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In experience-based decisions people learn to make decisions 
by sampling the relevant alternatives and getting feedback. 
The study of experience-based decisions has recently 
revealed some robust regularities that differ from how 
people make decisions based on descriptions. For example, 
people were found to underweight small probability events 
in experience-based decisions, while overweighting them in 
decisions based on descriptions (i.e. where the participants 

have full information about the outcome distributions but no feedback). This is now 
commonly referred to as the description-experience gap. 

In parallel to the recent advancement in Decision Science, neuroscientists have for a 
long while used the experience-based decisions paradigm for analyzing brain-behavior 
interactions. For example, phenomena such as the feedback-based Error-Related Negativity 
(fERN) in event-related potentials and the role of non-declarative knowledge in selecting 
advantageously were discovered using experience-based tasks. 

The goal of the current Research Topic is to combine two sources of knowledge concerning 
experience-based decisions: State of the art models in decision science, and neuroscientific 
and psychophysiological approaches that shed light on the working of the brain in these 
decisions. 

Also relevant are process-based analyses of fractions of behavior in these types of decisions. 
We consider original empirical work and theoretical analyses of existing datasets. 
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Experience-based decisions can be defined as decisions emanating 
from direct or vicarious reinforcements that were received in the 
past. For example, in a typical setting a person initially faces blank 
buttons and needs to press any of them without prior informa-
tion concerning the selection outcomes. Upon pressing a button 
the participant receives monetary outcomes (e.g., “you won $5”) 
and then, based on this experience, makes another selection. Quite 
often hundreds of trials of this sort are administered. The outcomes 
of the two alternatives are usually sampled from different payoff 
distributions (e.g., a button producing a fixed payoff of $5 could 
be contrasted with a button producing risky payoff, such as wining 
$9 or $1 with equal likelihood). This allows examining the decision 
response to different incentive structures without explicit informa-
tion concerning their statistical properties.

The current Research Topic aims to integrate various works 
in this area that have been conducted in Decision science and 
Neuroscience. The study of experience-based decisions has recently 
revealed some robust regularities that differ from how people make 
decisions based on descriptions (i.e., where the participants have 
full information about the outcome distributions but no feedback). 
For example, people were found to underweight small probability 
events in experience-based decisions, while overweighting them in 
decisions based on descriptions. This is now commonly referred 
to as the description-experience gap (Hertwig and Erev, 2009). In 
parallel to the recent advancement in Decision Science, neurosci-
entists have for a long while used the experience-based decisions 
paradigm for analyzing brain-behavior interactions. For example, 
phenomena such as the feedback-based Error-Related Negativity 
(fERN) in event-related potentials (Gehring and Willoughby, 2002) 
and the role of non-declarative knowledge in selecting advanta-
geously were discovered using experience-based tasks. The goal of 
the current Research Topic was to combine these two disciplinary 
sources concerning experience-based decisions.

As expected, several works in this Research Topic explored the 
“underweighting rare event” tendency. Zhang and Maloney (2012) 
propose a logit model for this tendency as well as some other robust 
biases, and also suggest that the underweighting tendency may 
be driven by basic properties of neural transmission. Upton et al. 
(2012) propose that underweighting rare events may underlie some 
of the differences found between neuropsychological populations 
and controls in complex tasks such as the Iowa Gambling task. By 
contrast Glöckner et al. (2012) do not replicate the underweight-
ing phenomena in decisions from sampling both in behavior as 
well as in eye point of gaze. Finally, Nevo and Erev (2012) inves-
tigate the immediate aftermath of a rare event and highlight a 
phenomenon whereby surprising events trigger a change in the 
participants’ response.

Other authors focused on the issue of consistent preferences in 
experience-based tasks. Yechiam and Telpaz (2011) demonstrate 
 consistency between tonic (at rest) arousal and risk taking, and show 
that it is more prominent in tasks with losses. In an important cri-
tique, Marchiori and Elqayam (2012) present some boundaries for 
consistency in risk taking. Ert (2012) retorts by arguing that most of 
these boundaries have been demonstrated in decisions from descrip-
tion, while in experience-based decisions consistency of individual 
differences is more robust. Relating to this, Warren and Holroyd 
(2012) show that the rapid fERN phenomena, which demarcates 
the rapid frontal cortical sensitivity to negative/positive outcomes, 
is larger in a condition involving active learning similar to an expe-
rience-based task, than in a condition involving passive learning.

Wang et al. (2012) examine the issue of whether choices in an 
experience-based task are guided by unconscious motivations, as 
evidenced by advantageous choices in the absence of conscious 
awareness of the difference between outcomes. Their results suggest 
a role for unconscious motivations. Such findings are very often 
interpreted as denoting dual processes or systems. Investigating 
the influence of dual processes, Hawes et al. (2012) focus on cog-
nitive strategies in a complex decision task and their neural cor-
relates, and their result demonstrate a combination of bottom-up 
experience-based learning and abstract learning. Sela et al. (2012) 
focus on an inhibition-related dual process and show that weak 
transcranial stimulation in the left hemisphere has the ability to 
affect risk taking, stressing the role of balance between theta activ-
ity in the two hemispheres. Finally, Warren and Holroyd (2012) 
propose two neuromodulatory systems in learning and decision 
making but stress the context-specific nature of the conditions 
for the activation of these two systems. For instance, changing the 
task context from gender to color provided sufficient conditions 
for differentially activating the two systems.

Finally, several authors examined the effect of social versus pri-
vate environments, a research area often addressed by both decision 
and neuroscience models. Grygolec et al. (2012) show that in an 
experience-based task both the striatal and behavioral response to 
risk greatly differs in a social versus private setting. Investigating a 
similar domain, de Bruijn and von Rhein (2012) find that the con-
text in which a person makes a decision with other people greatly 
determines how others’ payoffs are perceived and the frontal mecha-
nisms activated upon them. In a related work, Fahrenfort et al. (2012) 
show that sharing in a public good game prompts activation of neural 
systems associated with reward (striatum), but also empathy (ante-
rior insular cortex and anterior cingulate cortex). Finally, Marchiori 
and Warglien’s (2011) study demonstrates that a neurally inspired 
model can explain changes in participants’ responses to different social 
dilemmas.
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different contexts. Contexts that facilitate the relation between frontal 
processes and behavior, and have been discussed in this Research 
Topic, include the availability of active choice, feedback, and losses. 
This sheds light on why experience-based tasks, which typically 
include these three components, are quite often used in neuropsy-
chological assessment batteries for evaluating brain dysfunctions.

We believe that the current Research Topic led to some transfusion 
of ideas between the two disciplinary sources of Decision science 
and Neuroscience in key issues related to experience-based deci-
sions (though see our concluding paper for some gaps that remain 
unresolved). Reflecting on one emergent theme, it appears that brain-
behavior relations are quite unstable and may form or unform in 

Yechiam and Aharon Neuroscience of experience-based decisions
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On the value of experience-based decisions in studying 
constructs of risk taking

Eyal Ert*

Department of Agricultural Economics and Management, The Hebrew University of Jerusalem, Rehovot, Israel
*Correspondence: ert@agri.huji.ac.il

Does risk taking behavior reflect intrinsic 
or constructed preferences? This question is 
deeply rooted in psychology and decision sci-
ence, but is still the subject of a lively debate. 
The current paper suggests that the degree of 
support for the idea of consistent constructs 
of risk taking might be contingent upon 
the methodology used in the experiment. 
Specifically, it addresses the properties of two 
main paradigms that have been used to study 
this question: decisions from description and 
decisions from experience (Hertwig et al., 
2004). The first paradigm attends to “explicit 
risk taking” extracted from self-reports of 
risky behaviors and/or tasks in which subjects 
are asked to choose between descriptions of 
different outcomes and their associated prob-
abilities. The second paradigm deals with 
“implicit risk taking.” It focuses on experience-
based tasks in which people make repeated 
choices between options without knowing 
their exact payoffs and probabilities. Instead, 
they have to learn them from experience.

Interestingly, while description-based 
studies typically find risk taking to be mostly 
situation-specific, experience-based studies 
show evidence of consistent individual dif-
ferences, and seem able to distinguish popu-
lations associated with risk taking behaviors 
from controls. The current paper will first 
overview some evidence showing the dif-
ference between the paradigms in suggest-
ing stable constructs of risk, and then will 
address properties of these paradigms that 
may contribute to the discrepancies.

