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These cells are human derived neuroblastoma SH-SY5Y cell line (ECACC Cell Bank, No. 94030304), 
incorporated Qdots 655 (Invitrogen, red spots), cultured with normal growth medium (DMEM/F-12; 
Wako, 15% FBS). Nuclei were stained with Hoechst 33342 (Lonza, blue), mitochondria were stained 
with MitoTracker Green FM (Invitrogen, green).
The image was provided by Ryuichi Tanimoto (Keio University), captured with FV1000 inverted 
confocal microscope (Olympus) equipped with a 100X objective (NA = 1.4)
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With the emergence of Systems Biology, there is a greater realization that the whole behavior 
of a living system may not be simply described as the sum of its elements. To represent a living 
system using mathematical principles, practical quantities with units are required. Quantities 
are not only the bridge between mathematical description and biological observations; they 
often stand as essential elements similar to genome information in genetics. This important 
realization has greatly rejuvenated research in the area of Quantitative Biology.

Because of the increased need for precise quantification, a new era of technological development 
has opened. For example, spatio-temporal high-resolution imaging enables us to track single 
molecule behavior in vivo. Clever artificial control of experimental conditions and molecular 
structures has expanded the variety of quantities that can be directly measured. In addition, 
improved computational power and novel algorithms for analyzing theoretical models have 
made it possible to investigate complex biological phenomena.

This research topic is organized on two aspects of technological advances which are the back-
bone of Quantitative Biology: (i) visualization of biomolecules, their dynamics and function, 
and (ii) generic technologies of model optimization and numeric integration. We have also 
included articles highlighting the need for new quantitative approaches to solve some of the 
long-standing cell biology questions.

In the first section on visualizing biomolecules, four cutting-edge techniques are presented. 
Ichimura et al. provide a review of quantum dots including their basic characteristics and their 
applications (for example, single particle tracking). Horisawa discusses a quick and stable labeling 
technique using click chemistry with distinct advantages compared to fluorescent protein tags. 
The relatively small physical size, stability of covalent bond and simple metabolic labeling proce-
dures in living cells provides this type of technology a potential to allow long-term imaging with 
least interference to protein function. Obien et al. review strategies to control microelectrodes for 
detecting neuronal activity and discuss techniques for higher resolution and quality of record-
ings using monolithic integration with on-chip circuitry. Finally, the original research article by 
Amariei et al. describes the oscillatory behavior of metabolites in bacteria. They describe a new 
method to visualize the periodic dynamics of metabolites in large scale cultures populations. 
These four articles contribute to the development of quantitative methods visualizing diverse 
targets: proteins, electrical signals and metabolites.

In the second section of the topic, we have included articles on the development of computational 
tools to fully harness the potential of quantitative measurements through either calculation 
based on specific model or validation of the model itself. Kimura et al. introduce optimization 
procedures to search for parameters in a quantitative model that can reproduce experimental 
data. They present four examples: transcriptional regulation, bacterial chemotaxis, morphogen-
esis of tissues and organs, and cell cycle regulation. The original research article by Sumiyoshi et 
al. presents a general methodology to accelerate stochastic simulation efforts. They introduce a 
method to achieve 130 times faster computation of stochastic models by applying GPGPU. The 
strength of such accelerated numerical calculation are sometimes underestimated in biology; 
faster simulation enables multiple runs and in turn improved accuracy of numerical calcula-
tion which may change the final conclusion of modeling study. This also highlights the need to 
carefully assess simulation results and estimations using computational tools.

The final section of our research topic illustrates open questions in our understanding of dynamic 
cellular events—molecular crowding and cell division—that could benefit using quantitative 
biology approaches. The review by Aon and Cortassa focuses on macromolecular crowding in 
a cell. The authors discuss that the self-organizing capability of the cytoskeleton can orchestrate 
metabolic flux, while the fractal organization can frame the scaling activity. The review aims to 
shed light on ways to integrate the structural and functional linkage via crowding. Molecular 
crowding of each organelle may be affected by the flow into and out of the compartment. Vincent 
et al. focus on proteins in endoplasmic reticulum which have to enter through membrane-em-
bedded translocons. They present concrete estimates on the flow of proteins entering the ER 
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lumen. Berry and Soula present original findings on the importance of transient subdiffusion 
for protein distribution in space, when transient subdiffusion is restricted to a subregion of 
the space. Their simulations reveal a strong accumulation at equilibrium in the subdiffusion 
region that is controlled by the long-time asymptotic Brownian regime rather than the initial 
short-time subdiffusion.

Cell division is a fundamental process that goes awry in cancers yet there has been a puzzling 
absence of prominent oncogenic mutations in key cell division regulators. By measuring cell 
size and duration of cell cycle in early embryonic development of C. elegans, Arata et al., reveal a 
power law relationship between cell cycle duration and cell volume. They propose that geometric 
constraints between intracellular structures may coordinate cell cycle with the size of the original 
cell. In the opinion article Chin et al., highlight the need to build multiscale models for under-
standing pathways that jointly control the plane of cell division. Using structural knowledge 
of multi-protein complexes, Lee and Bolanos-Gracia review the dynamics of checkpoint signal 
amplification during cell division which ensures the accurate segregation of chromosomes. 
Mathematical models of dynamic cytoskeletal processes may be required to understand and 
intervene with tumor cell behavior.

In summary, our topic gives a flavor of new candidate probes for rigorous quantification, which 
needs to be perpetually emphasized in Quantitative Biology. Non-linear dynamic behavior of 
living systems is likely to be a leading challenge that needs to be described quantitatively. We 
hope the articles in this Research Topic will help you find your own, attractive perspective of 
biology via quantitative analyses.
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The Editorial on the Research Topic

Quantitative Biology: Dynamics of Living Systems

With the emergence of Systems Biology, there is a greater realization that the whole behavior of
a living system may not be simply described as the sum of its elements. To represent a living
system using mathematical principles, practical quantities with units are required. Quantities are
not only the bridge betweenmathematical description and biological observations; they often stand
as essential elements similar to genome information in genetics. This important realization has
greatly rejuvenated research in the area of Quantitative Biology.

Because of the increased need for precise quantification, a new era of technological development
has opened. For example, spatio-temporal high-resolution imaging enables us to track single
molecule behavior in vivo. Clever artificial control of experimental conditions and molecular
structures has expanded the variety of quantities that can be directly measured. In addition,
improved computational power and novel algorithms for analyzing theoretical models have made
it possible to investigate complex biological phenomena.

This research topic is organized on two aspects of technological advances which are the
backbone of Quantitative Biology: (i) visualization of biomolecules, their dynamics and function,
and (ii) generic technologies ofmodel optimization and numeric integration.We have also included
articles highlighting the need for new quantitative approaches to solve some of the long-standing
cell biology questions.

In the first section on visualizing biomolecules, four cutting-edge techniques are presented.
Ichimura et al. provide a review of quantum dots including their basic characteristics and their
applications (for example, single particle tracking). Horisawa discusses a quick and stable labeling
technique using click chemistry with distinct advantages compared to fluorescent protein tags. The
relatively small physical size, stability of covalent bond and simple metabolic labeling procedures
in living cells provides this type of technology a potential to allow long-term imaging with least
interference to protein function. Obien et al. review strategies to control microelectrodes for
detecting neuronal activity and discuss techniques for higher resolution and quality of recordings
usingmonolithic integration with on-chip circuitry. Finally, the original research article by Amariei
et al. describes the oscillatory behavior of metabolites in bacteria. They describe a new method
to visualize the periodic dynamics of metabolites in large scale cultures populations. These four
articles contribute to the development of quantitative methods visualizing diverse targets: proteins,
electrical signals and metabolites.

In the second section of the topic, we have included articles on the development of
computational tools to fully harness the potential of quantitative measurements through either
calculation based on specific model or validation of the model itself. Kimura et al. introduce
optimization procedures to search for parameters in a quantitative model that can reproduce
experimental data. They present four examples: transcriptional regulation, bacterial chemotaxis,
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morphogenesis of tissues and organs, and cell cycle regulation.
The original research article by Sumiyoshi et al. presents a general
methodology to accelerate stochastic simulation efforts. They
introduce a method to achieve 130 times faster computation of
stochastic models by applying GPGPU. The strength of such
accelerated numerical calculation are sometimes underestimated
in biology; faster simulation enables multiple runs and in turn
improved accuracy of numerical calculation which may change
the final conclusion of modeling study. This also highlights the
need to carefully assess simulation results and estimations using
computational tools.

The final section of our research topic illustrates open
questions in our understanding of dynamic cellular events—
molecular crowding and cell division—that could benefit using
quantitative biology approaches. The review by Aon and Cortassa
focuses on macromolecular crowding in a cell. The authors
discuss that the self-organizing capability of the cytoskeleton
can orchestrate metabolic flux, while the fractal organization
can frame the scaling activity. The review aims to shed light
on ways to integrate the structural and functional linkage via
crowding. Molecular crowding of each organelle may be affected
by the flow into and out of the compartment. Vincent et al.
focus on proteins in endoplasmic reticulum which have to
enter through membrane-embedded translocons. They present
concrete estimates on the flow of proteins entering the ER lumen.
Berry and Soula present original findings on the importance of
transient subdiffusion for protein distribution in space, when
transient subdiffusion is restricted to a subregion of the space.
Their simulations reveal a strong accumulation at equilibrium
in the subdiffusion region that is controlled by the long-time
asymptotic Brownian regime rather than the initial short-time
subdiffusion.

Cell division is a fundamental process that goes awry in
cancers yet there has been a puzzling absence of prominent
oncogenicmutations in key cell division regulators. Bymeasuring
cell size and duration of cell cycle in early embryonic
development of C. elegans, Arata et al., reveal a power law
relationship between cell cycle duration and cell volume.
They propose that geometric constraints between intracellular
structures may coordinate cell cycle with the size of the original
cell. In the opinion article Chin et al., highlight the need to
build multiscale models for understanding pathways that jointly
control the plane of cell division. Using structural knowledge
of multi-protein complexes, Lee and Bolanos-Gracia review

the dynamics of checkpoint signal amplification during cell
division which ensures the accurate segregation of chromosomes.
Mathematical models of dynamic cytoskeletal processes may be
required to understand and intervene with tumor cell behavior.

In summary, our topic gives a flavor of new candidate
probes for rigorous quantification, which needs to be perpetually
emphasized in Quantitative Biology. Non-linear dynamic
behavior of living systems is likely to be a leading challenge that
needs to be described quantitatively. We hope the articles in this
Research Topic will help you find your own, attractive perspective
of biology via quantitative analyses.
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Over the past decade, great developments in optical microscopy have made this
technology increasingly compatible with biological studies. Fluorescence microscopy has
especially contributed to investigating the dynamic behaviors of live specimens and can
now resolve objects with nanometer precision and resolution due to super-resolution
imaging. Additionally, single particle tracking provides information on the dynamics of
individual proteins at the nanometer scale both in vitro and in cells. Complementing
advances in microscopy technologies has been the development of fluorescent probes.
The quantum dot, a semi-conductor fluorescent nanoparticle, is particularly suitable for
single particle tracking and super-resolution imaging. This article overviews the principles
of single particle tracking and super resolution along with describing their application
to the nanometer measurement/observation of biological systems when combined with
quantum dot technologies.

Keywords: single particle tracking, super-resolution, fluorescent microscopy, quantum dot, nanoparticle

INTRODUCTION
Fluorescence microscopy has become standard for studying the
dynamic behavior of biological phenomena such as the expres-
sion, movement, and localization of proteins and other molecules
(Ellinger, 1940; Lichtman and Conchello, 2005; Drummen, 2012;
Miyawaki, 2013; Peter et al., 2014). Optical diffraction, how-
ever, limits the spatial resolution to several 100 nanometers,
denying information on many details about these phenomena
(Abbe, 1873). Two technologies have since overcome this lim-
itation and permit the observation of even smaller nano-scale
dynamics: single particle tracking (Ritchie and Kusumi, 2003;
Saxton, 2009; Chenouard et al., 2014) and super-resolution
microscopy (Schermelleh et al., 2010; Galbraith and Galbraith,
2011; Leung and Chou, 2011). Single particle tracking pur-
sues the position of single fluorescent probes conjugated to
separate target proteins over a two-dimensional (2D) plane.
Super-resolution microscopy, on the other hand, provides highly
resolved optical images beyond the aforementioned spatial
resolution.

To conduct the above imaging techniques, it is often required
to label the target protein with a fluorescent probe. Fluorescent
proteins are most popular for this purpose because of their sim-
ple and easy labeling procedure in live cells (Shimomura and
Johnson, 1692; Tsien, 1998; Nifosí et al., 2007). Organic dyes are
also common because of their wide application (Wombacher and
Cornish, 2011; Wysocki and Lavis, 2011; Terai and Nagano, 2013).
Another group of probes gaining attention is inorganic nanopar-
ticles made of semiconductors, metals, silicon, etc. (Ruedas-Rama
et al., 2012; Chinnathambi et al., 2014; Cupaioli et al., 2014).

Although usually larger than fluorescent proteins and organic
dyes, inorganic nanoparticles have generally stronger and more
stable fluorescence profiles, which makes them applicable not
only to basic research, but also to clinical studies (Byers and
Hitchman, 2010; Choi and Frangioni, 2010; Saadeh et al., 2014;
Wang and Wang, 2014). Furthermore, these same properties
make them well suited for single particle tracking methods
(Chang et al., 2008; Saxton, 2008; Barroso, 2011; Bruchez, 2011;
Clausen and Lagerholm, 2011; Ruthardt et al., 2011; Pierobon and
Cappello, 2012; Kairdolf et al., 2013; Petryayeva et al., 2013).

This review article focuses on advanced microscopy using
quantum dots (Qdots), perhaps the most studied of inorganic
nanoparticles for biological application (Pilla et al., 2012). Single
particle tracking using Qdots has reached three dimensions (X,
Y, Z) (Genovesio et al., 2006; Holtzer et al., 2007; Watanabe and
Higuchi, 2007; Watanabe et al., 2007; Ram et al., 2008, 2012;
Wells et al., 2008, 2010; Yajima et al., 2008), and more recently
has even reached four dimensions (X, Y, Z, θ or X, Y, θ, ϕ)
(Ohmachi et al., 2012; Watanabe et al., 2013). For all their ben-
efits, Qdots do have drawbacks, however, including high blinking
(Nirmal et al., 1996; van Sark et al., 2001; Schlegel et al., 2002;
Hohng and Ha, 2004; Ko et al., 2011) and a spectral blue-shift
during observation (Nirmal et al., 1996; van Sark et al., 2002;
Hoyer et al., 2011), which complicate the continuous tracking
of the single particle and emerge due to photo-oxidation while
under high-power illumination. These limitations have stimu-
lated research into new super-resolution microscopy methods
(Lidke et al., 2005; Dertinger et al., 2009; Watanabe et al., 2010;
Chien et al., 2011; Hoyer et al., 2011; Deng et al., 2014).
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Qdots AS FLUORESCENT LABELING PROBES
A Qdot is a semiconductor nanocrystal with electronic charac-
teristics that depend on its size and shape (Rossetti et al., 1980;
Ekimov and Onushchenko, 1981). Because of its unique charac-
teristics and ease of synthesis, Qdots have been applied not only
to biomedical research, but also to engineering- and industrial-
related fields such as transistors, solar cells, LEDs, and diode
lasers (Pilla et al., 2012). Qdots used in biological studies have a
core-shell structure (Figure 1A); the most famous being the cad-
mium selenide (CdSe) core and zinc sulfide (ZnS) shell (Dabbousi
et al., 1997; Bruchez et al., 1998; Chan and Nie, 1998; Pilla
et al., 2012). This structure results in Qdots having narrow emis-
sion spectra but wide absorption spectra (Figure 1B). There are

two important criteria when applying Qdots to biological stud-
ies: solubility and conjugating capability (Li et al., 2010). Highly
fluorescent Qdots are usually synthesized in organic solvents
in coordination with compounds such as tri-n-octylphosphine
oxide (TOPO) or alkylamine. These compounds coat the Qdot,
making it too hydrophobic to be dissolved in water. Therefore,
further surface coating or exchange with hydrophilic compounds
is needed for use in biological assay. Furthermore, upon becom-
ing water soluble, the surface of the Qdot must have reactive
groups such as amino and carboxyl chains in order for the Qdot
to conjugate with the target biological sample. The surface coat-
ing contributes not only to the water-solubilization but also to
the stabilization of the fluorescence of Qdot in water because the

FIGURE 1 | Quantum dot. (A) Schematic drawing of the surface modification of a Qdot. (B) Fluorescence photograph (upper) and spectra (lower) of Qdots of
various diameters. The Qdots were excited by a UV light of 365 nm wavelength.
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photophysical properties are well affected by the surface coating
(Kuno et al., 1997; Kloepfer et al., 2005). Some surface coating
methods suppress the blinking that is a drawback of Qdot (Hohng
and Ha, 2004; Fomenko and Nesbitt, 2008; Mandal and Tamai,
2011; Zhang et al., 2013).

There are mainly two ways to prepare water-soluble Qdots
(Figure 1A) (Erathodiyil and Ying, 2011; Zhang and Clapp,
2011). The first is to encapsulate a hydrophobic Qdot with an
amphiphilic polymer or phospholipid (Dubertret et al., 2002; Gao
et al., 2005; Li et al., 2010; Tomczak et al., 2013). The second is a
ligand-exchange method in which the capping hydrophobic lig-
ands are exchanged with hydrophilic ones (Gerion et al., 2001;
Guo et al., 2003; Pinaud et al., 2004; Kim et al., 2005; Nann, 2005;
Jiang et al., 2006; Dubois et al., 2007). While the water-solubilized
Qdot obtained by the first method is more stable and suitable for
commercialization, its size increases to about 20∼40 nm, which
risks steric hindrance against the function of the target protein
(Li et al., 2010). The ligand-exchange method is inferior in sta-
bility, but is a simpler synthesis process and produces a smaller
Qdot. The thin coating layer is another advantage of this method,
as it reduces the risk of steric effects that could compromise the
function of the protein upon conjugation with the Qdot.

Many coating agents exist for the ligand-exchange method.
These include mercaptocarboxylic acid (Jiang et al., 2006), car-
bon disulfide (Dubois et al., 2007), thiosilanol (Gerion et al.,
2001), dendrimer (Guo et al., 2003), peptide (Pinaud et al., 2004),
phosphine oxide (Kim et al., 2005), and polyethylenimine (Nann,
2005). Coating agents can also sometimes functionalize Qdots
for specific purposes. Examples include β-cyclodextrin for ion-
sensing (Palaniappan et al., 2004), cyclodextrin for redox-active
substrates (Palaniappan et al., 2006), and cyclodextrin thiol for
pH-sensing (Cao et al., 2006). We usually use glutathione as
the coating compound because of its easier preparation, which
requires only the mixing of hydrophobic Qdots with an aque-
ous glutathione solution (Jin et al., 2008; Tiwari et al., 2009).
Glutathione-coated Qdots have two reactive groups (amino and
carboxyl) that enable easy conjugation with the target protein and
show no cytotoxity (Tiwari et al., 2009). They can also be kept
mono-dispersed in solution for 3 months after solubilization.

FLUORESCENCE MICROSCOPY FOR NANO-SCALE
MEASUREMENTS/OBSERVATIONS
The microscopy introduced in this review requires a reg-
ular wide-field fluorescence microscope and no complicated
optical principles nor devices (Figure 2A). However, because
nano-scale measurements require a high signal-to-noise ratio, a
highly photon-sensitive camera, such as an electron multiplying
charge coupled device (EMCCD) camera, is recommended. More
recently, complementary metal-oxide-semiconductor (sCMOS)
cameras have become available as alternatives (Huang et al., 2011;
Long et al., 2012; Ma et al., 2013). The vibration and/or stage
drift of the microscope should also be considered, as these can
cause artifacts in the measurement by obscuring the behavior
and structure of the target. Consequently, the microscope should
be set on a vibration-isolation table and built with as minimal
height and maximal rigidity as possible to decrease any vibra-
tion. Because thermal expansion of the metals composing the

FIGURE 2 | Microscopic system for nanometery. (A) Photograph of a
typical microscopy setup. The system is mainly composed of an inverted
fluorescent microscope (Olympus IX71), an objective lens (Olympus 60×
PlanApo, 1.45 NA, oil immersion) and EMCCD camera (Andor iXon887 or
867). (B) The stage and objective revolver are made of duralumin and
custom built. (C) Vibrations caused by different components of the
microscope: all components rigidly fixed (upper), all components except the
camera rigidly fixed (middle), and substitution of the mono-objective
revolver with a 6-position revolver (lower). Red, X-position. Blue, Y-position.
The stage position was determined by measuring the position of a glass
bead absorbed on the sample surface.
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microscope causes drifts in the stage and focus position, micro-
scopes made of metals with lower thermal expansion such as invar
are generally preferred (Figure 2B). The drifts can be further sup-
pressed by setting the microscopic system in a room with constant
temperature and humidity.

Here we show one strategy for reducing vibrations. The tran-
sition images of a silica bead with 1 μm diameter absorbed
on a coverslip surface were acquired with excess illumina-
tion so that the camera gain could be set to zero. The frame
rate was 2.0 ms, the images were acquired for 1.0 s, and the
precise position (X, Y) of the bead was calculated by image
analysis. In our usual setup, the position of the bead was
kept stable within 0.7 nm in the X-axis and 0.4 nm in the Y-
axis (Figure 2C, upper). When a screw to fix the CCD cam-
era was loosened, the vibration increased to 0.8 nm in both
axes (Figure 2C, middle). Normally, we use a mono-objective
revolver, but when instead a commercially-available 6-position
revolver was used, we found the vibration enhanced in the Y-
axis to 2 nm (Figure 2C, bottom). Thus, rigid construction of
the microscope is paramount for nano-scale measurements and
observations.

SINGLE PARTICLE TRACKING WITH NANOMETER
PRECISION USING Qdots
Single particle tracking is well applied for studies of motor
proteins and membrane proteins, because resolving nano-scale
movements is necessary for understanding the protein function
(Ritchie and Kusumi, 2003; Park et al., 2007; Toprak and Selvin,
2007; Saxton, 2009). Although the resolution of conventional
fluorescence microscopes is constrained by the diffraction limit,
the 2D position of a single particle can be determined by cal-
culating the weight center of the image of the fluorescent spot
(Figure 3A). The fluorescence emitted from a fluorescent probe
forms a point spread function (PSF) that can be fitted with a
Gaussian distribution as

f
(
x, y

) = I0 · exp

{
− (x − x0)2 + (y − y0)2

2 · σ 2

}
+ C,

where I0 and (x0, y0) are the fluorescence intensity and the
position of the fluorescing center, respectively, σ is the radial
standard deviation of the Gaussian function, and C is the back-
ground fluorescence. This analysis can be used to measure the
center position of the image (Kubitscheck et al., 2000; Cheezum
et al., 2001; Thompson et al., 2002; Small and Stahlheber, 2014).
Though there are other common methods for determining the
center, including cross-correlation, sum-absolute difference, and
simple centroid, Gaussian fitting has the highest robustness at
low signal-to-noise ratios, which is common in biological studies
(Thompson et al., 2002). In our case, the actual fitting compu-
tation is done by the Levenberg-Marquardt method (Levenberg,
1944). A practical example of our fitting is described below
(Figure 3B). Because the background baseline is not always uni-
form in live-cell observations, we added additional parameters
into the C term to fit the local background fluorescence with a
tilted plane,

f
(
x, y

) = I0 · exp

{
− (x − x0)

2 + (
y − y0

)
2 · σ 2

2}

+C0 + C1x + C2y.

This equation assumes the small area inside the region of interest
(ROI) can be approximated by the plane. The initial parameters of
the fitting are calculated by the linear least-square method for C0,
C1, and C2 using only the outer boundary of the ROI. Because the
logarithm of the subtraction between f (x0, y0) and C0 + C1x +
C2y is a simple quadratic function, the other initial parameters are
obtained by the linear least-square method, too. Setting the ini-
tial values close to the true values by these simple pre-calculations
allows us to effectively reduce the number of the loop iterations
in the Levenberg-Marquardt method.

The calculation precision by Gaussian fitting strongly depends
on the photon number that the detection device receives from
the emission of the fluorescent probe and can be as small as a
few nanometers (Figure 3C) (Deschout et al., 2014; Small and
Stahlheber, 2014). The method described above is called fluo-
rescence imaging with one-nanometer accuracy (FIONA) and
has quickly become a standard in the field (Yildiz et al., 2003;
Yildiz and Selvin, 2005; Park et al., 2007; Hoffman et al., 2011).
However, the number of photons emitted by single organic dyes
and fluorescent protein molecules before photobleaching, about
110,000 (Kubitscheck et al., 2000), is too low for the observa-
tion of protein movement over a long time. Since the cause of
photobleaching is thought to be oxygen collisions with the dye
molecule in its excited state, it can be mitigated by the addition of
oxygen scavengers (Sambongi et al., 1999; Adachi et al., 2000).
Thus, the photon number from a single dye molecule can be
increased to 1.4 million photons before photobleaching (Yildiz
and Selvin, 2005). Meanwhile, Qdots show slight photobleach-
ing and strong fluorescence even in the absence of scavengers
(Bruchez et al., 1998). Though non-fluorescent nano-particles
such as gold nano-particles are becoming increasingly popular for
precise and long-term tracking using absorption (Kusumi et al.,
2005; Lasne et al., 2006) or scattering (Nishikawa et al., 2010), the
Qdot is still preferred in biological studies because of its wider
color spectrum.

We investigated the relationship between the tracking preci-
sion and the average number of photons emitted from a Qdot
(Figure 3C). The tracking precision was defined as the standard
deviation of 100 data obtained with a Qdot immobilized on a
glass surface in our case. While the experimental accuracy was a
little lower than the theoretical expectation because of high blink-
ing, it was still 2 nm when the photon number from a Qdot was
15,000 per exposure. To demonstrate the potential of single par-
ticle tracking as a biological tool, we measured the movement
of kinesin, a microtubule-mediated motor protein (Figure 3D).
The motor domain of the kinesin was fused with biotin career
protein (BCCP) and conjugated with a Qdot via biotin-avidin
affinity. The Qdot-labeled kinesin were then bound to micro-
tubules adsorbed onto a cover slip. Upon adding 1 mM ATP, the
Qdot was seen to move unidirectionally along the microtubule
without detaching, which is consistent with kinesin using ATP to
move (Figure 3D, left). The unidirectional movement of kinesin

Frontiers in Physiology | Systems Biology July 2014 | Volume 5 | Article 273 | 12

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Ichimura et al. Nanometry of biomolecules with quantum dot

FIGURE 3 | Single particle tracking. (A) Fluorescence profiles of a Qdot
bound to a moving motor protein. The green-colored profile was taken at time
0 and the red profile at t = 2 s. The difference of the peaks of the two profiles
was about 200 nm. (Inset) Fluorescent image of the Qdot. (B) Calculation
scheme to determine the center position of a Qdot. (C) Relationship between

the tracking precision by Gaussian fitting with the number of photons emitted
from a single fluorophore. Circles, experimental data. Line, theoretical value
(88). (D) Single particle tracking of kinesin. Left, schematic of the assay. Right,
typical trace of a single kinesin. The frame rate of the image acquisition was
2 ms. The photon number emitted from the Qdot was about 10,000.

was composed of successive 8 nm steps (Figure 3D, right). Thus,
FIONA using Qdots provides a simple quantitative measurement
for nano-scale tracking of proteins at the single molecular level.

THREE-DIMENSIONAL SINGLE PARTICLE TRACKING WITH
NANOMETER PRECISION USING Qdots
The original FIONA only measured movement on a spatial
plane, but has since been expanded to three spatial dimen-
sions. For this purpose, a three-dimensional (3D) image under

a microscope is obtained by scanning the objective lens along
the focal axis with an actuator (Watanabe and Higuchi, 2007;
Wells et al., 2008). This scanning, however, decreases the tem-
poral resolution of the tracking. To solve this problem, 3D
tracking methods without the objective scanning have been devel-
oped (Genovesio et al., 2006; Holtzer et al., 2007; Watanabe
et al., 2007; Ram et al., 2008, 2012; Wells et al., 2010; Jia et al.,
2014). Multifocal planes microscopy uses the difference of dis-
tinct optical pathways to estimate the Z-position by obtaining
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simultaneously the fluorescence intensities of several focal images
(Toprak et al., 2007; Watanabe et al., 2007; Dalgarno et al., 2010;
Juette and Bewersdorf, 2010; Ram et al., 2012). Similarly, 3D
tracking using a photon-limited double-helix response system
with a spatial light modulator, which has two twisting lobes along
the optical axis of the image, results in a single fluorescent probe
appearing as two fluorescent spots from which the Z-position can
be determined (Pavani et al., 2009; Lew et al., 2010).

One of the simplest 3D tracking methods intentionally gener-
ates astigmatism (Kao and Verkman, 1994; Holtzer et al., 2007;
Izeddin et al., 2012). Here, a pair of convex and concave cylindri-
cal lenses is inserted into the optical pathway before the detection
device (Figure 4A) (Watanabe et al., 2013). These lenses generate
different optical path lengths along the X- and Y-axes, resulting in
a measurable relationship between the Z-position of the particle
and the ellipticity of the PSF (Figure 4B). To calculate the ellip-
ticity in addition to the 2D position, the below approximation
formula is used

f
(
x, y

) = I0 · exp

{
− (x − x0)

2 · σ 2
x

2
}
· exp

{
−

(
y − y0

)
2 · σ 2

y

2}

+C0 + C1x + C2y,

where σx and σy are the radial standard deviations of the Gaussian
function along the X- and Y-axes respectively. The ellipticity is
defined as the ratio of the full width at half maximum (FWHM)
of the 2D Gaussian in the X- and Y- axes due to the differ-
ent focal lengths (Figure 4C). Changing the distance between
the convex and concave cylindrical lenses permits astigmatism
for optimal tracking resolution (Figure 4D). When the detec-
tion device received 15,000 photons from a fluorescent probe,
we achieved 3D tracking with precisions of 2 nm in the X and
Y-axes and 5 nm along the Z-axis (Figure 4E). However, a reli-
able range was limited between a field view of −800 and 800 nm
(Figure 4D, lower and Figure 4E). This drawback is common in
many 3D tracking methods. A new 3D tracking method based
on Airy beams, however, overcomes this problem. Here, a diffrac-
tion free self-bending PSF is applied to a two-channeled detection
system (Jia et al., 2014), and the Z-position is translated to the
distance difference of the two X-positions of the two channels.
This method elongates the dynamic range of 3D tracking to 3 μm.
Regardless of the 3D tracking method, the key is to extract Z
information from the XY projection.

FOUR-DIMENSIONAL SINGLE PARTICLE USING POLARIZED
Qdots
As significant as acquiring the third spatial dimension is, 3D sin-
gle particle tracking ignores any rotational movement made by
the protein. To acquire the orientation, fluorescence anisotropy
can be used, because the fluorescence emissions are of unequal
intensities along the P and S polar axes (P- and S-polarization),
which are defined by the polarizing beam-splitter, as described
below (Werver, 1953; Albrecht, 1961; Harms et al., 1999).
Anisotropy is defined as (Ip−Is)/(Ip+Is), where Ip and Is are
the intensities in P- and S-polarization, respectively (Harms et al.,
1999). Anisotropy measurements have successfully tracked the
rotatory dynamics of single protein molecules in vitro (Sase et al.,

FIGURE 4 | 3D single particle tracking using a pair of convex and

concave cylindrical lens. (A) Schematic drawing of the optical setup for
3D single particle tracking. CvC, convex cylindrical lens; CnC, concave
cylindrical lens. (B) Fluorescent images of a single fluorescent bead with a
diameter of 100 nm at various Z-positions (−1000 to 1000 nm). (C) Radial
variances in the X-axis (FWx, red in upper panel) and Y-axis (FWy, blue in
upper panel) of the Gaussian function, and ellipticity (lower panel) of a
single fluorescent bead as a function of the Z-position (−1600 to 1600 nm).
(D) Calculated precision in the X- (red) and Z-directions (green) as a function
of distance between CvC and CnC. (E) Calculated precision in the X-, Y-,
and Z-directions (red, blue, and green, respectively) as a function of
Z-position when the camera received 15,000 photons from a fluorophore.
The 3D tracking precisions was 2 nm in the X- and Y-axes and 5 nm along
the Z-axis. Error bars represent standard deviations of 20 data.

1997; Forkey et al., 2003) and in cells (Mizuno et al., 2011). The
fluorescence anisotropy of a Qdot depends on the aspect ratio of
its shape (Peng et al., 2000; Hu et al., 2001; Deka et al., 2009).
Taking advantage of this property, a highly polarized rod-shaped
Qdot (Qrod) can be synthesized by elongating the CdS shell along
one-axis of the CdSe core (Figure 5A) (Peng et al., 2000; Hu
et al., 2001). The anisotropy changes in Qrod fluorescence can
be described as a sine function (Figures 5B,C) and the angular
position by the arcsine function. The tracking precision of the

Frontiers in Physiology | Systems Biology July 2014 | Volume 5 | Article 273 | 14

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Ichimura et al. Nanometry of biomolecules with quantum dot

FIGURE 5 | Rod shaped quantum rods for single particle angular

tracking. (A) Transmission electron microscopy images of Odots (right) and
Qrods (left). (B) Fluorescent images of a single Qrod on a coverslip acquired
by simultaneously recording the P- (upper images) and S-polarization (lower
images). (C) The anisotropy of a single Qrod as a function of the rotation
angle. Gray, raw data; green circles, mean values; error bars, standard
deviation. The mean values and standard deviations were calculated with
100 data points. The red line shows fitting with a sine function [y = a1·
sin{2·(x- a2)}]. (D) Tracking of the artificial rotation steps. The Qrod was
rotated stepwise 10 degrees every 10 s. The frame rate of the image
acquisition was 100 ms. The photon number emitted from the Qrod was
about 15,000.

orientation was about 1∼2◦ when the photon number from a
Qrod was 15,000 (Figure 8D). By utilizing this anisotropy tech-
nique, a fourth dimension, the angular (θ) component, could be
added to the orthogonal 3 coordinate axes described by single
particle tracking.

In our 4D tracking system, a polarizing beam splitter is set
before the cylindrical lens pair in the 3D tracking optics to divide
the fluorescent image into S- and P- polar channels (Figure 6A)
(Watanabe et al., 2013). For 3D tracking, the P- and S-polarized
images are summed before calculating the 3D position. A small
gap is generated if the two channels are not completely over-
lapped, leading to an asymmetrical relationship between the
respective FWHM values of the X- and Y-axes (Figure 6B). The
3D position can be determined by fitting the merged PSF with
a 2D Gaussian function, as mentioned above, and the orien-
tation can be determined by the ratio of the intensities of the
S- and P- polarized images. Thus, X, Y, Z, and θ are simultane-
ously obtained with an acquired image. In our case, when the

number of photons from a single Qrod was about 10,000 and the
Z-position was near zero, the calculated precisions for the X, Y, Z,
and θ-positions were at maximum 5, 7, 9 nm and 1◦, respectively
(Figure 6C).

We used 4D tracking to observe the movement of a mem-
brane protein conjugated with a Qrod via antibody affinity
(Figures 6D–F) (Watanabe et al., 2013). Isolated Qrods moving
on the membrane were identified under a fluorescence micro-
scope (Figure 6E). The different intensities in the P- and S-
polarized images indicated that the Qrod was inclined against
the optical axis (Figure 6F, upper panels). One circular and
one elliptical spot indicated that the two Qrods were at dis-
tinct Z-positions (Figure 6F, lower panels). One Qrod showed
a half-moon like motion in the X- and Y-axes, which was
accompanied by highly fluctuating movements along the Z-axis
and fast rotational motion before endocytosis (Figure 6G). This
observation suggests that this protein’s lateral diffusion was con-
strained by the membrane undercoat, but that it could rotate
freely along the plasma membrane. In the cytoplasm, a mem-
brane protein seemed to be moving along tracks, most likely
microtubules, in three-dimensions and slowly rotated helically
(Figure 6H).

Another 4D tracking method was developed to obtain X, Y,
θ, and ϕ coordinates, the last of which provides information on
the out-of-plane tilt angle (Ohmachi et al., 2012). In this method,
single Qrods are imaged as four crowded fluorescent spots by
dividing the beam path using a beam splitter and two Wollaston
prisms. Otherwise, the orientation of the individual fluorescent
probe can be directly estimated using the dipole emission patterns
of a defocused image (Bartko and Dickson, 1999a,b; Fourkas,
2001; Böhmer and Enderlein, 2003; Lieb et al., 2004), an approach
that was successfully applied to the 4D tracking of a motor protein
(Toprak et al., 2006). The combination of the Wollaston prism
method with defocusing could achieve comprehensive tracking
of all rotatory and translational movements of a biomolecule in a
living cell.

SUPER-RESOLUTION USING BLINKING OF Qdots
Super-resolution microscopy describes the resolution of two
objects closer than the diffraction limit of light (Schermelleh et al.,
2010; Galbraith and Galbraith, 2011; Leung and Chou, 2011). It
can be classified into two main categories. The first is based on
the photo-transition of a fluorescent probe between its radiative
and non-radiative states in order to confine the fluorescence emis-
sion into a sub-diffraction-limit sized volume. This approach is
known as RESOLFT (REversible Saturable OpticaL Fluorescence
Transitions) and was first proposed and demonstrated by STED
(STimulated Emission Depletion), which exploits the stimulated
emission phenomenon of a fluorescent dye (Hell and Wichmann,
1994; Klar and Hell, 1999). RESOLFT can also be realized by other
photoreactions, including those from a ground-state transition
phenomenon (GSD: Ground State Depletion) (Hell and Kroug,
1995; Bretschneider et al., 2007), the saturation of fluorescence
excitation (SAX: SAturated eXcitation) (Fujita et al., 2007), or
from reversibly photoswitchable fluorescent proteins (Hofmann
et al., 2005). RESOLFT can also be combined with structured
illumination microscopy (SIM) (Heintzmann and Cremer, 1999;
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FIGURE 6 | 4D single particle tracking using Qrod anisotropy. (A)

Schematic drawing of the optical setup for simultaneous 3D and angular
single particle tracking. 1/2λ, 1/2-wave plate; S, slit; BS, beam splitter; L, lens;
M, mirror; Pr, prism; CvC, convex cylindrical lens; and CnC, concave cylindrical
lens. (B) FWHM values of the merged images of S- and P- polarized images
as a function of the Z-position along the X- (red line) and Y-axes (blue line). (C)

Tracking 20 nm steps when the Z-position of the Qrod was near zero. A Qrod
fixed on a coverslip was moved at discrete 20 nm steps once every 1 s
simultaneously along the X- (red), Y- (blue), and Z- axes (green). The frame
rate of the image acquisition was 100 ms. Standard deviations of the tracking

for 10 s (excluding the stepping moments) were 5, 7, and 19 nm along the
three respective axes. The photon number emitted from the Qrot was about
1500. (D) Schematic depiction of the internalization of Qrod-labeled CD36, a
membrane protein, from the cell membrane to the cytoplasm. (E)

Fluorescent images of Qrods bound to membrane proteins in a living cell and
simultaneously recorded in P- (left panel) and S-polarization (right panel).
Arrowheads indicate two typical views that are enlarged in (F). Scale bar is
5 μm. (F) Enlarged images of the spots marked by arrowheads in (E). Scale
bar, 1 μm. (G,H) Typical 4D traces of a single Qrod on the membrane (G) and
near the nucleus (H). The angle of the Qrod is indicated by the color bar.

Gustafsson, 2000) to provide wide field imaging capability with
superresolution (Heintzmann, 2003; Gustafsson, 2005).

The second category is based on the separate detection
of individual single fluorescent probes in the time domain
or spectra domain, and can be further decomposed into dif-
ferent concepts. One, known as SPDM (Spectral Precision
Distance Microscopy), precisely localizes individual probes over
the many frames of sequentially obtained images (Bornfleth
et al., 1998; Lemmer et al., 2008). Stochastic optical reconstruc-
tion microscopy (STORM) (Rust et al., 2006) and fluorescence
photoactivation localization microscopy (FPALM) (Betzig et al.,
2006) are both SPDM-based techniques that utilize repeated
activation-deactivation cycles of photoswitchable fluorophores
such that the fluorescence spots on an obtained image are
completely discrete.

Another method from the second category is blinking based
superresolution (BBS). BBS relies on the randomness and non-
Gaussian property of blinking, which means stochastic processing
can be used to localize individual fluorescent probes. The first
report of BBS used independent component analysis, which is
a computational method that decomposes a multivariate signal
into independent non-Gaussian signals (Lidke et al., 2005). Other
BBS-based techniques use the temporal high-order cumulant
(super-resolution optical fluctuation imaging: SOFI) (Dertinger
et al., 2009), the temporal high-order variance (Variance Imaging
for Superresolution: VISion) (Watanabe et al., 2010), spatial
covariance (spatial covariance reconstructive: SCORE) (Deng
et al., 2014), or Bayesian statistics (Cox et al., 2011). A great
advantage of SPDM and BBS is that they need only a relatively
simple fluorescent microscope and no complicated optics.
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Qdots are the most compatible with BBS owing to their strong
blinking phenomenon. Supposing that there are two adjoining
Qdots independently and randomly fluctuating, the moment that
one Qdot emits and the other does not is a stochastic event
(Figure 7A). As an example, a solution to identifying the Qdot for
SOFI and VISion is shown below (Dertinger et al., 2009). A flu-
orescent image of Qdots, F(r,t), is expressed by the convolution
of a PSF, U(r), of the optical system and the brightness, εksk(t),
where rk, εk, and sk(t) are the position and the time-invariant and
-variant components of brightness of the k-th Qdot, respectively.

F (r, t) =
∑

k

U(r−rk) · εk · sk(t)

The second-order autocorrelation function, G2(r,τ ), is then given
by F(r,t) as follows,

G2 (r, τ ) = 〈δF (r, t + τ) · tF (r, t)〉t
=

∑
j,k

U
(
r − rj

) · U (r − rk) · εj · εk ·

〈
δsj (r, t + τ) · tsk (r, t)

〉
t

=
∑

k

U2(r − rk) · εk
2 · 〈δsk (r, t + τ) · tsk (r, t)〉t

where <· · ·>t and δ(·) denote a time-averaging operation and
deviation from the time-average, respectively. Because of the
independency of the fluorescence fluctuation of the two distinct
Qdots (k �= j), the time average of their product is zero. For sim-
ple comparison of the raw image, F(r,t), and the auto-correlation
image G2(r,τ ), we here substitute 0 for the delay time, τ , to reduce
G2(r,τ ) to G2(r,0).

G2 (r, 0) =
∑

k

U2(r − rk) · εk
2 · 〈δs2

k (t)
〉
t

This equation indicates that G2(r,τ ) is given by the convolu-
tion of U2(r) and the square of εksk(t). Assuming that U(r) is
approximated by a Gaussian distribution, the spatial resolution
of G2(r,0) is improved v2 times from F(r,t), but at the expense
of temporal information, since the spatial resolution of the opti-
cal microscopic image is limited by the sharpness of the PSF
(Figures 7B,C). The higher-order autocorrelation contains high-
spatial frequency information. However, because this is a moment
value that contains cross-terms from the lower-order correlation
contributions, the accrual spatial resolution for distinguishing
two Qdots cannot be improved more than

√
2 times. It is there-

fore necessary to transform the nth-order correlation into an
nth-order cumulant that consists only of terms containing the nth
power of the PSF. While the higher order cumulant gives higher
spatial resolution (Figure 7D), a huge number of images are still
needed.

To decrease the required number of images, we developed a
highly fluctuating Qdot in which the switching frequency between
the on- and off-state was greatly increased by optimizing the shell
thickness to promote more interaction between the CdSe-core
and oxygen atoms in water (Figures 8A,B). Though the quantum

FIGURE 7 | Super-resolution using fluorescence fluctuations of a Qdot.

(A) Conceptual drawing super-resolution microscopy using fluorescence
fluctuations of a Qdot. For details, see text. (B) Principle of SOFI. Each pixel
contains a time trace, which is composed of the sum of the fluorescence
from individual Qdots. Calculating the temporal autocorrelation of each pixel
gives a new image whose spatial resolution is improved. (C) Fluorescent
image (upper) and 2nd autocorrelation (equal to variance; lower) image of a
single Qdot. Pixel size, 50.4 nm. (D) Point spread functions in
one-dimension of the SOFI simulation results. In the simulation, the two
Qdots were set at distance of 4 pixels apart. The FWHM of each Qdot was
also 4 pixels. 2500 images were used.

yield of this Qdot was less than that of standard Qdots, it still
had sufficient intensity and stability when exposed to high power
illumination, and no long off-state was observed (Figure 8C).
Hence, we could easily obtain a super-resolved image by only
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FIGURE 8 | Super-resolution with blinking-enhanced Qdots. (A)

Schematic drawing of blinking-enhanced Qdots, which were achieved by
making the ZnS shell thinner. (B) Diameter of a commercial Qdot (blue) and
the developed Qdot (red) coated with glutathione. (C) Time courses of the
fluorescence intensities of the commercial (upper) and developed Qdots
(lower). The illuminating laser power was regulated to keep the average
fluorescent intensities of the two Qdots approximately the same. (D)

Super-resolved image using the developed Qdot and SOFI. Upper panels
show vesicles labeled with the developed Qdot under a conventional
fluorescence microscope (left) and SOFI (3rd cumulant image using 100
images) (right) imaging. Pixel size, 50.4 nm. White scale bar, 500 nm. Lower
panels show the intensity profiles of the one-dimension cross-sections
(magenta lines) in the upper panels. The arrowheads indicate the spatial
resolution.

labeling the target protein and calculating the fluctuation of the
blinking-enhanced Qdots (Figure 8D). In our case, the spatial
resolution was improved from 267 to 154 nm using SOFI and only
100 images (Watanabe et al., 2010).

CONCLUSION
Conventional optical microscopy can quantitatively acquire 3D
position and orientation information at the nano-scale from the
shape of the PSF and the polarization characteristics of Qdots and
Qrods. The amount of spatial information can be increased by

analyzing the stochastic fluctuations of the fluorescence. Thus, the
fluorescence of a probe attached to a molecule can reveal informa-
tion about the molecular phenomena and/or state. Increasing the
intensity, stability, and blinking of Qdots and its derivatives will
make the acquisition of such information even more feasible.

Super-resolution microscopy and single particle tracking have
made it possible to resolve and follow two objects closer than
the diffraction limit of light. The result is quantitative informa-
tion of the dynamics of biological phenomena at the nano-scale.
Even more details of the dynamics can be acquired with the above
technologies by using Qdots and their derivatives as probes for
labeling the molecules of interest. The PSF and the polarization
characteristics of the Qdots can be used to provide comprehensive
information on both the position and orientation of the molecule
of interest. Because this information can be extracted from the
stochastic properties of the fluorescence, increasing the inten-
sity, stability, and blinking of Qdots should provide even more
quantitative details about the dynamics.

ACKNOWLEDGMENT
We gratefully acknowledge to Peter Karagiannis (Riken QBiC) for
critical reading of this manuscript.

REFERENCES
Abbe, E. (1873). Contributions to the theory of the microscope and the microscopic

perception. Arch. Mikr. Anat. 9, 413–468. doi: 10.1007/BF02956173
Adachi, K., Yasuda, R., Noji, H., Itoh, H., Harada, Y., Yoshida, M., et al.

(2000). Stepping rotation of F1-ATPase visualized through angle-resolved
single-fluorophore imaging. Proc. Natl. Acad. Sci. U.S.A. 97, 7243–7237. doi:
10.1073/pnas.120174297

Albrecht, A. (1961). Polarizations and assignments of transitions: the method
of photoselection. J. Mol. Spectrosc. 6, 84–108. doi: 10.1016/0022-2852(61)
90234-X

Barroso, M. M. (2011). Quantum dots in cell biology. J. Histochem. Cytochem. 59,
237–251. doi: 10.1369/0022155411398487

Bartko, A. P., and Dickson, R. M. (1999a). Imaging three-dimensional sin-
gle molecule orientations. J. Phys. Chem. B, 103, 11237–11241. doi:
10.1021/jp993364q

Bartko, A. P., and Dickson, R. M. (1999b). Three-dimensional orientations of
polymer-bound single molecules. J. Phys. Chem. B 103, 3053–3056. doi:
10.1021/jp9846330

Betzig, E., Patterso, G. H., Sougrat, R., Lindwasser, Q. W., Olenych, S., Bonifacino,
J. S., et al. (2006). Imaging intracellular fluorescent proteins at nanometer
resolution. Science 313, 1642–1645 doi: 10.1126/science.1127344

Böhmer, M., and Enderlein, J. (2003). Orientation imaging of single molecules
by wide-field epifluorescence microscopy. J. Opt. Soc. Am. B 20, 554–559. doi:
10.1364/JOSAB.20.000554

Bornfleth, H., Satzler, K., Elis, R., and Cremer, C. (1998). High-precision distance
measurements and volume-conserving segmentation of objects near and below
the resolution limit in three-dimensional confocal fluorescence microscopy.
J. Microsc. 189, 118–136. doi: 10.1046/j.1365-2818.1998.00276.x

Bretschneider, S., Eggeling, S., and Hell, S. W. (2007). Breaking the diffraction bar-
rier in fluorescence microscopy by optical shelving. Phys. Rev. Lett. 98, 218103.
doi: 10.1103/PhysRevLett.98.218103

Bruchez, M. Jr., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A. P. (1998).
Semiconductor nanocrystals as fluorescent biological labels. Science 281,
2013–2016. doi: 10.1126/science.281.5385.2016

Bruchez, M. P. (2011). Quantum dots find their stride in single molecule tracking.
Curr. Opin. Chem. Biol. 15, 775–780. doi: 10.1016/j.cbpa.2011.10.011

Byers, R. J., and Hitchman, E. R. (2010). Quantum dots brighten biological imag-
ing. Prog. Histochem. Cytochem. 45, 201–237. doi: 10.1016/j.proghi.2010.11.001

Cao, H., Chen, B., Squier, T. C., and Mayer, M. U. (2006). CrAsH: a biarsenical
multi-use affinity probe with low non-specific fluorescence. Chem. Commun.
24, 2601–2603. doi: 10.1039/B602699K

Frontiers in Physiology | Systems Biology July 2014 | Volume 5 | Article 273 | 18

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Ichimura et al. Nanometry of biomolecules with quantum dot

Chan, W. C. W., and Nie,. S. (1998). Quantum dot bioconjugates for ultrasensitive
nonisotopic detection. Science 281, 2016–2018. doi: 10.1126/science.281.5385.
2016

Chang, Y. P., Pinaud, F., Antelman, J., and Weiss, S. (2008). Tracking bio-molecules
in live cells using quantum dots. J. Biophotonics 1, 287–298. doi: 10.1002/jbio.
200810029

Cheezum, M. K., Walker, W. F., and Guilford, W. H. (2001). Quantitative com-
parison of algorithms for tracking single fluorescent particles. Biophys. J. 281,
2378–2388. doi: 10.1016/S0006-3495(01)75884-5

Chenouard, N., Smal, I., de Chaumont, F., Maška, M., Sbalzarini, I. F., Gong, Y.,
et al. (2014). Objective comparison of particle tracking methods. Nat. Methods.
11, 281–289. doi: 10.1038/nmeth.2808

Chien, F. C., Kuo, C. W., and Chen, P. (2011). Localization imaging using blinking
quantum dots. Analyst 136, 1608–1613. doi: 10.1039/c0an00859a

Chinnathambi, S., Chen, S., Ganesan, S., and Hanagata, N. (2014). Silicon quan-
tum dots for biological applications. Adv. Healthc. Mater. 3, 10–29. doi:
10.1002/adhm.201300157

Choi, H. S., and Frangioni, J. V. (2010). Nanoparticles for biomedical imaging: fun-
damentals of clinical translation. Mol. Imaging. 9, 291–310. doi: 10.2310/7290.
2010.00031

Clausen, M. P., and Lagerholm, B. C. (2011). The probe rules in single parti-
cle tracking. Curr. Protein Pept. Sci. 12, 699–713. doi: 10.2174/1389203117988
41672

Cox, S., Rosten, E., Monypenny, J., Jovanovic-Talisman, T., Burnette, D. T.,
Lippincott-Schwartz,.J., et al. (2011). Bayesian localization microscopy reveals
nanoscale podosome dynamics. Nat. Methods 9, 195–200. doi: 10.1038/nmeth.
1812

Cupaioli, F. A., Zucca, F. A., Boraschi, D., and Zecca, L. (2014). Engineered
nanoparticles. How brain friendly is this new guest? Prog Neurobiol. pii: S0301-
0082(14)00051-3. doi: 10.1016/j.pneurobio.2014.05.002.

Dabbousi, B. O., Rodriguez-Viej, O. J., and Bawendi, M. G. (1997). (CdSe)ZnS
core-shell Qdots: synthesis and characterization of a size series of highly
luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475. doi: 10.1021/
jp971091y

Dalgarno, P. A., Dalgarno, H. I., Putoud, A., Lambert, R., Paterson, L., Logan, D.
C., et al. (2010). Multiplane imaging and three dimensional nanoscale particle
tracking in biological microscopy. Opt. Express. 18, 877–884. doi: 10.1364/OE.
18.000877

Deka, S., Quarta, A., Lupo, M. G., Falqui, A., Boninelli, S., Giannini, C., et al.
(2009). CdSe/CdS/ZnS double shell nanorods with high photoluminescence
efficiency and their exploitation as biolabeling probes. J. Am. Chem. Soc. 131,
2948–2958. doi: 10.1021/ja808369e

Deng, Y., Sun, M., Lin, P. H., Ma, J., and Shaevitz, J. W. (2014). Spatial covariance
reconstructive (SCORE) super-resolution fluorescence microscopy. PLoS ONE
9:e94807. doi: 10.1371/journal.pone.0094807

Dertinger, T., Colyer, R., Iyer, G., Weiss, S., and Enderlein, J. (2009). Fast,
background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc.
Natl. Acad. Sci. U.S.A. 106, 22287–22292. doi: 10.1073/pnas.0907866106

Deschout, H., Cella Zanacchi, F., Mlodzianoski, M., Diaspro, A., and Bewersdorf,
J. (2014). Precisely and accurately localizing single emitters in fluorescence
microscopy. Nat. Methods. 11, 253–266. doi: 10.1038/nmeth.2843

Drummen, G. P. (2012). Fluorescent probes and fluorescence (microscopy)
techniques-illuminating biological and biomedical research. Molecules 17,
14067–11490. doi: 10.3390/molecules171214067

Dubertret, B., Skourides, P., Norris, D. J., Noireaux, V., Brivanlou, A. H., and
Libchaber, A. (2002). In vivo imaging of quantum dots encapsulated in phos-
pholipid micelles. Science 98, 1759–1762. doi: 10.1126/science.1077194

Dubois, F., Mahler, B., Dubertret, B., Doris, E., and Mioskowski, C. (2007). A versa-
tile strategy for quantum dot ligand exchange. J. Am. Chem. Soc. 129, 482–483.
doi: 10.1021/ja067742y

Ekimov, A. I., and Onushchenko, A. A. (1981). Quantum size effect in three-
dimensional microscopic semiconductor crystals. JETP Lett. 34, 345–349.

