 28). In our simulation scenario, however, we consider the
effect of a first but fully effective hit only, i.e. we assume a virtually
instantaneous effect of the oncogene affecting all preleukemic cells
after transduction. In principle, it would be possible to incorporate
cooperating hits into our model that are subsequently acquired
after transplantation. We refrained from doing so, since only pre-
liminary experimental data on tumor evolution in the context of
the phenomena in focus are available to date.

Similarly, we did not account for heterogeneity concerning the
effect of the oncogene, i.e. all cells belonging to the preleukemic
cell compartment are assigned the same functional alteration in
the model. Also, it is not clear, if our model adequately describes
the emergence of preleukemic cells on an individual clone level.
Hopefully, such individual clone data will be available in the future,
so that we will be able to validate our model in this regard.

In order to make numeric simulations feasible, we considered
a system with only 100 niches and 100 T-cell clones in the poly-
clonal situation. This is several orders of magnitude below the
estimated TCR diversity in mice, and the estimated number of
self-peptides that can be presented per allele [∼105 Ref. (13)].
However, there is significant cross-reactivity (i.e. presence of TCRs
that may recognize more than one spMHC) in the T-cell system
(29), so that the number of functionally relevant, distinct niches
may be considerably lower. Being well aware of these simplifica-
tions, we consider the proposed system dimensions as sufficient in
order to capture the general niche-based structure of the mature
T-cell system.

Although we successfully demonstrated that suppression of
preleukemic T cells due to TCR-related regulation in the polyclonal
situation can consistently explain the experimental observations,

we are aware that alternative explanations could also account for
the observed phenomena. Definitive proof or disproof of the niche
regulation hypothesis will require further experimental work.

Therefore, our conceptual understanding of T-cell oncogen-
esis will be challenged in further experiments. Specifically, we
suggest to compare the phenotype of the leukemic/preleukemic
cells with the phenotype of the healthy competitors regarding,
e.g. their gene expression profile, their activation of relevant sig-
naling pathways and their functional properties (30). This will
allow assessing whether our assertions about the properties of the
preleukemic cells (i.e. down-regulation of the TCR/TCR signaling
and up-regulation of growth-promoting pathways) are correct.
Our modeling results predict that there is a minimum clonal
diversity that is needed in order to control preleukemic T cells
as produced in the previous experiments. Further transplantation
experiments are planned to determine the minimum TCR diversity
in clonality titration experiments.

All simulations presented in this publication start with a
hypocellular condition. However, additional simulations (data not
shown) demonstrated that the model results are generally not
dependent on the initial abundance of a species, as long as it is
present at all. Therefore, our results apply also to leukemogen-
esis with physiological onset conditions as it occurs in clinical
settings. The situation in which the malignancy develops from a
single mutated cell (as can be expected for the majority of patients)
corresponds to the presented scenario P1.

Central to this work is our assumption that the abundances
of individual TCR-defined clones are regulated on a per-clone
basis due to interactions with spMHCs. However, many aspects
of the insinuated regulation are elusive to date. This is at least
partially due to the fact that in the in vivo situation, accurate and
precise time-dependent quantification of individual TCR-defined
clones with abundances in the physiological range is technolog-
ically challenging, if not impossible, to date. Nonetheless, such
a concept is intellectually appealing, and seems plausible on a
mechanistic level. We hypothesize that this regulation is (at least
in part) responsible for the relatively low incidence of mature
T-cell malignancies relative to mature B-cell malignancies. This
hypothesis would imply less effective control mechanisms in the
mature B-cell system, which might be caused by the fact that clonal
homeostasis in the mature B-cell system is presumably more com-
plex than in the T-cell system, due to affinity maturation of the
B-cell receptor, and ongoing influx of newly generated mature
B-cell clones from the bone marrow. These complicating factors
may undermine the effectiveness of the leukemia control mecha-
nisms proposed for the mature T-cell system in the mature B-cell
system.

So far in this publication, the unspecific affinities u(h) and u(p)

are interpreted in terms of TCR affinity for the MHC molecule
itself. However, these unspecific affinities could also represent the
reliance of T-cell survival on survival cytokines, e.g. interleukin 7.
Further studies could aim to disentangle these two potential com-
ponents of the unspecific affinity. To do so, the use of mouse
models with a restricted MHC repertoire might be useful.

As exemplified in this paper, mathematical modeling
approaches allow for the quantitative assessment of functional
principles of T-cell interactions, their integration into a consistent
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conceptual framework and the derivation of testable hypotheses.
Our results add a new puzzle piece to the complex picture of
mature T-cell homeostasis. The hypothesis that regulation based
on TCR-defined clonal membership suppresses MTCLL emer-
gence may serve as a novel starting point to delve deeper into
the mechanisms governing the homeostatic behavior of mature
T cells.

Our modeling results prompt further experimental research to
clarify the nature of the differential transformability of mature
T cells. Moreover, our work demonstrates the general ability of
theoretical approaches to formalize and conceptually validate the
results of experimental research and promotes the idea of an
iterative, interdisciplinary approach to research in immunology.
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Cytotoxic T-lymphocytes (CTLs) recognize viral protein fragments displayed by major his-
tocompatibility complex molecules on the surface of virally infected cells and generate an
anti-viral response that can kill the infected cells. Virus variants whose protein fragments
are not efficiently presented on infected cells or whose fragments are presented but not
recognized by CTLs therefore have a competitive advantage and spread rapidly through the
population. We present a method that allows a more robust estimation of these escape
rates from serially sampled sequence data.The proposed method accounts for competition
between multiple escapes by explicitly modeling the accumulation of escape mutations
and the stochastic effects of rare multiple mutants. Applying our method to serially sam-
pled HIV sequence data, we estimate rates of HIV escape that are substantially larger than
those previously reported. The method can be extended to complex escapes that require
compensatory mutations. We expect our method to be applicable in other contexts such
as cancer evolution where time series data is also available.

Keywords: HIV, CTL escape, cytotoxicT-lymphocytes, HIV evolution, viral dynamics, selection coefficient

INTRODUCTION
During the first few months of HIV infection, the HIV genome
typically undergoes a series of rapid amino acid substitutions that
reduce immune pressure by cytotoxic T-lymphocytes (CTLs); this
process is referred to as CTL escape (1). The substitutions arise
by random mutation and spread through the viral population
by impairing either the presentation of viral epitopes on the cell
surface or the recognition of the viral epitope by T-cell recep-
tors. Avoiding recognition is an obvious benefit to the mutant
virus, but escape mutations can interfere with processes necessary
for virus replication and infection and thereby reduce the virus’
intrinsic fitness (2–5). The rate at which escape variants displace
the founder sequences depends on both “avoided killing” and the
fitness cost. To quantify the role of individual CTL clones in con-
trolling the viral population and the fitness costs associated with
escape mutations, one would like to infer the escape rate associ-
ated with the individual mutations from serially sampled sequence
data (4, 6).

With a single escape mutation and dense, deeply sampled data,
the escape rate can simply be estimated by fitting a logistic curve
to the time course of the mutation’s frequency (4, 6). The logis-
tic curve has two parameters: the growth or escape rate and the
frequency at the initial time point. In many cases, however, the
data obtained from infected patients are scarce, and estimating
two parameters reliably from the data is not possible since one
needs at least two time points at which the mutation is at interme-
diate frequency between 0 and 1 (4). Figure 1 shows an example
of such time series sequence data from CTL escape during early
HIV infection. Time points are far apart and the sampling depth
is low. Furthermore, it is not the case that only a single escape
mutation is observed; rather, several mutations rapidly emerge in

different places in the viral genome (7, 8). Multiple escapes imply
immune pressure on many epitopes. Since the viral population and
its mutation rate are large (9, 10), these different escape mutations
will arise almost simultaneously. Initially, these escape mutations
exist in the population as single mutant genomes until they are
combined into multiple mutants by recurrent mutation or recom-
bination (11, 12). The competition between viral variants affects
the trajectories of individual escape mutations, so estimating their
intrinsic growth rate by logistic fitting is not accurate. This com-
petition is known as “clonal interference” in population genetics.
The degree of competition between genotypes depends on the
population size, the mutation rate, and the recombination rate in
HIV populations. The latter-most is rather low (13, 14), and two
strongly selected mutations in a large population are more likely to
be combined by additional de novo mutation than recombination
with another rare single mutation.

Here, we develop a strategy for inference that allows one to
obtain robust escape rate estimates from the scarce data typi-
cal of studies of CTL escape. The inference is based on explicit
modeling of the process of mutation accumulation in the founder
sequence. Thereby, we exploit constraints imposed by the under-
lying dynamics of mutation and selection in the high dimensional
space of possible genotypes.

Despite the large number of possible genomes that can be
formed from different combinations of escape mutations, we typ-
ically observe one or two dominant genotypes at a time – at least
during the first few months of the infection. Furthermore, these
genotypes dominate only transiently and are quickly displaced
by genotypes with an even greater number of escape mutations;
see Figure 1. These observations agree with results from ref.
(15), where a model of acute HIV infection was used to show
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A B

FIGURE 1 | Escape fromT-cell mediated immunity. The virus
population in patient CH58 quickly acquires four substitutions. (A)
shows a sketch of genotypes at the first 4 escape mutations, observed

at different times; see (7, 8) for the actual data. (B) shows the
frequencies of the mutations in samples of size 7 at day 9 and size 9 at
days 45 and 85.

that strongly selected escape mutations fix sequentially. Note that
we don’t assume a particular sequence of dominant genotypes
a priori. Instead, we observe a sequence of dominant genotypes
and try to infer the evolutionary scenario that most likely gave
rise to this sequence of genotypes. While we model only these
genotypes, many minor variants certainly exist. But only those
dominant variants that are likely to give rise to the future pop-
ulations need to be modeled accurately. Later in infection, the
viral population is very diverse and cannot be analyzed using our
method.

Given a data set from early infection, it is typically straight-
forward to define a series of dominant genotypes that likely
have arisen through step-wise accumulation of mutations. Note
that most likely all escape mutations constantly arise in different
combinations, but typically only one combination rises quickly
enough to dominate the population. This dominant genotype
is then in most cases the source for the next dominant geno-
type. Later in infection, however, recombination is sufficiently
frequent that no dominant genotype exists and mutations can
spread simultaneously.

In Ganusov et al. (11), a framework for multi-locus modeling
of CTL escape is presented. Building on this framework, we explic-
itly model the transition from one dominant genotype to another,
which is a good approximation of the dynamics for rapid CTL
escape in acute infection. The restriction to dominant genotypes
captures the interference between escapes at different epitopes
while avoiding the need to solve the full multi-locus problem.

We will first define a model of the dynamics of escape muta-
tions. This model serves a twofold purpose: it defines the para-
meters we would like to estimate from the data and provides
us with a computational tool to investigate how the accuracy of
the inference depends on sampling depth and frequency, as well
as how sensitively it depends on the values of parameters such
as mutation rates or the population size. We reanalyze existing
CTL escape data and find that accounting for multi-locus effects
in a finite population results in higher estimates of the escape
rates.

RESULTS
MODEL
In the majority of sexually transmitted HIV infections, a single
“transmitted/founder” virus initiates the new infection resulting
in an initially homogeneous viral population (8, 16). However, as
HIV replicates in its new host, mutations accumulate. Mutations
within or in proximity to CTL epitopes can reduce immune pres-
sure by facilitating the avoidance of CTL recognition. While one
often observes several escape mutations within a single epitope (17,
18), we do not differentiate between different mutations within the
same epitope and model L epitopes that can be either be mutant
or wild-type. Assuming that the escape at multiple epitopes has
additive effects, εj, the growth rate (birth rate minus death rate) of
a genotype is given by

F
(
g , t
)
= F0 (t )+

∑
i

εi si (1)

where g = {s1, . . ., sL} specifies the genotype. Here, si= 0 corre-
sponds to a wild-type epitope at locus i, whereas si= 1 signifies
escape at that epitope. F 0(t ) accounts for a genotype independent
modulation of the growth rate. The latter could, for example, be
due to variable numbers of target cells (19, 20). F 0(t ) controls the
total population size, while the differences between genotypes are
accounted for by

∑
i

εi si and result in differential amplification of

some genotypes over others. The εi are the escape rates that we
would like to estimate from the data and should be interpreted
as the net effect of avoided killing and the possible fitness costs
associated with the mutation; see e.g., Ganusov et al. (11). The
fitness costs are modulated by the overall growth rate of the viral
population and could therefore be slightly time dependent. We
neglect this complication. Within our model, mutations arise at a
rate µ per base per generation. This rate can be epitope dependent.
Motivated by the frequent template switching of HIV reverse tran-
scriptase (21), our general model of the HIV population includes
recombination, which is assumed to occur with rate r. In the event
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of recombination, all L epitopes are reassorted, but an explicit
genetic map could be implemented as well.

We implemented our model as a computer simulation in
Python using the population genetic library FFPopSim (22). The
simulation stores the population n(g, t ) of each of the 2L pos-
sible genotypes. In each generation, the expected changes of the
n(g, t ) due to mutation, selection, and recombination are calcu-
lated. The population of the next generation is then sampled from
the expected genotype frequencies γ(g, t )= n(g, t )/N. The size of
the population, N, can be set at will each generation. In this way,
up to 15 epitopes can be simulated for 1000 generations within
seconds to minutes.

A typical realization of the population dynamics is shown in
Figure 2, where we have assumed a generation time of 1 day. As
expected, the population is dominated by one genotype at a time.
Furthermore, the mutations accumulate in decreasing order of
escape rate, and the new dominant genotype arises from the pre-
vious by incorporation of the mutation with the largest escape rate
available. There are, however, many minority genotypes which are
rarely observed. Figure 2C shows the frequencies on a logarithmic
scale, where the minor variants are visible. We use these simula-
tions to test the accuracy and robustness of the inference procedure
developed below.

Of the many possible genotypes that are present at any moment,
only a small fraction is likely to be observed in a small sample
and to be relevant in the future. Simulations and data suggest
that the dominant genotypes accumulate mutations one by one –
this greatly simplifies the task of estimating escape rates from the
data. Instead of considering the dynamics of all possible genotypes
(2L), we will restrict the inference to a chain of genotypes, each
containing one additional mutation compared to its predecessor.

The best estimate for the HIV generation time is d = 2 days
(23), while estimates of escape rates are typically given in units of
inverse days rather than generations. For simplicity, we simulate
our model assuming one generation per day and state all rates
in units of 1/day. Our results are insensitive to the choice of the
generation time. Doubling the generation time has similar effects

to dividing the population size by 2, as this keeps the strength of
genetic drift constant.

INFERRING THE ESCAPE RATES
Suppose we have obtained sequence samples of size ni at differ-
ent time points ti and each of these samples consists of different
genotypes g present in k(g, ti) copies. If the actual frequencies of
those genotypes at different times are γ(g, ti), the probability of
obtaining the sample at ti is given by the multinomial distribution

P
(
sample

)
=

ni !∏
g

k
(
g , ti

)
!

∏
g

γ
(
g , ti

)k(g ,ti) (2)

If the underlying dynamics was deterministic, the frequencies
γ(g, t ) would be unique functions of the model parameters we
want to estimate. In that case we could use Bayes’ theorem, choose
suitable priors, and determine the posterior distribution of the
parameter values. However, both the model and the actual viral
dynamics are stochastic, and“replaying”the history would result in
different trajectories. Furthermore, most of the 2L possible geno-
types remain unobserved. This leaves us with the choice of either
some type of approximate Bayesian computation that compares
repeated simulations of the model with appropriate summary
statistics (24) or a reduced description of only the observed geno-
types, with the stochasticity captured by nuisance parameters
(25).

We opt for the latter and model only those genotypes that dom-
inate the population. We label these genotypes by the number of
escape mutations they carry, e.g., g 1 carries the first escape muta-
tions, g 2 the first and the second, and so forth. The frequency of a
genotype is affected by stochastic forces only while it is very rare.
If the genotype is favored, it will rapidly rise to high frequency,
and the stochastic effects will no longer be relevant. It is therefore
convenient to summarize the stochastic behavior by the time, τ, at
which its frequency crosses the threshold to essentially determin-
istic dynamics. Since the dynamics is deterministic after this “seed

A B C

FIGURE 2 | Example of simulated escape mutations spreading
through the population. (A) Even though all epitopes are targeted from
t =0, escape mutations spread sequentially. The mutation frequency in a
sample of size 20 at different time points is indicated by colored dots. (B)
The rising mutation frequencies are associated with the rise and fall of
multi-locus genotypes. The founder virus is first replaced by a dominant
single mutant, which itself is replaced by a double mutant and so forth.

Note, however, that the virus population explores many combinations of
mutations but that these minor variants never reach appreciable
frequency. This is best seen in (C), where all 32 genotype frequencies are
shown on a logarithmic scale. These rare variants are rarely sampled, and
their noisy dynamics suggests that little information can be gained from
them. Here, N =107, µ=10−5, and r =0, and escape rates are εj =0.5, 0.4,
0.25, 0.15, 0.08 per day.
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time,” all the (unobserved) stochasticity can be accounted for by
an appropriate choice of the seed time (26, 27). For each of the
dominant escape variants, gj, with j = 1 to j = L escaped epitopes,
we define a seed time τj to accommodate the stochastic aspects of
the escape dynamics.

After crossing the deterministic threshold, the population
frequencies of the dominant genotypes evolve according to

γ̇j (t ) = F
(
gj , t

)
γj (t )+ µ

[
γj−1 (t )− γj (t )

]
(3)

if t > τj. Conversely, γj(t )= 0 for t < τj. The growth rate F(gj, t )
of genotype j is the sum of the escape rates εk of the epitopes
k = 1, . . ., j and the density regulating part F 0(t ); compare to
equation (1). The escape rates are what we would like to estimate.
The seed time, τj, corresponds to the time at which a genotype
with all escape mutations up to mutation j first establishes1. At the
seed time, we initialize the genotype frequency at γj(τj)=N−1.
If seed times are chosen appropriately, this model provides a very
accurate description of the frequency dynamics of the dominant
genotypes in the full stochastic model; see Figure 3.

At face value, the deterministic model has two parameters per
epitope – one escape rate and one seed time. The seed times,
however, are quite strongly constrained by basic facts of the evolu-
tionary dynamics. The genotype gj carrying mutations i= 1, . . ., j
arises with rate µN (t )γj − 1(t ) from the genotype gj − 1 carrying
only j − 1 mutations. This means it is unlikely that genotype j
arises early while γj − 1(t ) is still very small. However, once the
previous genotype j − 1 is common, genotype j is produced fre-
quently. The distribution of the time at which the first copy of
genotype j arises is given by the product of the rate of production
and the probability that it has not yet been produced. The latter is
the negative exponential of the integral of the production rate up
to this point. Hence, the distribution of the seed time τj, given the
trajectory of the previous genotype γj − 1, is given by

Q(τj |γj−1(t )) ≈ µN (τj)γj−1(τj)e−µ
∫ τj

0 N (t )γj−1(t ) dt . (4)

Since the γj(t ) are uniquely specified by {τk, εk}k = 1, . . ., L, we
can write the posterior probability of the parameters as

P
({

εj , τj
})
∝

∏
i

P
(
samplei |Θ

)∏
j

Q
(
τj |Θ

)
U
(
εj
)

, (5)

where Θ= {εk, τk}k = 1. . .L and U (εj) is our prior on the escape
rates. We employ a Laplace prior U (ε)= exp(−Φε) parameter-
ized by Φ favoring small escape rates. The prior regularizes the
search for the minimum and results in conservative estimates of
escape rates.

OBTAINING MAXIMUM LIKELIHOOD ESTIMATES
Finding the set of escape rates and seed times that maximizes
the posterior probability can be difficult due to multiple maxima

1There is a brief period after the initial production of the mutation during which
the dynamics is stochastic and the initial mutant establishes only with a probability
roughly equal to εd, where d = 2 days is the generation time (23). However, we find
εd ≈ 1 and ignore this complication.

FIGURE 3 |The deterministic model parameterized by seed times τj for
the L dominant genotypes and the escape rates of epitopes εi (solid
lines) captures the dynamics of the stochastic model accurately
(dashed lines). The trajectories (and seed times) vary from run to run. In
this run, N =107, µ=10−5, and r =0 and the escape rates are εj =0.5, 0.4,
0.25, 0.15, 0.08 per day.

and ridges in the high dimensional search space, and uncertainty
remains. To ensure that the global optimum will be reliably dis-
covered, we exploit the sequential nature of the dynamics and use
the fact that earlier escapes strongly affect the timing of the later
ones, but not vice versa. Thus adding genotypes with an increas-
ing number of mutations one at a time results in a reasonable
initial guess on top of which a global true multi-locus search can
be performed.

We have implemented such a search in Python, and the com-
putationally expensive calculation of the posterior probability is
implemented in C. The code infers parameters as follows:

• Fit the first escape assuming τ1= 0 by a simple one dimensional
minimization. This assumes that single mutants are already
present in the population, consistent with the large viral popu-
lation size present by the time a patient has been identified as
HIV-1 infected (28, 29).

• Add additional epitopes successively by mapping the entire two-
dimensional posterior distribution P(εj, τj) at fixed {εk, τk} for
k < j. This step is illustrated in Figure 4A.

• Refine the estimates through local optimization via gradient
descent, Monte Carlo methods, or local exhaustive search. The
resulting parameters and trajectories are shown for one example
in Figure 4B.

• Generate posterior distributions by Markov chain Monte Carlo
(MCMC).

This procedure is described in more detail in the Section
“Materials and Methods.” Fitting five epitopes takes on the order
of a minute on one 2011 desktop machine (Apple iMac i7
2.93 GHz). Generating the local posterior distribution by MCMC
takes roughly 20 min for 106 steps.

COMPARISON TO SIMULATED DATA
To evaluate the accuracy and reliability of our inference scheme,
we performed true multi-locus stochastic simulations using
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FIGURE 4 | Adding epitopes one by one is a feasible and reliable
fitting strategy. Assuming we know the population was homogeneous at
t =0, there is only one free parameter for the first epitope, which is easily
determined. For all subsequent epitopes, we need to determine the seed
time τj and the escape rate εj. In (A), the negative log posterior probability
of these parameters is shown for each of the epitopes. The surface
typically exhibits a single minimum. (B) shows the genotype frequencies

of the founder virus and the dominant escape variants (solid lines: model
fit, dashed lines: actual simulated trajectories). The estimated escape rates
of individual epitopes and the seed times of genotypes containing all
escape mutations up to j are given in the legend. Only the samples
indicated by balls (20 sequences at each time point) were used for the
estimation. In this run, N =107, µ=10−5, r =0, and the escape rates
εj =0.5, 0.4, 0.25, 0.15, 0.08 per day.