EvidEncE for individual 
diffErEncEs in risk Taking from 
dEscripTion-BasEd and 
ExpEriEncE-BasEd Tasks
Until recently, the search for stable constructs 
of risk taking has mainly focused on explicit 
tasks, such as self-report questionnaires and 
description-based tasks. The results from 
those studies, however, showed mainly 
individual inconsistencies (e.g., Schoemaker, 
1990), suggesting that risk taking is mostly 
situation-specific. For example, it might be 

reversed, depending on whether individu-
als are choosing between gains or between 
losses (Kahneman and Tversky, 1979), it 
seems to depend on the exact response mode 
(e.g., choice vs. pricing, see Lichtenstein and 
Slovic, 1971), and it varies across different 
life domains such as financial, health, and 
recreational (Weber et al., 2002; Hanoch 
et al., 2006). Strikingly, even minor changes 
in the question format might reverse prefer-
ences among alternatives. For example, when 
people are asked whether they would accept 
a risky gamble that has a positive expected 
value they tend to reject it, yet when they are 
asked to “choose between” that gamble, and a 
sure zero payoff, they tend to prefer the gam-
ble (Ert and Erev, 2008). These results might 
lead to the conclusion that behavior does 
not depend on stable individual constructs 
of risk taking; rather, it depends mainly on 
situational factors.

However, this conclusion seems incon-
sistent with another line of research that 
focuses on experience-based tasks. In these 
tasks, the risks associated with each option 
are not described to the decision maker. 
Rather, it is only through experiencing the 
different options that the individual can get 
a sense of what actions might be riskier. Two 
well-known examples are the “Iowa gam-
bling task” (IGT) and the “balloon analog 
risk task” (BART). In the IGT, the decision 
maker repeatedly selects among four decks 
of cards. Each deck is associated with a gain 
but also a loss, sometimes a large one. Two 
decks have positive expected value and there-
fore are considered “advantageous.” The 
other two decks are “disadvantageous” since 
they are associated with negative expected 
value. Decisions are made from experience: 
participants do not know the outcomes of 
each deck and have to learn them through 
realizing the outcomes of their selection fol-
lowing each choice. Initially, the IGT was 
found to be effective in differentiating indi-
viduals with bilateral damage to the ven-
tromedial prefrontal cortices (VMPC) from 
control subjects (Bechara et al., 1994)1. This 

deficit was reflected in the task by higher 
selection of disadvantageous decks. Later 
studies showed that the IGT also seems use-
ful in distinguishing control subjects from 
risk taking populations such as chronic drug 
abusers (Yechiam et al., 2005), prisoners 
(Yechiam et al., 2008), and traffic offend-
ers (Lev et al., 2008).

In the second popular task, the BART, 
people pump “air” into a virtual balloon; 
each time they pump, a fixed sum is added 
to their account, but if the balloon pops 
before they cash out, they receive nothing. 
The common measure of risk is the number 
of pumps the subject tries before cashing 
out. Evidence indicates that the BART score 
could be a good predictor of self-reported 
unhealthy risk behaviors (Lejuez et al., 
2002), and that it can differentiate controls 
from drug users and cigarette smokers 
(Lejuez et al., 2003).

The picture emerging from studies of 
the experience-based paradigm suggests 
that behavior is affected by stable individ-
ual differences that account for risk taking 
behaviors. Taken together, the evidence from 
the different paradigms suggests that the 
researcher’s conclusion regarding the role 
of stable individual differences in risk taking 
might vary substantially according to whether 
a description-based task or an experience-
based task was used in the study. The next 
section suggests potential reasons contribut-
ing to the apparent discrepancy between the 
conclusions from the two paradigms.

Explaining ThE discrEpanciEs 
BETwEEn ExpEriEncE-BasEd and 
dEscripTion-BasEd Tasks in 
addrEssing individual risk Taking
Before addressing the different properties of 
each paradigm, it might be constructive to 
note that typical evidence from personality 

1Ventromedial prefrontal cortices lesions are associa-
ted with a syndrome in which individuals have normal 
IQ and reasoning ability, but demonstrate excessive 
risk taking in their decision-making behavior.
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research suggests some support for both the 
situational and the individual trait views. 
Mischel and Shoda (1995) note that “the 
fact that the average cross-situational coeffi-
cients are typically low but non-zero is now 
widely accepted” (p. 247). Support for the 
effect of individual differences is suggested 
by the finding that the typical correlations 
across situations are consistently above zero. 
However, the large variation across situa-
tions suggests that situational factors may 
either mask such inherent tendencies, or at 
least interact with them in a way that results 
in apparently different behaviors (see also 
Weber and Johnson, 2008).

It is natural to assume that the role of 
situational factors will become more appar-
ent when such factors receive more atten-
tion (e.g., when they are more salient). In 
description-based tasks, the situational fac-
tors are central and therefore are salient part 
of the description (e.g., the case of accept-
ing/rejecting an attractive gamble vs. choice 
between sure zero and the gamble). In partic-
ular, they seem to be much more salient than 
in experience-based decisions in which the 
options are not described. Recently, Ert and 
Yechiam (2010) examined the possibility that 
individual differences in risk taking emerging 
from decisions from experience might differ 
from supposedly equivalent individual dif-
ferences in decisions from description. Recall 
that a main finding in the decisions from 
description literature is the reversal of risk 
taking between the gain and loss domains, 
typically referred to as the “reflection effect.” 
For example, while choosing between a sure 
$600 and a gamble that gives equal chances 
of winning $1200 or $0, most people choose 
the certain amount. Yet, in a choice between 
a sure loss of $600 and a gamble providing 
an equal chance of losing $1200 or $0, most 
people prefer the risky gamble (Kahneman 
and Tversky, 1979). Ert and Yechiam (2010) 
tested this prediction with a simple form of 
an experience-based task in which, instead 
of getting descriptions of the certain amount 
and the gamble, people chose repeatedly 
between two undescribed options, one that 
always yields 600 (−600 in the loss problem) 
and another that yields either 1200 (−1200 in 
the loss problem) or 0 with equal probability. 
The authors found that the aggregate pro-
portion of risk taking replicated the reflec-
tion effect, showing higher risk taking in the 
loss domain. However, the analysis of choice 
at the  individual level showed a  significant 

positive correlation of 0.63 between the 
gain and loss domains, contradicting the 
reflection effect. This observation suggests 
that people who prefer certainty in the gain 
domain also prefer certainty while choosing 
between losses. In another study, Yechiam 
and Ert (2011) gave participants descrip-
tions of these same problems. The aggregate 
results once again revealed higher risk tak-
ing in choice between losses, consistent with 
the reflection effect. However, the analysis 
at the individual level showed no correla-
tion between choices in the gain and loss 
domains. One interpretation of these results 
is that in the experience-based choice, the 
framing of gambles has only a small effect, so 
the tendency to take risks over certain payoffs 
emerges at the individual level. However, this 
tendency might be masked or canceled out 
by the saliency of the framing in the descrip-
tion-based task.

The observation that description-based 
tasks might be more sensitive to framing 
effects than experience-based tasks may 
possibly relate to Langer’s (1989) notion 
of mindfulness vs. mindlessness. Mindful 
decisions are explicit ones in which the deci-
sion maker considers the properties of the 
problem. When the decision maker oper-
ates mindlessly, she tends not to think about 
the properties of the problem, at least not 
explicitly. It is natural to assume that expe-
rience-based decisions are more mindless 
than description-based ones. Interestingly, 
while intuition suggests that to extract indi-
vidual differences one would possibly like 
to encourage the individual to think deeply 
about the task, evidence suggests that such 
thinking might actually bias the decision 
maker to consider irrelevant data. Therefore, 
the decision maker may be more likely to 
exhibit her inherent tendencies while act-
ing mindlessly than while acting mindfully. 
Moreover, while operating mindfully, the 
decision maker might avoid (or approach) 
risks for a variety of strategic reasons that 
could also interfere with her inherent ten-
dencies. In line with this argument, Koritzky 
and Yechiam (2010) found that experience-
based tasks are less sensitive than descrip-
tion-based ones to social-desirability effects. 
When participants were instructed to make a 
“good impression,” they tended to avoid risks 
in description-based tasks more than under 
a control condition in which the instructions 
were neutral. Behavior in the experience-
based task, however, was unaffected by the 

instruction to behave strategically, perhaps 
because it is relatively hard to pinpoint the 
kind of behavior that is expected to make a 
good impression in such tasks.