Ellinger, P. (1940). Fluorescence microscopy in biology. Biol. Rev. 15, 323–347. doi:
10.1111/j.1469-185X.1940.tb00761.x

Erathodiyil, N., and Ying, J. Y. (2011). Functionalization of inorganic nanopar-
ticles for bioimaging applications. Acc. Chem. Res. 44, 925–935. doi: 10.1021/
ar2000327

Fomenko, V., and Nesbitt, D. J. (2008). Solution control of radiative and nonradia-
tive lifetimes: a novel contribution to quantum dot blinking suppression. Nano
Lett. 8, 287–293. doi: 10.1021/nl0726609

Forkey, J. N., Quinlan, M. E., Shaw, M. A., Corrie, J. E., and Goldman, Y. E.
(2003). Three-dimensional structural dynamics of myosin V by single-molecule
fluorescence polarization. Nature 422, 399–404. doi: 10.1038/nature01529

Fourkas, J. T. (2001). Rapid determination of the three-dimensional orientation of
single molecules. Opt. Lett. 26, 211–213. doi: 10.1364/OL.26.000211

Fujita, K., Kobayashi, M., Kawano, S., Yamanaka, M., and Kawata, S. (2007). High-
resolution confocal microscopy by saturated excitation of fluorescence. Phys.
Rev. Lett. 99:228105. doi: 10.1103/PhysRevLett.99.228105

Galbraith, C. G., and Galbraith, J. A. (2011). Super-resolution microscopy at a
glance. J Cell Sci. 124(Pt 10), 1607–1611. doi: 10.1242/jcs.080085

Gao, X., Yang, L., Petros, J. A., Marshall, F. F., Simons, J. W., and Nie, S. (2005). In
vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol.
16, 63–72. doi: 10.1016/j.copbio.2004.11.003

Genovesio, A., Liedl, T., Emiliani, V., Parak, W. J., Coppey-Moisan, M., and Olivo-
Marin, J. C. (2006). Multiple particle tracking in 3-D+t microscopy: method
and application to the tracking of endocytosed quantum dots. IEEE Trans. Image
Process. 15, 1062–1070. doi: 10.1109/TIP.2006.872323

Gerion, D., Pinaud, F., Williams, S., Parak, W., Zanchet, D., Weiss, S., et al.
(2001). Synthesis and properties of biocompatible water-soluble silica-coated
CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 105, 8861–8871 doi:
10.1021/jp0105488

Guo, W., Li, J. J., Wang, Y. A., Peng, X. (2003). Conjugation chemistry and bioap-
plications of semiconductor box nanocrystals prepared via dendrimer bridging.
Chem. Mater. 15, 3125–3133. doi: 10.1021/cm034341y

Gustafsson, M. G. L. (2000). Surpassing the lateral resolution limit by a factor
of two using structured illumination microscopy. J. Microsc. 198, 82–87 doi:
10.1046/j.1365-2818.2000.00710.x

Gustafsson, M. G. L. (2005). Nonlinear structured-illumination microscopy: Wide-
field fluorescence imaging with theoretically unlimited resolution. Proc. Natl.
Acad. Sci. U.S.A. 102, 13081–13086. doi: 10.1073/pnas.0406877102

Harms, G. S., Sonnleitner, M., Schütz, G. J., Gruber, H. J., and Schmidt, T.
(1999). Single-molecule anisotropy imaging. Biophys. J. 77, 2864–2870. doi:
10.1016/S0006-3495(99)77118-3

Heintzmann, R. (2003). Saturated patterned excitation microscopy with two-
dimensional excitation patterns. Micron 34, 283–291. doi: 10.1016/S0968-
4328(03)00053-2

Heintzmann, R., and Cremer, C. (1999). “Laterally modulated excitation
microscopy: improvement of resolution by using a diffraction grating,” in
Proceedings for the SPIE Vol. 3568, Optical Biopsies and Microscopic Techniques
III, (Stockholm), 185. doi: 10.1117/12.336833

Hell, S. W., and Kroug, M. (1995). Ground-state-depletion fluorescence
microscopy: A concept for breaking the diffraction resolution limit. Appl. Phys.
B 60, 495–497. doi: 10.1007/BF01081333

Hell, S. W., and Wichmann, J. (1994). Breaking the diffraction resolution limit by
stimulated emission: stimulated-emission-depletion fluorescence microscopy.
Opt. Lett. 19, 780–782. doi: 10.1364/OL.19.000780

Hoffman, M. T., Sheung, J., and Selvin, P. R. (2011). Fluorescence imaging with one
nanometer accuracy: in vitro and in vivo studies of molecular motors. Methods
Mol. Biol. 778, 33–56. doi: 10.1007/978-1-61779-261-8_4

Hofmann, M., Eggeling, C., Jakobs, S., and Hell, S. W. (2005). Breaking the
diffraction barrier in fluorescence microscopy at low light intensities by
using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. U.S.A.102,
17565–17569. doi: 10.1073/pnas.0506010102

Hohng, S., and Ha, T. (2004). Near-complete suppression of quantum dot
blinking in ambient conditions. J. Am. Chem. Soc. 126, 1324–1325. doi:
10.1021/ja039686w

Holtzer, L., Meckel, T., and Schmidt, T. (2007). Nanometric three-dimensional
tracking of individual quantum dots in cells. Appl. Phys. Lett. 90, 053902 doi:
10.1063/1.2437066

Hoyer, P., Staudt, T., Engelhardt, J., and Hell, S. W. (2011). Quantum dot blue-
ing and blinking enables fluorescence nanoscopy. Nano Lett. 11, 245–250. doi:
10.1021/nl103639f

Hu, J., Li, L. S., Yang, W., Manna, L., Wang, L. W., and Alivisatos, A. P. (2001).
Linearly polarized emission from colloidal semiconductor quantum rods.
Science. 292, 2060–2063. doi: 10.1126/science.1060810

Huang, Z. L., Zhu, H., Long, F., Ma, H., Qin, L., Liu, Y., et al. (2011). Localization-
based super-resolution microscopy with an sCMOS camera. Opt. Express. 19,
19156–19168. doi: 10.1364/OE.19.019156

Izeddin, I., El Beheiry, M., Andilla, J., Ciepielewski, D., Darzacq, X., and
Dahan, M. (2012). PSF shaping using adaptive optics for three-dimensional

www.frontiersin.org July 2014 | Volume 5 | Article 273 | 19

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive


Ichimura et al. Nanometry of biomolecules with quantum dot

single-molecule super-resolution imaging and tracking. Opt. Express. 20,
4957–4967. doi: 10.1364/OE.20.004957

Jia, S., Vaughan, V. C., and Zhuang, Z. (2014). Isotropic three-dimensional super-
resolution imaging with a self-bending point spread function. Nat. Photonics 8,
302–306. doi: 10.1038/nphoton.2014.13

Jiang, W., Mardyani, S., Fischer, H., and Chan, W. C. W. (2006). Design and char-
acterization of lysine cross-linked mercapto-acid biocompatible quantum dots.
Chem. Mater. 18, 872–878. doi: 10.1021/cm051393+

Jin, T., Fujii, F., Komai, Y., Seki, J., Seiyama, A., and Yoshioka, Y. (2008). Preparation
and characterization of highly fluorescent, glutathione-coated near infrared
quantum dots for in vivo fluorescence imaging. Int. J. Mol. Sci. 9, 2044–2061.
doi: 10.3390/ijms9102044

Juette, M. F., and Bewersdorf, J. (2010). Three-dimensional tracking of single
fluorescent particles with submillisecond temporal resolution. Nano Lett. 10,
4657–4663. doi: 10.1021/nl1028792.

Kairdolf, B. A., Smith, A. M., Stokes, T. H., Wang, M. D., Young, A. N., and Nie, S.
(2013). Semiconductor quantum dots for bioimaging and biodiagnostic appli-
cations. Annu. Rev. Anal. Chem. 6, 143–162. doi: 10.1146/annurev-anchem-
060908-155136

Kao, H. P., and Verkman, A. S. (1994). Tracking of single fluorescent particles in
three dimensions: use of cylindrical optics to encode particle position. Biophys.
J. 67, 1291–1300. doi: 10.1016/S0006-3495(94)80601-0

Kim, S. W., Kim, S., Tracy, J. B., Jasanoff, A., and Bawendi, M. G. (2005).
Phosphine oxide polymer for water-soluble nanoparticles. J. Am. Chem. Soc.
127, 4556–4557. doi: 10.1021/ja043577f

Klar, T. A., and Hell, S. W. (1999). Subdiffraction resolution in far-field fluorescence
microscopy. Opt. Lett. 24, 954–956. doi: 10.1364/OL.24.000954

Kloepfer, J. A., Bradforth, S. E., and Nadeau, J. L. (2005). Photophysical properties
of biologically compatible CdSe quantum dot structures. J. Phys. Chem. B 109,
9996–10003. doi: 10.1021/jp044581g

Ko, H. C., Yuan, C. T., and Tang, J. (2011). Probing and controlling fluorescence
blinking of single semiconductor nanoparticles. Nano Rev. 2:5895. doi: 10.3402/
nano.v2i0.5895

Kubitscheck, U., Kückmann, O., Kues, T., and Peters, R. (2000). Imaging and
tracking of single GFP molecules in solution. Biophys. J. 78, 2170–2179. doi:
10.1016/S0006-3495(00)76764-6

Kuno, M., Lee, J. K., Dabbousi, B. O., Mikulec, F. V., and Bawendi, M. G. (1997).
The band edge luminescence of surface modified CdSe nanocrystallites: probing
the luminescing state. J. Chem. Phys. 106, 9869. doi: 10.1063/1.473875

Kusumi, A., Nakada, C., Ritchie, K., Murase, K., Suzuki, K., Murakoshi, H.,
et al. (2005). Paradigm shift of the plasma membrane concept from the
two-dimensional continuum fluid to the partitioned fluid: high-speed single-
molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct.
34, 351–378. doi: 10.1146/annurev.biophys.34.040204.144637

Lasne, D., Blab, G. A., Berciaud, S., Heine, M., Groc, L., Choquet, D., et al. (2006).
Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live
cells. Biophys. J. 91, 4598–4604. doi: 10.1529/biophysj.106.089771

Lemmer, P., Gunkel, M., Baddeley, D., Kaufmann, R., Urich, A., Weiland, Y.,
et al. (2008). SPDM: light microscopy with single-molecule resolution at the
nanoscale. Appl. Phys. B 93, 1–12. doi: 10.1007/s00340-008-3152-x

Leung, B. O., and Chou, K. C. (2011). Review of super-resolution fluorescence
microscopy for biology. Appl. Spectrosc. 65, 967–980. doi: 10.1366/11-06398

Levenberg, K. (1944). A method for the solution of certain non-linear problems in
least squares. Q. Appl. Math. 2, 164–168.

Lew, M. D., Thompson, M. A., Badieirostami, M., and Moerner, W. E. (2010). In
vivo three-dimensional superresolution fluorescence tracking using a double-
helix point spread function. Proc. Soc. Photo Opt. Instrum. Eng. 7571, 75710Z.
doi: 10.1117/12.842608

Li, J., Wu, D., Miao, Z., and Zhang, Y. (2010). Preparation of quantum dot bio-
conjugates and their applications in bio-imaging. Curr. Pharm. Biotechnol. 11,
662–671. doi: 10.2174/138920110792246582

Lichtman, J. W., and Conchello, J. A. (2005). Fluorescence microscopy. Nat.
Methods 2, 910–919. doi: 10.1038/nmeth817

Lidke, K., Rieger, B., Jovin, T., and Heintzmann, R. (2005). Superresolution
by localization of quantum dots using blinking statistics. Opt. Express. 13,
7052–7062. doi: 10.1364/OPEX.13.007052

Lieb, M. A., Zavislan, J. M., and Novotny, L. (2004). Single-molecule orienta-
tions determined by direct emission pattern imaging. J. Opt. Soc. Am. B 21,
1210–1215. doi: 10.1364/JOSAB.21.001210

Long, F., Zeng, S., and Huang, Z. L. (2012). Localization-based super-resolution
microscopy with an sCMOS camera part II: experimental methodology for
comparing sCMOS with EMCCD cameras. Opt. Express. 20, 17741–17759. doi:
10.1364/OE.20.017741

Ma, H., Kawai, H., Toda, E., Zeng, S., and Huang, Z. L. (2013). Localization-
based super-resolution microscopy with an sCMOS camera part III: camera
embedded data processing significantly reduces the challenges of massive data
handling. Opt. Lett. 38, 1769–1771. doi: 10.1364/OL.38.001769

Mandal, A., and Tamai, N. (2011). Suppressed blinking behavior of thioglycolic
acid capped CdTe quantum dot by amine functionalization. Appl. Phys. Lett. 99,
263111. doi: 10.1063/1.3671075

Miyawaki, A. (2013). Fluorescence imaging in the last two decades. Microscopy
(Oxf.). 62, 63–68. doi: 10.1093/jmicro/dfs130

Mizuno, H., Higashida, C., Yuan, Y., Ishizaki, T., Narumiya, S., and Watanabe, N.
(2011). Rotational movement of the formin mDia1 along the double helical
strand of an actin filament. Science 331, 80–83. doi: 10.1126/science.1197692

Nann, T. (2005). Phase-transfer of CdSe@ZnS quantum dots using amphiphilic
hyperbranched polyethylenimine. Chem. Commun. 7, 1735–1736. doi:
10.1039/b414807j

Nifosí, R., Amat, P., and Tozzini, V. (2007). Variation of spectral, structural, and
vibrational properties within the intrinsically fluorescent proteins family: a den-
sity functional study. J. Comput. Chem. 28, 2366–2377. doi: 10.1002/jcc.20764

Nirmal, M., Dabbousi, B. O., and Brus, L. E. (1996). Fluorescence intermit-
tency in single cadmium selenide nanocrystals. Nature 383, 802–804. doi:
10.1038/383802a0

Nishikawa, S., Arimoto, I., Ikezaki, K., Sugawa, M., Ueno, H., Komori, T., et al.
(2010). Switch between large hand-over-hand and small inchworm-like steps in
myosin VI. Cell 42, 879–888. doi: 10.1016/j.cell.2010.08.033

Ohmachi, M., Komori, Y., Iwane, A. H., Fujii, F., Jin, T., and Yanagida, T. (2012).
Fluorescence microscopy for simultaneous observation of 3D orientation and
movement and its application to quantum rod-tagged myosin V. Proc. Natl.
Acad. Sci. U.S.A. 109, 5294–5298. doi: 10.1073/pnas.1118472109

Palaniappan, K., Hackney, S. A., and Liu, J. (2004). Supramolecular con-
trol of complexation-induced fluorescence change of water-soluble, beta-
cyclodextrin-modified CdS quantum dots. Chem. Commun., 23, 2704–2705.
doi: 10.1039/B409075F

Palaniappan, K.,Xue, C., Arumugam, G., Hackney, S. A., and Liu, J. (2006). Water-
soluble, cyclodextrin-modified CdSe-CdS core-shell structured quantum dots.
Chem. Mater. 18, 1275–1280. doi: 10.1021/cm051602q

Park, H., Toprak, E., and Selvin, P. R. (2007). Single-molecule fluorescence to study
molecular motors. Q. Rev. Biophys. 40, 87–111. doi: 0.1017/S0033583507004611

Pavani, S. R., Thompson, M. A., Biteen, J. S., Lord, S. J., Liu, N., Twieg, R. J., et al.
(2009). Three-dimensional, single-molecule fluorescence imaging beyond the
diffraction limit by using a double-helix point spread function. Proc. Natl. Acad.
Sci. U.S.A. 106, 2995–2999. doi: 10.1073/pnas.0900245106

Peng, X., Manna, L., Yang, W., Wickham, J., Scher, E., Kadavanich, A., et al. (2000).
Shape control of CdSe nanocrystals. Nature 404, 59–61. doi: 10.1038/35003535

Peter, S., Harter, K., and Schleifenbaum, F. (2014). Fluorescence microscopy.
Methods Mol. Biol. 1062, 429–452. doi: 10.1007/978-1-62703-580-4_23

Petryayeva, E., Algar, W. R., and Medintz, I. L. (2013). Quantum dots in
bioanalysis: a review of applications across various platforms for fluores-
cence spectroscopy and imaging. Appl. Spectrosc. 67, 215–252. doi: 10.1366/
12-06948

Pierobon, P., and Cappello, G. (2012). Quantum dots to tail single bio-
molecules inside living cells. Adv. Drug Deliv. Rev. 64, 167–178. doi:
10.1016/j.addr.2011.06.004

Pilla, V., Munin, E., Dantas, N. O., Silva, A. C. A., and Andrade, A. A. (2012).
“Photothermal spectroscopic characterization in CdSe/ZnS and CdSe/CdS
quantum dots: a review and new applications,” in Quantum Dots - A Variety
of New Applications, ed A. Al-Ahmadi (InTech), 3–22. doi: 10.5772/2645

Pinaud, F., King, D., Moore, H. P., and Weiss, S. (2004). Bioactivation and cell
targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related
peptides. J. Am. Chem. Soc. 126, 6115–6123. doi: 10.1021/ja031691c

Ram, S., Kim, D., Ober, R. J., and Ward, E. S. (2012). 3D single molecule
tracking with multifocal plane microscopy reveals rapid intercellular trans-
ferrin transport at epithelial cell barriers. Biophys. J. 103, 1594–1603. doi:
10.1016/j.bpj.2012.08.054

Ram, S., Prabhat, P., Chao, J., Ward, E. S., and Ober, R. J. (2008). High accu-
racy 3D quantum dot tracking with multifocal plane microscopy for the study

Frontiers in Physiology | Systems Biology July 2014 | Volume 5 | Article 273 | 20

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Ichimura et al. Nanometry of biomolecules with quantum dot

of fast intracellular dynamics in live cells. Biophys. J. 95, 6025–6043. doi:
10.1529/biophysj.108.140392

Ritchie, K., and Kusumi, A. (2003). Single-particle tracking image microscopy.
Meth. Enzymol. 360, 618–634. doi: 10.1016/S0076-6879(03)60131-X

Rossetti, R., Nakahara, S., and Brus, L. E. (1980). Quantum size effects in the redox
potentials, resonance Raman spectra, and electronic spectra of CdS crystallites
in aqueous solution. J. Chem. Phys. 79, 1086–1088 doi: 10.1063/1.445834

Ruedas-Rama, M. J., Walters, J. D., Orte, A., and Hall, E. A. (2012). Fluorescent
nanoparticles for intracellular sensing: a review. Anal. Chim. Acta 751, 1–23.
doi: 10.1016/j.aca.2012.09.025

Rust, M. J., Bate, M., and Zhuang, X. (2006). Sub-diffraction-limit imaging
by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3,
793–796 doi: 10.1038/nmeth929

Ruthardt, N., Lamb, D. C., and Bräuchle, C. (2011). Single-particle tracking as
a quantitative microscopy-based approach to unravel cell entry mechanisms
of viruses and pharmaceutical nanoparticles. Mol. Ther. 19, 1199–1211. doi:
10.1038/mt.2011.102

Saadeh, Y., Leung, T., Vyas, A., Chaturvedi, L. S., Perumal, O., and Vyas, D. (2014).
Applications of nanomedicine in breast cancer detection, imaging, and therapy.
J. Nanosci. Nanotechnol. 14, 913–923. doi: 10.1166/jnn.2014.8755

Sambongi, Y., Iko, Y., Tanabe, M., Omote, H., Iwamoto-Kihara, A., Ueda, I.,
et al. (1999). Mechanical rotation of the c subunit oligomer in ATP synthase
(F0F1): direct observation. Science 286, 1722–1724. doi: 10.1126/science.286.
5445.1722

Sase, I., Miyata, H., Ishiwata, S., and Kinosita, K. Jr. (1997). Axial rotation of sliding
actin filaments revealed by single-fluorophore imaging. Proc. Natl. Acad. Sci.
U.S.A. 94, 5646–5650. doi: 10.1073/pnas.94.11.5646

Saxton, M. J. (2008). Single-particle tracking: connecting the dots. Nat. Methods 5,
671–672. doi: 10.1038/nmeth0808-671

Saxton, M. J. (2009). “Single particle tracking,” in Fundamental Concepts of
Biophysics, ed T. Jue (New York, NY: Humana Press), 147–169. doi: 10.1007/
978-1-59745-397-4_6

Schermelleh, L., Heintzmann, R., and Leonhardt, H. (2010). A guide to
super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175. doi:
10.1083/jcb.201002018

Schlegel, G., Bohnenberger, J., Potapova, I., and Mews, A. (2002). Fluorescence
decay time of single semiconductor nanocrystals. Phys. Rev. Lett. 88, 137401.
doi: 10.1103/PhysRevLett.112.068103

Shimomura, O., and Johnson, F. H. (1692). Extraction, purification and proper-
ties of aequorin, a bioluminescent protein from the luminous hydromedusan.
Aequorea. J. Cell. Comp. Physiol. 59, 223–239. doi: 10.1002/jcp.1030590302

Small, A., and Stahlheber, S. (2014). Fluorophore localization algorithms for super-
resolution microscopy. Nat. Methods. 11, 267–279. doi: 10.1038/nmeth.2844

Terai, T., and Nagano, T. (2013). Small-molecule fluorophores and fluorescent
probes for bioimaging. Pflugers Arch. 465, 347–359. doi: 10.1007/s00424-013-
1234-z

Thompson, R. E., Larson, D. R., and Webb, W. W. (2002). Precise nanometer local-
ization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783. doi:
10.1016/S0006-3495(02)75618-X

Tiwari, D. K., Tanaka, S., Inouye, Y., Yoshizawa, K., Watanabe, T. M., and Jin,
T. (2009). Synthesis and characterization of anti-HER2 antibody conjugated
CdSe/CdZnS quantum dots for fluorescence imaging of breast cancer cells.
Sensors 9, 9332–9364. doi: 10.3390/s91109332

Tomczak, N., Liu, R., and Vancso, J. G. (2013). Polymer-coated quantum dots.
Nanoscale 5, 12018–12032. doi: 10.1039/c3nr03949h

Toprak, E., Balci, H., Blehm, B. H., and Selvin, P. R. (2007). Three-
dimensional particle tracking via bifocal imaging. Nano Lett. 7, 2043–2045. doi:
10.1021/nl0709120

Toprak, E., Enderlein, J., Syed, S., McKinney, S. A., Petschek, R. G., Ha, T., et al.
(2006). Defocused orientation and position imaging (DOPI) of myosin V. Proc.
Natl. Acad. Sci. U.S.A. 103, 6495–6499. doi: 10.1073/pnas.0507134103

Toprak, E., and Selvin, P. R. (2007). New fluorescent tools for watching nanometer-
scale conformational changes of single molecules. Annu. Rev. Biophys. Biomol.

Struct. 36, 349–369. doi: 10.1146/annurev.biophys.36.040306.132700
Tsien, R. Y. (1998). The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.

doi: 10.1146/annurev.biochem.67.1.509
van Sark, W. G. J. H.M., Frederix, P. L. T. M., Bol, A. A., Gerritsen, H.

C., and Meijerink, A. (2002). Blueing, Bleaching, and Blinking of Single

CdSe/ZnS Quantum Dots. ChemPhysChem 3, 871–879. doi: 10.1002/1439-
7641(20021018)3:10<871::AID-CPHC871>3.0.CO;2-T

van Sark, W. G. J. H.M., Frederix, P. L. T. M., den Heuvel, D. J. V., Gerritsen,
H. C. J., Bol, A. A., van Lingen, J. N. J., et al. (2001). Letter photooxidation
and photobleaching of single CdSe/ZnS Quantum dots probed by room-
temperature time-resolved spectroscopy. Phys. Chem. B 105, 8281–8284. doi:
10.1021/jp012018h

Wang, E. C., and Wang, A. Z. (2014). Nanoparticles and their applications in cell
and molecular biology. Integr. Biol. 6, 9–26. doi: 10.1039/c3ib40165k

Watanabe, T. M., Fujii, F., Jin, T., Umemoto, E., Miyasaka, M., Fujita, H.,
et al. (2013). Four-dimensional spatial nanometry of single particles in
living cells using polarized quantum rods. Biophys. J. 105, 555–564. doi:
10.1016/j.bpj.2013.07.001

Watanabe, T. M., Fukui, S., Jin, T., Fujii, F., and Yanagida, T. (2010). Real-time
nanoscopy by using blinking enhanced quantum dots. Biophys. J. 99, L50–L52.
doi: 10.1016/j.bpj.2010.07.036

Watanabe, T. M., and Higuchi, H. (2007). Stepwise movements in vesicle trans-
port of HER2 by motor proteins in living cells. Biophys. J. 92, 4109–4120. doi:
10.1529/biophysj.106.094649

Watanabe, T. M., Sato, T., Gonda, K., and Higuchi, H. (2007). Three-dimensional
nanometry of vesicle transport in living cells using dual-focus imaging optics.
Biochem. Biophys. Res. Commun. 359, 1–7. doi: 10.1016/j.bbrc.2007.04.168

Wells, N. P., Lessard, G. A., Goodwin, P. M., Phipps, M. E., Cutler, P. J., Lidke, D. S.,
et al. (2010). Time-resolved three-dimensional molecular tracking in live cells.
Nano Lett. 10, 4732–4737. doi: 10.1021/nl103247v

Wells, N. P., Lessard, G. A., and Werner, J. H. (2008). Confocal, three-dimensional
tracking of individual quantum dots in high-background environments. Anal.
Chem. 80, 9830–9834. doi: 10.1021/ac8021899

Werver, G. (1953). Rotational Brownian motion and polarization of the flu-
orescence of solutions. Adv. Protein Chem. 8, 415–459. doi: 10.1016/s0065-
3233(08)60096-0

Wombacher, R., and Cornish, V. W. (2011). Chemical tags: applications in live cell
fluorescence imaging. J. Biophotonics. 4, 391–402. doi: 10.1002/jbio.201100018

Wysocki, L. M., and Lavis, L. D. (2011). Advances in the chemistry of small
molecule fluorescent probes. Curr. Opin. Chem. Biol. 15, 752–759. doi:
10.1016/j.cbpa.2011.10.013

Yajima, J., Mizutani, K., and Nishizaka, T. (2008). A torque component present in
mitotic kinesin Eg5 revealed by three-dimensional tracking. Nat. Struct. Mol.
Biol. 15, 1119–1121. doi: 10.1038/nsmb.1491

Yildiz, A., Forkey, J. N., McKinney, S. A., Ha, T., Goldman, Y. E., and Selvin, P.
R. (2003). Myosin V walks hand-over-hand: single fluorophore imaging with
1.5-nm localization. Science 300, 2061–2065. doi: 10.1126/science.1084398

Yildiz, A., and Selvin, P. R. (2005). Fluorescence imaging with one nanometer
accuracy: application to molecular motors. Acc. Chem. Res. 38, 574–582. doi:
10.1021/ar040136s

Zhang, A., Dong, C., Liu, H., and Ren, J. (2013). Blinking behavior of CdSe/CdS
quantum dots controlled by alkylthiols as surface trap modifiers. J. Phys. Chem.
C, 117, 24592–24600. doi: 10.1021/jp408544x

Zhang, Y., and Clapp, A. (2011). Overview of stabilizing ligands for biocompatible

quantum dot nanocrystals. Sensors 11, 11036–11055. doi: 10.3390/s111211036

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 05 June 2014; paper pending published: 18 June 2014; accepted: 05 July 2014;
published online: 29 July 2014.
Citation: Ichimura T, Jin T, Fujita H, Higuchi H and Watanabe TM (2014) Nano-scale
measurement of biomolecules by optical microscopy and semiconductor nanoparticles.
Front. Physiol. 5:273. doi: 10.3389/fphys.2014.00273
This article was submitted to Systems Biology, a section of the journal Frontiers in
Physiology.
Copyright © 2014 Ichimura, Jin, Fujita, Higuchi and Watanabe. This is an open-
access article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

www.frontiersin.org July 2014 | Volume 5 | Article 273 | 21

http://dx.doi.org/10.3389/fphys.2014.00273
http://dx.doi.org/10.3389/fphys.2014.00273
http://dx.doi.org/10.3389/fphys.2014.00273
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive


REVIEW ARTICLE
published: 24 November 2014

doi: 10.3389/fphys.2014.00457

Specific and quantitative labeling of biomolecules using
click chemistry
Kenichi Horisawa*

Division of Organogenesis and Regeneration, Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan

Edited by:

Noriko Hiroi, Keio University, Japan

Reviewed by:

Noriko Hiroi, Keio University, Japan
Remigiusz Adam Serwa, Imperial
College London, UK

*Correspondence:

Kenichi Horisawa, Division of
Organogenesis and Regeneration,
Department of Molecular and
Cellular Biology, Medical Institute of
Bioregulation, Kyushu University,
3-1-1 Maidashi, Higashi-ku, Fukuoka
812-8582, Japan
e-mail: horisawa@
bioreg.kyushu-u.ac.jp

Specific and highly efficient fluorescent labeling techniques for biomolecules, especially
for proteins, are required for the quantitative analyses of bio-phenomena and for
subsequent systems biology. Although expression of exogenous proteins fused with
fluorescent tags, such as green fluorescent protein, is the most widely used method
for quantitative bio-analysis, the following problems need to be considered carefully:
(1) precise stoichiometric control in living cells is difficult, and (2) the bulkiness of
the fluorescent tags restricts analysis of the inherent physical and biological properties
of the proteins. Therefore, novel techniques to specifically and stoichiometrically label
intrinsic proteins or other biomolecules in living cells should be developed. Click chemistry
reactions (e.g., Huisgen cycloaddition and Staudinger ligation) are the most promising
approaches for this purpose, because these chemical reactions have following advantages:
(1) bioorthogonal reactions; (2) mild reaction conditions suitable for fragile biomolecules,
cells, and tissues; (3) extremely high reaction ratio; (4) small size of the functional groups
for the cross-coupling reactions; (5) stable covalent bonding; and (6) simple metabolic
labeling procedures in living cells, using various biomolecular analogs. Diverse quantitative
biological studies have been carried out using this technology (e.g., quantification of
novel synthesized proteins and observation of post-translational modifications). In this
review, I explain the basics of chemical probing with click chemistry, and discuss its
recent applications in the field of quantitative biology. Furthermore, I discuss the capability,
significance, and future of the chemical probing of proteins, with an emphasis on the use
of click chemistry in the field of the quantitative biology.

Keywords: click chemistry, fluorescent labeling, metabolic labeling, bioorthogonal reaction

QUANTITATIVE FLUORESCENCE IMAGING OF
BIOMOLECULES IN LIVING CELLS
Fluorescent imaging tools such as fluorescent microscopy are
one of the most efficient and widely used modern techniques
in the life sciences for analyzing the quantitative behavior of
biomolecules in living cells, tissues, and organisms (Stephens
and Allan, 2003). Although a lot of alternative imaging tech-
nologies exist, such as electron microscopy, autoradiography, and
immunochemistry, the fluorescent labeling of biomolecules and
their subsequent observation with various optical instruments
shows greater advantages, especially in the area of high temporal
resolution, as this is one of the most important factors that needs
to be analyzed for understanding biomolecular dynamics. Around
the end of the last century and at the beginning of this century, the
application of green fluorescent protein (Shimomura et al., 1962;
Xue et al., 1993; Chalfie et al., 1994; Heim and Tsien, 1996) and
its derivatives (Shaner et al., 2005) drastically improved the avail-
able fluorescence imaging methods for live samples. The huge
impact of genetic fluorescent labeling in living cells can be seen
from the wide variety of available fluorescent proteins. Indeed, the
Nobel prize was awarded to Drs. Shimomura, Chalfie, and Tsien,
in 2008 for the discovery and application of green fluorescent
protein.

An alternative to fluorescent protein tagging is the use of flu-
orescent chemical compounds. These chemicals have long been
employed in the field of bioscience. Table 1 shows the difference
in the properties of fluorescent proteins and chemicals. As live
imaging tools, fluorescent proteins are more predominantly used
as compared to their chemical counterparts, because the genetic
labeling procedure is very easy and reliable. However, fluores-
cent proteins also show certain disadvantages, especially during
quantitative analysis (Table 1). The biggest issue of the protein-
tagging method is the difficulty in controlling the stoichiometry
of the target proteins inside the cell. Basically, the number of the
proteins is controlled at the transcriptional level in living cells.
Although the transcriptional activity can be roughly regulated
through an appropriate choice of promoters or other artificial
molecular systems, strict stoichiometric control is beyond the
capability of the current molecular biological technology. The
second problem pertains to the adverse effects of the tagged
fluorescent proteins. The molecular size of the fluorescent pro-
teins is larger than that of the fluorescent chemicals and other
widely used conventional protein tags (e.g., FLAG, HA, V5, T7,
and Myc tags). The bulkiness of the fluorescent protein tag is
likely to affect the behavior, stability, and function of the target
proteins.
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For the reasons stated above, caution must be exercised
when using fluorescent proteins for quantitative analyses. On
the other hand, some fluorescent chemicals exhibit proper-
ties appropriate for the quantitative fluorescent observation of
biomolecules, including small molecule size, various labeling
positions, nonessentiality of transgene expression, and wide vari-
ation of their optical spectrum (Jung et al., 2013). However, the
efficient and specific conjugation of fluorescent chemicals to the
target proteins poses a major problem. For example, the NHS
ester and isothiocyanate coupling reactions are the most gen-
eral methods for the fluorescent labeling of proteins, although
their target functional (amino) group is present not only in the
target protein but also in other biomolecules such as DNA and
RNA. Therefore, this makes it impossible to label target molecules
specifically if presented with a mixture of biomolecules.

Click chemistry reactions have been recently developed for
chemical coupling. This chemical method has the potential to be
a breakthrough in the field of live fluorescence imaging. In the
following sections, I introduce some of the applications of click
chemistry for cell and tissue imaging, and discuss the various
applications of this technology in the field of quantitative biology.

CLICK CHEMISTRY IN BIOLOGICAL STUDIES
Click chemistry does not correspond to one particular chemi-
cal reaction. This concept is related to the use of novel chemical
reactions, as proposed by Prof. K. Barry Sharpless of the Scripps
Research Institute (Kolb et al., 2001). A click chemistry reaction
shows the following properties: (1) it uses a solvent that is benign
or easily removable, such as water; (2) it only generates inoffen-
sive byproducts; (3) it gives very high chemical yields; (4) it does
not need extremely high temperature or pressure; and (5) the
products from the reactions are physiologically stable. All of the
characteristics above are regarded to be suitable for the chemical
labeling of biomolecules, because almost all biomolecules, espe-
cially biopolymers, are fragile in the extreme conditions necessary
for carrying out the standard chemical reactions. Thus, the num-
ber of applications focusing on the use of click chemistry in the
life sciences is increasing every year (Best, 2009; Lang and Chin,
2014a).

Among the various click chemistry reactions, the azide-alkyne
Huisgen cycloaddition is the most widely employed reaction in
biological studies. This is a coupling reaction between the azide
and alkyne groups, which form a very stable triazole ring as a

Table 1 | Comparison of fluorescent proteins and chemicals.

Property Fluorescent proteins Fluorescent chemicals

Molecule size Large Small

Timing for labeling During translation Anytime

Transgene expression Essential Nonessential

Labeling position Basically C/N-terminus Reactive side-chains or
C/N-terminus

Variation Relatively narrow Wide

Labeling efficiency High Case by case

*Gray-shaded columns highlight the disadvantages for live cell imaging.

linker (Figure 1A) (Huisgen, 1963). For the progression of this
reaction, no additional factors are needed, such as heating and
high pressure; the only requirement is the use of a monovalent
copper ion as a catalyst (Rostovtsev et al., 2002; Tornøe et al.,
2002). This reaction is termed the copper-catalyzed azide-alkyne
cycloaddition (CuAAC). The most important characteristic of the
CuAAC is that the azide and the alkyne do not react with any
other molecules inside the cells and tissues. This property enables
highly bioorthogonal fluorescent labeling in living and complex
samples (Best, 2009; Lang and Chin, 2014a).

Although the fluorescent labeling of various biomolecules such
as proteins, peptides, sugar chains, DNAs, RNAs, and lipids via
CuAAC has proven to be successful (Lahann, 2009; Lang and
Chin, 2014a), several problems still remain to be solved. The
most serious issue for CuAAC is the cytotoxicity of the copper
ion (Boyce and Bertozzi, 2011). High concentrations of this metal
ion catalyst make it impossible to fluorescently label living cells
and organisms. As a solution to the problem, copper-free click
reactions have been developed in recent years. In these reactions,
cyclic derivatives of the alkynyl group [e.g., cyclooctyne (Agard
et al., 2004), difluorinated cyclooctyne (Baskin et al., 2007), and
dibenzocyclooctyne (Sletten et al., 2010)] are employed as reac-
tive partners for the azide group (Figure 1B). These kinds of

FIGURE 1 | Huisgen cycloaddition and Staudinger ligation. (A)

Copper-catalyzed azide-alkyne cycloaddition (CuAAC). (B) Copper-free
azide-alkyne cycloaddition reactions using cyclic alkynes. (C)

Staudinger-Bertozzi ligation.
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cyclic alkyne derivatives harness the intrinsic energy from their
distorted structures; therefore, no additional energy or catalysis is
needed. Some of these derivatives are already commercially avail-
able as fluorescence labeling reagents for living cells, and have
been successfully employed in live cell analyses. However, the rel-
atively bulky size of the cyclic alkyl groups affects the membrane
permeability of the labeling reagents; therefore, almost all of the
previous examples are limited to extracellular labeling studies.

The Staudinger-Bertozzi ligation is regarded as an effective
alternative to CuAAC. This chemical reaction also involves a cou-
pling reaction between an azide and a phosphine (Figure 1C)
(Saxon and Bertozzi, 2000). Similar to the azide and the alkyne,
the phosphine group also does not react with any of the functional
groups on the biomolecules. However, the Staudinger-Bertozzi
ligation has some useful characteristics for the fluorescent label-
ing of biomolecules in living cells. Unlike CuAAC, no catalyst is
necessary for the coupling reaction between the azide and the
phosphine groups. Indeed, several studies showed successful live
cell fluorescent imaging with this technology (Chang et al., 2007;
Hangauer and Bertozzi, 2008). Although this technology has a
potential to be a universal tool for the live cell imaging, the mem-
brane permeability of phosphine-dyes is a remaining issue to be
solved.

More recently, novel bioorthogonal uses of “click” reactions
have been published (Kodama et al., 2007; Song et al., 2008;
Tong et al., 2009; Nguyen et al., 2011). Among them, the most
promising reaction for live cell imaging study is the inverse-
electron-demand Diels-Alder cycloaddition, which is a coupling
reaction between strained alkenes and tetrazines (Blackman et al.,
2008). A lot of studies for the live cell imaging by using the reac-
tion have been published in recent years (Selvaraj et al., 2011;
Lang et al., 2012; Plass et al., 2012; Liu et al., 2012a). This tech-
nology might become a primary tool for live cell imaging studies,
because this reaction has not only harmlessnesss for living cells
but also a very fast rate constant as compared with other reac-
tions (Lang and Chin, 2014b), whish is an important parameter
for the quantitative labeling.

INDUCTION METHODS FOR THE ANCHOR GROUPS OF
BIOMOLECULES IN LIVING SAMPLES
The application of click chemistry in bioscience is increasing
every year. To date, a wide variety of “clickable” reagents for the
fluorescent labeling of biomolecules have been identified, many of
which are also commercially available. However, the more impor-
tant and challenging issue pertaining to the fluorescent labeling
of living samples with click chemistry is the induction of the
anchor groups (i.e., the azide, alkyne, and phosphine groups)
into the biomolecules inside living samples. The most widely
used induction method for the anchor groups in living cells is
through metabolic incorporation, which uses monomer analogs
for biopolymers, such as nucleotides, sugars, and amino acids
(Figure 2A). These molecular anchors are of a relatively smaller
size, thereby making it easier to enzymatically incorporate the
derivatives into the biopolymers.

Among the metabolic labeling targets identified for click
labeling, the sugar chains on the membrane proteins hold the
biggest promise. Although the sugar chains on the membrane

proteins have important roles in various physiological phe-
nomena, including cell-cell adhesion, signal transduction, and
immunologic response, their specific characteristics such as local-
ization, amount, half-life, function, and the difference between
cell types continue to remain elusive. In order to visualize the
sugar chains containing particular types of sugars, different
types of unnatural monosaccharide residues containing an azide
group (azide sugars), i.e., N-azidoacetylmannosamine (Saxon
and Bertozzi, 2000), N-azidoacetylglucosamine (Vocadlo et al.,
2003), N-azidoacetylgalactosamine (Hang et al., 2003), and 6-
azidofucose (Sawa et al., 2006), were produced and used for
metabolic labeling studies. These derivatives were successfully
incorporated into the sugar chains on the cell membrane through
the intrinsic metabolic machinery, and were clearly visualized by
following the click ligation with fluorescent dyes. The live imaging
of the sugar chains uses this technique, and such experiments have
already been done, not only in cultured cells but also in the tissues
of living organisms. The copper-free click reagents such as difluo-
rinated cyclooctyne (Figure 1B) have made this possible (Baskin
et al., 2007). Therefore, the sugar chains could be regarded as
a relatively easier target as compared to the other intracellular
biopolymers.

Proteins have also been a primary target for analyses during
metabolic labeling and click ligation. Several labeling reagents
for newly synthesized proteins have been developed in recent
years. Methionine derivatives bearing azido or alkyne groups,
termed L-azidehomoalanine and L-homopropagylglycine, respec-
tively (Wang et al., 2008), are the most widely used and com-
mercially available reagents for the metabolic labeling of nascent
proteins in living cells (Figure 2A). These are counterparts of
the 35S-labeled methionine used in radiographic analyses, and
are able to label the nascent proteins synthesized during a par-
ticular period or under specific signals. Although these methio-
nine analogs are useful and reliable, pretreatment of cells with
a methionine-free medium is necessary (Soundrarajan et al.,
2012), and this can affect the cells physiologically. Hence, alter-
natives with different labeling machineries were developed. The
derivatives of puromycin, which is an inhibitor of protein biosyn-
thesis, are one of the most promising reagents for the labeling of
nascent proteins. The labeling method using these reagents needs
no culture condition change, unlike the methionine analogs.
Liu et al. reported an alkyne-conjugated puromycin derivative
for nascent protein labeling in cultured cells and tissues (Liu
et al., 2012b). Beatty and colleagues attempted the live cell
imaging of nascent proteins in live fibroblast cells by using the
L-azidehomoalanine- and a BODIPY®-conjugated cyclooctyne
(Beatty et al., 2011). The fluorescent signals inside the cells were
confirmed using confocal microscopy and protein fractionation.
However, these data also revealed the preferential click labeling
of membrane proteins, which might have resulted from the low
cell penetrability of BODIPY®-conjugated cyclooctyne. In order
to develop a reliable protein-labeling method for quantitative
analyses, the development of membrane-penetrable click reagents
seems essential. Genetic code reprograming technologies, which
change the usage of codons, are also powerful method to intro-
duce unnatural amino acids into proteins. Several teams have
reported a lot of successful result of protein labeling by using
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FIGURE 2 | Applications of click chemistry for biomolecular labeling. (A) An example of the metabolic labeling methods. (B) An example of the enzymatic
labeling methods. (C) A fluorescent chemosensor for detecting phosphorylation.

the genetic code reprograming (Zhang et al., 2002; Chin et al.,
2003).

The biosynthesis of RNA and DNA has also been analyzed
in living cells using metabolic labeling followed by click liga-
tion. The data collected from these kinds of analyses can be used
to understand DNA replication, DNA repair, and transcriptional
control. For example, the use of 5-ethynyl-2′deoxyuridine as a
DNA precursor or the use of 5-ethynyluridine as an RNA pre-
cursor during microscopic or flow cytometric analyses enables
quantitative analyses of DNA replication and whole transcription
(Figure 2A) (Darzynkiewicz et al., 2011).

Metabolic labeling coupled with click labeling is a highly effec-
tive tool to analyze biomolecular transitions during the cell cycle,
cell differentiation, signal responses, and apoptosis. However, the
metabolic labeling methods for the anchor groups are not suitable
for the analyses of particular species of biomolecules. Therefore,
more specific labeling methods will be needed in the future.

NOVEL LABELING METHODS AND THE USE OF CLICK
CHEMISTRY IN QUANTITATIVE BIOLOGY
Several technologies are currently under development for the
molecular species-specific labeling of the anchor chemical groups

present in biomolecules. The enzymatic labeling method for
substrates is one such successful example. Many kinds of
biomolecules such as proteins and nucleic acids are modified
by methyl groups following neogenesis. These serve as impor-
tant intrinsic functional markers, and are controlled by various
methyltransferases. Prof. E. Weinhold and his colleagues devel-
oped analogs of S-adenosylmethionine, a methyl-group donor for
almost all of the methyltransferases (Figure 2B) (Klimasauskas
and Weinhold, 2007). These analogs work well in vitro and
in vivo, and can modify the substrates with the anchor groups
instead of the methyl groups in an enzyme-specific manner.
By using this technology, DNAs (Schmidt et al., 2008), RNAs
(Motorin et al., 2010), and proteins (Peters et al., 2010) have
been successfully labeled with an alkyne or an azide. Similar
enzymatic labeling methods for protein substrates have also
been studied for other post-translational modifications, includ-
ing phosphorylation (Lee et al., 2009) and acetylation (Yang et al.,
2010). Although these technologies could potentially be used for
substrate-specific labeling in living cells, an improvement of the
molecular architecture of the methyl-donor analogs is necessary,
because the degree of specificity and efficiency is still not up to the
mark.
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Other novel ideas using click chemistry for biological quan-
tification have also been proposed. For example, Kamaruddin
et al. devised a fluorescent chemosensor for detecting tyro-
sine phosphorylation, by metabolically labeling the residues near
the phosphorylation sites with a quenchable dye (Figure 2C)
(Kamaruddin et al., 2011). The strategy might enable quantitative
phosphorylation analysis in an enzyme-specific manner in living
cells.

Novel fluorescent labeling techniques have been continually
devised in the past decade. Many more innovative fluorescence
labeling methods that use click chemistry are expected to be
developed in the near future to enhance research in the field of
quantitative biology.
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Microelectrode arrays and microprobes have been widely utilized to measure neuronal
activity, both in vitro and in vivo. The key advantage is the capability to record and
stimulate neurons at multiple sites simultaneously. However, unlike the single-cell or
single-channel resolution of intracellular recording, microelectrodes detect signals from
all possible sources around every sensor. Here, we review the current understanding of
microelectrode signals and the techniques for analyzing them. We introduce the ongoing
advancements in microelectrode technology, with focus on achieving higher resolution
and quality of recordings by means of monolithic integration with on-chip circuitry. We
show how recent advanced microelectrode array measurement methods facilitate the
understanding of single neurons as well as network function.

Keywords: microelectrode array, neuronal function, extracellular recording, stimulation, CMOS, multielectrode
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INTRODUCTION
Studying the function and connectivity of neurons in the brain
involves coordinated, interdisciplinary efforts among scientists
from various fields. Through the years, advancements in genetic
markers, immunostaining, optical and electro-optical methods,
electrophysiology, and computational tools have been made
to identify neuronal types, explain their molecular machinery,
untangle their wiring, decipher principles of neural coding, and
to attribute functional roles to specific regions of the brain. The
brain is a complex system and its activity spans over multiple
temporal and spatial scales that require a comprehensive set of
technologies to address these scales. Innovations in experimental
methods to observe and perturb brain activity and in computa-
tional tools to analyze recorded data are needed to master the
brain’s complexity and advance our understanding of its func-
tion. Systems biology has allowed to bridge between molecular
dynamics and whole cell simulations using multi-scale mod-
eling. Applying similar approaches to brain activity will allow
us to gain a more encompassing understanding of it. However,
quantitative data at all these spatial and temporal scales are
a prerequisite.

Electrophysiology has been the preferred means of analyzing
brain activity due to the ability to capture a wide range of neu-
ral phenomena, from the spiking activity of individual neurons to
the slower network oscillations of small populations (Llinás, 1988;
Contreras, 2004; Assad et al., 2014). The electrical nature of neu-
ronal activity makes it possible to detect signals on electrodes at a
distance from the source, but not without caveats. It is necessary
to determine the recording capabilities and limits of the device
used and to understand how the neuronal signal is transduced

into a recorded digital form. Typical electrophysiological methods
are shown in Figure 1 and further described below.

At the microscale, patch-clamp can be used to measure cur-
rents of single ion channels. The function of single neurons is
often explored by direct measurements of the intracellular volt-
age, using patch-clamp or a sharp microelectrode. It is a powerful
but tedious method and often its use is limited to a few neu-
rons per experiment (Wood et al., 2004). Planar patch-clamp
systems allow rapid in vitro patch-clamping, mostly used for high-
throughput ion channel screening of dissociated cells (Dunlop
et al., 2008). Automated patch-clamp allows for fast in vivo intra-
cellular recording and it is feasible to extend the method to
measure several neurons simultaneously (Kodandaramaiah et al.,
2012). The bulkiness of current micromanipulators and patch-
clamp systems together with the necessity for accurate and precise
control have limited simultaneous patch-clamp recordings to a
few—maximum of four and twelve for in vivo (Kodandaramaiah
et al., 2014) and in vitro (Perin et al., 2011), respectively.

At the macroscale, indirect measurement of large areas of
the brain’s activity is achieved via functional magnetic resonance
imaging (fMRI), positron emission tomography (PET), and elec-
troencephalography (EEG). These methods can be used to resolve
functional connectivity among brain regions. For example, EEG
detects spontaneous or evoked electrical activity from the scalp
with low spatial resolution (cm range).

In this review, we focus on electrophysiology at the
mesoscale—extracellular recordings via metal electrodes, open-
gate field-effect transistors (OGFETs) or oxide-semiconductor
FET (OSFET) integrated into large arrays, so-called microelec-
trode arrays (MEAs). This method enables simultaneous and
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FIGURE 1 | Typical electrophysiological methods. (A) Macroscopic
recording via electroencephalography (EEG) and mesoscopic recording
through electrocorticography (ECoG) and implantable electrodes, with the
corresponding representative waveforms recorded in a patient with
drug-resistant epilepsy. The measured signal amplitudes are larger for ECoG
and implanted electrodes (local field potential or LFP recording) compared to
EEG. The waveforms for EEG, ECoG, and implant are modified with

permission from Buzsáki et al. (2012). (B) Mesoscopic and microscopic
recording using a tetrode (extracellular) and a glass micropipette
(intracellular), respectively. The fast EAP extracted from the raw tetrode
recordings correlate with the intracellular APs recorded from a pyramidal cell.
(Left) Illustration of cells across cortical layers modified with permission from
Buzsáki et al. (2012). (Right) Signals for simultaneous extracellular and
intracellular recordings modified with permission from Henze et al. (2000).

long-term recordings of local field potentials (LFPs) and extra-
cellular action potentials (EAPs) from a population of neurons at
millisecond time scale. It also allows perturbing neuronal activ-
ity using electrical stimulation. As data obtained from in vivo
and in vitro experiments are often very similar, the MEA tech-
nology, concepts, and applications we include here apply to both
and will be helpful for scientists and engineers from either field.
In particular, we explain the interface between the neuron and
the electrode in order to understand how to interpret the record-
ings. We highlight trends in the development of complementary
metal-oxide-semiconductor (CMOS) based high-density MEAs
(HDMEAs). The advantages of HDMEAs include the capability
to map neuronal activity at sub-cellular resolution, localize single
cells, and to constrain full-compartmental neuron models.

The outline is as follows. Chapter 2 gives an overview of the
MEA technologies, including the comparison between in vivo
and in vitro MEA devices from a technical aspect. Chapter 3
describes the current understanding on microelectrode record-
ings and introduces the different factors that shape the recorded
signals. Chapter 4 discusses how to process MEA signals and
reviews recent works on using MEAs for neuroscience studies.
We then conclude in Chapter 5 with perspectives on advanced
measurements and applications of MEAs for studying neuronal
function.

MEA TECHNOLOGY
This chapter reviews the technology involved in MEA develop-
ment.

DEVICE TYPES AND TERMINOLOGY
Over the years, a wide repertoire of terms has been used to refer
to and distinguish between all the different forms of MEAs, e.g.,
emphasizing the type of transducers used (multi-transistor array,
microelectrode array, multielectrode array, micro-nail array,
capacitive-coupled array, 3D MEA), the type of substrate (active
array, passive array, silicon array, CMOS array), the shape of the

device (needle-type probe, polytrode, neuro dish), the channel
count (multichannel array), the electrode density (HDMEA) or
the application (implantable array, in vivo MEA, in vitro MEA)
and more. We would therefore like to briefly explain the termi-
nology used in the context of this review. We generalize the term
microelectrodes and MEA to cover both substrate-integrated
planar MEAs and implantable neural probes. We also include
capacitive-coupled devices, such as multi-transistor arrays in the
definition of MEAs. We then distinguish between implantable,
in vivo MEAs, such as polytrodes and neural probes, and in vitro
MEAs that generally include a cell culture dish or some other sort
of medium chamber. Further, we classify the different array archi-
tectures, as will be explained in Section Advances in MEA and
Probe Devices (Figure 3). Briefly, we distinguish between “fixed
wiring” arrays, meaning that each transducer in the array has a
direct wire to the outside of the array and “multiplexed arrays,”
in which some sort of switching mechanism is employed within
the array. We use the term “array” to refer to the actual area
that encompasses the transducer elements only and we use device
or MEA to refer to the entire device. With system, we refer to
the MEA and all required components to operate it, such as the
data acquisition hardware and software. We use the terms “active”
and “passive” to distinguish between devices with active circuit
elements, such as transistors, and devices without such elements.

ELECTRODES AND TRANSDUCERS
There are various techniques for fabricating microelectrodes,
which are reviewed by Li et al. (2003), Park and Shuler (2003),
Huang et al. (2009). Choosing the materials for the insulator, con-
ductor, microelectrode, and substrate is crucial, in particular with
respect to biocompatibility. All materials in the MEA that will be
near to or in contact with cells and tissue need to be tested for tox-
icity in prolonged periods of time (Hassler et al., 2011). It is also
important to consider the biological experiments for which the
microelectrodes will be used, whether in vivo or in vitro, culture or
acute preparation. Moreover, deciding the type of MEA to use is
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highly dependent on the type of recorded signals needed, whether
EAPs and/or LFPs or intracellular action potentials (IAPs), single
cell resolution or not. If the MEA is to be used for stimulation, the
charge capacity of electrodes is an important aspect. The electrode
needs to be able to mediate reactions at the electrode-electrolyte
interface to allow electron flow in the electrode to transition into
ion flow in the electrolyte toward stimulating nearby cells (Cogan,
2008).

Generally, an important goal of electrode fabrication is to
achieve low impedance. Low electrode impedance results in
higher signal-to-noise ratio (SNR), with the usual target SNR of
5:1 or higher. Uniformity of the electrode impedance across an
array of electrodes may also be important to obtain consistent
data.

Typically, electrodes are made with metallic conductors such as
gold (Au), titanium nitride (TiN), platinum (Pt), stainless steel,
aluminum (Al), and alloys like iridium oxide (IrOx). Since the
electrodes used in MEAs are on the micrometer scale, it is a
challenge to achieve low electrode impedance with plain conduc-
tors only. Increasing the effective surface area of electrodes can
be achieved by modification with porous conductive materials
such as Pt-black, Au nanostructures, carbon nanotubes (CNTs),
and conductive polymers like poly(3,4-ethylenedioxythiophene)
(PEDOT). Emerging materials aside from PEDOT and CNTs
include doped diamond and graphene. By modifying the sur-
face, the electrode impedance can be decreased drastically and
neuronal recording can be improved (Cui et al., 2001; Franks
et al., 2005; Ludwig et al., 2006; Keefer et al., 2008; Viswam et al.,
2014). Nam and Wheeler (2011), Kim et al. (2014) for a review of
electrode materials and surface modification.

Non-metallic electrodes have been mostly used in conjunction
with field-effect transistor (FET) based transducers (Bergveld,
1970; Fromherz et al., 1991). An OGFET can, e.g., be obtained
if the fabrication process of a FET is stopped before deposit-
ing the gate material (Jenkner et al., 2004). Easier to fabricate is
the so-called extended-gate FET (EGFET), in which the FET is
fabricated without modification from a standard CMOS process.
Metal and via interconnections are used to extend the gate to the
surface of the chip, where an insulated electrode implements the
“extended gate.” Such insulation ensures that no faradaic currents
occur. However, as Hierlemann et al., pointed out, devices with
metal electrodes also usually connect to a FET directly (Imfeld
et al., 2008) or through a filter capacitor (Heer et al., 2006),
resulting in a largely capacitive recording situation (Hierlemann
et al., 2011). OGFET, EGFET, and devices that directly connect
the electrode to the first FET usually need to include some mea-
sures to properly bias the gate or some calibration mechanism,
which may cause transient currents to flow at the electrode.
Whereas for devices with a capacitively coupled front-end stage,
controlling the electrode input node is generally not needed.
Devices with a FET-based transducer, but using a metalized gate
exposed to the liquid, have also been developed (Jobling et al.,
1981).

Recently, ultra-small electrodes are being developed to record
intracellular activity, including subthreshold signals, as reviewed
in Spira and Hai (2013). This is achieved by 3D structured
electrodes such as silicon nanowires (Robinson et al., 2013) and
Au mushrooms (Hai et al., 2009) penetrating the cell membrane.

Electroporation was shown to facilitate measurement of intracel-
lular activity (Koester et al., 2010; Hai and Spira, 2012).

ADVANCES IN MEA AND PROBE DEVICES
Since the single extracellular microelectrodes used in the middle
of the last century (Weale, 1951; Gesteland et al., 1959), devel-
opment quickly proceeded to MEAs with multiple transducers
for the purpose of increasing the number of neurons observed
(Thomas et al., 1972; Gross et al., 1977; Pine, 1980; Csicsvari et al.,
2003) to increase reliability of spike sorting (Gray et al., 1995;
Harris et al., 2000) and to allow for source localization (Blanche
et al., 2005; Chelaru and Jog, 2005; Frey et al., 2009b; Somogyvári
et al., 2012; Delgado Ruz and Schultz, 2014). The advances in
lithographic techniques, fueled by the semiconductor industry,
allowed a gradual increase in performance and reliability of such
multichannel devices. Passive transducer devices based on elec-
trodes embedded in glass or silicon substrates with fixed wiring
to amplifiers for in vitro and also in vivo applications became
commercially available in the late 90 s and early years of this
century. Already early on, silicon-based biosensors for interfac-
ing cells with microelectronics were developed (Bergveld, 1970;
Parce et al., 1989). Active devices, employing FETs were fabricated
and 2D arrays demonstrated (Besl and Fromherz, 2002). Devices
using CMOS technology were fabricated in academic facilities
(DeBusschere and Kovacs, 2001) and industrial foundries, usually
in conjunction with additional processing steps for biocompati-
bility reasons (Berdondini et al., 2002; Eversmann et al., 2003b;
Franks et al., 2003).

The key advantage of integrating active electronic components
on the same substrate as the actual electrodes is the possibil-
ity of a much higher electrode number and density. Due to the
possibility of using active switches to time multiplex signals,
integrated circuits make it feasible to transfer data from such
high channel counts off chip and to overcome the connectiv-
ity limitation of passive devices. Additionally, such co-integration
allows amplifying the signals with optimal quality, due to minimal
parasitic capacitances and resistances (Hierlemann et al., 2011).
The monolithic co-integration also allows including additional
functionality, e.g., on-chip spike detection, closed-loop capabil-
ities, electrical stimulation, electronic chip identification, device
calibration, and other type of sensing modalities, such as temper-
ature, pH or optical sensing (Baumann et al., 1999; Tokuda et al.,
2006; Johnson et al., 2013b).

Figure 2A compares a variety of historical and current devices,
to illustrate the evolution of MEAs with respect to overall sensing
area and electrode densities. The electrode count is shown with
solid lines. The devices are categorized into fixed wiring (Type
A&B in Figure 3) and multiplexed arrays (Types C–E in Figure 3).
Fixed-wiring arrays include devices without any on-chip cir-
cuitry (Alpha MED Science Co., Ltd.1; Multi Channel Systems
GmbH2 ; Thomas et al., 1972; Gross et al., 1977; Pine, 1980;

1Alpha MED Science Co., Ltd. MED64: A low-noise and user-friendly multi-
electrode array system for in-vitro electrophysiology. Available at: http://www.

med64.com [Accessed December 1, 2014].
2Multi Channel Systems GmbH. MCS: Innovations in Electrophysiology.
Available at: http://www.multichannelsystems.com [Accessed December 1,
2014].

www.frontiersin.org January 2015 | Volume 8 | Article 423 | 30

http://www.med64.com
http://www.med64.com
http://www.multichannelsystems.com
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive


Obien et al. Revealing neuronal function through MEA recordings

A

B

DeBusschere01

Lopez143

Ballini14

Johnson127

Eversmann03a6

μV
rm

s

4

Tokuda065

Johnson127

Ballini14

Eversmann03a6Lopez143
3

3

DeBusschere01

Berényi143

Blanche05B3

Blanche05C3

Csicsvari033

3

3

Kipke033

Montgomery083

Olsson053

Fujisawa083

2

4

FIGURE 2 | Device comparison. MEA comparison with respect to (A)

electrode density and total sensing area, and (B) parallel recording channel
count and noise level. (A) For devices with a regular sensor pitch, such as
most in vitro MEA devices, the total area is calculated as number of
electrodes times the pixel area. For all devices, the number of electrode
times the inverse of the electrode density matches the total area. The light
gray lines illustrate the number of electrodes. (B) The noise values shown are
approximated RMS values stated in the respective citations. The conditions

under which these measurements were taken usually differ significantly
(such as noise bandwidth, in- or exclusion of electrode noise, inclusion of
ADC quantization noise, etc.). Therefore, this graph only serves as a rough
comparison. The waveforms to illustrate the noise levels are simulated and
have a spectrum typical for MEA recordings. The simulated spikes are typical
spikes for acute brain slice measurements recorded with microelectrodes.
The recorded amplitudes may vary significantly depending on preparation and
sensor characteristics. See Footnotes:3,4,5,6,7.