FFPopSim (see Materials and Methods) and sampled genotypes
from the simulation at a small number of time points. Time
points and sample sizes were chosen to mimic patient data. We
then inferred parameters from this “toy” data set and compared
the result to the actual values. When interpreting these compar-
isons, it is important to distinguish two sources of error. First,
limited sample size and sampling frequency will incur errors due
to inaccurate estimates of the actual genotype frequencies from
the sample. The second source of uncertainty is an inappropriate
choice of model or model parameters. Such inappropriate model
choices might include wrong estimates of the population size or
mutation rates, the presence or absence of recombination, or time
variable CTL activity.

We generate data assuming escape rates εj= 0.5, 0.4, 0.25, 0.15,
0.08 per day and sample the population on days ti= 0, 20, 40,
60, 120, 250. An example of such samples is shown in Figure 2.
Note that each genotype is typically only sampled at a single data
point; it easily happens that a genotype is hardly seen at all. We
therefore expect all inferences to be quite noisy as is the case with
patient data.

Sample size and sampling frequency dependence
With more frequent and deeper sampling, inferring the model
parameters is expected to become simpler. Indeed, as soon as
each genotype is sampled more than once at intermediate fre-
quency, one can estimate its growth advantage simply from its
rate of increase. This is the rationale behind previous studies
such as (4, 6). In many data sets, however, this condition is
not met. By constraining the seed time based on the evolu-
tionary trajectory of the previous escape, our method is able
to produce a more accurate reconstruction of parameters with
less data.

Figure 5 shows the estimates obtained as a function of the
sampling frequency and sample size. Increasing the sample size
improves the estimates only moderately, whereas increasing the
sampling frequency leads to substantial improvements.

A B

FIGURE 5 |The dependence of the accuracy of inference on sample
sizes (A) and sampling intervals (B). The actual normalized escape rate is
1.0 and is shown by the dashed line. Sample size only moderately affects
the accuracy, while sparse sampling (every 40 days in this example) leads to
serious loss of accuracy. Sample size is n=20 when sample intervals are
varied, and sampling times are as illustrated in Figure 2 when sample size
is varied. The plots show the mean±one standard deviation. The actual
values of the escape rates simulated are shown in the legend (same on
both panels). In each run, N =107, µ=10−5, and r =0. Mean and standard
deviation at each point are calculated from 100 independent simulations.

Model deviations
The population size and the mutation rate explicitly enter our
model through the seed time prior, but we rarely know these
numbers accurately. Hence we need to understand how inaccurate
assumptions affect our estimates. If we assume that Nµ is larger
than it really is, our inference method will favor seeding subse-
quent genotypes too early, which in turn results in erroneously
small estimates of escape rates. We varied N and µ and observed
the expected effect on the estimates as shown in Figure 6. The
dependence on µ is stronger than that on N, since the effect of a
larger population size is partly canceled by the longer time nec-
essary to amplify the novel mutation to macroscopic numbers.
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A B C

D E F

FIGURE 6 |The effect of assuming the wrong population parameters
on the escape rate estimates. To quantify the robustness against wrong
assumptions, we simulate escape dynamics with parameters different
from those assumed in the escape rate estimation. (A–C) show
simulations with N = 107 and µ=10−5 per day, while (D–F) use a 10-fold
higher mutation rate µ=10−4. In (C,F), the simulated recombination rate
varies as shown. (A,D) Assuming a too small population size results in
estimates that are too large. The effect is more pronounced at lower
mutations rates. (B) Similarly, if the mutation rate is assumed too large,
the estimated seeding of multiple mutants occurs too early and the

estimates of escape rates are too low. Note that assuming the correct
rates [µ=10−5 in (B) and µ=10−4 in (F)] results in unbiased estimates.
(C,F) If the population recombines, the actual seed times are smaller than
those estimated by the fitting routine. To compensate for the shorter time
interval during which the escape variant rises, the estimates of escape
rates are larger than the actual escape rates, at least at low mutation rates.
For high mutation rates, recombination is less important because
additional mutations are more efficient at producing multiple mutants than
recombination. Mean and standard deviation at each point are calculated
from 100 independent simulations.

However, even the dependence on µ is rather weak, and chang-
ing µ 10-fold only changes estimates of escape rates by ±50%.
The underlying reason is that the seed times depend primarily
on the logarithm of Nµ·Q(τj|γj-1(t )) (see equation (4)), which
peaks when Nµγj − 1(t )≈ 1. Because γj-1(t ) is growing exponen-
tially, the position of the peak changes only logarithmically with
the prefactor Nµ. Changes in µ also affect the dynamics through
the initial rise in frequency of novel genotypes due to recurrent
mutations; see equation (3).

Another factor that affects seed times is recombination. HIV
recombines via template switching following the coinfection of
one target cell by several virus particles (21). In chronic infection,
coinfection occurs with a frequency of about 1% (13, 14). Recom-
bination is not modeled in the seed time prior of our inference

method but can speed up escape by combining escape mutations
at different epitopes. As a result, if recombination is present, seed-
ing tends to happen earlier than our prior would suggest. If the
model assumes that seeding occurs later than in reality, there is less
time for an escape variant to grow to its observed frequency. Hence
the estimated escape rate (growth rate) is larger than the actual
escape rate to compensate for the shorter time. In Figure 6, we
compare the estimates obtained by applying our inference method
to simulation data with recombination. Recombination starts to
have substantial effects once coinfection exceeds a few percent.
Recombination primarily affects the incorporation of more weakly
selected mutations and can be ignored for very strongly selected
CTL escape mutations. Recombination also has negligible effects
if the mutation rate is large as is seen in Figure 6F.
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Unobserved intermediates and compensatory mutations
The time intervals between successive samples are sometimes too
large to observe the accumulation of single mutations, so the domi-
nant genotype at one time point differs by more than one mutation
from the previous. This can arise for two reasons. First, one or
several unobserved genotypes may have transiently been at high
frequency but been out-competed by later genotypes before the
next sample was taken. Second, one escape might have required
more than one mutation, for example because single mutants are
not viable and a compensatory mutation is needed (30). Both sce-
narios can be accounted for in our scheme and are illustrated in
Figure 7.

Unobserved, but individually beneficial, intermediate geno-
types can be included by assuming they all have the same escape
rate and were seeded one from the other. There is not sufficient
information to estimate more than an average escape rate for all of
them. For a given set of sampled frequencies, the estimated escape
rates increase as more and more intermediates are assumed. Such
unobserved intermediates are common in the data from infected
individuals analyzed below.

Compensatory mutations and “multiple-hit” escapes can be
accounted for by replacing the single site mutation rate in equa-
tion (4) by the effective rate at which the viable escape mutant
appears. In the simplest case where all intermediate states are lethal
and mutations are independent, this rate is simply the probability
µk , where k is the number of mutations needed. In other cases,
the rates to multiple hits can be calculated using branching process
approximations (31, 32). The choice of the relevant effective muta-
tion rate for complex escapes must be made on a case-by-case basis.
The effective mutation rate of a multiple-hit escape will often be
low enough that its seed time is not very well constrained. If, for
example, the population size is N = 108 and the effective mutation
rate is 10−10, the seed time distribution has a width of more than
100 days. Given this weak constraint, more data are required in
order to estimate the escape rate accurately; see Figure 7.

IMMUNE ESCAPE IN HIV-INFECTED PATIENTS
Cytotoxic T-lymphocyte escape was characterized in detail in
the patients CH58, CH40, and CH77 (7, 8) and further ana-
lyzed in Ganusov et al. (4). Sequences were obtained by single
genome amplification followed by traditional sequencing. The
data are sparser and less densely sampled than most of the artificial
examples analyzed above, so any estimates are necessarily rather
imprecise. Furthermore, we do not know exactly when infection
occurred or CTL selection started. The days given in the above
papers are relative to the date of identification of the patient as HIV
infected. It has been estimated that in a chronically infected patient,
there are a total of around 4× 107 infected cells (33). Hence, the
population size is N ≈ 107 but might be larger during peak viremia
or smaller due to bottleneck effects or the myriad of factors influ-
encing patient-to-patient variation in viral load. We determined
posterior distributions for population sizes ranging from N = 105

to N = 108. The mutation rate was set to 10−5 per day (10). This
value is appropriate if only one escape mutation per epitope is
available. If escape can happen in many different ways, a higher
rate of about µ= 10−4 per day should be used, so we repeated
the estimation with µ= 10−4 finding similar results; see below.
Both of these scenarios are observed (18). Recombination in HIV
occurs but is not modeled here because its rate is low (13, 14), and
it is expected to be less relevant for the strong escapes in large pop-
ulations. In large populations, recurrent mutation is often more
effective at accumulating escape mutations than recombination
between two rare variants. Nevertheless, the neglect of recombi-
nation can lead to overestimation of escape rates; see above. Lastly,
we assume that infection occurred τ= 20 days before the patient
was identified and the viral population sampled (7).

For each patient, we initially considered all non-synonymous
mutations that are eventually sampled at high frequency as poten-
tial candidates for sequential escape mutants. Nearby mutations in
the same epitope were combined into one escape. We refined this
list of candidates by considering only time points early in infection

A B

FIGURE 7 | Unobserved intermediates and compensatory mutations.
(A) shows a scenario where the genotype with only 2 escape mutations
(blue) was not observed even though this genotype was transiently at high
frequencies. We fit this scenario by assuming both mutations have the same
escape rate but occur sequentially (N =107, r =0, µ=10−5). (B) shows a
scenario where escape mutations 3 and 4 only occur together and any

genotype containing only one of the two mutations is not viable. Hence the
effective mutation rate into the genotype is µ2

=10−10 and the waiting time
for this genotype is longer. Note that the population size is N =109 in this
example (r =0, µ=10−5). The last escape only appears once the previous
escape mutations have reached frequency one, and the seeding time is quite
variable.
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that were sampled with more than 5 genomes per time point and
only the earliest 3-6 strong escapes. All samples used had between
7 and 15 sequences. The frequencies of these escape mutations
and their linkage into multi-locus genotypes in the 5′ and 3′ half
of the genome, which were sequenced independently, can be easily
determined from the alignment provided in Salazar-Gonzales et
al. (8). Linkage information between the 5′ and 3′ half genomes is
missing but can in all cases be imputed using the assumption of
sequential escapes. We ignored mutations whose frequency does
not increase monotonically such as pol80 in subject CH40. Later
in infection, there is extensive non-synonymous diversity and it is
not feasible to fit a time course for most of these mutations.

In CH40 we considered samples at time points t = 0, 16, 45, 111,
and 181 days and identified escape in six epitopes; the first escape
occurs in nef185, followed by three indistinguishable escapes at
gag113, gag389, and vpr74 and two additional escapes in vif161
and env145. Following Ganusov et al. (4) the number in the epi-
tope name refers to the beginning of the 18-mer peptide covering
the epitope. The mutation at env145 was not analyzed in Ganusov
et al. (4), and 145 is simply the number of the mutated amino
acid in gp120. The indistinguishable escapes gag113, gag389, and
vpr74 are treated as described in the section on unobserved inter-
mediates (all three escapes are assumed to have identical escape
rates and only their seed times are varied). Note that the fifth
escape at epitope vif161 shows almost the same escape pattern
as the three indistinguishable escapes preceding it. The escape
rates of gag113, gag389, vpr74, and vif161 should therefore be
interpreted with care. In CH58 we considered samples at time
points t = 0, 9, 45, and 85 days and identified four escapes; the
first escape is at env581 and the second at env830, followed by
nef105 and gag236. In CH77 we considered samples at time points
t = 0, 14, and 32 days and identified four escapes, namely the
first escape in tat55 and subsequent escapes in env350, nef17,
and nef73.

Given the above assumptions, we obtained estimates for the
seed time and escape rate of each mutation. For each patient, we
obtained initial estimates using a naïve single epitope fit for each
mutation; then, we iterated our multi-epitope fitting model five
times. Next, we obtained posterior distributions for the escape
rates, all shown in Figure 8, by performing a MCMC simulation
using the likelihood function given in equation (5). After obtaining
our estimates, we randomly changed the escape rates in increments
of±0.01 and the seed times by±1, reevaluated the likelihood, and
accepted the change with probability min(1, exp(∆)), where ∆ is
the change in log-likelihood. The resulting Markov chain was run
for 106 steps with samples taken every 1000 steps.

Figure 8 shows the posterior distributions of the escape rates
for different epitopes in the three patients evaluated assuming a
mutation rate µ= 10−5 per day. Larger population sizes result in
smaller estimates of the escape rates, as expected from Figure 6A.
The posterior distributions for the first escapes are often very tight,
but they depend on the time of the onset of CTL selection, which
we have set here to T = 20 days prior to the first sample. If we
assume that the time of the onset of CTL selection coincided with
the first sample (i.e., T = 0), the estimates of escape rates of the
first epitope ε1 are around 0.9, while later escapes are almost not
sensitive to the choice of T.

While the posterior distributions of escape rates of subsequent
escape rates are quite broad, they nevertheless suggest that escape
rates can be substantially higher than previously estimated (4, 6).
Furthermore, the escape rate is not obviously negatively correlated
with the time of emergence during acute infection with HIV-1, at
least for the earliest four to six escapes. The underlying reason for
this is that selection on a late escape is only active after the success-
ful multiple mutant has been produced. In previous single epitope
estimates, selection was allowed to act on the mutant frequency
from the very beginning, resulting in a reduced estimate of the
escape rate. Figure 8 also shows the inferred trajectories for the
most likely parameter combination for patient CH40. One clearly
sees the rapid rise and fall of multiple genotypes between the sec-
ond and third time point. Given the large number of genotypes
involved and the little data available, the escape rates estimated for
this case are rather noisy. But this analysis clearly shows that strong
selection is necessary to bring four mutations to fixation in just a
few weeks. We repeated the analysis of the patient data assuming
a mutation rate of µ= 10−4 and show the results in Figure 9. The
overall picture is similar to what we found for µ= 10−5 per day,
but escape rates tend to be lower.

DISCUSSION
We have suggested a way to infer viral escape rates from time series
data sparsely sampled from the evolutionary dynamics of asexual
or rarely sexual populations such as HIV. We exploit the sequential
manner in which escape mutations accumulate, which allows us
to constrain the times at which new escape mutations arose. These
constraints regularize the inference to a large extent, but addi-
tional stability is gained by prioritizing small escape rates through
an exponential prior.

Escape rates of single escape mutations have so far been esti-
mated by comparing the time series data to a model that assumes
logistic growth of the mutation with a constant rate. This approach
has been used to analyze the intra-patient dynamics of recombi-
nant HIV (34), drug resistance (35, 36), and CTL escape dynamics
(4, 6, 20, 37, 38). While these methods work well if each muta-
tion is sampled multiple times at intermediate frequencies, they
provide very conservative lower bounds when data are sparse.
Furthermore, they ignore the effects of competition between
escapes at different epitopes and assume that each epitope can
be treated independently. Since the recombination frequency in
HIV is low (13, 14, 39), this can be a poor approximation. Our
method improves on previous methods on both of these counts.
We explicitly model the competition between escape mutations.
This competition places constraints on the times at which geno-
types with multiple escapes first arise (double mutants arise only
after the single mutants), which makes the inference more robust
and the lower bound tighter.

A related method to estimate CTL escape rates has been pro-
posed by Leviyang (12), who modeled multiple escape mutations
by an escape graph that is traversed by the viral population.
Combining these two approaches, intra-epitope competition as
modeled in (12) and the between epitope competition studied
here, would be an interesting extension. Similar ideas have been
developed in the context of mutations in cancer or evolution
experiments (40).
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FIGURE 8 |The posterior distribution of the escape rates for different
population sizes. It is assumed that CTL selection starts 20 days prior to the
date of identification, and the fitness prior has weight Φ=10. The black
vertical and horizontal lines indicate the estimates and confidence intervals
obtained in Ganusov et al. (4). Note that the mutation env145 in CH40 was
not analyzed in Ganusov et al. (4). The lower right panel shows the most likely

genotype trajectories for patient CH40 with parameters N =107 and µ= 10−5.
Each curve is labeled by an epitope but should be understood as the
frequency of the genotype that has escaped at this and all previous epitopes.
Note that no data are available to differentiate epitopes gag113, gag389, and
vpr74. For those, we assume an arbitrary order and equal escape rates as
explained in the section on unobserved intermediates.

While previous methods neglect interactions between epitopes
altogether – equivalent to assuming very rapid recombination –
our method ignores recombination during the inference. By com-
parison with simulations that include recombination, we have
shown that neglecting recombination can result in overestimation
of the escape rates by roughly 30% at plausible recombination
rates of 1% (13, 14). We also show that neglecting recombination
is less of a problem at higher mutation rates. Note that neglecting
recombination cannot explain the larger escape estimates com-
pared to previous studies. For patient CH58 we find escape rates
that are up to threefold higher than earlier estimates (4), while we
never see such a large deviation in our sensitivity analysis. Further-
more, the errors made when neglecting recombination for rapid
early escapes are comparable to the uncertainties that result from
infrequent sampling or more severe deviations of the model from
reality, such as time variable CTL activity.

Reanalysis of CTL escape data from HIV using our method
suggests that CTL escapes are substantially more rapid than pre-
viously thought. Even with a large prior against high escape rates
(Φ= 10), we estimate that the escape rates of the first 4–6 escapes
are on the order of 0.3-0.4 per day. The estimates at large pop-
ulation sizes are fairly insensitive to the prior for population
sizes of 106 or larger. Early in infection, it is plausible to assume
that the relevant size is N = 107 (28, 29, 41). If population sizes
are small, relaxing the prior against high escape rates results in
larger estimates, which further supports our finding that escape
rates are often large and competition between escapes needs to
be modeled. Given the sparse data, we can only estimate para-
meters of simple models and have to neglect many complicating
features of HIV biology. Among other factors, the rate at which
escape mutations are selected depends on the overall R0 of the
infection, and CTL selection is probably time variable (4). The
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FIGURE 9 | Posterior distributions of escape rate assuming a mutation rate µ=10−4 per day. See Figure 8 for other details.

estimated parameters therefore represent time averaged effective
escape rates.

The timing of escape has been shown to depend on epitope
entropy and immunodominance (42). However, we modeled only
the first four to six escapes in each patient, from which rather
little information about differential timing can be obtained. In
the case of CH77, the first four escapes occurred within a month
from the identification of the patient. In patient CH58, it took
roughly 3 months for four escapes to spread and the estimated
escape rates are lower as expected. In the case of CH40, four of the
six escapes show almost or completely indistinguishable escape
patterns and we have little power to differentiate the escape rates
at epitopes gag113, gag389, vpr74, and vif161. Hence any meaning-
ful correlation with immunological features and epitope sequence
conservation, i.e., low entropy, requires more data.

The proposed method to analyze multi-locus time series of
adaptive evolution could be useful in many context where the
genotypic compositions of large populations of viruses or cells
can be monitored over time. Whenever mutations occur rapidly
enough that they compete which each other, this competition has

to be accounted for in the analysis. Outside of virus evolution, pos-
sible applications include the development of cancer and microbial
evolution experiments.

MATERIALS AND METHODS
DATA PREPARATION
Our fitting method uses counts kij of genotypes gj at time points ti

to infer escape rates of individual mutations. The procedure used
to obtain successive genotype counts from sequence data sampled
from patients is outlined in the text. As input data, our analy-
sis scripts expect a white-space delimited text file with a format
shown in Table 1. In addition, a separate file with the total num-
ber of sequences at each time point can be provided. This file is
expected to have the same format as the matrix with the genotype
counts; see Table 1. In absence of such a file, the sample sizes at
each time point are obtained by summing the genotype counts.

To test our method, artificial data kij= k(gj, ti) were obtained
from simulated trajectories (generated by FFPopSim) by bino-
mial sampling (with size ni) at specified time points ti.
Trajectory generation and sampling are implemented in the
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Table 1 | Format of input data: the escape mutations are ordered first

by the time of first observation and then by abundance.

Time (days) Founder Env581 Env830 Nef105 Gag236

9 5 2 0 0 0

45 0 0 5 3 0

85 0 0 0 0 8

Each entry in the table in a particular column reports the number of times a

sequence is observed containing the escape of that column and all previous

escape mutations.

file model_fit/ctlutils.py at http://git.tuebingen.mpg.
de/ctlfit; see below.

Sequence data
The HIV sequences for patients CH40, CH58, and CH77 where
downloaded from http://www.hiv.lanl.gov/content/sequence/HIV/
USER_ALIGNMENTS/Salazar.html (8).

INFERENCE
The inference procedure consists of initial guessing, sequential
addition of escapes, multi-dimensional refinement, and estima-
tion of posterior distributions. The implementation can be found
in src/ctl_fit.py, with the C code for the likelihood
calculation in src/cfit.cpp.

Initial guesses
We produce initial guesses by single epitope modeling. The fre-
quency of each escape mutation, νj, grows logistically with the
escape rate (11). We expect that only the frequency of the first
escape mutation is significantly affected by mutational input,
because it receives input from the abundant founder sequence,
whereas the later escapes only receive mutational input from the
previously escaped genotype, which is still rare when the novel
escape arises. Hence we only model the mutational dynamics of
the first escape. In a single epitope model, the frequency of the
founder variant is one minus the frequency of the escape variant.
The frequency of the escape variant increases by µ(1− ν1) per
day due to mutations from the founder and decreases by µν1 due
to further mutations to additional escapes. Combined with the
logistic growth, the dynamics of ν1 is described by

ν̇1 (t ) = ε1ν1 (1− ν1)+ µ [1− 2ν1] . (6)

with initial condition ν1(0)= 0. Note the difference between the
allele frequency ν, which refers to a particular escape mutation, and
γ, which corresponds to frequencies of particular multi-epitope
genotypes. The above ODE has the solution

ν1 (t ) =
1

2ε1

[
ε1 − 2µ+ R tanh

(
α+ t

2
R

)]
(7)

where R =
√

ε2
1 + 4µ2 and α =

4µ−2ε1

4µ2+ε2
1

(11). The escape rate ε1

is determined by maximizing the likelihood (equation (5)) using
fmin from scipy (43).

The seed time τj of subsequent escape mutants gj is determined
by maximizing the seed time prior Q(τj|γj − 1) defined in equa-
tion (4) using the previously determined γj − 1. The frequencies
of mutations are assumed to follow a logistic trajectory since the
genotype from which they receive mutational input is itself still at
low frequency:

νj (t ) =
eεj(t−τj)

eεj(t−τj) + N εj

j > 1. (8)

Again, we maximize the posterior probability, equation (5), to
obtain an initial estimate of εj.