Additional evidence supporting the 
existence of stable constructs of risk tak-
ing comes from studies in neuroscience, 
showing activities in brain areas that are 
related to risk taking. Interestingly, many 
of those studies seem to use experience-
based tasks in addressing the constructs of 
risk taking behavior. Some studies use the 
aforementioned IGT and BART (Rao et al., 
2008; Lawrence et al., 2009), while others 
use different tasks that are also experience-
based in nature (Critchley et al., 2001; 
Preuschoff et al., 2006; Gianotti et al., 2009). 
This observation also suggests the poten-
tial usefulness of experience-based tasks in 
studying individual differences.

conclusion
In a recent review of studies of individual 
differences in decision-making, Appelt 
et al. (2011) highlighted the importance 
of a standardized approach to studying 
individual differences, and the value of cat-
egorizing the existing measures into mean-
ingful classes that share similar properties. 
The current analysis suggests that one such 
meaningful categorization is the differ-
entiation between description-based and 
experience-based tasks. Evidence suggests 
that experience-based tasks tend to be more 
successful in revealing consistent individual 
differences than description-based tasks. A 
potential reason for this relative success could 
be that experience-based tasks involve more 
mindless than mindfulness decisions and 
thus they are less sensitive to the influence 
of situation-specific factors. The relative suc-
cess of experienced-based tasks in address-
ing individual differences suggests reasons 
for optimism regarding our understanding 
of the role of individual differences in risk 
taking. The high variety of experience-based 
tasks that are currently in use seem to call 
for comparative evaluations of those tasks to 
better understand the contribution of each 
task beyond and above the others. Such anal-
yses may facilitate standardization and could 
further clarify the exact constructs that the 
different tasks aim to address.

acknowlEdgmEnT
This research was supported by a grant from 
the Hebrew University.

Ert Experience-based decisions and individual constructs

Frontiers in Psychology | Cognitive Science  January 2012 | Volume 3 | Article 7 | 8

http://www.frontiersin.org/cognitive_science/
http://www.frontiersin.org/cognitive_science/archive


rEfErEncEs
Appelt, K. C., Milch, K. F., Handgraaf, M. J. J., and Weber, 

E. U. (2011). The decision making individual differ-
ences inventory and guidelines for the study of indi-
vidual differences in judgment and decision-making 
research. Judgm. Decis. Mak. 6, 252–262.

Bechara, A., Damasio, A. R., Damasio, H., and Anderson, 
S. W. (1994). Insensitivity to future consequences fol-
lowing damage to human prefrontal cortex. Cognition 
50, 7–15.

Critchley, H. D., Mathias, C. J., and Dolan, R. J. (2001). 
Neural activity in the human brain relating to uncer-
tainty and arousal during anticipation. Neuron 29, 
537–545.

Ert, E., and Erev, I. (2008). The rejection of attractive gam-
bles, loss aversion, and the lemon avoidance heuristic. 
J. Econ. Psychol. 29, 715–723.

Ert, E., and Yechiam, E. (2010). Consistent constructs in 
individuals’ risk taking in decisions from experience. 
Acta Psychol. (Amst.) 134, 225–232.

Gianotti, L. R. R., Knoch, D., Faber, P. L., Lehmann, 
D., Pascual-Marqui, R. D., Diezi, C., Schoch, C., 
Eisenegger, C., and Fehr, E. (2009). Tonic activity level 
in the right prefrontal cortex predicts individuals’ risk 
taking. Psychol. Sci. 20, 33–38.

Hanoch, Y., Johnson, J. G., and Wilke, A. (2006). Domain 
specificity in experimental measures and participant 
recruitment. Psychol. Sci. 17, 300–304.

Hertwig, R., Barron, G., Weber, E. U., and Erev, I. (2004). 
Decisions from experience and the effect of rare events 
in risky choice. Psychol. Sci. 15, 534–539.

Kahneman, D., and Tversky, A. (1979). Prospect theory: 
an analysis of decision under risk. Econometrica 47, 
263–291.

Koritzky, G., and Yechiam, E. (2010). On the robust-
ness of description and experience based decision 

tasks to social desirability. J. Behav. Decis. Mak. 
23, 83–99.

Langer, E. (1989). Mindfulness. Reading, MA: 
Addison-Wesley.

Lawrence, N. S., Jollant, F., O’Daly, O., Zelaya, F., and 
Phillips, M. L. (2009). Distinct roles of prefrontal 
cortical subregions in the Iowa gambling task. Cereb. 
Cortex 19, 1134–1143.

Lejuez, C. W., Aklin, W. M., Jones, H. A., Richards, J. B., 
Strong, D. R., Kahler, C. W., and Read, J. P. (2003). 
The balloon analogue risk task (BART) differentiates 
smokers and nonsmokers. Exp. Clin. Psychopharmacol. 
11, 26–33.

Lejuez, C. W., Read, J. P., Kahler, C. W., Richards, J. B., 
Ramsey, S. E., Stuart, G. L., Strong, D. R., and Brown, 
R. A. (2002). Evaluation of a behavioral measure of 
risk-taking: the balloon analogue risk task (BART). 
J. Exp. Psychol. Appl. 8, 75–84.

Lev, D., Hershkovitz, E., and Yechiam, E. (2008). Decision 
making and personality in traffic offenders: a study of 
Israeli drivers. Accid. Anal. Prev. 40, 223–230.

Lichtenstein, S., and Slovic, P. (1971). Reversals of prefer-
ence between bids and choices in gambling decisions. 
J. Exp. Psychol. 89, 46–55.

Mischel, W., and Shoda, Y. (1995). A cognitive-affective 
system theory of personality: reconceptualizing situ-
ations, dispositions, dynamics, and invariance in per-
sonality structure. Psychol. Rev. 102, 246–268.

Preuschoff, K., Bossaerts, P., and Quartz, S. R. (2006). 
Neural differentiation of expected reward and risk 
in human subcortical structures. Neuron 51, 381–390.

Rao, H., Korczykowski, M., Pluta, J., Hoang, A., and Detre, 
J. A. (2008). Neural correlates of voluntary and invol-
untary risk taking in the human brain: an fMRI study 
of the balloon analog risk task (BART). Neuroimage 
42, 902–910.

Schoemaker, P. J. H. (1990). Are risk-preferences related 
across payoff domains and response modes? Manage. 
Sci. 36, 1451–1463.

Weber, E. U., Blais, A. R., and Betz, N. E. (2002). A domain-
specific risk-attitude scale: measuring risk perceptions 
and risk behaviors. J. Behav. Decis. Mak. 15, 263–290.

Weber, E. U., and Johnson, E. J. (2008). “Decisions 
under uncertainty: psychological, economic and 
neuroeconomic explanations of risk preference,” in 
Neuroeconomics: Decision Making and the Brain, eds P. 
Glimcher, C. Camerer, E. Fehr, and R. Poldrack (New 
York: Elsevier), 127–144.

Yechiam, E., Busemeyer, J. R., Stout, J. C., and Bechara, 
A. (2005). Using cognitive models to map relations 
between neuropsychological disorders and human 
decision-making deficits. Psychol. Sci. 16, 973.

Yechiam, E., and Ert, E. (2011). Risk attitude in decision 
making: in search of trait-like constructs. Top. Cogn. 
Sci. 3, 166–186.

Yechiam, E., Kanz, J. E., Bechara, A., Stout, J. C., Busemeyer, 
J. R., Altmaier, E. M., and Paulsen, J. S. (2008). 
Neurocognitive deficits related to poor decision mak-
ing in people behind bars. Psychon. Bull. Rev. 15, 44–51.