Regehr et al., 1989; Nisch et al., 1994; Oka et al., 1999; Litke et al.,
2004; Segev et al., 2004; Greschner et al., 2014), but also MEAs
with on-chip circuitry limited to the surrounding of the array
(Greve et al., 2007) and arrays that include FETs (Offenhäusser
et al., 1997) and source follower devices directly wired to circuitry
outside the array (DeBusschere and Kovacs, 2001). Multiplexed
arrays employ some sort of multiplexing within the actual array

3The area is calculated as the rectangle of the maximum vertical extend times
the maximum horizontal extend, whereas for probes, the horizontal extend is
taken as the shaft width.
4Only a single sub array of 16 electrodes is considered.
5Features a frame rate significantly lower as compared to the other devices.
6Noise values are taken from Lambacher et al. (2010).
7The authors state that with a new acquisition board, the parallel channel
count could be increased to 1024 at 9300 fps.
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(Eversmann et al., 2003a, 2011; Heer et al., 2006; Tokuda et al.,
2006; Aziz et al., 2009; Berdondini et al., 2005, 2009; Frey et al.,
2010; Huys et al., 2012; Johnson et al., 2012, 2013a,b; Maccione
et al., 2013; Ballini et al., 2014; Bertotti et al., 2014).

For in vivo MEAs, the connectivity limitation is even more
severe, as connections cannot be wired out on all four sides of
the array, but only on one of the narrow sides. Figure 2A includes
some examples of such devices using fixed wiring (Wise et al.,
1970; Najafi and Wise, 1986; Jones et al., 1992; O’Keefe and Recce,
1993; Gray et al., 1995; Bai and Wise, 2001; Csicsvari et al., 2003;
Kipke et al., 2003; Blanche et al., 2005; Olsson and Wise, 2005;
Fujisawa et al., 2008; Montgomery et al., 2008; Herwik et al., 2009;
Du et al., 2011; Berényi et al., 2014) and three recent in vivo MEAs
with multiplexing on the shaft itself (Shahrokhi et al., 2010; Seidl
et al., 2011; Lopez et al., 2014). For detailed reviews of in vivo
MEAs (see Wise et al., 2008, 2004; Ruther et al., 2010).

Figure 2B, on the other hand, focuses only on CMOS-based
devices and illustrates the tradeoff between the number of par-
allel (or quasi parallel) readout channels and the input referred
noise of the amplification chain. It illustrates the fundamental
fact that a low-noise front-end amplifier requires both area and
power. Limiting either will inherently increase the noise levels.

The power budget for the entire device, including all circuitry
within the array and surrounding it, is limited by the amount of
produced heat that one can tolerate. For the area constraints, one
has to separately consider the area within the array and surround-
ing it. Within the array, the electrode density dictates the available
area per pixel. Outside the array, the area is limited mostly by
the fabrication cost. As a trivial approach to decouple the area
requirement from the noise specifications, one can simply place
the amplifiers outside the array and directly wire one electrode to
one amplifier (Figure 3B). However, this approach still does not
allow achieving both a high density and a large electrode count
at the same time. Figure 3 lists these fixed-wiring approaches and
typical array architectures using multiplexing within the array to
overcome this limitation.

Active switching can be integrated into the array, allowing to
time multiplex the signals from many electrodes to a few wires
that carry the signals out of the array. We now consider two
types of time multiplexing, static (Figures 3C,D) and dynamic
(Figure 3E) operation (Imfeld et al., 2008). In dynamic mode,
each pixel (or electrode) is sampled once within each frame,
with typical frame-rates of 2–10 kHz for CMOS-based MEAs
(Eversmann et al., 2003a; Johnson et al., 2013b) and some devices
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FIGURE 3 | Array architectures. This table summarizes and classifies the
different architectures that are typically used for MEAs. Advantages,
disadvantages are stated and representative selected references given. (A,B)

Fixed wiring. (A) Electrodes are directly connected to signal pads with no
active circuitry. (B) Electrodes are directly connected to on-chip active

circuitry for signal conditioning. (C–E) Multiplexed arrays. (C) Signals are
multiplexed to the signal pads via column, row addressing in static mode. (D)

More flexible addressing is achieved by adding more routing resources within
the array in the switch-matrix mode. (E) All electrodes can be sampled at fast
speeds in full-frame readout implemented in active pixel sensor (APS) MEAs.
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allowing as high as 77 kHz (Bertotti et al., 2014). This mode is
similar to image sensors used in cameras. Typically, rectangular
sub-arrays can be chosen as regions of interest and sampled at
faster rates. From a circuit perspective, the challenge in design-
ing full-frame readout MEAs lies in the fact that the multiplexing
within the array requires the front-end amplifier to be located
within the pixel itself, as the electrode alone exhibits a high
impedance and therefore cannot drive the multiplexed readout
lines at sufficient speed. Inherently, the available area within the
pixels is limited in high-density arrays, making it difficult to build
very low noise amplifiers. In addition, the electrodes themselves
and the activity within the culture medium show wide band noise
(see Section Noise and SNR), thus requiring a low-pass filter
within the pixel to prevent noise from being aliased into the sig-
nal band due to the sampling. Generally full-frame readout arrays
have a high channel count, and therefore the power budget per
channel is very limited.

Alternative approaches to circumvent this issue and to allow
for devices in which the circuit itself is not the limiting factor with
respect to noise performance have been demonstrated. Arrays
operating in static mode (Figures 3C,D) have only switches and
no amplifiers as active devices within the array. The switches are
used to wire electrodes to front-end amplifiers placed outside of
the array, where sufficient area for the implementation of low-
noise amplifiers is available. This also decouples the number of
electrodes from the number of readout channels, which allows
budgeting of the available power in more flexible ways. Devices
that employ a simple column and row based static addressing
are limited in the flexibility of choosing electrodes for parallel
readout. A switch-matrix implementation, which consists of a
large set of routing wires, routing switches, and local memory,
such as SRAM cells within the array, allows the use of complex
routing paths to rewire a subset of electrodes to the available
readout and stimulation channels in a flexible manner. Often,
such an approach is sufficient to observe biological phenomena
of interest, as typically not all electrodes exhibit activity. However,
experimental protocols tend to get more complex, as one needs
to select the “right” electrodes during the experiment. One of
the protocols commonly used for such devices is to first scan the
entire array in static mode, i.e., record from each rectangular sub
block for, e.g., a few minutes, run some online or quasi online
data processing on the recorded data, and select a more refined
subset based on the recorded activity and the scientific objective
of the experiment.

Apart from the array, CMOS devices also require the design
of neuronal amplifiers and some sort of data transmitter, either
of the amplified analog signals or, more typically, of the already
digitized data. Generally, a neural amplifier needs to have high
input impedance, which is significantly higher than the electrode
impedance, to ensure signal integrity. The amplifier should be of
low power to prevent substrate heating that could damage cells
or tissue. For in vitro MEA devices, a variety of target applica-
tions have to be considered. Therefore, gain and dynamic range
requirements can be quite demanding and should be adjustable,
such as to cover applications with maximal amplitudes of a few
hundred microvolts in acute slice preparations and, on the other
hand, up to 10 mV in measurements from cardiomyocytes. The

same also holds true for the flexibility in the recording band-
width. Some applications may require lower frequency signals
only, some only spikes in the EAP band, some both bands with
different gain requirements at the same time. The circuits need
to implement some sort of high-pass filter to block the large 1/f
noise of the electrode-liquid interface typically observed. MEA
systems can also include stimulation circuitry, covered in the
next section, and analog-to-digital conversion (ADC). They need
to include an interface to transmit the data and receive com-
mands for controlling the system’s operation. The requirements
are different for implantable devices, where usually the target
application is much more defined, but also the power, reliability,
and safety requirements are more stringent. These systems often
implement spike detection or classification and wireless trans-
mission in the system, either as a monolithic implementation
or hybrid approach using multiple ICs. They may also be pow-
ered wirelessly. On the other hand, in vitro MEA systems do not
require wireless power or data transmission, as they can gener-
ally be directly wired to the data-receiving device. In this case,
often common interface standards are employed, such as USB
(Multi Channel Systems GmbH2), Ethernet (Frey et al., 2010),
National Instrument’s DAQ card (Alpha MED Science Co., Ltd.1),
CameraLink (Imfeld et al., 2008), or others. Most of these sys-
tems support online storage of the full raw data to hard disks,
sometimes including some form of lossless data compression
(Sedivy et al., 2007).

Many of the circuit requirements can be traded against each
other, e.g., one can easily lower the noise by increasing the area
or power consumption. The key challenge therefore is to set the
target specifications for the given application accurately and opti-
mize the systems for it, without overdesigning specific require-
ments. Further considerations with respect to noise are given
in Section Noise and SNR. Reviews focusing on circuit related
issues can be found here: (Wise et al., 2004, 2008; Harrison, 2008;
Jochum et al., 2009; Gosselin, 2011).

STIMULATION
MEAs allow passive observation, and also active influence and
control of neuronal activity. Metal electrodes can deliver electrical
stimuli directly using the microelectrodes, whereas for OGFET-
based devices, typically an extra capacitive stimulation spot is
used to deliver stimuli (Stett et al., 1997). In addition, monolithic
CMOS integration of MEAs opens up the possibility to include
electrical stimulation circuitry directly on-chip, in turn allowing
a high degree of flexibility in generating spatiotemporal patterns
of stimulation, higher spatial resolution for stimulation and direct
on-chip stimulation artifact blanking or suppression.

Already the very first electrophysiological experiments with
frogs by Galvani (1791) involved electrical stimulations using
metal wires connected to various sources, e.g., Leyden jars,
Franklin’s magic squares, and even atmospheric electricity dur-
ing lightning. In vivo, electrical stimulation is commonly used
to stimulate nerves for transmitting sensory information to the
brain, such as for cochlear implants (Wilson and Dorman, 2008)
and retinal implants (Ahuja et al., 2011; Zrenner et al., 2011); to
control, e.g., limbs for neurorehabilitation after nervous system
injury; and to treat disorders, e.g., Parkinson’s disease by deep

Frontiers in Neuroscience | Systems Biology January 2015 | Volume 8 | Article 423 | 33

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Obien et al. Revealing neuronal function through MEA recordings

brain stimulation using brain pacemakers (Montgomery and
Gale, 2008). In such applications, the physical distance between
the stimulation electrode and target nerves can be rather large,
requiring the delivery of high amplitude stimuli.

Lilly et al. (1955) established charged balanced methods using
biphasic brief pulses to limit the damage to the tissue and the
degradation of the electrodes themselves. Merrill et al. reviewed
electrical stimulation using electrodes, listing various materials
(Merrill et al., 2005). For in vitro MEAs, effective stimulation pro-
tocols were characterized by Wagenaar et al. (2004). The authors
studied different stimulation parameters (pulse width, amplitude,
pulse shape) that evoke neuronal activity.

One application of electrical stimulation is the use of it as
a “trigger,” so-called stimulus-triggered averaging (Cheney and
Fetz, 1985). Electrical stimulation allows delivering trigger pulses
of high temporal resolution in the order of a few microseconds,
depending on the stimulation buffer used and the capacitive load
of the electrode. Stimulation can evoke responses with small
temporal jitter, e.g., Bakkum et al. observed a jitter of 160 μs
using passive MEAs (Bakkum et al., 2008). Bakkum et al. used
trigger signals to study the velocity of action potential (AP) prop-
agation in axons of cultured neurons (Bakkum et al., 2013).
Figure 4A shows how such stimulus-triggered averages revealed
small axonal spikes of different shapes, such as bi- and tri-phasic
types. Figure 4B illustrates the reduction in uncorrelated noise
with increasing number of averaged repetitions. One potential
issue with delivering electrical stimulation to neuronal cells and
tissue is the occurrence of artifacts in recording channels, due
to the fact that stimulation pulses are typically three to four
orders of magnitude larger than the recorded signals. This cou-
pling between stimulation and recording is difficult to prevent,
and artifacts are picked up both within the wiring of the array
and circuits, but also through the medium of the cell culture or
tissue. However, as long as the coupling is purely capacitive, arti-
facts usually only prevent recording during the stimulation period
itself. If the amplitude of an artifact is large, which can occur when
a recording electrode is near the stimulation electrode, the artifact
may saturate the amplification circuits of the recording electrode.
This saturation will prevent recording for an extended period
of time after the stimulation ended. Figure 4C shows an exam-
ple of such a saturated signal from an electrode located 18 μm
(center-center) away from the stimulation electrode and a signal
without saturation from an electrode located about a 1 mm away.
Figure 4D shows the relationship between the distance from stim-
ulation to recording electrode and the duration of saturation for
a 11,011-electrode MEA (Frey et al., 2010), without employing
any artifact suppression measures. As long as the amplifiers do
not fully saturate, it is possible to suppress such artifacts in soft-
ware by subtracting the estimated artifact (based on templates,
filters or local curve fitting) from the data (Hashimoto et al.,
2002; Wagenaar and Potter, 2002). To also allow recording from
electrodes on which saturation would occur, counter measures in
hardware have to be employed. One solution is to use a “reset”
switch that can bring back the saturated amplifier into normal
operation quickly, by resetting the high-pass filter of the front-end
amplifier (Heer et al., 2006; Frey et al., 2010). To suppress arti-
facts even on the stimulation electrode itself, more sophisticated

methods are used. Jimbo et al. proposed a method to decouple
the recording amplifiers during stimulation, sample the electrode
potential during recording and add the stimulation pulse to the
stored electrode potential (Jimbo et al., 2003). This scheme has
also been implemented on dedicated ASICs to be used in conjunc-
tion with MEA devices (Brown et al., 2008; Hottowy et al., 2012;
Tateno and Nishikawa, 2014). Figures 4E,F show stimuli activated
neuronal responses with high spatiotemporal precision. In a study
to track axonal APs (Bakkum et al., 2013) several ten thousands
of stimuli were required, which was possible without damaging
the electrodes or cells. In this case, voltage-mode stimulation was
used, although the stimulation hardware supported both current-
and voltage-mode (Livi et al., 2010).

Closed-loop experiments, in which neural activity triggers
electrical stimulation, employing on-chip stimulation circuitry
have been presented by Hafizovic et al. (2007) and Müller et al.
(2013). In both cases, the spike detection is performed off-chip on
dedicated FPGA hardware. The actual decision to stimulate and
the selection of the stimulation waveform patterns is performed
on a personal computer in Hafizovic et al. (2007), whereas in
Müller et al. (2013) an event engine performing this task is imple-
mented directly on the FPGA platform, making the latency until
stimulation shorter and, importantly, reducing its temporal jitter.

CMOS-based devices exclusively devoted to stimulation at
high spatio-temporal resolution of close to 7000 electrode per
square millimeter and with variable voltage mode pulses have
been developed as well (Lei et al., 2008, 2011). Circuit considera-
tions for CMOS-based devices for clinical in vivo application are
reviewed (e.g., Ortmanns et al., 2008; Ohta et al., 2009).

APPLICATIONS OF IN VITRO CMOS-BASED MEAs
In vitro CMOS MEAs have already been used in a wide vari-
ety of applications, for recording, for electrical stimulation or
for both. Figure 5 lists in vitro CMOS MEAs, their key specifi-
cations and preparations for which they have been used so far.
Some additional in vitro CMOS-based MEAs that are not listed
in Figure 5 can be found here: (Tokuda et al., 2006; Greve et al.,
2007; Meyburg et al., 2007; Yegin et al., 2009; Johnson et al., 2012).
In addition, the functionality of some in vivo CMOS MEAs has
also been demonstrated using in vitro applications (Aziz et al.,
2009).

The two most prominent preparations investigated with
in vitro CMOS MEAs so far are acute retina preparations from
mice (Menzler and Zeck, 2011; Fiscella et al., 2012; Maccione
et al., 2014), rats (Eickenscheidt et al., 2012; Lloyd et al., 2014;
Stutzki et al., 2014), rabbits (Zeck et al., 2011; Ballini et al.,
2014; Fiscella et al., 2014), guinea pig (Velychko et al., 2014)
and humans (Reinhardt and Blickhan, 2014); and cultured neu-
ronal cells from snails (Eversmann et al., 2003a), rats (Hafizovic
et al., 2007; Heer et al., 2007; Gandolfo et al., 2010; Lambacher
et al., 2010; Bakkum et al., 2013; Ballini et al., 2014) and chicken
(Hafizovic et al., 2007). Additionally, data from acute slices of
the cerebellum (Frey et al., 2009a; Obien et al., 2014), cortex
(Ferrea et al., 2012; Medrihan et al., 2014) and olfactory bulb
(Johnson et al., 2013a) have been shown. Also cultured cardiomy-
ocytes were studied (DeBusschere and Kovacs, 2001; Heer et al.,
2004; Imfeld et al., 2008; Sanchez-Bustamante et al., 2008; Huys
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FIGURE 4 | Stimulation capability of high-resolution CMOS-based MEA.

(A) Examples of evoked spikes detected at three sites (columns) along the
same axon. The top row shows individual raw traces, and the other rows
show traces averaged as indicated. Scale bars, 1 ms horizontal, 10 μV vertical.

(B) The amount of averaging necessary to detect a spike with a given height
(0.5–3 σ) with respect to the detection threshold. (C) Left: A raw voltage
trace recorded at an electrode neighboring a stimulation electrode

(Continued)
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FIGURE 4 | Continued

saturated for about 4 ms (flat line). Right: A raw voltage trace recorded at
an electrode located 1.46 mm away from a stimulation electrode did not
saturate. (D) The duration of a saturated signal occurring after stimuli is
plotted vs. distance from the stimulation electrode (mean ± s.e.m.;
N = 18 stimulation electrodes from five CMOS-based MEAs). Stimuli
consisted of biphasic voltage pulses between 100 and 200 ms duration
per phase and between ± 400 and 800 mV amplitude. (E) Locations of
stimulation electrodes that directly evoked (black boxes) or did not evoke

(empty or filled gray boxes) APs detected at a soma located ∼890 μm
away. The line arrow indicates the orthodromic propagation direction.
Scale bar, 20 μm. (F) Voltage traces of somatic APs elicited by biphasic
voltage stimuli. Traces in response to eight stimuli are overlaid for each
of three stimulation magnitudes (indicated at the top), plotted for all
effective (black) and four ineffective stimulation sites (gray at the bottom).
Stimulation electrode locations are represented as numbered boxes in
(E). Scale bar, 200 μV. All panels and description adapted with permission
from Bakkum et al. (2013).

et al., 2012) and first results from mice organotypic slices were
presented (Gong et al., 2014).

Certainly, in vitro CMOS-based MEAs, being still an emerg-
ing technology with commercial availability only starting recently,
have a high potential for future biomedical research and
diagnostics (Jones et al., 2011).

UNDERSTANDING MEA SIGNALS
Here, we describe the parameters that contribute to neuronal
signal transduction from the source into digital form.

WHAT DO MICROELECTRODES DETECT?
A microelectrode can detect the changes in the extracellular field
caused by the current flows from all ionic processes across the
morphology of the closest neuron and from other nearby cells,
not only neurons (Buzsáki et al., 2012; Anastassiou et al., 2013).
The effect of the transmembrane currents on the electric field and
the detected potential on a microelectrode depend on the magni-
tude, sign, and the distance from the recording site (Nunez and
Srinivasan, 2006), see Section The extracellular space.

An AP is a biophysical event that occurs once the neuron’s
transmembrane potential reaches a threshold due to stimuli or
other inputs (e.g., synapses, gap junctions). On the other hand, we
consider a “spike” to be the signal from a putative AP. For extracel-
lular recordings, spikes are commonly identified as voltage signals
that exceed a threshold. During an AP, the initial rapid Na+ ion
influx creates a sink and results in a large negative spike in the
EAP. Thereafter, the slow K+ efflux produces a source resulting in
a small positive spike. In contrast, IAP first shows a positive spike
and later a negative volley. EAPs are usually around tens to hun-
dreds of microvolts in amplitude and <2 ms in duration while
IAPs are at tens of millivolts and around the same duration as
EAPs (Buzsáki et al., 2012). If IAPs can only be detected by direct
access inside the neuron, e.g., patch-clamp, EAPs can be identi-
fied when electrodes are placed at the vicinity (∼100 μm) of the
spike origin (Henze et al., 2000; Egert et al., 2002), usually at the
perisomatic area, i.e., around the soma or near the axon initial
segment.

Aside from measuring single- and multi-unit spiking activity,
electrodes also sample LFPs. The LFP is assessed by the signal con-
tent in the low-frequency band of the recorded signal (<300 Hz)
(Belitski et al., 2008; Buzsáki et al., 2012), while EAPs are ana-
lyzed after filtering the LFP out (300–3000 Hz) (Quian Quiroga,
2009). Although the contribution of EAPs to LFP is still unclear, a
synchrony of APs from many neurons can participate in the gen-
eration of LFPs (Buzsáki et al., 2012). The current opinion is that
synchronized synaptic currents in cortical neurons produce LFPs,

through the formation of dipoles (Niedermeyer and da Silva,
2005; Nunez and Srinivasan, 2006). We refer the reader to Einevoll
et al.’s extensive review on the modeling and analysis of LFPs for
further details (Einevoll et al., 2013). The relationship between
LFPs and spikes has also been discussed and studied in several
works (Khazipov et al., 2004; Belitski et al., 2008; Montemurro
et al., 2008; Minlebaev et al., 2011; Kayser et al., 2012; Cingolani,
2014).

MEA SIGNAL FLOW
We consider the components of the MEA recording and stimu-
lation system diagram as shown in Figure 6: (A) the conductive
extracellular volume where the electric field caused by neu-
ral signal sources forms; (B) the substrate with the embedded
microelectrodes; and (C) the hardware connected to the elec-
trodes, including amplifiers, filters, digitizer, data transmission,
and stimulator (Stett et al., 2003; Fejtl et al., 2006).

Noise and SNR
One crucial aspect of the MEA signal flow is how noise is fed
into the amplification chain and how it affects the SNR of the
recorded data. SNR is the key specification for the amplifier
design, regardless of the actual amplification (Jochum et al.,
2009). It is important to consider where the noise, or interfer-
ence, is injected in the signal chain, as the implications on SNR
will differ.

(a) Biological noise. This is a major source of noise stems from
the electrical activity of other cells around the recording elec-
trode, e.g., APs of distant cells, but also ionic activity, e.g.,
subthreshold events in neurites of nearby cells, and synaptic
noise due to the stochastic nature of synaptic transmis-
sion. Several models of biological noise, or sometimes also
called background noise, have been developed by simulat-
ing uncorrelated single-unit spiking activities or examining
multi-compartmental neuron models located at distances far
enough away from the electrodes such that the spikes can-
not be resolved (Eaton and Henriquez, 2005; Martinez et al.,
2009; Lempka et al., 2011; Jäckel et al., 2012; Camuñas-Mesa
and Quian Quiroga, 2013). Although such models replicate
the average biological noise in experiments, it is possible that
the cell type, size, and morphology, along with the firing rates
and correlated activity, can affect the shape of the background
signal. For spike analysis, the LFP is also considered biological
noise and filtered out.

(b) Electrode-electrolyte interface noise. On top of the biological
noise, the liquid-metal interface also adds to noise. At low

www.frontiersin.org January 2015 | Volume 8 | Article 423 | 36

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive


Obien et al. Revealing neuronal function through MEA recordings

Ref Micrograph

Ty
p

 μm
 2

 (2.4%)
 
 
 
 2

 

 
2001)

a)  μm
 2

 2 (2.9%)
 
 
 
 2

 

 

 a

 Acut (

 μm
 2

 2 (19%)
 
 
 
 2

 

  

 μm
 2

 2 (25%)
 4096
 
 
 2

 

 

 

 Cultures (Rc):

a)

 Tech μm
 2

 2 (7.6%)
 
 
 
 2

 

 
2009a

 (Sanchez
)

 

 
2014)

 C

 μm
 2

 14.7mm2 (23%)
 
 
 
 mm 2

 mW

  
2012)

O
th

 μm
 2

 2 (70%)
 
 
 
 2

 

 

 μm
 2

 2 (11%)
 
 
 
 2

 

 
 

 Cultures

 Technolo μm
 2

 
 
 
 2

  

FIGURE 5 | CMOS-based in vitro MEAs. CMOS-based in vitro MEAs, their
key specifications and references to biological applications for recording and
stimulation are listed in this table. The application list includes only one

representative citation for each type of preparation. The specification for each
device are taken from the reference listed on top and may differ for other
versions of the device.
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FIGURE 6 | MEA stimulation and recording system diagram with

the noise sources. The neuron is stimulated by the pulses or
waveform generated digitally through the MEA. The response of the

neuron, typically an action potential, is transformed by different
parameters across the components of the MEA toward the recorded
signal.

frequencies, such as below 10 Hz, processes at the electrode
generate noise with a steep roll-off of 1/f or even 1/f 2 (Hassibi
et al., 2004; Heer, 2005). More relevant for electrophysiol-
ogy are the frequencies above that, where thermal noise is the
main contributor (Gesteland et al., 1959; Liu et al., 2007). The
equivalent thermal noise can be calculated as follows:

vn =
√

4 · k · T · Re
(
Z′e

) ·�f ,

where k is the Boltzmann constant, T is the absolute tem-
perature, Re(Z

′
e) is the real part of the effective electrode

impedance (see Section Neuron-electrode interface), and �f
is the noise bandwidth. Another source of noise is the 50–
60 Hz hum from power lines. This noise is largely picked
up between the microelectrode and the connection to the
input of the preamplifier, due to its high impedance at that
frequency. Hence, minimizing the distance between the elec-
trode and the amplifier is a major design requirement for
MEA circuits (Harrison, 2008). Proper grounding and shield-
ing of the MEA setup can minimize interference.

(c) Device noise. Finally, the device or the system that amplifies
and digitizes the signals further adds to noise. Usually, the
front-end amplifier is the most important factor to consider.
A general design objective for such amplifiers is to ensure
that the signal acquisition system does not limit the system
performance with regard to noise. As discussed above, this is
a design tradeoff in which also power and circuit area may
play a role. For example, if the maximal allowed contribu-
tion to noise from the circuitry is set to 10%, the amplifier
noise needs to be 45% or less as compared to the noise of
the electrode. A commonly used figure of merit that captures
the tradeoff between noise and amplifiers’ supply current is
the noise efficiency factor (NEF) proposed in Steyaert and
Sansen (1987). This figure has also been adapted to capture
the different supply voltages used to allow a better compar-
ison with respect to power consumption, coined the power

efficiency factor or PEF (Muller et al., 2012). For in vitro
MEAs, area is also of critical importance, as it usually impacts
electrode density and total channel count. The efficient use of
the overall area is reflected in the ratio of the actual array area
divided by the overall chip area (see Figure 5). Quantization
noise is another noise contributor of the hardware. It origi-
nates from the discretization error made at the ADC part of
the MEA system. As an approximation for the quantization
noise, typically a value of 1√

12
times the magnitude of the

least significant bit (LSB) is used. Typical ADCs applied for
MEA systems have a minimum of 8-bit resolution, with sys-
tems that employ off-chip ADCs often using 16-bit or higher
resolution. The transmission of data may also affect the qual-
ity of the recorded signal, e.g., if a lossy compression has to be
used due to bandwidth constraints.

The extracellular space
The analysis of EAPs and LFPs usually assume a homogeneous,
resistive extracellular space based on the volume conductor the-
ory, i.e., Kirchhoff ’s current law or charge conservation and
Ohm’s law (Nunez and Srinivasan, 2006). The difference in wave-
forms of a signal recorded at different locations in the tissue is
mainly due to how each neuronal source linearly sums up, with
source contributions weighted inversely proportional to their dis-
tance (Nunez and Srinivasan, 2006). Under the assumption of a
purely homogeneous, isotropic, and ohmic extracellular medium,
Maxwell’s equations of electromagnetism can be rewritten with
appropriate Laplace boundary conditions, such that for a single
point current source the following equation holds true for the
potential at an electrode, Ve (Klee and Rall, 1977; Nunez and
Srinivasan, 2006; Anastassiou et al., 2013):

Ve = I

4πσ r
,

where I is the point current, σ is the conductivity of the medium,
and r is the distance between the point source and the recording
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electrode. Since the membrane currents are distributed over the
cable-like morphology of a neuron, a line source approximation
(LSA) of current sources was also proposed (Holt, 1997; Gold
et al., 2006; Einevoll et al., 2007).

The presence of numerous cell bodies, dendritic structures,
axonal bundles, blood vessels, and white matter in brain tissue
raises questions as to whether the brain can really be consid-
ered as purely ohmic. Moreover, the frequency spectra observed
in LFP and EEG (Pritchard, 1992; Freeman et al., 2003; Bédard
et al., 2006a; Buzsaki, 2006; Bédard and Destexhe, 2009; Miller
et al., 2009; Milstein et al., 2009) led to uncertainties regarding
the role of extracellular space in frequency dependent filtering.
Pettersen and Einevoll (2008) clarified that in a purely resistive
and homogeneous extracellular medium, amplitude variability
and low-pass filtering of EAPs occur due to the spatial sepa-
ration of correlated current sources and sinks during a spike.
Similarly, Lindén et al. (2010) found that an intrinsic dendritic
low-pass filtering affects the LFP, not the extracellular space.
Other interesting studies described how low-pass filtering effects
can be achieved in a medium of radially decaying conductivity
(exponential) around the source (Bédard et al., 2004, 2006b).

Already in 1968, Robinson (1968) suggested that inhomo-
geneities, such as the presence of glial cells in brain tissue, can
considerably impact the extracellular recording of spiking activ-
ity. He also argued that since the resistance of the paths around the
glial cells are lower (for signals at 1 kHz) than the paths through
them (due to the membranes), the extracellular signals would
flow between the cells, not through them. Thus, the structures
in the tissue can cause directional differences in the conduc-
tion of signals (Rice et al., 1993; Okada et al., 1994). Similar
results were achieved by Nelson et al. (2013) across fiber and
cell obstructions. Various studies explored different properties
of brain tissue conduction, such as anisotropy (Nicholson and
Freeman, 1975; Logothetis et al., 2007); anisotropy and inhomo-
geneity (Ranck, 1963a,b; Hoeltzell and Dykes, 1979; Goto et al.,
2010); and capacitive property (Gabriel et al., 1996a,b; Bédard
et al., 2004; Bédard and Destexhe, 2009). Whole brain analysis
of the electrical tissue properties at the microscale may be use-
ful for modeling and analyzing EAPs and LFPs from different
groups of neurons in different brain areas. Using the four-point
probes method (Kelvin sensing, with separate pairs of current-
carrying and voltage-sensing electrodes) is advisable for measur-
ing the electrical impedance of brain tissue, since it minimizes the
influence of the impedance of the current carrying electrodes.

Neuron-electrode interface
Using an equivalent circuit model, the interface between neurons
and microelectrodes in vivo has been described and character-
ized by Robinson (1968). Later, this concept has been adapted for
substrate integrated MEA devices, e.g., to compare metal micro-
electrodes with OGFET devices in simulations (Grattarola and
Martinoia, 1993). This representation of the neuron-electrode
interface was then coined the point-contact model (Weis and
Fromherz, 1997) and is shown in Figure 7A. It is a standard
model of the electrical characteristics of the interface, which has
also been extended to an area-contact model (Buitenweg et al.,
2003; Fromherz, 2003) to consider the spatial distributions that

can accurately describe the interface at subcellular resolution.
Detailed characterizations of the electrode model for various
materials have been carried out, see Section Electrodes and
Transducers. Other studies on similar neuron-electrode equiv-
alent circuits were conducted by Ingebrandt et al. (2005), Joye
et al. (2008), Thakore et al. (2012). These models assume that a
tight seal between the neuron and electrode is needed to mea-
sure EAPs from isolated neurons. In the in vivo situation, such
close contacts usually do not exist and models usually focus less
on the electrode properties themselves, but more on the electric
field generated by current sources in a conductive volume (Lind
et al., 1991; Moffitt and McIntyre, 2005; Gold et al., 2006). For
HDMEAs, such volume conductor models match measurements
for, e.g., the idealized case of point source in saline (Obien et al.,
2013), but also for complex neuronal morphologies in acute brain
slices (Frey et al., 2009a). In cell cultures, it has been observed
that EAPs are also detected by electrodes that do not have a tight
seal with the isolated neuron, even by electrodes that are relatively
distant from the neuronal source (Bakkum et al., 2013). Thus,
we generalize the neuron-electrode model in Figure 7B, which
applies to tissue slices and dissociated cell cultures.

One important assumption for this generalization is that we
can treat the MEA surface as an insulator allowing us to sepa-
rate the neuron-electrode interface problem into two parts: (i)
“fluid”-side and (ii) “metal”-side. We are able to do this separa-
tion because the high input impedance of MEA amplifiers largely
prevents any effect of the metal electrode on the potential at the
“fluid”-side of the interface. This is valid, as long as the impedance
on the “metal”-side seen by the electrode is much larger as com-
pared to the tissue or fluid impedance at all frequencies of interest.
The generalized interface model can then be interpreted such that
an electrode detects the average voltage present at the record-
ing site, as claimed by Robinson (1968), Nunez and Srinivasan
(2006), Nelson et al. (2008). The detected voltage is then shaped
by the electrical characteristics of the interface. It should be noted
that the model, as shown here, is adapted for the recording sit-
uation, focusing on the understanding of the neuronal signals
as recorded by MEAs. Similar models have also been developed
and used for the application of electrical stimulation using micro-
electrodes or capacitive stimulation spots, as discussed in Section
Stimulation.

“Fluid”-side: voltage at the electrode by volume conduction. For
simple geometries of the “fluid”-side, assuming that the MEA sur-
face is an insulating infinite plane and the fluid a homogenous,
isotropic medium, we can apply the method of images to the
point-source equation given in Section The extracellular space,
such that the potential Ve at any given electrode e can be solved
using the following equation (Obien et al., 2013):

Ve = 1

2πσ

∑ In

rn
.

In represents the nth point current source and rn represents
the distance between the point source and the recording elec-
trode, with n = 1. . . N, where N is the number of individual
point sources. For electrodes larger than an ideal point electrode,
Ve can be solved at multiple locations of the surface area of
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FIGURE 7 | MEA neuron-electrode interface. (A) The classic point or area
contact model derived from Fromherz (2003). The cell membrane is
represented with an equivalent model based on the Hodgkin-Huxley model
of the squid axon (Hodgkin and Huxley, 1952). CM represents the
capacitance across the neuronal membrane, i.e., the lipid bilayer. The
voltage-gated ion channels (K for potassium and Na for sodium) are
represented by non-linear conductances, gK and gNa, and the leak is shown
as a linear conductance, gL. The reversal potentials that drive the flow of
ions are represented by EK, ENa, and EL. The ion flow is shown by IK, INa, IL,
and IC. The other elements are described in the text. Vrec is the recorded
voltage signal. Typical IAP and EAP recordings are shown. The location of
the scissors indicates where the “cut” can be made to separate the
neuron-electrode interface into two parts. (B) Generalized neuron-electrode

interface separating the problem into two parts. Upper—“Fluid”-side: The
potential at the electrode sites can be solved using the volume conductor
theory. The MEA surface is assumed to be an insulator such that the
method of images can be applied on Coulomb’s law to solve the potential at
any point on the MEA surface. The neuron-electrode distance influences the
signal amplitude measured at the electrodes. High spatial resolution allows
for recording at several locations of a single neuron, with large negative
spikes located at the perisomatic area and positive spikes at the dendritic
area, i.e., return current. Lower—“Metal”-side: The voltage measured at the
electrode is shaped by the electrical parameters of the electrode-electrolyte
interface, represented by Ze’ as the effective electrode impedance and Za’
as the effective input impedance. This model is derived from Robinson
(1968), Nelson et al. (2008), Hierlemann et al. (2011).

the microelectrode and then averaged. The larger the electrode
area, the larger the averaging effect (Grimnes and Martinsen,
2008). Anisotropy can also be incorporated in this model easily
(Nicholson and Freeman, 1975). However, more complex geome-
tries of, e.g., the MEA device (such as in vivo neural probes) or
an inhomogeneous medium generally require a finite element
method to solve for the electric field and the potential at the
electrode.

The orientation and distance between the neuronal source and
the measuring electrode affect the amplitude and shape of the
signals detected, as discussed in Section The extracellular space.
The spread and decay of the signal over the MEA surface plane is
highly correlated with the distance of the signal source from the
surface. This makes it possible to estimate the distance between
a current source and the MEA electrodes by measuring the volt-
ages at high spatial resolution using an HDMEA (Obien et al.,
2013). The same concept can be applied to estimate the neuron-
electrode distance given a good model of the membrane currents
of the neuron being recorded (Somogyvári et al., 2005, 2012; Frey
et al., 2009b; Delgado Ruz and Schultz, 2014).

“Metal”-side: signal transformation by the electrode-electrolyte
interface. The “metal”-part of the model is an equivalent circuit
of the microelectrode modified from Robinson (1968), Franks
et al. (2005), Nelson et al. (2008), Hierlemann et al. (2011). In this

model, the input to the circuit is a low impedance voltage source
with the value corresponding to the potential resulting from the
currents in the volume conductor discussed above. This voltage
(Ve) is connected to the effective electrode impedance Z′e, con-
sisting of Rspread, Rm, Re, Ce. Rspread is the spreading resistance,
which is the resistance a current sees, that spreads from the micro-
electrode into the electrolyte. Its value is mostly dependent on
the electrode geometry and the electrolyte conductivity. Re and
Ce are the resistance and capacitance, respectively, of a simplified
model of the electric double layer that forms at the electrode-
electrolyte interface. This is a reduction of the more complex
model, consisting of a constant-phase-angle impedance, a charge-
transfer resistance, and a Warburg impedance. Rm is an additional
resistance representing the metallic part of the microelectrode.

The effective amplifier input impedance, Z′a, is connected in
series to Z′e, which includes the actual input impedance of the
amplifier Za and the shunting paths to ground outside the ampli-
fier (Rs and Cs). Input amplifiers are designed to have a high
Za (above 10 M� at 1 kHz) to limit the influence of Za on the
measured voltage (Robinson, 1968). The shunt resistance (Rs)
is usually negligible, but the shunt capacitance (Cs) reduces Z′a,
especially at higher frequencies (Robinson, 1968; Nelson et al.,
2008). Cs is the combination of all capacitances from connec-
tors and wires from the bath to the amplifier, and the capacitance
from metal of the electrode (through the insulation) to the bath
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(Robinson, 1968). The ratio of Z′e (mostly Ce) and Z′a is of
importance, so if the electrode impedance is low enough, the
influence of shunt capacitance to the signal is small (Robinson,
1968; Nelson et al., 2008). HDMEAs require small electrodes to
achieve a high resolution, and therefore also the Ce is usually
small. However, monolithic integration allows keeping Cs small
too. For example, Cs is estimated to be below 0.5 pF for the
HDMEA presented in Frey et al. (2010), whereas passive MEA can
have a significantly larger parasitic capacitance, depending on the
thickness of the insulation and the track width [e.g., James et al.
measured values of 60–100 pF (James et al., 2004) and Nisch et al.
estimated it to be below 15 pF (Nisch et al., 1994)]. For measure-
ments requiring a high accuracy despite having a device with a
large Cs, capacitance compensation circuits can be used, as those
commonly used in patch-clamp amplifiers and, e.g., also used for
highly accurate tissue impedance measurements (Logothetis et al.,
2007).

Effect of electrode size and density
Sizes of published microelectrodes range from 5 to 50 μm in
diameter (Kim et al., 2014). Larger electrodes have a higher pos-
sibility of getting physically near the neurons and of picking up
higher amplitude spikes (Camuñas-Mesa and Quian Quiroga,
2013), e.g., studies by Moxon (1999), Paik et al. (2003), Ward
et al. (2009), Andersen et al. (2010) claim that larger record-
ing electrodes can record from more neurons simultaneously.
However, large electrodes (>50 μm diameter) can average out
a neuron’s spatially localized peak signal amplitude with nearby
smaller amplitude signals. This reduces the peak signals, which
can result in a lower SNR. Electrode size also affects the elec-
trode impedance Z′e, which in turn determines electrode noise
(see Section Noise and SNR). With that, there are three effects
for which SNR improves with larger electrodes (reduced electrode
noise, reduced attenuation due to large Ze/Za ratio, and increased
chance to “being at the right spot”), and one effect for which SNR
gets worse with larger electrodes (increased signal averaging).

As discussed above, for EAP recording in the 300–3000 Hz
frequency band, electrode noise is mostly thermal and compa-
rably small, especially if some sort of electrode coating is used
and the electrode size is >5 μm in diameter. Without consider-
ing electrode noise, Camuñas-Mesa et al. studied via simulation
the optimal electrode size for an in vivo situation, considering
neuronal background activity. For their simulation parameters,
they found 40 μm to be the optimum (Camuñas-Mesa and Quian
Quiroga, 2013). For HDMEAs, the situation is a bit different.
Most importantly, there is no need to enlarge the electrode to be
close to the location with the largest signal, as there will always
be another electrode “at the right spot”. Secondly, the effective
input capacitance can be significantly smaller as compared to pas-
sive devices, due to a small Cs, which in turn allows for a smaller
Ce. As a result, small electrodes are much more preferable in this
situation, with only electrode noise being the limiting factor.

LFP and EAP recordings from neurons located distant to the
electrodes feature lower spatial frequencies and therefore allow
for larger electrodes without signal degradation than recordings
from neurons within close proximity. Especially for LFPs, Nelson
and Pouget (2010) discussed that the electrode impedance and

recording site geometry are not crucial. This is because LFPs only
vary in a spatial scale much larger than the size of electrodes used
for extracellular recordings, e.g., by a few hundred micrometers
(Katzner et al., 2009) or even by 1 mm (Destexhe et al., 1999). In
addition, LFPs are of lower temporal frequency, making electrode
noise a more important factor as in that range, it is dominated by
1/f 2 noise, which makes larger electrodes more favorable.

It is therefore important to choose optimal electrode sizes
depending on the targeted application. In addition, a high density
of electrodes will inherently limit the electrode size.

PRACTICAL APPLICATION OF MICROELECTRODE
RECORDINGS
Here, we provide a brief overview on how to extract relevant
information from distorted, convoluted, and noisy recorded sig-
nals. We then review relevant applications of MEAs for the study
of single neurons and networks using various techniques and
preparations.

MEA SIGNAL PROCESSING AND SPIKE SORTING
MEA signal processing usually includes (1) filtering the raw data
traces, (2) spike detection, and (3) spike sorting.

First, the raw signal is processed to separate the fast APs from
LFP and noise by applying a band-pass filter (Quian Quiroga,
2007), with a typical narrow band of 300–3000 Hz. Filtering
methods aim to attain higher SNR and lower false positive rates.
The filtering process can add phase distortions and therefore alter
the shape of the detected EAP. One can avoid such phase dis-
tortions by using non-causal filters when future inputs are also
used for computation. In hardware implementations and online
filters, causal filters are typically used though, as non-causal filters
would require the usage of a data buffer (Quian Quiroga, 2009).
Depending on the scientific goal, good practice is to record data
with wide-band filters (e.g., 1–7000 Hz) and negligible phase dis-
tortion, then apply the narrower band filters only for the purpose
of the extraction of spike timing information, for which undis-
torted spike shapes are not needed. One can then still use the spike
timing information generated by the spike sorter to re-extract the
undistorted spike shapes from the original data.

Once the signal is filtered, the spikes are detected. Amplitude
thresholding is commonly used, although other spike detec-
tion methods have been implemented, e.g., two-point procedure
(Borghi et al., 2007; Maccione et al., 2009) and template-matching
(Kim and McNames, 2007). The threshold is usually set as a mul-
tiple (5 times) of the baseline noise level, calculated as the root
mean square (RMS) of the signals with a mean value of zero. In
the presence of many spikes, the threshold can be estimated using
a measure based on the median, which is less sensitive to outliers
and therefore more robust with regard to spike frequency (Quian
Quiroga et al., 2004).

After spike detection, spike shapes are grouped according
to their spike shape, which is referred to as spike sorting.
Several feature extraction techniques have been used, e.g., prin-
cipal component analysis or PCA (Quian Quiroga, 2007) and
wavelet transform (Mallat, 1989). In the ideal case, distinct neu-
rons will have spikes whose features belong to well-separated
clusters, and each neuron will only be part of one cluster. In
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practice, spike sorting often requires user supervision in order
to manually evaluate the performance of the procedure and cor-
rect for errors, e.g., to merge nearby clusters or remove outliers.
For a detailed explanation of the spike sorting steps, the reader
is referred to other review articles (Lewicki, 1998; Einevoll et al.,
2012a). Available spike sorting packages and frameworks include
Wave_Clus (Quian Quiroga et al., 2004), NeuroQuest (Kwon
et al., 2012), SigMate (Mahmud et al., 2012), UltraMegaSort
(Hill et al., 2011), EToS (Takekawa et al., 2010, 2012), and
QSpike tools (Mahmud et al., 2014), among others. HDMEAs can
improve spike sorting performance since with high-resolution
spatial information, one can more efficiently separate individual
neurons (Gray et al., 1995; Jäckel et al., 2011; Franke et al., 2012).

A number of concerns have been raised regarding the effec-
tiveness of spike sorting. In fact, it is difficult to validate spike
sorting algorithms and it is important to test them based on
realistic simulated data (Einevoll et al., 2012b). For in vivo experi-
ments, or in acute recordings where the electrodes can move with
respect to the neurons, drift may occur and alter the recorded
signal. Another issue is the amplitude variability of APs from a
single neuron that can lead to clustering errors, either intrinsi-
cally or due to bursts (McCormick et al., 1985; Henze et al., 2000;
Delescluse and Pouzat, 2006; Stratton et al., 2012), such that one
cluster may contain the large amplitude spikes and the second one
the smaller amplitude ones (Van Dijck et al., 2012).

USING MEAs FOR NEUROSCIENCE STUDIES
MEA recordings have been employed to understand neuronal
communication, information encoding, propagation, and pro-
cessing in neuronal cultures as well as in brain slices and retina
explants (Taketani and Baudry, 2006). Recent works start to take
full advantage of the unique abilities of HDMEAs.

Bursts
Bursts and burst rates of APs in a neuron or across a network
of neurons is a common feature extracted from data in MEA
applications. Bursts have several meanings and functions in neu-
roscience, e.g., synchronization, information carrier, and motor
pattern generation. Single neurons can exhibit bursting, or burst
firing, when APs fire at a high frequency for a period of time, fol-
lowed by a quiet period. Bursts can be triggered by the network
activity (environment) or can be intrinsic to the neuron (pheno-
type of the cell). There are many algorithms to detect the presence
of bursts from single neurons (see Samengo et al., 2013; Bakkum
et al., 2014 for some methods).

Besides single neuron bursting, population-wide synchronous
activities are also of interest. For example, repetition of activa-
tion patterns (Abeles and Gerstein, 1988; Sun et al., 2010) can
be considered as memory traces, replayed by the appearance of
a similar stimulus or due to internal processes that occur, e.g.,
during sleep (O’Neill et al., 2008; Abel et al., 2013). Bakkum
et al. (2014) investigated parameters for and compared the per-
formance of various burst detectors on population-wide bursts.
An inter-spike interval (ISI) based network burst detector was
able to identify small and large bursts better than other tech-
niques in cultured networks. Rate-based detectors detected larger
bursts only, while prematurely identifying the end of bursts. See

Kreuz (2013) for further details and methods on quantifying
synchronization.

MEAs and neuronal cultures
Since Pine reported the first MEA recordings from dissociated
neuronal cultures in 1980 (Pine, 1980), the method has been
expanded for pharmacological tests, diagnostics, and investi-
gation of neuronal growth and connectivity. Combination of
immunostaining, fluorescence microscopy, and MEA recording
allows the identification of neuronal types and synapses, e.g.,
GABAergic and glutamatergic, and the analysis of neuronal elec-
trical activity in long-term cultures. Using this technique, Ito et al.
(2013) observed a correlation between synapse densities and elec-
trical activity of cultured rat cortical networks (Figures 8A,B).
The initial increase in glutamatergic and also GABAergic synapses
was accompanied with increasing electric activity, which reached
a plateau after 28 days in culture when the synapses reached their
final density.

More complex neuronal culture analyses can be done using
HDMEAs such as burst pattern tracking (Gandolfo et al., 2010)
and functional connectivity estimation (Maccione et al., 2012).
By plating low-density cultures, it is feasible to not only optically
visualize the network of stained neurons, but also to estimate the
functional connections and to obtain detailed functional maps
at cellular resolution (Maccione et al., 2012), see Figures 8C,D.
Maccione et al. processed and analyzed the HDMEA signals by
ad hoc developed spatio-temporal filtering and by applying a
cross-correlation based method.

MEAs and brain slices
A brain slice is a 3D environment of neurons that can be placed
on MEAs to monitor electrical activity. Cutting the brain into
very thin slices has allowed access to neurons deep in the brain
for imaging, i.e., mapping the anatomy. The same method can
be used for recording the activity of neurons that are otherwise
difficult to reach and identify in vivo. This requires a setup to
keep the neurons viable, i.e., by perfusion with artificial cere-
brospinal fluid (ACSF) with continuous carbogen (95% oxygen
and 5% carbon dioxide) gassing. The neurons and network
structure in slices are physiologically and biochemically more
similar to the in vivo situation. It is possible to observe LFPs
and oscillations inherent in different states of the brain. Such
recordings have been done for different brain areas, e.g., hip-
pocampus, suprachiasmatic nucleus, etc. For instance, MEAs have
been employed to investigate the disruption of normal network
waves and oscillations in the brain caused by the absence of cer-
tain ion channels in neurons. In one particular case, Simeone
et al. studied the effect of the delayed rectifier potassium chan-
nel α-subunit Kv1.1 to the oscillations in the hippocampus shown
in Figures 9A–C (Simeone et al., 2013). By reducing or elimi-
nating the expression of Kv1.1 in the axons of the hippocam-
pal tri-synaptic pathway, the authors were able to observe an
increase in occurrence of fast ripples (80–200 Hz bandwidth, 50%
longer duration) and high frequency oscillations associated with
epilepsy, as shown in Figure 9C. Similar applications have been
done using HDMEAs. Medrihan et al. (2014) showed that the
absence of synapsin II (Syn II), a protein related to epilepsy,
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FIGURE 8 | Neuronal culture studies using MEAs. (A,B) Combination of
MEAs with immunostaining and microscopy to analyze the relationship
between the development of synapses and electrical activity of neurons,
adapted with permission from Ito et al. (2013). (A) Plot showing the number
of synapses along the neuronal dendrites in a long-term primary culture.
The glutamatergic (red) and GABAergic (green) synapses along the
dendrites of neurons were obtained by immunostaining from cultures at
7–35 days in vitro (DIV). The number of synapses at the dendrites
continuously increased for 3 weeks and saturated afterwards. The same is
true for synapses at the soma (not shown), which saturated after 30 DIV.
(B) Plotted data from MEA recordings of a long-term culture. A similar
pattern is observed from the firing rate and synchronized burst rate
measured by a MED64 MEA device from 7 to 35 DIV. Both the firing and
burst rates increased until 30 DIV, which eventually saturated afterwards.
(C,D) Application of HDMEAs to analyze the functional connectivity of
neurons in vitro, adapted with permission from Maccione et al. (2012).
Fluorescent images of stained neurons on an HDMEA are shown with
arrows indicating the functional connectivity (from white—weak to
red—strong) obtained by analyzing spike trains using cross-correlation.

decreases tonic inhibition in mouse hippocampal slices, thus
increasing synchronized bursts (see Figures 9D,E). THIP (4,5,6,7-
tetrahydroisoxazolo[5,4-c]pyridin-3-ol; gaboxadol), a selective
agonist of δ subunit-containing GABAA receptors, restores tonic
inhibition.

Depth recording of EAPs from neurons up to 100 μm dis-
tance from the MEA surface was also shown (Egert et al., 2002;
Frey et al., 2009b). Subcellular resolution recording from single

Purkinje cells (PCs) in acute cerebellar slices was demonstrated
using HDMEAs (Frey et al., 2009a). One important factor is to
ensure tissue adhesion on the MEA surface. Adhesion can be
achieved by cellulose nitrate coating (Egert et al., 2002), but also
by a slice anchor typically used for patch-clamp recordings. EAPs
were observed along the PC layer and, after spike sorting, the EAP
footprint of a single PC was analyzed. The negative spikes were
recorded around the perisomatic area of the neuron, while posi-
tive spikes were obtained along the molecular layer corresponding
to the dendrites of the PC. A comparison of the high spatiotempo-
ral resolution recording with simulations of a full-compartmental
model based on the stereotypical morphology of a PC was done.
Figure 10 shows both measured and simulated EAP data from
PCs at high resolution. Although the planar geometry of PC is
advantageous, similar results might be obtained from neurons in
other brain areas.

Aside from acute preparations, MEAs have been used to ana-
lyze the brain function using organotypic slice cultures. For
example, Ito et al. studied the functional connectivity in hip-
pocampal and cortical organotypic cultures (Ito et al., 2014).
They analyzed the network activity at different frequency ranges
using the wavelet transform of the cross-correlogram.

MEAs and retina
The planar arrangement of retinal ganglion cell (RGC) bodies
and axons is highly compatible with MEA recordings from retina
explants. Responses of RGCs can be recorded using different types
of light stimulations (Segev et al., 2004; Wässle, 2004; Jones et al.,
2011). This allowed the identification of cell types of popula-
tions of RGCs and the mapping of their receptive fields (Meister
et al., 1994; Chichilnisky, 2001), in different regions of the retina.
Fiscella et al. (2012) established a methodology applied to mice
retina that uses light stimulation and HDMEAs to identify, select,
and record from defined populations of RGCs. After spike sort-
ing the HDMEA recordings, the EAP footprints of detected RGCs
were obtained, as shown in Figures 11A,B. Each detected RGC is
assigned to one of the four types of ON–OFF direction-selective
RGCs, depending on the occurrence of the response to different
light stimulation patterns (see Figures 11C–E).

Another study on retina (macaque) using HDMEAs revealed
the identification of the type, location, and strength of the func-
tional input of each cone photoreceptor to each RGC (Field
et al., 2010). Populations of midget, parasol, and small bistratified
RGCs were recorded simultaneously in the presence of white noise
“visual” stimulation. The spatial receptive field and response time
of RGCs were detected by computing the spike-triggered average
of the stimuli. Afterwards, the detected clusters of cells obtained
by PCA were further stimulated with 10-fold smaller pixels (5×
5 μm2) to reveal finer details of the receptive fields. The method
was able to map putative cones accumulated across the receptive
field of RGCs, which were verified by overlaying a microscopy
image of cones labeled with peanut agglutinin (see Figure 11F).
The authors were able to quantify the strength of connectiv-
ity between different RGC types and different types of cones
(sensitive to red, green, or blue). These exhibit the capability
of HDMEAs, combined with advanced stimulation and analy-
sis techniques, to resolve the functional connectivity of neurons

Frontiers in Neuroscience | Systems Biology January 2015 | Volume 8 | Article 423 | 43

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Obien et al. Revealing neuronal function through MEA recordings

FIGURE 9 | Waves in acute hippocampal slices revealed by MEAs. (A–C)

Studying the effect of the delayed rectifier potassium channel α-subunit Kv1.1
to sharp waves in in vitro hippocampal slices using MEAs, modified with
permission from Simeone et al. (2013). (A) Image of a Kcna1-null (knock-out
of the gene encoding Kv1.1) hippocampal slice on an MEA. Black squares
correspond to the electrodes. The regions of the hippocampus are also
indicated. (B) The sharp waves in wild-type (WT) and Kcna1-null hippocampi
are initiated in CA3 that spread with similar time-courses. (C) Representative
sharp waves from WT and Kcna1-null hippocampi recorded at the location of
red boxes in (A). The sharp waves are longer (with ripples) in Kcna1-null
compared to WT. Scale bars: horizontal, 50 ms; vertical, 50 μV except for WT

CA3sp (100 μV), WT CA3sr (200 μV), KO CA1sp (20 μV), and WT CA1sr
(200 μV). CA, cornus ammonis; DG, dentate gyrus. (D,E) Studying the effect
of deleting synapsin II (Syn II) to the tonic inhibition in mouse hippocampal
slices using HDMEAs, adapted with permission from Medrihan et al. (2014).
(D) Mean firing rate computed from each electrode from WT and Syn II
knock-out hippocampal slices before and after THIP treatment. THIP:
(4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; gaboxadol), a selective agonist
of δ subunit-containing GABAA receptors. (E) Raster plots showing highly
synchronized bursts, x-axis corresponds to time, y-axis corresponds to pixels
(electrode). THIP reduced the high frequency bursts in Syn II knock-out
hippocampus. Scale bar: 1 min.

in the retina at single-cell resolution. There are also other recent
works on population coding in the retina using MEA recordings
(Marre et al., 2012; Tkačik et al., 2014).

MEAs and axonal signal tracking
Taking advantage of the spatiotemporal resolution and high sig-
nal quality of HDMEAs, tracking the propagation of APs between
cells can be performed. Bakkum et al. (2013) achieved this in
dissociated neuronal cultures (see Figures 12A–C). Axonal sig-
nals are difficult to identify using conventional methods: thin
axons are difficult to patch and extracellular signal amplitudes are
rather low compared to those from the soma. A major accom-
plishment of this work is the capability to electrically image
the propagation of APs along axons, across the topology of the
whole neuronal network. By using HDMEAs that can record and
dynamically stimulate at defined locations, with little artifact to
the signals, it was possible to quantify the direction, velocity, and
extent of axonal AP propagation. The stimulation and record-
ing techniques are shown in Figures 12B,C. This is a suitable
platform to study the role of axons in neuronal computation in
the future.

Axonal conduction was also measured by Zeck et al. (2011)
from rabbit retina using HDMEAs. The authors were able to mea-
sure the velocity of axonal AP caused by stimuli and discovered
that similar RGC types respond with the same latency and con-
duct with similar velocity (see Figure 12D). Except for the area
where axons are myelinated, axonal signals were detected from
all stimulated RGCs. This work also shows that when axons are
very near or flat on the electrode array surface, it is possible

to map the flow of APs. The axons do not necessarily need a
tight contact on the electrodes, since the potential due to the APs
was also detected from other surrounding electrodes, with lower
amplitude compared to the electrode nearest the axon.