Sequential addition of escapes
Given the initial estimates for the first escape, we now add subse-
quent escapes to the multi-epitope model, which is formulated in
terms of genotype counts kij and frequencies γj(t ). Note that the
interpretation of genotype counts depends on how many epitopes
are modeled. For example, if we model epitopes 1, . . ., j out of a
total of L epitopes, counts for genotype j are kij =

∑L
l=j kil , i.e.,

we ignore all later escapes.
If the added escape is unique, i.e., no other escape mutation has

the exact same temporal pattern, we calculate the likelihood on a
21× 31 grid of escape rates and seed times; comp. Figure 4. The
grid spans values between 0 and twice the initial estimate for both
the seed time and the escape rate. The most likely combination of
seed time and escape rate is chosen, and the procedure is repeated
with the next epitope.

If multiple epitopes exhibit the same temporal pattern, we add
them all at once, constrain their escape rates to be equal, and
assume they emerged in the order listed in the genotype matrix.
Since we now have to optimize one joint escape rate and multi-
ple seed times, we do not map the likelihood surface exhaustively
but rather perform a greedy search. We examine next-neighbor
moves with steps δτ=± 1 day and δε=± 0.02 per day, moves
which change all seed times by δτ, and 20 moves in which all seed
times and escape rates are changed by δτ and δε with random
sign; the step that maximizes the likelihood is accepted. This is
repeated until no favorable move is found and further repeated
with δε=±0.01 and±0.001 per day.

Refinement
We then iterate sequentially over every epitope and optimize its
seed time and escape rate as described above, but with all other
epitopes part of the multi-epitope model. This typically leads to
rather small adjustments and converges rapidly.

Posterior distributions
To determine the posterior distribution of the escape rates, we
attempt to change all seed times and escape rates by δτ=± 1 day
and δε=± 0.01 per day with random sign. The move is accepted
with probability min(1, exp(∆)), where ∆ is the difference in log-
likelihood before and after the change. We sample this Markov
chain every 1000 moves and thereby map the posterior distribution
of seed times and escape rates.

USAGE
All source code and scripts are available at http://git.tuebingen.
mpg.de/ctlfit.
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Building
The part of our method that is implemented in C and the python
bindings can be built using make and the Makefile provided in
the src directory. Prerequisites for building are python2.7,
scipy, numpy, swig, and a gcc compiler.

Fitting
Given a text file with genotype counts specified as shown in Table 1,
fitting is performed by calling the script fit_escapes.pywith
Python. Parameters can be set via command line arguments:

python fit_escapes.py --input datafile (9)

where --input specifies the file with the genotype counts.
Other parameters can be modified in a similar manner. Run-
ning the script with the option --help prints a list of

all parameters. The estimated escape rates and seed times
as well as the sampled posterior distribution will be saved
in the directory fit_escapes_output, unless otherwise
specified.
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The responsiveness of natural killer (NK) cells is controlled by balancing signals from acti-
vating and inhibitory receptors. The most important ligands of inhibitory NK cell receptors
are the highly polymorphic major histocompatibility complex (MHC) class I molecules,
which allow NK cells to screen the cellular health of target cells. Although these inhibitory
receptor–ligand interactions have been well characterized, the ligands for most activating
receptors are still unknown. The mouse cytomegalovirus (MCMV) represents a helpful
model to study NK cell-driven immune responses. Many studies have demonstrated that
CMV infection can be controlled by NK cells via their activating receptors, but the exact
contribution of the different signaling potential (i.e., activating vs. inhibiting) remains puz-
zling. In this study, we have developed a probabilistic model, which predicts the optimal
specificity of inhibitory and activating NK cell receptors needed to offer the best protec-
tion against a CMV-like virus. We confirm our analytical predictions with an agent-based
model of an evolving host population. Our analysis quantifies the degree of protection of
each receptor type, revealing that mixed haplotypes (i.e., haplotypes composed of acti-
vating and inhibiting receptors) are most protective against CMV-like viruses, and that the
protective effect depends on the number of MHC loci per individual.

Keywords: NK cell receptors, evolution, CMV infection, models, theoretical, agent-based modeling

INTRODUCTION
Natural killer (NK) cells contribute to the host immune response
by recognizing and killing viral-infected and tumor cells (1). Their
activity is controlled by balancing signals from a vast repertoire of
activating and inhibiting receptors enabling them to distinguish
healthy from unhealthy cells (2). The most important ligands for
inhibitory NK cell receptors (iNKR) are MHC class I molecules on
other cells. An infected cell may have lower MHC expression, alter-
ing the binding with inhibitory receptors, disrupting the balance
of signals, and allowing for NK cell activation. The mechanism by
which NK cells attack MHC class I deficient cells was coined by
Kärre et al. as “missing-self” detection (3).

There are several NKRs that contribute to missing-self
detection. In humans, for example, the inhibitory receptor
CD96/NKG2A binds to complexes of the human leukocyte
antigen-E (HLA-E), which presents peptides derived from the
leader sequences of HLA-A, -B, and -C molecules (4, 5). Both the
receptor and the ligand are highly conserved in these inhibitory
interactions, and the down-stream effects are remarkably similar
across individuals (6). The killer immunoglobulin-like receptors
(KIRs) also contribute to monitor abnormalities in MHC class I
expression on cell surfaces. In contrast to the CD96/NKG2 super-
family, KIRs are highly polygenic and polymorphic, exhibit both
inhibitory and activating potential, and bind to the highly poly-
morphic HLA-A, -B, and -C molecules (7–9). Consequently, the
interactions between KIRs and classical HLA-class I molecules are
very diverse (10). Thus, humans have two types of NKRs, one
conserved and one highly diverse, performing seemingly the same
function.

Humans are not the only species that have an expanded and
polymorphic NKR gene complex. During mammalian radiation,
many different species have diversified alternative NKR gene fam-
ilies recognizing MHC class I. This example of convergent evolu-
tion includes three gene families from two structurally unrelated
superfamilies: KIRs, the CD94/NKG2, and the Ly49 (11). Higher
primates have expanded their KIR genes (12); a group of lower
primates have expanded NKG2 (13), whereas rodents and equids
have expanded Ly49 (14, 15). These alternative genetic strategies
illustrate the evolutionary complexity of these systems, and sug-
gest that an expanded NKR gene complex is beneficial for survival.
But, if conserved inhibitory receptor–ligand interactions (such
as NKG2A–HLA-E in humans) are capable to successfully detect
missing-self, why have several NKR families evolved to become
polygenic and polymorphic? Even more intriguing, why have they
evolved receptors with activating potential?

In humans, some activating NKRs (aNKRs) are associated with
the disease outcome of viral infections and malignancies (16). For
example, in combination with HLA–Bw4, the activating KIR3DS1
has been associated with a delayed progression to AIDS in HIV-1
infected individuals (17, 18). KIR3DS1 has also been linked to an
increased rate of spontaneous recovery after hepatitis B infections
(19), a reduced risk of developing hepatocellular carcinoma in
patients infected with HCV (20), and a reduced risk of Hodgkin’s
lymphoma (21). Moreover, maternal activating KIRs are related to
protection against several pregnancy disorders (22). But because
only a few ligands for activating KIRs have been identified so
far, the exact mechanisms underlying the provided protection in
humans remain puzzling.
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Studies in mice have revealed important insights into the role
of aNKR during viral infections (23, 24). Viruses like the mouse
cytomegalovirus (MCMV) down-regulate the expression of MHC
class I molecules from the cell surface to escape T cell response,
and may additionally code decoy MHC molecules (m157) that
can inhibit NK cell activation (23). Mouse strains that are resis-
tant to MCMV carry the activating Ly49H gene, which binds with
high affinity to the MHC-like viral protein m157. In contrast,
mice susceptible to MCMV lack the activating gene but carry the
inhibiting receptor Ly49I, which also binds strongly to the m157
protein. The activating Ly49H emerged from an inhibitory coun-
terpart (25), suggesting that the evolution of an aNKR was due to
the immune pressure induced by the “MHC decoy” m157 during
CMV infection (26, 27).

Although these studies shed light into the importance of NKR
in general, the specific contribution of activating and inhibitory
receptors to the NK cell response is still unknown. We previously
studied the evolution of KIR diversity in a human population
infected with CMV-like viruses by using a computational agent-
based model (28). We showed that iNKRs require sufficient speci-
ficity to protect populations against viruses evolving MHC-like
molecules, and that diversity in the NK cell genetic complex evolves
as a result of the required discrimination between self-MHC mol-
ecules and viral decoy molecules. Here, we also consider aNKRs,
and develop a probabilistic model to quantify the optimal speci-
ficity of inhibitory and activating NKRs needed to render maximal
protection against CMV-like viruses. We also analyze the effect of
mixed haplotypes (i.e., composed of aNKR and iNKR) on pro-
tection, and confirm the expectations of the probabilistic model
with an agent-based computational model. Our studies reveal that
mixed haplotypes composed of specific activating and inhibitory
NKRs render high protection against CMV-like viruses encoding
for decoy molecules, and that the protective effect depends on the
number of MHC loci per individual.

RESULTS
We analyze the effect of the specificity of activating and inhibitory
NKRs on the detection of a virus presenting MHC-like molecules
with a simple probabilistic model. Our model estimates the chance
of protection P, i.e., the probability of a host detecting an infection
by NK cells, as a function of the haplotype size, specificity (i.e., the
probability p of recognizing any random MHC molecule), and
number of MHC loci.

The responsiveness of NK cells (i.e., their ability to discriminate
cells with normal MHC expression from those lacking MHC) is
regulated by a process called“education”or“licensing”taking place
during NK cell development (29). During this process, the inter-
actions of iNKRs with their MHC ligands render the NK cells with
functional competence (13, 29, 30). To prevent NK cell-related
autoimmunity, activating receptors also participate in the educa-
tion process, where the chronic exposure of aNKR ligands during
development results in hyporesponsive NK cells (31, 32).

For simplicity, we do not model individual NK cells, each
expressing a random set of tuned receptors. We rather consider
for each individual a global repertoire of receptors, which have
the potential to license NK cells. Henceforth, we will refer to these
receptors as “licensed” receptors. We mimic the MHC-dependent

NK cell

MHC Class I

RKNaRKNi

licensed iNKR unlicensed iNKR unlicensed aNKR licensed aNKR

FIGURE 1 | Cartoon of NK cell education. iNKRs (represented in red)
recognizing at least one of the MHC molecules per individual will become
licensed. In contrast, aNKRs (depicted in green), which do not recognize
any of the host’s MHC molecules will become licensed.

education process during NK cell development by creating a reper-
toire of NKRs composed of iNKRs that recognize at least one of
the MHC molecules of the host, and of aNKRs that recognize
none of the MHC molecules of the host (Figure 1). By consider-
ing a global repertoire, we assume that there will be at least one
subset of NK cells expressing at least one of the “licensed” NKRs.
Upon infection, we consider only those NK cell subsets having
licensed receptors. If these can successfully detect the virus, they
will become activated, expand, and protect (see Appendix for a
full discussion). Therefore, only the licensed repertoire of NKRs is
allowed to participate in the immune response.

Whether a decoy protein allows a virus to successfully escape
the NK response, i.e., whether that individual is protected against
the infection, depends on the receptor type and on the recep-
tor specificity. iNKRs that bind the decoy molecule cannot detect
missing-self and are “fooled” by the decoy. Conversely, aNKRs
binding the foreign decoy protein can specifically recognize the
infection and therefore protect the host. With this model, we quan-
tify the contribution of each receptor type and its specificity to the
detection of CMV-like viruses.

INHIBITORY AND ACTIVATING NK CELL RECEPTORS DIFFER IN THE
PROTECTION LEVEL THEY PROVIDE
There are two crucial processes for a single iNKR to detect virus
evolving MHC-like molecules. First, iNKRs have to be licensed
during the NK cell education to become fully functional dur-
ing an immune response. Second, iNKRs should not bind decoy
molecules upon infection. Because, in our model, iNKRs are only
licensed if they recognize at least one of the MHC molecules in
their host, and decoy molecules are similar to self-MHC molecules,
iNKRs face the challenge of distinguishing self-MHC molecules
from foreign decoy molecules. We previously demonstrated that
this challenge can be solved by evolving sufficiently specific iNKRs
(28). In that study, we defined specificity as the probability (p) of
any NKR to recognize a random MHC molecule in the popula-
tion. Herewith, degenerate receptors (i.e., with p= 1) are able to
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recognize all MHC molecules in the population, whereas specific
receptors (i.e., with p ∼ 0) recognize only a small fraction of them.
Since the exact relation between ligand–receptor binding affinity
and signaling potential remains unknown, we do not consider dif-
ferent binding affinities here, and we model discrete MHC–NKR
interactions.

To study whether there is an optimal specificity for which
iNKRs are not inhibited by such “decoy viruses,” we calculated
the probability of licensed iNKRs detecting the infection. A single
iNKR becomes licensed with a probability qI = 1−(1− pI)

2NMHC ,
where pI describes the specificity (i.e., the probability of any iNKR
to recognize any MHC in the population), and N MHC the num-
ber of MHC loci per individual. The probability of a haplotype
composed of N iNKR to have exactly licensed iNKRs is given by the
binomial distribution as follows:

P (iNKRlicensed = `) =

(
NiNKR

`

) (
1− qI

)NiNKR−`
q`

I . (1)

To successfully detect a decoy virus, none of the licensed iNKRs
should bind the decoy molecule. Thus, the overall probability of
detecting the infection is determined by the chance that none
of the licensed iNKRs recognizes a decoy molecule, and can be
calculated by:

PI (detection) =

NiNKR∑
`=1

(
NiNKR

`

) (
1− pI

)`(
1− qI

)NiNKR−`
q`

I .

(2)
Our analysis confirms that for any haplotype size, there is an

optimal specificity. For N iNKR≤ 25, our model predicts a maxi-
mal level of protection (i.e., P I= 0.85), which can only be obtained
with high specificity values (pI≤ 0.2) and a large number of genes
per haplotype (N iNKR≥ 20) (Figure 2A).

A host with degenerate iNKRs (e.g., pI≥ 0.8) has a large reper-
toire of licensed iNKRs. But because of the low specificity, the
iNKRs within that individual are expected to also recognize any
foreign decoy molecule as self, offering no protection. In con-
trast, when iNKRs are specific (e.g., pI≤ 0.2) the repertoire of
licensed iNKRs per individual is lower, but if there are several
genes per haplotype, the chance of having at least one licensed
specific iNKR increases. Due to their high specificity, it is unlikely
for a licensed iNKR to also recognize a foreign decoy molecule,
impeding the virus to escape the NK immune response. There-
fore, an infection with a decoy virus can be controlled with a
probability of at least 70% in a haplotype composed of more
than 10 iNKRs when pI≤ 0.25. Thus, the probability of detect-
ing the virus increases with both a higher specificity and a larger
number of genes per haplotype (i.e., N iNKR). This confirms our
previous results, suggesting that large haplotypes composed of
non-overlapping specific iNKRs are most protective (28).

We next developed a model considering only aNKRs. Similar
to the iNKRs, the two crucial processes for an aNKR to detect the
virus depends on the probability of becoming licensed and rec-
ognizing the decoy molecule as a foreign antigen. However, the
licensing process is almost opposite between aNKRs and iNKRs.
An aNKR becomes licensed if it does not recognize any MHC
molecule within an individual. The probability of a single aNKR

to become licensed is therefore described by qA = (1− pA)2NMHC ,
where pA is the specificity of an aNKR. Opposite to an iNKR, an
aNKR detects a “decoy virus” if it binds the MHC decoy. Thus, the
overall probability of protection in this case is determined by the
chance of at least one licensed aNKR binding the decoy molecule,
and is given by:

PA (detection) =

NaNKR∑
`=1

(
NaNKR

`

)(
1−

(
1− pA

)`)
×
(
1− qA

)NaNKR−`
q`

A, (3)

where N aNKR is the number of aNKRs per haplotype.
This model reveals that there is again an optimal specificity,

and the protection range for aNKR is much broader than that
for iNKR, covering also less specific receptors (i.e., 0.1≤ pA≤ 0.7)
(Figure 2B). In these cases, the optimal protection (i.e., PA= 1) is
obtained with haplotypes composed of 12 genes, having interme-
diate specificity values (0.2≤ pA≤ 0.65). To avoid self-reactivity,
aNKRs become licensed only if they fail to recognize all self-
MHC molecules. Additionally, an aNKR must recognize foreign
MHC-like molecules to detect the infection. Therefore, the chal-
lenge for an aNKR is opposite to that of an iNKR, since it must
recognize foreign antigens but not self-MHC molecules. A degen-
erate aNKR will recognize every decoy in the population but it
will never become licensed. As a result, the optimal protection is
reached in large haplotypes composed of aNKRs with intermediate
specificity.

Note that we consider individuals to be heterozygous for all
MHC loci. Allowing individuals to be homozygous in some MHC
loci does not qualitatively change our results on specificity and
protection, since MHC homozygosity has only a mild effect on the
number of licensed receptors, ` (results not shown).

THE PROTECTION LEVEL DEPENDS ON THE NUMBER OF MHC LOCI
Above, we considered only one MHC locus per individual as a rep-
resentation of HLA-C as the main identified ligand for inhibitory
KIRs. However, HLA-A and -B molecules have also been identi-
fied as KIR ligands, and HLA-E is the ligand for CD94/NKG2A.
Therefore, we expanded our model to consider two MHC loci per
individual. The distribution of protection levels is similar to the
model with one MHC locus, showing a small protective area for
individuals carrying only iNKRs (Figure 2C), whereas individu-
als carrying aNKRs have a broader protective range (Figure 2D).
However, the area of maximal protection is skewed in both cases.
Because iNKRs have to recognize at least one self-MHC molecule
to become licensed, the chance of having several licensed NKRs per
haplotype increases by having 2 MHC loci (and thus 4 MHC mol-
ecules per heterozygous individual). Therefore, a high protection
(e.g., P I≥ 0.85) can be reached already with a smaller haplotype,
e.g., one composed of at least 11 iNKRs.

In contrast, the probability of an aNKR to become licensed
decreases with 2 MHC loci because aNKRs should not recognize
any of the MHC molecules within an individual. Consequently,
the protection with aNKRs reaches high values (i.e., PA≥ 0.85)
only with large haplotypes composed of at least 20 genes and
the optimal protection level (PA= 1) is never obtained. Thus, the
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FIGURE 2 | Range of protection differs between iNKRs and aNKRs.
The heatmaps show the protection level as the probability of detecting
the infection with a virus expressing a decoy molecule to mask MHC
down-regulation. In the left column, the protection for individuals
carrying only iNKRs [calculated by equation (2)] is shown, whereas in
the right column, the protection for individuals carrying only aNKRs
[calculated by equation (3)] is depicted. The protection level is shown in

the color bar from highest (red) to lowest (blue). pi and pa correspond to
the specificity of iNKR and aNKR, respectively. (A,B) The protective
range for iNKRs is small and skewed toward a large haplotype size and
high specific values. In contrast, aNKRs offer a broad range of
protection for intermediate specificity values and a smaller haplotype
size. Calculations were done with 1 MHC locus (A,B), 2 MHC loci
(C,D), and 4 MHC loci (E,F).

protection of aNKRs is highly dependent on the number of MHC
molecules per individual.

With even higher MHC complexity, i.e., by increasing the num-
ber of MHC loci per individual to 4, fewer iNKRs are sufficient to
successfully clear the infection (Figures 2E,F). Because of the edu-
cation process in our model, hosts with 4 MHC loci have a much
larger licensed iNKR repertoire compared to individuals having
1 MHC locus. These hosts reach the maximal protection already
with a haplotype size of 4 receptors. Even for lower haplotype

sizes, a good protection level (i.e., 0.3≤ P I≤ 0.7) can be reached
at lower specificity values (pI≤ 0.35) (Figure 2E). This effect was
further increased when considering 8 MHC loci per individual,
where the maximal protection was reached with only one specific
iKIR (results not shown).

However, an expanded MHC haplotype is disadvantageous for
individuals having only aNKRs. Because in our model the licensing
process is more difficult with a higher number of MHC molecules,
little protection can be provided. The infection can be controlled
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with a maximal probability of 50 and 35% in individuals with 4
(Figure 2F) and 8 MHC loci (results not shown), respectively.

Taken together, these results show that aNKRs provide little
protection against a virus evolving MHC decoy proteins in individ-
uals having several MHC loci, and that a contracted haplotype of
iNKRs is already protective when the MHC complexity increases.

VIRAL DETECTION IS MAXIMAL IN MIXED HAPLOTYPES
To predict the combined protection of activating and inhibitory
NKRs, we expanded our model and considered mixed haplotypes,
i.e., haplotypes composed of both iNKRs and aNKRs. We predict

the combined probability of detecting the virus as follows:

P = 1− (1− PI) (1− PA) . (4)

We computed the protection in hosts carrying two MHC and 20
NKR loci, and varied the fraction of aNKRs in the NKR haplotype,
while keeping the total number of loci constant. The best protec-
tion is reached in mixed haplotypes (Figure 3). As seen above, hap-
lotypes with aNKRs only provide protection (i.e., 0.5≤ P ≤ 0.8)
for intermediate specificity values 0.15≤ pA≤ 0.4 (Figure 3A).
With increasing number of iNKRs per haplotype, the protection
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FIGURE 3 | Mixed haplotypes render highest protection. The heatmaps
show the protection level as the probability of detecting the infection for
haplotypes composed of iNKRs and aNKRs [as calculated by equation (4)].
The protection level is shown in the color bar from highest (red) to lowest
(blue). (A–F) Show the NKR haplotype composition for different fractions

of iNKR and aNKR. Considering a haplotype size of NNKR =20, we first
modeled haplotypes composed of aNKRs only (A), and reduced their
number, while increasing the number of iNKRs (B–E), until we obtained a
haplotype composed only of iNKRs (F). We here consider 2 MHC loci (i.e.,
NMHC =2).
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reaches higher values (approaching P = 1) (Figures 3B,C), cover-
ing a larger range of specificity values and having a skewed distri-
bution toward more specific inhibitory and activating receptors.
A large number of iNKRs per haplotype reduces the contribution
of aNKRs, and therefore the latter can have low specificity values
without affecting the protection level (Figures 3D,E). Note that
the area of high protection shrinks when the fraction of aNKRs
is decreased, where maximal protection can only be achieved for
extremely high specificities (i.e., pI≤ 0.1) (Figure 3F).

These results depend on a similar manner on the number of
MHC loci per individual as those shown in Figure 2, with aNKRs
having a lower protective effect with increasing MHC loci num-
ber (results not shown). Therefore, we conclude that the maximal
protection against CMV-like viruses is easier to achieve in mixed
haplotypes.