Received: 11 December 2011; accepted: 08 January 2012; 
published online: 25 January 2012.
Citation: Ert E (2012) On the value of experience-based 
decisions in studying constructs of risk taking. Front. 
Psychology 3:7. doi: 10.3389/fpsyg.2012.00007
This article was submitted to Frontiers in Cognitive Science, 
a specialty of Frontiers in Psychology.
Copyright © 2012 Ert. This is an open-access article distrib-
uted under the terms of the Creative Commons Attribution 
Non Commercial License, which permits non-commercial 
use, distribution, and reproduction in other forums, pro-
vided the original authors and source are credited.

Ert Experience-based decisions and individual constructs

www.frontiersin.org January 2012 | Volume 3 | Article 7 | 9

http://www.frontiersin.org/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/cognitive_science/archive


ORIGINAL RESEARCH ARTICLE
published: 21 February 2012

doi: 10.3389/fpsyg.2012.00024

On surprise, change, and the effect of recent outcomes
Iris Nevo and Ido Erev*

Technion – Israel Institute of Technology, Haifa, Israel

Edited by:

Eldad Yechiam, Technion – Israel
Institute of Technology, Israel

Reviewed by:

Eldad Yechiam, Technion – Israel
Institute of Technology, Israel
Itzhak Aharon, The Interdisciplinary
Center, Israel

*Correspondence:

Ido Erev , The Max Wertheimer
Minerva Center for Cognitive Studies,
Faculty of Industrial Engineering and
Management, Technion – Israel
Institute of Technology, Haifa, Israel.
e-mail: erev@tx.technion.ac.il

The leading models of human and animal learning rest on the assumption that individuals
tend to select the alternatives that led to the best recent outcomes. The current research
highlights three boundaries of this “recency” assumption. Analysis of the stock market
and simple laboratory experiments suggests that positively surprising obtained payoffs,
and negatively surprising forgone payoffs reduce the rate of repeating the previous choice.
In addition, all previous trails outcomes, except the latest outcome (most recent), have
similar effect on future choices. We show that these results, and other robust properties of
decisions from experience, can be captured with a simple addition to the leading models:
the assumption that surprise triggers change.

Keywords: fourfold response pattern to recent outcomes, positive and negative recency, the very recent effect,

I-SAW, volume of trade

Analyses of financial markets reveal that the volume of trade tends
to increase after sharp price increase, and also after sharp price
decline (Karpoff, 1988). Higher volume of trade implies that own-
ers are more likely to sell, and potential buyers are more likely
to buy. Thus, the data suggest a fourfold response pattern to
recent outcomes: Owners appear to exhibit negative recency after
obtained gains (behave as if they expect a price decrease after
a large price increase), but positive recency after a loss (expect
another decrease after a large decrease). Potential buyers appear to
exhibit the opposite pattern: positive recency after a large forgone
gain (expect another increase after a large gain that they missed),
and a negative recency after a forgone loss (expect a price increase
after a price decrease).

Previous studies of decisions from experience appear to reflect a
simpler effect of recent outcomes. Most studies document a robust
positive recency effect (Estes, 1976; Barron and Erev, 2003; Bar-
ron and Yechiam, 2009; Biele et al., 2009): People tend to select the
alternative that led to the best outcome in the previous trials1. This
pattern is consistent with the law of effect (Thorndike, 1898), brain
activity (Schultz, 1998), and is assumed by most learning models
(e.g., Bush and Mosteller, 1955; Rescorla and Wagner, 1972; Erev
and Roth, 1998; Fudenberg and Levine, 1998; Selten and Buchta,
1998; Camerer and Ho, 1999; Dayan and Niv, 2008; Marchiori and
Warglien, 2008; Erev and Haruvy, in press).

The natural explanation for this apparent inconsistency
between the stock market pattern and previous studies would be
that many factors affect the behavior in the stock market, and the
basic properties of human learning are only a small part of these
factors. This explanation is consistent with the leading models of
the stock market data. According to these models the effect of

1Several studies highlight interesting exceptions to this regularity. One example is
the evidence for negative recency in prediction tasks (Barron and Yechiam, 2009).
Ayton and Fischer (2004) show that negative recency is more likely to emerge in
expectations of sequences of natural events.

price change on the volume of trade is a product of an interac-
tion between asymmetric traders (e.g., different interests, different
knowledge etc.).

The current analysis focuses on a less natural explanation of
the inconsistency. It considers the possibility that the financial data
reflect an important behavioral regularity that was ignored by basic
learning research. Our interest in this possibility was triggered by
the recent demonstration that the insights obtained in basic learn-
ing research could be used to justify the prediction of the 2008
sub-prime crises in the financial markets (Taleb, 2007; Hertwig and
Erev, 2009).Yet, the goal here is different. Rather than trying to pre-
dict the behavior of the stock market, we try to build on the robust
stock market pattern in order to improve our understanding of
basic learning processes. The attempt to achieve this goal led us to
focus on the role of surprising outcomes. Specifically, we hypoth-
esize that “surprise-trigger-change”2. Our definition of surprise is
similar to the definition implied by the classical Rescorla–Wagner
model: Surprise is assumed to increase with the gap between the
expected and the observed outcomes. The surprise-trigger-change
hypothesis is consistent with the stock market data: Large price
changes are surprising, and for that reason they increase trade
(change implies trade).

In addition, the surprise-trigger-change hypothesis can explain
the fact that most learning studies document positive recency:
These studies focus on the main effect of the recent payoff over
the different outcomes, and do not examine this effect contingent
on the level of surprise3. Thus, their results are consistent with

2Previous studies of the effect of surprise (Mellers et al., 1997) show that surprising
outcomes are overweighted. The main additions of the current hypothesis are the
assertions that (1) surprising outcome have the same effect on the implicit decision
of whether to think again during learning, and that (2) without this overweighting
the common implicit decision is “not to think again.”
3One contributor to the tendency to focus on the main effect and ignore the level
of surprise is the fact that most basic learning studies focus on situations in which
the feedback was limited to the obtained payoffs (and the computation of the net
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a natural abstraction of the surprise-trigger-change hypothesis
that implies a positive recency effect in most cases, and allows
for the possibility of a negative recency effect after surprising
outcomes.

Another nice feature of the surprise-trigger-change hypothesis
involves its consistency with brain research. Analysis of the neural
activation in the dopaminergic system reveals correlation between
activation level and prediction error (Schultz, 1998). The current
hypothesis suggests that the detection of prediction error, implies
surprise, and increases the probability of a change.

The first part of the current paper tests the surprises-trigger-
change hypothesis in simple binary choice experiments. The analy-
sis continues with an exploration of the implications of the current
results to the modeling of learning.

EXPERIMENT 1: THE SURPRISE-TRIGGER-CHANGE
HYPOTHESIS
METHODS
Experiment 1 focuses on repeated play of the two problems pre-
sented in Table 1. The experiment used the “clicking paradigm”
described in Figure 1.

The participants were 48 Technion students. Each participant
faced each problem (“game”) in a block of 100 trials. The order
of the two problems was balanced over participants. The partici-
pants received a show-up fee of 30 Shekels (about $8) and could
win more, or lose part of this amount in the experiment. The exact
addition to the show-up fee was the outcome (in Shekels) in one
randomly selected trial.

The experiment was run on personal computers. The exper-
imental instructions (see left-hand side of Figure 1) were pre-
sented on printed sheet of paper and the participants could

effect of surprise is difficult), and/or situations that do not involve low probability
outcomes. Another contributor is the fact that the assumption that surprise triggers
change dramatically complicates parameter estimation with the leading statistical
methods.

read them at all times. As the instructions indicate, the par-
ticipants did not receive a description of the incentive struc-
ture. They were simply told that the experiment includes sev-
eral multi-trial games, and their task (in each trial, in each
game) is to select between the two keys. It was explained that
their choices will determine their trial’s payoff, and that they
will receive immediate feedback after each trial. In addition, the
instructions explain that the different games involve different pay-
offs, and that the subjects will be informed when a new game
starts.

Notice that both problems involve a choice between the sta-
tus quo (payoff of 0 with certainty), and a two-outcome risky
prospect. The more surprising (less likely) outcome is the best
outcome (+10) in Problem 1, and the worst outcome (−10) in
Problem 2.