NEURONAL MODELING AND HDMEA RECORDINGS
Computational modeling is useful to interpret the dynamics
and processing of neurons and networks. MEA recordings are
commonly analyzed to model neuronal networks (Taketani and
Baudry, 2006; Kreuz, 2013; Samengo et al., 2013). Here, we
focus on the use of HDMEA data to analyze and model single
neurons.

Localization of neurons
Neuronal circuits are arranged with high spatial precision and
specificity and therefore, spatial information is an important
factor in deciphering neuronal activity. Microscopy, fluores-
cent markers, and transgenic animals have enabled researchers
to localize and classify neurons in a high-throughput man-
ner. Together with dynamic multineuron Ca-imaging using
spinning-disk confocal microscopy with two-photon excitation,
spatial and functional information can be obtained simulta-
neously. However, the temporal resolution of MEA recordings
can capture neuronal responses better than these imaging tech-
nologies (Delgado Ruz and Schultz, 2014) and the optical tools
described above may not be applicable to all experiments, e.g.,
due to the unavailability of the transgenic animals, the duration of
the experiment, optical access such as in in vivo experiments with
freely moving animals, etc. Therefore, localization of neurons in
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FIGURE 10 | High-resolution mapping of spontaneous Purkinje cell

activity using HDMEAs. (A–E) HDMEA recordings from an acute slice
preparation of the caudal half of the cerebellar vermis. (A) Activity map of the
detectable spike activity in the recording area. Small dots correspond to the
electrodes used for recording (∼30% of the available electrodes). Events
exceeding a threshold of ±36 μV were used to calculate the color-coded
event rate. Scale bar: 0.3 mm. (B) Close-up of a region with high activity
delimited in (A). All units identified by spike sorting are marked, i.e., the
somatic region is blue and the dendritic region is red. Scale bar: 0.1 mm. (C)

Schematic of the basic cellular structures in the cerebellar slice (Gray, 1918).
Scale bar: 0.1 mm. ML, molecular layer; PCL, Purkinje cell layer; GL, granular
layer; CF, climbing fiber; MF, mossy fiber; PF, parallel fiber; PC, Purkinje cell;
GgC, Golgi cell; SC, stellate cell; BC, basket cell. (D) Footprint of a PC
selected from the region shown in (B). Scale bar: vertical is 200 μV, horizontal
is 1.9 ms. (E) Current source density (CSD) analysis for the cell shown in (D)

at several points in time (green: sink; yellow: source). The sink moves from

the soma at 0.4 ms to the proximal dendrites at 0.6 ms and covers the
dendritic area, while the soma repolarizes. Frequency band: 180 Hz–3.5 kHz.
(F–H) Matching simulated and measured EAP footprints. (F) Comparison of
the recorded average single-unit spikes (black traces) and the spikes
calculated from a compartment-model simulation of a PC (green traces).
Scale bar: vertical is 100 μV, horizontal is 1.9 ms. (G) Illustration of the
position and orientation of the simulated PC, with the center of the soma
located [blue diamond in (F)] 40 μm above the chip surface. (H) Simulated
potential on the chip surface along a line parallel to the soma-dendrite axis
[dashed blue line in (F,G)] during the spike evolution at 0.1 ms intervals. The
black and white dots on the potential line of maximal amplitude (bold blue
line) represent the HDMEA spatial resolution (18 μm pitch). Significant spatial
undersampling of the potential distribution curve can be observed by
reducing the lateral spatial resolution by 50% (black dots only, pitch 36 μm),
especially for the largest negative peak. All panels and descriptions adapted
with permission from Frey et al. (2009a).

MEA recordings has been of interest for in vivo and acute slice
in vitro experiments too.

Based on the volume conductor theory several current source
density (CSD) methods have been proposed to solve for the cur-
rent sources and sinks from LFP and EAP data (Nicholson and
Freeman, 1975; Mitzdorf, 1985; Plenz and Aertsen, 1993; Okada
et al., 1994; Pettersen et al., 2010; Łȩski et al., 2011). A volume
CSD approach for measurements using a 3D MEA has also been
done (Riera et al., 2014). These methods approximate the location
of the sources prior to solving the CSD and may not be suitable
for localizing single neurons. Different methods to localize sin-
gle neurons depend on the source models used, e.g., monopole
source type models such as exponential decay and inverse power
law models (Blanche et al., 2005; Chelaru and Jog, 2005; Kubo
et al., 2008), dipole models (Blanche et al., 2005; Mechler and
Victor, 2012), line source models (Somogyvári et al., 2005, 2012),
and simplified line model fitted to the perisomatic area of a
full-compartmental neuron model (Delgado Ruz and Schultz,
2014).

Somogyvári et al. (2012) proposed spike CSD (sCSD) to esti-
mate the CSD after optimizing for the best locations of the sources
from the recording electrodes that recreates the spike data (see
Figure 13A). The method has been used to analyze recordings
from a 16-electrode probe in vivo. Although sCSD has been used
to solve for the CSD at the optimized locations of the sources,
it assumes that the number of electrodes is equal to the number
of sources to solve for. The over-simplification of the number of
current sources in sCSD results in errors, especially when the ori-
entation of the neuron being analyzed is at an angle with respect
to the measuring electrodes.

On the other hand, Delgado Ruz and Schultz (2014) intro-
duced a neuronal-based model for localization, utilizing known
current distributions and morphological traits. The method was
tested in simulations and in vivo recordings using high-density
probes. The authors showed that different morphologies and
ion channel distributions of neurons elicit different localiza-
tion accuracies (see Figures 13B–D). This method, however,
assumes that the experimenter knows the type (morphology and
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FIGURE 11 | Identification of retinal ganglion cell receptive fields using

HDMEAs. (A–E) Characterization and analysis of HDMEA recordings from
defined populations of mouse retinal ganglion cells (RGCs), adapted with
permission from Fiscella et al. (2012). (A) Each trace shows the average (thick
black lines) of the 959 superimposed EAPs (gray lines). The electrode
locations are indicated in (B). The propagation speed of the spike was
calculated to be 0.7 m/s. (B) Footprint of an RGC over an area of 0.025 mm2.
The highest peak-to-peak amplitude is shown by the thick dark waveform.
(C–E) Physiological response of RGCs. Left panel: RGC footprint on a

recording block of the HDMEA. The yellow square indicates the location of
the light stimulus, with the gray squares indicating the center of the stimulus
at four positions. Middle panel: Raster plots corresponding to four stimulation
locations indicated in the left panel. Each dot corresponds to a single EAP.
Each raster plot shows the response to five repetitions of the same stimulus.
The firing rate of the RGC (averaged from five responses) is indicated below.
Right panel top: Polar plot showing the responses of the RGC to motion of a
bar in 8 directions at 45◦ radial intervals. Right panel bottom: Inter-spike

(Continued)
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FIGURE 11 | Continued

interval distribution showing the time intervals between consecutive
spikes. (C) Blue = ON RGC. (D) Red = OFF RGC. (E) Green =
ON-OFF RGC. (F) Classification of RGC types and receptive fields at
single cone resolution, adapted with permission from Field et al. (2010).
The RGCs were recorded simultaneously and classified using the

responses to white noise stimuli. Top middle panel: Receptive field
radius vs. the first principal component of the response time course.
The clusters reveal different RGC types. Surrounding panels: Identified
RGC types highlighted at the top middle panel. The RGCs are
stimulated with fine-grained white noise to reveal single cone receptive
fields. Scale bars: 50 μm.

FIGURE 12 | Imaging axonal signal propagation using HDMEAs. (A–C)

Axonal propagation of a cultured neuron on an HDMEA, adapted with
permission from Bakkum et al. (2013). (A) Live image of a neuron at 21 DIV
transfected with red fluorescent protein (RFP). The axon is highlighted.
(B) Illustration of the distributed stimulation method. The crosshair
represents the location of the “somatic” AP observed while stimulating
different electrodes represented by colored dots (color represent the median
latency until AP detection, where light gray corresponds to electrodes that
did not evoke an AP). The small dots represent the location of the HDMEA
electrodes. Scale bar, 40 μm. (C) Illustration of the single-site stimulation

method. The red crosshair represents the stimulated electrode. The colored
dots represent the latencies of detected APs with respect to the largest
voltage signal indicated by the arrow. Scale bar, 40 μm. (D) Axonal
propagation of an RGC from rabbit retina, adapted with permission from Zeck
et al. (2011). Consecutive electrical images of the EAP propagation allow for
the calculation of axonal conduction velocity. (a) Image of a somatic AP (blue
spot in the first window) propagating along the proximal axon. (b) Image of a
biphasic spike recorded from an axon. (c) Plot indicating the distance traveled
of the AP in time. Open symbols represent data calculated from recordings at
16.4 kHz; closed symbols are recordings at 8.2 kHz.

current distributions) of neurons being measured for localiza-
tion and that the dynamics of neurons of the same type are
stereotypical.

Constraining compartmental models
Aside from localization of neurons, it has also been demon-
strated that with known morphology, it is possible to estimate
the ion channel density from extracellular recordings. Gold et al.
(2006, 2007) simulated realistic extracellular signals based on
adjusting the ion channel distributions in full-compartmental
models (see Figure 14). With such a method, the EAP waveforms

across the neuron’s morphology, measured by multielectrodes,
can then be used to constrain compartmental models (Gold et al.,
2007). Frey et al. (2009a) used this approach to model a full-
compartmental Purkinje neuron using HDMEA recordings, see
Figure 10. This shows that using high-density EAP recordings, it
is possible to model the ion channel dynamics during neuronal
function.

OUTLOOK
We have shown the current status of MEA research in terms of
technology, the understanding of signal transduction, and the
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FIGURE 13 | Localization of single neurons. (A) Spike current source
density (sCSD) method by Somogyvári et al. (2012), figure modified with
permission. The experimental setup is shown on the left, where the neuron
is oriented at a distance d parallel to the in vivo MEA. The highest amplitude
comes from the current sources at the soma of the neuron (sink) and is
detected by multiple electrodes. The forward solution at d is given by the T(d )
matrix, which transforms the CSD on the neuron to the EAP detected by the
MEA. The EAPs are shown in the voltage traces per electrode, where one
spike is plotted as a color map, indicating the spatial EAP pattern in time. The
sCSD obtained from the EAP signals by inverse solution T−1(dopt ) is shown
on the right. The EAP spatio-temporal map is transformed into a series of

normalized CSD distributions [I(d )] with different d -values. Localization is
done by solving for dopt . The optimum d (dopt ) is chosen as the value where
I(d ) is the most spike-like, i.e., similar to the normalized amplitude of the EAP
during the whole duration of the spike. Thus, the EAP and sCSD color maps
are similar. (B–D) Localization of simulated neurons using simplified line
model by Delgado Ruz and Schultz (2014), figures adapted with permission.
(B) The simulated neurons are CA1 pyramidal, L2/3 pyramidal, double
bouquet or DB (not shown), NPY interneurons, and PV interneuron.
Localization depends on the location of the sodium trough, which
corresponds to the moment when currents are concentrated near the soma.

(Continued)
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FIGURE 13 | Continued

As shown by the color map embedded on the neuron morphologies,
the sodium trough (red) is displaced from the soma for NPY due to
the contribution of the dendritic arbor and axon, leading to higher
localization error along the Y axis shown in (D). (C) Localization
results for CA1, where the errors along X–Z axes remained low for

neuron-electrode distances under 35 μm and increased thereafter,
especially along the Z axis. (D) The localization errors were not
similar for all simulated neurons. The differences in morphology and
electrophysiology cause the errors, although the maximum EAP
(location of sodium trough) is more or less confined to the
perisomatic area.

FIGURE 14 | Ion channel density estimation. Adapted from Gold et al.
(2006). (A) The extracellular action potentials (EAPs) solved in a grid
from the multicompartmental model of a CA1 pyramidal neuron. The
dotted black line indicates the tip of the electrode used to measure the
EAPs. (B) Enlarged image of the EAP at the electrode tip. Location is
indicated by the white dotted line in (A). Solid line in the plot
corresponds to the simulated EAP, which is superimposed with the
recorded EAP shown as dotted line. (C) Comparison of the simulated
intracellular signal (solid line) at the proximal apical trunk to the

intracellular recording (dotted line). (D) First column: The details of the
intracellular signal simulation for each compartment. White solid lines in
(A) indicate the locations of the compartments. Second column: The
simulated membrane currents in the same compartments as the first
column. The net membrane current across the soma and proximal
dendrites best estimates the EAP waveform. Third column: Membrane
current components in terms of Na+, K+, and mixed-ion capacitive
current. Last column: Conductivity densities of the A, C, D, K, and M
type K+ currents. For further details, see Gold et al. (2006).

application to neuroscience studies. After years of MEA devel-
opment, what is next? One path is to continuously improve the
devices, i.e., better SNR, higher spatial resolution, more paral-
lel readouts, scalability, portability, and increased ease-of-use.
Additionally, device flexibility and biocompatibility are targets
for long-term in vivo recording and stimulation. Another
approach is to enhance MEA signal pre-processing for experi-
menters to easily extract meaningful information from record-
ings in real time. This is crucial for applications where fast,
online analysis is required, e.g., closed-loop experiments and
brain machine interfaces (BMIs) combined with stimulation
therapies.

A promising route is the combination of MEAs with other
modalities. Aside from electrical recording and stimulation,
brain activity mapping and manipulation at cellular resolution
have also been done using optical methods, e.g., fluorescent
calcium indicators, genetic markers, optogenetics, two-photon
microscopy, etc. Similar to extracellular recordings, the pres-
ence of many molecules and compartments in the brain with
different optical properties render optical recording and analysis
challenging. It is of interest to pinpoint the advantages and
constraints of both electrophysiological and optical methods
to determine how they can complement each other. Another
example is the use of optogenetics to manipulate the activity of
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specific cellular subpopulations. By using MEAs to measure the
response of the cortical circuit at multiple locations during opto-
genetic manipulation, it is possible to study the functional roles of
different classes of neurons (El Hady et al., 2013). Simultaneous
multi-scale recording of neuronal electrical activity is also of
interest, e.g., concurrent ECoG, in vivo MEA, and multiple
patch-clamp recordings allow for investigating the relationship
between oscillations, LFPs, EAPs, IAPs, and subthreshold activity
during different brain states. Additionally, other technologies that
can enhance MEA experiments are microfluidics for controlled
delivery of drugs, chemical sensing to study the biochemistry
involved in neuronal function, and measurement of metabolic
processes.

The complexity of the data obtained from all the above men-
tioned advanced measurement schemes necessitates the appli-
cation of systems biology techniques for analysis (Ghosh et al.,
2011). Computational methods such as multi-scale modeling can
combine recordings from different modalities at different time
and/or spatial scales into a topological model of a system, e.g.,
cortical circuit. Through multi-scale modeling, the overall neu-
ronal network activity can be understood, while also having the
ability to zoom in to single neurons and even in a specific part
of a neuron to study the details of the biochemical and electrical
reactions involved. Some works have already started in this direc-
tion (Mattioni and Le Novère, 2013). There are already available
platforms and packages to develop full compartment models of
neurons and neuronal networks based on electrical activity, e.g.,
NEURON (Hines and Carnevale, 1997) and GENESIS (Bower
and Beeman, 1998). There are also tools for modeling biochemi-
cal processes, e.g., E-CELL3 (Takahashi et al., 2004), STEPS (Wils
and De Schutter, 2009; Hepburn et al., 2012), COPASI (Hoops
et al., 2006), SBMLOdeSolver (Machné et al., 2006). The main
challenge is to efficiently combine the modules by synchroniz-
ing the events properly at different time scales, by matching the
spatial information into a topology or morphology, and by using
optimization methods to computationally handle such massive
amounts of data.
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Oscillations play a significant role in biological systems, with many examples in the fast,
ultradian, circadian, circalunar, and yearly time domains. However, determining periodicity
in such data can be problematic. There are a number of computational methods to
identify the periodic components in large datasets, such as signal-to-noise based Fourier
decomposition, Fisher’s g-test and autocorrelation. However, the available methods
assume a sinusoidal model and do not attempt to quantify the waveform shape and the
presence of multiple periodicities, which provide vital clues in determining the underlying
dynamics. Here, we developed a Fourier based measure that generates a de-noised
waveform from multiple significant frequencies. This waveform is then correlated with
the raw data from the respiratory oscillation found in yeast, to provide oscillation statistics
including waveform metrics and multi-periods. The method is compared and contrasted
to commonly used statistics. Moreover, we show the utility of the program in the analysis
of noisy datasets and other high-throughput analyses, such as metabolomics and flow
cytometry, respectively.

Keywords: periodicity tests, waveform analysis, metabolic oscillation, metabolomics, flow cytometry

INTRODUCTION
Cellular network dynamics are excitable and inherently non-
linear, properties that stem from the multitude of feedback and
feedforward loops involved in biological processes (Lloyd, 2008).
These systems form an intimate feedback with the environment
to generate the dynamic phenotype of the cell (e.g., oscilla-
tion/pulsing, bursting bistability) (Sobie, 2011; Levine et al.,
2013). The feedback and feedforward systems have drastically
different time scales that vary over several orders of magnitude
(Aon et al., 2004), from the annual migration patterns found
in monarch butterflies (Kyriacou, 2009), to the second oscilla-
tion of cardiomyocytes in one’s heart (Aon et al., 2004). While
our understanding of each time scale increases daily, the inter-
action between different dynamical processes remains poorly
characterized. Understanding the dynamical interactions between
time scales are key to understanding the complex phenotypes of
embryogenesis (Kageyama et al., 2012), circadian biology in dis-
ease (Gibbison et al., 2013), and psychology (Salvatore et al., 2012;
Salomon and Cowan, 2013).

Our studies using frequently sampled data from yeast and
cardiomyocytes showed that the time-structure is highly orga-
nized (Aon et al., 2008) and had the properties of a fractal over
five orders of magnitude, indicative of harmonic entrainment
in cellular processes. Moreover, cellular energetics and especially
mitochondrial activity play defining roles in rapidly shaping cel-
lular dynamics. Thousands of data points are required to study
these orders of magnitude (Sasidharan et al., 2012c). However,
analysing multiperiodicity in less frequently sampled data (under
100 data points) remains difficult (de Lichtenberg et al., 2005),
and these are the kind of datasets commonly used for time-
series expression or metabolic studies. Perhaps one of the best
characterized synchronous oscillatory systems in this regard is

the precisely controlled continuously cultured yeast. When envi-
ronmental cues are removed, the resulting output in respiratory
state (readily measured by residual dissolved oxygen measure-
ments) is often a stable oscillatory or homeodynamic state (Lloyd
et al., 2001; Lloyd and Murray, 2005, 2006, 2007; Johnson and
Egli, 2014). This has been shown to be multi-oscillatory (Aon
et al., 2008; Sasidharan et al., 2012c), to have period dou-
bling events (Salgado et al., 2002; Klevecz and Li, 2007) caused
by perturbation, and has multiple omic and high-throughput
datasets available (Klevecz et al., 2004; Li and Klevecz, 2006;
Murray et al., 2007; Sasidharan et al., 2012b,c). These proper-
ties make it an ideal model system for multi-scale dynamical
studies.

Generally, analysis methods are restricted to the period of
interest, such as the perturbation length or oscillation period,
and the sampling frequency limits the use of many powerful
time-series analysis tools (Dowse, 2007). Techniques such as auto-
correlation (Yamada and Ueda, 2007) and Fourier transform
(Yamada and Ueda, 2007; Lehmann et al., 2013) rely on targeting
a particular frequency, and can be prone to generating false calls
due to frequency changes and multi-oscillators. Singular Value
Decomposition (SVD)/Principal Component Analysis (PCA)
generally assumes that the largest variances are the most inter-
esting (neglecting subtle effects), and also does not allow for the
use of a priori dynamical knowledge to the analyses (Wang et al.,
2012). Furthermore, it is difficult to assign meaning to the con-
tributions of each time-series to the components (Raychaudhuri
et al., 2000; Alter et al., 2003). Wavelets analyses are powerful,
however the data density required makes it difficult to apply to
the low-density time-series data generated from high-throughput
experiments (Klevecz and Murray, 2001; Song et al., 2007; Prasad
and Bruce, 2008; Sasidharan et al., 2012c).
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Here, we introduce a tool that expands on the signal-noise
(SN) ratio approach (Yamada and Ueda, 2007; Machné and
Murray, 2012), by calculating the SN ratio of each frequency
and then uses this to generate a model waveform whose good-
ness of fit to the original data is determined using coefficient of
determination (R2). A user-specified significance or SN ratio cut-
off determines the powers to use in constructing the model. We
illustrate its utility using previously published data.

MATERIALS AND METHODS
FREQUENCY MODEL
Given a time-series of N points x1, x2, . . . , xN , the corresponding
discrete Fourier transform (DFT), as a series of complex numbers
X0, X1, . . . , XN−1, is given by the formula:

Xk =
N−1∑
n= 0

xne−i2πk n
N , k = 0, . . . , N − 1,

where Xk represents the component of k cycles per time-series.
The component of frequency 0 (X0) is used to calculate the

mean value of the time-series, referred to as the DC component:

DC = |X0|
N

By the nature of the DFT, the remaining components
X1, X1, . . . , XN−1 are mirrored:

Xk = XN−k, k = 1, . . . , M, M = �(N − 1) /2� ,

therefore, all further calculations are performed on the first half
of these components.

The peak-to-peak amplitude Ak for each frequency Xk is given
by the formula:

Ak = 4

N
∗ |Xk| , k = 1, . . . , M

The SN ratio (Yamada and Ueda, 2007) represents the ratio
between the amplitude of the target signal and the average ampli-
tude of noise (i.e., the average amplitude of all other frequencies):

SNk = (M − 1) ∗ Ak(∑M
n= 1 An

)
− Ak

, k = 1, . . . , M

For the construction of the model, if no target frequency is spec-
ified (untargeted mode), the algorithm removes all frequencies
that are considered noisy (i.e., that do not pass the arbitrary
sn threshold). Thus, a filtered set of signals Xfk is calculated by
removing the frequencies with a SN ratio below the sn threshold,
while preserving the DC component:

Xfk =
{

Xk if SNk > sn or k = 0
0 otherwise

, k = 0, . . . , N − 1

If a target frequency ta is specified (targeted mode), the intent
of the algorithm is to preserve the harmonics of the specified

frequency that oscillate, including possible temporal drift into the
frequency ta− 1 and its harmonics, but to remove all frequen-
cies that have an oscillation stronger than the target frequency, or
are too noisy (below the sn threshold). Thus, only the frequen-
cies ta− 1 and higher are kept, only if they have a lower SN ratio
thanXta and only if they pass the sn threshold (also preserving
component 0, i.e., the mean):

Xfk=XfN−k=
⎧⎨
⎩

Xk if (SNk > sn and SNk ≤ SNta

andk ≥ (ta− 1) )or k=0
0 otherwise

,k=0, . . . , M

If N is even, the middle component XfM+1 is also set to 0.
As it can be seen, if the SN of the targeted frequency does not

pass the sn threshold, all components are removed (resulting in a
flat line). If the user-specified cut-off is given as a P-value, the sn
cut-off is the corresponding SN ratio at the given P-value.

In all cases, the user can override these filters by manually
specifying components to be omitted. The filtered waveform is
reconstructed by the inverse DFT:

xfk = 1

N

N−1∑
n= 0

Xfnei2πk n
N , k = 0, . . . , N − 1

The goodness of fit between the model and the original data was
calculated using R2 values. A graphical outline of the algorithm
is presented in Figure 1, using the gene expression time-series
(dataset described below) for yeast gene YAL067C (the first oscil-
lator in the dataset).

The algorithm was developed in R (R Core Development
Team, 2008) and is called waveform. The main parameters passed
are the cut-off method (SN ratio or its P-value) and cut-off
threshold (default to 2 and 0.05, respectively). The statistics nec-
essary for full characterization of the Fourier components (DC,
amplitude, and angle) are calculated by the underlying function
oscilGet, which also generates statistics on autocorrelation
(Venables and Ripley, 2002), Ljung-Box test (Ljung and Box,
1978), Oscillation Strength (Murray et al., 2007), and Fisher’s
exact g-test (Ahdesmäki et al., 2005).

The significance calculation method can also be specified, i.e.,
“model” for log normal distributions or a number of iterations for
a permutation-based statistic (10,000 is the default). The model-
based significance calculation first generates a normal probability
distribution from 10,000 random samples, using the standard
deviation of the analyzed dataset or a user-specified standard
deviation. Next, the statistics for signal-noise ratio, oscillation
strength, and/or autocorrelation on the model data are gener-
ated. The standard deviation and mean of the target statistics are
used to generate a model distribution for each statistic, and the
significance is then calculated from the experimental data and
the model statistics’ upper tail. For this approach to work, the
distribution of the dataset should be checked carefully for the nor-
mality of the majority of the data. The distribution is sensitive
to experimental noise (i.e., limits of experimental determination
can result in skewed tails which alter the standard deviation of the
dataset), and this can be accounted for prior to analysis by pass-
ing the standard deviation of the log-normal subset of the dataset

Frontiers in Cell and Developmental Biology | Systems Biology August 2014 | Volume 2 | Article 40 | 59

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Amariei et al. Quantifying periodicity in omics data

FIGURE 1 | A graphical representation of the model construction in

untargeted mode. The raw gene expression time-series of gene YAL067C
(A; arbitrary fluorescence units) is first decomposed by fast Fourier
transform (B). The significant powers which comprise the signal (C) are
then recomposed to produce the model (D). A linear fit is then used to
determine the coefficient of variation (E; R2 = 0.695) for the data (A) vs.
the model (D).

onto the algorithm (see supplemental package, data manuals for
examples).

If the distribution deviates significantly from log normality,
then the permutation approach can be used (with at least 10,000
iterations, to avoid high false discovery rates). The rows of the
data matrix are permuted by the specified number of iterations,
and P-values are defined as the ratio between the number of
times the statistic of the permutation was greater than the statis-
tic of the original data and the number of iterations. This is
computationally intensive and one can specify the number of
slaves (nSlaves) for multicore systems. Lower iteration num-
bers increase the false discovery rates; to address this, the optimal
iteration number can be determined with existing R packages,
such as fdrtool (Strimmer, 2008). For a P-value of 0.01 we
found 10,000 iterations to give an acceptable false discovery rate
(0.0043).

The supplemental R-package waveform contains full details,
examples and the data used, and uses three main commands;
waveform, oscilGet, and DFT. DFT is a wrapper for the
default fast Fourier transform of R (fft), which uses a Mixed-
Radix algorithm (Singleton, 1969). The package can be installed
using the following command:

R CMD INSTALL waveform_1.0.1.tar.gz
The package requires the standard R packages: GeneCycle,
matrixStats, foreach, doSNOW, fdrtool, iterators,
snow, and e1071. Updates will be available for download from
http://oscillat.iab.keio.ac.jp.

EXPERIMENTAL DATA
We used three published experimental datasets for this study. To
illustrate the general uses of the algorithm, we used a highly oscil-
latory transcriptome (Affymetrix GeneChip®) experiment from
metabolically synchronous continuous yeast cultures which were
perturbed with the monoamine oxidase inhibitor, phenelzine (Li
and Klevecz, 2006). This consisted of 4 oscillation cycles (48 sam-
ples, taken every 4 min) and was perturbed after 48 min (sample
12). As an example of a noisy dataset with unknown biolog-
ical and technical peaks, we used a metabolome time-series,
containing unidentified peaks, from similar metabolically syn-
chronous cultures, comprising of 2 oscillation cycles (20 samples,
taken every 4 min) that was not perturbed (Sasidharan et al.,
2012b). Finally, we used a dataset with absolute quantified val-
ues, a set of propidium Iodide DNA stained flow cytometry
yeast samples (Klevecz et al., 2004), which consisted of four
unperturbed cycles (60 samples, taken every 2.5 min) and was
aligned to the peaks observed at G1 and G2. It is important to
note that all the data shown here are raw and have not been
normalized.

The distributions of these datasets (once zero and noisy low
abundance measurements had been filtered) all approximated to a
log normal distribution, thus we used the model-based approach
for all analyses.

RESULTS
THE SN RATIO OUTPERFORMS OTHER TESTED OSCILLATION METRICS
We have tested the capabilities of 5 oscillation tests on a time-
series microarray gene expression dataset (Li and Klevecz, 2006)
containing 5570 gene expression profiles. A comparison between
the oscillators with the main period of the dataset (4 cycles)
detected (Figure 2, OS, SN ratio, Fisher’s exact g-test, ACF, Box)
shows a good agreement between methods for 35.8% of the genes,
providing a gold standard for visualizing discrepancies between
tests. As Fisher’s exact g-test (the most conservative approach),
SN and OS are based on similar methods, these provided the best
agreement on the 4 cycle frequency. Fisher’s exact g-test how-
ever only reports the dominant frequency in the dataset and was
not useful for further characterization of multi-periodicity and
period lengthening. OS and SN ratio detected major powers in
profiles with strong multiperiodicities better. ACF failed to pick
up clear oscillatory signals. Whereas, Ljung-Box analysis called
many non-oscillatory time-series, probably due to the low ampli-
tude, but significant 12 cycle frequency (Figure 3). Therefore, our
algorithm was based on the SN ratio.
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FIGURE 2 | A comparison between different oscillation tests. An
oscillatory transcriptome dataset (Li and Klevecz, 2006) containing 5570
gene expression profiles during a perturbation experiment (injection of
1 mM phenelzine at min 48) was used to test five oscillation metrics:
signal-to-noise ratio (SN ratio) (Yamada and Ueda, 2007; Lehmann et al.,
2013), oscillation strength (OS) (Murray et al., 2007), Fisher’s exact g-test
(Fisher) (Ahdesmäki et al., 2005), autocorrelation function (ACF) (Venables
and Ripley, 2002), and the Ljung box-test (Box) (Ljung and Box, 1978). Gene
IDs were first sorted according to common hits (P-value < 0.01 for SN ratio,
OS, Fisher on period 4 and for ACF and Box on lag 12) and then by the
phase angle of the dominant frequency of the data (4 cycles). The temporal
profile of each gene was scaled (SI) for visualization purposes.

DETERMINATION OF FREQUENCIES AND PHASE RELATIONSHIPS
DURING A PERTURBATION
A previous study of this gene expression dataset, which used the
Fourier spectra for clustering (Machné and Murray, 2012) has
successfully identified biologically-coherent clusters, but concen-
trated on characterizing the phase-relationship of gene expression
with respect to the respiratory oscillation. However, the anal-
ysis of the dataset with the waveform algorithm, untargeted,
with default parameters, indicated that several major frequencies
occurred (1, 3, 4, 5, 8, 10 and 12 cycles, 91.3%, 21%, 79.4%, 2.2%,
4.5%, 10.2%, 54.3% genes, respectively). Visualization of cohorts
obtained by grouping genes based on the presence of these peri-
odicities in their filtered spectra and the R2 values pointed to com-
ponents 1, 3–5 as sufficient to discriminate between the major
expression patterns (Figure 3). To exemplify different responses
to the perturbation, we selected 4 cohorts. The first one comprises

of genes who had no significant response to the drug (only sig-
nificant frequency was 4 cycles; Figure 4A, 4.7% of genes), and
was highly enriched in genes involved in cytosolic ribosomal
assembly and sulfur amino acid processes (Table S1). Cohort 2
represents genes that had a significant response to the chemical
perturbation, but did not show a strong increase or decrease in
amplitude (significant 1 and 4 cycle, but not significant 3 and
5 cycle components; Figure 4B, 50% of genes). This cohort was
enriched in translation (Table S1). Cohort 3 contained genes with
significant 3 and 4 cycle components (Figure 4C; 20% of genes).
The mRNA abundances of these genes were influenced by the
period lengthening effects of the drug and show the intensities
drop immediately after perturbation. However, they increase in
intensity as the experiment progresses so that the final inten-
sities on the perturbed long period cycles are higher than the
initial cycle. Cohort 3 was highly enriched in mitochondrial and
catabolic processes (Table S1). Cohort 4 comprised a combina-
tion of significant 4 and 5 cycles (Figure 4D; 2% of genes). The
mRNA abundance of these genes showed a decrease in oscilla-
tion amplitude during the experiment’s progression and the 5
cycle periodicity is due to the first 2 cycles which have higher
amplitudes for these genes. Ontology enrichment showed that
cohort 4 was primarily involved in anabolic processes, with the
top 5 genes involved in the Arginine, Coenzyme A, and Histidine
biosynthetic pathways. As 80% of the genes peak during the phase
of high residual dissolved oxygen (Figure 4; gray dotted lines),
the phase relationships between the cohorts was not evenly dis-
tributed. The maximum of cohort 1 was skewed toward the phase
of low DO, cohort 2, representing the majority of the dataset (Li
and Klevecz, 2006), peaked right after the transition between low
and high DO, cohort 3 was almost exclusively expressed during
the high DO phase and cohort 4 was skewed toward the end
of the low DO phase. Further refinement of this classification
based on the phase-angle of the main periodicity leads to simi-
lar results as the previous clustering-based approaches (Machné
and Murray, 2012), exemplifying a way to significantly reduce
the size of a dataset, in our case from 48 variables (time-points)
to 5 (4 spectral components and the phase angle of the major
component).

WAVEFORM ANALYSIS CAN EXTRACT INFORMATION FROM COMPLEX
AND NOISY DATASETS
Hybridizations on microarrays produce data in which most of
the signal should be biological in origin. However, mass spec-
trometry is much noisier, because many peaks are caused by
environmental contamination, caused by column components
or degradation. We analyzed a complex data matrix from a
metabolomics study containing 2661 peaks (Sasidharan et al.,
2012b) on which usual clustering could not easily discriminate
between technical and biological signals (Figure 5A, left panel).
We ran the waveform algorithm targeting the oscillation period
(2 cycles, P-value cut-off 0.05), thus keeping only the peaks
which had a significant 2-cycle component and removing all
masking frequencies. The resulting waveforms, in which time-
series with no significant 2-cycle components were reduced to flat
signals, making the oscillators apparent throughout the dataset
(Figure 5A, right panel), and after removing peaks with poor fit
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FIGURE 3 | Identification of expression cohorts using major spectral

powers. The waveform algorithm was used on a raw transcriptome dataset
(A) taken during a perturbation experiment (injection of 1 mM phenelzine at
min 48) (Li and Klevecz, 2006) to generate a model using the default settings
(B; R2 values shown in sidebar). Genes were first sorted according to the

presence of all oscillatory components identified in the dataset after the
P-value cut-off of 0.05 (C), and then by the phase angle of the dominant
frequency of the data (4 cycles). The genes profiles with a R2 < 0.5 are
shown at the bottom. The temporal profile of each gene was scaled (SI) for
visualization purposes.

(P-value > 0.01), 375 potential biological signals were identi-
fied (Figure 5B), demonstrating a quick and effective method for
exploratory metabolomics.

DATA PROCESSING WHILE PRESERVING PHASE ANGLES AND
AMPLITUDES
The previous examples contained qualitative measurements,
therefore amplitudes were relative values. To illustrate the use
of Fourier decomposition in denoising data while preserving the
temporal structure, we used a quantitative flow cytometry time-
series dataset (Figure 6A) (Sasidharan et al., 2012a). The purpose
of the analysis was to identify the phase-relationship, significance
of oscillation and duration of the DNA division cycle. While sub-
tracting the background (Figure 6B) already reveals the main
patterns, information such as the precise timing of DNA replica-
tion with respect to the respiratory oscillation and the amplitude
in the S-phase regions are not trivial to extract. The waveform
model was used to accentuate the regions of interest by using
an untargeted approach with the default parameters (Figure 6C).

Interestingly, S-phase was shown to be a linear time series that
continues throughout the respiratory cycle, starting during the
phase where residual dissolved oxygen was lowest (Figure 6E),
which was earlier than previously reported (Klevecz et al., 2004).
This could only be observed when we filtered out the contaminat-
ing frequency components from the much larger G1 and G2 cell
cycle phase peaks. This analysis may resolve observed differen-
tial timings of mid S-phase found for different oscillation periods
(Slavov et al., 2011; Amariei et al., 2013).

DISCUSSION
We present a set of tools that can be used to dissect oscil-
latory data, with or without a perturbation. It can be used
for any data matrix that is from an oscillatory system, such
as transcriptomic, metabolomics, and proteomic, as well as
other single or high-throughput measurements. We show its
utility in highlighting biological processes such as S-phase
(Figure 6), a separation of biologically relevant signals from noisy
metabolomic data (Figure 5) and delineating perturbation effects
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FIGURE 4 | Identification of differential responses to perturbation.

Based on the analysis presented in Figure 3, four gene cohorts with
differential responses were identified based on the presence of the spectral
components of interest (1, 3, 4, 5). Genes showing a 4-cycle oscillation and
no period drift (no 3 and 5 components) were separated into genes with no
major trend over the experiment (A), and those that had a response to the
experiment (B). Genes with 3-cycle (C) and 5-cycle components (D) are
shown separately. The top 5 genes with the highest R2 in each cohort are
shown in the bottom panel of each graph, against the corresponding
dissolved oxygen (DO) trace (dotted lines), which was scaled to the range of
the plot. The perturbation agent (phenelzine, 1 mM) was injected at min 48.
The temporal profile of each gene was scaled (SI) for visualization purposes.

in a drug treatment experiment (Figures 3, 4). Additionally,
analyses on this perturbation separated events spanning dif-
ferent time-scales, i.e., the long perturbation event (10 h) (Li
and Klevecz, 2006), the oscillation (40 min) and sub-events that

FIGURE 5 | Exploratory examination of a noisy time-series

metabolomics dataset. A time-series dataset of unidentified CE-MS
peaks (A, left panel) (Sasidharan et al., 2012b) was filtered using the
waveform algorithm with default cut-off and targeting the dominant
frequency of the data (2 cycles; A, right panel). The statistically significant
peaks based on the coefficient of determination (R2) are shown in (B). Peak
IDs were sorted using hclust (stats package in R) (Murtagh, 1985) with the
euclidean distance and Ward’s method (Ward, 1963) in (A) and by the
phase angle of the 2-cycle component in (B). The corresponding dissolved
oxygen (DO) trace during the experiment is show in bottom panel. The
temporal profile of each peak was scaled (SI) for visualization purposes.

may be related to changes in cofactor abundance (10–15 min)
(Sasidharan et al., 2012c). For the yeast oscillatory system, it
is relatively easy to cross-correlate time series taken in differ-
ent laboratories, form different oscillation periods, using data
taken months (or even years apart) by adjusting the phase angle
with respect to a reference point on the residual dissolved oxy-
gen data (Murray et al., 2003; Lloyd and Murray, 2007; Machné
and Murray, 2012), thus opening up a wealth of data to the
experimenter.

A common issue that arises when dealing with large datasets
is the excessive requirements for computational power and
memory for calculating distance matrices, which limits clus-
tering methods. Filtering spectral components (Figures 3, 4)
can be an effective way of reducing the complexity of the
dataset before clustering. Indeed, the majority of the ontol-
ogy enrichments previously observed by Machné and Murray
(2012) were also reconstituted in the frequency analysis reported
here.

Normalization of oscillatory time-series datasets is often a
difficult task due to lack of an internal, biological set of non-
oscillating references, and the steps taken can alter the data
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FIGURE 6 | Identification of phase-relationships in a flow cytometry

dataset (Sasidharan et al., 2012a). Each datapoint represents the number
of cells (CN) in a particular DNA intensity bin (peak propidium iodide
channel) (Klevecz et al., 2004). These were aligned and scaled according to
the G1 and G2 peaks (A; histogram of the average CN over the time-series
is shown in right panel). Residuals (B) were calculated by subtracting the
average CN over the time-series, and were filtered using the waveform
algorithm (C; R2 values shown in sidebar). The corresponding dissolved
oxygen (DO) trace during the experiment is shown in (D). The major
component (4 cycles) was characterized by the phase-angles with respect
to the respiratory oscillation and SN ratio at each DNA concentration (E);
the DC component is shown in the sidebar. The dashed gray line represents
the DO trace over one cycle, scaled to the range of the panel. Phase-angles
0◦/360◦ represent the minimum of the DO rate in each respiratory cycle.

structure significantly (Lehmann et al., 2013). If subjected to
standard array-to-array normalization methods which include
an alignment to the mean of individual arrays, the phase-angles
of expression in Figure 3 would be significantly skewed due to
higher mRNA abundance in one phase of the respiratory oscil-
lation. Even the seemingly noisy minor peaks that occur every
3-4 samples (the 12-cycle component which is found in over
half of the transcripts) may be biological, as they coincide with
the triphasic patterns of NAD(P)H fluorescence occurring dur-
ing the yeast respiratory oscillation (Sasidharan et al., 2012c).
Furthermore, attempting to normalize the metabolite dataset
in Figure 5 using internal standards deteriorated the 2-cycle

oscillatory signal, indicating that biological signals were less noisy
than the external controls. Therefore, aggressive normalization
of such periodic data should generally be avoided. However,
when normalization is necessary, the presented algorithm can
be used to identify a subset of least-oscillatory biological fea-
tures on which normalization can be carried out, and the fit-
ting parameters thus obtained can then be used to normalize
the rest of the dataset, while preserving its temporal profile
(Calza et al., 2008; Machné and Murray, 2012).

The methods presented here can readily be used to anal-
yse short time-series data taken in triplicates, by concatenating
the triplicate series to obtain a pseudo-waveform spanning 3
“pseudo-cycles.” However, one prerequisite and major limita-
tion for general Fourier based approaches is that the analyzed
dataset must be sampled at equal time intervals. If the time-
series in question has uneven sample times (e.g., 0, 5, 15, 30,
60, 120, 480 min) it may still be possible to utilize the algo-
rithm on the pseudo-waveform constructed from the triplicates,
by applying the appropriate data window to adjust the mono-
tonically increasing or decreasing profiles (such as Hamming or
Hanning (Oppenheim et al., 1999); already implemented in the
waveform package), as these are prone to spectral leakage (Lyon,
2009). The resulting data would then be readjusted to the origi-
nal timing. Thus, future developments of the algorithm will be its
application to certain non-oscillatory and non-equally sampled
datasets.
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The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fcell.2014.

00040/abstract
Supplementary R package: waveform_1.0.1.tar.gz.

Table S1 | The gene ontology enrichment for Figure 4. For GO ontology

analysis, the genes in each cohort identified in Figure 4 out of the 5570

genes contained by the dataset were checked for enrichment using the

package GOstats (Falcon and Gentleman, 2007).
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Construction of quantitative models is a primary goal of quantitative biology, which
aims to understand cellular and organismal phenomena in a quantitative manner. In this
article, we introduce optimization procedures to search for parameters in a quantitative
model that can reproduce experimental data. The aim of optimization is to minimize
the sum of squared errors (SSE) in a prediction or to maximize likelihood. A (local)
maximum of likelihood or (local) minimum of the SSE can efficiently be identified
using gradient approaches. Addition of a stochastic process enables us to identify the
global maximum/minimum without becoming trapped in local maxima/minima. Sampling
approaches take advantage of increasing computational power to test numerous sets of
parameters in order to determine the optimum set. By combining Bayesian inference
with gradient or sampling approaches, we can estimate both the optimum parameters
and the form of the likelihood function related to the parameters. Finally, we introduce
four examples of research that utilize parameter optimization to obtain biological insights
from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis,
and cell cycle regulation. With practical knowledge of parameter optimization, cell and
developmental biologists can develop realistic models that reproduce their observations
and thus, obtain mechanistic insights into phenomena of interest.

Keywords: quantitative modeling, parameter optimization, model selection, likelihood, probability density

function

INTRODUCTION: REGRESSION ANALYSES FOR IDENTIFYING
PARAMETER VALUES BY APPLYING EXPERIMENTAL DATA
TO A QUANTITATIVE MODEL
The purpose of quantitative biology is to achieve biological
discovery through quantitative data analyses and modeling. A
quantitative model consists of a set of rules, often expressed by
mathematical formulas, which involve a set of parameters gov-
erning variables for the rules and initial/boundary conditions.
The simplest way to validate a given quantitative model is to
test whether an appropriate set of rules and parameters repro-
duces experimental observations. If it does this successfully, it
can be concluded that the model (i.e., the rules and parame-
ter values) is “sufficient” to explain the observations. However,
in many cases, we do not have information on the “appropri-
ate parameters.” In such cases, we may want to identify a set of
parameters that adequately explains the experimental observa-
tions under the stated rules. If the rules adequately represent the
true mechanisms underlying the biological process, the identified
parameters should reflect the quantitative properties of that
process. In this way, we can argue that the model (i.e., the rules

and the “estimated”parameter values) is sufficient to explain the
observations. The method for estimating parameters by fitting a
given quantitative model to the observed data is called regression,
and the overall workflow is comprehensively reviewed in Jaqaman
and Danuser (2006). In this article, we focus on several prac-
tical procedures for identification of parameters and introduce
recent applications of regression for characterization of cellular
processes.

SUM OF SQUARED ERRORS (SSE) OF PREDICTION AND
LIKELIHOOD AS INDICES OF PARAMETER OPTIMIZATION
Minimization of the SSE and maximization of likelihood (abbre-
viated as “LS” and “ML,” respectively, in Jaqaman and Danuser,
2006) are the two most common regression schemes. We first
review SSE and likelihood before explaining the methods for min-
imizing/maximizing these indices in Sections Minimization of
SSE and Maximization of Likelihood. Minimization of SSE has
been widely used as a simple and straightforward method to
obtain an optimum parameter set. However, SSE does not provide
further information, such as the uncertainty of the determined
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parameter values. In contrast, likelihood, which is a powerful
concept that covers the shortcomings of SSE, is capable of esti-
mating both an optimum parameter set and a probability density
function (PDF) related to the parameters, taking experimen-
tal error and the imperfections of the model into account. We
sometimes encounter a problem in selecting an optimum model
from among candidate models that contain different numbers
of parameters. In Section Model selection Using Likelihood, we
introduce information criteria, which enable us to solve this
problem when used in combination with likelihood.

MINIMIZATION OF SSE
Linear regression is the most familiar example of regression
(Bremer and Doerge, 2010). When an obvious linear correlation
is identified between two variables through a regression analysis
(e.g., X and Y in Figure 1A), we can assume a model, formu-
lated as Y = a0 + a1 X, that describes the relationship between
the variables. To identify the parameters of the model (i.e., a0

and a1) that reproduce the experimental observations, a least-
square method is frequently used (Bremer and Doerge, 2010).
In this method, we define an evaluation function that sums the
squared distance between the experimental data and the model
with a given set of parameters. The SSE, which is defined as
SSE = �i= 1

n [yi–(a0 + a1 xi)]2, where n is the number of data
points and (xi, yi)(i = 1, . . . , n) are the data, is commonly used
as an index for the least-squares method. Parameters that mini-
mize the evaluation function are the optimum parameters, in the
sense that they minimize the discrepancy between the model and
the experimental results.

As a biological example of linear regression, we have demon-
strated that there is a correlation between the cell size and the
extent and speed of the elongation of the mitotic spindle in
Caenorhabditis elegans embryos (Hara and Kimura, 2009). In
this study, we further demonstrated that the elongation of the
mitotic spindle depends on cell size by showing that the elon-
gation of the mitotic spindle increased when we increased the
cell size.

As another example, let us consider the motion of a parti-
cle inside a cell (Figure 1B). If the motion is driven by random
Brownian forces, the mean square displacement (MSD) is linearly

proportional to the time lag (τ ) (i.e., MSD ∝ τ 1) (Berg, 1993).
The motion of a particle inside a cell is rarely random because
it is confined to a crowded space. The MSD decreases, and such
motion is called “sub-diffusion” (i.e., MSD ∝ τα ,α < 1) (Saxton
and Jacobson, 1997). In other cases, the particle may be moved
by directional flow, and thus will be moved further than it would
by random diffusion (i.e., MSD ∝ τα ,α > 1). If we could esti-
mate the value of α in the MSD-vs.-τ plot, we would be able
to determine whether the motion is better explained by random
Brownian diffusion, sub-diffusion, or directed flow. To estimate
α, a log–log plot is useful (Figure 1C). In the log–log plot, i.e.,
(log MSD)= α(log τ )+ (log C), α is the slope and (log C) is the
intercept of the line. Therefore, using the above-mentioned linear
regression analysis, we can identify the value of α that minimizes
SSE in the (log MSD)-vs.-(log τ ) plot.

Such linear regression analysis of a double logarithmic plot
is useful in characterizing how cellular parameters affect each
other. We quantified the shape of mitotic spindles in C. ele-
gans embryos and found a relationship described by SW = 1.5×
P0.36× HL0.58, where SW and HL are the width and hypotenuse
length of the spindles and P is the ploidy of the embryos. Based
on this formulation, we were able to propose a physical model
that explains spindle shape (Hara and Kimura, 2013).

Minimization of SSE is applicable to both linear relationships
and a variety of estimations. Because SSE is defined as the sum
of the squared difference between the value estimated using the
model and the actual observations, the value can be defined for
any type of quantitative model. For example, in fluorescence
recovery after photobleaching (FRAP) experiments, the recov-
ery curve for the fluorescence intensity of the region where the
fluorescent molecules were bleached can be modeled as an expo-
nential curve, with its gradient reflecting the diffusion constant
of the molecule (Axelrod et al., 1976). By identifying the param-
eter that minimizes the SSE between exponential curves and the
experimental data for fluorescence intensity, one can estimate the
diffusion constant of the molecule.

MAXIMIZATION OF LIKELIHOOD
The simplicity of the SSE, which is a straightforward index for
the discrepancy between a given model and the observations,

FIGURE 1 | Correlation analyses between parameters. (A) A linear
correlation and linear regression. X and Y are two parameters of a dataset.
Plotting the values of Y against X shows a correlation between the parameters,
and the extent of that correlation can be calculated by regression analysis. (B)
The relationship between the mean square displacement (MSD) and the time

lag for various modes of motion (see text for details). (C) The same plot as
shown in (B), except using logarithmic values. The three lines correspond to the
different modes of motion in (B). For Brownian motion, the slope of the log–log
plot is one. For directional motion and sub-diffusion, the log–log plots yield a
linear relationship with a slope greater than one and less than one, respectively.
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sometimes causes difficulties in real data analyses. Suppose that,
for example, a phenomenon of interest is characterized by
parameters having different physical dimensions (e.g., length and
weight). How can we compute the sum of errors in different
dimensions? In such a case, the observational data should be
converted to dimensionless quantities through standardization of
each type of data. Likelihood is another important index to eval-
uate how well a given model agrees with experimental results.
Since the definition of likelihood naturally converts the obser-
vational data into dimensionless data, usage of likelihood can,
unlike SSE, avoid the difficulty mentioned above. One of the
major advantages of likelihood over SSE is that we can obtain
both an optimum parameter set and a PDF related to the param-
eters. The obtained PDF provides valuable information not only
of an optimum value for each parameter but also of its uncer-
tainty due to errors contained in the observational data and the
imperfections of the given model.

Let us consider a situation in which 1.1 is the experimen-
tal value (x), while a given model predicts that x should be
1.0 (Figure 2A). How good is this model? (In other words, how
“likely” is this model to describe the experimental result?) A con-
ditional PDF related to an experimental value when results of
the model are given is required to calculate the likelihood; a sin-
gle value, such as a mean value, is insufficient. Suppose that we
conduct simulations many times, and obtain results that follow a
normal distribution with a mean (μ) of 1.0 (σ ) of 1.0. The likeli-
hood (L) indicates, roughly, the probability that the model yields
the experimental value. For our current example, the likelihood
is L = (2πσ 2)−1/2 exp[−(x−μ)2/2σ 2] = 0.4, where the exper-
imental value is 1.1 (Bishop, 2006; Kitagawa, 2010). If we had
independently observed multiple experimental data points {x1,
x2, . . . , xn} for x, the likelihood of the dataset is given as a prod-
uct of the likelihood of each data point, i.e., L= � i= 1

n Li. Often,
we use log-likelihood, l = ln L; thus, the total log-likelihood of
the model can be shown as l = ln (� i= 1

nLi)= �i= 1
n li. The

likelihood L, or the log-likelihood l, is originally an indicator of
how likely the obtained experimental data are, based on a model
with a given parameter set. The larger the likelihood or log-
likelihood, the better the model reproduces the observation. In
the example shown in Figure 2, even when the distance between
the observation and the mode of each likelihood function, i.e.,
the best observation that attains the likelihood function maxi-
mum, is equal for candidate models, we can reasonably select a
model that has a broad likelihood function as the better model
(Figures 2B,C). In turn, the parameter set that maximizes L or
l is considered to be optimum to explain the experimental data.
This method for estimating the optimum parameters is called the
“maximum likelihood method.”

MODEL SELECTION USING LIKELIHOOD
When we wish to evaluate the validity of a model, a straightfor-
ward approach is to test whether the model can predict unknown
data sets. Cross-validation and bootstrap methods are examples
of such strategies (Hastie et al., 2009). As another strategy, we
can select good models using likelihood as the index, just as we
select good parameter values using likelihood. For example, sup-
pose that the growth rate of a cell is found to increase when

FIGURE 2 | Likelihood: the distribution is important. (A) An example of
the mean of predicted values and observed data points. (B) If the
distribution of the predicted values of the model is broad, the likelihood of
the model is high because the probability of observing the data is high.

(Continued)

www.frontiersin.org March 2015 | Volume 6 | Article 60 | 69

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive


Kimura et al. Estimation methods for cellular parameters

FIGURE 2 | Continued

(C) In contrast, if the distribution of the predicted value is narrow, the
likelihood will be low. (D) An example of AIC calculation. Black dots
represent an imaginary set of observed data. For x = 1, 2, 3, . . . , 20, the y
value was calculated according to y = 0.025 × (x - 3) (x-10) (x − 17) + 10,
and a Gaussian noise correction with a variance of four was added to each y
value. Next, we calculated the best-fit linear, cubic, and fifth-order
polynomial functions for the 20 data points. lmax = −(n/2) × ln(2πσ 2) –
(1/2σ 2) × � i=1

n [yi - ymodel(xi )]2, where n is the number of data points
(n = 20), σ 2 is the variance of the model, and yi and ymodel(xi ) are observed
and model values, respectively, at x = xi . The sum of squared residuals is
� i=1

n[yi - ymodel(xi )]2. AIC is calculated as AIC = 2k − 2lmax, where k is the
number of free parameters in the model and is 3, 5, and 7 for linear, cubic,
and fifth-order functions, respectively. Note that the variance of each model
is also a free parameter to be optimized.

gene X is mutated, and that a theoretical framework that explains
the growth rate of wild-type cells exists. The model selection
procedure enables us to determine a better model among can-
didates: model 1, gene X affects one parameter (e.g., protein
production rate); or model 2, gene X affects two parameters (e.g.,
protein production rate and RNA production rate).

We often have to consider selecting the best model among
models that contain different numbers of parameters. In general,
a model that contains more parameters tends to attain larger like-
lihood since it easily fits to observed data. However, the use of too
many parameters leads to overfitting, in which the model loses
predictability despite fitting well to observations.

To select a model that fits well to observed data and mini-
mizes the number of parameters to avoid overfitting, the Akaike
information criterion (AIC) is widely accepted in various fields
of science (Akaike, 1974). The AIC is theoretically derived to be
AIC=−2lmax + 2k, where k is the number of free parameters in
the model and lmax is the maximum log-likelihood. The model
with the smallest AIC is selected as the best one. The Bayesian
information criterion (BIC) is another index used for model
selection. BIC is slightly different from the AIC in the additional
term, which penalizes the number of parameters more severely
than the AIC (Jaqaman and Danuser, 2006). Example of the use
of both AIC and BIC can be found in modeling of a FRAP exper-
iment (Darzacq et al., 2007) and in identifying low-dimensional
models to reproduce cell cycle regulations (Kondo et al., 2013).

Figure 2D shows an example of model selection using the
AIC. The data are synthetically generated from a cubic func-
tion, y = 0.025 × (x − 3) (x−10) (x−17) + 10 + ε, where ε

is the observational noise, which follows a normal distribution
with a mean of zero and a variance of four. We give candidate
models for comparison with the observed data as a linear func-
tion (y = θ1 + θ2x + ε1), a cubic function (y = θ1 + θ2x+
θ3x2 + θ4x3 + ε2), or a fifth-order polynomial function (y= θ1 +
θ2x+ θ3x2 + θ4x3 + θ5x4 + θ6x5 + ε3), where ε1, ε2, and ε3 are
Gaussian noises. Under this assumption, the optimum parameter
set (θi) determined based on the maximum likelihood method
coincides with the solution of the least-squares method (Bishop,
2006). The sum of squared residuals is the smallest in the case
of the fifth-order polynomial function, as expected, because the
function contains more free parameters than the other models
(Figure 2D). In contrast, the AIC is the smallest in the case of the

cubic function owing to the penalty term that inhibits a needless
increase in the number of parameters (Figure 2D). Therefore, the
AIC successfully selects the true cubic function as the best model
avoiding the over- or under-parameterized models.

PROCEDURES TO OPTIMIZE PARAMETERS
How can we optimize parameters, i.e., identify the set of param-
eters that maximizes the likelihood (or minimizes the SSE)?
Figure 3 shows a schematic of likelihood as a function of the
parameter value. For simplicity, the parameter is assumed to
change its value in one-dimensional space, although the param-
eter space is usually multi-dimensional in real cases. In the
following sections, we introduce some procedures that can be
used to identify the set of parameters that maximizes the like-
lihood. Minimization of SSE can be accomplished with similar
procedures.

Optimization procedures can roughly be classified into
two categories: gradient and sampling approaches. Gradient
approaches search for the (local) maximum of a likelihood
based on information from the local gradient, whereas sampling
approaches examine numerous sets of parameters and select the
sets that attain high likelihood. Gradient approaches can effi-
ciently reach a (local) maximum with small computational cost,
although they are inefficient for identifying the global maxi-
mum if there are multiple local maxima. In contrast, sampling
approaches can detect multiple local maxima, if they exist, but
require a massive computational cost.

GRADIENT APPROACH
The gradient approach is based on a deterministic method of
identifying maximum or minimum values of a given function.
When the likelihood, L, is a continuous function of the parame-
ters � = {θ1, θ2, . . . }, the optimum parameters can be identified
by analytical calculation. The solution of the system of par-
tial differential equations ∂L/∂θi = 0(i = 1, 2, . . . ) is the set
of parameters that yields the local maximum of the likelihood
(Figure 3A). This procedure can also be used to minimize the SSE
in linear regression analyses.