AGENT-BASED MODEL OF ACTIVATING AND INHIBITORY NKRs
Our probabilistic model allows us to quantify the expected pro-
tection, given a certain number of aNKRs and iNKRs. However,
it is not clear whether a population with evolving NKRs would
find the same basin of attraction for the specificity (i.e., p) when
infected with a CMV-like virus.

To study the evolution of NKR specificity in populations
infected with a CMV-like virus, we developed an agent-based
model similar to the one published in Ref. (28) (for a detailed
description of the model, see Materials and Methods). Briefly, our
model considers a human population infected with a non-lethal
herpes-like virus causing chronic infections. The hosts carry a
diploid genome with one or two MHC loci and ten NKR loci.
We consider 15 MHC alleles per locus (mimicking the common
HLA-B and -C alleles in the European populations) and this poly-
morphism is kept constant throughout the entire simulation (i.e.,
we do not allow for mutation of the MHC genes). The initial NKR
haplotype consists of ten different genes, and all individuals are
homozygous for the same NKR haplotype.

Upon birth, novel receptors can be created, allowing for evolu-
tion within the NKR gene complex. Each new receptor comes with
a randomly chosen receptor type (i.e., either inhibitory or activat-
ing) and a randomly chosen specificity value (corresponding to
0≤ p≤ 1, see Materials and Methods). Receptors are so specific
that they are unable to recognize any MHC in the population will
never be functional, and are considered to be pseudogenes. Thus,
haplotypes expand by acquiring receptors with novel p values and
signaling potential, but can also contract due to the accumulation
of pseudogenes.

In this agent-based model, we also mimic the MHC-dependent
NK cell education process (Figure 1). We remove iNKRs which
fail to recognize any MHC molecule within an individual from the
licensed repertoire. Similarly, those aNKRs capable of recogniz-
ing self-MHC molecules are deleted from the licensed repertoire.
Only the licensed NKRs are able to participate during the immune
response.

Infection of a host starts with a short acute phase, after which
the individual either recovers or becomes chronically infected. We
consider one wild-type virus and several decoy viruses (1 decoy
per MHC molecule in the population). We do not allow for super-
infection nor co-infection, thus hosts can be infected with only

one of the viruses. A decoy virus down-regulates the expression of
all MHC molecules within an individual, and expresses an MHC-
like molecule. Thus, every virus expressing a decoy molecule has
the potential to escape the immune response of both T and NK
cells. The evolution of decoy proteins is modeled by allowing the
virus to adopt a randomly selected MHC molecule from its host.
Therefore, each decoy protein is actually an MHC molecule.

The population is first inoculated with the wild-type virus,
which can be typically cleared after the acute phase because of
the implicit response of both T and NK cells. We model the
immune response with one parameter describing the probabil-
ity of clearing the infection. For the wild-type virus, this is
set to pwt= 0.85 (Table 1), resulting in approximately 85% of
the wild-type infections being cleared. Individuals clearing the
infection become immune for a period t i of 10 years. At steady
state, approximately 20% of the population becomes chronically
infected (Figures 4A,B; green solid lines), 65% become immune
(Figures 4A,B; green dashed lines), and 5% are susceptible for
infection. The immune escape of the decoy viruses is modeled by
decreasing the clearance probability to zero (pdec,1= 0, Table 1),
which occurs if at least one of the licensed iNKRs or none of
the aNKRs binds to the decoy molecule (Table 2). With this
agent-based model, we can study the evolution of NKR specificity,
and quantify the protection provided by activating and inhibitory
receptors.

INHIBITORY RECEPTORS EVOLVE HIGHER SPECIFICITY THAN
ACTIVATING RECEPTORS AFTER A CMV-LIKE INFECTION
We first study the protection provided by iNKRs against a CMV-
like virus. After 5000 years of infection with the wild-type virus,
we allow for the emergence of decoy viruses. The initial speci-
ficity of the iNKRs is set to p≈ 0.4 (see Materials and Methods).
The decoy viruses spread easily among individuals carrying only
iNKRs, resulting in a high fraction of chronically infected indi-
viduals (Figure 4A; red solid lines). Moreover, almost none of the
hosts is able to control the infection (Figure 4A; red dashed lines),
and the total population size decreases dramatically to 50% of the
carrying capacity (i.e., maximal population size), confirming the
results from the probabilistic model. However, after centuries of
infection, the fraction of recovered individuals increases, and with
it the total population size, indicating a recovery of the population.
This observation is consistent in all ten simulations we performed
for iNKRs (Figures 4A,C).

To study how these individuals evolve to control an infection
with a virus having an MHC-like molecule, we analyze the average
specificity of the NKRs over time. We determine how many MHC
molecules in the population can be recognized by each receptor,
and normalize it by the number of total MHC molecules in the
population (Figure 4E; red line). We observe that the specificity
increases after the emergence of the decoy viruses. At the end of the
simulations, each iNKR recognize <20% of the MHC molecules
in the population, indicating that evolution selects for specific
iNKRs.

We perform the same simulations and analysis for popula-
tions having only aNKRs. Compared to populations having iNKRs,
the initial spread of the virus is somewhat impaired (Figure 4B;
red solid lines). Already at the beginning of the infection, some
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Table 1 | Parameters of the agent-based model.

Parameter Value

Time step 1 week

Simulation time 2 Million years

HOST PARAMETERSa

Maximal population size, Nmax 5000 Individuals

MHC diversity 1–2 Loci, each with 15 alleles

Number of NKR loci 5–10

Bit string length 16 Bitsb

Host mutation rate, µ 0.00005 Per gene per birth

event

INFECTIONc

Infection state, i 1 (Acute), 2 (chronic)

Effect of viral load on the death rate,

VLi

0.1 (For i =1), 0.06 (for i =2)

per year

Probability of viral transmission during

acute phase, pac

0.85 Per contact

Probability of viral transmission during

chronic phase, pch

0.15 Per contact

Probability of clearing the wild-type

virus, pwt

0.85

Success state of the decoy virus, s 0 (Successful), 1 (unsuccessful)

Probability of clearing the virus

evolving decoy molecules, pdec ,s

0 (For s=0), 0.5 (for s=1)

Immunity time, t i 10 years

Acute infection time, t inf 4 weeks

VIRUS PARAMETERS

Virus mutation rate, µv
d 0.0001 Per week

INITIAL CONDITIONS

Initial population size, N init 4500 Individuals

KIR initial diversity (SRI) 5–10 (1 Allele per locus)

aThe death and birth rate parameters are age-dependent and have been chosen

according to a human population (33). For a full description of the age-dependency

of birth and death rate, see Ref. (28).
bThe choice to use 16-bit strings represents a large enough theoretical repertoire

of 65,536 sequences.
cThe parameters used for the infection are chosen to maintain the epidemic.

Changing the length of the acute phase or the probabilities of clearance do not

affect our results on the evolution of the NKRs qualitatively (results not shown).
dWe manually switch on the mutation of the viruses at specific points in time, and

after that the mutation rate determines the waiting time for the mutant to arrive.

The mutant viruses appear in a short time scale and once the virus has spread in

the population, mutation does not occur anymore. Since we analyze the genetic

diversity long after the arrival of the virus, changes in mutation rate should not

affect the outcome.

individuals are able to control the virus (Figure 4B; red dashed
lines). The population size decreases to 60% of the carrying
capacity, and is therefore fitter than in those simulations con-
sidering only iNKRs (Figures 4A–C). Thus, aNKRs provide a
better initial protection than iNKRs. Accordingly, the number of
recovered individuals and thereby the total population increases

rapidly, reflecting their fast recovery against viruses evolving decoy
proteins.

The higher protection of aNKRs compared to iNKRs can be
explained by the initial specificity. Because we initialize all popula-
tions with intermediate specificity, individuals carrying only aNKR
are initially better protected (Figure 2). Nevertheless, aNKRs also
evolve to be more specific (Figure 4E; black lines). At the end of
the simulation, aNKRs recognize on average approximately 35%
of all MHC molecules, and hence decoys in the population. Taken
together, our agent-based model reveals that iNKRs need to be
more specific than aNKRs to protect during an infection with
a CMV-like virus, confirming the results from our probabilistic
model.

Note that we do not explore all possible loci number in the
agent-based model. To save computational time, we test the evo-
lution of the specificity given a fixed loci number of NKRs.
Populations carrying 10 NKR loci correspond to 20 NKRs in the
probabilistic model, where the protection is maximal at very high
specificity values for iNKR, and intermediate values for aNKR.
These values correspond indeed to the specificity values that the
populations evolve in our simulations. We carried out additional
simulations for 5 and 15 NKR loci, the results of which confirmed
the predictions of the mathematical model (results not shown).

POPULATIONS HAVING ONLY aNKRs EVOLVE A LARGER NKR
POLYMORPHISM THAN POPULATIONS WITH ONLY iNKRs
Our probabilistic model predicts that the protection by iNKRs
and aNKRs increases with the number of receptors per individual
(Figure 2), because a large receptor number increases the chance
of a host carrying very specific NKRs to have licensed receptors.
This observation suggests that heterozygous hosts should have an
advantage over homozygotes. We therefore hypothesized that het-
erozygous advantage must be selecting novel NKRs in our agent-
based model, driving polymorphism of NKRs in the population.

To measure the polymorphism at population level, we use the
Simpson’s reciprocal index (SRI, see Materials and Methods). The
SRI is a diversity measure that is equal to the total number of NKRs
if they are equally distributed in the population, whereas the SRI is
lower than that in a population where some alleles dominate (34).

The initial polymorphism of aNKRs (i.e., SRI= 10) increases
over time (Figure 4G; black line), reflecting that a high number
of aNKRs provides indeed an advantage. But surprisingly, this is
not the case for iNKRs, where the diversity decreases to SRI= 7.
Because the agent-based model considers a limited number of
MHC molecules in the population, the specificity that the iNKRs
evolve in the simulations is lower than that observed in the analyt-
ical model (i.e., pi,simulations≈ 0.18 compared to pi,analytical= 0.10)
(see Figure 2). With this specificity value that is slightly lower than
expected, all haplotypes tend to cover the entire (finite) MHC
space, making it possible to have at least one licensed receptor. As
a result, these populations can be well protected with a lower num-
ber of receptors. Therefore, there is little heterozygous advantage
in populations having only iNKRs, resulting in a low level of poly-
morphism. Thus, the agent-based model finds a different solution
for an optimal protection: it evolves contracted haplotypes (i.e.,
composed only of seven receptors) with slightly less specific iNKRs
than expected.
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FIGURE 4 | Agent-based model confirms probabilistic model. (A) A host
population having only iNKRs was inoculated with a wild-type virus (green
lines) after a period of t =5000 years (green solid lines show the chronically
infected individuals and the dashed lines the immune individuals). Ten
thousand years after the initial epidemic (i.e., t 1), we allowed for the
evolution of decoy viruses (red lines). During the wild-type infection, most
individuals recover (dashed green line). In contrast, almost none of the
individuals are initially capable of clearing a CMV-like infection (red dashed
line), resulting in a large decrease of the total population size (black line).
(B) A host population having only aNKRs is initially better protected against
decoy viruses, resulting in a higher fraction of the population clearing the
infection, and a lower decrease of the total population size. (A,B) Show
single representative simulations. (C) The average population size during the
initial spread of decoy viruses (t 1) is lower than that at the end of the
simulations (i.e., t 2 =3 million years), indicating that over time, the
populations learn to cope with the viral infection. Individuals in simulations

considering only aNKRs (black) are initially better protected than those in
simulations considering only iNKRs (red). In these simulations, all hosts
carry only one MHC locus. (D) The initial advantage that aNKRs have over
iNKRs receptors decreases in simulations considering two MHC loci per
individual. (E) The probability of iNKRs recognizing any random MHC
molecule in the population decreases over time (red line), indicating that
more specific receptors are being selected for. In contrast, aNKRs (black
line) do not evolve such high degree of specificity. (F) aNKRs evolve to
become more specific in simulations where individuals have two MHC loci.
(G) The degree of NKR polymorphism (expressed as the SRI score)
increases in time, as a result of the evolved higher specificity. (H) SRI score
in simulations considering two MHC loci. In (C,D), the boxes represent the
interquartile range, and the thick horizontal lines the median out of ten
simulations (**represent p values < 0.005 and were calculated using the
Mann–Whitney U test). In (E–H), the solid lines represent the average out of
ten simulations, and the dashed lines are the standard deviation.
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Table 2 | Levels of protection against a decoy virus in the agent-based

model.

No. of aNKRbinding = 0 No. of aNKRbinding > 0

No. of iNKRbinding=0 pdec ,1 pdec ,1

No. of iNKRbinding > 0 pdec ,0 pdec ,1

aNKRbinding and iNKRbinding refer to the number of iNKRs and aNKRs binding the

decoy molecule, respectively. The receptors here are considered to be licensed.

PROTECTION DEPENDS ON THE NUMBER OF MHC LOCI
To confirm our results concerning the dependency on MHC loci
number, we also perform simulations with individuals having two
MHC loci. An increasing number of MHC loci has a large effect
on the protection provided by aNKRs. Although these populations
are initialized with intermediate specific NKRs, the initial protec-
tion is lower than in the population carrying only one MHC locus
(Figure 4D). For better protection, a higher specificity is required,
and the selection for more specific aNKRs is stronger in these
simulations (Figure 4F). As a result of the higher specificity, a
larger number of receptors per haplotype are necessary to become
licensed and to recognize the foreign decoy molecules. There-
fore, the advantage of heterozygotes over homozygotes is larger in
these populations, resulting in a higher degree of polymorphism
(Figure 4H).

The protection and evolution of iNKRs is less sensitive to the
number of MHC loci per individual. Like in the simulations con-
sidering one MHC locus, we observe a recovery of the population
as more specific receptors are evolving (Figures 4D,F). Because the
total number of MHC alleles is larger in populations having two
MHC loci, more iNKRs per haplotype are necessary to have at least
one licensed receptor. Hence, the total SRI score is higher in these
simulations, than in the case of single MHC locus (Figures 4G,H;
red line).

BASIN OF ATTRACTION: MIXED HAPLOTYPES CONTAINING A
MAJORITY OF aNKRs
Finally, we performed simulations of populations having both
iNKRs and aNKRs, in which we allow for the evolution of the
specificity and also the receptor type. The initial specificity values
for both receptor types was intermediate (i.e., p≈ 0.4) and we ini-
tialized the genotypes with a random number of activating and
inhibitory receptors.

After the appearance of decoy viruses, the populations suf-
fered similar effects to those having only iNKRs and aNKRs. The
population size decreases dramatically at first, and with time it
recovers. The final population size is higher than in the simu-
lations considering only one type of receptor, approaching 70%
of the carrying capacity (Figure 5A) because mixed haplotypes
protect better than only one type of receptors. At the end of the
simulations, we observe more aNKRs than iNKRs per haplotype
(Figure 5B), i.e., the final haplotypes are composed on average
of 6 aNKRs and 4 iNKRs. In agreement with the predictions of
the analytical model, both receptor types evolve high specificity
(i.e., p≤ 0.35), and a high polymorphism (Figures 5C,D). Sum-
marizing, the agent-based model confirms the prediction of the
probabilistic model.

CONCLUSION AND DISCUSSION
Our mathematical model predicts the optimal protection level
provided by inhibiting and activating NKRs against viruses
expressing MHC-like molecules. Haplotypes composed only of
iNKRs detect the viral infection within a small range, requiring
high specificity and large haplotype size. In contrast, the maximal
protection is reached for intermediate specificity values and at a
smaller haplotype size in individuals having only aNKRs. Mixed
haplotypes, i.e., haplotypes carrying both iNKRs and aNKRs offer
the highest protection.

All these results are dependent on the number of MHC loci
per individual. With increasing MHC loci, aNKRs lose their abil-
ity to become licensed and thus provide little or no protection.
In contrast, haplotypes composed only of iNKR have a higher
chance of having licensed receptors when the number of MHC
loci is increased. In this case, the protection level is maximal
already with a contracted NKR haplotype. Thus, there seem to
be several combinations of MHC–NKR genotypes that provide
maximal protection. A high protection is reached with a simple
MHC complex and a high number of NKR genes. With increasing
complexity of the MHC, a contracted NK complex is sufficient to
render protection. These last results are particularly interesting, as
they provide a possible explanation of the differences in KIR and
MHC gene content across primate species (35), and the expansion
of new KIR lineages corresponding to the contraction of the MHC
gene complex, thus illustrating the co-evolution of MHC class I
and KIRs (36).

The model described here is inspired by viruses evolving decoys.
However, its main outcome,namely the requirement for specificity,
might be more general than the defense against such decoy viruses.
Studies have shown that viral infections can change the repertoire
of peptides presented by MHC class I molecules (37), and that
these different peptides affect the NKR–MHC interactions, per-
turbing the binding of iNKRs and leading to NK cell activation
(38). In such cases, specific recognition of the changes in pep-
tide repertoire by NK cells seems advantageous for the host. Also,
the specificity ranges obtained in our model for mixed haplotypes
(Figure 3E) are similar to those observed in reality, with iNKRs
having a specificity of 0.2. This corresponds to the four mutu-
ally exclusive epitopes that have been detected so far for inhibitory
KIRs in humans: HLA-A11, -Bw4, -C1, and -C2.

The exact role of aNKRs remains intriguing. Since only a
few aNKRs tend to recognize MHC class I molecules (39), we
speculate that aNKRs could specifically recognize new ligands
expressed upon viral infection (e.g., decoy molecules or stress
ligands). Our model predicts that to face the challenge of not rec-
ognizing self but specifically recognize foreign antigens, aNKRs
do not need to be so specific. Indeed, the haplotype provid-
ing the highest protection is a combined haplotype composed
of more aNKRs than iNKRs, which disagrees with the most pri-
mate KIR haplotypes (36). Most primate NKRs are inhibitory,
and activating receptors have been linked to selection pres-
sure induced by reproduction (36). Our model predicts that
aNKRs should evolve to an intermediate specificity upon CMV-
like infections. However, not many activating ligands have been
identified yet, and it remains puzzling what other roles aNKRs
might play.
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FIGURE 5 | Mixed haplotypes offer the highest protection. A host
population having iNKRs and aNKRs was inoculated with a wild-type
virus after a period of t =5000 years; we allowed for the evolution of
decoy viruses 10,000 years after the initial epidemic (i.e., t 1). (A) The
population size during the initial spread of decoy viruses (t 1) is lower than
that at the end of the simulations (i.e., t 2 =3 million years), indicating
that over time, the population recovers from the viral infection. (B) The
initial haplotype is composed of five iNKRs and five aNKRs. The number
of aNKRs and iNKRs per haplotype varies over time, resulting in a
selection for haplotypes with a larger activating potential. (C) The

probability of NKRs recognizing any random MHC molecule in the
population, decreases over time, indicating that more specific receptors
are being selected for. (D) The degree of NKR polymorphism (expressed
as the SRI score) increases in time, as a result of the heterozygote
advantage due to the evolved higher specificity. Averages are taken out
of ten different simulations. In (A), the boxes represent the interquartile
range, and the thick horizontal lines the median (**represent p values
<0.005, and were calculated using the Mann–Whitney U test). In
(B–D), the solid lines represent the average out of ten simulations, and
the dashed lines are the standard deviation.

The expansion of NKR superfamilies, presumably in order to
gain resistance against pathogens, illustrates the high evolutionary
complexity of NKRs. We aimed to fully understand the effects of a
single possible driving force of this evolutionary process, namely
that of a viral encoded MHC-like molecule. Therefore, we focused
on modeling only the evolution of NKRs in a simple model, which
requires simplifying assumptions. For instance, we fixed MHC
polymorphism despite the evidence of the co-evolution between
MHC class I and KIRs (35, 36). Given their different evolutionary
timescales, i.e., that MHC molecules are older than both Ly49 and
KIRs, we chose to model the expansion and contraction of NKR
systems within an already existing MHC diversity. Additionally,
we assumed that decoy viruses down-regulate the expression of
all MHC molecules in the host. Even though we do not expect
selective MHC down-regulation to affect the evolution of aNKRs
(since activating receptors cannot detect missing-self), the evolu-
tion of iNKRs might be affected because more licensed iNKRs will
be necessary to recognize a virus that down-regulates only one of
the host’s MHC-I molecules. Note that if the licensed repertoire
of iNKRs is larger, these receptors should be even more specific
to avoid being “fooled” by the decoy molecule. The exact effect of
selective MHC down-regulation on the specificity of iNKRs is an
open interesting question, which we are currently working on.

Other simplifying assumptions were also necessary, such as
considering a global NKR repertoire and ignoring the synergy
between NKRs or the direct interaction between immune cells.
Additionally, we ignored mutational operators that conserve simi-
larity between pre- and post-mutation receptors (e.g., point muta-
tions), as we only model mutations that significantly change recep-
tor functionality. Including point mutations, did not affect the
results qualitatively (results not shown), however a longer evolu-
tionary time was necessary to approach the same solution of speci-
ficity. Overall, since our main results are of a qualitative nature, it
seems unlikely that relaxing any of these assumptions would affect
our main results. Note also that our agent-based model is inspired
on humans and KIRs, with the advantage of having realistic para-
meters for processes like birth and death. However, the model can
be generalized to other species, and qualitatively it represents a
model of the evolution of the expansion of the NKR complex.

All our analytical results were consistent with the agent-based
model and our analysis allowed us to quantify the protection
against an infection for both receptor types. It confirmed our
previous results that iNKRs should become specific enough (28).
Our new approach has shed light into the possible contribution
that each receptor type confers upon infection, and allowed us to
conclude that mixed haplotypes render the best protection.
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MATERIALS AND METHODS
AGENT-BASED MODEL
The agent-based model consists of two types of actors (hosts and
viruses) and three events (birth, death, and infection). This model
is virtually identical to the one published in Ref. (28). Briefly, we
screen all hosts in a random order during each time step of 1 week,
and confront them to one of the randomly chosen events. Hosts
age over time and at the end of each time step, their age, infec-
tion state, and type of infection is updated. This cycle is repeated
for two million years to simulate long term evolution. All model
parameters are given in Table 1.

We model simplified diploid individuals, carrying gene com-
plexes for NKR and MHC class I. For simplicity, we consider
15 MHC alleles per locus, resembling the most common HLA
alleles in the European population (40). NKRs and their ligands
are modeled with randomly generated bit strings as a simplified
representation of amino acids (41). If the longest adjacent com-
plementary match between two strings exceeds a threshold L, we
allow for the receptor to interact with its ligand. Thus, the thresh-
old L determines the specificity of each receptor: a receptor with
a small L value will be very degenerate and the probability of
a random NKR to recognize a random MHC molecule will be
p≈ 1. In contrast, a receptor with a large L value will be specific,
and accordingly, the probability of this receptor binding any MHC
molecule in the population will be p ∼ 0 [for a detailed description,
see Ref. (28)].