RESULTS OF EXPERIMENT 1
The results (c.f. Table 1) reveal the fourfold pattern predicted by
the surprise-triggers-change hypothesis. In problem 1 (when the
high payoff, +10, is rare and surprising) the participants exhibited
positive recency after an S choice, but negative recency after an
R choice. The positive recency effect is reflected by a higher rate
of switches to R after high forgone payoff (23%) than after low
forgone payoff (6%). The negative recency effect is reflected by a
lower rate of repeated R choices after high obtained payoff (60%)
than after low obtained payoff (79%).

In problem 2 (when the low payoff, −10, is rare and sur-
prising) the participants exhibited negative recency after an S
choice, but positive recency after an R choice. The negative recency
effect is reflected by a lower rate of switches to R after high for-
gone payoff (21%) than after low forgone payoff (31%). The
positive recency effect is reflected by higher rate of repeated R
choices after high obtained payoff (84%) than after low obtained
payoff (69%).

Analysis of individual participants reveals that this pattern
is robust: 24 of the 36 participants that were faced with all

Table 1 |The two new problems studied in Experiment 1, and the main results.

Problem (N ) Recent events Experimental results The predictions of I–SAW

Recent

choice

Recent

payoff

from R

Contingent

R -rate

Implied

recency

effect

R -rate

over all

trials

Contingent

R -rate

Implied

recency

effect

R -rate

over all

trials

1 (48) S: 0 with certainty

R: (10, 0.1; −1)

S High: +10 0.23 + 0.29 0.25 + 0.41
Low: −1 0.06 0.11

R High: +10 0.60 – 0.81 –

Low: −1 0.79 0.82

2 (48) S: 0 with certainty

R: (1, 0.9; −10)

S High: +1 0.21 – 0.57 0.18 – 0.59
Low: −10 0.31 0.20

R High: +1 0.84 + 0.89 +
Low: −10 0.69 0.75

The contingent R-rates are the proportions of R choices as a function of the recent choice and the recent payoff from R. The implied recency effect is the sign of

the difference between the R-rates after high and low payoffs from R given the same recent choice. When the recent choice is S, the recent payoffs from R are the

recent “forgone payoffs,” and the contingent R-rate is the proportion of switches from S to R. When the recent choice is R, the recent payoffs from R are the recent

“obtained payoffs”, and the contingent R-rate is the proportion of repeated R choices. N is the number of subjects.
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eight “recent outcomes by recent choice” contingencies4 are bet-
ter described by the fourfold hypothesis than by the positive
recency hypothesis. This ratio (24/36) is significant larger than
half (p < 0.05 in a sign test).

The aggregate R-rates were only 29% in Problem 1 when
the expected value of R is positive, and 57% in Problem
2 when the expected value of Option R is negative. This
result is consistent with the assertion that decisions from

4The remaining 12 participants did not face one or more of the eight contingen-
cies. For example, 10 of them never experienced the payoff “+10” after selecting R
(because they tended to select S and/or were unlucky).

experience reflect underweighting of rare events (Barron and Erev,
2003).

Figure 2 presents the mean R-rates as a function of time. It
reveals robustness of the main results over time.

REANALYSIS OF PREVIOUS STUDIES
The surprise-trigger-change hypothesis implies an important
boundary for the fourfold recency pattern documented above.
It suggests that this pattern will not emerge when the possible
outcomes are equally likely; when the outcomes are equally likely,
they are equally surprising, and the probability of a change is
expected to be independent of the relative attractiveness of the

FIGURE 1 |The instructions, and the screens in a study that uses the

basic clicking paradigm. In the example the participant chose Right, won
1; and the forgone payoff was 0.The exact payoffs were determined by the
game’s payoff rule. Each of the games considered here focused on one of

the problems listed inTables 1, 2, or 3, and included 100 trials. Each key
was associated with one of the prospects. The assignment of prospects to
buttons and the order of the problems were randomly determined for each
participant.

FIGURE 2 |The mean choice rates (over the 48 participants) in five blocks

of 20 trials in Experiment 1. The left-hand graphs show the experimental
results, the right-hand graphs show the predictions of the model. The R curve

shows the aggregate R-rate (the mean choice rate of the risky option). The
other four curves show the R-rate as a function of the choice and the
outcome in the previous trial.
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recent payoff. In order to evaluate this prediction we reanalyzed
data from previous studies that used the current paradigm to
examine repeated choices between a safe prospect and a gam-
ble that yields two equally likely outcomes. Table 2 summarizes
the contingent choice proportions documented in the study of
six “50–50” problems. Problems 3 and 4 were studied in Haruvy
and Erev (2002) and Grosskopf et al. (2006). Problems 5–8 were
studied in Erev et al. (2008). The results are consistent with the
current hypothesis. A strong positive recency effect was docu-
mented in all six problems (Problems 3–8). On average, the rate
of risky choices is 58% after high payoff, and 38% after low
payoff.

THE VERY RECENT EFFECT
Additional analysis of the positive recency effect documented in
Problems 3–8 reveals that it is limited to the very recent outcome:
The choice rate of the alternative that led to the best payoff in
the most recent trial is 60%, and the choice rate of the alternative
that led to the best payoff in the trial before the most recent is
only 50% (the rate expected under the assumption of “no recency
effect”).

EXPERIMENT 2: A ROBUSTNESS TEST
METHODS
Experiment 2 was designed to evaluate the robustness of the cur-
rent results. It uses Experiment 1’s procedure with the exception
that each participant was presented with 12 different problems.
The participants were 28 Technion students. The 12 problems are
presented in Table 3. These problems were randomly selected
and studied in Erev et al. (2010a) under distinct information
conditions.

RESULTS OF EXPERIMENT 2
The results, summarized in Table 3, replicate the surprise-trigger-
change pattern documented in Experiment 1. Problems 9–15 in
which the high payoff occurs with small probability (0.1 or less) are
similar to Problem 1: The participants exhibited positive recency
after an S choice, but negative recency after an R choice. The pos-
itive recency effect is reflected by the observation that the mean
switch rate from S to R over these seven problems was higher
after the high forgone payoff (26%) than after low forgone payoff
(6%). The negative recency effect is reflected by the observation
that the mean rate of repeated R choice over these seven problems

Table 2 | Six 50–50 problems that were examined in previous research.

Problem (N ) Recent events Experimental results The predictions of I–SAW

Recent

choice

Recent

payoff

from R

Contingent

R -rate

Implied

recency

effect

R -rate

over all

trials

Contingent

R -rate

Implied

recency

effect

R -rate

over all

trials

3 (10) S: 10 with certainty

R: (21, 0.5; 1)

S High: +21 0.58 + 0.63 0.27 + 0.58
Low: +1 0.33 0.21

R High: +21 0.79 + 0.85 +
Low: +1 0.59 0.81

4 (10) S: −10 with certainty

R: (−1, 0.5; −21)

S High: −1 0.39 + 0.45 0.19 + 0.42
Low: −21 0.21 0.15

R High: −1 0.56 + 0.79 +
Low: −21 0.53 0.73

5 (45) S: 0 with certainty

R: (1000, 0.5; −1000)

S High: +1000 0.44 + 0.48 0.23 + 0.50
Low: −1000 0.24 0.17

R High: +1000 0.71 + 0.83 +
Low: −1000 0.55 0.77

6 (45) S: 1000 with certainty

R: (2000, 0.5; 0)

S High: +2000 0.35 + 0.40 0.23 + 0.50
Low: 0 0.15 0.17

R High: +2000 0.74 + 0.83 +
Low: 0 0.49 0.77

7 (45) S: 400 with certainty

R: (1400, 0.50; −600)

S High: +1400 0.40 + 0.45 0.23 + 0.50
Low: −600 0.17 0.17

R High: +1400 0.73 + 0.83 +
Low: −600 0.55 0.77

8 (45) S: 1400 with certainty

R: (2400, 0.5; 400)

S High: +2400 0.47 + 0.49 0.23 + 0.50
Low: +400 0.19 0.17

R High: +2400 0.79 + 0.83 +
Low: +400 0.52 0.77

Problems in 3 and 4 were studied by Haruvy and Erev (2002), Problems 5–8 were studied by Erev et al. (2008).The format of the table and the meaning of the variables

are the same as inTable 1.
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Table 3 |The 12 problems studied in Experiment 2.The format of the table and the meaning of the variables are the same as inTable 1.