When it is difficult to solve the system of partial differential
equations ∂L/∂θi = 0 analytically, we must search for the solu-
tion numerically, based on the gradient approach, as follows: (1)
set an appropriate initial parameter value � = �0; (2) compute
the gradient of the likelihood for the initial value, i.e., ∂L/∂�

|�=�0 ; (3) update � in the direction of increase of the gra-
dient to increase the likelihood L; and (4) iterate (1) through
(3) until the gradient converges with zero. We can directly reach
one of the (local) maxima of L using this deterministic method
(Figure 3B). This procedure is used in several areas of biologi-
cal research, for estimation of values for bending elasticity during
cytokinesis (Koyama et al., 2012), transcriptional parameters, and
chemotaxis parameters (see later sections).

The gradient approach often leads not to the global maxi-
mum but to a local maximum when the likelihood is multimodal,
i.e., multiple local maxima exist. To overcome this disadvan-
tage, stochastic procedures are often adopted so that parameters
can exit a local maximum by permitting the current search-
ing point to move down the gradient with some probability
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FIGURE 3 | Various optimization strategies. (A–C) Gradient approaches.
(A) When the partial differential equations for likelihood can be solved as
functions of parameters, the solutions yield local maxima or minima (red
and gray arrows). The red arrow indicates maximum likelihood. (B) We
can reach local maxima (red arrows) by iteratively following the gradient
from a starting point. (C) If, in following the gradient, we add
stochasticity, we may avoid being trapped in a local maximum and reach

the global maximum (red arrow). (D–F) Sampling approaches. The red
arrow indicates the sampling point with the highest likelihood. (D) Grid
sampling, in which sampling occurs at regular intervals. (E) Simple
random sampling, where parameters are chosen at random. (F)

Importance sampling was added to (E). In the second round of sampling,
more realizations were set near the realization with high likelihood from
the initial round (gray crosses and circles).

(Figure 3C). As an example of a biological application of the gra-
dient approach, one of the stochastic methods, the Metropolis
algorithm, has been utilized in combination with a simulated
annealing method to predict the positions of nucleosomes on the
genome (NucPosSimulator, Schöpflin et al., 2013).

SAMPLING APPROACH
In principle, if we examined all sets of possible parameters, we
could determine the entire form of a given likelihood and, thus,
the parameters that yield the maximum likelihood. However, this
strategy is not realistic in most cases. Instead, we sample a num-
ber of parameter sets and evaluate the likelihood for each set. As
the number of samples increases, the parameter set that yields the
largest likelihood approaches the optimum one. Roughly speak-
ing, there are two ways to sample parameter sets; one is “grid
sampling,” in which a sample is obtained at each parameter grid,
at regular intervals (Farhadifar et al., 2007) (Figure 3D), and
another is “random sampling,” in which samples are randomly
obtained (Bergstra and Bengio, 2012) (Figure 3E). A typical sam-
pling approach does not often work well due to “the curse of
dimensionality,” which means that the enormous number of
samples required for sufficient coverage of the high-dimensional
space are impossible to process. The following two strategies can
be used to overcome this problem. The first strategy is importance
sampling (Section Importance Sampling), in which parameter
space with higher likelihood will be searched recursively, to obtain
as many samples as possible from a key area. The second strat-
egy is to narrow the parameter space using prior information. We
can statistically incorporate our prior guess using Bayes’ theorem

(Section Obtaining Posterior PDFs Using a Sampling Approach).
In cell and developmental biology, we often have a priori infor-
mation on the order of magnitude of parameter values.

IMPORTANCE SAMPLING
Since parameters near the optimum parameters should have high
likelihood, we can efficiently search the optimum parameters by
focusing the investigation on parameter sets with high likelihood.
In “importance sampling” (Figure 3F), after an initial round of
grid or random sampling, we repeat the sampling, with greater
intensity, near the samples with high likelihood.

An example that utilizes the importance sampling tech-
nique is the particle filter (PF), which is often applied to esti-
mate a posterior distribution and/or parameters by means of
a number of realizations called “particles.” Genetic algorithms
(GAs) (Mitchell, 1998) are similar to PFs in that they both
select important samples in accordance with likelihood (or other
indices). However, GAs are not usually categorized as importance
sampling methods because the outcomes are not guaranteed to
converge to the target distribution function, due to stochastic
events (“mutation” or “crossover”) unrelated to the likelihood.

BAYESIAN INFERENCE OF PARAMETER DISTRIBUTION
The above-mentioned sampling approaches enable us to deter-
mine not only the parameter set that yields the maximum
likelihood but also the likelihood of all samples. Utilizing this
information, we can estimate, in principle, the entire form of the
likelihood function within the parameter space. Calculation of
the likelihood function provides important information on the
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FIGURE 4 | Bayesian inference of parameter distribution. (A) In the
sampling approach, the likelihood of observing experimental data for a
realization is calculated (a, b). Then, the non-normalized posterior PDF is
calculated by interpolating the likelihood values in the parameter space
between the realizations (c). (B) In the gradient approach, a realization (e.g.,
θ0) is randomly shifted to a neighboring realization (θ1 or θ1’). If the product
of the likelihood and the prior probability of the new realization is greater
than that of the original, the old realization will be replaced by the new
realization and sampled. If the product for the new realization is smaller, the
realization will be replaced by the new set, and the probability of this new
set will be given as the ratio of the products of the new and the old
realizations (otherwise, the original realization will not be replaced), and the
realization will be sampled (a). After repeating the procedure multiple times
(b), the distribution of the sampled realizations is considered proportional to
the posterior PDF (c).

inevitable measurement noise in biological experiments and the
uncertainty of given stochastic models.

Unlike a straightforward approach to obtain the likelihood
function using all possible sets of parameters, which would be
unrealistic, a Bayesian approach provides a powerful and realistic
methodology to estimate target PDFs as posterior distributions.
In real data analyses or modeling, we often have prior information
about parameters, e.g., a realistic range of parameters obtained
through experimentation. Bayesian inference methods make use
of prior information in order to limit the parameter space to be
searched.

The outcome of the inference is a “posterior PDF,” p(�|Y),
which indicates how probable a parameter set � = {θ1, θ2, . . .}
is when Y , usually an experimental observation, is given. In
contrast, the prior PDF p(�) indicates how probable � is with-
out knowing Y . The prior PDF reflects our initial guess of the
parameter value. For example, if one supposes that a parameter
must be within the range from 1 to 100 but has no additional
information, a uniform distribution on the interval from 1 to 100

is the appropriate prior PDF. According to Bayes’ theorem, the
posterior PDF is proportional to the product of the prior PDF
and the likelihood, which is formulated as p(�|Y) = p(Y |�) ×
p(�)/p(Y) (Lee, 2012). Here, p(Y |�) is the likelihood, which
expresses how probable Y is when the parameter � is given, and
p(Y) is a PDF related to the observed data, Y , which is constant.
It should be noted that the likelihood is not a probability distri-
bution in the sense that its integral does not necessarily equal one
(Bishop, 2006). Combining Bayesian inference with the sampling
approach (Section Obtaining Posterior PDFs Using a Sampling
Approach) or the gradient approach (Section Obtaining Posterior
PDFs Using a Gradient Approach) enables us to obtain both
likelihood and posterior PDFs.

OBTAINING POSTERIOR PDFS USING A SAMPLING APPROACH
In this approach (Figure 4A), we sample a number of sets of
parameter values, which are termed as “realizations,” according to
the prior PDF [Figure 4A(a)]. Then, we calculate the likelihood of
each realization by substituting it into our model [Figure 4A(b)].
According to Bayes’ theorem, the unnormalized posterior PDF,
which is proportional to the normalized one, is obtained as a
product of the likelihood and the prior PDF for each realiza-
tion. Since we sampled from the prior PDF, the unnormalized
posterior PDF is the likelihood at the sampling points whose devi-
ation already reflects prior effects [Figure 4A(c)]. The normalized
posterior PDF can be calculated by dividing the unnormalized
posterior PDF by p(Y), but this calculation requires a complex
numerical integration. Without such normalization, the form
of the function for the normalized and unnormalized poste-
rior PDFs are identical, and thus the optimum parameter set
can be obtained from the unnormalized one because p(Y) is
constant. Therefore, calculation of an unnormalized posterior
PDF is usually sufficient for our purposes. The parameter set at
the mode of the unnormalized posterior PDF, i.e., the param-
eter set that attains the posterior PDF maximum, is called the
maximum-a-posteriori (MAP) estimate.

PF, or sequential Monte Carlo, is a filtering method that is
used to sequentially estimate, using importance sampling, poste-
rior PDFs along with continuous input of observation data. Sets
of parameters (“particles”) with a high likelihood will prolifer-
ate (or will be “resampled,” allowing duplication) (Figure 3F).
Unlike GA, which focuses on finding the optimum set, PF enables
us to estimate the likelihood and the posterior PDF. To avoid the
problem of “degeneration,” which the plain PF often faces, some
advanced PF methods, such as merging PF (Nakano et al., 2007),
have been proposed. A real application of PF to estimation of
parameters can be found in studies on transcriptional regulation
of the circadian clock (Nakamura et al., 2009).

OBTAINING POSTERIOR PDFS USING A GRADIENT APPROACH
In this subsection, we explain the procedure of the Metropolis
algorithm (Figure 4B), which applies when the proposal den-
sity function that nominates the next candidate realization is
symmetric (Gilks et al., 1995; Robert and Casella, 2010). Unlike
the above-mentioned sampling approach, in which we calcu-
late the likelihood of multiple and independent realizations, this
method starts with a single realization. To obtain a posterior PDF
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as the target distribution, the sampling procedure is as follows.
First, we calculate the value of the posterior PDF related to the
initial realization (Pformer), which is given by the product of the
likelihood and the prior PDF. Next, the proposal density function
randomly generates a new candidate realization, and we calcu-
late the value of the posterior PDF (Platter). If Platter > Pformer ,
the candidate realization is accepted as a new realization of the
posterior PDF. The key step in the Metropolis algorithm is that
even if Pformer > Platter , the candidate realization is accepted with
the probability of Platter/Pformer [Figure 4B(a)]. When a candi-
date is rejected, the former realization remains as the current
realization. This sampling process is repeated until we obtain
a sufficient number of realizations [Figure 4B(b)]. The process
that allows a realization to move in the direction of decreasing
posterior PDF provides a way to exit local maxima of posterior
PDF. The distribution of the sampled realizations approximates
the unnormalized posterior PDF [Figure 4B(c)], from which we
can calculate the MAP, i.e., the optimum set of parameters that
maximizes the posterior PDF.

The procedures for obtaining a posterior PDF using sampling
methods based on the Markov process are generally referred to
as Markov chain Monte Carlo methods. In this class, in addition
to the Metropolis algorithm explained above, Gibbs sampling and
Hamiltonian Monte Carlo algorithms are popular (Bishop, 2006).
Approximate Bayesian computation (ABC) is another sampling
approach that can be used to obtain a posterior PDF (Beaumont
et al., 2002). The most remarkable feature of ABC is that instead
of likelihood, any index in data space, such as SSE, can be used
to determine acceptance/rejection of candidate realizations of
parameters. Although it does not employ likelihood, ABC enables
us to obtain samples from a target posterior PDF; the conver-
gence speed strongly depends on the definition of the index in
data space. This procedure has been used for estimation of the
parameters for microtubule dynamics in a plant cell (Nakaoka
et al., 2015). The estimated parameters were consistent with the
values measured in independent experiments.

EXAMPLES OF CELLULAR PARAMETER OPTIMIZATION
TRANSCRIPTIONAL REGULATION
The initiation and elongation of gene transcription consist of
multiple processes involving various regulatory proteins. Darzacq
et al. constructed a simple model of transcriptional regula-
tion consisting of three first-order ordinary differential equa-
tions describing promoter assembly, transcriptional initiation,
and elongation (Darzacq et al., 2007). The six parameters in this
model were optimized to fit the experimental results obtained
through FRAP analyses of RNA polymerase II in cultured cells by
minimizing the SSE. The optimization was conducted using the
software SAAM II (The Epsilon Group, Charlottesville, USA).

More recently, Stasevich et al. quantified the accumula-
tion of RNA polymerase II, discriminating between the initi-
ation form (phosphorylated at Ser5 at its C-terminal domain,
CTD) and the elongation form (phosphorylated at Ser2) using
FabLEM (antibody fragment-based live endogenous modifica-
tion labeling) technology (Stasevich et al., 2014). Combined
with the results of the FRAP assays, the authors were able
to narrow the optimum parameters for transcription kinetics.

Minimization of the SSE was performed using the software
Mathematica (Wolfram, Champaign, USA). Through these anal-
yses, the authors succeeded in quantitatively and precisely char-
acterizing the effect of histone acetylation on transcriptional
regulation.

BACTERIAL CHEMOTAXIS
The impulse response of bacteria has been estimated from bac-
terial chemotaxis trajectories, using inference methods (Masson
et al., 2012). The model organism Escherichia coli senses the envi-
ronmental concentration of chemicals and uses that information
to regulate the rotation of flagellar motors and thus orient its tra-
jectories of motion (Berg, 2004). Information on the chemical
concentration sensed by the receptors is relayed via the kinase
CheA, and the activity of this molecule is reduced by receptor
binding. The second messenger in the chemotaxis pathway is
the protein CheY. Its phosphorylated form, CheYp, binds to the
flagellar motors and increases their rate of switching from coun-
terclockwise rotation, corresponding to run phases, to clockwise
rotation, thereby destabilizing the flagellar bundles that induce
tumbling. Other important components of the pathway include
the scaffold protein CheW, the phosphatase CheZ, the methyl-
transferase CheR, and the methylesterase CheB; the latter two
are responsible for feedback from the receptors and the resulting
adaptation (see Figure 5 and Vladimirov and Sourjik, 2009 for a
recent review).

Is it possible to reconstruct the kinetics of biochemical inter-
actions from an analysis of bacterial trajectories? In other words,
can we infer the molecular pathways from paths in physical
space? The task was greatly simplified by the fact that the model
that describes the observations was known in advance, based on
previous independent experimental assays and modeling efforts
(reviewed in Celani et al., 2011). The goal was then reduced to the
identification of the appropriate parameters. Furthermore, for the
problem at hand, under physiological conditions, the response is
linear. This convenient property allowed bacterial movement to
be described as a two-state, inhomogeneous Poisson process, and
closed-form expressions for the likelihood of a trajectory can be
obtained. Additionally, in view of the compactness of the pathway,
only three parameters are relevant: the intensity of the response
(α0), its duration (α1), and the degree of adaptation (λ), and
the impulse response can be described as a function of time (t)
by K(t) = e−λt × (α0 − λα1t). These quantities are directly
related to various molecular parameters, such as receptor affini-
ties, protein copy numbers, and (de-)phosphorylation and (de-
)methylation rates. The small number of parameters then allows
for an exhaustive exploration of parameter space and a straight-
forward derivation of the best parameter set for the model.

Remarkably, when the trajectory of a single bacterium is
tracked for a sufficiently long time, it is possible to infer the
values of molecular parameters for that individual, allowing us
to probe variations within a given isogenic population (Masson
et al., 2012). To maximize the likelihood, optimization was per-
formed using two types of gradient methods, a variable metric
method and a simplex algorithm combined with a conjugate
gradient method, and the MAP solution was calculated. Both
methods yielded the same results, within acceptable statistical
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FIGURE 5 | Parameter estimation of bacterial behavior. The inference of
biochemical parameters in the bacterial chemotaxis pathway from
trajectories (Masson et al., 2012). (A) Bacteria swimming in a microfluidic
device in the presence of a stable, linear chemical gradient (here, Me-Asp)
are tracked. According to the current linear speed and angular velocity, a
state is associated with the bacterial motion, run (empty circles) or tumble
(red circles). The coordinate along the gradient is proportional to the
concentration experienced by the bacterium. The time-series of states and
concentrations are the input data for the inference process. (B) Starting
from the full biochemical network, an approximate description of moderate
gradient intensity yields an inhomogeneous Poisson model for bacterial
states, where the transition rates are related to the kinetic parameters of
the model (Celani et al., 2011). An exact expression for the log-likelihood
can then be written. (C) A 2D section of the likelihood landscape. The
abscissa indicates the time-scale of the response, which is governed by the
methylation process. The ordinate is the amplitude of the response, which
mainly depends on the receptor kinetics. The maximum likelihood estimate
indicates the optimum choice of parameters for the model.

uncertainty. Another notable advantage of this inference tech-
nique is its non-invasive nature; swimming bacteria are observed
under the microscope and are not disturbed by the observation.

MORPHOGENESIS OF TISSUES AND ORGANS
Mechanical forces are critical for the morphogenesis of tissues
and organs. However, such forces are difficult to measure. For
example, if an object is not moving, we cannot tell whether a
small force is acting on the object or strong forces are acting
on the object but are balanced out. One way to estimate such
forces is to ablate a part of a tissue/organ and measure the speed
and direction in which the lesion spreads. This method is inva-
sive and cannot be repeated for a given sample. Recent studies
developed methods to infer a stress or deformation map during
morphogenesis. To infer stress distribution in epithelial tissues
(Chiou et al., 2012; Ishihara and Sugimura, 2012), the authors
first constructed physical models assuming that the force bal-
ance involving tensions at cell contact surfaces and pressures of
cells determines shapes of epithelial cells. The methods search for
model parameters that reproduce the cell shapes in the tissues
quantified from microscope images. In the method proposed by

Chiou et al. (2012), the tension and pressure of constituent cells
were estimated analytically. In comparison, the method proposed
by Ishihara and Sugimura (2012) reduces the number of param-
eters to be optimized to two, i.e., the variance of tension and
the variance of observation/system errors. These parameters were
optimized analytically or numerically through a gradient method.
The authors were able to demonstrate the validity of the estima-
tion by experimentally measuring the tension using laser ablation
(Ishihara and Sugimura, 2012). The method was further uti-
lized to demonstrate the importance of extrinsic anisotropy in
mechanical forces for Drosophila wing development (Sugimura
and Ishihara, 2013). A similar method was developed to cre-
ate a deformation map of a whole organ during chick limb
development (Morishita and Suzuki, 2014). This map precisely
describes the type of deformation and its temporal regulation
during organ morphogenesis.

CELL CYCLE REGULATION
The molecules that drive cell cycle progression and their relation-
ships are well-studied. Detailed numerical models consisting of
a number of molecules accurately reflect current experimental
knowledge (Borisuk and Tyson, 1998; Tsai et al., 2008). Kondo
et al. attempted to simplify the detailed models to identify “low-
dimensional” models that sufficiently reproduce the observations
of the detailed models (Kondo et al., 2013). The authors first con-
structed models with two dimensions (considering only active
Cdc2 and cyclin) and various polynomial orders then optimized
the parameters using a PF method. By calculating the AIC and
BIC of the models, the authors concluded that the model with
a third-order polynomial sufficiently reproduces characteristic
behaviors of the cell cycle models.

PERSPECTIVE: FROM EXPLANATION TO PREDICTION
Data-driven science is gaining popularity in most scientific fields.
With the rapid development of information technology, scien-
tists can collect “big data” in their field and develop new methods
for analysis. Use of such methodologies in other fields will pro-
vide clues regarding biological data analysis. For example, data
assimilation (DA) is a fundamental computing technique used
to predict future states by an integration of numerical simula-
tion models and time-series data, using Bayesian statistics. DA
has been used in weather forecasting and in predicting the status
of the Earth’s interior that may trigger a large earthquake (Nagao
et al., 2013). It has been applied to dynamic biological systems
such as circadian rhythms (Nakamura et al., 2009). The method
is also important in control theory for estimating the internal
state of interest. Lillacci and Khammash applied an extended
Kalman filter for parameter estimation in non-linear biological
systems, including the heat shock response in E. coli (Lillacci
and Khammash, 2010). An accurate prediction of the (unknown)
future is not required in the field of experimental biology, which
focuses on the explanation of experimental results. Importantly,
the method enables us to conduct “on-line modeling,” in which
a model is improved simultaneously with data acquisition. Such
on-line modeling may be useful for the imaging of a moving
object by controlling the field of view of the microscope with
predictive information with respect to movement. In general, the
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concepts and techniques used in cutting-edge statistics should be
applicable to the field of experimental biology. With this in mind,
we anticipate that a collaborative, trans-disciplinary approach will
become more and more important in quantitative biology.
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For systems made up of a small number of molecules, such as a biochemical network in a
single cell, a simulation requires a stochastic approach, instead of a deterministic approach.
The stochastic simulation algorithm (SSA) simulates the stochastic behavior of a spatially
homogeneous system. Since stochastic approaches produce different results each time
they are used, multiple runs are required in order to obtain statistical results; this results
in a large computational cost. We have implemented a parallel method for using SSA to
simulate a stochastic model; the method uses a graphics processing unit (GPU), which
enables multiple realizations at the same time, and thus reduces the computational time
and cost. During the simulation, for the purpose of analysis, each time course is recorded
at each time step. A straightforward implementation of this method on a GPU is about
16 times faster than a sequential simulation on a CPU with hybrid parallelization; each of
the multiple simulations is run simultaneously, and the computational tasks within each
simulation are parallelized. We also implemented an improvement to the memory access
and reduced the memory footprint, in order to optimize the computations on the GPU. We
also implemented an asynchronous data transfer scheme to accelerate the time course
recording function. To analyze the acceleration of our implementation on various sizes
of model, we performed SSA simulations on different model sizes and compared these
computation times to those for sequential simulations with a CPU. When used with the
improved time course recording function, our method was shown to accelerate the SSA
simulation by a factor of up to 130.

Keywords: GPGPU, stochastic simulation algorithm, direct method, parallel processing, CUDA, SBML

1. INTRODUCTION
Understanding biological phenomena as systems is one of
the most crucial objectives in systems biology (Kitano, 2002).
Mathematical modeling of biological systems and the simula-
tion of such models will play an important role in helping us
to understand unknown phenomena as systems. In systems biol-
ogy, a deterministic approach, such as using ordinary differential
equations (ODEs), is often used to understand the behavior of
biochemical systems. A deterministic approach describes the sys-
tem using molecular concentrations, and the results are the same
for every realization. However, when we want to understand a
system that contains a small number of molecules, such as a bio-
chemical network in a single cell, a simulation must be executed
using a stochastic approach, instead of a deterministic approach
(McAdams and Arkin, 1997; Arkin et al., 1998).

The stochastic simulation algorithm (SSA) simulates the
stochastic behavior of a spatially homogeneous system (Gillespie,
1977). Since stochastic approaches produce different results each
time they are used, multiple runs are required in order to obtain
statistical results, thus causing a large computational cost.

To reduce this large computational cost, we have focused on
accelerating the SSA by using general-purpose computations on
a graphics processing unit (GPGPU; Owens et al., 2007; Nvidia,
2014). GPGPU is a technology that uses a graphics processing

unit (GPU) to perform numerical calculations other than those
for computer graphics, its original design purpose. GPUs contain
a large number of arithmetic units in order to parallelize an enor-
mous number of simple calculations. By efficiently parallelizing a
problem and simultaneously performing the calculations on these
arithmetic units, we can obtain significant improvement in the
performance. GPUs are now widespread; they are included in per-
sonal computers (and even in laptop computers). Because of this,
the ability to harness the computing power of GPUs has rapidly
developed.

We have implemented a parallel method for using SSA to
simulate a stochastic model; the method efficiently utilizes a
GPU, and this enables multiple realizations on the same time
sequence. Thus, multiple results are obtained simultaneously, and
this reduces the computational time and cost. During the simu-
lation, for the purpose of analysis, each time course is recorded
at each time step. There are some existing studies of methods
used to accelerate the SSA using the GPGPU; these include (Li
and Petzold, 2010) on the direct method and (Komarov and
D’Souza, 2012) on the optimized direct method. These proposed
methods do not provide a functionality for storing the time
course data, which is essential for understanding the dynam-
ics of a model; our implementation achieves this, and thus aids
analysis.
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2. MATERIALS AND METHODS
2.1. THE SSA
The SSA was developed by Gillespie (1977), and it is an efficient
and widely used algorithm for simulating the dynamics of chemi-
cally reacting systems including stochastic processes. The SSA has
the following features:

• Each simulation step fires one reaction:
During the simulation, multiple reactions do not proceed
simultaneously. A single reaction is selected from the model,
considering the type of reaction and its required time, and each
selected reaction is executed individually.
• The reactions are selected at random:

A reaction is selected by its propensity function. The propen-
sity function represents its tendency to be selected; that is,
a larger propensity function indicates a higher probability of
being selected.
• The time required for each reaction is defined at random:

Each reaction time τ is defined at random, but the calculated
value of τ depends on the sum of the propensity function.
• Each simulation step increases or decreases the number of

molecules:
As a result of each reaction, changes are based on the num-
ber of molecules, not on their concentrations. A stoichiometry
matrix is used to determine how many molecules are added or
removed.

The original implementation of SSA is called the direct method.
There are several additional implementations of the SSA
(Gillespie, 1976; Gibson and Bruck, 2000; Cao et al., 2004;
McCollum et al., 2006) that use various methods to speed up
the computation time. In our implementation, we use the direct
method, which is summarized as follows:

1. Initialization:
Initialize and define the number of molecules, the reactions,
and the rate constants. The reactions are specified by a stoi-
chiometry matrix.

2. Generate uniformly distributed random numbers: r1, r2, from
(0− 1].
These numbers determine which reaction is fired in the next
step τ .

3. Calculate the propensity function ai[i = 0 · · · (n− 1)] for each
reaction, where n is the number of reactions:
The propensity function for each reaction will change,
depending on the order of the reaction and the number of
reactants. The order of each reaction should be in the range of
0th order to 2nd order; if the order of a reaction is greater than
2nd order, it should be rewritten as a combination of reactions
of lower (0th–2nd) order.

4. Calculate the sum of the propensity function:

atotal =
n− 1∑
i= 0

ai

5. Calculate the reaction time: τ = (1/atotal) log (1/r1).

6. Select the reaction: Select a reaction that satisfies

m− 1∑
i= 0

ai < r2 · atotal ≤
m∑

i= 0

ai.

7. Fire the selected (mth) reaction: Update the number of
molecules, and add τ to the cumulative simulation time.

8. Termination: If the cumulative time is less than a predeter-
mined time, return to step 2.

2.2. RANDOM NUMBER GENERATION
SSA is an algorithm that uses random numbers to represent
stochastic process in a model. As shown in the previous section,
the direct method uses two random numbers (r1 and r2) for each
step of a simulation: one to determine which reaction is to be
fired and one to determine the reaction time. The generation of
these random numbers is one of the most crucial steps in SSA;
it is a time-consuming task and thus impacts the total simula-
tion time. Another concern regarding the generation of random
numbers is their distribution. In SSA, a great many random num-
bers are generated during each simulation, so it is essential to
choose a generator that can produce uniformly distributed ran-
dom numbers with high dimensionality and long periodicity.
In our implementation, we used the Mersenne Twister (MT), a
widely used pseudorandom number generator (Matsumoto and
Nishimura, 1998). We implemented a parallelized MT algorithm
on a GPU; it was based on the GPGPU implementation of MT
included in CUDA SDK, NVIDIA’s software development kit
for their parallel computing platform (Podlozhnyuk, 2007). In
this implementation, the generated random numbers are stored
directly in the GPU memory; this requires less communication
between the host computer and the GPU.

2.3. PARALLELIZATION OF THE DIRECT METHOD
To accelerate the execution of the direct method, we applied both
coarse-grained and fine-grained parallelization. Coarse-grained
parallelization of a stochastic simulation is straightforward. In
principle, a stochastic simulation requires multiple simulations
using the same model and the same set of parameters, because
each result shows only one possibility. To understand the dynam-
ics and characteristics of a model, it is necessary to obtain a
results from multiple simulations. Coarse-grained parallelization
executes multiple simulations simultaneously. The paralleliza-
tion algorithm is quite simple, in that the model is located on
the global memory of a GPU, and multiple arithmetic units are
engaged to execute simulations with different sets of random
numbers. The acceleration of the SSA by Li and Petzold (2010)
was based on coarse-grained parallelization.

Fine-grained parallelization also parallelizes each component
of each simulation. For example, in the direct method, the cal-
culations of the propensities (step 3, Section 2.1) of the various
reactions are parallelized. Similarly, updating the numbers of each
molecular species (step 7, Section 2.1) is parallelized. The cal-
culation time of step 3 is thus reduced by a factor equal to the
number of reactions, and the time for step 7 is reduced by a factor
equal to the number of molecular species affected. An overview

Frontiers in Physiology | Systems Biology February 2015 | Volume 6 | Article 42 | 77

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Sumiyoshi et al. Acceleration of stochastic biochemical simulation

of fine-grained parallelization of the direct method is shown in
Figure 1; the arrows indicate the execution times of each step. The
blue arrow in the figure indicates calculation of the reaction time
τ and the selection of a reaction, and these cannot be parallelized.
The orange and green arrows indicate calculation of the propen-
sity and updating the number of molecules, respectively; these are
independent processes and thus can be parallelized. As shown in
Figure 1, the total execution time is reduced.

When implementing fine-grained parallelization with the
CUDA programming language, we assigned a thread to the cal-
culation of the propensity of each reaction. When updating the
number of molecules, we assigned a thread to each molecular
species.

2.4. MEMORY ACCESS OPTIMIZATION ON A GPU
In the CUDA programming model, when a program is launched,
data (e.g., matrices) are loaded from the host computer to the
GPU’s memory. The CPU on the host computer then sends a
message to begin execution of the operation. Once the GPU has
received this message, the arithmetic units begin to process in par-
allel as threads. Once all threads have been completed, the GPU
returns the results to the host computer. Because multiple threads
are executed simultaneously on a GPU, it is necessary to carefully
design the access pattern of the threads in order to avoid collisions
when they attempt to access the GPU memory to perform read or
write operations.

There are various types of memory available in CUDA, includ-
ing global, constant, texture, and shared; these differ in capacity
and speed of access. Global memory has the largest capacity but
requires the longest access time. To avoid the high latency of
global memory, access to global memory should be coalesced
(Nvidia, 2014). This means that all threads should follow a
specific access pattern.

On the other hand, shared memory has a short access time,
but its capacity is very limited. A benefit of using shared mem-
ory is that it has low latency. Shared memory has small capacity,

FIGURE 1 | Fine-grained parallelization of the direct method. The blue
arrow shows the calculation of the reaction time τ and the selection of a
reaction; these cannot be parallelized. On the other hand, the orange arrow
(calculation of propensity) and green arrow (updating the number of
molecules) are independent processes that can be parallelized.

so calculations must be partitioned (e.g., matrices and variables)
and at any time, only the part being used is loaded to the shared
memory. It is also important that access to shared memory be
controlled in order to prevent collisions between threads. If there
are 16 groups of physical addresses (banks), then the shared
memory can give simultaneous access to 16 different threads. If
multiple threads attempt to access the same bank, a “bank con-
flict” (Nvidia, 2014), this will result in sequential access, and thus
result in high latency.

In our implementation, we stored the time course in the global
memory and stored the number of molecules and propensities in
shared memory. In this way, writing to the global memory was
coalesced, and bank conflicts are avoided.

Figure 2 shows storing of the time course, with both unco-
alesced and coalesced access to global memory. Each thread is
indicated by a stick figure. In this figure, it is assumed that there
are four simulations executed simultaneously and that each one
has its own thread for storing the results. Even though they
are all simulating the same model, the execution time of each
simulation will differ depending on one of the random num-
bers. In Figure 2A, threads 1 and 4 have already finished storing
their results for the first step and are attempting to store their
results for the second step, while threads 2 and 3 are attempting
to store their results from the first step. This results in uncoa-
lesced access. To avoid this problem, we temporarily store the
results in shared memory, and then transfer the results from

FIGURE 2 | Uncoalesced and coalesced access to global memory. Stick
figures indicate the threads that access global memory for the storage of the
simulation results. In (A), threads 1 and 4 have already finished storing their
results for the first step and are attempting to store the results for the
second step; threads 2 and 3 are attempting to store their results for the first
step. This is an example of uncoalesced access. In (B), shared memory is
used to temporarily store the simulation results, which are later transferred
together to global memory. This is an example of coalesced access.
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all threads to global memory at the same time, as shown in
Figure 2B.

To eliminate the risk of a bank conflict, we optimized the loca-
tion of the data on the shared memory. In our implementation,
the shared memory is used to store the number of molecules
and the propensity functions. Figure 3 shows examples of access
to shared memory with and without a bank conflict. In both
Figures 3A,B, the upper arrays store the numbers of molecules
in each species, and the lower arrays store the reaction type to be
fired in the current simulation step. The number in each element
of the array represents the simulation number (id). In this exam-
ple, there are 16 simulations running simultaneously, and each
simulation consists of four different molecular species. When it is
time to update the number of molecules (step 7, Section 2.1), if
the data are located as shown in Figure 3A, multiple threads will
attempt to access the same bank (an element in the lower array),
which will cause a bank conflict. To avoid this bank conflict, we
have located the data as shown in Figure 3B. With this optimiza-
tion, each element of the array is accessed by only a single thread,
and thus bank conflicts are avoided.

2.5. REDUCTION OF THE TIME TO TRANSFER DATA BETWEEN THE GPU
AND THE HOST COMPUTER

As described in Section 2.4, prior to executing a simulation, it is
necessary to transfer data from the host computer to the GPU.
Usually, the time required to do this is not negligible, and it adds
to the total execution time. To estimate this overhead quantita-
tively, we have implemented a prototype of SSA on a GPU, and
we profiled its execution time, as shown in Table 1. The most
time-consuming task was found to be memory allocation, and
this occupied almost 40% of the total execution time. The rea-
son for this is that we store all of the time course results, which
requires a large amount of memory. Data transfer is also time con-
suming, and it occupies 25% of the total execution time. When

FIGURE 3 | Optimizing the location of data on the shared memory in

order to avoid bank conflicts. If the number of molecular species and
reaction types are allocated as shown in (A), multiple threads will have
access to the same bank, and this will result in cause bank conflicts.
Allocating the data as shown in (B) avoids bank conflicts.

the time course results occupy a large amount of the GPU mem-
ory, the data transfer time from the GPU to the host computer
will also increase. To overcome this problem, we implemented an
asynchronous transfer scheme for moving data from the GPU to
the host computer.

The idea of our asynchronous transfer scheme is to split the
simulation into multiple streams and then execute these streams
in parallel. Each stream contains random number generation
(RNG), a stochastic simulation (SSA), and transfer of the data
to the host computer (memcpy), as shown in Figure 4. If each
stream runs independently, one thread can continue its compu-
tation on the GPU (kernel execution) while another stream is
transferring the result to the host computer.

To implement this asynchronous data transfer scheme, we split
the simulation tasks into two parts: kernel execution and data
transfer. A schematic diagram of asynchronous transfer with two
streams is shown in Figure 4B. While one stream (stream 1) is

Table 1 | Execution time profile.

Procedure % of total execution time

Memory allocation (page lock) 38.0

Data transfer 25.0

Execution of kernel 23.3

Random number generation 13.3

Other 0.4

FIGURE 4 | Two-way and four-way overlap streaming of data transfer. In
an asynchronous transfer scheme, the data is split into multiple streams
which are executed in parallel. (A) Shows an example of sequential execution,
which has no overlap. (B) Shows an example of two-way overlap, which
executes two streams: stream 2 is able to begin its computations while
stream 1 is still transferring its results. In four-way overlap, the simulation task
is split into four parts (C). This results in an increase to three overlaps,
compared to only one overlap in two-way overlap.
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transferring its results to the host computer (memcpy), another
(stream 2) begins to execute its kernel. This transfer scheme
is called a two-way overlap. Note that in two-way overlapped
data transfer, the data transfer time of stream 1 is suppressed by
the kernel execution time of stream 2. Under ideal conditions,
the data transfer time will be cut in half. In our implementa-
tion, we applied four-way overlapped data transfer. The difference
between two-way and four-way overlap is the number of parts
into which the stream is split. In four-way overlapped data trans-
fer, the simulation is split into four parts, as shown in Figure 4C;
this results in three areas of overlap, compared to only one for
two-way overlap. Under ideal conditions, the data transfer time
will be cut by a factor of four.

2.6. DATA COMPRESSION
Since CUDA requires that all of the data be loaded onto the
GPU memory, the capacity of the GPU memory is a bottleneck.
Unfortunately, it is impossible to extend the size of the memory
of a GPU, although extending the memory is straightforward and
cost effective on general-purpose computers. Moreover, the mem-
ory of a GPU is usually less than that of a personal computer.
For example, the NVIDIA Tesla C1060, which we used for this
study, has 4 GB of memory, while most desktop computers used
for scientific calculations have more than 8 GB of memory, and,
as mentioned, it is easy to increase the memory. Acceleration of
processes on a GPU always encounters this problem; thus, effec-
tively reducing the memory footprint is another important issue
for such implementations.

In our implementation, we used the global memory to store
the time course results and the constant memory to store the reac-
tion rate constants and the stoichiometry matrix. The constant
memory has low latency and small capacity (64 KB), compared
with the global memory, and it is read-only access. Because the
stoichiometry matrix and reaction rate constants do not change
during the simulation, we located them in the constant memory.
The structure that consumes the most memory is the stoichiome-
try matrix used in the SSA; however, this matrix is usually sparse,
and so we implemented compressed row storage (CRS) to reduce
its footprint.

Figure 5 shows an example of a model, its stoichiometry
matrix, and the compressed matrix. Figure 5A shows an example
of a biochemical system (decay dimerization model). It consists
of three molecular species (S1–S3) and four reactions (r1–r4). This
biochemical system can be represented by a stoichiometry matrix,
as shown in Figure 5B. Each row of the stoichiometry matrix rep-
resents a molecular species that is synthesized or degraded by
one of the reactions. If the value is zero, then the corresponding
molecular species is not included in the reaction for that col-
umn (in other words, the simulator does not have to consider this
molecular species for this reaction). Most biochemical reaction
networks are loosely coupled, and so the stoichiometry matrix is
sparse Li and Petzold (2010). To compress this sparse matrix, we
extracted the non-zero values and generated a new matrix that
contains only these non-zero values and their original row and
column indices, as shown in Figure 5C. This new matrix still has
some redundant information, in that the row indices are repeated
(e.g., 1, 1, 2, 2, 3, 3). We used CRS to avoid this redundancy

FIGURE 5 | Compressing the stoichiometry matrix using compressed

row storage. (A,B) Show a decay dimerization model and its stoichiometry
matrix, respectively. Each row of the stoichiometry matrix represents a
molecular species that will be synthesized or destroyed by one of the
reactions. (C) Shows a matrix that only stores the non-zero entries in the
stoichiometry matrix, along with the original row and column indices. (D) Is
a compressed matrix of (C), obtained by eliminating duplicates of the same
index in the second row.

and to store only the column indices in each compressed row, as
shown in Figure 5D. By using CRS to convert the stoichiometry
matrix, we succeeded in storing a decay dimerization model that
had approximately 1400 reactions; for the same amount of mem-
ory, an unconverted matrix could only store approximately 120
reactions.

2.7. IMPORTING THE MODEL
Although not all studies of simulations on GPUs have men-
tioned or satisfied this requirement, it is crucial to separate the
model from the implementation in order to provide a convenient
software tool. If the model is hard-coded in the simulator, the
program must be rewritten whenever the model is modified; the
entire code must then be recompiled. This causes a problem for
those end users who are not familiar with the necessary develop-
ment tools. In particular, this can cause a high barrier for GPGPU,
since most end users are not proficient in GPU programming.

To avoid this problem, we designed our simulator so that the
model is imported; thus, our software package can be distributed
in binary and does not need to be compiled by the end user.
Our system uses the Systems Biology Markup Language (SBML),
which is a tool-neutral computer-readable format for represent-
ing models of biochemical reaction networks; it is applicable to
metabolic networks, cell signaling pathways, gene regulatory net-
works, and other modeling problems in systems biology (Hucka
et al., 2003, 2004). To import SBML, we use LibSBML (Bornstein
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et al., 2008) to easily access the SBML elements from the C
programming language. The host computer converts the SBML
elements (such as reactions, molecular species, and rate con-
stants) to matrices, and then loads them into the GPU memory.
Once the matrices have been successfully loaded, the simulator
launches a kernel to start the simulation. All of the sample mod-
els that were used for evaluation of this procedure were described
using SBML.

3. RESULTS
In this section, we will evaluate our implementation. For compar-
ison, we implemented the direct method in the C programming
language for sequential execution on a CPU. We compared the
execution time of a stochastic simulation of the same model per-
formed on both a CPU and a GPU. The GPU we used was an
NVIDIA Tesla C1060, mounted on a host computer that had
Core i7 2.80 GHz with 12 GB of memory. The CPU version of
our simulator was executed on the host computer. The model
we chose for the benchmark was a decay dimerization model,
which consisted of four reactions and three molecular species, as
follows:

S1
c1→ 0 (1)

S1 + S1
c3�
c2

S2 (2)

S2
c4→ S3 (3)

This model is quite simple, but it is known to cause stochastic
fluctuations, and a similar reaction system appears in previous
research by McAdams and Arkin (1997). The decay dimerization
model was also used as a benchmark model by Li and Petzold
(2010), and we applied the same simulation conditions as used in
that study; these conditions are shown in Table 2.

3.1. HYBRID PARALLELIZATION
We evaluated the effect on SSA of hybrid parallelization, which is
a combination of fine-grained and coarse-grained parallelization.
Hybrid parallelization simultaneously executes multiple stochas-
tic simulations as coarse-grained parallelization, and simultane-
ously calculates the propensity functions and updates the number
of molecules for each stochastic simulation as a fine-grained
parallelization. The execution time of the direct method with dif-
ferent numbers of realizations is shown in Table 3, and the ratio

Table 2 | Simulation conditions for the decay dimerization model.

REACTION RATE CONSTANTS

c1 1.0

c2 0.002

c3 0.5

c4 0.04

INITIAL CONDITIONS

S1 10,000

S2 0

S3 0

Simulation steps 11,000

of the execution time on a CPU to that on a GPU is shown in
Figure 6. From Table 3 and Figure 6, we can see that there is no
performance gain on a GPU when the number of realizations is
small (<100), but if the number of realizations is large (>1000),
the effect is apparent. We found that hybrid parallelization was up
to 16 times faster than implementation on a CPU.

3.2. MEMORY ACCESS OPTIMIZATION
Next, we evaluated the effect of optimizing the memory access.
The ratios of execution times on a CPU and that on a GPU
are shown in Figure 7; the blue line indicates the acceleration
obtained by optimizing the memory access and using hybrid par-
allelization. Optimizing the memory access resulted in improving
the time by a factor of 3.1; the overall result was 50 times faster
than that on a CPU. In Figure 6, we see that there is less improve-
ment when the number of realizations is small, because the
parallelization has a smaller effect. On the other hand, optimiz-
ing the memory access on a GPU greatly improved performance

Table 3 | Execution times with different numbers of realizations.

Number of Execution time (s) CPU/GPU

realizations
CPU GPU

1 0.001 0.079 0.01

10 0.015 0.086 0.17

100 0.17 0.160 1.06

1000 1.91 0.276 6.92

5000 14.01 1.096 12.78

10,000 35.05 2.235 15.68

15,000 52.57 3.275 16.05

20,000 70.10 4.344 16.14

25,000 87.82 5.490 16.00

30,000 105.15 6.495 16.19

FIGURE 6 | Performance analysis of hybrid parallelization w.r.t. the

number of realizations. This figure shows a plot of the ratios of the
execution times for the decay dimerization model (Table 2) on a CPU(Core
i7 2.80 GHz with 12 GB of memory) and on a GPU (NVIDIA Tesla C1060) as
the vertical axis, and the number of realizations as the horizontal axis. With
hybrid parallelization and for greater than 1000 realizations, the process is
up to 16 times faster than on a CPU.
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FIGURE 7 | Performance analysis of memory access optimization w.r.t.

the number of realizations. This figure shows a plot of the ratios of the
execution times for the decay dimerization model (Table 2) on a CPU (Core
i7 2.80 GHz with 12 GB of memory) and on a GPU (NVIDIA Tesla C1060) as
the vertical axis, and the number of realizations as the horizontal axis. The
blue and green lines represent the acceleration obtained by memory access
optimization with hybrid and coarse-grained parallelization, respectively.
Applying memory access optimization improved performance by a factor of
3.1; this was 50 times faster than on a CPU. Memory access optimization
with coarse-grained parallelization achieved an even greater improvement
than that of hybrid parallelization (it was 60 times faster than on a CPU).

when there was a large number of realizations. This result sug-
gests that the memory access on a GPU is a bottleneck; thus, it is
essential to profile the access pattern of the code and optimize the
data location and structure.

The green line in Figure 7 indicates the acceleration obtained
by optimizing the memory access and using coarse-grained par-
allelization. Interestingly, optimizing the memory access had a
greater impact when using coarse-grained parallelization than
when using hybrid parallelization; its execution was 60 times
faster than on a CPU. This may be because coarse-grained par-
allelization requires less synchronization between the threads
than does hybrid parallelization, and thus the threads may be
executed more efficiently. We also note that coarse-grained par-
allelization requires relatively simple memory access compared to
that required by hybrid parallelization, and this is advantageous.
Although hybrid parallelization may have the greatest advan-
tage for huge models with very large numbers of reactions, we
decided to implement other acceleration methods for use with
coarse-grained parallelization.

3.3. REDUCTION OF DATA TRANSFER TIME
In addition to parallelization and memory access optimization,
we evaluated the improvement in performance achieved by the
reduction of the time to transfer data. The execution times of
10,240 realizations with different methods of optimizing the data
transfer (n-way overlap) is shown in Table 4, and Figure 8 shows
the ratio of the execution times on a CPU and a GPU, with
four-way overlapped data transfer. Note that the total execu-
tion time when there was no overlap (0.67 s; Table 4) is about
one third that for 10,000 realizations (2.235 s; Table 3). This
is due to the optimization of memory access, as described in
Section 3.2.

Table 4 | Execution times for 10,240 realizations with different

methods of optimizing data transfer.

Kernel (s) Data transfer (s) Total execution

time (s)

No overlap 0.22 0.15 0.67

Two-way overlap 0.22 0.08 0.59

Four-way overlap 0.22 0.04 0.45

FIGURE 8 | Analysis of the reduction of the data transfer time achieved

by four-way overlap w.r.t. number of realizations. This figure shows a
plot of the ratios of the execution times for the decay dimerization model
(Table 2) on a CPU (Core i7 2.80 GHz with 12 GB of memory) and on a GPU
(NVIDIA Tesla C1060) as the vertical axis, and the number of realizations as
the horizontal axis. Applying the asynchronous data transfer scheme
resulted in a further improvement by a factor of 1.5; the result was about 90
times faster than on a CPU.

From Figure 8, we see that this implementation has a further
improvement by a factor of 1.5 (this is about 90 times faster
than on a CPU). The reduction in the data transfer time was
motivated by noting that this consumed 25% of the execution
time in our prototype implementation, as shown in Table 1. By
implementing an asynchronous data transfer scheme, we reduced
the data transfer time, to 50% and 25% of the original time
for two-way and four-way overlap, respectively (see Table 4);
this resulted in an improvement in performance by a factor
of 1.5.

3.4. DATA COMPRESSION
As described in Section 2.6, using CRS to compress the stoi-
chiometry matrix markedly reduced the memory footprint of the
GPU implementation. To analyze the effect of this on the exe-
cution time, we created some sample models of various sizes.
Each sample model consisted of several units of a single-gene
production-reduction submodel. As an example, such a sub-
model consisting of two molecular species and two reactions is
as follows:

G
c5→ G+ P (4)

P
c6→ 0 (5)
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For example, if a model consists of four independent single-gene
production-reduction submodels, the model will contain eight
molecular species and eight reactions. Because only one or two
molecular species are involved in each reaction in each submodel,
the stoichiometry matrix of the combined model will be sparse.
Thus, we can expect that the use of CRS will have a notable effect.
We created six models with different numbers of reactions (in the
range of 8–256).

The execution times of 10,240 realizations with the different
sizes of model are shown in Table 5, and the ratios of the exe-
cution times on a CPU and a GPU are shown in Figure 9. As
a result of compressing the stoichiometry matrix, the stochastic
simulation for a model with eight reactions is about 130 times
faster on a GPU than on a CPU. This improvement was due to
the implementation of CRS, and it was because of the sparseness
of the data. In the previous implementation, it was necessary to
perform a two-dimensional scan of the stoichiometry matrix in
order to determine which molecules should be updated; with the

Table 5 | Execution times of 10,240 realizations with various sizes of

model.

Number of reactions

(model size)

Execution time (s) CPU/GPU

CPU GPU

8 58 0.45 128.89

16 70 0.59 118.64

32 98 0.85 115.29

64 142 1.54 92.21

128 237 2.88 82.29

256 406 5.52 73.55

FIGURE 9 | Performance analysis of data compression w.r.t. the

number of reactions. This figure shows a plot of the ratios of the
execution times of 10,240 realization of a single-gene production-reduction
model on a CPU (Core i7 2.80 GHz with 12 GB of memory) and on a GPU
(NVIDIA Tesla C1060) as the vertical axis, and the number of reactions
(model size) as the horizontal axis. Compression of the stoichiometry matrix
resulted in a further improvement by a factor of 1.4 for a model with eight
reactions; this was about 130 times faster than on a CPU. On the other
hand, the execution time on a GPU was notably longer for larger models
(>64 reactions).

CRS, the molecular information is stored as an index; thus, it is
not necessary to scan the matrix, and the number of molecules
can be updated with a minimal computational cost (Figure 5).

Although this implementation resulted in a drastic improve-
ment in performance, the execution time on a GPU was notably
longer for larger models (> 64 reactions), as shown in Figure 9.
This is not caused by the firing of the reaction (step 7, Section 2.1),
but by the calculation of the propensity function and the selection
of the reaction (steps 3, 4, and 6 Section 2.1); this is because the
execution time of these procedures increases with an increase in
the number of reactions.

We now consider the effect of CRS on the memory footprint
of the stoichiometry matrix. Assume that a model consists of r
reactions and m molecular species; the size of the stoichiometry
matrix Ssm will be

Ssm = m× r (6)

and after using CRS, the size of the new stoichiometry matrix Scrs

will be
Scrs = r + 2α (7)

where α is the total number of elements in the CRS. Assuming
m̄ molecules are involved, on average, as reactants or products
of each reaction, α will satisfy α = m̄ · r; thus the size of the
modified matrix is as follows:

Scrs = (2m̄+ 1)× r (8)

From Equations (6, 8), the difference in the memory footprint
depends on the values of m and m̄. In the direct method (step 3,
Section 2.1), m̄ will be a value between zero and two; CRS will
result in a smaller memory footprint even with a small model.

4. DISCUSSION
In this section, we will summarize and discuss the results of our
implementation.

Table 6 summarizes the acceleration methods implemented in
this work and the ratios of the execution times compared with
the implementation of the direct method on a CPU (CPU/GPU).
From Table 6, it can be seen that the memory access optimiza-
tion resulted in the greatest improvement in the performance,
followed by the asynchronous data transfer and data compres-
sion. Although a GPU has the potential to be used for high-
performance computing, its computational power cannot be
harnessed by simply parallelizing an algorithm; this is because the

Table 6 | Summary of accelerated stochastic simulator and its various

acceleration methods.

Methods Parallelization Acceleration

algorithm (CPU/GPU)

Parallelization of the direct method Hybrid 16

Memory access optimization Hybrid 50

Coarse-grained 60

Asynchronous data transfer Coarse-grained 90

Data compression Coarse-grained 130
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way in which data is accessed during execution is a critical fac-
tor in GPU computing. We demonstrated this with our results in
Section 3.2.

The primary feature that differentiates a discrete stochastic
simulation from a continuous simulation (such as numerical inte-
gration of a differential equation) is the use of random numbers.
When numerically integrating a differential equation, it is obvi-
ous that, given identical initial conditions, each simulation will
produce identical results. On the other hand, stochastic simula-
tions require multiple realizations, the results of each one being
determined by random numbers. Parallelization on a GPU is
well-suited for this kind of simulation, because a simulator can
share one model for multiple realizations, which reduces the
memory footprint. Choosing the best parallelization algorithm
from fine-grained, coarse-grained, and hybrid parallelization is
another important need with GPU computing. In principle,
coarse-grained parallelization is the most efficient method for
multiple realizations, because it only requires infrequent synchro-
nization between the threads. For the problem that we considered
in this study, multiple realizations using one model was a require-
ment, so parallelizing one realization (fine-grained paralleliza-
tion) was not as effective as parallelizing multiple realizations
(coarse-grained parallelization), because of the need for frequent
synchronization. This was also shown in Section 3.2. Fine-grained
parallelization has the potential to accelerate a simulation when
an objective model contains a large number of reactions and/or
a large number of molecular species, which result in high com-
putational cost for the calculation of the propensity functions.
Although we did not consider fine-grained parallelization after
Section 3.2, preliminary results were shown in Section 3.4. It was
shown that the performance improvement obtained by coarse-
grained parallelization will decrease logarithmically with the
model size, as shown in Figure 9. This result suggests that it might
be possible to solve this problem by calculating the propensity
function using fine-grained parallelization. The efficiency of par-
allelization can be measured by the occupancy’, which is defined
to be the number of active thread groups divided by the max-
imum number of thread groups. If there is a synchronization
between threads during a simulation, some preceding threads will
be required to wait until the remaining threads reach the syn-
chronization point. The number of waiting threads will decrease
the occupancy, because they will be included in the denominator.
The occupancy depends on the particular problem and the par-
allelization method, but in principle, hybrid parallelization can
lead to lower occupancy than that of coarse-grained paralleliza-
tion. Applying hybrid parallelization is challenging, since high
occupancy must be maintained.

Functionality for storing all of the time course data during a
realization is an essential feature for understanding the dynamics
of a model. We note that this functionality is found in most exist-
ing software tools that support stochastic simulation (Ramsey
et al., 2005; Hoops et al., 2006; Mauch and Stalzer, 2011; Sanft
et al., 2011). An existing proposal for the acceleration of the direct
method using a GPU (Li and Petzold, 2010) performs faster than
our method (speedups by a factor of about 200), but it lacks
the functionality for storing all the time course data, which not
only consumes memory but also increases execution time. Our

intent was to add functionality to store the time course data while
improving performance. We used an asynchronous data trans-
fer scheme so that the time course data would be transferred
during the simulation and thus decrease the data transfer time
(Figure 8). Overall, we achieved a speedup by a factor of 130
compared with a sequential realization on a CPU.

Our evaluation was performed on an NVIDIA Tesla C1060,
which has 240 arithmetic units (cores) and 4 GB of memory.
The peak performance of the C1060 is 933 Gflops in single-
precision floating point format. Several GPUs have been released
by NVIDIA for the purpose of GPGPU. For example, the NVIDIA
Tesla K40, which is a high-end product with 2880 cores and 12 GB
of memory, provides 4.29 Tflops at peak single-precision floating-
point performance. By implementing our method on a high-end
GPU, we would expect a greater improvement in performance.
The performance is not affected only by the number of flops; cur-
rent GPUs have a higher compute capability (3.5) compared with
the C1060 (1.3). The difference in compute capability directly
affects the memory access performance. In principle, higher com-
pute capability will place a lower penalty on uncoalesced access
and looser restrictions on coalesced access and bank conflicts.
Benchmarking on a GPU with higher compute capability might
show different results for improvements when using different
acceleration methods.

In this study, we applied parallelization and several accelera-
tion methods to the direct method, which is the most straight-
forward way to implement the SSA of Gillespie. As described in
Section 2.1, there are several algorithms for the SSA, and the
use of simulation algorithms can improve the total throughput.
The next targets for improved implementation are the optimized
direct method (Cao et al., 2004) and the sorting direct method
(McCollum et al., 2006). The optimized direct method optimizes
the order of

∑n− 1
i= 0 ai (in step 6, Section 2.1) to reduce the calcula-

tion time. The sorting direct method is another improvement of
the direct method. The difference between the optimized direct
method and the sorting direct method is a pre-simulation step,
in which the optimized direct method sorts the propensity func-
tions. Since both algorithms are based on the direct method,
extending our implementation to them is expected to have a
notable effect on parallelization.

In this work, we have designed and implemented several par-
allelization algorithms and acceleration methods for the SSA. We
have included a time course recording function while accelerating
SSA simulations by a factor of up to 130. GPUs are known to be
a cost-effective and power-saving solution for high-performance
computing. With the added functionality for recording the time
course and the ability to import a model that is described in
SBML, we hope that our implementation will contribute to the
field of systems biology, in which modeling and simulation play
important roles in understanding complex biological systems.
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(Macro)molecular crowding and the ability of the ubiquitous cytoskeleton to dynamically
polymerize–depolymerize are prevalent cytoplasmic conditions in prokaryotic and
eukaryotic cells. Protein interactions, enzymatic or signaling reactions - single, sequential
or in complexes - whole metabolic pathways and organelles can be affected by
crowding, the type and polymeric status of cytoskeletal proteins (e.g., tubulin, actin),
and their imparted organization. The self-organizing capability of the cytoskeleton can
orchestrate metabolic fluxes through entire pathways while its fractal organization
can frame the scaling of activities in several levels of organization. The intracellular
environment dynamics (e.g., biochemical reactions) is dominated by the orderly
cytoskeleton and the intrinsic randomness of molecular crowding. Existing evidence
underscores the inherent capacity of intracellular organization to generate emergent global
behavior. Yet unknown is the relative impact on cell function provided by organelle or
functional compartmentation based on transient proteins association driven by weak
interactions (quinary structures) under specific environmental challenges or functional
conditions (e.g., hypoxia, division, differentiation). We propose a qualitative, integrated
structural–functional model of cytoplasmic organization based on a modified version of
the Sierspinsky–Menger–Mandelbrot sponge, a 3D representation of a percolation cluster,
and examine its capacity to accommodate established experimental facts.

Keywords: enzyme kinetics, metabolism, quinary structures, cytoskeleton, molecular crowding, fractal, Sierpinsky

sponge, percolation

It seems to me that cells leave very little to random processes and
that they have evolved the capacity to escape much of the chaos of
solutions, (. . . ). It appears unlikely that a messy alphabet soup would
be used to spell out the elaborate prose of intermediary metabolism.

James S. Clegg, 1984

INTRODUCTION
Cells are very far from random mixtures of molecules. The classi-
cal experiments of Kempner and Miller (1968) showed that cells
are not bags of freely floating enzymes. Using cells from the uni-
cellular eukaryote Euglena as “centrifuge tubes” (Clegg, 1984a),
these authors (Kempner and Miller, 1968) could distinguish sev-
eral layers within cells (that remained viable) after centrifugation.
No macromolecules could be detected in the “soluble phase”
and many of the main enzymes considered to exist free in solu-
tion were instead associated with layers containing organelles
(mitochondria, lysosomes, nucleus) and subcellular structures
(ribosomes).