RECEPTOR TYPES
In the present model, we allow for the evolution of aNKRs.
When a novel NKR is generated, a random L value between 1
and 16 is assigned to it, and its type (i.e., whether it is activat-
ing or inhibitory) is also randomly chosen. Thus, each receptor
has its particular specificity and functionality. Receptors with
L values larger than 13 will usually not recognize any MHC
molecules in the population, and are typically not functional.
Genes encoding such non-functional NKRs are considered to be
pseudogenes. Haplotypes containing pseudogenes are effectively
shorter than haplotypes composed of fully functional NKRs. Thus,
we can model the contraction and expansion of the NKR gene
complex.

VIRAL INFECTIONS
In our simulations, we consider one wild-type virus and several
“decoy viruses,” i.e., viruses expressing MHC decoys. Each virus
comes with a viral load, which is implemented as an increase
of the host’s death rate, VLi depending on the infection state i
(see Table 1), and a probability of clearing the infection pwt and
pdec,s for the wild-type and the decoy viruses, respectively. A decoy
virus down-regulates the expression of all MHC molecules in that
host, and encodes one MHC-like molecule. The evolution of decoy
molecules is modeled by allowing the virus to adopt a randomly
selected MHC molecule from its host with a rate µv. The virus
keeps this decoy for the rest of the simulation. Because we fix the
MHC polymorphism to 15 alleles per locus, the maximal num-
ber of decoy proteins that can evolve in the population is 15
for the simulations considering 1 MHC locus, and 30 for those
considering two MHC loci.

We consider different levels of protection against a decoy virus,
depending on the success of the virus to escape the NK cell
response, s. If at least one of the licensed iNKR binds to the decoy
molecule, there will be an inhibitory signal, the host will not be
able to detect “missing-self,” and the decoy virus will be successful.
Similarly, if none of the licensed aNKRs recognizes the decoy mol-
ecule, the decoy virus will evade the NK cell response. Thus, none
of the iNKRs or at least one aNKRs should bind the decoy mole-
cule to render protection (Table 2). We model the immune escape
by setting the probability of clearing the infection to zero, letting
the host become chronically infected. In the case that a decoy is
not successful, the host will be able to detect “missing-self.” Since
this virus is nevertheless able to evade the response from T cells
(due to the MHC down-regulation), the probability of clearing
the infection is lower than that of the wild-type virus (pwt= 0.85).
The resulting probability of clearing the infection is described by:

pdec ,s =

{
0, if s = 0

(
successful decoy

)
0.5, if s = 1

(
unsuccessful decoy

)
.

(5)

The rest of the parameters defining the infection dynamics and
immune escape of the decoy viruses (i.e., time of infection, immu-
nity time, and transmission probabilities) were set like in Ref. (28)
and are described in Table 1.

MUTATION
During each birth event, NKRs undergo mutation with a prob-
ability, µ. To decrease computation time, we model mutation by
randomly creating a new receptor with its particular specificity and
signaling type. We do not consider other mutational operators,
e.g., point mutations, recombination, deletion, or duplication.

We first perform simulations where only the specificity can
evolve (i.e., a random value L is assigned to each new receptor),
while the receptor type remains fixed. Hereby, we are able to com-
pare what the basin of attraction for the specificity will be, if a
population has only aNKRs or only iNKRs. We also simulate pop-
ulations with mixed haplotypes, by allowing the receptor type to
mutate.

NK CELL EDUCATION
During the birth event, an NK cell education process takes place.
Like in our probabilistic model explained above, iNKRs which
recognize at least one of the MHC molecules within one individ-
ual, and aNKRs that fail to recognize all of the MHC molecules
within the host, are set to be licensed. In our model, only the
licensed repertoire of NKRs will participate in an NK cell response
(Figure 1).

MODEL INITIALIZATION
The model is initialized with a host population of 4500 hosts, with
random ages between 1 and 70 years corresponding to a uniform
age distribution. After approximately 10 host generations, this age
distribution corresponds to more modern age distributions with
the majority of individuals having an age between 15 and 60.

At the start of every simulation, a gene pool for MHC alle-
les is generated, the size of which depends on the number of
MHC loci per individual. It consists of 15 alleles in simulations
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considering one MHC locus per individual, and of 30 alleles in
those simulations considering two MHC loci per individual. To
create the initial genome of each individual, MHC genes were ran-
domly drawn from the pool, while ten NKRs with intermediate
specificity (2≤ L≤ 4, i.e., p≈ 0.4) were generated. Thus, the initial
haplotypes did not contain any pseudogenes. In the simulations
considering mixed NKR haplotypes, the initial genes can be both
activating and inhibitory. The type of each receptor was randomly
chosen as explained above, resulting in approximately 50% of the
receptors being activating. All individuals were initialized with the
same NKR haplotype, but with different MHC genes.

GENETIC DIVERSITY
The Simpson’s Index is a measurement of diversity that can be
interpreted as the probability that two randomly chosen receptors
from two random hosts in the population are identical (34). The
reciprocal of the Simpson’s Index defines a “weighted” diversity.
The SRI was calculated as follows: SRI = 1∑N

i=1 fi
2 , where fi is the

frequency of the receptor i over all NKRs in the population, and
N is the total number of unique NKRs.

IMPLEMENTATION
The model was implemented in the C++ programing language.
We considered populations with haplotypes composed of only
aNKRs, only iNKRs, or both. In every scenario, we compared the
effects of one or two MHC loci per individual. For each of these
settings, we performed ten simulations for 2 million years. The
code is available upon request.
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APPENDIX
GLOBAL REPERTOIRE OF LICENSED NKRs
Instead of considering individual NK cells expressing a tuned set
of NKRs, we model a global repertoire of “licensed” NKRs in
each host. Hereby, we assume that the expression of at least one
“licensed” receptor is sufficient to educate NK cells, and that those
functional NK cells can become activated upon viral infection.
This assumption needs further explanation.

If an aNKR recognizes some self-molecule (or self-MHC), all
developing NK cells expressing that receptor should additionally
express at least one iNKR recognizing self to prevent self-reactivity.
As a consequence, all NK cells expressing that aNKR should never
become activated, even if a virus encodes a ligand which engages
that aNKR. Therefore, we call such an aNKR “unlicensed”: it will
never contribute to detect a viral infection. In contrast, if an aNKR
that does not recognize any self-molecule, all developing NK cells
expressing that receptor will not be influenced by it, and these
cells will express other iNKRs and aNKRs that balance their self-
reactivity. NK cells expressing that aNKR will become activated
when a virus expressing its ligand engages that aNKR. Therefore
we call such an aNKR“licensed.”Any NK cell expressing this aNKR
should breach its activation threshold, expand, and protect, when
the ligand is present.

Now consider an iNKR that recognizes some self-MHC. All
developing NK cells expressing that receptor will be tuned to bal-
ance its self-reactivity. As a consequence, all NK cells expressing
that iNKR should become activated when a virus down-regulates
this particular MHC. Therefore, we call such an iNKR “licensed”:
it detects MHC down-regulation. However, for an iNKR that does
not recognize any self-MHC, the developing NK cells express-
ing that receptor will not be influenced by that iNKR. Conse-
quently, these cells will express other iNKRs and other aNKRs in
order to balance their self-reactivity. Therefore, NK cells express-
ing that iNKR will not become activated by this iNKR when a
virus down-regulates self-MHC. Therefore, we call such an iNKR
“unlicensed”: it would never contribute to the detection of virus
infected cells.

What happens with the NK cells expressing such an unli-
censed iNKR if it happens to recognize something else on
virus infected cells, e.g., a decoy? Then the iNKR should deliver
an extra inhibitory signal to those cells. Consequently, these
NK cells cannot expand and protect, even if their other iNKR
detect MHC down-regulation, or if their other aNKR detect a
new ligand. Hence, such an unlicensed iNKR will not protect,
and can be considered to be non-functional at the repertoire
level.
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We found a minor implementation error
in the NK cell education process of our
agent-based model. Fortunately, this hardly
affected our main results and conclusions.
The main difference lies in the polymor-
phism of iNKRs, as our new results show
that it increases substantially over time
similar to that of aNKRs. For reasons of
accuracy and reproducibility, we here pro-
vide the corrected Figures and paragraphs
(underlined).

POPULATIONS HAVING ONLY ANKRS
EVOLVE A LARGER NKR
POLYMORPHISM THAN POPULATIONS
WITH ONLY INKRS
Our probabilistic model predicts that the
protection by iNKRs and aNKRs increases
with the number of receptors per individ-
ual (Figure 2), because a large receptor
number increases the chance of a host car-
rying very specific NKRs to have licensed
receptors. This observation suggests that
heterozygous hosts should have an advan-
tage over homozygotes. We therefore
hypothesized that heterozygous advantage
must be selecting novel NKRs in our agent-
based model, driving polymorphism of
NKRs in the population.

To measure the polymorphism at popu-
lation level, we use the Simpson’s reciprocal

index (SRI, see Material and Methods). The
SRI is a diversity measure that is equal to the
total number of NKRs if they are equally
distributed in the population, whereas the
SRI is lower than that in a population where
some alleles dominate (34).

The initial polymorphism of aNKRs
(i.e., SRI = 10) increases over time
(Figure 4G black line), reflecting that a
high number of aNKRs provides indeed
an advantage. Similarly, the SRI score of
iNKRs increases over time. Because each
evolved iNKRs recognizes on average one
MHC molecule in the population, there is
selection for haplotypes that do not overlap
in the MHC molecules they recognize.
Thus, the heterozygote advantage is large
in these populations, driving the diversity
of iNKRs.

PROTECTION DEPENDS ON THE
NUMBER OF MHC LOCI
To confirm our results concerning the
dependency on MHC loci number, we also
perform simulations with individuals hav-
ing two MHC loci. An increasing number
of MHC loci has a large effect on the pro-
tection provided by aNKRs. Although these
populations are initialized with interme-
diate specific NKRs, the initial protection
is lower than in the population carrying
only one MHC locus (Figure 4D). For
better protection, a higher specificity is
required, and the selection for more spe-
cific aNKRs is stronger in these simulations
(Figure 4F). As a result of the higher speci-
ficity, a larger number of receptors per hap-
lotype is necessary to become licensed and
to recognize the foreign decoy molecules.
Therefore, the advantage of heterozygotes

over homozygotes is larger in these pop-
ulations, resulting in a higher degree of
polymorphism (Figure 4H).

The protection and evolution of iNKRs
is also sensitive to the number of MHC
loci per individual. Like in the simulations
considering one MHC locus, we observe a
recovery of the population as more specific
receptors are evolving (Figures 4D,F).
Hereby, the specificity evolved to even
higher values, as the evolved iNKRs
recognize on average <5% of all the MHC
alleles in the population. Because of this
high specificity and the larger number of
MHC alleles in populations having two
MHC loci, more iNKRs per haplotype
are necessary to have at least one licensed
receptor. Hence, the total SRI score is higher
in these simulations, than in the case of
single MHC locus (Figures 4G,H red line).
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A B

C D

E F

G H

FIGURE 4 | Agent-based model confirms probabilistic model. (A) A host
population having only iNKRs was inoculated with a wild type virus (green
lines) after a period of t = 5000 years (green solid lines show the chronically
infected individuals, and the dashed lines the immune individuals).
10,000 years after the initial epidemic (i.e., t 1), we allowed for the evolution of
decoy viruses (red solid lines show the chronically infected individuals, and
the dashed red lines the immune individuals). During the wild type infection,
most individuals recover (dashed green line). In contrast, almost none of the
individuals are initially capable of clearing a CMV-like infection (red dashed
line), resulting in a large decrease of the total population size (black line).

(B) A host population having only aNKRs is initially better protected against
decoy viruses, resulting in a higher fraction of the population clearing the
infection, and a lower decrease of the total population size. (A,B) show single
representative simulations. (C) The average population size during the initial
spread of decoy viruses (t 1) is lower than that at the end of the simulations
(i.e., t 2 = 3 million years), indicating that over time, the populations learn to
cope with the viral infection. Individuals in simulations considering only aNKRs
(black) are initially better protected than those in simulations considering only
iNKRs (red). In these simulations, all hosts carry only one MHC locus.

(Continued)
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FIGURE 4 | Continued
(D) The initial advantage that aNKRs have over iNKRs receptors decreases in
simulations considering two MHC loci per individual. (E) The probability of
iNKRs recognizing any random MHC molecule in the population decreases
over time (red line), indicating that more specific receptors are being selected
for. In contrast, aNKRs (black line) do not evolve such high degree of
specificity. (F) aNKRs evolve to become more specific in simulations where

individuals have two MHC loci. (G) The degree of NKR polymorphism
(expressed as the SRI score) increases in time, as a result of the evolved
higher specificity. (H) SRI score in simulations considering two MHC loci. In
(C,D), the boxes represent the interquartile range, and the thick horizontal
lines the median out of ten simulations (**represent p values <0.005, and
were calculated using the Mann–Whitney U test). In (E–H), the solid lines
represent the average out of ten simulations, and the dashed lines are the SD.

A B

C D

FIGURE 5 | Mixed haplotypes offer the highest protection. A host
population having iNKRs and aNKRs was inoculated with a wild type virus
after a period of t = 5000 years; we allowed for the evolution of decoy viruses
10,000 years after the initial epidemic (i.e., t 1). (A) The population size during
the initial spread of decoy viruses (t 1) is lower than that at the end of the
simulations (i.e., t 1 = 3 million years), indicating that over time, the population
recovers from the viral infection. (B) The initial haplotype is composed of five
iNKRs and five aNKRs. The number of aNKRs and iNKRs per haplotype varies
over time, resulting in a selection for haplotypes with a larger activating

potential. (C) The probability of NKRs recognizing any random MHC molecule
in the population, decreases over time, indicating that more specific receptors
are being selected for. (D) The degree of NKR polymorphism (expressed as
the SRI score) increases in time, as a result of the heterozygote advantage
due to the evolved higher specificity. Averages taken out of 10 different
simulations. In (A), the boxes represent the interquartile range, and the thick
horizontal lines the median (**represent p values <0.005, and were
calculated using the Mann–Whitney U test). In (B–D), the solid lines
represent the average out of ten simulations, and the dashed lines are the SD.
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Antigen receptors play a central role in adaptive immune responses. Although the molecu-
lar networks associated with these receptors have been extensively studied, we currently
lack a systems-level understanding of how combinations of non-covalent interactions and
post-translational modifications are regulated during signaling to impact cellular decision-
making. To fill this knowledge gap, it will be necessary to formalize and piece together
information about individual molecular mechanisms to form large-scale computational mod-
els of signaling networks.To this end, we have developed an interaction library for signaling
by the high-affinity IgE receptor, FcεRI.The library consists of executable rules for protein–
protein and protein–lipid interactions.This library extends earlier models for FcεRI signaling
and introduces new interactions that have not previously been considered in a model.
Thus, this interaction library is a toolkit with which existing models can be expanded and
from which new models can be built. As an example, we present models of branching
pathways from the adaptor protein Lat, which influence production of the phospholipid
PIP3 at the plasma membrane and the soluble second messenger IP3. We find that inclu-
sion of a positive feedback loop gives rise to a bistable switch, which may ensure robust
responses to stimulation above a threshold level. In addition, the library is visualized to
facilitate understanding of network circuitry and identification of network motifs.

Keywords: immunoreceptor signaling, IgE receptors (FcεRI), mast cells, knowledge engineering, computational
modeling, network motifs, feed-forward loops, visualization

INTRODUCTION
Cell signaling plays a key part in regulation of the immune
system. Adaptive immune responses are controlled by multi-
chain immune recognition receptors, or immunoreceptors, which
include the T cell receptor (TCR) (1), the B cell antigen receptor
(BCR) (2), and the high-affinity receptor for IgE, which is also
known as FcεRI (3). Each of these receptors is the gatekeeper of
complex signaling machineries that translate extracellular stimuli
into cellular responses. Individual interactions in immunorecep-
tor signaling systems have been studied extensively, and there is
now a need to form a cohesive picture of how these interactions
combine to mediate information processing. This need is driven
in part by emerging data that reveal complex dynamical behav-
iors that arise from molecular interactions (4, 5), as well as by a
growing appreciation of network features, such as crosstalk (6),
which may only be apparent when one considers the interplay of
multiple interactions.

Knowledge about signaling can be combined and synthesized
into multiple forms, of which we employ two that are versatile
and extensible: a visual map drawn in accordance with recom-
mended standard conventions, and a rule-based model. The value
of a standardized map, as opposed to an ad hoc cartoon, in
depicting molecular interactions has been well appreciated: such
maps can be used to organize information concisely, can be inter-
preted with minimal ambiguity, and can aid in logical analysis
(7–11). After creation of a map, construction of a computational
model can be viewed as the next level of information formal-
ization (12). Through modeling, assumptions about molecular

interactions (e.g., whether or not two interactions are competi-
tive) are made more concrete and can thus be better assessed. In
addition, modeling can extend our predictive capabilities when
quantitative factors are important, enabling us to develop more
sophisticated hypotheses. Modeling has become an increasingly
important part of studies of immunoreceptor signaling (13).

Of the modeling frameworks that have been used to investigate
biochemical systems, the framework of chemical kinetics is useful
for studying dynamical behaviors that evolve on >1 ms time scales
and that can be characterized using measurable parameters, such
as protein copy numbers and binding rate constants. Among the
modeling techniques of chemical kinetics is rule-based modeling
(14), which provides a means to represent individual biomolecular
sites, which is essential when, for example, different phosphoryla-
tion sites can recruit different binding partners (15). Rule-based
modeling also enables simulation of the behavior of a large num-
ber of distinct chemical species. Myriad multicomponent protein
complexes and protein phosphoforms, for example,can potentially
arise in cell signaling systems and this complexity poses a chal-
lenge for other modeling techniques (16, 17). Rule-based models
are built from executable rules. Rules in a model have a certain
degree of interdependence, but tend to be more modular than
the component parts used in other modeling techniques, such as
ordinary differential equations (17). Thus, it is not only possible
to formulate rules for a specific model, but to construct general
rule libraries from which different models may be built.

To further our systems-level understanding of immunorecep-
tor signaling, we have developed a map and a rule library for
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early signaling mediated by FcεRI, which shares features with other
related immunoreceptors. The FcεRI signaling system has a spe-
cial feature of experimental tractability because the receptor can
be stimulated using structurally defined antigens (18–20), mak-
ing it a valuable model system for understanding how signaling is
initiated. Furthermore, FcεRI has been the subject of several past
modeling studies that have elucidated early events following recep-
tor crosslinking (21, 22), the flow of information during signaling
(23), aggregation of adaptor proteins (24, 25), and the impact of
ligand dose and binding kinetics on kinase activation (26, 27).
Aspects of the models used in these studies form a foundation
for the rule library presented here. The library extends previous
work by adding rules for interactions not previously included in
models for FcεRI signaling. Thus, the library serves as a bridge
between past studies of relatively small scope, and potential future
studies that integrate information about more network elements
to, for example, analyze multiplexed signaling data (28). As a first
example of library use, we present simulations of recruitment of
signaling proteins to the adaptor Lat, which is phosphorylated in
response to FcεRI stimulation (29).

METHODS
We developed a library of rules based on known protein–protein
and protein–lipid interactions, which were identified through a
survey of the FcεRI literature. The rules can be assembled into
different sets to form different models that capture the chemical
kinetics of FcεRI signaling with site-specific resolution (14, 16, 30).
Here, the term “site” is used to refer to a generic functional site in a
biomolecule, which in the case of a protein may be a domain, linear
motif, or amino acid residue subject to post-translational modi-
fication. In a rule-based model, rules capture knowledge about
biomolecular interactions of interest. The rules in a model specify
what interactions can occur in a system and under what conditions
these interactions occur. A rule provides necessary and sufficient
conditions for testing its applicability, a definition of the con-
sequences of an interaction, and a rate law. A detailed example
of a rule is illustrated graphically in Figure S1 in Supplementary
Material. Rules, in combination with parameters and initial con-
ditions, can be processed to simulate the time-dependent behavior
of a signaling system, including the time-dependent formation of
protein complexes and post-translational modifications of pro-
teins at specific sites. A benefit of a rule-based approach is that
it enables concise specification and efficient simulation of models
that include multivalent interactions and multi-site phosphoryla-
tion, which are two inherent characteristics of immunoreceptor
signaling systems that are otherwise difficult or impossible to fully
capture in a physicochemical model. We specified our library using
a domain-specific language for rule-based modeling, the BioNet-
Gen language (BNGL) (30), which is compatible with several
software tools for simulation and analysis.

Our simulations are based on the law of mass action and an
assumption of well-mixed reaction compartments. In the exam-
ple model, the following compartments are considered implicitly:
the cytosol, the plasma membrane, and the extracellular fluid sur-
rounding a single-cell. Simulations were performed using CVODE
(31), the built-in deterministic simulator of BioNetGen, which
takes as input the ODEs derived from a rule-specified reaction

network. Our illustrations of rules are based on published guide-
lines for model visualization (10) and were drawn with the help
of a template available online (http://bionetgen.org/index.php/
Extended_Contact_Maps).

In our bifurcation analyses, we found stable steady states
through simulations that were started from arbitrary initial con-
ditions or nearby steady states. The bifurcation parameter was an
input signal taken in the model of interest to control the rate of
activation of Syk and Fyn, which were each deactivated through a
first-order process. Thus, as the input signal increases, so too do
the steady-state levels of active Syk and Fyn. In simulations per-
formed to find stable steady states, the bifurcation parameter was
systematically varied from a low to high value, and vice versa.

To characterize signaling dynamics for specific observables (i.e.,
model outputs), we calculated rise time as the time required
for the observable to reach 95% of its final steady-state value.
For comparison between two models, a ratio of rise times was
calculated.

RESULTS AND DISCUSSION
LIBRARY
In this section, we present a collection of rules, which can be viewed
as a single model or as an assemblage of multiple models. Our main
purpose is not to simulate the full set of interactions represented by
these rules, but to formalize available knowledge about the FcεRI
system to facilitate future modeling studies aimed at addressing
specific questions. Rules in the library are provided in File S1 in
Supplementary Material.

Rule-based models are compositional, meaning that rules can
be specified somewhat independently of each other, enabling con-
struction of new models from components of existing models. We
have taken advantage of this feature to build on three previously
reported models: one for ligand–receptor interactions and two for
intracellular signaling. Below, we briefly review these models and
the processes that they capture. A visual overview of the intracel-
lular processes captured in the library is provided in Figure 1.