Problem (N ) Recent events Experimental results The predictions of I–SAW

Recent

choice

Recent

payoff

from R

Contingent

R -rate

Implied

recency

effect

R -rate

over all

trials

Contingent

R -rate

Implied

recency

effect

R -rate

over all

trials

9 (28) S: 7 with certainty

R: (16.5, 0.01; 6.9)

S High: +16.5 0.40 + 0.45 0.34 + 0.47
Low: +6.9 0.04 0.07

R High: +16.5 0.94 – 0.82 –

Low: +6.9 0.95 0.91

10 (28) S: −9.4 with certainty

R: (−2, 0.05; −10.4)

S High: −2 0.15 + 0.26 0.18 + 0.30
Low: −10.4 0.06 0.08

R High: −2 0.70 – 0.69 –

Low: −10.4 0.80 0.80

11 (28) S: −4.1 with certainty

R: (1.3, 0.05; −4.3)

S High: +1.3 0.27 + 0.54 0.28 + 0.44
Low: −4.3 0.06 0.09

R High: +1.3 0.86 – 0.84 –

Low: −4.3 0.94 0.87

12 (28) S: −18.7 with certainty

R: (−7.1, 0.07; −19.6)

S High: −7.1 0.29 + 0.38 0.24 + 0.37
Low: −19.6 0.06 0.10

R High: −7.1 0.85 – 0.78 –

Low: −19.6 0.87 0.82

13 (28) S: −7.9 with certainty

R: (5, 0.08; −9.1)

S High: +5 0.20 + 0.31 0.23 + 0.37
Low: −19.6 0.06 0.10

R High: +5 0.86 + 0.78 –*

Low: −19.6 0.84 0.81

14 (28) S: −25.4 with certainty

R: (−8.9, 0.08; −26.3)

S High: −8.9 0.22 + 0.45 0.28 + 0.47
Low: −26.3 0.07 0.11

R High: −8.9 0.89 – 0.85 –

Low: −26.3 0.90 0.86

15 (28) S: 11.5 with certainty

R: (25.7, 0.1; 8.1)

S High: +25.7 0.29 + 0.30 0.18 + 0.31
Low: +8.1 0.07 0.09

R High: +25.7 0.81 + 0.72 –*

Low: +8.1 0.78 0.77

16 (28) S: −15.5 with certainty

R: (−8.8, 0.6; −19.5)

S High: −8.8 0.42 + 0.68 0.30 + 0.73
Low: −19.5 0.19 0.27

R High: −8.8 0.91 + 0.91 +
Low: −19.5 0.75 0.88

17 (28) S: 2.2 with certainty

R: (3, 0.93; −7.2)

S High: +3 0.13 – 0.47 0.19 – 0.64
Low: −7.2 0.15 0.23

R High: +3 0.85 + 0.90 +
Low: −7.2 0.68 0.77

18 (28) S: 25.2 with certainty

R: (26.5, 0.94; 8.3)

S High: +25.2 0.14 – 0.52 0.18 – 0.65
Low: +8.3 0.32 0.24

R High: +25.2 0.86 + 0.91 +
Low: +8.3 0.82 0.77

19 (28) S: 6.8 with certainty

R: (7.3, 0.96; −8.5)

S High: +7.3 0.08 – 0.50 0.13 – 0.57
Low: −8.5 0.23 0.18

R High: +7.3 0.92 + 0.91 +
Low: −8.5 0.77 0.72

20 (28) S: 11 with certainty

R (11.4, 0.97; 1.9)

S High: +11.4 0.09 – 0.57 0.15 – 0.64
Low: +1.9 0.19 0.25

R High: +11.4 0.94 + 0.92 +
Low: +1.9 0.71 0.77
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was lower after the high obtained payoff (84%) than after low
obtained payoff (87%).

Problems 17–20 in which the low payoffs occur with small
probability (0.1 or less) are similar to Problem 2: The participants
exhibited negative recency after an S choice, and positive recency
after an R choice. The negative recency effect is reflected by the
observation that the mean switch rate from S to R over these four
problems was lower after the high forgone payoff (11%) than after
low forgone payoff (22%). The positive recency effect is reflected
by the observation that the mean rate of repeated R choice over
these four problems was higher after the high obtained payoff
(89%) than after low obtained payoff (75%).

Finally, Problem 16 is which the high and low outcomes
occur with moderate probability is similar to Problems 3–8: The
participants exhibit positive recency after R and after S choices.

A QUANTITATIVE SUMMARY
In order to clarify the implications of the surprise-trigger-change
hypothesis we chose to quantify it within a simplified variant of
the explorative sampler model that provides the best predictions
of the results in the first Technion choice prediction competition
(Erev et al., 2010a). The model is described below.

THE INERTIA SAMPLING AND WEIGHTING MODEL5

The model distinguishes between three response modes: explo-
ration, exploitation, and inertia. Exploration implies random
choice. The probability of exploration, by individual i, is 1 in the
first trial, and εi (a trait of i) in all other trials.

During exploitation trials, individual i selects the alternative
with the highest estimated subjective value (ESV). The ESV of
alternative j at trial t > 1 is:

ESV
(
j , t

) = (I − wi) (S_Mean) + wi (G_Mean) (1)

where S_Mean (sample mean) is the average payoff from Alterna-
tive j in a small sample of μi similar previous experiences (trials),
G_Mean (grand mean) is the average payoff from j over all (t − 1)
previous trials, and μi and wi are traits. The assumed reliance on
small samples was introduced to capture the observed tendency to
underweight rare events (Barron and Erev, 2003). The similarity
based sampling rule was added to capture discrimination between
different states of nature (Gonzalez et al., 2003)6.

The μi draws are assumed to be independent (sampling with
replacement) and biased toward the most recent experience (Trial
t − 1). A bias occurs with probability ρi (a trait) and implies draw
of Trial t − 1. When a bias does not occur (probability 1 − ρi) all
previous trials are equally likely to be sampled7. The motivation
behind this assumption is the “very recent effect.”

5Computer programs (in SAS and Matlab) that derive the predictions of the
current model can be downloaded from http://sites.google.com/site/gpredcomp/
7-baseline-models.
6The current implementation of the model is simplified with the assumption that all
previous trials are equally similar. The simplification assumption has to be modified
to address learning in dynamic settings.
7This assumption implies that the sampling probability is independent of the
outcome (of the sampled experiences). The assumed independence implies under-
weighting of rare events, and distinguishes the current models from the “represen-
tativeness heuristic” that can lead to overweighting of rare (low base rate) events
(see Erev et al., 2008).

Inertia is added with the assumption that the individuals tend
to repeat their last choice. The exact probability of inertia at trial
t + 1 is assumed to decrease when the recent outcomes are sur-
prising. Specifically, if the exploration mode was not selected, the
probability of inertia is:

P (Inertia at t + 1) = π
Surprise(t )
i (2)

where 0 < πi < 1 is a trait that captures the tendency for inertia. As
in Rescorla and Wagner (1972) we assume that surprise increases
with the gap between the expected and the realized outcomes.
The exact value of the gap is computed under the assumption the
agents compare the realized outcomes to two estimates (or expec-
tations): One estimate is based on the most recent outcome, and
one is based on the mean payoff. Thus, the gap is the mean of four
differences:

Gap(t ) = 1

4

⎡

⎣
2∑

j=1

∣∣obtainedj(t − 1) − obtainedj(t )
∣∣

+
2∑

j=1

∣∣G_meanj(t ) − obtainedj(t )
∣∣

⎤

⎦ (3)

where Obtainedj(t ) is the payoff obtained from j at trial t, and
G_meanj(t ) is the average payoff obtained from j in the first t − 1
trials (the grand mean). The surprise at t is normalized by the
mean gap (in the first t − 1 trials):

Surprise(t ) = Gap(t )
/[

Mean_Gap(t ) + Gap(t )
]

(4)

The mean gap at t is a running average of the gap in the previous
trials [with Mean_Gap(1) = 0.00001]. Specifically,

Mean_Gap(t + 1) = Mean_Gap(t )(1 − 1/r) + Gap(t )(1/r) (5)

where r is the expected number of trials in the experiment (100 in
the current study).