Ideas about cytoplasmic organization have a long history that
can be traced back to the notion of protoplasm as the substratum
of cellular activity (Welch and Clegg, 2010). Early microscopic
techniques (reviewed in Aon and Cortassa, 1997, Chapter 6) and
the more recent cryoelectron tomography (Medalia et al., 2002)
unveiled the overall crowded nature of the cellular cytoplasm pop-
ulated by complex macromolecular assemblies besides subcellular
organelles (Luby-Phelps, 2000; Minton, 2001; Grunewald et al.,

2003; Ovádi and Norris, 2013) (see Figure 2A). Studies start-
ing in the twentieth and well into the twenty-first centuries used
advanced molecular–cellular biology methods including fluores-
cence recovery after photobleaching, in conjunction with confocal
microscopy and time-resolved anisotropy methods, to establish
a decrease in the diffusion coefficients of proteins in the cyto-
plasm and in the endoplasmic reticulum lumen compared with
water (Luby-Phelps, 2000; Verkman, 2002; Rivas et al., 2004). The
consequences of these results are very significant for cell func-
tion because diffusion of solutes and macromolecules in cellular
compartments mediates many physiological processes, including
metabolism and signaling events. On the other hand, active trans-
port via motor proteins leads to a significantly higher mobility
compared to diffusion processes (Fakhri et al., 2014).

Obtaining information about the molecular properties of pro-
teins in the living cell is becoming an active field of research
(Wirth and Gruebele, 2013). Existent and new molecular tech-
niques and methodologies enable monitoring of native protein
activity and folding in cells, offering information on concen-
tration, dynamics, location, interactions and protein proximity
(Diekmann and Hoischen, 2014; Fakhri et al., 2014).

ENZYMATIC REACTIONS IN ORGANIZED CROWDED MEDIA
Supramolecular organization and crowding are two main traits
of the intracellular milieu (Aon and Cortassa, 1997; Aon et al.,
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2001). The cellular cytoplasm contains (macro)molecules: a mix-
ture of molecules of low (e.g., ATP, glutathione, NADH) and
higher molecular weight (e.g., proteins, lipids, polysaccharides)
and macromolecular arrays (e.g., tubulin and F-actin polymers,
glycogen granules), at concentrations such that they occupy a
large fraction of its total volume. Such media are “crowded”
but no individual (macro)molecular species is present at a high
concentration per se (Minton, 1997).

“Background” species concern (macro)molecules that do not
interact specifically with either the reactants or products of a par-
ticular reaction. Proteins in the crowded cellular environment can
stick to each other through non-specific interactions (e.g., elec-
trostatic, hydrophobic). “Background” species can also contribute
large steric repulsive forces in crowded environments (Minton,
2000) that may not be observed directly because they do not lead
to the formation of complexes (Zhou et al., 2008). The excluded
volume effect depends on the size and concentration of molec-
ular crowders and refers to the volume between, e.g., a pair of
interacting proteins, that cannot be occupied by a third protein
(Wirth and Gruebele, 2013). If the size of a (macro)molecule is
comparable to the size of background species, the available vol-
ume is considerably smaller (i.e., excluded volume higher) than
in the case that the (macro)molecule is relatively tinier. Lower
available volume increases the contribution of steric repulsion to
reduce entropy and increase free energy (Rivas et al., 2004). If we
consider that to maximize the available volume is a way to reduce
free energy then (macro)molecular crowding facilitates a decrease
in excluded (occupied) volume via, e.g., molecular compaction
and association (Minton, 2000, 2001; Ellis, 2001). Another conse-
quence of crowding is that, via decrease of excluded volume, the
folded over the unfolded state of a protein or protein complex is
favored (Wirth and Gruebele, 2013).

The reaction rate of an enzymatic reaction may be controlled
at diffusional (substrate(s), S, access to the enzyme’s, E, active
site) and/or kinetic (an intrinsic step in the reaction scheme limits
the rate) levels. Broadly speaking, diffusional and kinetic control
may be assessed through diffusion, percolation or transport of the
species S and E involved, and k2, the rate constant of the enzyme–
substrate, ES, complex transformation into product according to
the Henri–Michaelis–Menten (HMM) formalism (Segel, 1975).

For conceptual purpose, let us consider a simple reaction con-
verting S into P, that involves one ligand, S, one catalytic site, E,
and one enzyme–substrate complex, ES (Aon et al., 2004b):

Diffusion, percolation, transport of S and/or E

→ → → S + E
k1←→

k−1

ES
k2−→ E + P (1)

k2, also known as the catalytic rate constant, kcat , and k−1

are monomolecular rate constants whereas k1 is a bimolecular
rate constant. In the derivation of the HMM equation from a
quasi–steady-state assumption, the dynamics of the ES complex
association–dissociation is considered to be so fast that its con-
centration can be treated as if it were in steady state. Accordingly,
the k1 step is considered not to be limiting the S→ P conver-
sion. Importantly, from experiments performed over the past
two decades, single-molecule enzymology has provided insights

into how specific enzymes—particularly molecular motors and
nucleic acid enzymes—work at the molecular level. These studies
confirmed that the HMM mechanism expressed in Equation (1)
holds at the single molecule level (Xie, 2013).

In heterogeneous, organized, media the rate of encounter
between E and S may be subjected to transport restrictions gen-
erated by anomalous diffusion. Protein stickiness will increase
the apparent viscosity of the cytoplasm thus decreasing the dif-
fusion coefficient, D, since both (viscosity vs. D) are inversely
related (Dix and Verkman, 2008). Anomalous diffusion intro-
duces a time dependence in D, essentially due to the medium
heterogeneity (Wirth and Gruebele, 2013) (see below Section
Fractal Kinetics in Organized Crowded Media). Both translational
and rotational diffusion can be influenced by the excluded vol-
ume and the shape of the crowding protein more than other
factors such as hydrodynamic or direct interactions (Balbo et al.,
2013). Thus, molecular crowding can affect k1 decreasing enzy-
matic rates, essentially because as higher the excluded volume
by (macro)molecules the higher the rate limitation of the E–S
encounter (Homchaudhuri et al., 2006; Pastor et al., 2014). In
support of this interpretation, enzymatic reactions occurring in
the presence of increasing dextran concentrations exhibited lower
Vmax and higher KM, the Michaelis–Menten constant (Pastor
et al., 2014). The volume occupied by dextran, independent of its
size, had an important role on the initial velocity of the hydrolysis
of N-succinyl-L-phenyl-Ala-p-nitroanilide catalyzed by alpha-
chymotrypsin (Pastor et al., 2011). The KM increase could be
attributed to a slower diffusion of the protein due to the presence
of crowding, whereas the decrease in Vmax could be explained by
the effect of mixed inhibition by product, which is enhanced in
crowded media (Pastor et al., 2014). These results also underscore
the relevant role of enzyme size in the initial velocity of reactions
occurring in dextran crowded media. When enzymes are small the
reaction’s initial velocity mainly depends on the excluded volume.
However, for large enzymes, the initial velocity of the reaction is
also affected by the size of obstacles present in the environment.

Modeling and experimental work (Kim and Yethiraj, 2009;
Pastor et al., 2014) also supports the idea that macromolecular
crowding can contribute significantly to changes in enzymatic
reactions (Vasilescu et al., 2013). To simulate rapid metabolite
transfer between the enzymatic components of the phospho-
transferase system (PTS), macromolecular crowding had to be
assumed both to increase the association rate constants and to
decrease the dissociation rate constants of the PTS complexes
(Rohwer et al., 1998). However, crowding was not necessary to
simulate yeast glycolysis suggesting that in this eukaryote it does
not affect the glycolytic pathway (referred in Rivas et al., 2004).
Cortassa and colleagues have also shown that, at least for two
glycolytic enzyme couples, the effects of tubulin cytoskeleton pro-
teins was specific and independent from crowding (Cortassa et al.,
1994).

Very recent studies using carbon nanotubes for intracellu-
lar tracking of kinesin-1 motility highlight stirring dynamics
as another important mode of active intracellular transport.
Recorded kinesin-1 motility in COS-7 cells over five orders of
magnitude in time (Fakhri et al., 2014) enabled the detection
of different dynamic regimes ranging between the extremes of
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random thermal diffusion and kinesin-driven directed trans-
port propelled by stirring dynamics as a non-equilibrium regime
between those extremes.

Weak interactions can mediate transient protein–protein inter-
actions collectively known as “quinary structures,” a term intro-
duced by McConkey (1982) to define a fifth level (beyond the
quaternary) of inherently transient protein structural organiza-
tion. Thermodynamically, the transience of a quinary structure
is based on the low stability of the molecular interaction as well
as the low energetic barrier between molecular states (Wirth
and Gruebele, 2013). Quinary structure has been implicated
in a number of cellular processes from metabolism [e.g., the
metabolon (Srere, 1987), the protein synthesis pathway (Dang
et al., 1985)] to cell signaling (Li et al., 2012). Its inherent tran-
sience facilitates dynamic spatial organization of macromolecules
in the cytoplasm via loose groupings of, e.g., proteins, when they
are working together, but not otherwise (Wirth and Gruebele,
2013).

Overall, (macro)molecular crowding can drive molecular asso-
ciations in the cytoplasm, and via modulation of the available
volume or transient quinary structures influence the kinetics of
biochemical reactions.

CYTOSKELETON ORGANIZATION AND METABOLIC FLUXES
The intracellular environment is not only highly crowded but
exhibits a high degree of dynamic organization governed by the
principles of self-organization, as they apply to thermodynam-
ically open non-equilibrium systems such as cells (Nicolis and
Prigogine, 1977; Aon and Cortassa, 1997; de la Fuente, 2013). By
exchanging energy, matter or information with their environment
cells or tissues can exhibit emergence that is they self-organize
their internal structure and dynamics with novel and sometimes
surprising macroscopic properties. For example, the ubiquitous
cytoskeletal protein network (actin or tubulin) behaves as a non-
linear dissipative system, i.e., it consumes adenine nucleotides
to polymerize, with the ability to self-organize, e.g., oscillate
(Mandelkow et al., 1989; Mandelkow and Mandelkow, 1992;
Tabony and Job, 1992) or alternate in a bistable manner (Aon
et al., 1996b; Aon and Cortassa, 1997) between polymerized
and depolymerized states. Structurally, the cytoskeletal network
exhibits fractal properties (Mandelbrot, 1982; Feder, 1988), i.e.,
spatially organized in a self-similar manner thus exhibiting an
alike form when observed at different degrees of magnifica-
tion (Rabouille et al., 1992; Aon and Cortassa, 1994; Losa and
Nonnenmacher, 1996).

The highly dynamic polymer composite of the cellular cyto-
plasm is dominated by protein polymers, e.g., microtubules,
F-actin and intermediate filaments. In axons in the spinal cord
the interaction between neurofilaments and F-actin results in a
gel with particular viscoelastic properties (Leterrier et al., 1996).
The nucleotide triphosphate hydrolysis-driven polymerization–
depolymerization dynamics of cytoskeletal proteins is reciprocally
influencing and being influenced by the myriad of reactions
involved in intracellular transport (e.g., motors), metabolism,
cell locomotion, and muscle contraction among other func-
tions. For example, microtubule tracks are embedded in the
viscoelastic actin cytoskeleton, which in turn fluctuates as a result
of stresses generated by cytoplasmic myosins; myosin locally

contracts the actin network with an attachment time of several
seconds, followed by sudden release (Fakhri et al., 2014).

Cytoskeleton organization is also influenced by cytoplasmic
molecular crowding because it favors protein interactions that
may form modular complexes (Spirin and Mirny, 2003); some of
these molecular complexes constitute stable or transient multien-
zyme associations (metabolon) (Srere, 1987) capable of metabolic
channeling (Welch, 1977; Ovádi and Srere, 2000). In metabolic
channels, reactions are facilitated by product–substrate transfer
between closely associated enzymes (Ovádi and Srere, 2000).

Microtubules, actin microfilaments and intermediate fila-
ments represent an enormous protein surface in the cell with
an estimated area of 3000 μm2 for a typical mammalian cell in
culture (Luby-Phelps, 2000). Thus, the cytoskeleton provides an
interface for binding a variety of proteins and enzymes. The bind-
ing affinity depends on several factors, including phosphorylation
status (Luther and Lee, 1986; Roberts and Somero, 1987; Pedrotti
et al., 1996), the presence of other proteins, e.g., Microtubule
Associated Proteins (MAPs) (Cortassa et al., 1994; Aon and
Cortassa, 1997), or enzymatic activity (Cortassa and Aon, 1994;
Vertessy et al., 1997; Cassimeris et al., 2012). Protein binding
also affects microtubule and enzyme dynamics (Aon et al., 2001;
Ovádi and Norris, 2013; Olah et al., 2015). The enhancement of
metabolic flux depends upon several factors: (i) the presence for
some enzymatic reactions of MAPs apart from tubulin; (ii) the
concentration of microtubular protein (MTP); and (iii) the poly-
meric status (Cortassa et al., 1994). For example, an increase in
flux through pyruvate kinase coupled to lactate dehydrogenase
was elicited by MTP in a particular concentration range (Cortassa
et al., 1994; Aon et al., 1996a) (Figures 1A–C; see figure legend
for details). Paclitaxel and nocodazole, two drugs affecting micro-
tubule organization and dynamics in opposite ways, were able to
alter the secretion of proteolytic enzymes associated with invasion
and metastasis of tumor cells (Alonso et al., 1999). While pacli-
taxel promotes microtubules polymerization, nocodazole elicits
de-polymerization and as such they enhanced or reduced, respec-
tively, the secretion of the urokinase-type plasminogen activator
and the matrix metalloproteinase 9 to the culture medium in F3II
mammary-carcinoma cells (Alonso et al., 1999).

Ultrasensitivity is a more sensitive response than the one
expected from the classical hyperbola of Michaelis–Menten kinet-
ics (Goldbeter and Koshland, 1982; Koshland et al., 1982). The
“normal” hyperbolic response requires an 81-fold change in
ligand (e.g., substrate, effector) to increase the reaction rate
from 10 to 90% of the maximal velocity. Thus, ultrasensitive
systems are those that need less than 81-fold change whereas
sub-sensitive ones demand more. Depending on their polymeric
status, cytoskeletal protein dynamics (actin, MTP) can modu-
late the ultrasensitive response of enzymatic systems (Aon et al.,
2001). This modulation can be mediated by the cytoskeleton
in the cell stress response involving changes in volume due to
osmotic regulation (Busch et al., 1994; Haussinger et al., 1994a,b;
Aon et al., 2000b).

More recent studies show that the heterodimer tubulin
composed of α and β subunits can selectively modulate the
mitochondrial outer membrane (MOM) permeability via the
voltage-dependent anion channel (VDAC) (Rohwer et al.,
1998; Rostovtseva and Bezrukov, 2012) thus having an impact
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FIGURE 1 | Enzyme kinetics in heterogeneous, organized fractal

medium. The concentration and polymeric status of the cytoskeleton
components tubulin and microtubule associated proteins, i.e., microtubular
protein (MTP), can modulate metabolic fluxes and the kinetics of enzymatic
reactions through various mechanisms (Aon and Cortassa, 1997). Examples
with two enzymatic couples, glucose 6 phosphate dehydrogenase coupled to
hexokinase (G6PDH/HK, A):

Glucose + ATP
HK→Glucose 6 P + ADP

Glucose 6 P + NADP
G6PDH→ 6 phospho-gluconate + NADPH

or pyruvate kinase coupled to lactate dehydrogenase (PK/LDH, B):

Phosphoenolpyruvate + ADP
PK→Pyruvate + ATP

Pyruvate + NADH
LDH→ Lactate + NAD+

Microtubular protein (MTP) in the flux-stimulatory range (1 mg/ml) (Cortassa
et al., 1994) was added to the assay medium containing either G6PDH/HK
(A) or PK/LDH (B). The substrate concentration of the limiting enzyme,
NADP or phosphoenolpyruvate (PEP) for HK/GGPDH or PK/LDH couples,
respectively, was varied. The presence of polymerized or non-polymerized
brain MTP elicited changes in kinetic parameters: (A) In the presence of
polymerized MTP, G6PDH exhibited an eight-fold increase in the KM for
NADP and a two-fold increase in Vmax with respect to the control without
MTP; non-polymerized MTP only induced a two-fold increase in Vmax

without changing the KM. (B) In the presence of polymerized brain MTP,

PK exhibited an increase in cooperativity and in Vmax with respect to
controls as a function of PEP whereas non-polymerized MTP induced an
even higher increase in cooperativity and Vmax. (C) The cycle of
assembly–disassembly of MTP. In this cartoon, the cycle of
polymerization–depolymerization of MTP assumes that tubulin may exist in
one of three forms: polymerized (CP), non-polymerized bound to GTP (CT)
or bound to GDP (CD). A model of the MTP cycle and its effects on PK
kinetics is presented in Aon and Cortassa (1997). (D) Michaelis–Menten
kinetics in fractal medium. The dependence of the initial rate of a
canonical enzymatically-catalyzed reaction as a function of its substrate is
displayed. The h parameter, reflecting the characteristics of the medium,
e.g., obstacle density, and the time-dependence of kinetic constants was
calculated as described in Aon et al. (2004b) (see also Section Fractal
Kinetics in Organized Crowded Media). The time points, t, at which the
simulations were performed are those indicated in the symbol legend (in
min). For simulating reactions occurring in Euclidean space, the parameter
values were identical to those of fractal medium except that the rate
constants were time-independent (see Aon et al., 2004b for calculation
details). At short times the reaction rate becomes much larger, at low S
levels, in fractal than in Euclidean medium (indicated by arrow and dashed
line). As time passes the reaction rate becomes, transiently, slower in
fractal than in Euclidean space; the maximal rate being identical in both
cases though achieved at larger S in fractal medium.

on cellular and mitochondrial energetics (Guzun et al., 2011;
Gonzalez-Granillo et al., 2012; Rostovtseva and Bezrukov, 2012).
Tubulin in the nM range can influence the voltage sensitivity
of VDAC reconstituted into planar phospholipid membranes,
and ADP availability to the adenine nucleotide translocator
in isolated mitochondria (Rostovtseva et al., 2008). Indeed,
VDAC (or porin) is the most abundant protein in the MOM

and is primarily involved in the ATP/ADP exchange between the
cytoplasm and mitochondria (Rostovtseva and Colombini, 1997;
Colombini, 2004).

FRACTAL KINETICS IN ORGANIZED CROWDED MEDIA
The impact of self-organized cytoskeletal proteins in fractal forms
upon the dynamics of cellular biochemistry started to be explored
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more than 20 years ago. Studying chemical reactions in hetero-
geneous media, Kopelman (1988) made two crucial observations:
(i) reactions proceed faster in disconnected (shredded) topologies
than in connected ones, and (ii) the rate constants become time-
dependent, scaling with time as t−h; the h parameter reflects the
characteristics of the medium, e.g., obstacle density, through the
fractal dimension, and provides a link with the kinetic rate con-
stant (Kang and Redner, 1984; Dewey, 1995; Aon et al., 2004b).
In a medium like the cellular cytoplasm, molecular diffusion
becomes anomalous and diffusion coefficients time-dependent
due to heterogeneity given not only by (macro)molecular crowd-
ing but also by rheological changes impinging on viscosity
(Forgacs and Newman, 1994; Aon and Cortassa, 1997).

Aon and Cortassa (1994) and Forgacs (1995) proposed that
the cellular cytoplasm is organized as a percolation cluster. It
was further conjectured that as a highly shredded object, a per-
colation cluster may, in principle, bestow more catalytic power
to cytoplasmic enzymes. Indeed, medium organization in per-
colation clusters may enhance reaction rates at short times (Aon
et al., 2004b; Hiroi et al., 2011) (Figure 1D). The kinetics of bio-
chemical reactions in the cytoplasm depend on (macro)molecular
crowding given by the cytoskeleton organization. Hiroi et al.
(2011) showed that changing the reaction rate may be possi-
ble when the degree of intracellular macromolecular crowding
is modified by experimentally manipulating the structure of the
cytoskeleton. Cytoskeleton disruption with cytochalasin B and
colchicine changed the anomalous diffusion parameter exhib-
ited by enzymes and substrates/products in the cellular cyto-
plasm. Since the total protein concentration was maintained
this suggested that not merely the concentration of intracel-
lular proteins, but also their physiological organization pro-
foundly affects diffusion of free molecules in a cell (Hiroi et al.,
2011).

In cellular biochemistry, the fractal approach has been
directed to understanding the organization and behavior of
(macro)molecules in cells (Rabouille et al., 1992; Savageau, 1995;
Liebovitch and Todorov, 1996; Aon et al., 2004b; Schnell and
Turner, 2004; Aon and Cortassa, 2009). The approach to frac-
tal kinetics in cells differs between authors. The dependence of
the rate constant upon h has been modeled according to a frac-
tal (Zipf–Mandelbrot) distribution (Schnell and Turner, 2004);
assuming HMM kinetics in 2D lattices using Monte Carlo sim-
ulations with time-dependent rate constant (Berry, 2002), or
in terms of the dependence of the parameter h on the spectral
dimension, Ds, for HMM or sigmoidal kinetics (Aon et al., 2004b;
Hiroi et al., 2011). Main findings show that: (i) spatial segregation
of substrate and products increase with the degree of obstruc-
tion in the medium making stronger the deviation of the rate
constants at longer times and, consequently, the fractal kinetic
description as compared with the classical approach (Berry, 2002;
Schnell and Turner, 2004); (ii) at short times the reaction rate
becomes much larger, at low substrate levels, in fractal than
in Euclidean space (Figure 1D); this behavior depends on the
time-dependence of the KM, or an increase in cooperativity and
reaction amplification in allosteric kinetics (Aon et al., 2004b).
The quickly relaxing molecular mechanisms, when cells are chal-
lenged by sudden changes in environmental conditions, would
provide fast and precise adaptation. Indeed, fast responses can

lead to slow exhaustion processes preventing lack of substrates,
effectors for reactions locally, as found in fractal media organized
like percolation clusters (Hiroi et al., 2011).

COMPUTATIONAL MODELING OF CYTOPLASMIC
STRUCTURE–FUNCTION
Interactivity in complex spatiotemporally organized systems like
the cellular cytoplasm is fundamental to their counterintuitive
behavior and one of the main reasons justifying the need of
mathematical modeling for their study. What we seek to under-
stand is how function is coordinated in a cell that exhibits
spatially distributed heterogeneous and compartmentalized sub-
systems with simultaneously unfolding dynamics (Aon, 2013).
Factually, (macro)molecular crowding and cytoskeleton orga-
nization (i.e., structural) are able to influence the dynamics
of biochemical reactions (i.e., functional), yet how does the
structural–functional coupling unfolds in physiologically mean-
ingful spatiotemporal patterns is far from clear. One reason is
that computational modeling has been mainly concerned with
structural or biochemical networks but not with their integrated
function. However, forced by computational burden, modeling of
cytoplasmic structure–function faces some daunting challenges,
beyond the complexity of the task, that demand choices between
atomistic molecular-dynamic simulations (McGuffee and Elcock,
2010; Mereghetti and Wade, 2012) and lower resolution coarse-
grained models (Moore et al., 2014). Mesoscale models represent
a reasonable trade-off between higher simplicity (e.g., treating
macromolecules as single interacting centers) while amenable
to include finer biopolymer representations to address mustis-
cale problems of diffusion and interaction, as recently reported
for the Escherichia coli cytoplasm (Trovato and Tozzini, 2014).
Modeling can help decide quantitative issues such as whether
moderate attraction between proteins and crowding molecules,
on the order of 1 kJ/mol, can counteract the excluded volume
effect (Rosen et al., 2011) or which macromolecule sizes will expe-
rience the strongest attraction and anomalous diffusion (Trovato
and Tozzini, 2014).

Some insight into how structural dynamics can affect bio-
chemical function comes from computational modeling of MTP
dynamics coupled to the glycolytic pathway and its branches to
the Krebs cycle, ethanolic fermentation, and the pentose phos-
phate (PP) pathways. This study showed that MTP dynamics can
coordinately increase or decrease the flux through glycolysis, and
that depending on the degree of MTP polymerization a negative
control may be exerted by the PP pathway on glycolysis (Aon
and Cortassa, 2002). These results may be relevant for cancer
therapy because the PP pathway is critical for tumor cells to gener-
ate intermediates for nucleic acid synthesis and provide NADPH
required both for the synthesis of fatty acids and cell survival
under oxidative stress (Patra and Hay, 2014).

A key for progress in this complicated research field will be to
adopt an experimental–modeling synergy involving iteration of
the loop: simulation–validation and prediction–experimentation
(Cortassa and Aon, 2013).

EMERGENCE IN SUBCELLULAR ORGANELLE NETWORKS
Cytoplasmic organization comprises not only biochemical
reactions but also organelles representing membrane-bound
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subcellular compartments. Depending on their specific function
and situation, subcellular compartments such as mitochondria
can play substantial roles in physiology as well as pathophysiology.
In heart muscle, for example, mitochondria appear as a network
in the form of a regular lattice, spanning the whole myocar-
dial tissue like a power grid (Slodzinski et al., 2008; Aon et al.,
2009). Certainly, other cytoplasmic organelles can be subject to
the principles of self-organization such as the nucleus and the
Golgi complex (Misteli, 2001) as well as the genome itself (Misteli,
2009), but this possibility needs experimental support.

Self-organized collective dynamics in cardiac myocytes arise
from synergistically coupled subcellular networks of, e.g., mito-
chondria (Aon et al., 2006b) or Ca2+ release units, the latter
constituted by four compartments (sarcoplasmic and junctional
reticulum, myoplasmic and dyadic space) (Nivala et al., 2012).
Emergence in these networks occurs through signaling via sec-
ond messengers such as reactive oxygen species (ROS) or Ca2+. In
addition to the normal excitation–contraction–metabolism cou-
pling, a rich dynamic spectrum results, including oscillations,
electrical or chemical waves, action potential duration alternans,
early or delayed after depolarizations among others (Aon et al.,
2004a; Zhou et al., 2010; Nivala et al., 2012; Qu, 2013; Zorov et al.,
2014).

In heart mitochondria it was found that the transition from
physiological to pathophysiological behavior happens as an emer-
gent phenomenon of the cardiac mitochondrial network, with all
the characteristics of systems at critical state (Aon et al., 2006b).
This transition occurs at the percolation threshold as determined
by applying percolation theory (Aon et al., 2004a). Percolation
describes how local neighbor–neighbor interactions among ele-
ments in a lattice can scale to produce a macroscopic response
spanning from one to the other end of a mitochondrial array
(Stauffer and Aharony, 1994). Such a “spanning cluster” forms
when there is a critical density of elements close to the thresh-
old for a transition (the percolation threshold). A mitochondrial
percolation cluster attains criticality at a certain threshold level of
ROS (Aon et al., 2004a). The transition is self-organized, occurs
with all the traits of universality—that is, with similar critical
exponents as predicted by percolation theory (Schroeder, 1991;
Stauffer and Aharony, 1994; Sornette, 2000), and the mitochon-
drial cluster exhibits fractal organization (Aon et al., 2004b). The
ensuing collective oscillations—which involve at least 60% of
the mitochondrial network—are synchronized by ROS via ROS-
induced ROS release (Zorov et al., 2000, 2014; Aon et al., 2003;
Brady et al., 2006) through a diffusion-based mechanism (Zhou
et al., 2010).

In yeast, spontaneous oscillations of Saccharomyces cerevisiae
mitochondrial redox states and membrane potential occur within
individual yeasts (Aon et al., 2007b), and synchrony of yeast pop-
ulation indicates the operation of an efficient system of cell–cell
interaction to produce concerted metabolic multicellular behav-
ior (Murray et al., 2003, 2013; Lloyd and Murray, 2006, 2007;
Roussel and Lloyd, 2007).

TOWARD AN INTEGRATED STRUCTURAL–FUNCTIONAL
MODEL OF CYTOPLASMIC ORGANIZATION
A model compatible with the 3D visualization of the cellu-
lar cytoplasmic organization as a percolation cluster (Aon and

Cortassa, 1994; Forgacs, 1995) as suggested by its crowded-
organized nature (Medalia et al., 2002) (Figure 2A) is the
Sierpinsky–Menger–Mandelbrot sponge (Mandelbrot, 1982; Raicu
and Popescu, 2008) (Figure 2B) or a modified version introduced
by (Welch and Clegg, 2010) to account also for functional aspects
given by “confined regions, ranging from organelles to protein
complexes. . . , responsible for the execution of localized metabolic
processes. . . ” (Figure 2C).

The modified Sierpinsky–Menger–Mandelbrot sponge captures
several structural–functional features discussed in this review: (1)
the cytoplasmic structure represents a surface with the appear-
ance of a 3D object, because the surface area increases as the
volume shrinks. It is straightforward to imagine that the sur-
face area will be modulated by the degree of polymerization of
the cytoskeleton in turn influenced by (macro)molecular crowd-
ing. (2) It embodies the orderly cytoskeletal organization and the
intrinsic randomness of (macro)molecular crowding. These two
conditions can create zones of heterogeneity via exclusion (occu-
pied) volume based on attracting (e.g., electrostatic, hydropho-
bic) or repulsing (e.g., steric) forces. Locally, these regions possess
levels of free energy that modulate molecular association, com-
paction and folding/unfolding of proteins (Zhou et al., 2008;
Wirth and Gruebele, 2013). (3) Is a good model for the per-
colation of fluids through the cytoplasm, including “confined
regions” or locally separate clusters of biochemical activity that
may extend to other cytoplasmic regions depending on the con-
centration and status of e.g., enzymatic or organelles’ physiology.
These localized clusters determine a certain distance with respect
to the percolation threshold where local activities become global
thus providing a principle of coordinated functional organization
(Aon et al., 2004a; Nivala et al., 2012). (4) Enzymes or enzy-
matic complexes through their binding to the cytoskeleton, and
substrates/effectors/messengers percolating through the “sponge”
would determine reaction rates (Figure 1) defining local clus-
ters of activity that result in different product concentrations
and gradients. (5) It accommodates the existence of “quinary”
structures (McConkey, 1982) that drive transiently and loosely
grouped ensemble of proteins working together in a dynamic and
spatially organized way, e.g., a metabolon or supramolecularly
organized enzymatic complex (Srere, 1987), thus explaining com-
partmentalization in cytoplasmic regions that are not bounded
by membranes (Wirth and Gruebele, 2013) (Figure 2C). (6) The
sponge-like model of the cytoplasm is sound from the status of
intracellular water (Clegg, 1984a,b) and rheological standpoints.
The ground plan of living cells has been pictured as a reversible,
non-covalent gel network (Luby-Phelps et al., 1986; Rabouille
et al., 1990) that can be subjected to sol–gel transitions. A col-
loidal sol state has liquid properties with well-defined viscosity
whereas in a gel viscosity becomes practically infinite with the
percolation threshold, given by the concentration of polymers in
solution, as the critical parameter at which the sol–gel transitions
happen (Forgacs and Newman, 1994).

With a model at hand, we can now put it to test and ask ques-
tions and/or verify certain predictions. For example, can confined
cytoplasmic clusters of biochemical activity be experimentally
demonstrated? Could the same enzyme(s), enzymatic complex or
organelle behave differently according to local cytoplasmic con-
ditions, e.g., higher presence of F-actin (G-actin) with respect
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FIGURE 2 | A fractal sponge-like model of cytoplasmic organization.

(A) Visualization of actin network, membranes, and cytoplasmic
macromolecular complexes from electron cryotomography. The pseudo
color representation corresponds to actin filaments (red); other
macromolecular complexes, mostly ribosomes (green), and membranes
(blue) (modified from Medalia et al., 2002). (B) The Sierpinsky carpet (or
gasket) arises from the recursive invariant procedure consisting in
repeatedly removing an inverted equilateral triangle from the middle of an
initial equilateral triangle (Mandelbrot, 1982). The Sierpinski–Menger–
Mandelbrot sponge is an extension of the Sierpinski’s carpet to the
three-dimensional Euclidian space (Mandelbrot, 1982) (see also Raicu and
Popescu, 2008). This fractal starts from a single cube with an iterative
invariant pattern consisting in the removal of a middle cube. The fractal
dimension of this structure is 2.727 and if the magnification and removal of
the middle cubes continues for n→∞, it is found that the structure
becomes a surface packed into a three dimensional Euclidian space (Raicu
and Popescu, 2008), or as graphically put by Welch and Clegg (2010): “a
fractal geometric form whose progressive ‘fractalization’ results in the
surface area increasing to (the theoretical limit of) infinity as the volume
shrinks to zero” (Image created by Moses Boone; see http://www.

mathworks.com/matlabcentral/fileexchange/3524-sierpinski-sponge). This
is what we call the Sierpinsky–Menger–Mandelbrot sponge, or (C) the
version including idealized spheres designated to account for localized
metabolic microenvironments (indicated by a double white arrow on the top
left), as first proposed by Welch and Clegg (2010) based on a copyrighted
image created by Roman Maeder (see http://www.mathconsult.ch/
showroom/pubs/MathProg/htmls/p2-16.htm) (modified from Welch and
Clegg, 2010).

to microtubules (tubulin)? Can clusters of biochemical activity
based on quinary structures be demonstrated, and are these clus-
ters sensitive to the dynamic intracellular environment? Which
intracellular conditions define percolation thresholds, and can
we show local activity become globally spread? Do these condi-
tions change with cellular stages of growth, division (e.g., G1,
S phases) or differentiation? Is the status of cellular cytoplasmic

organization different in differentiated with respect to pluripo-
tent stem cells? How, and to what extent, does the intracellular
dynamic field of interrelating polymeric forces play out for the
dynamics of metabolic and signaling pathways interacting or
being influenced by those polymers, or forming supramolecu-
lar complexes themselves? All of these are fascinating and rele-
vant questions that now can be addressed experimentally with
emerging new methodologies and a unified structural–functional
theoretical framework for cytoplasmic organization.
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Endoplasmic reticulum resident proteins, along with all proteins traveling through
the secretory pathway must enter endoplasmic reticulum lumen through
membrane-embedded translocons. In Saccharomyces cerevisiae the heterotrimeric
endoplasmic reticulum translocon is composed of the Sec61p, Sss1p, and Sbh1p core
subunits. While the involvement of various molecules associated with the Sec61 complex
has been thoroughly characterized, little attention has been given to the overall flux
through these channels. In this work we carried out a meta-analysis to estimate the
average and absolute flux of proteins into the endoplasmic reticulum lumen. We estimate
an average of 460 proteins enter the endoplasmic reticulum every second, with an
absolute minimum and maximum flux of 78 and 3700 molecules per second, respectively.
With current technologies limiting the ability to obtain accurate measurements of these
events, our estimates shed light on the flow of protein entering the endoplasmic reticulum
lumen.

Keywords: endoplasmic reticulum, protein flux, translocon, protein import, Sec61, unfolded protein response

INTRODUCTION
During the past few decades the research community has gath-
ered an immense amount of information regarding the function
and processes of the endoplasmic reticulum (ER). It is now
well understood that this organelle marks the start of the secre-
tory pathway, and orchestrates the folding, modification, and
assembly of approximately one third of the eukaryotic proteome.
Various physiological conditions, such as increases in protein
folding demand or protein flux into the ER lumen, are capable
of inducing the upregulation of ER protein folding machin-
ery [for a detailed review, see (Schroder and Kaufman, 2005)].
Understanding the dynamic nature of ER proteostasis is particu-
larly relevant to the investigation of protein misfolding diseases,
many of which are characterized in part by the accumulation
of misfolded protein in the ER lumen. Recent theoretical work
modeling the ER as a continuous flow reactor has identified the
inflow of unfolded proteins into the ER as a critical factor for
determining threshold behavior of protein misfolding (Sandefur
and Schnell, 2011), and support for this prediction has been
obtained experimentally (Wright et al., 2013). Although the cur-
rent of nascent unfolded polypeptides flowing into the ER lumen
is recognized as important to understanding protein misfolding
diseases, neither theoretical nor experimental attempts have been
made to quantify the number of proteins entering the ER in a
given unit of time.

High protein traffic is concomitant with high flux through
membrane-embedded translocons that function as the proteina-
ceous gateway to the lumenal space. Indeed, this traffic can
vary greatly depending on both cellular demand and the protein

folding capacity of the ER itself. For instance, when the accumu-
lation of unfolded and/or misfolded protein exceeds the capacity
of the ER folding machinery, the ER exhibits a state of stress.
To regain proteostasis, the ER activates the unfolded protein
response (UPR), an evolutionarily conserved homeostatic mech-
anism. In yeast, the Inositol-requiring enzyme 1 exclusively medi-
ates UPR activation, and consequently leads to the upregulation
of UPR-target genes encoding protein-folding machinery (Lee,
1987; Kozutsumi et al., 1988; Shamu and Walter, 1996; Sidrauski
et al., 1996; Sidrauski and Walter, 1997). However, although much
is known regarding ER proteostasis and the circumstances capa-
ble of perturbing it, the basal current of protein flowing into the
ER remains largely uncharacterized from a quantitative stand-
point. Lacking this fundamental knowledge, it is difficult to truly
evaluate the specific effect of state-altering perturbations on the
ER. Furthermore, efforts to model processes of the ER have been
hindered by the absence of this information as well. Current mod-
els utilizing unfolded protein source parameters have relied on
parameter fitting techniques or assumptions based on biologi-
cal intuition, but have not used values based on translocation
measurements (Pincus et al., 2010; Chambers et al., 2012).

Motivated by the absence of objective measurements of pro-
tein import into the ER, we carried out a systematic meta-analysis
of proteomic and kinetic data relevant to ER translocation in
eukaryotes. We provide a novel estimate of the total import
of nascent unfolded polypeptides into the lumen. Furthermore,
our method enables others to estimate the flux of any yeast
protein localizing to the ER (including both ER-resident and tran-
sient proteins). To our knowledge, this work serves as the first
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quantitative data-driven estimate of protein flux into the ER in
yeast.

MATERIALS AND METHODS
DEFINING THE POPULATION OF ER-RESIDENT AND TRANSIENT
PROTEINS
By analyzing TAP-tagged strains with a quantitative western blot-
ting approach, Ghaemmaghami et al. determined the single-cell
abundances of a majority of the Saccharomyces cerevisiae pro-
teome (Ghaemmaghami et al., 2003). The subcellular localization
of the yeast proteome has also been determined as well. This
was accomplished by analyzing protein localization in cells trans-
fected with green fluorescent protein fusion constructs prepared
for all open reading frames (ORFs) predicted in yeast (Huh
et al., 2003). The latter study identified 296 ORFs encoding pro-
teins localizing to the ER (Huh et al., 2003). The abundances
of 23.6% (70/296) of these ORFs were unable to be quanti-
fied experimentally (Ghaemmaghami et al., 2003). Nevertheless,
together the 226 quantifiable ORFs encode 3,972,824 ER-localized
proteins, and we assume this value represents the total ER
protein population. With the population of proteins in place,
we next set out to define the population of ER translocons
that serve as the entry points for all proteins traveling into
the ER.

ER TRANSLOCON ABUNDANCE ESTIMATES AND THEIR
CORRESPONDING KINETIC PARAMETERS
Proteins destined for ER import traverse the membrane via
either cotranslational translocation (signal-recognition particle-
dependent; SRP-dependent) or posttranslational translocation
(SRP-independent) (Katz et al., 1977; Glabe et al., 1980; Hann
and Walter, 1991; Ng et al., 1996; Matlack et al., 1999). While dif-
ferences in molecular machinery exist for each process, Sec61p,
Sec62p, Sec63p, Sss1p, and Kar2p (the homolog of the mam-
malian chaperone BiP) have been identified as common translo-
con requirements for both processes (Deshaies and Schekman,
1987, 1989; Vogel et al., 1990; Esnault et al., 1993, 1994; Brodsky
et al., 1995).

Much remains unknown regarding the specific stoichiometry
of the ER translocon. The mammalian Sec61 complex is purified
as a heterotrimer, leading many to believe this complex con-
sists of equal numbers of Sec61α, Sec61β, and Sec61γ subunits
(Gorlich and Rapoport, 1993). In yeast, Sec61p-Sss1p- Sbh1p
represents the corresponding heterotrimer. However, while Sec61
and Sss1 have been demonstrated as essential, this is not the case
for Sbh1 as deletion mutants are viable with only minor pro-
tein transportation defects (Finke et al., 1996). Thus, we used the
required components (core and auxiliary) encoded by essential
genes to define the minimum number of ER translocons present.
Fortunately, the cellular abundance has been determined for all
but one of these components (Sss1p abundance is unknown). In
yeast, Sec61p, Sec62p, and Sec63p are present at 24,800, 16,500,
and 17,700 molecules per cell, respectively (Ghaemmaghami
et al., 2003). Kar2p is highly abundant at 337,000 molecules per
cell, and can be immediately ruled out as a limiting factor for
translocon assembly (Ghaemmaghami et al., 2003). Thus, assum-
ing one molecule of each subunit is present per translocon, we

arrive at an estimate of 16,500 ER translocons per cell, which
matches the abundance of the limiting Sec62p subunit [inferred
from proteomic information obtained from Ghaemmaghami
et al. (2003)].

Kinetic parameters relevant to ER translocation are currently
unavailable in yeast, however, the rate of translocation has been
determined in COS-I cells (Goder et al., 2000). By monitoring
the translocation of an N-terminal domain across the ER mem-
brane, Goder et al. (2000) determined this process to occur at a
rate of 8.0± 1.4 amino acids per second. Assuming a normal dis-
tribution, the 95% confidence interval of the translocation rate
is 8.0 ± 1.1 amino acids per second. Note that the confidence
interval of the average translocation rate falls within the experi-
mentally determined range (Goder et al., 2000). Given the highly
conserved nature of the translocation machinery in eukaryotes
(Cao and Saier, 2003), it is reasonable to assume ER import pro-
ceeds at a similar rate in yeast, and thereby permits its use in our
calculations. Having now defined both the general protein popu-
lation and the gateways into the ER lumen, the stage has been set
to estimate the flux of protein entering the ER.

RESULTS
ESTIMATING THE AVERAGE PROTEIN FLUX INTO THE ER LUMEN
The time for a specific protein to traverse the ER-membrane
depends, in part, on the length of its primary amino acid
sequence. In reality, diverse populations of proteins with differing
lengths flood the lumenal space. We reason that the abundance-
weighted average of amino acids could capture this overall flux.
In the simplest case, a single peptide can be envisioned as a
mere string consisting of a defined sequence of amino acids.
Thus, the total number of amino acids entering the lumen dur-
ing a given period of time can be captured by calculating the
flow of an average length protein (weighted by abundance) into
the ER.

We obtained the primary sequence length for each of the 226
ER-targeted proteins quantified by Ghaemmaghami et al. (2003)
(Figure 1). Next, the average length of an ER-localized protein
was determined by weighting the length of each by its correspond-
ing abundance (number of molecules per cell of a specific protein
divided by total number of ER-localized molecules per cell):

L =

226∑
i= 1

(AXi · LXi )

AER
(1)

where L is the abundance-weighted average length of an ER-
localized protein (in amino acids), AXi is the abundance of a
specific ER localized protein (in molecules/cell), LXi is the length
of protein AXi, and AER is the total population of protein local-
izing to the ER [3,972,824 molecules, determined by analyzing
protein abundance data and subcellular localization data pre-
sented by Ghaemmaghami et al. (2003) and Huh et al. (2003),
respectively].

Using Equation (1), we estimated ∼292 amino acids as the
abundance-weighted average length of an ER-localized protein,
with a minimum length of 36 amino acids corresponding
to the OST4 subunit of the oligosaccharyltransferase complex
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FIGURE 1 | Distribution of the ER-targeted protein population. Cellular
abundance and subcellular localization data has been obtained from
Ghaemmaghami et al. (2003) and Huh et al. (2003), respectively. Primary
sequence lengths for all proteins were obtained from the Saccharomyces
Genome Database (http://www.yeastgenome.org), accessed June 5, 2014.

of the ER lumen (ORF: YDL232W), and the NTE1 ser-
ine esterase (ORF: YML059C) representing the maximum
length of 1679 amino acids. Primary sequence lengths were
obtained from the Saccharomyces Genome Database (http://
www.yeastgenome.org), accessed June 5, 2014 (Cherry et al.,
2012).

Having determined L, the average import time (I) for a single
protein entering the lumen can be calculated using the rate (R) of
8.0 amino acids per second (Goder et al., 2000). Using Equation
(2) provided below,

I = L

R
(2)

a value of 36 s is found for I. Assuming the number of proteins
entering the cell at a given moment in time is proportional to the
number of ER translocons present at the surface of the ER mem-
brane, we obtain the following expression that describes the total
flux of proteins into the ER:

F = AT

I
= AT · R

L
(3)

where F is the flux of proteins entering the ER lumen (in number
of molecules per second), AT is the number of ER translocons
per cell (16,500), I is the import time (in seconds), and R is the
translocation rate of 8.0 amino acids per second. A value of∼460
proteins per second is found for F when calculated with an I of
36 s (see, Table 1).

ESTIMATES FOR THE MINIMUM AND MAXIMUM PROTEIN FLUX INTO
THE ER
The demand for protein folding is highly dynamic, and involves
increased flux of specific proteins into the ER that largely depends
on the physiological state of the cell. Proteins imported into
the ER are highly diverse in many aspects, including primary

Table 1 | Summary of translocation estimates.

Average Min Max

I 36 s 4.5 s 210 s

F 460 molecules/s 78 molecules/s 3700 molecules/s

The estimated average protein import time (I) and protein flux into the ER

lumen (F) have been calculated using Equations (2) and (3), respectively. The

abundance-weighted average length of an ER-localized protein (L) of 292 amino

acids (aa) and a translocation rate (R) of 8.0 aa/s were used to estimate the

averages. In the second and third columns, minimum and maximum transloca-

tion estimates have been obtained using Equations (4) and (5), respectively (see,

text for details). In the table, s denotes seconds.

sequence length (as observed in Figure 1). This implies the num-
ber of proteins entering the ER at a given moment in time can
vary dramatically.

Accounting for these considerations, we next calculate the
range of F. This range is fundamentally important because it
illustrates the upper and lower theoretical bounds of protein
current entering the ER lumen. The absolute minimum flux is
defined here as the number of proteins, 1679 amino acids in
length, entering the ER per unit time at a translocation rate
of 8.0 amino acids per second. On the other hand, we define
the absolute maximum flux as the number of 36 amino acid-
long proteins entering the ER at a translocation rate of 8.0
amino acids per second. The minimum and maximum import
times, Imin and Imax, can be calculated using modified forms of
Equation (2):

Fmin = AT

Imax
, Imax = Lmax

R
(4)

Fmax = AT

Imin
, Imin = Lmin

R
(5)

After obtaining values of 210 s for Imax and 4.5 s for Imin, we
are able to calculate Fmin and Fmax as 78 and 3700 molecules
per second, respectively (Table 1). Interpreting these results in
the context of the entire population of 3,972,824 ER-localized
proteins [according to Ghaemmaghami et al. (2003), Huh et al.
(2003)], this indicates that the ER imports a load of protein
between ∼0.1 and 5% of its total steady state protein content
every minute.

ESTIMATING THE IMPORT OF A SPECIFIC PROTEIN INTO THE ER
It is often of interest to many researchers modeling various ER
processes to determine import rates of specific proteins. This is
especially important to those modeling the UPR, as parameters
of this nature define the basal inflow of unfolded proteins enter-
ing the system, or describe the flux of folding machinery that
antagonize stress-elevating phenomena. The above expression for
F can be extended to obtain such estimates, but must be modified
to account for the abundance of the specific protein of interest
with respect to the total ER population as a whole. Re-writing
Equation (3) we obtain the following expression describing the
steady-state flux of a specific protein, denoted FX , into the ER
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lumen (in molecules per second):

FX = AT · AX

IX · AER
(6)

In this expression, AT is the number of ER translocons per cell
(16,500), AX is the abundance of a specific protein X (given in
the number of molecules per cell), IX is the import duration
calculated for protein X and AER is total population of protein
localizing to the ER (3,972,824 molecules).

To illustrate an application of Equation (6), we calculate the
flux of the molecular chaperone Kar2p (BiP) into the ER lumen.
Kar2p is highly abundant at 337,000 molecules per cell, and has
a primary sequence length of 682 amino acids. Substituting its
abundance for AX , we calculate IX as the product of the Kar2p
sequence length and the inverse translocation rate (IX = 85 s
when calculated for Kar2p with an average translocation rate of
8.0 amino acids per second). Doing so, we determine the flux of
Kar2p into the ER to be 16,466 molecules per second.

DISCUSSION
We set out to provide data driven estimates for total protein
flux into the ER. An illustration summarizing our estimations
is presented in Figure 2. After first estimating the number of ER
translocons present in a single cell, kinetic parameters determined
in a eukaryotic system were used to define the rate of translocation
of proteins entering the ER lumen. Subsequently, we estimated
the ER to experience an average protein inflow of 460 proteins
per second. With this value representing the import of an aver-
age length protein (weighted by abundance), it accounts for the

total amino acids entering the lumen and therefore respects the
diversity of proteins associated with this organelle. Even in light
of these considerations, we do not account for the time delay
between protein import events, nor do we account for other
physicochemical influences (aside from primary sequence length)
that could impact this event as well.

Length variations likely hold tremendous influence over the
number of distinct peptides entering the lumen in a given period
of time. To characterize the effect that protein length has on total
flux into the ER, we determined the absolute lower and upper
bounds for protein import into the ER, based on the maximal and
minimal lengths of all ER-targeted proteins, respectively. Provided
this absolute range corresponds to between ∼0.1 and 5% of pro-
tein content within the ER at steady state, our calculation implies
that the combined effort of export and degradation machinery
must dismiss roughly 3973–198,641 proteins every minute to
maintain protein homeostasis in yeast.

We believe our estimates could be of great value to inves-
tigators constructing models of ER processes. The equations
presented here can be used to estimate source terms for both
specific proteins and larger protein populations entering the ER.
Interestingly, it appears that our estimates regarding total protein
flux in the ER lumen align well with a corresponding parame-
ter value used in a recent model of the yeast unfolded protein
response. Pincus et al. (2010) used parameter-fitting techniques
to define the flux of unfolded protein into the ER as 310 proteins
per second. This value lies within our absolute range of 78–3700
molecules per second (Table 1). While 310 molecules per second
is in the lower end of our range, this value could be more appro-
priate for modeling the UPR as decreased protein translocation

FIGURE 2 | Schematic diagram of ER translocation summarizing our

protein flux estimations. An estimate of 16,500 translocons per cell was
obtained by comparing the abundance of each essential subunit comprising
the yeast ER translocon (Sec61p, Sec62p, Sec63p, Sss1p, and Kar2p). This
value matches the abundance of Sec62p, the limiting subunit inferred from

proteomic information (Ghaemmaghami et al., 2003). Using translocation
rates determined in a eukaryotic system (Goder et al., 2000), we next
estimated the ER to experience an average flux of 460 molecules/s, with an
absolute minimum and maximum flux of 78 molecules/s and 3700
molecules/s, respectively [see Equations (1–5) for details].
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is thought to be one of the consequences of UPR activation (due
to the challenge ER stress imposes on the chaperone population).
Nevertheless, the estimates presented here may improve the bio-
logical accuracy of ER models in the near future.

To our knowledge, our estimate concerning the number of ER
translocons per cell is the first that considers its composition in
the context of the cellular abundance of each of its core subunits
and auxiliary components. We used the abundance of molecules
encoded by essential genes to define the translocon population.
Interestingly, our estimate of 16,500 translocons per cell excludes
the Sbh1p subunit, which is limited to 217 molecules per cell
(Ghaemmaghami et al., 2003). Admittedly, yeast mutants lacking
Sbh1p are viable, with intact, although impaired, protein translo-
cation into the ER (Finke et al., 1996). This suggests a biologically
important role for Sbh1p in the translocon assembly, which could
involve aiding the import of a specific subset of proteins into the
ER, or improving the overall efficiency of ER translocation.

We acknowledge our estimates were made possible by over-
simplifying the process of translocation. For simplicity, we only
considered unidirectional protein flow into the ER. Furthermore,
we did not account for specific cotranslational and posttrans-
lational translocation considerations, nor did we consider the
cycling between ribosome-bound and ribosome-free states. The
precise stoichiometry of targeting and auxiliary components
distinguishing ER translocons operating in cotranslational vs.
posttranslational processes is needed to further distribute our
estimated 16,500 ER translocons between each. Also requiring
further distribution is the overall population of protein localiz-
ing to the ER. If the overall translocon population were split into
two subgroups, a consistent methodology would entail each dis-
tinct ER-localizing species to be divided among those imported
cotranslationally vs. those imported after translation. Indeed, an
additional layer of complexity would be provided if yet a third
subpopulation were defined as well, composed of proteins that
traverse the ER membrane via either mechanism as described by
Ng et al. (1996).

Dividing flux estimates between co- and posttranslational
translocation mechanisms is further hindered by process-specific
details. This is especially true for the former process, which is
dependent on the binding of an SRP to an SRP-receptor. The rate
of translation carried out by ribosomes docked to the translocon
also impacts this process. Kinetic rates for translation and SRP-
targeting have been determined experimentally in mammalian
systems (Hershey, 1991; Goder et al., 2000). We are unaware
of corresponding parameters in yeast. Nevertheless, interactions
between the pool of protein awaiting entry into the ER, SRP (and
the SRP receptor), ribosomes, and the ER translocon are highly
dynamic in nature. Stochastic models would be better suited for
adequately addressing these considerations in the future.

Although our estimates are theoretical, we believe they offer
valuable insight regarding the flow of protein entering the ER
lumen. Taken together with existing proteomic information, we
intend the equations contained herein to provide quantitative
biologists investigating ER processes with a tool for estimating the
import of any ER localizing protein in yeast. It is important that
the modeling community continues to provide resources to aid in
the identification of realistic parameters, as the use of inaccurate

or biologically irrelevant parameter values can jeopardize the reli-
ability of model predictions. It should also be well understood
that reliable parameter estimates are crucial for gaining insights
from models in systems and computational biology, especially
those involving non-linear phenomena. Nevertheless, this work
merely represents an initial step toward quantifying the flow
of protein entering the ER lumen. More accurate characteriza-
tion of ER protein flux awaits further experimental investigation.
With the ongoing development of critical biotechnologies, such
as nanosensors and novel fluorescent markers, objective measure-
ments of ER protein import may not be far away.
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Experimental measurements of the mobility of macromolecules, especially proteins,
in cells and their membranes consistently report transient subdiffusion with possibly
position-dependent—non-homogeneous—properties. However, the spatiotemporal
dynamics of protein mobility when transient subdiffusion is restricted to a subregion
of space is still unclear. Here, we investigated the spatial distribution at equilibrium of
proteins undergoing transient subdiffusion due to continuous-time random walks (CTRW)
in a restricted subregion of a two-dimensional space. Our Monte-Carlo simulations
suggest that this process leads to a non-homogeneous spatial distribution of the proteins
at equilibrium, where proteins increasingly accumulate in the CTRW subregion as its
anomalous properties are increasingly marked. In the case of transient CTRW, we show
that this accumulation is dictated by the asymptotic Brownian regime and not by the initial
anomalous transient dynamics. Moreover, our results also show that this dominance
of the asymptotic Brownian regime cannot be simply generalized to other scenarios
of transient subdiffusion. In particular, non-homogeneous transient subdiffusion due
to hindrance by randomly-located immobile obstacles does not lead to such a strong
local accumulation. These results suggest that, even though they exhibit the same
time-dependence of the mean-squared displacement, the different scenarios proposed to
account for subdiffusion in the cell lead to different protein distribution in space, even at
equilibrium and without coupling with reaction.

Keywords: brownian diffusion, subdiffusion, spatial protein distribution, nonhomogeneous cellular media,

continuous-time random walks

1. INTRODUCTION
Traditional biology and biochemistry approaches tend to view
the inside of a cell and its constituent membranes as uniform,
homogeneous and well-stirred media. However, under the light
of the recent advances in experimental methodologies, they rather
appear disordered and heterogeneous, with high levels of crowd-
ing typical of poorly-connected media (Dix and Verkman, 2008;
Cambi and Lidke, 2012; Höfling and Franosch, 2013; Parry et al.,
2014). For instance, cell membranes are heterogeneous collec-
tions of contiguous spatial micro- or nanodomains with various
length and time scales (e.g., fences, lipid rafts, caveolae) (Jacobson
et al., 2007; Cambi and Lidke, 2012), that restrict the lateral
mobility of proteins in a position-dependent way (Kenworthy
et al., 2004; Goodwin et al., 2005; Fujita et al., 2007; Day and
Kenworthy, 2009; Kusumi et al., 2011).

In addition to the complexity brought about by the spatial
heterogeneity of protein mobility, protein diffusion itself can
deviate from the ideal case of Brownian motion. Measurements
of the movement of proteins in living cells (in particular in mem-
branes) has consistently been reported to exhibit subdiffusion
(a variety of anomalous diffusion). In subdiffusion, the mean
square displacement scales sub-linearly with time,

〈
R2(t)

〉 ∝ tγ

with γ < 1 (Schwille et al., 1999; Smith et al., 1999; Fujiwara

et al., 2002; Weigel et al., 2011; Höfling and Franosch, 2013),
as opposed to γ = 1 in Brownian motion. Currently, there exist
three major theoretical scenarios to explain the observations of
subdiffusion, all of which rest on the idea that the interior of cells
and their membranes experience large molecular crowding due
to their high densities of proteins, lipids, carbohydrates, filamen-
tous networks and organelles, with widely-distributed sizes (Dix
and Verkman, 2008; Höfling and Franosch, 2013). The arguably
simplest scenario, referred to as “Fractional Brownian Motion,”
is a generalization of the classical Brownian motion, where the
random increments between two successive locations of the ran-
dom walker are not independent (like in Brownian motion) but
present long-range temporal correlations (Barkai et al., 2012).
The second scenario is hindered diffusion in the presence of
randomly-distributed immobile obstacles (Saxton, 1994; Berry,
2002; Höfling and Franosch, 2013). The third scenario, referred to
as “Continuous-Time Random Walks” (CTRW) assumes that the
complexity of the cellular media changes the statistics of the resi-
dence time τ between two moves of the random walkers. Whereas
Dirac—or exponentially—distributed residence times lead to the
classical Brownian motion, power-law distributed residence time,
η(τ ) ∝ τ−α , generates subdiffusive motion with γ = α − 1 pro-
vided 1 < α < 2 (Bouchaud and Georges, 1990; Metzler and
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Klafter, 2000; Höfling and Franosch, 2013). Those three scenar-
ios all lead to sublinear scaling of the mean square displacement
with time, i.e., subdiffusion. Other scenarios for subdiffusion
have been explored (e.g., scaled Brownian motion, some hetero-
geneous Brownian processes or correlated CTRW) but are less
well studied, see Metzler et al. (2014) for a review.