Initiation of signaling by FcεRI requires aggregation of recep-
tors, which can be induced by reagents such as haptenated proteins
and polymers, as well as by anti-receptor antibodies (32). Several
models have been developed to investigate the interactions that
lead to receptor aggregation. The model that we consider here is
that of Xu et al. (33) for interactions of IgE-FcεRI with DNP–BSA,
a multivalent antigen (haptenated protein). We chose this model
because DNP–BSA is commonly used for stimulation of mast cells
sensitized with anti-DNP IgE, and receptor aggregation induced
by this antigen has been studied in detail (34). In this model, the
effective valence of the ligand was taken to be two. The model
includes transient hapten exposure, initial binding of a ligand to a
receptor, crosslinking of neighboring receptors, and dissociation of
ligand–receptor bonds. In this model, it was assumed that receptor
sites (antigen-combining sites in cell-surface IgE) are equivalent
and that the single-site dissociation rate constant is the same for
both ligand sites, regardless of whether the second site is bound or
free. Cyclic aggregates are not considered. For use in this study, the
model was translated from its original form to rules, which was
also done in another recent study (35). The model of Xu et al. is
illustrated in Figure 2.
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FIGURE 1 | An overview of intracellular signaling interactions included in
the model/library for FcεRI signaling. Rules are included in the library for
the interactions depicted here. Proteins are represented as circles that are
color-coded according to their function, as indicated in the legend. Standard
UniProt names are used, and we note that Grap2 is commonly known as
Gads, Lcp2 is commonly known as Slp76, and Inpp5d is commonly known as
Ship1. The legend also indicates the arrows that are used to represent

different types of interactions and influences. Reactions of lipid species are
illustrated at the bottom. Arrows from proteins that point to lipid reactions
indicate that the reaction is catalyzed by that protein. Arrows from protein to
lipid species indicate that the protein binds that lipid. Not shown are implicit
phosphatase reactions that cause dephosphorylation of all sites that can be
phosphorylated. Ligand–receptor interactions are shown in Figure 2. A
subset of interactions is illustrated with site-specific detail in Figure 3.

FIGURE 2 | Reaction scheme for DNP–BSA interactions with cell-
surface IgE. BSA (bovine serum albumin) is haptenated with multiple DNP
groups, which are assumed to transition between two states: inaccessible
(represented as being inside the molecule) and accessible (represented as
being on the edge of the molecule). Accessible DNP can bind Fab arms of
IgE. Each IgE antibody has two Fab arms, and is thus bivalent.

Receptor aggregation initiates signaling by bringing receptors
into proximity with the Src-family kinase (SFK) Lyn. Lyn’s associ-
ation with receptors may be facilitated by several complementary
mechanisms, including regulation by the membrane lipid environ-
ment (36) and constitutive direct binding to FcεRI via Lyn’s unique
N-terminal domain (37). For simplicity, we explicitly model the
latter mechanism because it allows the plasma membrane to be
treated as well-mixed and has been formalized in past modeling
studies (21, 22). Lyn mediates phosphorylation of other recep-
tors in an aggregate, thereby generating binding sites for the SH2
domain of Lyn. In this model, FcεRI constitutively associates with
the unique N-terminal domain of Lyn. Crosslinking of receptors
enables Lyn to trans phosphorylate a second receptor at sites in
the receptor’s cytoplasmic subunits. These subunits, a β chain
(Ms4a2) and a homodimer of two γ chains (Fcer1g), each con-
tain an immunoreceptor tyrosine-based activation motif (ITAM).
Each ITAM contains two (canonical) tyrosine residues that can
be phosphorylated. The β chain contains an additional, non-
canonical tyrosine in the middle of the ITAM sequence. In the
original model, the tyrosines in the β chain were treated as a
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single-site, as were tyrosines in the γ chains. Here, we consider
the β chain’s N-terminal (canonical) and middle (non-canonical)
tyrosines separately because they are capable of recruiting dis-
tinct binding partners. The phosphorylated N-terminal tyrosine
recruits Lyn to aggregated receptors via SH2 domain binding, and
enhances Lyn’s catalytic activity by disruption of an inhibitory
intramolecular bond, forming a positive feedback loop. The non-
canonical phosphotyrosine binds the lipid phosphatase Inpp5d
(Ship1), which we will discuss below. The dually phosphorylated
γ ITAM binds the tandem SH2 domains of the kinase Syk. Tyrosine
residues in the linker region of Syk are phosphorylated by Lyn. Syk
trans phosphorylates the activation loop in a second Syk molecule
that is co-localized by being bound to cross-linked receptor, which
constitutes positive feedback.

Rules for additional interactions among signaling proteins,
which include mediators of negative regulation, were adapted
from a model for BCR signaling (38). Lyn and a second SFK,
Fyn, bind the transmembrane adaptor protein Pag1. Pag1 can then
be phosphorylated by these kinases, generating additional bind-
ing sites for Lyn and Fyn, as well as for the kinase Csk. When
co-localized on Pag1, Csk can phosphorylate Lyn and Fyn at an
inhibitory C-terminal tyrosine. In this model, it was assumed that

phosphorylation occurs in cis, meaning that Csk mediates phos-
phorylation of an SFK only when both are bound to the same
Pag1 molecule. The C-terminal phosphotyrosine of an SFK forms
an intramolecular bond with the SFK’s SH2 domain, resulting in
autoinhibition of the SFK’s kinase domain.

The new rules of our library join the proximal signaling events
described above to downstream processes that have not previously
been considered in mechanistic models of FcεRI signaling. New
rules are discussed in the sections that follow and are illustrated in
Figure 3. The nomenclature and residue numbers used are con-
sistent with UniProt conventions for rat proteins (39), because rat
cells are commonly used in experimental studies of FcεRI signal-
ing. If we view the rules of our library as constituting a single
model, then the terminal output of the model is production of
IP3, which is a second messenger. Binding of IP3 to its receptor
on the endoplasmic reticulum leads to release of Ca2+ ions from
intracellular stores, which is a key step for several processes in
mast cell function, including degranulation and chemotaxis (40).
Finally, we note that the interactions included in this library are
not all unique to FcεRI signaling and are shared by pathways oper-
ative in TCR and BCR signaling. Thus, to facilitate identification
of rules applicable to multiple pathways/cell types, in Table S1

FIGURE 3 | A detailed illustration of new interactions included in
the model for FcεRI signaling. This diagram shows a subset of the
interactions shown in Figure 1, but with illustration of additional
details, namely the sites responsible for interactions. Conventions for
color-coding and arrow symbols are the same as in Figure 1. Large
circles represent proteins. Small circles, overlapping the edges of large
circles, represent protein sites/components, such as domains, motifs,

and amino acid residues. Standard UniProt names are used, and we
note that Grap2 is commonly known as Gads, Lcp2 is commonly
known as Slp76, and Inpp5d is commonly known as Ship1. Arrows
represent interactions and are numbered to correspond to the
numbering of rules given in the text. Phosphatase activity is considered
implicitly as dephosphorylation reactions that apply to all sites, and is
not illustrated in this figure.
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in Supplementary Material, we list protein–protein interactions
included in the FcεRI library and whether each interaction is part
of TCR and BCR signaling according to the NetPath database (41).

PHOSPHORYLATION OF LAT
Lat is a transmembrane, palmitoylated adaptor protein (42) that
is involved in many signaling processes in both T cells and mast
cells (43, 44). Syk phosphorylates Lat at multiple tyrosine residues
(43), of which we focus on two: Y136 and Y175, which are better
known as Y132 and Y191 in human Lat. Recent imaging stud-
ies suggest that Lat and the receptor become co-clustered after
antigen-mediated receptor aggregation (45, 46). However, it is not
clear if Syk-mediated phosphorylation of Lat takes place within
the context of a signaling complex that co-localizes Syk and Lat,
or if instead, Syk-mediated phosphorylation of Lat takes place
through random collisions between Syk’s kinase domain and tyro-
sine substrates in Lat that generate short-lived enzyme–substrate
complexes, as in a Michaelis–Menten mechanism. It has previously
been assumed that the latter mechanism holds (47) and we follow
this approach, using rules capturing enzyme–substrate binding,
dissociation, and catalysis. For example, the rules listed below,
which are written using the conventions of BNGL (30), represent
Syk-catalyzed phosphorylation of Y136 in Lat. Mass action kinet-
ics are assumed. Bond indices are prefixed with the “!” symbol and
internal state labels are prefixed with the“~”symbol. Here, internal
state labels indicate whether a tyrosine residue is phosphorylated
(“P”) or unphosphorylated (“0”).

(1) Syk(tSH2!+ ,PTK)+ Lat(Y136~0) ->

Syk(tSH2!+ ,PTK!1).Lat(Y136~0!1)
kfSykLat

(2) Syk(PTK!1).Lat(Y136~0!1) -> Syk(PTK)+

Lat(Y136~0) krSykLat
(3) Syk(PTK!1,Y519_Y520~P).Lat(Y136~0!1) ->

Syk(PTK,Y519_Y520~P)+ Lat(Y136~P)
kpSykLat136_1

(4) Syk(PTK!1,Y519_Y520~0).Lat(Y136~0!1) ->

Syk(PTK,Y519_Y520~0)+ Lat(Y136~P)
kpSykLat136_2

The first rule represents binding of Syk to Lat. In general, for
rules in our library, protein components’names are consistent with
terminology used in the biological literature. Here, the PTK com-
ponent of Syk represents the protein tyrosine kinase domain of the
protein. We assume that the interaction represented by Rule 1 only
occurs when Syk is recruited to the plasma membrane, through
binding of its tandem SH2 domains (tSH2) to phosphorylated
FcεRI. Thus, the rule specifies that the tSH2 component must be
bound for the reaction to occur (indicated by “!+”). The second
rule represents the reverse reaction, which occurs independently
of the binding state of Syk. Thus, the tSH2 component of Syk is
not included in this rule. Rules 3 and 4 represent phosphorylation
of Lat Y136 by Syk. These two rules differ in whether Syk is phos-
phorylated at its activation loop tyrosine residues Y519 and Y520,
which are treated as a single site for simplicity. Phosphorylation
of the activation loop enhances the catalytic activity of Syk (48).
Rate constants consistent with this regulatory mechanism are given

after each rule, and are assigned values in the “parameters” block
of the model specification (File S1 in Supplementary Material). A
similar set of rules are used to capture phosphorylation of Y175
in Lat.

(5) Syk(tSH2!+ ,PTK)+ Lat(Y175~0) ->

Syk(tSH2!+ ,PTK!1).Lat(Y175~0!1)
kfSykLat

(6) Syk(PTK!1).Lat(Y175~0!1) -> Syk(PTK)+

Lat(Y175~0) krSykLat
(7) Syk(PTK!1,Y519_Y520~P).Lat(Y175~0!1) ->

Syk(PTK,Y519_Y520~P)+ Lat(Y175~P)
kpSykLat175_2

(8) Syk(PTK!1,Y519_Y520~0).Lat(Y175~0!1) ->

Syk(PTK,Y519_Y520~0)+ Lat(Y175~P)
kpSykLat175_1

INTERACTIONS AMONG LAT AND ITS BINDING PARTNERS
Phosphorylated Y136 and Y175 have preferences for distinct bind-
ing partners, although crosstalk occurs between the pathways that
branch from each site. Phosphorylated Y175 binds Grb2 and
Grap2 (commonly known as Gads) (49), which are two related
cytosolic adaptor proteins that each contain an SH2 domain
flanked by two SH3 domains (50). These adaptors are also able to
bind other sites in Lat, with Grb2 being more promiscuous (51),
but for simplicity we focus on Y175. The interactions of Lat pY175
with Grb2 and Grap2, which are taken to be mutually exclusive,
are modeled as follows:

(9) Lat(Y175~P)+ Grb2(SH2)< ->

Lat(Y175~P!1).Grb2(SH2!1) kfLatGrb2,
krLatGrb2

(10) Lat(Y175~P)+ Grap2(SH2)< ->

Lat(Y175~P!1).Grap2(SH2!1) kfLatGrap2,
krLatGrap2

These rules are nearly as general as possible, in that minimal
molecular context is included on the left-hand side of either of
these rules (i.e., the only requirements for a bond to form is avail-
ability of the cognate binding sites in each molecule). For this
reason, a large number of distinct reactions are implicitly defined
by each rule. This feature is a generic aspect of rules and what
allows for concise model specification.

Grap2 binds Lcp2, which is also known as Slp76. This high-
affinity interaction occurs through the SH3 domain of Grap2 and
an unconventional RxxK motif in Lcp2 (52).

(11) Grap2(SH3)+ Lcp2(RxxK)< ->

Grap2(SH3!1).Lcp2(RxxK!1) kfGrap2Lcp,
krGrap2Lcp

Phosphorylated Y136 in Lat binds phospholipase Cγ1 (Plcg1)
with high specificity (49), and the interaction is modeled with the
following rule:

(12) Lat(Y136~P)+ Plcg1(SH2)< ->

Lat(Y136~P!1).Plcg1(SH2!1) kfLatPlcg,
krLatPlcg
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Both of the tandem SH2 domains of Plcg1 contribute to co-
localization of this enzyme with FcεRI upon stimulation (53),
and there is evidence both SH2 domains are capable of binding
Lat (54). However, for simplicity, we only consider a single SH2
domain in this model.

Plcg1 also interacts with Lcp2, via the SH3 domain of
Plcg1 (55).

(13) Lcp2(PRS)+ Plcg1(SH3)< -> Lcp2(PRS!1).
Plcg1(SH3!1) kfLcp2Plcg1,krLcp2Plcg1

The final adaptor protein that we consider is Gab2. A linear
motif in Gab2 can bind to the C-terminal SH3 domain of Grb2.
We designate this motif as a proline-rich sequence (PRS), although
its sequence differs from conventional SH3 binding motifs (56).

(14) Grb2(cSH3)+ Gab2(PRS)< -> Grb2(cSH3!1).
Gab2(PRS!1) kfGrb2Gab2,krGrb2Gab2

In addition, Gab2 can be recruited by binding of its PH domain
to phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3],
also abbreviated as PIP3, in the plasma membrane (57).

(15) PI345P3(headgroup)+ Gab2(PH)< ->

PI345P3(headgroup!1).Gab2(PH!1)
kfGab2Pip3,krGab2Pip3

The“headgroup”component in these rules represents the head-
group of the lipid, which is responsible for interactions with
proteins.

RECRUITMENT OF PI3K TO Gab2
PI3K association with Gab2 is dependent on Gab2 phos-
phorylation. Gab2 is phosphorylated by Fyn (58), which we
assume catalyzes phosphorylation through a Michaelis–Menten
mechanism.

(16) Fyn(U!+ ,SH2,PTK)+ Lat(Y175~P!1).
Grb2(SH2!1,cSH3!2).Gab2(PRS!2,Y441~0) ->

Fyn(U!+ ,SH2,PTK!3).Lat(Y175~P!1).
Grb2(SH2!1,cSH3!2).Gab2(PRS!2,Y441~0!3)
kfFynGab2

(17) Rec(b_Y210~P!4).Fyn(U,SH2!4,PTK)+

Lat(Y175~P!1).Grb2(SH2!1,cSH3!2).
Gab2(PRS!2,Y441~0) -> Rec(b_Y210~P!4).
Fyn(U,SH2!4,PTK!3).Lat(Y175~P!1).
Grb2(SH2!1,cSH3!2).Gab2(PRS!2,Y441~0!3)
kfFynGab2

(18) Fyn(PTK!1).Gab2(Y441~0!1) ->

Fyn(PTK)+ Gab2(Y441~0) krFynGab2
(19) Fyn(PTK!1).Gab2(Y441~0!1) ->

Fyn(PTK)+ Gab2(Y441~P) kpFynGab2

The first two rules differ with respect to the mechanism by
which Fyn is bound to a receptor. In the first rule, Fyn is taken
to be bound by its unique domain (U). In the second rule, Fyn is
taken to be bound by its SH2 domain.

Phosphorylated Gab2 binds the SH2 domain in the p85 subunit
of PI3K (p85_SH2). Y441 of Gab2 lies in a consensus sequence for
p85 binding (59).

(20) Gab2(Y441~P)+ Pi3k(p85_SH2)< ->

Gab2(Y441~P!1).Pi3k(p85_SH2!1)
kfGab2Pi3k,krGab2Pi3k

PI3K ACTIVITY
Once recruited, PI3K phosphorylates the 3rd position in the inosi-
tol ring of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2],
also abbreviated as PIP2, generating PIP3.

(21) Lat(Y175~P!1).Grb2(SH2!1,cSH3!2).
Gab2(PRS!2,Y441~P!3).Pi3k(p85_SH2!3,
PI3Kc)+ PI45P2(headgroup) ->

Lat(Y175~P!1).Grb2(SH2!1,cSH3!2).
Gab2(PRS!2,Y441~P!3).Pi3k(p85_SH2!3,
PI3Kc!4).PI45P2(headgroup!4) kfPi3kPip2

(22) Pi3k(PI3Kc!1).PI45P2(headgroup!1) ->

Pi3k(PI3Kc)+ PI45P2(headgroup)
krPi3kPip2

(23) Pi3k(PI3Kc!1).PI45P2(headgroup!1) ->

Pi3k(PI3Kc)+ PI345P3(headgroup)
kpPi3k DeleteMolecules

In these rules, lipid phosphorylation is treated as consump-
tion and production of different lipid species. For this reason, the
BNGL keyword “DeleteMolecules” is used to indicate removal of
reactant molecules (30).

Btk-MEDIATED ACTIVATION OF Plcg1
PtdIns(3,4,5)P3 is a binding partner for multiple proteins, includ-
ing the Tec-family kinase Btk, which is involved in activating Plcg1.
The PH domain of Btk mediates this interaction.

(24) Btk(PH)+ PI345P3(headgroup)< ->

Btk(PH!1).PI345P3(headgroup!1)
kfBtkPip3,krBtkPip3

Recruited Btk can phosphorylate Plcg1 at sites that are
associated with enhancement of phospholipase activity (60).
In this way, pathways that branch from the two Lat phos-
phosites, Y136 and Y175, converge in contributing to IP3

production.

(25) Btk(PH!+ ,PTK)+ Plcg1(SH2!+ ,Y783~0) ->

Btk(PH!+ ,PTK!1).Plcg1(SH2!+ ,Y783~0!1)
kfBtkPlcg

(26) Btk(PTK!1).Plcg1(Y783~0!1) -> Btk(PTK)+

Plcg1(Y783~0) krBtkPlcg
(27) Btk(PTK!1).Plcg1(Y783~0!1) -> Btk(PTK)+

Plcg1(Y783~P) kpBtkPlcg

Plcg1 ACTIVITY
Plcg1 cleaves PtdIns(4,5)P2 to generate the second messengers dia-
cyl glycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) (61). The
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cleavage reaction is taken to occur through a Michaelis–Menten
mechanism:

(28) Plcg1(SH2!+ ,PLC)+ PI45P2(headgroup) ->

Plcg1(SH2!+ ,PLC!1).PI45P2(headgroup!1)
kfPlcgPip2

(29) Plcg1(PLC!1).PI45P2(headgroup!1) ->

Plcg1(PLC)+ PI45P2(headgroup) krPlcgPip2
(30) Plcg1(PLC!1,Y783~P).PI45P2(headgroup!1)

-> Plcg1(PLC,Y783~P)+ IP3()+ DAG()
kcPlcg DeleteMolecules

RECRUITMENT AND ACTIVITY OF Plcg2
In addition to Plcg1, we also include Plcg2 in the library because
isoform-specific differences between these two proteins have been
found in FcεRI signaling. It has been observed that phosphory-
lation and activation of Plcg2 is less sensitive to PI3K inhibi-
tion than Plcg1 (62). Thus, we include a mechanism by which
Plcg2 is activated by Syk rather than by Btk. However, we note
that other studies have found phosphorylation of Plcg2 to be
reduced in the absence of Btk (63), suggesting that Btk may act
on Plcg2.

(31) Lat(Y136~P)+ Plcg2(SH2)< ->

Lat(Y136~P!1).Plcg2(SH2!1) kfLatPlcg,
krLatPlcg

(32) Syk(tSH2!+ ,PTK)+ Plcg2(SH2!+ ,Y753~0)
-> Syk(tSH2!+ ,PTK!1).Plcg2(SH2!+ ,
Y753~0!1) kfSykPlcg

(33) Syk(PTK!1).Plcg2(Y753~0!1) -> Syk(PTK)+

Plcg2(Y753~0) krSykPlcg
(34) Syk(PTK!1).Plcg2(Y753~0!1) -> Syk(PTK)+

Plcg2(Y753~P) kpSykPlcg
(35) Plcg2(SH2!+ ,PLC)+ PI45P2(headgroup) ->

Plcg2(SH2!+ ,PLC!1).PI45P2(headgroup!1)
kfPlcgPip2

(36) Plcg2(PLC!1).PI45P2(headgroup!1) ->

Plcg2(PLC)+ PI45P2(headgroup) krPlcgPip2
(37) Plcg2(PLC!1,Y753~P).PI45P2(headgroup!1)

-> Plcg2(PLC,Y753~P)+ IP3()+ DAG()
kcPlcg DeleteMolecules

Rule 31 represents binding to Lat. Rules 32–34 represent phos-
phorylation of Plcg2 through a Michaelis–Menten mechanism.
Rule 35–37 represent catalyzed hydrolysis of PIP2.

ACTIVATION OF Inpp5d
The final regulator of lipid signaling explicitly considered in our
model is Inpp5d, also known as Ship1, a phosphatase that can
be recruited to FcεRI by binding a non-canonical ITAM tyro-
sine in the β subunit of the receptor (64, 65). Although Inpp5d
and Lyn both bind the β subunit, they have preferences for dif-
ferent phosphotyrosines and thus we treat these interactions as
non-competitive. Inpp5d dephosphorylates the 5th position of the
inositol ring of PtdIns(3,4,5)P3 to form PtdIns(3,4)P2. This prod-
uct of Inpp5d activity can in turn bind the Inpp5d C2 domain
(66), forming a positive feedback loop that has an overall negative

impact on FcεRI-mediated degranulation. The following rules are
used to model binding of Inpp5d to the receptor:

(38) Inpp5d(SH2,C2)+ Rec(b_Y224~P) ->

Inpp5d(SH2!1,C2).Rec(b_Y224~P!1)
kfShipRec

(39) Inpp5d(IPP,C2!+)+ Rec(b_Y224~P) ->

Inpp5d(IPP!1,C2!+).Rec(b_Y224~P!1)
100*kfShipRec

(40) Inpp5d(SH2!1).Rec(b_Y224~P!1) ->

Inpp5d(SH2)+ Rec(b_Y224~P) krShipRec

In the first rule, Inpp5d is cytosolic, because its SH2 and C2
domains are both free and, in the model, these are the only
domains that mediate membrane recruitment. In the second rule,
Inpp5d is already membrane associated through binding of its C2
domain to PtdIns(3,4)P2. For this reason, receptor binding occurs
more quickly (we assume a 100-fold enhancement). The third rule
represents dissociation of Inpp5d from the receptor.