Notice that the normalization (Eq. 4) is necessary to capture the
intuition that a multiplication of all the nominal payoffs by a pos-
itive constant will not increase surprise in the long term. In addi-
tion, normalization keeps the value of Surprise(t ) between 0 and
1, and the probability if inertia between πi [when Surprise(t ) = 1]
and 1 [when Surprise(t ) = 0].

An interesting justification for this gap-based abstraction
comes from the observation that dopamine neurons activation
increases with prediction error (Schultz, 1992, 1998; Montague
et al., 1996, 2004; Caplin and Dean, 2007). The current abstrac-
tion of surprise is a quantification of this observation; in the
current context, the present quantification outperforms all the
other quantifications that we have considered (the choice predic-
tion competition described below suggest that it is not easy to find
a better quantification).

The traits are assumed to be independently drawn from a uni-
form distribution between the minimal possible value (allowed by
the model) and a higher point. Thus, the estimation focused on
estimating the upper points (five free parameters). The estimation
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used a grid search procedure. Best fit implies the following trait
distribution: εi∼U[0,0.24], wi∼U[0,1], ρi∼U[0,0.12], πi∼U[0,1],
and μi = 1, 2, 3, or 4.

The right-hand columns in Tables 1–3 and Figure 2 present
the predictions of inertia sampling and weighting (I–SAW) with
these distributions. These exhibits reveal that I–SAW reproduces
the main behavioral tendencies. For example, I–SAW correctly
captures the direction (sign) of the recency effect in 38 of the 40
contingencies (20 games × 2 possible recent choices). The corre-
lation between the 20 observed and predicted mean choice rates is
0.85, and the correlation between the 80 observed and predicted
contingent choice rates is 0.94.

We believe that the most important contribution of I–SAW is
the demonstration that the surprise-trigger-change assumption is
sufficient to capture direction of the recency effect in the current
setting. It is not necessary to assume expectations concerning spe-
cific sequential dependencies (e.g., the expectation that +10 in
Problem 1 is more likely after −1); nor is it necessary to relax the
assumption that good outcomes increases the tendency to choose
the reinforced alternative again.

COMPARISON WITH THE EXPLORATIVE SAMPLER MODEL
Inertia sampling and weighting differs from the explorative sam-
pler model that motivates it in four ways; the changes include
two simplification assumptions, and two additions. The first sim-
plification involves the probability of exploration. The explorative
sampler assumes a continuous decrease in the probability of explo-

ration with time. Specifically, P(Exploret ) = ε
t−1

t+Tδ where T is
the expected length of the experiment, and δ is a free parame-
ter that captures the sensitivity to the length of the experiment.
This assumption is simplified in I–SAW with the assertion that
P(Exploret) = 1 if t = 1, and εi otherwise. The main motiva-
tion for the simplification is the current focus on learning with
complete feedback that reduces the importance of exploration
(the explorative sampler, in contrast, was designed to address
learning when the feedback in limited to the obtained payoff).
A second motivation is the observation that the simplification
assumption saves a parameter, and does not reduce the fit of the
current data.

A second simplification concerns with the recalled subjective
value of the objective outcomes. The explorative sampler allows
for the possibility of a non-linear function in the spirit of prospect
theory (Kahneman and Tversky, 1979) that implies diminish-
ing sensitivity. This assumption is simplified in I–SAW with the
implicit assumption that the recalled values are the objective pay-
offs. This simplification assumption saves a parameter, and does
not reduce the fit.

The main addition, introduced in I–SAW, is the surprise-
trigger-change assumption. In order to evaluate the significance
of this assumption we evaluated a simplified variant of I–SAW
that does not include this addition (the inertia trait, πi, is set to
zero). The results reveal that with this constraint, I–SAW predicts
positive recency in all 40 cases (and for that reason in capture the
direction of the recency effect in only 31 of the 40 cases). In addi-
tion, this constraint reduces the correlation between the observed
and predicted contingent R-rates from 0.94 to 0.77.

The second addition is the individual differences assumed
in I–SAW. This addition does not increase the number of free
parameters and was introduced to capture the consistent individ-
ual differences documented in recent learning studies (see Yechiam
et al., 2005). Elimination of this addition has limited effect on the
fit of the statistics discussed above.

POTENTIAL GENERALITY AND ALTERNATIVE MODELS
Recall that the current paper is based on the assertion that similar
learning processes drive behavior in simple laboratory experi-
ments and in the stock market. This assertion has directed our
choice of model. That is, I–SAW is meant to be more than an
ad hoc summary of the current results; it tries to summarize the
basic properties of decisions from experience, and should be able
to provide useful prediction of behavior in a wide set of situations.
In order to evaluate this optimistic “generality hypothesis” it is
constructive to consider the results of a recent choice prediction
competition that was organized by Erev et al. (2010b).

The competition was conducted after the completion of the
first draft of the current paper (which included the data and
the presentation of I–SAW), and focused on the prediction of
behavior in four-person two-alternative Market Entry games. In
each trial of these games, each player has to decide between
a safe option and risky entry to a market in which the pay-
off can decrease with the number of entrants. Notice that the
set of individual decision tasks considered above is a subset of
the class of market entry games (the subset in which the pay-
offs from risky choice do not decrease with the number of other
entrants).

The competition was based on two studies. Each study exam-
ined 40 games (randomly selected from the same population of
games). Each game was played for 50 trials with immediate feed-
back concerning the obtained and the forgone payoffs. After the
completion of the first study the organizers published the “intro-
duction to the competition paper” (Erev et al., 2010b). This paper
presents the results, and the best fit of these results with nine
baseline models. The baseline models included the most popular
models proposed to capture behavior in games (including: several
versions of reinforcement learning, Erev and Roth, 1998; stochas-
tic fictitious play, Fudenberg and Levine, 1998; EWA, Camerer
and Ho, 1999) and I–SAW. The analysis of the fit of these models
revealed a large advantage of I–SAW over the other models.

Immediately after the publication of the introduction paper,
and before running the second study, the competition organizers
challenged other researchers to participate in a competition that
focuses on the prediction of the results of the second study. The
call for participation in the competition was published in leading
Email lists in psychology of decision making, cognitive psychology,
behavioral economics, game theory, and reinforcement learning.
To participate in the competition the potential competitors had to
submit a model implemented in a computer program model that
reads the parameters of the games as input, and derives the results
as an output. The models were ranked based on their mean squared
error. The participants were allowed to use improved versions of
the baseline models.

Twenty-five teams participated in the competition. The sub-
mitted models included reinforcement learning, neural networks,
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ACT-R, and I–SAW like sampling models. The results reveal large
advantage of sampling models that assume reliance on small sam-
ples and the current surprise-triggers-change rule. Indeed, all
the 10 leading submissions belong to this class of models. The
winner of the competition (Chen et al., 2011) is a variant of I–
SAW that adds the assumption of bounded memory. The runner
up (Gonzalez et al., 2011) quantifies the same assumptions in a
refinement of the instance based learning model (Gonzalez et al.,
2003).

It is important to emphasize that the advantage of I–SAW
over the reinforcement learning models that were examined in
the competition does not question that value of the reinforce-
ment learning approach. Rather, this observation suggests that it
is not easy to outperform I–SAW with the natural extensions of
the popular reinforcement learning models. We hope that the pub-
lication of the competition and the current results will facilitate
the exploration of the assumptions that have to be added to basic
reinforcement learning models in order to capture decisions from
experience. It seems that these assumptions will include sensitiv-
ity to recent choices (see similar observation in Lau and Glimcher,
2005).

In summary, the results clarify potential of simple learning
models that assume reliance on small samples and surprise-
trigger-change. Models of this type can be used to provide useful
ex ante prediction in a wide set of situations. In addition, the com-
petition suggests that additional research is needed to improve our
understanding of the best quantification of these assumptions.