Whatever the underlying scenario considered, subdiffusion is
usually studied in situations that are so simple that their applica-
bility to biology can be questioned. Yet, several factors contribute
to the complexity of the cellular media:

(i) Subordination: The three scenarios above need not be
mutually exclusive but could combine in a subordinated process
(Weigel et al., 2011; Tabei et al., 2013).

(ii) Transience: In several experimental reports (Platani et al.,
2002; Murase et al., 2004; Saxton, 2007; Bronstein et al., 2009;
Jeon et al., 2011), the anomalous regime is only transient: after
the initial anomalous regime, the mean square displacement
crossovers back to normal (Brownian) diffusion (with γ = 1) but
with a smaller apparent diffusion coefficient.

(iii) Non-homogeneity: The intensity of the molecular crowd-
ing, and/or the anomalous exponent γ may vary depending on
the location inside the cell (Wachsmuth et al., 2000; Kühn et al.,
2011), thus defining a position-dependent exponent γ (x).

The spatiotemporal dynamics of protein mobility when any of
those three factors is at play is still obscure. For instance, it is only
recently that subdiffusion with space-dependent exponent has
been explored. In a one-dimensional lattice-based space where
the anomalous exponent is set to a much smaller value in one
of the lattice sites, Fedotov and Falconer (2012) reported a strik-
ing accumulation phenomenon: after possibly a long transient,

all the mobile molecules locate at the lattice site with smallest
exponent. Similar accumulation phenomena were reported by
Korabel and Barkai for particle transport in binary systems, for
which space is partitioned into two subdomains, where diffu-
sion is Brownian or CTRW, respectively (Korabel and Barkai,
2010, 2011). Similarly, recent studies have shown that non-
homogeneous Brownian motion (where the diffusion coefficient
depends on space) can give rise to counterintuitive behaviors,
including CTRW-like transport (Cherstvy et al., 2013, 2014).

In the present work, we focused on CTRW-based subdiffu-
sion and studied the impact of transience and non-homogeneity
on the spatial distribution of the proteins at equilibrium. In the
framework of CTRW, transience is naturally introduced by the
addition of an upper bound to the residence time τC (cutoff
time, see Materials and Methods). In such a transient CTRW,〈
R2

〉
indeed first scales as tγ at short times, then crosses over

to a Brownian motion (with γ = 1) for t � τC . This asymp-
totic Brownian regime can be considered a macroscopic view of
the underlying microscopic subdiffusion, with a “macroscopic”
diffusion coefficient (Figures 1A,B):

DM = (�x)2

4
∫ τC
�t τη(τ )dτ

(1)

where η(τ ) is the distribution of the residence time, �t the
time step of the Monte-Carlo simulation and

∫ τC
�t τη(τ )dτ is the

mean residence time of the random walk. To introduce non-
homogeneous diffusion, we considered a “patchy” two dimen-
sional space domain (Figure 1C). In the center of the domain,
we locate a square patch, of area fraction φ, in which diffusion

FIGURE 1 | Transient subdiffusion (CTRW) turns Brownian at times

longer than the cutoff τC . (A) The mean square displacement
〈
R2〉

in
transient CTRW (blue curve) first scales as tγ (where γ is the anomalous
exponent), but at time scales larger than the cutoff τC , transient CTRW
converges to a Brownian motion with DM as (macroscopic) diffusion
coefficient, i.e.,

〈
R2〉 = 4DMt (brown curve). The dashed line shows a scaling

with exponent γ ,
〈
R2〉 ∝ tγ . (B) The microscopic diffusion coefficient DM

decreases rapidly with increasing cutoff times τC and decreasing anomalous
exponents. γ = 0.8, 0.7, 0.6, 0.5, and 0.4, from top to bottom. (C) In the

following, we study the spatially non-homogeneous case were the diffusion
conditions inside a central patch, of fraction area φ differ from the diffusion
conditions outside the patch. In the non-homogeneous CTRW (NHC) case,
diffusion is Brownian with diffusion coefficient Dout outside the patch and a
CTRW with parameters (γ, τC ) inside. In the non-homogeneous Brownian
(NHB) case (used for comparison), diffusion is Brownian both outside the
patch (diffusion coefficient Dout) and inside the patch (with diffusion
coefficient Din set so as to match the macroscopic diffusion coefficient DM

obtained in transient CTRW with the same parameters γ and τC ).
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is due to a transient CTRW. Outside the patch, diffusion is
Brownian. This setup therefore defines a non-homogeneous
transient CTRW (NHC) process.

Our Monte-Carlo simulations show that the spatial distribu-
tion at equilibrium of proteins subject to such a transient NHC
process is itself non-homogeneous: with increasingly strong sub-
diffusion (i.e., when γ decreases or τC increases), the proteins
progressively accumulate in the central patch. We show that this
accumulation is totally controlled by the long-time (Brownian)
regime of the transient CTRW and not the initial anomalous tran-
sient. However, we also show that the dominance of the long-time
Brownian regime in transient subdiffusion cannot be extended
to other scenarios. Indeed, non-homogeneous transient subdif-
fusion due to hindrance by randomly-located immobile obstacles
also exhibit transient subdiffusion followed by a slowed-down
Brownian regime. However, we show that this situation does not
lead to such a strong local accumulation, but to depletion of the
central patch or weak accumulation, depending on how concen-
trations are computed. Therefore, even in the simplest case of
pure lateral mobility (i.e., no reaction), the knowledge of the
time-dependence of the mean square displacement is not suffi-
cient to predict the distribution of the proteins at equilibrium.
This simulation work strongly suggests that the different scenarios
proposed to account for transient subdiffusion in the cell could
lead to different protein distribution in space, even at equilibrium
and in the absence of any reaction (binding, post-translational
modifications, internalization. . . ).

2. MATERIALS AND METHODS
All simulations take place in a w × w 2D square lattice with
reflective boundaries. At initialization, we position NT proteins
uniformly at random without excluded volume i.e., several pro-
teins can occupy the same site. When a protein arrives at lattice
site (i, j) at time tarrival, its residence time τ is sampled from a
distribution ηi,j. The next jump time of the protein therefore is
set as tarrival + τ . ηi,j depends on the nature of the arrival site
(i, j). If (i, j) belongs to an area of Brownian motion, ηi,j is an
exponential distribution of parameter τB�t (where �t is the sim-
ulation time step): ηi,j(τ ) = 1/ (τB�t) exp (− τ/ (τB�t) ). τB�t
is the average residence time and sets the diffusion coefficient at
site (i, j): D(i, j) = �x2/ (4τB�t) where �x is the lattice spacing
(see Equation 1). If the site (i, j) belongs to an area of CTRW,
the residence time is sampled from the power-law distribution

ηi,j(τ ) = γ τ−(1+γ )/
(
�t−γ − τ

−γ
c

)
, for which

∫ τc
�t η(τ )dτ = 1.

Hence �t, the simulation time step is the smallest residence time
possible and τc, the cut-off time, sets its maximal value. At each
simulation time step t = n�t, the algorithm finds all the proteins
that have their jump time in [n− 1, n]�t. Each of those proteins
independently jump to a destination site that is chosen uniformly
at random from its 4 nearest neighbors (i± 1, j± 1).

Note that in the literature, the cutoff of the residence
time distribution is frequently introduced using a soft cut-
off, instead of the hard cutoff used in this study. Such “tem-
pered” (soft) cutoff is commonly obtained by adding an
exponential cutoff to the distribution of residence times i.e.,
η(τ ) = γ�tγ τ−(1+γ ) exp (− τ/τC). In a subset of the simula-
tions shown below, we have replaced our hard cutoff with a

tempered one and found that the results were identical to those
obtained with our hard cutoff. We conclude that the exact imple-
mentation of the cutoff does not have significant impact on the
results reported below.

For simulation of spatially non-homogeneous Brownian dif-
fusion (NHB), we position the boundary of the slowed-down
patch in the middle of neighbor lattice sites. Each lattice side
(i, j) therefore belongs either to the slowed-down patch [we thus
set its diffusion constant to D(i, j) = D1] or to the outer region
(and we set D(i, j) = D0 > D1). In the case of spatially non-
homogeneous CTRW (NHC), we also position the boundary
between the CTRW patch and the Brownian exterior in the mid-
dle of neighbor lattice sites. Therefore each lattice side (i, j) either
belongs either to the CTRW patch or to the outer Brownian
region.

To compare NHB and NHC, we simply computed the average
residence time for the CTRW distribution according to the cut-
off (τc) and γ parameters:

∫ τc
�t τη(τ )dτ and use this value as the

mean residence time for Brownian motion (see Equation 1).
Subdiffusion due to obstacle hinderance was simulated by

positioning obstacles at random locations (with uniform distri-
bution) within the inner region at the beginning of the sim-
ulation. In this instance, obstacles behave a separate type of
molecules that are kept unreactive and immobile. Moreover, they
exclude the lattice site they occupy: whenever the chosen destina-
tion site of a moving protein contains an obstacle, the protein is
reflected back to its origin site (the destination site becomes the
origin position).

Standard parameter values were used throughout the article,
unless otherwise specified: lattice size w = 800, �t = 1, �x = 1
and diffusion coefficient Dout = 1/4. Every simulation was ini-
tiated with NT = 104 proteins and was run until the density of
proteins reaches equilibrium. Depending on simulation condi-
tions, equilibrium was typically reached after at most 105 (obsta-
cles) to 5× 105 (slowed down Brownian diffusion or CTRW)
time steps. The number of proteins present in the patch at equi-
librium, Nin, was therefore computed as a time-average for t ∈
[9.5, 10.0] × 105. Each simulation was repeated 20 times with
different realizations of the pseudo-random numbers. The data
presented below are averaged over those 20 runs.

3. RESULTS
Figure 2 shows the average fraction of molecules present, at equi-
librium, in patches of fraction area φ = 0.25 or 0.01. The case of
non-homogeneous CTRW (NHC), where diffusion is Brownian
outside the patch and a transient CTRW inside, is plotted with
blue plus (+) signs. Each data point corresponds to a value of the
CTRW parameter pair (γ, τC). To facilitate visual presentation,
we determined the macroscopic diffusion coefficient defined by
each parameter pair (according to Equation 1) and plot the ratio
of molecules inside the patch (at equilibrium) Nin/NT against the
corresponding value of DM inside the patch (Din).

For large values of Din, when diffusion is only weakly
slowed down by the CTRW (τC small and/or γ large), Nin/NT

tends to φ (horizontal dashed lines), the fraction area of the
patch. This is exactly the value expected when the densities of
molecule inside and outside the patch are identical, Nin/φ =
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FIGURE 2 | Non-homogeneous CTRW and non-homogeneous

Brownian yield identical accumulation inside the patch. The fraction of
molecules inside the central patch Nin/NT at equilibrium increases with the
slowdown of diffusion inside the patch (where Nin and NT are the number
of molecules inside the central patch and the total number of molecules,
respectively). NHC conditions are represented with blue plus signs
whereas the NHB results are shown with brown empty circles. The full
curves are the predictions from the theoretical expression for NHB,
Equation (2) The dashed horizontal lines locate Nin/NT = 0.25 and
Nin/NT = 0.01. The fraction area occupied by the central patch is φ = 0.25
(top curve) or 0.010 (bottom curve). In the NHC case, Din is here the
macroscopic diffusion coefficient of the transient CTRW inside the patch.

Nout/ (1− φ). Therefore, when the CTRW inside the patch
has a short or weakly anomalous transient, the spatial distri-
bution remains uniform and homogeneous. When the tran-
sient anomalous regime becomes more marked (Din decreases),
Nin/NT increases and becomes larger than φ. This reveals that
with increasingly marked anomalous regimes (longer lasting or
more anomalous), the equilibrium spatial distribution becomes
non-homogeneous: molecules progressively accumulate inside
the patch [Nin/φ > Nout/ (1− φ)]. For the smaller Din val-
ues, the fraction of molecules inside the patch even tends to
unity. In other words, when the cutoff time τC tends to very
large values, accumulation reaches extreme levels since roughly
all the diffusing molecules are found inside the slowed down
patch.

Therefore, when the duration of the anomalous transient
regime is large and/or the anomalous exponent small, non-
homogeneous CTRW (NHC) leads to accumulation at equi-
librium. To investigate the origin of this accumulation, we
compared the results obtained with NHC to those with non-
homogeneous Brownian motion (NHB), in which the motion
remains Brownian inside the patch, but with a smaller diffu-
sion coefficient Din. In terms of mean-squared displacement〈
R2

〉
, NHB thus preserves the long-time behavior of NHC, but

does not feature the initial anomalous transient. In a previous
work (Soula et al., 2013), we showed that decreasing the ratio of
diffusion coefficients Din/Dout in NHB, leads to accumulation at

equilibrium inside the patch. We obtained a very good theoretical
approximation of this accumulation with a simple expression:

Nin/NT = φ

φ + (1− φ)
Din
Dout

(2)

Note in particular that in this expression, Nin/NT → φ when
Din → Dout (homogeneous distribution) while Nin/NT → 1
when Din → 0 (total accumulation in the patch).

The brown open circles in Figure 2 show the accumulation
obtained with NHB, for various values of Din (and constant Dout).
The accumulation values obtained in simulations of NHB match
almost exactly those obtained with NHC. To confirm this result,
we also plot in Figure 2 the theoretical predictions of Equation
(2) (full black lines). The agreement between this theoretical pre-
diction and the simulation results, either for NHB or NHC, is
almost everywhere very good, confirming match between NHB
and NHC values. A discrepancy between the theoretical predic-
tion and the simulation results (both for NHB or NHC) appears
for very small patch fraction area (φ = 0.01) and strong slow-
down (Din < 10−3). This discrepancy might be due to the fact
that, with such extreme slowdown in the patch, our maximal sim-
ulation time may be too short to reach equilibrium. In any case,
this discrepancy does not invalidate the very good match for most
of the values.

We then extended this comparison to a larger set of values
of the fraction area of the patch. To quantify the accumula-
tion more directly, we plot on Figure 3 the values of Nin/ (NTφ)

for various values of the CTRW parameters in the patch: cut-
off τC and anomalous exponent (γ = 0.8 in A and 0.4 in B).
Using the same symbols as Figure 2 above, Figure 3 shows the
results obtained with NHC and compare them to simulation
and theoretical accumulation in a NHB with comparable Din. In
absence of accumulation (i.e., with homogeneous spatial distri-
bution of the molecules), one expects Nin/ (NTφ) ∼ 1 whereas
Nin/ (NTφ) should be close 1/φ (dashed line) when accumula-
tion is close to complete in the patch. For both exponent values,
the spatial distribution is found homogeneous (or close to homo-
geneous) for small cutoff times τC and progressively converges to
1/φ when τC →∞. The limit of almost-complete accumulation
(1/φ) is reached for smaller τC when γ is small (thus diffu-
sion heavy anomalous) than when γ is large. This confirms that
NHC progressively leads to complete accumulation when the cut-
off time increases. Here again the match with the simulated and
theoretical values of NHB is very good.

We next investigated whether this accumulation was specific
to the geometry used in Figures 1–3. To this end we compared
two geometries: (i) Patch geometry: CTRW takes place in a single
patch of surface area φw2 (where w2 is the total domain surface
area), located in the center of the domain. This is the geometry
used in Figures 1–3 above; (ii) Distributed geometry: The patch
is split into Np squares of individual area S (we used unit area,
S = 1); the total patch area is preserved (i.e., NpS = φw2 ); the
Np patches are distributed uniformly at random in the domain
(without overlapping). Figure 4 plots the values of Nin/ (NTφ)

for several CTRW parameter pairs (γ, τC) obtained from Monte-
Carlo simulations of the two geometries. Clearly, the amounts
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FIGURE 3 | Accumulation depends on patch area and the amplitude of

the slowdown in the patch. The extent of accumulation Nin/
(
NTφ

)
ranges

from 1.0 (no accumulation, Nin/NT = φ) for τC = 1.0 (i.e., Din = Dout) to 1/φ

(all the molecules are inside the patch), when τC →∞ (i.e., Din → 0). The
symbols are identical to those in Figure 2. The dashed line locates the
curve Nin/

(
NTφ

) = 1/φ. The anomalous exponent γ = 0.8 (A) or 0.4 (B).

FIGURE 4 | The accumulation phenomenon with NHC is not specific of

the central patch geometry. Accumulation values are shown for
simulations of NHC with a single central CTRW patch (i.e., the geometry
used in Figure 3, blue plus signs, “patch” configuration) and when the
patch is split into many smaller subparts, that are spread uniformly in the
space domain (“distributed” configuration, black crosses). See the main
text for details. All the other parameters and symbols are identical to
Figure 3, in particular the anomalous exponent γ was 0.8 (A) or 0.4 (B).

of accumulation observed for the two geometries, patch (blue
“+” signs) or distributed (black “×” signs), are identical, for all
the total patch areas and all the CTRW parameters we tested.
Therefore, accumulation is also observed when the central patch
is split into subpatches uniformly distributed in the domain. This
indicates that the observed accumulation is a generic property of
NHC that is not specific to the precise geometry configuration.

Those results therefore reveal that NHC leads to progressive
accumulation of the molecules inside the central patch, what-
ever its area fraction. Since the amplitude of the accumulation
due to NHC is almost identical to the amplitude of the accu-
mulation due to NHB, one may conclude from those results

that, at least regarding the spatial distribution of the molecules
at equilibrium, the transient anomalous regime has no signifi-
cant impact. Accumulation would therefore be entirely controlled
by the “macroscopic” Brownian regime that is exhibited at long
times by transient CTRW.

A convenient way to test this hypothesis is to compare the
results obtained with transient subdiffusion due to obstacle
hindering. In this case, diffusion is still Brownian-like inside
the patch, except for the presence of randomly-distributed
immobile obstacles that hinder diffusion (see Materials and
Methods) (Saxton, 1994; Berry, 2002; Höfling and Franosch,
2013). In this case (green curve in Figure 5A), the mean-squared
displacement

〈
R2

〉
is transiently anomalous with γ = 0.659 in 2D

(in continuum space) (Bouchaud and Georges, 1990; Kammerer
et al., 2008). Just like in transient CTRW,

〈
R2

〉
then converges

to slowed-down Brownian motion with a “macroscopic” diffu-
sion coefficient DM (brown line in Figure 5A). When obstacle
density ρ inside the patch increases, the crossover time from tran-
sient to Brownian regimes increases while DM decays. Therefore,
from the perspective of the mean-squared displacement, transient
subdiffusion due to hindering by obstacles is very similar to tran-
sient CTRW. In particular, both exhibit a slowed-down Brownian
behavior at long times.

Figure 5B shows the changes of Nin/ (NTφ) when the obstacle
density is changed, for a central patch with fraction area φ = 0.25.
Note that when immobile obstacles are added in the patch, some
of the unobstructed sites of the patch find themselves isolated
from the rest of the patch inside a cage made of obstacles. We
found that in our simulations, those encaged sites were never
present in a very significant amount (less than 9 % of the unob-
structed patch sites, even at large obstacle densities). However,
since they are not accessible for proteins located outside the cage,
we included the fraction of such encaged isolated sites in the cal-
culation of the obstacle density ρ. Without obstacles (ρ = 0), one
recovers the expected spatially homogeneous distribution of the
molecules at equilibrium [Nin/ (NTφ) = 1]. In a striking con-
trast with NHC or NHB, though, increasing the obstacle density
in the patch (thus increasing τC and decreasing Din) leads to a
quick decay of the accumulated fraction below 1. This reveals that
increasing the motion slowdown in the patch by obstacle hinder-
ing leads to a non-homogeneous equilibrium distribution of the
molecules. But in opposition to the NHB or NHC case, this leads
to a depletion of the molecule in the patch: the molecule density
inside the patch becomes smaller than outside.

However, examination of Figure 5B shows that the values of
Nin/ (NTφ) decrease slightly slower than the available area frac-
tion inside the patch (1− ρ, dashed line in the figure). This
means that if one uses the accessible area in the patch [(1− ρ)φ]
to compute concentration (and not the total patch area φ),
hindering by immobile obstacles in fact leads to a slight accumu-
lation. To quantify this further, we show on Figure 5C the results
obtained when we compute accumulation using the effectively
accessible volume (1− ρ)φ, i.e., we now compute accumulation
as Nin/(NT(1− ρ)φ). In agreement with the above comment, this
figure shows a slight accumulation, especially for large obstacle
densities. Note however that this accumulation effect is small as it
never get larger than 10%.
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FIGURE 5 | Diffusion hindering by obstacles leads to depletion of

the molecules in the patch at equilibrium. (A) The mean square
displacement

〈
R2〉

in transient subdiffusion due to hinderance by
randomly-located immobile obstacles (green curve) first scales as tγ

(with γ < 1), before converging to a Brownian motion with DM a
(macroscopic) diffusion coefficient, i.e.,

〈
R2〉 = 4DMt (brown curve).

Obstacle density ρ = 0.35, patch area fraction φ = 1. (B) When the

obstacles are restricted to a central patch, the number of molecules
inside the patch at equilibrium decreases below 1.0, Nin/

(
NTφ

) ≤ 1.0
(depletion). The dashed line shows Nin/

(
NTφ

) = 1− ρ. (C) When
accumulation is computed using the effectively accessible area in the
patch (1− ρ)φ, and not the total patch area φ, one gets instead a
weak accumulation in the patch. In (B,C), bars indicate ±1 s.d., and
the fraction area of the patch φ = 0.25.

Therefore, although they show very similar behaviors in terms
of mean-square displacement, the impact on the equilibrium
protein distribution in space of non-homogeneous transient sub-
diffusion due to obstacle hinderance or to CTRW are very dif-
ferent: while the latter leads to strong and robust accumulation
in the patch, the former yields depletion or weak accumulation
(depending on how concentrations are calculated).

4. DISCUSSION
The lateral diffusion of proteins in membranes, and more gen-
erally, in the intracellular spaces is a complex process. First,
many experimental reports evidence that their mobility does not
agree with the classical Brownian motion but exhibit subdiffu-
sion (Schwille et al., 1999; Smith et al., 1999; Fujiwara et al., 2002;
Weigel et al., 2011; Höfling and Franosch, 2013). Moreover, the
properties of their diffusion process can themselves vary from one
location to another in the cell (or membrane) because of e.g.,
the non-homogeneous distribution of macromolecular crowd-
ing in space (Wachsmuth et al., 2000; Kühn et al., 2011; Parry
et al., 2014) or the presence of nanodomains in the membranes
that locally alter diffusion (Kenworthy et al., 2004; Goodwin
et al., 2005; Fujita et al., 2007; Jacobson et al., 2007; Day and
Kenworthy, 2009; Kusumi et al., 2011; Cambi and Lidke, 2012).
Understanding protein mobility subject to such a complex pro-
cess is still challenging. Here, we used Monte-Carlo simulations
to study the spatial distribution (at equilibrium) of a protein that
moves on a non-homogeneous two-dimensional domain with
Brownian diffusion outside a central subregion (“patch”) and
with transient CTRW inside (Figure 1C).

Our first finding is that in these conditions, proteins tend
to accumulate inside the central patch (Figures 2, 3). When
the anomalous regime becomes increasingly marked (i.e., the
longer it lasts and the smaller its anomalous exponent), the
density of proteins located at equilibrium inside the central
patch is increasingly larger than the density of proteins outside.

At the limit were the CTRW becomes permanent (i.e., when
the cutoff time diverges), this accumulation is complete, i.e.,
close to all the mobile proteins are found inside the central
patch. This result agrees with the one-dimensional case studied
by Korabel and Barkai (2010, 2011); Fedotov and Falconer (2012),
extending them to two-dimensional spaces and generalizing it
to variable fraction areas for the CTRW patch and to transient
CTRW.

Our second contribution is that in the case of non-
homogeneous transient CTRW, this accumulation phenomenon
is entirely driven by the Brownian regime that is reached
after the transient anomalous regime. The anomalous expo-
nent impacts the accumulation phenomenon because it sets
the effective macroscopic diffusion coefficient in the Brownian
regime, not because it causes the initial sublinear scaling of the
mean square displacement with time. Accordingly, when we sup-
pressed the initial transient anomalous regime keeping the same
asymptotic Brownian one (i.e., simulating non-homogeneous
Brownian motion), our simulations shows the same accumu-
lation, quantitatively and qualitatively. However, we also show
that this conclusion cannot be generalized to other mecha-
nisms that cause transient subdiffusion. Indeed, the evolution
with time of the mean square displacement when diffusion is
hindered by randomly-located immobile obstacles exhibits the
same changes with time as those of transient CTRW (compare
Figure 5A with Figure 1A). Yet, when such a process is used to
simulate non-homogenous transient subdiffusion, our simula-
tions did not evidence strong local accumulation of the proteins.
Therefore, two mechanisms for subdiffusion, CTRW and obstacle
hindrance, can present exactly the same regimes for the changes
of the mean-squared displacement (

〈
R2

〉
) with time, but lead

to very different results regarding the protein distribution at
equilibrium.

Our simulations do not account for excluded volume between
diffusing proteins as several proteins can share the same lattice
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site at a given time. Including a hard limit on the maximal num-
ber of proteins that can share the same lattice site would lead
to a significant decrease of the apparent diffusion coefficient
(inside and outside the patch). This excluded volume interac-
tion between proteins would arguably be more realistic but is also
more demanding in terms of computation time. Moreover, we do
not think it would change our main conclusions since excluded
volume interaction between the proteins is not expected to mod-
ify their diffusion regime. However, it could of course have the
trivial effect of limiting the amplitude of the reported accumula-
tions inside the patch, since the bound on the number of proteins
per lattice site implies a strict limitation of the number of proteins
in the patch.

Taken together, our results provide a clear indication that the
changes of

〈
R2(t)

〉
with time are not enough to explain the spa-

tiotemporal dynamics of the proteins, even in the simple case,
studied here, where the mobile protein to not interact via bio-
chemical reactions or interactions. This realization has already
started to emerge in the most recent experimental reports (see
e.g., Parry et al., 2014). Other quantities that can be studied
include quantifiers of the weak ergodicity breaking, specific to
CTRWs (Burov et al., 2011; Weigel et al., 2011; Tabei et al., 2013)
or quantifiers of how the distribution of the successive displace-
ment deviates from a Gaussian distribution, that is expected for
a Brownian motion (Parry et al., 2014). See e.g., Metzler et al.
(2014) for a recent survey of those quantities. Moreover, CTRWs
can give rise to spontaneous population splitting into mobile and
immobile fractions (Schulz et al., 2013, 2014). This specificity
of CTRWs could also be exploited to define more informative
quantities.

Albeit the present work only concerns protein mobility, i.e.,
without coupling to a reaction, our results also shed new lights
on the outcome of biochemical reactions when they occur among
proteins with such non-homogeneous transient subdiffusion. In
a recent article, we have studied the spatiotemporal dynamics
of the ligand-binding equilibrium (L+ R −⇀↽− C) (Soula et al.,
2013) in a similar space-dependent setup. We compared the
apparent affinity of the reaction when diffusion in the central
patch is restricted by transient subdiffusion either due to obstacle
hindrance or NHC or NHB. We found that, while CTRW system-
atically decreases the apparent affinity of the reaction i.e., makes
it less likely to occur, both non-homogeneous Brownian motion
and local hinderance by obstacles increase it. The improvement
of the affinity with non-homogeneous Brownian motion seems
expected due to accumulation inside the patch. However, this
explanation fails in the case of transient CTRW. It also fails
in the case of transient subdiffusion due to obstacles. Indeed
albeit obstacle hindrance yields depletion of the proteins inside
the patch, it still gives rise to a slight improvement in appar-
ent affinity of the ligand binding equilibrium. Therefore, our
main conclusions is that both equilibrium concentrations or the
asymptotic behavior of the mean square displacement are not the
key control for the dynamics of the ligand-binding equilibrium.
It seems that even at equilibrium the structure of the anoma-
lous transient, and/or other quantifiers of the mobility have a
deep impact. Future works will be needed to understand those
impacts.
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Cell size is a critical factor for cell cycle regulation. In Xenopus embryos after midblastula
transition (MBT), the cell cycle duration elongates in a power law relationship with the
cell radius squared. This correlation has been explained by the model that cell surface
area is a candidate to determine cell cycle duration. However, it remains unknown
whether this second power law is conserved in other animal embryos. Here, we found
that the relationship between cell cycle duration and cell size in Caenorhabditis elegans
embryos exhibited a power law distribution. Interestingly, the powers of the time-size
relationship could be grouped into at least three classes: highly size-correlated, moderately
size-correlated, and potentially a size-non-correlated class according to C. elegans founder
cell lineages (1.2, 0.81, and <0.39 in radius, respectively). Thus, the power law relationship
is conserved in Xenopus and C. elegans, while the absolute powers in C. elegans were
different from that in Xenopus. Furthermore, we found that the volume ratio between
the nucleus and cell exhibited a power law relationship in the size-correlated classes.
The power of the volume relationship was closest to that of the time-size relationship
in the highly size-correlated class. This correlation raised the possibility that the time-size
relationship, at least in the highly size-correlated class, is explained by the volume ratio
of nuclear size and cell size. Thus, our quantitative measurements shed a light on the
possibility that early embryonic C. elegans cell cycle duration is coordinated with cell size
as a result of geometric constraints between intracellular structures.

Keywords: cell size, cell cycle duration, power law, nuclear-cytoplasmic volume ratio, ima-3/Importin α

INTRODUCTION
Cell cycle is regulated in coordination with cell size in unicellu-
lar organisms and cells in animal embryos. In many invertebrate
and vertebrate animals, the early embryonic stage after fertiliza-
tion is characterized by rapid synchronous cleavage in all cells
within the embryo. Later, this pattern of cell division abruptly
changes to cycles of slow and asynchronous cleavage. This tran-
sition event was referred as the midblastula transition (MBT)
originally in amphibian embryos (Gerhart, 1980; Newport and
Kirschner, 1982). Experimental studies showed that the onset of
events at or after MBT, such as asynchronous division, differenti-
ation, and gastrulation, are affected by cell size as well as ploidy
in Drosophila (Edgar et al., 1986) and Xenopus (Newport and
Kirschner, 1982; Clute and Masui, 1995). These findings suggest
that cell size and genome size are critical factors for determin-
ing the timing of MBT, which is the classic concept to explain
the coordination between cellular events and cell size in early
development of animal embryos.

Some variations of the classic concept have been reported
based on quantitative measurements of cellular variables. Yoshio

Masui and Wang reported that the cell cycle duration after MBT
is inversely proportional to the cell radius squared in Xenopus
embryos (Masui and Wang, 1998; Wang et al., 2000). Their
rationale for this second power law relationship was that mitosis-
promoting factor (MPF) is produced in a quantity proportional
to the cell surface area. This hypothesis implies that the cell
cycle durations coordinate with cell size through cell surface area,
rather than volume.

On the other hand, other researchers proposed that the vol-
ume ratio between the cell and nucleus, but not the ploidy,
directs the timing of blastomere adhesiveness in starfish and
sea urchin embryos (Masui and Kominami, 2001; Masui et al.,
2001). In starfish embryos, cell adhesiveness begins to increase
after the eighth cleavage to form a monolayered hollow blastula.
In accordance with the classic concept, the timing of adhesive-
ness was accelerated in embryos with doubled ploidy, whereas
the timing was delayed in large-sized embryos by the fusion of
a non-nucleate egg fragment. In contrast to the classic concept,
the timing of adhesiveness was not altered in half-sized embryos,
and the timing was only delayed by one cell cycle in quarter-sized
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embryos. They noticed that experimental manipulations chang-
ing cytoplasmic volume or changing ploidy altered the nuclear
size, and they found that the cell adhesiveness appeared at a cer-
tain volume ratio of the nucleus to the cell (Masui et al., 2001).
The same conclusion was derived from experimental observa-
tions of sea urchin embryos (Masui and Kominami, 2001). They
concluded that the critical variable for determining the onset of
blastomere adhesiveness in starfish and sea urchin embryos is the
volume ratio between the nucleus and cell.

Thus, cellular events could be coordinated with cell size by the
various ratios of cellular variables. However, quantitative mea-
surements to reveal how cell cycle duration is coordinated with
cell size have not been performed in embryos other than in the
vertebrate, Xenopus. In the present work, we studied the time-size
relationship in embryos of an invertebrate, C. elegans. In C. ele-
gans embryo, the cell lineages and order of cell divisions are nearly
invariant (Sulston et al., 1983; Schnabel et al., 1997). After fertil-
ization, the P0 zygote divides into the large AB and smaller P1
daughters. Through several rounds of asymmetric cell division,
the zygote eventually produces six founder cells: AB, MS, E, C, D,
and P4.

Here, we report the time-size relationship—specifically, the
cell cycle duration–cell volume (T–V) relationship—follows a
power law relationship in C. elegans. Interestingly, the absolute
powers differed among cell lineages in C. elegans and were less
than the power in Xenopus. We discuss the possibility that cell
cycle duration is coordinated with cell size through the volume
ratio between nucleus and cell in C. elegans embryos. In addi-
tion, we discuss the difference and possible similarity of time-size
relationships between C. elegans and Xenopus embryos.

MATERIALS AND METHODS
C. ELEGANS CULTURE CONDITIONS AND RECORDING OF EMBRYONIC
CELL DIVISIONS
Wild-type C. elegans (N2) embryos were maintained at
22.5◦C (Brenner, 1974). Embryos were isolated from gravid
hermaphrodites. Cell divisions were recorded in a temperature-
controlled room on an upright differential interference contrast
(DIC) microscope with the Plan-Apochromat 63×/1.40 oil DIC
objective lens (Carl Zeiss, Germany). Cell divisions were recorded
at one-minute time intervals and 0.5-μm Z-axis intervals after
the one-cell stage with Metamorph software (Molecular Devices,
USA). Embryos were attached to a cover glass coated with
polylysine (Sigma-Aldrich, USA). Cover glass was footed with
petroleum jelly (Vaseline, Nacalai Tesque, Japan) on the slide
glass. In this set-up, embryos that attached to the cover glass were
separated from the slide glass, such that cell divisions proceed
without the physical stress of compression between the cover glass
and slide glass (Lee and Goldstein, 2003; Arata et al., 2010; Edgar
and Goldstein, 2012). Polylysine attachment did not change the
embryo shape (Figure S1). C. elegans embryos exhibited normal
developmental progression and hatched in this setting.

MEASUREMENTS OF CELL VOLUME
Cell volumes were measured by integrating 10 or more cylinder
volumes (integral approach; IA). The volume of each cylinder
was calculated from the cell area at each Z-plane and a constant

height, which was set as the Z-axis interval in the stage control sys-
tem of the Metamorph software (Molecular Devices, USA). The
cell area in a cylinder was determined as shown in Figure S1A.
The length of one pixel in the DIC image was calibrated by an
objective micrometer (Carl Zeiss, Germany). Measurement error
was estimated by comparing the nuclear volume measured by the
IA to the volume measured by the formula approach (FA). In the
FA, the nucleus in each cell was assumed to be a perfect sphere
and its volume was determined by 4πr3/3, by using the mean of
four times measurements of the nuclear radius. The assumption is
approximately correct, because the shape of the nucleus was close
to a perfect circle in the X-Y and X-Z axes (Figure S1B). The mea-
surement error in the IA was estimated to be 23.6% larger than
the precise cell volume (Table 1). The error might be caused by
integration error or slight elongation of the nucleus in the Z-axis
(Figure S1B), probably due to the difference of refractive indices
in the light path (Born and Wolf, 1999). Final cell volumes were
determined by correcting measurement errors and averaging the
volumes measured at three different time points during the cell
cycle due to an absence of detectable cell growth in the embryonic
cell cycle.

STATISTICAL ANALYSES
To examine the power of the T–V relationship in cell lineages,
the cell cycle duration and cell volume variables in the logarith-
mic or linear scale were fitted by the linear least-squares method
or the Levenberg-Marquardt algorithm, respectively. To estimate
the confidence interval (CI) of the estimated powers, a method
combining regression analysis and a bootstrap method was used
(Efron and Tibshirani, 1993). The values of power were resampled
10,000 times using residuals between experimental data and val-
ues derived from a model function. The 95% CIs were determined
at the 2.5th and 97.5th percentiles in the appearance frequency of

Table 1 | Volume correction measured by differential interference

contrast (DIC) microscopy.

Cell Radius ± SD Volume by Volume by Error (%)

identity (μm) FA ± SD IA, no error

(μm3) correction (μm3)

AB(1) 4.811± 0.150 467.4± 42.7 517.4 10.7

P(1) 4.436± 0.209 367.4± 52.1 433.7 18.0

AB(2) 4.321± 0.066 338.2± 15.7 433.0 28.0

AB(3) 3.845± 0.058 238.2± 10.7 312.4 31.2

AB(4) 3.132± 0.094 128.9± 11.3 164.7 27.7

AB(5) 2.871± 0.117 99.5± 12.2 116.2 16.8

AB(6) 2.352± 0.081 54.6± 5.7 72.7 33.0

Average ± SEM 23.6 ± 3.2

The measurement error of the integral approach (IA) for our DIC microscope

settings was estimated by comparing the nuclear volumes measured by the IA

and by the formula approach (FA). The numbers in parentheses indicate the cell

generation in each founder cell lineage. For example, AB(1) indicates the AB

cell, and AB(2) indicates the AB daughter cells. See details in the Materials and

Methods. SD, standard deviation; SEM, standard error of the mean.
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the values of power in linear scale data fitted by the Levenberg-
Marquardt algorithm. The 95% CIs in the logarithmic scale fitted
by the linear least-squares method were determined practically by
the same method. The percentile method to estimate CIs can be
applied to any symmetric statistical distribution.

RESULTS
QUANTITATIVE DETERMINATION OF THE T–V RELATIONSHIP IN C.
ELEGANS EMBRYOS
We observed the timing of cell division in wild-type C. elegans
embryos cultured at 25◦C. The intervals of cell divisions between
the generations in the same lineage appeared to increase grad-
ually in all the founder cell lineages in an embryo (Figure 1A).
The average and standard deviation of coefficient of variation
(CV) of cell division timings in AB and MS lineages among dif-
ferent embryos were around several percent (1 to 4 ± 0.5 to
2.1) (Figure 1B), indicating that the cell divisions occurred syn-
chronously in a highly reproducible manner among embryos.
Thus, the C. elegans embryo is a good model system to study

a deterministic mechanism to regulate cell division timings in
animal embryos.

Next, we examined the T–V relationship. Cell cycle duration
was defined as the time from nuclear formation in a cell to nuclear
formation in one of the daughter cells, in which the nucleus
was formed earlier. Cell cycle duration correlated negatively with
cell volume (Figures 2A,B). When we classified the T–V rela-
tionship data by cell lineage, cell cycle duration vs. cell volume
appeared linear in double logarithmic plots (Figures 2C–H), sug-
gesting a power law relationship. We fitted three different models
(Gaussian, exponential, and power law) to the plots of cell cycle
duration vs. cell volume in linear scale. The χ2-value in the model
fitting was smallest (except for the E lineage) when the data were
fitted by the power law model (Figure S2). Therefore, we con-
cluded that the C. elegans T–V relationship in the AB, MS, C, and
P lineages follows a power law relationship.

Absolute values of power in the T–V relationship (Figure 2)
were similar between AB and MS lineages (0.27) and between C
and P lineages (0.41). Bootstrapping statistical analyses showed

FIGURE 1 | Cell division timing of C. elegans embryos. (A) The cell
division timings in an embryo cultured at 25◦C. Cell identity is indicated on
the horizontal axis. Cell division timing was determined by nuclear envelope
breakdown (NEBD). The numbers in parentheses indicate the cell generation
in each founder cell lineage. For example, AB(1) indicates the AB cell, and
AB(2) indicates the AB daughter cells. (B) The average and standard deviation
(SD) of cell division timings in the same generation in AB and MS lineages in
an embryo were obtained; data obtained from six embryos were aligned on

the horizontal axis in order (the leftmost of AB and in the leftmost of MS
were obtained from an embryo). The CV of cell division timings in the same
generation in AB and MS lineages in an embryo were averaged among the
six embryos and were shown with SD [the average CV ± SD (%)] in the right
side of data in the graphs after the third generation. The NEBD of the AB
cells was set as time 0. AB, MS, C, P, E, and D are indicated with a green dot,
blue square, light green triangle, magenta triangle, orange x-mark, and gray
cross, respectively. The EMS cell was indicated by a light blue square.
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FIGURE 2 | Relationship between cell cycle duration and cell volume.

This relationship of cells in embryos is shown in a double logarithmic plot
(A) and a linear plot (B). The relationship of cells in AB [green dot, (C)], MS
[blue square, (D)], C [light green triangle, (E)], P [magenta triangle, (F)], E
[orange x-mark, (G)], and D [gray cross, (H)] lineages are shown in the double
logarithmic plot. Cell volume and cell cycle duration data were obtained from

four wild-type embryos. Data in the logarithmic scale were fitted to the
formula, y = a+ bx, by the linear least-squares method. (G) E cells are
indicated by squares, and their descendants are indicated by orange x-marks.
Downward bracket indicates the daughter cells of E cells. Regression analysis
of cells in E lineage was performed without the E cells. Degrees of freedom
in fitting in (C–H) were 68, 19, 10, 11, 8, and 4, respectively.

that the 95% CIs of the powers overlapped between AB and MS,
C and P, and E and D lineages (Figures 3A,B). The larger abso-
lute values of power in the C and P lineages indicated that the cell
cycle duration elongates rapidly as the cell volume decreases (the

highly size-correlated class). In contrast, the smaller absolute val-
ues of power in the AB and MS lineages indicated that the cell
cycle duration elongates slowly (the moderately size-correlated
class). When the power is zero, the cell cycle duration is constant
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FIGURE 3 | Powers of the T–V relationship could be classified into three

classes. T–V relationships in each lineage in the logarithmic (A) or linear
(B) scale were fitted by a power law model. Statistical analysis combining
regression analysis and a bootstrap method were performed 10,000 times,
using the same data used in Figure 2. The estimated power is indicated in

the horizontal axis, while the appearance frequencies of the values of power
is indicated in the vertical axis. The 95% CIs of the power of the T–V
relationship were determined by the appearance frequency and are shown by
long horizontal bars. Data for AB, MS, C, P, E, and D lineages are shown in
green, blue, light green, magenta, orange, and gray, respectively.

or does not correlate with changes in cell size, indicating a size-
non-correlated class. Cells in the E and D lineages exhibited lower
values of power. Although it remains unclear due to small sample
number, cells in the E and D lineages may be classified in another
class with lower values of power, possibly the size-non-correlated
class. These results suggest that the powers of the T–V relationship
could be grouped into at least three classes.

In the bootstrap analysis performed to evaluate the T–V rela-
tionship in the logarithmic scale, the appearance frequencies of
the values of power were symmetrically distributed (Figure 3A),
which supports the validity of our estimation of the CIs. In the
bootstrap analysis of the T–V relationship in the linear scale, the
appearance frequencies of the AB, MS, E, and D lineages were
symmetrically distributed, whereas the appearance frequencies of
the C and P lineages showed monomodal and bimodal distribu-
tions with the shorter tail in the side of the larger values of power,
respectively (Figure 3B). In these asymmetric distributions, the
estimation of the CIs could be biased to the shorter tail side of
the distributions. Because the similar skewness of the distribu-
tions was observed both in the C and P lineages, the asymmetry
of the distributions does not affect our conclusion that the 95%
CIs of the values of powers overlapped between the C and P
lineages.

INTERMITOTIC PHASE DURATION ELONGATES EXPONENTIALLY AS
CELL VOLUME DECREASES IN THE SIZE-CORRELATED CLASSES
To determine which cell cycle phase was responsible for elon-
gation of the cell cycle duration, we measured the duration of
the intermitotic and mitotic phases in cells in the size-correlated
AB, MS, C, and P lineages. The duration of the intermitotic
phase was elongated exponentially as the rounds of cell divi-
sion increased, and became dominant in cell cycle duration in
later generations (Figure 4A), whereas the duration of the mitotic
phase was relatively constant among these lineages (Figure 4B).
These observations indicated that cell cycle elongation was due to
lengthening of the intermitotic phase but not the mitotic phase.

THE RELATIONSHIP BETWEEN THE NUCLEAR AND CELL VOLUMES IN
THE SIZE-CORRELATED CLASSES
To explain the C. elegans power law T–V relationship, we focused
on the relationship between the cell and nuclear volumes. We
plotted the nuclear vs. cell volumes for cells in size-correlated
AB, MS, C, and P lineages (Figure 5A). The relationship between
the nuclear and cell volumes was non-linear in a linear plot,
and showed a linear relationship in a double logarithmic plot
(Figure 5B). The relationship was well-fitted by a power law
model (R2 = 0.94; Figure 5B). Nuclear volume varied with
cell volume, in a power law relationship with a slope of 0.63
(Figure 5B). If the volumes of the two spheres varied in a
corresponding manner, then the power was unity; thus, the
C. elegans relationship between the nuclear and cell volumes
was allometric. Supposing that a factor critical for cell cycle
regulation is transported between the nucleus and cytoplasm,
we considered the ratio of the nuclear volume (Vn) to the
cell volume (Vc). The power of the volume ratio was −0.37
(Vn/Vc ∝ V0.63

c /Vc = V−0.37
c ). We found that the absolute value

of the power of the volume ratio (0.37) was closest to that of
the T–V relationship in the highly size-correlated class (C and P
lineages) (0.41), indicating a strong correlation with the volume
ratio between the nucleus and cell.

GENETIC ANALYSIS OF THE T–V RELATIONSHIP IN C. ELEGANS
EMBRYOS
We employed a genetic approach to assess the impact of altered
cell volume and to examine the molecular mechanism of the T–
V relationship. In C. elegans, genome-wide screening and classic
genetics have identified genes related to egg size determination.
Homozygous mutant embryos of ptp-2/SH2 domain-containing
protein tyrosine phosphatase are larger than wild-type embryos,
whereas ima-3/importin α RNAi embryos are smaller than wild-
type embryos (Figure 6A) (Gutch et al., 1998; Sonnichsen et al.,
2005). We measured cell cycle duration and cell volume in the
AB lineage of these two loss-of-function embryos. Volumes of
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FIGURE 4 | The duration of cell cycle phases in C. elegans embryos. The
duration of the (A) intermitotic phase or (B) mitotic phase in the
size-correlated class; AB (green dot), MS (blue square), C (light green
triangle), and P (magenta triangle) lineages are shown in linear plots in the

vertical axis. The cell generations in each founder cell lineage are shown in
the horizontal axis. Data points are displaced along the horizontal axis to
avoid overlap (A,B). This data displacement does not affect exponentiation of
data. Duration data were obtained from three wild-type embryos.

FIGURE 5 | Power law relationship between the nuclear and cell volume.

Relationship between nuclear and cell volume in size-correlated classes (AB,
MS, C, and P) is shown in linear (A) and double logarithmic (B) plots. Cell
volumes were determined by the integral approach with error correction,

whereas nuclear volumes were determined by the formula approach in three
wild-type embryos. Data in logarithmic scale were fitted to the formula,
y = a+ bx, by the linear least-squares method. Degree of freedom in fitting
was 75.

AB cells in the ptp-2 mutant embryos and ima-3 RNAi embryos
were approximately twice and half the sizes, respectively, of AB
cells from wild-type embryos (compare gray and black brackets
in Figures 6B,C). The T–V relationship of the ptp-2 AB lineage
was well-fitted with a power law model with the absolute power,
0.25 (R2 = 0.87; Figure 6B), which was close to that of the wild-
type AB lineage (0.27; Figure 2). Larger AB cells in ptp-2 mutant
embryos (black brackets) did not further shorten cell cycle dura-
tions compared to AB cells in wild-type embryos (gray brackets;
Figure 6B). Thus, the cell cycle duration may have a minimum
limit, and eventually appeared to have the minimum limit in the
T–V relationship.

The power law relationship was maintained in the ima-3 AB
lineage, but the absolute value of the power of the ima-3 RNAi
embryos was increased (0.39, R2 = 0.94; Figure 6C) close to the
absolute value of the power of the highly size-correlated class
(C and P lineages) in wild-type embryos (0.41; Figure 2). Thus,
ima-3 is required to determine the proper cell cycle elongation,
and eventually appeared to determine the proper power of the
T–V relationship. The order of cell divisions in the ima-3 RNAi
embryos was the same as in the wild-type embryos, at least until
the 16-cell stage (data not shown). Thus, it is unlikely that the
rapid elongation of cell cycle in ima-3 RNAi embryos was caused
by defects in cell fate determination of the founder cells.
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FIGURE 6 | Relationship between cell cycle duration and cell volume in

loss-of-function embryos. (A) Images of embryos at the two-cell stage for
wild-type, ptp-2(op194), and ima-3 RNAi embryos were obtained by
differential interference contrast (DIC) microscopy. Scale bar = 20 μm.
Relationship between cell cycle duration and cell volume in AB lineage in
ptp-2(op194) [filled circles in (B)] and ima-3(RNAi) [filled circles in (C)]

embryos are shown with that in wild-type embryos [open circles in (B,C)] in
double logarithmic plots. Cell volume and cell cycle duration data in
loss-of-function embryos were obtained from each of three embryos. Data in
the logarithmic scale were fitted to the formula, y = a+ bx, by the linear
least-squares method. Degrees of freedom in fitting (B,C) were 19 and 19,
respectively.

DISCUSSION
Cell cycle duration is coordinated with cell size in cultured mam-
malian cells and unicellular organisms. For example, Amoeba
proteus cells did not enter the mitotic phase when the cell vol-
ume was reduced by cytoplasmic amputation (Prescott, 1955).
By changing cell size with genetic or culture manipulations, cell
cycle progression has been shown to be affected in budding
yeast (Johnston et al., 1977), fission yeast (Nurse, 1975; Sveiczer
et al., 1996), ciliates (Berger, 1984), and mammalian cultured cells
(Dolznig et al., 2004). A quantitative relationship between cell
cycle duration and cell size was reported in embryos of the ver-
tebrate, Xenopus (Masui and Wang, 1998; Wang et al., 2000). In
this work, we studied the quantitative relationship in embryos of
an invertebrate, C. elegans.

POWERS OF THE T–V RELATIONSHIP AMONG CELL LINEAGES IN C.
ELEGANS
We found that the relationship between cell volume and cell
cycle duration followed a power law relationship. In C. ele-
gans, AB and P1 cells divide asynchronously, with the larger

AB cells dividing before the smaller P1 cells (Sulston et al.,
1983; Brauchle et al., 2003). The zygotes that are depleted
of subunits of the heterotrimeric G-proteins, GOA-1/GPA-16,
or GoLoco-containing proteins, GPR-1/GPR-2, exhibit normal
anterior-posterior polarity, but divide into equally sized AB and
P1 cells (Gotta and Ahringer, 2001; Colombo et al., 2003; Gotta
et al., 2003; Srinivasan et al., 2003). The equally sized AB and P1
cells divide in a more synchronized manner compared to the dif-
ferently sized AB and P1 cells in wild-type embryos. Thus, the cell
cycle duration in AB and P1 cells is strongly correlated with cell
size. Brauchle et al. proposed that unequal cell size of AB and P1
cells contributes to asynchrony of cell division, although it is still
possible that G protein signaling is specifically required for dif-
ferential checkpoint activation at the two-cell stage or for another
cellular process modulating cell cycle progression (Brauchle et al.,
2003). The power law relationship between cell cycle duration and
cell size in later embryonic development may be regulated by a
mechanism similar to the asynchrony of AB and P1 divisions.

Our statistical analyses suggest that there are at least three dif-
ferent classes of the T–V relationship according to the founder
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cell lineages in C. elegans: highly size-correlated, moderately size-
correlated, and probably size-non-correlated classes (absolute
powers of 0.41, 0.27, and <0.13 for volume, respectively). C. ele-
gans founder cells give rise to different types of differentiated
cells: cells in AB and MS lineages primarily produce ectodermal
and mesodermal cells, C and P lineages produce mesodermal and
germline cells, and E and D lineages produce endodermal and
mesodermal cells, respectively (Sulston et al., 1983). Thus, the
cell fates do not correlate with the classes according to the power
of the T–V relationship. Instead, the classification might corre-
late with a mode of cell divisions. Cells in AB and MS lineages
of the moderately size-correlated class share prominently syn-
chronous and symmetric cell divisions (Figure 1) (Sulston et al.,
1983), while cells in the P lineage undergo asymmetric cell divi-
sions, in which the two daughter cells clearly differ in size from
each other (Sulston et al., 1983). Similarly, many cells in the
C lineage undergo asymmetric cell division, which has a clear
size asymmetry (Figure S3). Thus, cells in P and C lineages in
the highly size-correlated class share size-asymmetric cell divi-
sion. It remains unclear what cell feature the E and D lineages
share. Daughter cells of each E cell exhibited an abrupt devia-
tion from the T–V relationship that the mother E cell followed,
and subsequently, the descendants appeared to exhibit a lower
power in the T–V relationship (Figures 2B,G). The E daughters
are the first cells that have the Gap phase (G2 phase) in C. elegans
embryos (Edgar and McGhee, 1988). Therefore, the deviation
may be caused by the introduction of the Gap phase. This cell
cycle dynamics in E lineage may be shared with D lineage.

Overall, our quantitative measurements revealed the diversity
of powers in the T–V relationship among C. elegans cell lin-
eages. Cells may sense their own size through distinct mechanisms
among cell lineages in C. elegans embryos.

POWERS OF THE T–V RELATIONSHIP IN C. ELEGANS AND XENOPUS
We found that any of the absolute powers of the C. elegans lin-
eages (<0.39, 0.81, and 1.2 in radius; <0.13, 0.27, and 0.41 in
volume, respectively) were smaller than that in Xenopus embryos
(2.0 in radius; 0.67 in volume). The cell cycle duration of C. ele-
gans embryos elongates more slowly than that in Xenopus after
MBT. Thus, the T–V relationship in C. elegans may be determined
by mechanisms different from those used by Xenopus embryos.
Alternatively, there remains a possibility that a same mechanism
functions for the time-size relationship in C. elegans and Xenopus
embryos. In Xenopus embryos, the time-size relationship has only
been examined in cells near the animal cap. It is possible that the
diversity according to cell lineages is also observed in the Xenopus
embryo. Recently, it has been reported that nuclear size correlates
non-linearly with cell size in Xenopus embryos (Jevtic and Levy,
2015), similarly to C. elegans (Figure 5A). In budding and fission
yeasts, the relationship between the nuclear and cell volumes was
reported to be linear (Jorgensen et al., 2007; Neumann and Nurse,
2007). In addition, nuclear size has been strongly correlated with
cell size (Jorgensen et al., 2007; Neumann and Nurse, 2007), even
when cell size was changed 35-fold or nuclear DNA content was
changed 16-fold in fission yeast (Neumann and Nurse, 2007). The
volume ratio of the nucleus to the cell was rapidly corrected by
the growth of the cell or nucleus, when the nuclear or cell size

was changed by manipulating the genetic or culture conditions
(Neumann and Nurse, 2007). Thus, there is a mechanism that
links the sizes of the nucleus and cell in yeasts. Although the
mechanism to link the sizes of the nucleus and cell in yeasts is dif-
ferent from animal embryos, the interesting correlation of volume
ratio between the nucleus and cell in yeasts and animal embryos
raise a possibility that the volume ratio can be a general mean
by which cells “sense” their size. The power of the time-size rela-
tionship was different between C. elegans and Xenopus embryos,
while the time-size relationship may strongly correlate with the
volume ratio between the nucleus and cell in Xenopus embryos,
like C. elegans embryos (See Section The Relationship Between
the Nuclear and Cell Volumes in the Size-Correlated Classes). As
a future issue, it is interesting to test this possibility to seek a gen-
eral mechanism that coordinates cell size and cell cycle duration
in animal embryos.

In C. elegans, cell cycle elongation was due to lengthening of
the intermitotic, but not the mitotic, phase in size-correlated AB,
MS, C, and P lineages. The C. elegans embryonic cell cycle is
occupied with S phase at least until the 16-cell stage (Edgar and
McGhee, 1988). The gradual elongation of cell cycle duration in
the size-correlated AB, MS, C, and P lineages was not due to intro-
duction of the Gap phase, rather due to the elongation of the
S phase at least before the 16-cell stage. On the other hand, the
Gap phase introduction, which first occurs in the daughters of the
E cell (Edgar and McGhee, 1988) was accompanied with abrupt
deviation from the T–V relationship that followed by cells in the
AB and MS lineages (Figures 2B,G). In Xenopus, the transition to
size-correlated elongation of cell cycle duration is accompanied,
in order, by elongation of the S phase just after MBT, introduc-
tion of G1 and G2 phases, and elongation of S and G1 phases
(Iwao et al., 2005). Durations of the G2 phase are not correlated
with cell cycle elongation. Therefore, size-correlated elongation
of the cell cycle duration in C. elegans embryos is caused by a cell
cycle control mechanism different from Xenopus.

POSSIBLE MODEL TO EXPLAIN THE POWER LAW RELATIONSHIP
BETWEEN CELL CYCLE DURATION AND CELL VOLUME IN THE HIGHLY
SIZE-CORRELATED CLASS
The C. elegans cell cycle duration is likely elongated by S phase
elongation at least before the 16-cell stage (Edgar and McGhee,
1988). DNA replication is initiated from specific sites in the chro-
mosomes in eukaryotic cells, called replication origins (Costa
et al., 2013). The initiation step of DNA replication, or origin
firing, is tightly controlled by the interaction of the replication
origin with the initiation factors for DNA replication (IFs) to
ensure that the entire genome is replicated precisely once in each
cell cycle (Pospiech et al., 2010; Costa et al., 2013). It has been
reported that IFs were involved in the asynchrony of division tim-
ing of AB and P1 cells (Benkemoun et al., 2014). The asynchrony
was explained by the different frequency of the origin firing,
such that the length of DNA replication responsible for a single
origin may be different between AB and P1 cells (Benkemoun
et al., 2014). In this explanation, more origin firing in AB, with
DNA replication proceeding from more origins, a shorter time is
needed to completely replicate the whole genome DNA than less
origin firing in P1.
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In C. elegans embryos depleted of the ataxia telangiectasia
mutated (ATM)-like kinase, atl-1, and the checkpoint kinase,
chk-1, the AB and P1 cell divisions are more synchronous than
in wild-type embryos (Brauchle et al., 2003). In Xenopus egg
extract, ATM-related (ATR)/Chk1 signaling regulates the initi-
ation and progression of DNA synthesis in S phase, even in
the absence of DNA damage (Marheineke and Hyrien, 2004;
Shechter et al., 2004), probably through modulating the activ-
ity of S phase-promoting kinases (Cdk2 and Cdc7) (Marheineke
and Hyrien, 2004; Shechter et al., 2004). Therefore, through
the regulation of S phase-promoting kinases, ATR/Chk1 signal-
ing may eventually regulate the rate of replication origin firing.
Although it remains unknown whether IFs and ATR/Chk1 sig-
naling affect cell cycle duration in C. elegans embryos after the
two-cell stage, the elongation of cell cycle duration observed in
this work may be regulated by the differential regulation of origin
firing rate.