Binding of Inpp5d to PtdIns(3,4)P2 is modeled similarly, with
different rules for membrane-recruited and cytosolic Inpp5d:

(41) Inpp5d(SH2,C2)+ PI34P2(headgroup) ->

Inpp5d(SH2,C2!1).PI34P2(headgroup!1)
kfShipPip2

(42) Inpp5d(SH2!+ ,C2)+ PI34P2(headgroup) ->

Inpp5d(SH2!+ ,C2!1).PI34P2(headgroup!1)
100*kfShipPip2

(43) Inpp5d(C2!1).PI34P2(headgroup!1) ->

Inpp5d(C2)+ PI34P2(headgroup) krShipPip2

In the first rule, Inpp5d is cytosolic, whereas in the second rule,
it is localized to the membrane through binding of its SH2 domain
to the receptor. As above, a 100-fold enhancement is assumed. The
third rule represents dissociation.

Inpp5d ACTIVITY
The following rules capture the catalytic activity of Inpp5d:

(44) Inpp5d(SH2!+ ,C2,IPP)+ PI345P3
(headgroup) -> Inpp5d(SH2!+ ,C2,IPP!1).
PI345P3(headgroup!1) kfShipPip3

(45) Inpp5d(SH2,C2!+ ,IPP)+ PI345P3
(headgroup) -> Inpp5d(SH2,C2!+ ,IPP!1).
PI345P3(headgroup!1) kfShipPip3

(46) Inpp5d(SH2!+ ,C2!+ ,IPP)+ PI345P3
(headgroup) -> Inpp5d(SH2!+ ,C2!+ ,
IPP!1).PI345P3(headgroup!1) kfShipPip3

(47) Inpp5d(IPP!1).PI345P3(headgroup!1) ->

Inpp5d(IPP)+ PI345P3(headgroup)
krShipPip3

(48) Inpp5d(IPP!1).PI345P3(headgroup!1) ->

Inpp5d(IPP)+ PI34P2(headgroup)
kdpShipPip3 DeleteMolecules

In the rules above, “IPP” represents the catalytic domain of
Inpp5d.
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ADDITIONAL LIPID REACTIONS
Conversion of PtdIns(3,4,5)P3 to PtdIns(4,5)P2 by Pten is con-
sidered implicitly as a first-order reaction. Conversions between
PtdIns(4,5)P2 and PtdIns(4)P are modeled similarly.

(49) PI345P3(headgroup) -> PI45P2(headgroup)
kPten DeleteMolecules

(50) PI4P(headgroup) -> PI45P2(headgroup)
kfP5 DeleteMolecules

(51) PI45P2(headgroup) -> PI4P(headgroup)
krP5 DeleteMolecules

IDENTIFICATION OF NETWORK MOTIFS
It has been hypothesized that relatively simple network motifs
with specialized functions play important roles in cellular regula-
tory systems and that understanding the design principles of these
motifs can help us better understand the complex systems in which
they are embedded (67, 68). Network motifs, such as feedback
loops, have the potential to generate and/or regulate non-linear
dynamical behavior (69), which may, for example, enable precise
encoding of information about a stimulus (70). We assessed the
FcεRI signaling network for the presence of network motifs, and
identified motifs from four classes: positive feedback loops, nega-
tive feedback loops, incoherent feed-forward loops, and coherent
feed-forward loops. Several of the positive and negative feedbacks
contribute to regulation of the SFKs Lyn and Fyn, as well as Syk.
One positive feedback loop arises because SFKs phosphorylate
tyrosine residues in FcεRI, which serve as binding sites that recruit
additional Lyn and Fyn molecules. Furthermore, Lyn and Fyn
can each trans phosphorylate their own activation loop, which
enhances catalytic activity. A similar mechanism also activates
the kinase Syk. Negative feedback arises because Lyn and Fyn can
phosphorylate the adaptor Pag1, which recruits Csk to negatively
regulate SFK activity. This set of interactions has been predicted
to lead to oscillations in BCR signaling (38).

Other positive feedback loops are involved in regulating lipid
metabolism. PI3K generates PIP3, which recruits Gab2. Gab2
can in turn recruit additional PI3K. An additional positive feed-
back loop regulates Inpp5d, because it is capable of binding its
own product. Inpp5d is also involved in an incoherent feed-
forward loop, meaning a process in which two parallel mechanisms
have opposite influences on an output. Here, the output is PIP3.
Inpp5d is recruited to FcεRI and dephosphorylates PIP3. Inco-
herence arises because FcεRI contributes to activation of PI3K,
which generates PIP3. In this way, opposing influences are exerted
on the abundance of PIP3 upon stimulation of FcεRI signaling.
Such circuitry has been hypothesized to be involved in adapta-
tion, the capacity of a system to respond to an input and then
reset itself to a pre-stimulated state (71). Thus, PIP3 level may
be raised and then lowered after a period of FcεRI stimula-
tion, with Inpp5d-mediated positive feedback reinforcing negative
regulation over time.

Finally, we identified a pair of coherent feed-forward loops
stemming from the adaptor Lat. In a coherent feed-forward loop,
two processes exert the same influence (either positive or nega-
tive) on an output. In each of the feed-forward loops of interest
here, both processes in the network motif have a positive influence

on Plcg1 activity. In the first feed-forward loop, Lat recruits Plcg1
via one of its phosphotyrosines. Other Lat phosphotyrosines are
involved in assembly of a signaling complex that ultimately recruits
PI3K. The product of PI3K,PIP3, binds the kinase Btk,which phos-
phorylates Plcg1 at an activating site. In the second feed-forward
loop, Lat contributes to Plcg1 recruitment through direct binding
as well as through recruitment of another adaptor, Lcp2. What
function could be achieved by these (overlapping) feed-forward
loops? In transcriptional regulatory networks, it has been found
that feed-forward loops can act as sign-sensitive delay elements,
meaning that they enable rapid responses to changes in an input
in one direction, and slow responses to changes in the input in the
opposite direction (72, 73). Thus, the feed-forward loops initiated
by Lat may influence the timing of Plcg1 activation and deactiva-
tion after increases or decreases in, for example, upstream receptor
phosphorylation.

It is worth noting that Plcg1 and PI3K act on the same substrate,
PIP2. Thus, although PI3K can positively influence Plcg1, these
two enzymes also compete with one another and could together
deplete available PIP2, assuming both access the same lipid pool. In
this way, the feed-forward loop may be self-limiting. For example,
if Plcg1 causes rapid conversion of PIP2 to IP3, less PIP2 would
be available to PI3K and as a result, less PIP3 would be gener-
ated and the impact of the feed-forward loop would be reduced.
The strength of the feed-forward loop would also be influenced
by the rate of production of PIP2 by specific lipid kinases and
phosphatases. A caveat is that Plcg1 and PI3K may act on spa-
tially distinct lipid pools, which PIP2 has been found to exist in
(74). These factors are not immediately evident from examination
of isolated circuitry. This example highlights the importance of
considering broader context and physical parameters (e.g., con-
centrations and binding affinities) in assessment of network motif
functionality.

SENSITIVITY OF PHOSPHOLIPID METABOLISM TO PROTEIN TYROSINE
KINASE ACTIVATION
We next used our rule library to develop models for investiga-
tion of signaling dynamics. We focused on the adaptor protein
Lat, which is known for its role as a signaling hub in both T
cells and mast cells (44). This role arises in large part from its
capacity to recruit multiple adaptors and enzymes that regulate
lipid metabolism and production of second messengers. Most of
Lat’s interactions depend on prior Lat phosphorylation, which is
catalyzed primarily by Syk. However, studies of FcεRI signaling
induced by structurally defined antigens have revealed that not all
“downstream” events are equally dependent on Lat phosphoryla-
tion. Specifically,a panel of rigid antigens,composed of haptenated
DNA sequences and differing in the distance between DNP hapten
groups, was evaluated for the ability to induce phosphorylation of
signaling proteins, Ca2+ mobilization, and degranulation. It was
found that phosphorylation of FcεRI and Lat, as well as store-
operated Ca2+ entry and degranulation, were strongly dependent
on hapten spacing, with the shortest spacing examined associated
with the strongest responses. In contrast, it was also found that
release of Ca2+ from intracellular stores did not show as strong a
dependence on the distance between hapten sites (19). Given that
Ca2+ release is thought to occur as a result of activities of proteins
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FIGURE 4 | Motifs in the FcεRI signaling network. Positive feedbacks
include interactions between FcεRI and Lyn and Fyn, because Lyn and Fyn
catalyze phosphorylation of additional binding sites for these kinases. Lyn,
Fyn, and Syk are subject to trans autophosphorylation at activating sites.
Inpp5d binds its own product. Gab2 recruits PI3K, which generates PIP3,

which can recruit additional Gab2. Negative feedback includes inhibition of
Lyn and Fyn by Csk. Incoherent feed-forward includes FcεRI stimulation
leading to activation of both PI3K and Inpp5d, which exert opposing
influences on PIP3 level. Coherent feed-forwards include recruitment and
activation of Plcg1, and recruitment of Plcg1 through two pathways.

FIGURE 5 | Simulation of a model of the feed-forward loop connecting Lat to IP3 production. Different color lines indicate different relative levels of Syk
activity. In these simulations, Syk activity was set at the indicated level and held constant.
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FIGURE 6 | Steady-state dose–response curves, which were found by
simulation of the feed-forward loop connecting Lat to IP3 production. The
differences in phosphorylation level between the two phosphorylation sites in

Lat (top panels) results from different affinities of the binding partners that
interact with each site. Active Plcg1 is taken to be Plcg1 that is both recruited
to Lat and phosphorylated, and active Btk is taken to be Btk recruited to PIP3.

that depend on Lat, how can this apparent uncoupling between
Lat phosphorylation and Ca2+ mobilization be explained?

We hypothesize that compensatory mechanisms mediated by
Fyn and Gab2 (58) are involved in this phenomenon. Gab2 can be
phosphorylated by Fyn, and can then recruit PI3K. As discussed
above, production of PIP3 by PI3K contributes to activation of
Plcg1. A product of Plcg1 is IP3, which induces release of Ca2+

from intracellular stores. Thus, if Gab2 recruitment and activa-
tion is robust to differences in Lat phosphorylation level, then
Gab2 may open an avenue by which Ca2+ mobilization could
escape control of Lat. We used our rule library to build models
to determine if Gab2 could potentially enable Ca2+ mobilization
when Lat phosphorylation is diminished.

We first considered a model in which Syk and Fyn were indepen-
dent inputs. Our initial model (File S2 in Supplementary Material)

essentially consists of the first coherent feed-forward loop shown
in Figure 4: lat recruits Plcg1, as well as PI3K through Gab2 and
Grb2. Btk is recruited to PIP3 and activates Plcg1 through phos-
phorylation. Fyn participates by phosphorylating Gab2. To model
the differences between antigens observed to induce the most and
least Lat phosphorylation, we considered different levels of active
Syk consistent with the approximately fourfold difference in Lat
phosphorylation observed experimentally (19). The level of active
Fyn was kept constant. Simulations of this model revealed that dif-
ferences in Lat phosphorylation level were maintained or amplified
in downstream events. According to the model, a decrease in Lat
phosphorylation (arising from lowered Syk activity) causes at least
proportionate decreases in the levels of activated Plcg1, activated
Btk, Lat-associated PI3K, PIP3, and IP3 (Figure 5). We also consid-
ered a scenario in which activity of Syk and Fyn are both controlled
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by the magnitude of an input signal, which may be a more realis-
tic scenario because both kinases are recruited to phosphorylated
receptors. We varied the strength of this signal and evaluated the
resulting steady-state levels of outputs (Figure 6). Consistent with
results from the first scenario, decreased signal strength led to
decreased Lat phosphorylation, and was accompanied by even
steeper decreases in activation of other signaling molecules. Thus,
the interactions included in this model are insufficient to explain
the experimental observation of Ca2+ mobilization in the absence
of strong Lat phosphorylation.

In an extension of the initial model (File S3 in Supplementary
Material), we incorporated additional interactions from the rule
library, those responsible for the positive feedback involving Gab2
interaction with PIP3 (see Figure 4). We reasoned that, with the
addition of these interactions, once PIP3 production is initiated,
PIP3 production may become self-sustaining, because PIP3 is able
to recruit Gab2 to the plasma membrane, which in turn is able to
recruit PI3K. Simulated time courses with the same level of active
Fyn and different levels of active Syk, as in Figure 5, are shown
in Figure 7. These results indicate that certain signaling readouts
downstream of Lat are buffered against reduced Lat phosphoryla-
tion. For example, there is less than a fourfold difference in peak
IP3 levels between the conditions of high (black line) and interme-
diate (magenta line) Lat phosphorylation. In contrast, the model
without Gab2-mediated positive feedback predicted a greater than
100-fold difference.

To further investigate the role of positive feedback, we mod-
ulated an input signal controlling both Fyn and Syk activity, as
in Figure 6. Steady-state simulation results from this model are
shown in Figure 8, which differ from those obtained with the first
model. First, the total numbers of signaling molecules in activated
forms are greater than for the case without feedback, as long as
the signal strength is above a certain level. Second, within certain
input ranges, the model shows bistability, i.e., existence of two
stable steady states, as indicated by signal strength values that cor-
respond to more than one steady-state output value. Bistability

has also been characterized in TCR signaling (75, 76) and BCR
signaling (38, 77). Third, we found that certain signaling readouts
downstream of Lat are now buffered against reduced Lat phospho-
rylation (Figure 7), decreasing less sharply when signal is reduced.
Together, these results suggest that Gab2-mediated positive feed-
back may enable committed, all-or-none decisions that lead to
high levels of IP3 as long as Lat phosphorylation is above a thresh-
old. When input level falls below this threshold, positive feedback is
unable to enhance IP3 production (Figure 7). Thus, some amount
of PIP3 must be generated through Lat-dependent mechanisms
before the Fyn/Gab2 pathway can contribute to production of IP3.

We also considered how positive feedback affects the dynam-
ics of signaling. We calculated the rise time for IP3 at different
input levels as predicted by the models with and without posi-
tive feedback. We found that positive feedback caused IP3 level to
reach its steady state more slowly (Figure 9A). Rise time for the
model with positive feedback peaked in the bistable region, where
the system transitions from a low steady state to a higher steady
state (Figure 9B). The slower rise in IP3 level qualitatively mimics
the experimentally observed dynamics of Ca2+ release from stores
caused by antigens that induce low levels of Lat phosphorylation
(19). These same antigens induce minimal store-operated calcium
entry (SOCE) and minimal degranulation, which suggests that
SOCE may be sensitive to the kinetics of IP3 production.

There are several experimental tests that could be pursued to
evaluate the role of Gab2-mediated positive feedback. One pre-
dicted effect of the feedback loop is bistability of several signaling
readouts (Figure 8), including PIP3. Testing for bistability usually
benefits from single-cell measurements, because cell-to-cell vari-
ability may result in different cells having different bifurcation
points. At the single-cell level, PIP3 production can be moni-
tored using PH domain constructs (78). When the strength of an
input signal, such as ligand-induced receptor aggregation, crosses
a threshold level, the quantity of PIP3 is expected to increase
dramatically in a switch-like manner. Another characteristic aris-
ing from bistability is hysteresis, meaning history dependence. As

FIGURE 7 | Simulation of a model of the feed-forward loop connecting Lat to IP3 production with consideration of a Gab2-mediated positive feedback
loop. Different color lines indicate different relative levels of Syk activity.
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FIGURE 8 | Steady-state dose–response curves, which were found by simulation of the feed-forward loop connecting Lat to IP3 production when
Gab2-mediated positive feedback is considered. Each plot is a bifurcation diagram; the bifurcation parameter is signal strength, which governs the rate of
production of active Syk and Fyn. Only stable steady states are shown. As can be seen, the model predicts the possibility of bistability.

signal strength is reduced from a high level [e.g., by breaking up
receptor aggregates with a monovalent hapten (34)], PIP3 level is
expected to switch back to a low state. However, this switch is pre-
dicted to occur at a lower input level than that required to induce a
transition from low signaling to high signaling. Controlling input
level would require an understanding of how ligand dose relates
to receptor aggregation, which can be obtained with a model for
ligand–receptor interactions (79).

A second approach would involve disruption of the Gab2 feed-
back loop, which would be expected to increase sensitivity to Lat
phosphorylation. Mutation of the Gab2 PH domain, which binds
PIP3 and is therefore a key component of the feedback, would
be expected to inhibit Ca2+ mobilization. However, such manip-
ulation of endogenous Gab2 would be technically challenging,

making this strategy potentially difficult to implement. An alter-
native approach would be to knock down either Gab2 or Fyn,
which would be predicted to similarly inhibit Ca2+ mobilization.

CONCLUSION
As a step toward systems-level understanding of FcεRI signal-
ing, we have synthesized information about a relatively large
number of interactions and proteins into a formalized interac-
tion library. This library consists of executable rules that can
be used to extend existing models and to build new models.
The rules are annotated with information from the primary lit-
erature, thereby facilitating reuse of information. The rules are
also visualized to illustrate the scope and detail of the library’s
contents. Analysis of the library reveals multiple feedback and
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FIGURE 9 | Effect of positive feedback on signaling dynamics. (A) Rise
time for IP3 synthesis was calculated as the time needed to reach 95% of
the final steady-state level. Rise times were calculated for different levels of
input, or signal strength. Rise times for the model with positive feedback
were divided by rise times for the model without positive feedback and
plotted against corresponding input level. All indicated rise time ratios are
greater than one, meaning that the model with positive feedback takes
more time to reach its final steady state. (B) Time courses for IP3

production in a narrow range of input levels surrounding the peak shown in
(A). The input level corresponding to each curve is indicated with the color
bar at the right.

feed-forward loops in FcεRI signaling, the behavior of which can
be investigated quantitatively through simulation and comple-
mentary quantitative experiments. We used the library to model
events involved in phosphoinositide metabolism at different levels
of Syk activity, and found that a Gab2-mediated positive feedback
can compensate for reduced Lat phosphorylation, which provides
a potential explanation for how antigens that induce dramatically
different levels of Lat phosphorylation can induce similar Ca2+

fluxes (19).
We anticipate that the approach presented here will have several

potential applications in linking computational and experimental

investigations of cellular information processing. First, a library
of rules could be used to build a model of broad scope and site-
specific detail for use in analysis of multiplexed, high-resolution
data, such as proteomic measurements of site-specific post-
translational modifications (80). Currently, such data are often
analyzed using clustering, enrichment analysis, and other tech-
niques that reveal trends in dynamics and functions of detected
proteins (81), but that do not necessarily provide a concrete
picture of the mechanisms at work. Modeling will enable us
to better leverage information about mechanisms and physical
parameters, complementing current analysis techniques. A com-
bination of modeling and quantitative high-throughput experi-
mentation could, for example, be used to characterize the dis-
tribution of signaling complexes that can be nucleated by Lat.
Binding partners of Lat have shared binding sites and a range
of affinities (49). To understand how binding of these proteins
is balanced, it would be necessary to measure binding affinities
of SH2 domains to each phosphosite (82) and to quantify pro-
tein copy numbers (83). A model could then be used to integrate
such data and determine the expected distribution of signaling
complexes.

Second, rule libraries could facilitate the extension of models
by increments. The benefit of such an approach is that a model
of an idealized network motif (71, 84) could be extended piece by
piece to form a more complete representation of the motif ’s con-
text. Studies of such models could reveal how well the predicted
behavior of an isolated motif is maintained when additional inter-
actions are considered, and what complicating factors may need to
be taken into account in experimental assessments of motif func-
tion or in synthetic biology efforts aimed at engineering regulatory
systems on the basis of network motif design principles.

Finally, rule libraries may help address problems in knowledge
engineering, i.e., the task of gathering, organizing, and interpreting
large quantities of information. Rule-based models have already
been annotated using interactive wikis (85, 86), which could open
the door to community-based model development and curation,
making it easier to assemble and assess data for model building.
Furthermore, a widely used approach in knowledge engineering
is natural language processing (NLP), the automated derivation
of information from text. A major bioinformatics goal of NLP is
to extract networks and quantitative models from the primary
biomedical literature (87). A limiting factor in this task is the
availability of “gold standard” networks against which to compare
an automatically constructed network or model, which is nec-
essary to assess the performance of network/model construction
algorithms. For many biological systems, reliable network repre-
sentations and models are non-existent. Furthermore, even when
a reliable network is available, it may be in a format (e.g., ordinary
differential equations) that does not map to underlying interac-
tions in a clear manner. This problem is addressed by a rule library,
because rules not only serve as the basis for simulations but also
provide precise, human- and machine-readable representations
of biomolecular interactions. NLP could aid in library construc-
tion through automatic extraction of rules from the literature.
As information about cell signaling systems continues to expand,
we anticipate that formalization and synthesis of knowledge will
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become increasingly important for informing hypotheses, making
quantitative predictions, and elucidating systems-level properties
of cellular regulatory systems.
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GATA1-PU.1 genetic switch is a paradigmatic genetic switch that governs the differentia-
tion of progenitor cells into two different fates, erythroid and myeloid fates. In terms of
dynamical model representation of these fates or lineages corresponds to stable attrac-
tor and choosing between the attractors. Small asymmetries and stochasticity intrinsically
present in all genetic switches lead to the effect of delayed bifurcation which will change
the differentiation result according to the timing of the process and affect the proportion
of erythroid versus myeloid cells. We consider the differentiation bifurcation scenario in
which there is a symmetry-breaking in the bifurcation diagrams as a result of asymmetry
in external signaling. We show that the decision between two alternative cell fates in this
structurally symmetric decision circuit can be biased depending on the speed at which the
system is forced to go through the decision point. The parameter sweeping speed can
also reduce the effect of asymmetry and produce symmetric choice between attractors,
or convert the favorable attractor. This conversion may have important contributions to the
immune system when the bias is in favor of the attractor which gives rise to non-immune
cells.

Keywords: GATA1-PU.1 switch, differentiation, immune cells, pluripotent cells

1. INTRODUCTION
The importance of studying the immune system has attracted
mathematicians and biologists to discover more of its features
in recent years. One of the mechanisms is to study the genetic
networks that control the lineage commitment of hematopoietic
stem cells, which produce the full range of blood cells, includ-
ing the immune cells (1). Many mathematical models have been
used to study the differentiation of progenitor cell into erythroid
and myeloid lineages based on the expression of lineage-specific
transcription factors GATA1 and PU.1, respectively (2, 3). An
important question arises in these models about the causes of
bifurcation and symmetry-breaking and whether they occur in
response to intrinsic cues or extrinsic signals. In fact, the inte-
gration of both intrinsic and extrinsic factors has received an
extensive attention to elucidate the roles of external signals in
cell-fate decision processes, and most importantly its relationship
to the production of immune cells (3–6). Another important and
interesting factor that can affect the decision of the cell is the speed
of external signals or the speed of crossing the critical region (7–9).
Remarkably, varying control parameter with time has been stud-
ied in many other systems. Ashwin et al. (10) have investigated
how the rate of change of a parameter (or input) imposes signif-
icant changes in the climate system. It is found that rapid change
may force the system to move away from a branch of attractors.
This dependence on the rate was referred to as R-tipping. Another
more recent study (11) has discovered how the stress response in
bacteria is determined by the rate of environmental change. An
increase in environmental stress leads to a single uniform pulse
of alternative sigma factor σB activation, a general stress response

pathway, with amplitude depending on the rate at which the stress
increased. It is found that faster stresses lead to larger and sharper
activation of σB, reflecting the fact that the activation process is
rate-dependent. A question naturally arises how rate dependent
signaling will affect the immune cell-fate selection via a differen-
tiation of progenitor cells. We have studied these phenomena in
the most paradigmatic switch responsible for the differentiation
of immune cells, the GATA1-PU.1 switch. Moreover, we have con-
sidered how the shape of external signals may have an impact in
decision-making process. The paper is structured as follows, we
review the model of Huang et al. (2) and investigate, in addition
to the symmetric scenario, the asymmetric scenario in two ways:
(i) under the effect of asymmetric change of parameters; and (ii)
under the effect of external signals, using two kinds of signals (see
Materials and Methods). Furthermore, we will test the effect of
parameter sweeping speed on the distribution of trajectories in
the attractors of the dynamical system.

2. MATERIALS AND METHODS
2.1. THE GATA1-PU.1 GENE REGULATORY CIRCUIT
The model of the genetic switch responsible for differentiation
contains mutual inhibition and is shown in (Figure 1A). The
regulatory dynamics can be described by the following form (2):

dX1

dt
=

a1X n
1

rn
a1
+ X n

1

+
b1rn

b1

rn
b1
+ X n

2

− k1X1 + σX1ξX1 (1)

dX2

dt
=

a2X n
2

rn
a2
+ X n

2

+
b2rn

b2
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+ X n
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where X 1 and X 2 are the concentrations of two transcription fac-
tors GATA1 and PU.1, respectively. These equations model the
dynamics of self-activation and cross-inhibition with Hill func-
tions (12). The parameters a1, a2 represent self-activation rates,
the parameters b1, b2 are basal expression rates, k1, k2 are deactiva-
tion rates, the parameters r ’s are thresholds at which the inflection
point in the Hill function occurs, and n is the Hill coefficient.
The first terms of equations (1) and (2) give the contribution
from self-activation, while the second terms measure the effect
of cross-inhibition on basal activation rates, and the third terms
the degradation. To take account of intrinsic gene expression sto-
chasticity, we consider the differential equations (1) and (2) in
the Langevin form by adding multiplicative noise terms (the last
ones) where ξX1 and ξX2 stand for a Gaussian noise and σX1,2

depend on X 1,2 as suggested in Ref. (13). These noise terms model
the contribution of intrinsic noise which is unavoidable in biolog-
ical systems. External cell signaling can be included in the model
as follows

dX1

dt
=

a1S1X n
1

rn
a1
+ X n

1

+
b1rn

b1

rn
b1
+ X n

2

− k1X1 (3)

dX2

dt
=

a2S2X n
2

rn
a2
+ X n

2

+
b2rn
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rn
b2
+ X n

1

− k2X2 (4)

where S1 and S2 represent external signals to the genetic switch.
Here, we are interested in two generic forms of signals:

• Linear signals: In this form (7) the external signals may have
different rising times but they are equal in the steady state
at Smax= 10 (see Figure 2A). For the sake of simplicity we
assume that S1 reaches to the steady state faster than S2,
and thus the rising time T 1 of S1 is smaller than the ris-
ing time T 2 of S2. They both increase linearly with time
according to

S1(t ) =

{
Smax
T1

t if t ≤ T1

Smax if t > T1
(5)

S2(t ) =

{
Smax
T2

t if t ≤ T2

Smax if t > T2
(6)

The difference between S1 and S2 and the maximal difference
A (Figure 2B) are defined as follows

∆S(t ) = S1(t )− S2(t ), A = max(∆S(t )) = Smax

(
1−

T1

T2

)
(7)

• Adaptation form of signals: As suggested in Ref. (14) to achieve
biochemical adaptation the signals have transient growth stage
where they reach to their maxima, and decay stage where they
decay and saturate to their steady states (see Figure 3). As for the
first form, S1 has a rising time, θ1, smaller than S2, θ2, and the

A

GATA1 PU.1

B

GATA1 PU.1

S1 S2

FIGURE 1 | GATA1-PU.1 genetic switch with and without external signals. (A) The isolated switch consists of two transcription factors GATA1 and PU.1
that activate themselves while inhibit each other’s expression. (B) The exposure of the same switch in (A) to two external signals S1 and S2.

A B

FIGURE 2 | Linear form of external signals in GATA1-PU.1 genetic switch. (A) Two external signals S1 and S2 with different rising times but equal steady
states at Smax =10. (B) The difference between the external signals with maximal asymmetry at A.
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FIGURE 3 | Adaptation form of external signals in GATA1-PU.1 genetic
switch. The external signals S1 and S2 have different rising times but equal
steady states at v =10. Note that at the end of the signaling the system is
structurally symmetric.

value of saturation is 10. They have the following form

S1(t ) =
h1

θ2
1

t e
−

t
θ1 +

v

1+ e−t
(8)

S2(t ) =
h2

θ2
2

t e
−

t
θ2 +

v

1+ e−t
(9)

where h1, h2 control the amplitude of signals, and θ1, θ2 are
scale parameters. The second terms control the saturation of the
signals to the value v = 10 (selected value). The maxima occur
at tmax= θ1,2. Consequently, we have chosen θ (θ1 or θ2) to be
the value which determines the speed since as we increase θ,
which represents the rising time, we increase the time at which
the maximum occurs. In other words, we decrease the speed of
the signal variation.

2.2. TESTING OF THE PARAMETER SWEEPING SPEED
To test the effect of speed, we compute the ratio R numerically
using

R =
Nu

Nt
(10)

It represents the ratio between trajectories or cells which go
to the top (or to the upper branch) of the bifurcation diagram,
and trajectories that go to both upper and lower branches during
simulation. Obviously, R= 1 if all cells choose the upper branch
in the decision of their fate, R= 0.5 if the proportions of cells
between two branches are equal, and R= 0 if all cells prefer the
lower branch.

Heun’s method is used for solving the differential equations. In
simulation of stochastic differential equations we have used Mat-
lab, and all bifurcation diagrams and nullclines were generated in
XPPAUT. δ(t ) is an integration step size.

3. RESULTS
3.1. GATA1-PU.1 GENETIC SWITCH WITHOUT EXTERNAL SIGNALS
This switch (Figure 1A) represents a paradigm for gene regula-
tory networks that govern the differentiation (2). It consists of

two transcription factors GATA1 and PU.1 with self-stimulation
and cross-inhibition. GATA1 is a master regulator of the erythroid
lineage, and PU.1 is a master regulator of the myeloid lineage,
and the two lineages arise from a common myeloid progenitor
cell (1, 15).

3.1.1. Bifurcation analysis for symmetric scenario
In the symmetric scenario, the parameters of the model are
changed symmetrically with respect to X 1 and X 2. Hence, the
rates of self-activation, cross-inhibition, deactivation, and thresh-
olds are equal for both transcription factors (see Materials and
Methods). Then, this scenario is divided into two parts depending
on the kind of bifurcation which results in during a change of the
parameters.

• Supercritical pitchfork bifurcation: This type of bifurcation can
occur when b is increased from 0.5 to 1 (Figure 4A), or when r
is decreased from 1.8 to 1.2 (Figure 5C). In this kind of bifurca-
tion, a transition occurs from monostability to bistability. The
monostable state represents progenitor cell in undifferentiated
state and has the ability to differentiate into two different fates.
At this state, both transcription factors in the network are pro-
duced at approximately equal levels as it can be seen from the
intersection point of nullclines in (Figure 4B). At the differen-
tiation process, the progenitor cell is destabilized and two new
attractors appear with equal basins of attraction (Figure 4C).

• Subcritical pitchfork bifurcation: This type of bifurcation occurs
for many parameter changes. It can happen when k is changed
from 1 to 1.5 (Figure 5A), when a is decreased from 1 to 0.5
(Figure 5B), when b is increased from 0.3 to 0.4 (Figure 5D),
and when r is increased from 0.5 to 1 (Figure 5C). In this kind
of bifurcation, a transition occurs from tristability to bistability
(Figures 5E,F). In this situation, the progenitor cell (metastable
state) coexists with the two fates, and the two transcription
factors are expressed at equal or low levels. At the bifurcation
process, it becomes unstable and makes discontinuous transi-
tion to either erythroid or myeloid fates with equal basins of
attraction.

3.1.2. Bifurcation analysis for asymmetric scenario
Here, the parameters of the model are changed asymmetrically
with respect to X 1 and X 2. For example, we can increase one of
the parameters and keep the other constant, or decrease one of the
parameters and keep the other constant, or both. This asymmetric
change will cause symmetry-breaking in the bifurcation diagrams
and makes one of the attractors more favorable than the other.
Similarly, we note two types of bifurcation:

• Supercritical pitchfork bifurcation: In order to get this kind of
bifurcation with symmetry-breaking, we increase a1 and k2 (see
Materials and Methods for their definitions) and as a result, X 1

is increased. Then, the bifurcation occurs when b is changed
from 0.6 to 1 (Figures 6A–C). Now, the uncommitted progen-
itor cell represented by monostability is not in the middle but
at the point where X 1 is higher. After bifurcation, the erythroid
fate becomes dominant since it has a larger basin of attraction
to the right of the separatrix (Figure 6C).
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FIGURE 4 | Supercritical pitchfork bifurcation diagrams for symmetric scenario. Bifurcation diagram (A) and nullclines at the beginning (B) and end (C) of
the bifurcation. For all diagrams, n=4, r =0.5, a1 = a2 =0.01, k 1 = k 2 =1. The solid lines indicate stability, while dashed lines indicate unstable branches.

• Subcritical pitchfork bifurcation: The bifurcation occurs when b is
varied from 0.3 to 0.4. This gives imperfect subcritical pitchfork
bifurcation (Figure 7A). The change in system behavior from
tristability to bistability is depicted in (Figures 7B,C). At the
progenitor cell, both transcription factors have low levels but
the progenitor cell is not exactly in the middle. After bifurcation,
one of the attractors corresponding to erythroid lineage becomes
dominant as a result of increasing self-activation of GATA1.

3.1.3. Trajectories and the effect of parameter sweeping speed
To investigate the effect of the different speeds of the parameter
sweeping we concentrate on the asymmetric supercritical pitch-
fork bifurcation, and similar results can be seen in the other kind
of bifurcation. The graphical solutions of X 1 and X 2 after solving
the differential equations (see equations (1) and (2) in Materials
and Methods) are shown in (Figure 8A). As the time increases,
the values of X 1 increase and the values of X 2 decrease. In fact,
for small values of noise, this is the expected behavior from the
dominance of the erythroid attractor.

To examine the effect of the speed with which the system
crosses the critical region, we vary b linearly with time accord-
ing to b(t )= αt, where α is the slope, and compute the ratio R
(see Materials and Methods). The result is shown in (Figure 8B).
For low speeds, the ratio R is high which means that most of the
cells choose the erythroid lineage due to the produced asymmetry,
and this lineage leads to and include red blood cells. On the other
hand, as we increase the speed, this ratio tends to zero. Two con-
clusions follow from this behavior. First, large speeds reduce the
effect of asymmetry gradually and convert the favorable attractor
completely when the ratio tends to zero. Second, R= 0 means that
the myeloid fate becomes more favorable by cells. The myeloid fate
leads to the immune cells of the immune system (16).

3.2. GATA1-PU.1 GENETIC SWITCH UNDER EXTERNAL SIGNALING
To elucidate the effect of external signals on the dynamics of
the switch, we consider external signals acting upon the switch
(Figure 1B), see also equations (3) and (4). The external sig-
nals enhance the activation of X 1 and X 2. Figure 9 highlights
the bifurcation in the parameter space (S1, S2) for the chosen
set of parameters. The borders separate between the regions of
monostability and the region of bistability, and this indicates to
the existence of supercritical pitchfork bifurcation under the two
following scenarios.
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FIGURE 5 | Subcritical pitchfork bifurcation diagrams for symmetric
scenario. Bifurcation diagrams (A–D) and nullclines at the beginning (E) and
end (F) of the bifurcation diagram (D). For all n=4. For (A) a=1, b=1,
r =0.5, (B) b=1, k =1, r =0.5, (C) a=1, b=1, k =1, (D–F) a1 = a2 = 1,
k 1 = k 2 =1.5. In (C) there is also supercritical pitchfork bifurcation.

3.2.1. Bifurcation analysis for symmetric scenario
Under this scenario,both signals S1 and S2 are equal. The nullclines
in (Figures 10A,B) exhibit the bifurcation from monostability to
bistability. This symmetry will give us near-symmetric bifurcation
diagram (Figure 10C) with progenitor cell located in the middle
and have equal probabilities to choose between erythroid (upper
attractor) and myeloid (lower attractor) fates.

3.2.2. Bifurcation analysis for asymmetric scenario
In contrary to the above scenario, now the signals have different
parameters. As a result, the monostable state (Figure 10D) is at
the point where X 1 is higher since S1 which acts on X 1 is larger.
After bifurcation, the attractor at which X 1 is high has a larger
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FIGURE 6 | Asymmetric scenario. Supercritical pitchfork bifurcation diagrams. Bifurcation diagram (A) and nullclines at the beginning (B) and end (C) of the
bifurcation. The parameters are n=4, r = 0.5, a1 =0.2, a2 =0.01, k 1 =1, k 2 =1.1.
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FIGURE 7 | Asymmetric scenario. Subcritical pitchfork bifurcation diagrams. Bifurcation diagram (A) and nullclines at the beginning (B) and end (C) of the
bifurcation. The parameters are n=4, r = 0.5, a1 =1.2, a2 =1, k 1 =1.5, k 2 =1.6.

A B

FIGURE 8 |Trajectories and parameter sweeping speed. (A) Time
evolution of X 1 and X 2 in the asymmetric supercritical pitchfork bifurcation.
(B) The effect of increasing the speed of crossing the critical region on the
distribution of trajectories in the attractors for 10000 iterations. As the

speed is increased, the ratio R changes from 1 to 0. Hence, increasing the
speed causes a large switch from the favorable attractor to the other one.
Parameters are a1 =0.2, a2 =0.01, k 1 =1, k 2 =1.1, n=4, r =0.5. Also, in
(A) σ2

=0.01, (B) σ2
=0.5.

basin of attraction (Figure 10E). We can note in (Figure 10F) how
this asymmetry produces symmetry-breaking in the bifurcation
diagram and so the decision of the cell will be biased.

3.2.3. Trajectories and speed-dependent cellular decision making
To study how signal asymmetry, noise, and decision making will
result in the dependence of the parameter sweeping speed we

have considered with two kinds of signals (See Materials and
Methods):

• Linear signals: The signals are shown in (Figure 2A). The asym-
metry between the two signals is transient and the symmetry is
retained after some time (Figure 2B). The behavior of trajec-
tories of X 1 and X 2 under the influence of this form of signals
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is shown in (Figure 11A). As the time increases, the values of
X 1 increase and the values of X 2 decrease. Hence, trajectories
of X 1 and X 2 choose the attractor at which X 1 is higher since
S1 is faster. Next, to test the effect of increasing the speed on
choosing the attractors (stable steady states) of genetic switch in
the presence of noise and transient asymmetry A, we vary T 1 in
S1(t ) = Smax

T1
t with constant values of A and Smax, and T 2 will

be changed according to the formula T2 =
Smax

Smax−A T1 (7). With
increasing the speed (Figure 11B), the ratio R tends to 0.5. Thus,

 0
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FIGURE 9 |Two-parameter bifurcation diagram. The bifurcation in the
parameter space (S1, S2), where S1 and S2 are external signals in the
genetic switch. The borders separate between the regions of monostability
I and the region of bistability II. Parameters are a1 = a2 =0.05,
b1 = b2 =0.45, r = 0.5, k 1 = k 2 =1.

increasing the speed increases the symmetry between erythroid
and myeloid lineages and reduce the effect of asymmetry which
is produced by external signals.

• Adaptation form of signals: The signals take the non-linear form
shown in (Figure 3) and as for the linear form, S1 is faster than
S2. The trajectories in this form behave almost like the first form
(Figure 11C). To study the effect of the speed, we vary θ1 and
θ2 such that θ1 is smaller than θ2. Then, we compute the ratio R
and the result is depicted in (Figure 11D). It shows ratio tend-
ing to 0.5 as θ is increased. But increasing θ decreases the speed,
so, surprisingly, now we regain the symmetry in the switch by
decreasing the speed of external signals.

4. DISCUSSION
We have shown the importance of parameter sweeping speed
when the gene regulatory circuit of immune cell differentiation
is exposed to external factors that cause symmetry-breaking and
make one of the attractors or fates more favorable than the other. In
our study, symmetry-breaking is caused by three factors. The first
factor is the asymmetric change of parameters which gives ratio
tends to zero as the speed is increased (Figure 8B). This means
we get large conversion from the favorite attractor, the erythroid
lineage, to the myeloid lineage. The importance of this effect may
appear in cases where the person has a problem with immunity due
to the decrease in the production of immune cells, so even when
there is a bias in the cell and this bias has the effect of choosing
the attractor where GATA1 is upregulated, the cell can be forced to
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FIGURE 10 | Nullclines and bifurcation diagrams with symmetric and
asymmetric external signals. For all figures, a1 = a2 =0.05,
b1 = b2 =0.45, r = 0.5, k 1 = k 2 =1, n= 4. (A) Nullclines for S1 =S2 =1
show one stable steady state, (B) nullclines for S1 =S2 =4 show
bistability, (C) near-symmetric supercritical pitchfork bifurcation,

(D) nullclines for S1 =3, S2 =1 show one stable steady state shifted to the
right, (E) nullclines for S1 =6, S2 =4 show bistability with larger basin of
attraction to the right of the separatrix (almost diagonal line), (F) imperfect
supercritical pitchfork bifurcation due to the asymmetry between the
external signals.
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A B

C D

FIGURE 11 |Trajectories and effect of the external signaling speed. In
(A,C) the time evolution of X 1 and X 2 under the effect of linear and adaptation
form of signals is shown, respectively. The values of X 1 increase and the
values of X 2 decrease because S1 is chosen to be faster than S2. Hence,
trajectories choose the attractor which has a larger value of X 1. (B) The effect
of increasing the speed of linear form of signals for 1000 iterations. As the

speed is increased, the ratio R tends to 0.5. Thus, increasing the speed
increases the symmetry in the switch. (D) The effect of speed with the
adaptation form of signals. Decreasing the speed gives ratio R tending to 0.5.
Surprisingly, now decreasing the speed increases the symmetry in the
switch. Parameters in (A), (B) are A=2.5, Smax =10, (C,D) h1 =h2 =10,
v =10, and for all we have a1 = a2 =0.05, b1 =b2 =0.45, r =0.5, k 1 = k 2 =1.

choose the attractor where PU.1 is upregulated by increasing the
speed of crossing the critical region and so enhancing the produc-
tion of immune cells. The second factor is linear form of signals
(Figure 2A) and in this case we get ratio tends to 0.5 with increasing
the speed (Figure 11B). This result may be important in situa-
tions that need symmetry between erythroid and myeloid cells, or
when decreasing the probability of choosing the erythroid lineage
is required. The third factor is represented by non-linear form of
signals, i.e., signals describing biochemical adaptation (Figure 3).
Here, decreasing the speed blinds the asymmetry and produce
symmetry between the two lineages (Figure 11D). Taken together,
the external signals, its shape, and its speed may have critical effects
on choosing the attractors and affect the cell-fate determination.

Notably, we followed the model of Huang et al. (2) to study
the differentiation into erythroid and myeloid fates. On the other
hand, there is a scheme in Ref. (1, 17) that gives additional
kinds of cells or lineages under each transcription factor. In this
scheme, GATA1 is responsible for differentiation into erythroid or
megakaryocyte cells, and PU.1 leads to either lymphoid lineage (B
and T cells) which gives the Adaptive Immune Cells, or myeloid
lineage (macrophages and granulocytes) that produces the Innate

Immune Cells. So for this scheme, the importance of parameter
sweeping speed is increased as the fate corresponding to high con-
centration of PU.1 is able to produce the different types of immune
cells.

Of particular interest and agreement with our conclusions
about the importance of external signals, Heuser et al. (6) have
showed the crucial role of external signals in MN1 leukemia.
They have investigated the requirement of FLT3 and c-Kit sig-
nals for MN1 leukemia. Overexpression of MN1 induces myeloid
leukemia and blocks erythroid differentiation. FLT3 and c-Kit sig-
naling direct MN1-expressing cells toward the myeloid lineage, so
disruption of these signals may prevent leukemia. Interestingly, the
disruption of these external signals doesn’t delay the disease latency
but induces a switch from myeloid to erythroid lineage. Thus, the
external signals can alter leukemia stem cell differentiation fates.

Many models have focused on the role of external signals in the
differentiation process (3, 5) but they haven’t given any attention
to the shape of signals or to the speed of these signals. Additionally,
many works have made their studies limited to the symmetric sce-
nario for the sake of simplicity (2, 18). But in this paper, we have
studied the asymmetric scenarios and investigated the effect of
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external signaling speed on the system’s dynamics. As a prospect,
it would be specially interesting to study the effect of speed on
more complicated models and including other factors that may
have a role in the differentiation process of hematopoietic stem
cells, which can lead to better understanding of the immune sys-
tem. Furthermore, an experimental evidence is needed to support
the predictions from the mathematical models.
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