We found that the cell cycle was rapidly elongated in ima-
3 RNAi embryos. It has been reported that loss-of-function
embryos of ima-3 exhibit an embryonic lethal phenotype (Geles
and Adam, 2001). The rapid elongation of cell cycle in ima-3
RNAi embryos may be caused by pleiotropic effects of the embry-
onic lethal phenotype in the late embryonic stage. However, the
cell cycle elongation in ima-3 RNAi embryos was gradual, but not
stepwise, such that the slope can be fitted by a power law func-
tion. One interesting possibility is that ima-3 is directly involved
in a mechanism regulating the cell cycle progression in C. elegans
embryos, especially under the control of cell size. The importin
family encodes proteins that mediate nuclear import and various
molecular processes, including transcription by RNA polymerase
III, spindle formation, chromosome segregation, and nuclear
envelope assembly (Adam, 2009). Further analyses are necessary
to study which of IMA-3 functions causes the rapid elongation
of cell cycle in ima-3 RNAi embryos. Importin α was found to
be involved in nuclear size determination (Levy and Heald, 2010;
Edens et al., 2013). Recently, it has been shown that by manip-
ulating expression or function of factors to regulate nuclear size,
including Importin α, it has been shown nuclear size contributes
to the regulation of MBT timing in Xenopus embryos (Jevtic and
Levy, 2015). The same mechanism could function in the T–V
relationship in C. elegans embryos. Although it remains an open
question whether loss of function of ima-3 leads to altering of
nuclear volume in C. elegans, there are two intriguing possibili-
ties that IMA-3 mediates the T–V relationship; (1) by regulating
nuclear import rate of IFs and/or (2) by regulating nuclear size.
Both of the mechanisms affect the T–V relationship through
determining their nucleoplasmic concentration of IFs. It will be
necessary to test whether one or both of these possibilities were
true for evaluating our hypothesis. A theoretical formularization
was discussed based on the results of quantitative measurements
in this work (Appendix).
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Figure S1 | Integral approach for measuring cell volume. (A) Serial images

of an embryo at the four-cell stage along the Z-axis at 3-μm intervals. The

image at 0 μm was at the closest side of the embryo to the objective lens.

The focus position moved to the farther side of the embryo in an upright

microscope. Cell contours were shown as blue circles, which were traced

by following the cell periphery and granules in focus located around the

cell boundary. (B) Three-dimensional reconstruction of an embryo in the

two-cell stage from serial images obtained along the Z-axis at 0.5-μm

intervals using Image J. In the reconstructed image in the X-Z axis,

nuclear peripheries are indicated by black dots.

Figure S2 | Statistical analyses to select a model to explain the T–V

relationships in C. elegans. Relationship between cell cycle duration and

cell volume in AB (A), MS (B), C (C), P (D), E (E), and D (F) lineages in the

linear scale was fitted by three different models: Gaussian, exponential, or

power law function by the Levenberg-Marquardt algorithm, using the

same data used in Figure 2. Fitted functions and χ2-values are shown in

the boxes.

Figure S3 | Size asymmetry between daughter cells in C. elegans C

lineage. Diagram shows the cell division pattern in C lineage. Anterior and

posterior daughters are indicated as “a” and “p,” respectively. The cell

sizes were observed in serial images along the Z-axis, and are shown at

the Z axis plane, where the nuclei are located in focus with blue circles.

Cell division of Ca, Caa, Cp, and Cpa was asymmetric in the daughter cell

sizes, in which the anterior daughter was larger than the posterior

daughter. Cpa and Cpp were located in different Z-planes in an embryo.

Scale bar = 10 μm.
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APPENDIX
NUMERICAL FORMULARIZATION OF OUR MODEL
We showed that the C. elegans T–V relationship in the highly
size-correlated class correlated with the volume ratio between the
nucleus and cell (Section The Relationship Between the Nuclear
and Cell Volumes in the Size-Correlated Classes). Here, we discuss
a possible molecular mechanism to regulate the T–V relationship
(Section Possible Model to Explain the Power Law Relationship
Between Cell Cycle Duration and Cell Volume in the Highly
Size-Correlated Class), based on a theoretical numerical formu-
larization of our model. The causal relationship between the cell
cycle duration and cell volume has not previously been shown in
C. elegans embryos, and knowledge of molecular mechanisms reg-
ulating cell cycle duration are insufficient. Thus, this model does
not exclude alternative numerical models.

We presume that the cell cycle duration in the highly size-
correlated class (T), which is occupied with S phase, is determined
by the whole genome size (L; [n.a.]), the replication velocity (k,
[n.a./s]) which is assumed to be constant in embryonic cells, and
the number of replication origins that are fired during S phase (N
[−]), where. n.a. indicates the number of nucleic acids:

T = L

N · k (A1)

In addition, we presumed that the number of fired origins during
S phase is in proportion to the concentration of the IFs in the
nucleoplasm ([nucIF]):

N ∝ [nucIF] (A2)

We also presumed that the total amount of IFs is constant in
embryos. The amount of IFs in each cell (cytoIF) is determined
following the segregation of daughter cells from the mother cell
according to the daughter cell volume. The nucleoplasmic IF
concentration is presumed to be determined by active transport
via the Importin system (Section Possible Model to Explain the

Power Law Relationship Between Cell Cycle Duration and Cell
Volume in the Highly Size-Correlated Class), so that the nucle-
oplasmic concentration of the IFs is reduced according to
embryonic cell cleavage events that follow the power law of
the volume ratio between the nucleus and cell (Figure 5B).
Consequently, the T–V relationship in the highly size-correlated
class elongated according to the volume ratio between the nucleus
and cell.

[nucIF] ∝ cytoIF

Vn
∝ Vc

Vn
(A3)

From Equations (A2, A3):

N ∝ Vc/Vn (A4)

From Equations (A1, A4):

T ∝ L

Vc/Vn · k ∝
Vn

Vc
(A5)

From our experimental measurements of nuclear and cell volume
(Section The Relationship Between the Nuclear and Cell Volumes
in the Size-Correlated Classes),

Vn

Vc
∝ V−0.37

c (A6)

Therefore, from Equations (A5, A6):

T ∝ V−0.37
c .

Thus, the cell cycle duration in the highly size-correlated
class can be determined by the amount of IFs that are
inherited in proportion to cell size and function in
proportion to nuclear size. Eventually, cell cycle dura-
tion is elongated in proportion to cell volume with the
power−0.37.
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INTRODUCTION
During cell division, the mitotic spin-
dle captures chromosomes and segregates
them into two equal sets. The orienta-
tion and position of the mitotic spindle
is important because the spindle equator
becomes the plane of cell division. For
instance, in a columnar cell with apical and
basal polarity, if the spindle pole-to-pole
axis orients along the cell’s long axis, the
cell will divide along its short-axis; how-
ever, if the spindle axis orients along the
cell’s short axis, the cell will divide along its
long-axis (Figure 1A). Similarly when the
spindle is off-centered (mis-positioned), it
results in asymmetric cell sizes in the two
daughter cells, which is often used to con-
trol tissue organization (Figure 1B). Thus,
errors in the orientation and positioning
of the mitotic spindle can cause incorrect
plane of cell division leading to incor-
rect cell size, content and neighborhood of
daughter cells (Figures 1A,B).

A human body experiences over a tril-
lion divisions and through age errors in
cell division can accumulate; errors in
spindle orientation can contribute to tis-
sue disorganization, a hallmark of several
age-related conditions and also, carcino-
genesis. However, mutations in classical
cortical force generators that rotate the
spindle to the correct orientation have
not been shown to promote carcinogen-
esis. In contrast, several proteins known
to play a role in cancer initiation and
progression are being newly identified
as regulators of spindle positioning and
orientation. In this opinion article, we

briefly discuss the surprising lack of direct
evidence for classical spindle rotation reg-
ulators in oncogenesis and present exam-
ples of oncogenic pathway components
that influence spindle orientation. We con-
clude with the need for new strategies to
uncover the contribution of spindle ori-
entation defects to tissue disorganization
commonly found in cancers and also age-
ing disorders.

A WEAK CASE FOR CORTICAL FORCE
GENERATORS IN CANCER INITIATION
For a detailed review on the mechanisms
of spindle positioning and orientation, we
recommend a recent review from Kulukian
and Fuchs (2013). Astral microtubules of
the spindle (Figure 1C) are pulled at and
this rotates the entire spindle to a pre-
defined position. Forces to pull the astral
microtubules can arise from the cortex
or within the cytoplasm, although classi-
cal evolutionarily conserved players have
been reported at the cell cortex (reviewed
McNally, 2013). Cortical pulling forces are
essential for mitotic spindle positioning
and orientation in human cells (see next
para). Although it is very likely that com-
promising cortical pulling forces would
lead to tissue disorganization and carcino-
genesis, cortical force generator mutations
are not prevalent in tumors and their
genetic loss-of-function in mice do not
present tumors (reviewed in Noatynska
et al., 2012).

Dynein is the key player in corti-
cal force generation and its localization
is controlled by the cortical platform

consisting of Gαi, LGN, and NuMA
(Figure 1C) (Kiyomitsu and Cheeseman,
2012; Kotak et al., 2012; Corrigan et al.,
2013). Considering that LGN is the pri-
mary platform for cortical dynein recruit-
ment and absolutely essential in epithelial
cells for biased rotation of the spin-
dle (Corrigan et al., 2013), one would
expect a more severe phenotype than the
reported epidermal stratification defects
in LGN depleted mouse skin (Williams
et al., 2011). An explanation for this para-
dox can be gleaned from proliferation and
cell death studies: First, LGN mutant mice
lacking LGN’s C-terminus are viable, but
compromised for planar spindle orienta-
tion in the brain (Konno et al., 2008). This
shows that the control of spindle orienta-
tion is essential for maintaining a popu-
lation of neuroepithelial cells, but is dis-
pensable for proliferative or differentiative
decisions. In support of this idea, loss of
Par3, a polarity protein that forms a com-
plex with Par6/aPKC and controls spindle
orientation (Hao et al., 2010), promotes
breast tumorigenesis and metastasis, only
in combination with oncogenic Notch or
Ras (61L) expression (McCaffrey et al.,
2012). Second, combining defects in cell
death and spindle alignment disrupts
epithelial integrity and causes tumor-like
masses (Nakajima et al., 2013). Thus, spin-
dle orientation defects and resulting cell
fate defects could be resolved by other cell
number control pathways (for example,
cell proliferation and cell death), which
indicates a cooperative role for orienta-
tion defects in tissue disorganization and
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FIGURE 1 | (A,B) Fates of incorrect spindle orientation and positioning:
Cartoons show mitotic spindle movements relative to the substratum
leading to spindle mis-orientation (A) and mis-positioning (B) with
cortical bands highlighting polarity differences. In (A), misorientation
alters the relative positions and contents of daughter cells, without
affecting progenitor cell sizes. In (B), mispositioning affects daughter
cell size, relative positions and their contents. Legend describing cell
substratum, spindle microtubules, metaphase plate, and spindle

movements included. (C) Oncogenic pathways implicated in spindle
orientation: The Hippo, PTEN-PI3K, and Wnt tumor suppressor pathway
components are marked in pink, blue, and purple, respectively. The
oncogenic estrogen receptor (ER) pathway is marked in green. Together,
these pathways regulate astral microtubule (marked in bold) function.
Red arrows indicate force generation events. The Hippo pathway also
influences transcriptional regulation of several genes involved in
orientation (marked on chromosomes).

cancer progression, rather than cancer ini-
tiation per se.

KEY ONCOGENIC PATHWAYS
IMPLICATED IN SPINDLE ORIENTATION
While mutations in cortical force genera-
tors present a weak case for orientation
defects leading to carcinogenesis,
emerging evidence show a role for

oncogenic and tumor suppressor pathways
in ensuring spindle orientation. Three key
examples are:

1. Hippo tumor suppressor pathway

The Hippo pathway is disrupted in a
variety of cancers (reviewed in Harvey
et al., 2013). Fat4, a member of the Hippo

pathway in vertebrates (Skouloudaki et al.,
2009) orients the plane of cell divi-
sion to maintain the planar cell polar-
ity (PCP) of elongating tubules during
kidney development and prevents cyst
formation common to ageing kidneys
(Saburi et al., 2008; Mao et al., 2011).
Fat4 regulates the expression of Vangl2
and Fjx1 (Saburi et al., 2008), which
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are asymmetrically localized Wnt-Fz PCP
components (Montcouquiol et al., 2006).
Recent additions to the Hippo pathway,
LKB1 tumor suppressor (Mohseni et al.,
2014), AMPK (Thaiparambil et al., 2012)
and TAO1 kinase (Poon et al., 2011) are
also YAP regulators that act on Lats1 and
MST2, and are important for mitosis and
spindle orientation (Wojtala et al., 2011;
Wei et al., 2012; Shrestha et al., 2014).
It is currently unclear how Fat4, TAO1,
LKB1 and the Hippo pathway link spin-
dle orientation and tissue maintenance
(Figure 1C), which is an important topic
to be addressed.

2. PTEN-PI3K signaling pathway

The Phosphatase and tensin homolog
deleted on chromosome 10 (PTEN) that
regulates the PI3K-Akt-mTOR pathway
are among the most frequently inactivated
tumor suppressor genes in sporadic can-
cers (reviewed in Chalhoub and Baker,
2009). PI3K influences spindle orientation
in non-polarized cells (Toyoshima et al.,
2007). PTEN deficiency impairs glandular
morphogenesis, through Ax2 and Cdc42,
leading to abnormal multi-luminal phe-
notypes (Martin-Belmonte et al., 2007;
Jagan et al., 2013). Thus, loss of PTEN-
PI3K signaling can result in incorrectly
oriented daughter cells, which may be of
relevance to PTEN-associated tissue dis-
organization common to geriatric condi-
tions and carcinogenesis.

3. Wnt signaling pathway

Multiple components of Wnt pathway
are known to control spindle orientation.
First, spatial restriction of Wnt3a is suf-
ficient to align the spindle parallel to the
axis of cell polarity and induce asymmet-
rical cell division leading to asymmetrical
inheritance of Wnt signaling components.
This provides a mechanism for extrinsic
control of cell fate and differentiation
(Habib et al., 2013), but its specific role
in cancer is unclear. Second, APC, a Wnt
pathway member, is a tumor suppres-
sor and regulator of microtubule stability
and cell polarity (Zumbrunn et al., 2001;
Etienne-Manneville and Hall, 2003). APC
and its interactors, EB1 (a microtubule-
end binding protein) and β-catenin are
all needed for stable spindle positioning

(Draviam et al., 2006; Wu et al., 2010 and
reviewed in Tamura and Draviam, 2012).
While inactivation of both APC alleles is
required for carcinogenesis (reviewed in
Reya and Clevers, 2005), loss of a single
allele is sufficient for spindle misorienta-
tion (Fleming et al., 2009). It is unclear
if APC’s role in spindle orientation and
Wnt signaling converge in preventing car-
cinogenesis (Figure 1C). However, APC is
known to bind β-catenin, which together
with E-cadherin and α-catenin, are actin
regulators with a role in spindle orien-
tation (reviewed in Allan and Näthke,
2001). Third, Dvl is another component
of the Wnt-PCP pathway which influ-
ences spindle orientation (Ségalen et al.,
2010), and its role in linking spindle ori-
entation with carcinogenesis is also not
known.

In summary, studies of PTEN, Hippo
and Wnt tumor suppressor pathways show
evidence for more than one protein of
any single pathway being involved in spin-
dle orientation (Figure 1C). Whether their
role in spindle orientation is important
for their tumor suppressor function is not
known and is an important question to
address.

EXCITING FUTURE DIRECTIONS FOR
ELUCIDATING HOW DEFECTIVE
SPINDLE ORIENTATION IS LINKED TO
TISSUE DISORGANIZATION IN AGEING
DISORDERS AND CANCERS
Multiple lines of evidence show the
co-existence of spindle orientation fail-
ure and growth dysregulation. Is this a
mere coincidence? Alternatively, does this
co-existence play any role in tissue disor-
ganization seen in cancers or ageing disor-
ders? To help address these questions, two
approaches are going to be pivotal:

1. Multi-scale imaging (Single-cell and
tissue-level studies: two sides of a
coin)

Multi-scale systems that capture single-cell
and tissue level information are crucial to
track the emergence of tissue-level defects
(growth dysregulation) from single-cell
errors (spindle orientation failure). For
instance, in cancer stem cells of skin
papilloma, the inhibition of VEGF alters
the ratio of symmetric:asymmetric cell
divisions causing tumor regression (Beck

et al., 2011). How VEGF and its co-
receptor Nrp1 influence the plane of
cell division is unclear (Figure 1C); and
establishing this may very well require
single-cell studies of the perivascular niche
Cancer Stem Cells exposed to tumor-
cell derived VEGF. In some cases, tissue-
specific organotypic models (such as the
3D cyst model; Durgan et al., 2011)
amenable to single-cell tracking may be
sufficient. For example, chronic estro-
gen application is linked to hyperplasia
and cancer: estrogen increases symmet-
ric cell division (Gunin et al., 2001), and
an estrogen metabolite, 2-methoxy estra-
diol (2ME), alters microtubule dynamics
and disrupts spindle orientation (Corrigan
et al., 2013). Determining how sub-cellular
microtubule perturbation ultimately man-
ifests into changes in symmetric vs. asym-
metric cell division rates in tissues could
be addressed using organotypic models
that can recapitulate estradiol-dependent
morphogenesis.

2. A quantitative way to define interme-
diary dynamic steps of spindle orien-
tation

In cell cultures that have lost polarity and
resemble those that have gone through
Epithelial-Mesenchymal transition, even a
small directional bias in moving the spin-
dle toward the final destination is sufficient
to achieve the correct orientation of the
spindle (Corrigan et al., 2013)—what is
the molecular basis of this robustness? Is
this dependent on the microtubule -wall
or -end interaction at the cell-cortex, simi-
lar to microtubule interaction geometries
at chromosomes (Shrestha and Draviam,
2013)? Is this dependent exclusively on
cortical pulling forces that act on micro-
tubules or also on pushing forces of micro-
tubules against the actin mesh-work, or
forces generated by intracellular transport
(reviewed in McNally, 2013). Addressing
these in human cells will require us to
consider the temporal evolution of various
spindle movements and not simply the
binary end-outcome of spindle orientation
“failure” vs. “success.” Examples of simi-
lar approach have been already fruitful in
C.elegans (Pecreaux et al., 2006; Kimura
and Onami, 2010). Finally, understand-
ing the evolution of spindle movements
is important because even a simple delay
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in spindle movements can increase the
probability of spindle orientation defects,
as human cells have not been reported
to have a spindle orientation checkpoint
so far.

CONCLUSIONS
Knowing the intermediary steps of the
spindle orientation process can help reveal
how growth regulatory pathways like the
Hippo or mTOR pathway that receive var-
ious signals from developmental and stress
cues, jointly regulate spindle movements.
This along with multi-scale systems will
be important for determining molecular
lesions in spindle orientation and posi-
tioning which are frequently associated
with tissue disorganization observed in
ageing disorders and solid cancers.
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The control of chromosome segregation relies on the spindle assembly checkpoint (SAC),
a complex regulatory system that ensures the high fidelity of chromosome segregation
in higher organisms by delaying the onset of anaphase until each chromosome is
properly bi-oriented on the mitotic spindle. Central to this process is the establishment of
multiple yet specific protein-protein interactions in a narrow time-space window. Here we
discuss the highly dynamic nature of multi-protein complexes that control chromosome
segregation in which an intricate network of weak but cooperative interactions modulate
signal amplification to ensure a proper SAC response. We also discuss the current
structural understanding of the communication between the SAC and the kinetochore;
how transient interactions can regulate the assembly and disassembly of the SAC as well
as the challenges and opportunities for the definition and the manipulation of the flow of
information in SAC signaling.

Keywords: spindle assembly checkpoint (SAC), genome instability, chromosome segregation, signal amplification,

cell cycle regulation, kinetochore-microtubules network, cancer, protein-protein interactions

THE SPINDLE ASSEMBLY CHECKPOINT (SAC)
The regulation of chromosome division in time and space
requires amplification of specific signals across an intricate net-
work of protein-protein interactions. Central to this process is the
spindle assembly checkpoint (SAC), the essential and evolution-
arily conserved self-regulatory system of the eukaryotic cell cycle
that ensures accurate chromosome segregation by controlling cell
cycle progression in response to microtubule-kinetochore attach-
ment defects (Hardwick et al., 2000; Warren et al., 2002; Morrow
et al., 2005; Yao and Dai, 2012; Foley and Kapoor, 2013; Jia et al.,
2013). SAC function requires its communication with the kine-
tochore, the multiprotein network that assembles on mitotic or
meiotic centromeres to link centromeric DNA with microtubules.

Three serine/threonine protein kinases, Bub1, BubR1, and
Mps1 play essential roles in the mitotic checkpoint. Bub1 is
required for the recruitment to the kinetochore, the site for
attachment of chromosomes to microtubule polymers that pull
sister chromatids apart during cell division, of several check-
point components in cells that have the checkpoint unsatisfied.
Bub1 is also important for the assembly of the inner cen-
tromere. BubR1 is required for the establishment of proper
kinetochore-microtubule attachment and chromosome align-
ment and together with the proteins Bub3, Mad2, and Cdc20
forms part of the mitotic checkpoint complex (MCC) that
inhibits the E3 ubiquitin ligase activity of the anaphase-
promoting complex (also known as the cyclosome, APC/C)
toward its substrates Securin and Cyclin B1 (Tang et al., 2004;
Vanoosthuyse and Hardwick, 2005; Boyarchuk et al., 2007;
Bolanos-Garcia and Blundell, 2011; Elowe, 2011; Chao et al.,
2012). Mps1 is a dual-specificity kinase that localizes to kine-
tochores during mitosis and that through phosphorylation of

kinetochore targets prevents aneuploidy by promoting both pro-
ductive chromosome attachment and SAC function. Loss of Mps1
function in organisms from yeasts to humans overrides mitotic
checkpoint signaling (Weiss and Winey, 1996; Abrieu et al., 2001;
Maciejowski et al., 2010; Tipton et al., 2013). Mps1 has been iden-
tified in the signature of the top 25 genes overexpressed in tumors
of different origins including bladder, anaplastic thyroid, breast,
lung, esophagus, and prostate (Carter et al., 2006; Janssen et al.,
2009). Recruitment of Bub1, BubR1, Mps1, Bub3, Ccd20, Mad1,
and Mad2 to the kinetochore is essential for the full activity and
optimal function of the mitotic checkpoint (revised in Musacchio,
2011; Hauf, 2013). APC/C inhibition is released after proper bipo-
lar attachment and alignment of all chromosomes at the center
of the cell, thus allowing chromosome separation and mitotic
progression (revised in Jia et al., 2013).

Here we discuss the nature of protein-protein interactions
underpinning mitotic checkpoint function, in which weak but
cooperative association of individual protein components of the
SAC to form larger, dynamic macromolecular assemblies has
arisen as successful strategy to ensure the amplification of spe-
cific signals that control chromosome segregation in the crowded
environment of the cell. We also discuss how emerging technolo-
gies and multidisciplinary strategies enable us to gain insights into
SAC signaling with an unprecedented level of detail.

STRUCTURAL FEATURES OF SAC PROTEIN COMPONENTS
Important clues into the inner working of the SAC have been
derived from the structural understanding of central SAC com-
ponents. For instance, the three protein kinases Bub1, BubR1 and
Mps1, which share a common multidomain organization and
play roles that are essential for the SAC, contain an N-terminal
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region that is organized as a tandem arrangement of the tetratri-
copeptide repeat (TPR) motif and a C-terminal kinase domain. In
addition to Bub1, BubR1, and Mps1 kinases, the proteins Bub3,
Mad1, Mad2, and Cdc20 also mediate key functions in SAC sig-
naling. The crystal structure of Bub3 has shown that this protein
is globular and contains a single domain (Larsen and Harrison,
2004; Wilson et al., 2005) that adopts the WD40-repeat fold.
Despite its small size and presence of a single domain, Bub3
is known to physically interact with Bub1, BubR1, and Knl1.
Another key molecule is Cdc20, a co-activator of the APC/C, the
macromolecular assembly that is responsible for targeting pro-
teins for ubiquitin-mediated degradation during mitosis (Nilsson
et al., 2008; Izawa and Pines, 2012; Sedgwick et al., 2013),
thus leading to the arrest of cells in mitosis (Musacchio and
Salmon, 2007; Chao et al., 2012). Similar to Bub3, Cdc20 adopts
the WD40-repeat fold (Figures 1A,B, respectively). However, in
mammals Cdc20 also contains two independent degradation

FIGURE 1 | (A) Bub3 and (B) Cdc20 both adopt a seven-blades, WD 40 fold
(pdb 1UAC and 4GGA, respectively). (C) The architecture of Mad2 defines a
characteristic HORMA domain (pdb 1DUJ). (D) The structure of the
Mad1-Mad2 complex shows that the two chains of Mad1 interact with
Mad2 through the N-terminal coiled-coil region (pdb 1GO4). (E) Structure of
a Cdc20 fragment bound to Mad2 (pdb 1KLQ). (F) Crystal structure of the
Mad2/p31comet complex (pdb 2QYF). A comparison of the latter two
structures shows that p31comet inhibits Mad2 activation through structural
mimicry. Figures generated with PyMOL (DeLano, 2002).

signals: the KEN box (Pfleger and Kirschner, 2000) and the CRY
box (Reis et al., 2006). The former box is required for the APC/C
dependent degradation of Cdc20 (Huang et al., 2001) whereas the
CRY box (consensus amino acid sequence CRYxPS) functions as
a second degradation signal in Cdc20 (Reis et al., 2006).

Mad1 is a predominantly coiled-coil protein that in humans
encompasses 718 amino acid residues (Hardwick and Murray,
1995; Schuyler et al., 2012). Depletion of Mad1 in human cells
results in genome instability and chromosome segregation defects
(Luo et al., 2000; Maciejowski et al., 2010; Meyer et al., 2013) thus
evidencing its essential role in the SAC (Luo et al., 2002). Mad2
adopts the HORMA (for Hop1, Rev7, and Mad2) domain (Luo
et al., 2000) (Figure 1C). Mad2 binds to Mad1 to form a stable
heterocomplex in vitro (Luo et al., 2002) that regulates the pro-
gression of mitosis by controlling the flow of Cdc20 into the SAC.
In one hand, the Mad2-Mad1 heterocomplex binds to improperly
attached kinetochores, inducing the hyper-phosphorylation and
activation of Mad1 by Mps1 (Winey and Huneycutt, 2002; Hewitt
et al., 2010). On the other hand, kinetochore bound Mad1-Mad2
catalyzes the assembly of a Mad2-Cdc20 complex (Figure 1D)
(Sironi et al., 2001, 2002; Chung and Chen, 2002; De Antoni et al.,
2005; Nezi et al., 2006; Mapelli et al., 2007; Yang et al., 2008;
Kulukian et al., 2009; Lad et al., 2009; Fava et al., 2011) in a pro-
cess that involves the conversion of Mad2 from an “open” into
a “closed” Cdc20-bound conformation (Luo et al., 2000, 2004).
How the above interactions lead to conformational transitions
that contribute to regulate the segregation of chromosomes in
space and time? This fascinating aspect of the SAC is addressed
in the section below.

DYNAMICS OF MACROMOLECULAR
ASSEMBLY/DISASSEMBLY
Earlier clues of the dynamic nature of the network of interac-
tions underpinning SAC signaling were provided by the crystal
and NMR structures of members of the Mad protein family.
For instance, Sironi and collaborators reported the structure of
a Mad1-Mad2 complex that revealed a loop around the Cdc20
binding site of Mad2 (Figure 1D) and suggested a “safety-belt”
mechanism underlying the regulation of the interactions between
Mad2-Mad1 and Mad2-Cdc20 (Figure 1E) (Sironi et al., 2002).
Further structural details of Mad2 transitions between an “open”
and a “closed” conformational state have been established by X-
ray protein crystallography and NMR (Luo and Yu, 2008; Kim
et al., 2010; Li et al., 2014). The 3D structures show that the tran-
sition of Mad2 from the “open” to the “closed” conformation
involves a large conformational rearrangement of the polypep-
tide chain. This dramatic conformational switch is regarded as the
rate-limiting step in cells mounting a SAC response (De Antoni
et al., 2005; Vink et al., 2006; Hewitt et al., 2010; Maldonado and
Kapoor, 2011; Lau and Murray, 2012).

SAC signaling is antagonized by the protein p31comet (Habu
et al., 2002; Xia et al., 2004). The crystal structure of the closed
conformation of Mad2 in complex with p31comet showed that the
latter protein interacts extensively with the Mad2 dimerization
interface in such a way it inhibits the conformational transi-
tion to the Mad2 open state (Yang et al., 2007). The binding of
Mad3 (the yeast BubR1 homolog that lacks the catalytic kinase
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domain) and p31comet to the same Mad2 interface implies a com-
petition between p31comet and Mad3 to bind Mad2 (Figure 1E).
The structure of the p31comet-Mad2 complex (Figure 1F) thus
provides structural insights into the regulation of MCC assem-
bly and disassembly. Furthermore, the crystal structure of the
mitotic checkpoint complex (MCC, Figure 2A) from fission
yeasts revealed the mode in which Mad2 and Mad3 cooperate to
inhibit Cdc20 (Chao et al., 2012). The MCC structure shows that
Mad2 and Mad3 complex formation facilitates the presentation
of the KEN box motif of Mad3 to the KEN-box motif of Cdc20
(Figure 2A). Interestingly, an unexpected D-box mimic located
at the C-terminal end of Mad3 revealed the D-box-binding site
on Cdc20, which provided the first structural insight into the
mechanism of degron recognition by co-activators (an aspect
of SAC signaling that has been nicely revised by Zhang et al.,
2014). The structure of the MCC shows that APC/C ubiqui-
tin ligase activity is modulated by steric hindrance that impedes
substrate recognition and also through conformational changes
that disrupt the architecture of the substrate-binding site. Such
mode of regulation closely resembles the molecular mechanisms
underlying the control of protein kinases (Chao et al., 2012).
This mode of regulation is in sharp contrast with the mecha-
nism of regulation of other signaling systems such as the SCF
(SKP1-Cullin1-F-box-Rbx1) complex. In the latter case, the E3

FIGURE 2 | (A) Crystal structure of the Mitotic Checkpoint Complex (MCC)
from Schizosaccharomyces pombe (pdb 4AEZ). (B) The N-terminal regions
of Bub1 and BubR1 are organized as a triple tandem of the TPR motif.
Superposition of the structures of TPR Bub1 and TPR BubR1 in complex
with the KI motifs of Knl1 (pdb 4AIG and 3SI5, respectively) revealed a
similar mode of binding underlying disorder-to-order transitions.

ubiquitin ligase activity of SCF is regulated at the level of sub-
strate recognition in a process that involves phosphorylation of a
degradation signal (degron) consensus motif, IL-I/L/PpT-P, that
is present on substrates targeted for proteasomal degradation
(Welcker and Clurman, 2008; Zhou et al., 2013).

SAC COMMUNICATION WITH THE KMN NETWORK
SAC function requires its communication with the kinetochore,
the multiprotein complex that is assembled on mitotic or mei-
otic centromeres to connect centromeric DNA with microtubules
(Funabiki and Wynne, 2013; Westhorpe and Straight, 2013).
Although the assembly of the kinetochore is a crucial event in cell
division, the precise sequence of events underlying the process
remains obscure. As discussed below, recent structural insights
show that the establishment of kinetochore complexes often
involves dramatic conformational changes, including disorder-
to-order transitions. Although the amino acid sequence in most
kinetochore proteins is clearly divergent, the overall architec-
ture of the kinetochore remains highly conserved across species
(Przewloka and Glover, 2009; Tanaka, 2013; Westhorpe and
Straight, 2013). The structural core of the kinetochore is the KMN
network, which constitutes a docking platform for the kineto-
chore recruitment of SAC components. The KMN network is
composed by the single protein Knl1 (a protein also known as
CASC5, Blinkin, and AF15Q14 in humans; Spc105 in budding
yeast and flies and Spc7 in fission yeast) (Kiyomitsu et al., 2007,
2011; Bolanos-Garcia et al., 2009) and the protein complexes
Mis12/Mtw1/MIND and Ndc80/HEC1. The latter two assemblies
are commonly referred to as the Mis12 and Ndc80 complexes.

Knl1 is a large, predominantly disordered protein of the KMN
network that acts as molecular platform for the recruitment
of several proteins to the kinetochore (Kiyomitsu et al., 2007;
Przewloka and Glover, 2009; Santaguida and Musacchio, 2009;
Ghongane et al., 2014). In mammals, depletion and/or suppres-
sion of the expression of Knl1 lead to extensive chromosome mis-
segregation with phenotypes that closely resemble those caused
by depletion of Bub1 and BubR1 kinases (Cheeseman et al., 2006,
2008; Kiyomitsu et al., 2007). Knl1 plays a central role in the
dynamics of the assembly/disassembly of the KMN network and
directly interacts with a range of proteins that are essential for
proper chromosome segregation, including Protein phosphatase
1 (Pp1), Bub1, BubR1, Bub3, Zwint, and Nsl1, a component of
the Mis12 complex. Such complex choreography of interactions
confers exquisite regulation to the SAC. For example, the very
N-terminal end region of Knl1 recruits Pp1 to the kinetochore;
another N-terminal segment binds to the TPR motifs of Bub1
and BubR1 (Figure 2B) (Bolanos-Garcia et al., 2011; Rosenberg
et al., 2011; Krenn et al., 2012; London et al., 2012; Shepperd
et al., 2012; Funabiki and Wynne, 2013) whereas C-terminal Knl1
binds directly to Nsl1 (Primorac et al., 2013; Petrovic et al.,
2014) and possibly also to Dsn1, another protein component of
the Mis12 complex (Cheeseman et al., 2006; Kiyomitsu et al.,
2007). The majority of Knl1 homologs contain an arrangement
of motif repeat units, the MELT motif, that thus far seem to be
a unique feature of this kinetochore docking platform. The spe-
cific amino acid sequence and the number of MELT repeat units is
widely variable across species thus suggesting that the differences
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contribute to the specie-specific recognition of different Knl1
partners. A comparison of the buried area upon complex forma-
tion between SAC proteins and between SAC-KMN components
show a relatively small buried area, ranging from approx. 500
to 1700 Å2 (Table 1), values that are similar to those calculated
for non-obligate complexes (Jones and Thornton, 1996). It has
been shown that the binding of Spc105, the fly homolog of Knl1,
to Nnf1a, Nnf1b, Nsl1, and Mis12 is interdependent as the pro-
teins need of each other for their recruitment to the kinetochore
(Venkei et al., 2012). Although such feature suggests a cooperative
mode of interaction between these proteins, it would be impor-
tant to define more precisely the dynamics and stoichiometry of
the interactions and to establish if a similar interdependence for
their recruitment to the kinetochore occurs in other species.

THE IMPORTANCE OF LOW STRUCTURAL COMPLEXITY
IN THE SAC
The organization of a polypeptide chain in regions that exhibit
low structural complexity is a recurrent feature of protein
molecules (Dunker et al., 1998; Dyson and Wright, 2002, 2005;
Gsponer and Babu, 2009; Babu et al., 2012). A bioinformatics
study helps to illustrate this as it shows that 35–51% of eukary-
otic proteins have at least one disordered region that span fifty
or more amino acid residues (Dunker et al., 2002). The Protein
Disorder Database DisProt (http://www.disprot.org; Sickmeier
et al., 2007) provides additional support this view. Up to date
(last release date 05/24/2013) the database has annotated 1539
disorder regions in a total of 694 proteins. Importantly, diverse
bioinformatics studies have demonstrated that large polypeptide
segments of low structural complexity are abundant in proteins
that act as docking platforms for the binding of multiple partners
(Dunker et al., 2005; Dosztanyi et al., 2006; Haynes et al., 2006;
Kim et al., 2006a). The highly flexible surfaces of regions of low
structural complexity can be critical for the formation of produc-
tive macromolecular complexes (Dyson and Wright, 2005; Kim
et al., 2006a; Schlessinger et al., 2007; Dunker et al., 2008). Indeed,

Table 1 | Analysis of interface area in Å2, calculated as difference in

total accessible surface areas of isolated and interfacing structures

divided by two, according to ePISA (Protein Interfaces, Surfaces and

Assemblies) tool (EMBL-EBI, UK).

Protein complex Protein-

protein

interface

area (Å2)

PDB

code

Reference

Bub1-GLEBS motif of Bub3 1664 2I3S Larsen and
Harrison, 2007

Mad3-GLEBS motif of Bub3 1681 2I3T Larsen and
Harrison, 2007

Bub1-Bub3 in ternary complex 1655 4BL0 Primorac et al., 2013

Bub3-MELT motif of Knl1 in
ternary complex

654 4BL0 Primorac et al., 2013

Bub1-KI-1motif of Knl1 527 4A1G Krenn et al., 2012

BubR1-KI-2 motif of Knl1 464 3SI5 Bolanos-Garcia
et al., 2011

Nsl1-RWD domain of Knl1 565 4NF9 Petrovic et al., 2014

it has been established that disordered binding regions play a
critical role in diverse biological processes (Dyson and Wright,
2002) and that the association of individual proteins to form
macromolecular assemblies can have a profound effect on the
stability; transport properties; subcellular localization of the com-
plexes and affect further interactions with additional molecules
and/or assemblies (Sasahara et al., 2003; Banks and Fradin, 2005;
McGuffee and Elcock, 2010; Wang et al., 2010, 2012; Cino et al.,
2012; Miermont et al., 2013). In principle, large polypeptide seg-
ments of low structural complexity in hub proteins including
Knl1 and other components of the KMN network can allow dif-
ferent conformers of the same polypeptide chain to bind with
different affinity to interacting partners. An interesting suggestion
is that interactions mediated by certain protein families involve
the binding to specific linear motifs that capture key residues
responsible for the interactions. Such linear motifs have been
categorized and used to complement the prediction of binding
sites in regions of low structural complexity with specific motif
searches (Puntervoll et al., 2003). One interesting property of
regions of low structural complexity is the transition from a dis-
order to a more ordered state upon ligand binding (a feature also
known as coupled folding and binding). Examples of this class of
transitions in SAC signaling occur upon binding of N-terminal
Bub1 and BubR1 to KI motifs of Knl1; the interaction of Mad2
with Mad1 and Cdc20 and Bub3 binding to the MELT motifs of
Knl1, to name a few. A more detailed discussion of the importance
of this mode of binding in the SAC is show below, in the section
entitled disorder-to-order transitions. Intrinsic disorder proteins
seem prone to initiate promiscuous molecular interactions when
over expressed and that for this reason they can contribute to
toxicity/pathology (Vavouri et al., 2009). Interestingly, the struc-
tural properties of intrinsic disorder proteins seem to correlate
strongly with the observed dosage sensitive (i.e., give place to
a pathological condition when the expression is increased) of
oncogenes, suggesting that mass action driven molecular interac-
tions may be an important cause of cancer (Vavouri et al., 2009).
Because dosage-sensitive genes seem to be slightly enriched in
those mediating cell cycle regulation (Sopko et al., 2006), it would
be important to define the dosage sensitive of genes associated
with SAC signaling and its contribution (if any) to the onset of
chromosome segregation defects and/or aneuploidy.

DNA COMPACTION AND CROWDING EFFECTS
As discussed by Burgess and collaborators in their excellent mini-
review, the repair of DNA damage during mitosis is generally
difficult due to the suppression of gene transcription and trans-
lation caused by the level of DNA compaction (Burgess et al.,
2014). For example, little is known about the effect of centromeric
DNA compaction on the assembly of the kinetochore. What is
known is that DNA binding to the kinetochore does not depend
on a specific DNA sequence (with a few exceptions) and that the
deposition of Cenp-A-containing nucleosomes at the centromeric
chromatin is likely to rely on epigenetic mechanisms. However,
definition in greater detail of the extent in which centromere
identity is specified by epigenetic mechanisms remains a central
question in the study of chromosome inheritance and genome
stability.
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It has been established that a constitutive complex, the
centromere-associated network (CCAN), is assembled onto cen-
tromeric Cenp-A chromatin. The CCAN consists of 16 pro-
teins: Cenp-C, Cenp-H/Cenp-I/Cenp-K, Cenp-L/Cenp-M/Cenp-
N, Cenp-O/Cenp-P/Cenp-Q/Cenp-R/Cenp-U, Cenp-T/Cenp-W,
and Cenp-S/Cenp-X (revised by Perpelescu and Fukagawa, 2011).
CCAN recruits the outer kinetochore components of the KMN
network Knl1, the Mis12 complex, and the Ndc80 complex thus
linking structural and regulatory kinetochore proteins which
spindle microtubules. Cenp-A, a conserved centromere-specific
variant of the protein histone H3 (Palmer et al., 1991; Stoler
et al., 1995; Perpelescu and Fukagawa, 2011), plays a role in the
propagation of centromere identity and the formation of the kine-
tochore (Barnhart et al., 2011; Mendiburo et al., 2011; Fachinetti
et al., 2013). This manner, the centromere-kinetochore assem-
bly guides the movement of chromosomes and the progression of
the cell cycle throughout mitosis (Wan et al., 2009). Cenp-C and
Cenp-T, two components of the CCAN, are required for spindle
attachment. Structural insights of the human centromeric nucle-
osome containing Cenp-A in complex with its cognate α-satellite
DNA derivative revealed that in the human Cenp-A nucleo-
some, the DNA wraps around a histone octamer comprising two
molecules of histones H2A, H2B, H4, and Cenp-A (Tachiwana
et al., 2011). The crystal structure of the Cenp-A nucleosome (pdb
ID 3AN2) supports the octasome model (Figure 3A). However,
the existence of a Cenp-A nucleosome complex comprising one
of each core histone (a complex referred to as the hemisome) has
been suggested (Tachiwana et al., 2011). The two different com-
plexes may not be mutually exclusive as there is a possibility both
the octasome and the hemisome can be assembled in vivo. This
is an aspect that should be clarified if we are to understand the
precise role of Cenp-A in the control of chromatin assembly and
its influence in the formation of the kinetochore.

Interestingly, among all the protein that are known to asso-
ciate constitutively with human Cenp-A chromatin, only Cenp-C
has been identified in all model organisms (Stoler et al., 1995).
Human Cenp-C consists of four functional regions (Figure 3B).
The N-terminal region binds to the Mis12 complex (Barnhart
et al., 2011). The central region of Cenp-C is required for the tar-
geting of the protein to the centromere (Fachinetti et al., 2013)
in a process that involves the recognition of the carboxyl tail of
Cenp-A in the centromeric nucleosome (Mendiburo et al., 2011).
The C-terminal region of Cenp-C is responsible for homo dimer-
ization of the protein (Hori et al., 2013). The specific recognition
of the histone variant Cenp-A in the centromeric nucleosome by
Cenp-C is critical for the assembly of the kinetochore. The crys-
tal structure of Cenp-C in complex with the nucleosome core
particle (pdb 4INM) has revealed the determinants of the recog-
nition mechanism. The structure shows that Cenp-C binds a
hydrophobic region in the Cenp-A tail and docks onto the acidic
patch of histone H2A/H2B. The Cenp-C-nucleosome core parti-
cle complex thus revealed a conserved mechanism for recruitment
of proteins to centromeres. It also provides insights into the
molecular mechanism of histone recognition in which a disor-
dered peptide binds the histone tail. Such mode of nucleosome
docking is facilitated by extensive hydrophobic interactions, a
structural feature also observed in diverse SAC and kinetochore

FIGURE 3 | (A) Crystal structure of Cenp-A in complex with centromeric
nucleosome; (B) crystal structure of Cenp-C in complex with centromeric
nucleosome. In both cases the view is in the axis of the DNA supercoil.

assemblies that involve disorder-to-order transitions, an aspect
that is discussed in more detail in the next section.

Cenp-E is a member of the Cenp protein family (Perpelescu
and Fukagawa, 2011; Przewloka et al., 2011) that, similar to
Cenp-C and Knl1, contains large segments of low structural com-
plexity throughout the polypeptide chain. Cenp-E functions as
a plus-end directed molecular kinesin-like motor protein that is
localized specifically to kinetochores during mitosis and that is
required for efficient capture and attachment of kinetochores to
the spindle microtubules (McEwen et al., 2001; Putkey et al., 2002;
Kapoor et al., 2006). In human cells, Cenp-E depletion by RNA
interference (Tanudji et al., 2004) or antisense oligonucleotides
(Yao et al., 2000) and inhibition of its recruitment to kineto-
chores by antibody microinjection (Schaar et al., 1997; McEwen
et al., 2001) result in chromosome congression aberrations. The
intrinsic structural flexibility of Knl1, Cenp-C, Cenp-E and other
kinetochore proteins should facilitate the establishment of pro-
ductive and specific interactions with diverse interacting partners
(Mao et al., 2003). In a broader sense, the recurrence of regions
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of low structural complexity in SAC and KMN protein compo-
nents is likely to play a critical roles in the control of chromosome
segregation none less because greater selectivity can be achieved
through interactions that involve multiple components.

Macromolecular crowding refers to the confinement in the
cellular space of macromolecules at high concentration (Elcock,
2010; Hancock, 2012). Studies carried out in mice showed that
abnormal higher Mad2 levels lead to aberrant SAC function and
induced tumorigenesis (Sotillo et al., 2007, 2010; Schvartzman
et al., 2011). It would be important to establish to what extent
Mad2 crowding contributes to the above-mentioned abnormal
processes.

Some proteins can process distinct molecular signals under
the crowding conditions of the cell. An example of this phe-
nomenon is transport kinesins (such as kinesin-1), which seems
to have evolved molecular properties that prevent it from form-
ing traffic jams in the crowded conditions of the cells (Leduc
et al., 2012) and the kinesin motor protein kinase ERK, which
can be phosphorylated in a processive manner in HeLa cells (Aoki
et al., 2011). Interestingly, under conditions that recreate physio-
logical molecular crowding, the mode of ERK phosphorylation
shifts from distributive to processive (Aoki et al., 2011), in which
case ERK does not form a stable substrate-enzyme complex, a
behavior that is the opposite to that observed in the proces-
sive phosphorylation model. It would be important to establish
if phosphorylation shifts from distributive to processive or vice
versa occurs in components of the KMN network such as Knl1,
Cenp-C, and Cenp-E.

DISORDER-TO-ORDER TRANSITIONS
Comparison of the structures of diverse SAC and kinetochore
complexes reveals a recurrent mode of binding that is charac-
terized by disorder-to-order transitions. Examples of this class
of transitions occur in the interaction of Mad2 with Mad1 and
Cdc20; the binding of TPR domains of Bub1 and BubR1 to KI
motifs of Knl1 (Figure 2B); the binding of Bub3 to the MELT
motifs of Knl1 (Figure 4A) and the binding of the RWD domain
of Knl1 to a synthetic peptide that mimics Nsl1 (Figure 4B)
(Bolanos-Garcia et al., 2011; Kiyomitsu et al., 2011; Krenn et al.,
2012; Primorac et al., 2013; Petrovic et al., 2014; revised in
Ghongane et al., 2014). In all these complexes the binding of
an otherwise predominantly disordered protein fragment to the
globular partner involves dramatic conformational transitions
that lead to the formation of an α-helix upon complex forma-
tion. The predominance of cooperative, stabilizing hydrophobic
interactions is another structural feature that emerges from the
analysis of the aforementioned complexes, where only little con-
formational changes are observed in the BUBs after complex
formation.

The interaction of SAC kinases Bub1 and BubR1 with the pro-
tein Knl1 physically links SAC signaling with the kinetochore
(Kiyomitsu et al., 2007, 2011; Bolanos-Garcia et al., 2011). The
crystal structure of N-terminal Knl1 with TPR BubR1 defines
an extensive hydrophobic interface in which a mechanistic zip-
per mode of binding has been suggested. In this model, several
Knl1 residues (I213, F215, F218, and I219) sequentially dock
into BubR1 pockets, thus ensuring high specificity and sensitive

FIGURE 4 | (A) Superposition of the crystal structure of the Bub3-Bub1
GLEBS motif-Knl1 MELT motif ternary complex (pdb 4BL0). (B) Knl1 RWD
domain in complex with Nsl1 (pdb 4NF9). (C) Crystal structure of a chimeric
(bonsai) Ndc80 complex (pdb 2VE7).

regulation. Furthermore, comparison of the crystal structure of
the TPR BubR1-Knl1 binary complex with free Knl1 peptides
titrations using 2,2,2-trifluoroethanol and monitored by far-UV
circular dichroism revealed a disorder-to-order transition of N-
terminal Knl1 upon binding BubR1. This is possible because
a hydrophobic environment can be mimic experimentally with
2,2,2-trifluoroethanol, a solvent of low dielectric constant, ε, (ε =
8.55). The observed disorder-to-order transition of N-terminal
Knl1 when binding to BubR1 can be expected for the inter-
action of Knl1 with Bub1, given the similar mode of binding
(Figure 2B). Importantly, the local conformational changes trig-
ger by disorder-to-order transitions upon BUBs binding should
influence the interaction of Knl1 with other interacting partners
such as specific kinases and/or phosphatases thus contributing
to the regulation of the SAC (Liu et al., 2010; Rosenberg et al.,
2011).

Bub1 and BubR1 (Mad3 in yeast) have a conserved stretch of
about 40 amino acid residues downstream the N-terminal TPR
domain that is predicted to be of low structural complexity and
that harbor a Bub3 binding region commonly referred to as the
GLE2p-binding sequence (GLEBS) motif. The crystal structures
of two independent complexes formed between the GLEBS motifs
of Mad3 and yeast Bub1 with Bub3 show the establishment of
an extensive interface along the top surface of Bub3 upon com-
plex formation (Larsen and Harrison, 2007) (Figure 4A). Such
mode of binding implies a large conformational shift of the
GLEBS motifs from a disorder to an ordered state. In a similar
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fashion, the crystal structure of a Mad1 fragment (residues 485–
584) in complex with Mad2 revealed that the Mad1 fragment
adopts a predominantly α-helix conformation upon complex for-
mation (Luo et al., 2000) (Figure 1D). Furthermore, binding
studies in vitro suggest an important conformational transition
in which Mad1 primes the Mad2 binding site for the interaction
with Cdc20 (Luo et al., 2002). In vivo, such concerted confor-
mational rearrangements should ensure the tight regulation of
the APC/C’s ubiquitin-ligase activity (Tang et al., 2001; Jia et al.,
2013).

SAC-KMN SIGNAL AMPLIFICATION BY THE MEANS OF
WEAK, COOPERATIVE INTERACTIONS
Because multiprotein complexes that form cooperatively would
less likely to be formed fortuitously (Blundell et al., 2002;
Bolanos-Garcia et al., 2012), the cooperative association of higher
order SAC signaling complexes resulting from binary interactions
that are both specific and of low-affinity should favor the ampli-
fication of specific signals to mount an effective SAC response.
The cooperative assembly of the KMN subcomplexes Mis12 and
Ndc80 illustrates how the establishment of higher order signal-
ing complexes can regulate the SAC. The Ndc80 subcomplex
is composed of four subunits: Ndc80 (the subunit that gives
its name to the entire subcomplex), Nuf2, Spc24, and Spc25
(Ciferri et al., 2005, 2008; Wei et al., 2005, 2007; Wan et al.,
2009). The Ndc80 subcomplex adopts a dumbbell shape molecule
with Spc24-Spc25 and Nuf2-Ndc80 located in opposite ends of
the molecule (Figure 4C) (Ciferri et al., 2005; Wei et al., 2005).
The association of Nuf2-Ndc80 is required for the binding of
the Ndc80 complex to microtubules while the formation of the
Spc24-Spc25 heterodimer is required for binding Knl1 and the
Mis12 complex (Cheeseman et al., 2006; Kiyomitsu et al., 2007;
Wei et al., 2007; Ciferri et al., 2008; Joglekar and DeLuca, 2009;
Wan et al., 2009).

The exquisite regulation of the SAC is a fine example of how
the remodeling of macromolecular assemblies in time and space
has evolved as a successful strategy that increases selectivity of
signals with a minimal margin for errors. At the same time,
the highly versatile and dynamic remodeling of macromolecu-
lar assemblies constitutes a great challenge for their functional,
biochemical and structural characterisation in space and time.
Furthermore, a wide range of post-translational modifications
such as acetylation, phosphorylation, ubiquitylation and sumoy-
lation can have a significant impact on protein stability, turnover,
reversibility, sub-cellular localisation and the hierarchical order
of assembly/disassembly of protein complexes thus constitut-
ing and additional layer of control of cell signaling (Pawson
and Nash, 2003; Kim et al., 2006b; Seet et al., 2006; Simorellis
and Flynn, 2006; Mao et al., 2011; Wan et al., 2012; Jia et al.,
2013).

NEW APPROACHES TO THE STUDY OF SAC
MACROMOLECULAR ASSEMBLIES
Our discussion of the interactions underpinning SAC signaling
is typical of many cell regulation systems, where a large number
of macromolecules tend to associate, thus requiring the ability
to describe the dynamics of transient complex formation and

dissociation in both space and time. One strategy to achieve
this is to combine a range of biophysical and biochemical meth-
ods with spatial techniques for structural biology. For exam-
ple, time-resolved Raman scattering and X-ray scattering can
be very powerful to study the dynamics of macromolecular
interactions when they are combined with X-ray protein crys-
tallography, Nuclear Magnetic Resonance (NMR), Small Angle
X-ray Scattering (SAXS), and Electron Microscopy (EM). A useful
approach to the study of the dynamic of macromolecular com-
plexes underpinning the SAC-kinetochore-microtubule interac-
tome is the stabilization and fixation of the complexes which can
be achieved by incorporation of phospho-mimicking mutations;
truncation or extension of the polypeptide chain; the addition of
post-translational modifications, such as phosphorylation, acety-
lation, methylation and the use of crosslinking agents, to name
just a few. The stabilization and fixation of complexes can be com-
bined with Förster resonance energy transfer (FRET) to define
temporal aspects of the interactions but also local conforma-
tional changes associated with SAC signaling. Importantly, exiting
new experimental strategies for the study of dynamic systems are
currently in fast development. For example, free-electron lasers
(FEL) a technique that relies on the generation of X-ray pulses of
very high intensity and short duration, has facilitated the struc-
tural determination of macromolecular complexes even from very
small crystals of relatively low quality. The ultrashort X-ray flashes
ensure that the molecules hardly change during the exposure and
enable the study of functional processes through the monitor-
ing of the motion of molecules from instant to instant. This is
particularly attractive to the study of the interactions underpin-
ning the SAC where is important to closely follow the dynamics
of the association and dissociation of macromolecular assemblies.
Current free-electron lasers facilities are the European X-ray free-
electron laser, the Linac Coherent Light Source (LCLS) at the
SLAC National Accelerator Laboratory, the Free electron LASer in
Hamburg (FLASH), the SPring-8 Compact SASE Source (SCSS),
and the PSI SwissFEL. Another exciting new development is
transmission electron microscopy (TEM). A TEM variant that
uses cryo-technology (Cryo-TEM) permits a full range of semi-
automated applications, including 2D electron crystallography,
single particle analysis, cryo electron microscopy, and dual-axis
cellular tomography of frozen hydrated cell organelles and cells.
Cryo-TEM, when combined with protein X-ray crystallography,
NMR and molecular modeling studies, facilitates the generation
of complete atomic models. Additional advantages of cryo-TEM
are: (1) is its suitable to study complexes that are 250 kDa or
larger; (2) it can be applied to the study of heterogeneous samples
and (3) it can provide structural details of dynamic complexes,
such as those defining the architectures of the kinetochore and
the nucleosome, that are difficult to examine with other structural
biology techniques.

A major challenge will be to extend the analysis of struc-
ture and dynamics of isolated SAC and kinetochore assemblies
to the understanding of the organization of signal generation and
amplification in the cell in space and time. Because large multi-
protein complexes play critical roles in cell regulation, interfering
with the dynamics of their assembly and/or dissociation rises as
an attractive strategy for the treatment of diseases.
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CLOSING REMARKS
The function and regulation of the SAC depends upon a hier-
archical organization of macromolecular assemblies in time and
space to ensure the accurate and timely transmission of the
genetic material to descendants. A common theme emerging
from the structural analysis of SAC complexes is the adoption of a
regular structure by one of the interaction partners upon complex
formation.

SAC components that are intrinsically disordered in the
unbound form often associate to binding partners with low affin-
ity but high specificity thus mounting an effective SAC response.
Interaction with one or more ligands through multiple linear
motifs is an effective strategy to control the flow of information
and to modulate the signal. Therefore, the greater selectivity that
communication of the SAC with the KMN network demands is
gained by the involvement of multiple components that assemble
in a cooperative fashion. Undoubtedly, the structural characteri-
sation of larger SAC protein assemblies will reveal novel molec-
ular details of how signal amplification is achieved to control
chromosome segregation in higher organisms.

Therefore, the timely assembly of protein subcomplexes in
which at least one of the components shows low structural
complexity appears a reiterate structural feature in SAC signaling.

Importantly, regulation of this critical cellular process relies on
the establishment of transient interactions in space and time. This
manner, multi-protein assemblies can associate cooperatively to
confer high selectivity and sensitivity to the interactions.

Undoubtedly, the detailed knowledge of the architecture of
large SAC and kinetochore complexes will provide the struc-
tural basis for the rational targeting of specific protein-protein
interfaces with drugs, being these small size molecules, peptides,
nucleic acids or carbohydrates.
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