RELATIONSHIP TO MODELS OF PAVLOVIAN CONDITIONING
Comparison of I–SAW to the leading models of Pavlovian con-
ditioning (including Rescorla and Wagner, 1972; Pearce and
Hall, 1980) reveals one similarity, and one difference. The sim-
ilarity involves the quantification of surprise by the differ-
ence between the expected and obtained outcomes. The dif-
ference involves the implication of surprise. The Rescorla–
Wagner and similar models suggest that “surprise triggers learn-
ing,” and the current analysis suggests that “surprise triggers
change.” This difference, however, does not imply an inconsis-
tency: the Rescorla–Wagner model focuses on associative strength
and do not have clear predictions for choice behavior. Our
favorite interpretation of the effect of associative strength on
choice behavior is based on Rescorla and Solomon (1967)
two-process learning theory; this interpretation implies that
the associative strength determines the similarity function that
affects the sampling in I–SAW and similar models. We hope
to address this and alternative explanations of the relationship
between the current results and Pavlovian conditioning in future
research.

CONCLUSION
The main implications of the current results are related to two of
the main assumptions of basic learning research. The first assump-
tion states that learning processes are extremely general and robust.
They are common to different species (Shafir et al., 2008), under-
lay behavior in wide sets of situations (Skinner, 1938), and reflect
basic properties of the brain (Schultz, 1998). The current analysis
demonstrates the value this assumption. It shows that the apparent
inconsistency between the recency effects documented in finan-
cial data and in basic learning research does not imply distinct
behavioral tendencies. Examination of the sequential dependen-
cies reveals that the fourfold recency pattern, suggested by the
financial data, is a robust property of basic learning processes.

The second assumption involves the abstraction of the robust
properties of learning. Most leading models assume a general
positive recency effect. The current results highlight three bound-
aries of this effect. Two boundaries are the negative recency parts
of fourfold recency pattern: Positively surprising outcomes were
found to reduce the likelihood of repeated choice of the rein-
forcing prospect, and surprising unattractive forgone payoffs were
found to increase the tendency of a switch to the prospect that led
to the worst payoffs. A third boundary is suggested by the very
recent effect. The current results suggest that the most recent trial
has larger effect than previous experiences, but all previous expe-
riences have an approximately the same effect independently of
their recency.

The current analysis suggests that the distinct effects of recent
outcomes can be captured with simple models that share two main
assumptions: reliance on small samples of past experiences, and
surprise-triggers-change. I–SAW, the model proposed above, is
one abstraction of these assumptions. One explanation for the
success of I–SAW and similar models here and in the choice pre-
diction competition (Erev et al., 2010b), is related to the dynamic
features of natural environments. The positive recency assumption
is useful (likely to be selected by consequences) when the recent
outcomes are best predictors of the next outcomes. But positive
recency is not likely to be effective if the outcomes are determined
by a Markov process with small number of distinguishable states.
The reliance on the outcomes obtained in similar (and not nec-
essarily recent) experiences, and high sensitivity to surprises, can
be more effective in these settings. Thus, it is possible that the
success of sampling based models reflects the ecological impor-
tance of learning in environments with relatively small number of
distinguishable states.
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To what extent can people choose advantageously without knowing why they are mak-
ing those choices? This hotly debated question has capitalized on the Iowa Gambling Task
(IGT), in which people often learn to choose advantageously without appearing to know
why. However, because the IGT is unconstrained in many respects, this finding remains
debated and other interpretations are possible (e.g., risk aversion, ambiguity aversion, lim-
its of working memory, or insensitivity to reward/punishment can explain the finding of the
IGT). Here we devised an improved variant of the IGT in which the deck-payoff contingency
switches after subjects repeatedly choose from a good deck, offering the statistical power
of repeated within-subject measures based on learning the reward contingencies associ-
ated with each deck. We found that participants exhibited low confidence in their choices,
as probed with post-decision wagering, despite high accuracy in selecting advantageous
decks in the task, which is putative evidence for non-conscious decision making. However,
such a behavioral dissociation could also be explained by risk aversion, a tendency to avoid
risky decisions under uncertainty. By explicitly measuring risk aversion for each individual,
we predicted subjects’ post-decision wagering using Bayesian modeling. We found that
risk aversion indeed does play a role, but that it did not explain the entire effect. More-
over, independently measured risk aversion was uncorrelated with risk aversion exhibited
during our version of the IGT, raising the possibility that the latter risk aversion may be non-
conscious. Our findings support the idea that people can make optimal choices without
being fully aware of the basis of their decision. We suggest that non-conscious decision
making may be mediated by emotional feelings of risk that are based on mechanisms
distinct from those that support cognitive assessment of risk.

Keywords: decision making, consciousness, risk aversion, post-decision wagering, confidence

INTRODUCTION
Decision making refers to a process of forming preferences, select-
ing and executing an action from alternatives, and evaluating and
predicting rewarding or aversive outcomes. Whether we can make
accurate and optimal decisions without full conscious awareness
of the basis for the decision remains controversial, while evidence
for non-conscious processing itself has been established in the per-
ceptual domain [e.g., implicit memory and priming (Kouider and
Dehaene, 2007)]. Some evidence suggests that neuropsychological
patients with damage to primary visual cortex lack visual phenom-
enal awareness, yet can successfully make many visually guided
decisions (Stoerig et al., 2002; Persaud et al., 2007). Under cer-
tain circumstances, neurologically healthy subjects seem to make
advantageous decisions without knowing why, for instance when
they face a situation where the number of relevant parameters
exceeds the limits of conscious working memory (Dijksterhuis
et al., 2006).

Another possible instance of non-conscious decision making
is reported in a number of studies using the Iowa Gambling Task

(IGT). In the past decade, the IGT has been extensively used as a
probe for decision making in situations that feature uncertainty,
reward, and punishment, mimicking aspects of real life (Dama-
sio, 1994; Bechara et al., 1997, 1999, 2000; Anderson et al., 1999;
Fellows, 2004; Oya et al., 2005; Dunn et al., 2006). In the IGT,
participants are faced with four decks of cards. In each trial, they
choose one deck and draw a card from it. Each card is associ-
ated with a variable amount of monetary gain. In some trials,
it is followed by a large amount of loss. In the long run, par-
ticipants lose money on some decks, but win money on others.
Yet the complexity of payoffs in the IGT prevents subjects from
calculating the expected value associated with each deck, and sub-
jects typically feel as though they are guessing when making their
choices, especially early on in the task. Past studies of the IGT have
reported an intriguing phenomenon, which motivated our study:
subjects start to make advantageous card selections well before
they can verbalize why they selected those decks (Bechara et al.,
1997; Persaud et al., 2007). Remarkably, their autonomic response,
as measured by skin conductance, also distinguishes good and bad
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deck selection before the subjects can verbalize the basis of their
deck selection (Bechara et al., 1997), supporting the theory that
emotional response informs complex decision making (Damasio,
1994; Bechara et al., 2000; but also, see Tomb et al., 2002; Dunn
et al., 2006). Though an intriguing finding, the claim that decision
making occurs in the absence of awareness in the IGT has been
criticized on several grounds. In particular, Maia and McClelland
(2004, 2005) have criticized the operational definition of “non-
conscious,” arguing that people may be vaguely aware of their
strategy even though they do not say so with open-ended ques-
tions (Bechara et al., 1997). When subjects were probed every 10
trials by a set of questionnaires, which involves numerical rating
of the goodness of each deck, direct estimation of the expected
payoff of each deck, expression of the best strategy for the IGT,
and so on, it was found that they started to make optimal choices
at the same time as they started to show some form of conscious
awareness (Maia and McClelland, 2004; Persaud et al., 2007).

However, these detailed questionnaires have themselves been
criticized because they force subjects to introspect in an unnatural
way during decision making (Koch and Preuschoff, 2007), thus
undermining the methods for identifying implicit knowledge by
prompting subjects to become aware when they otherwise would
not (Bechara et al., 2005). To address this problem, Persaud et al.
(2007) proposed an alternative measure of awareness, which is
objective in that it does not rely on subjective ratings, and also
indirect and less obtrusive compared to the detailed questionnaire
used by Maia and McClelland (2004). In Persaud et al.’s post-
decision wagering task, subjects indirectly reveal the confidence
that they have in their decision by wagering high or low on the
expected outcome of their choice. A correct choice followed by
a high wager is taken as an index of conscious awareness. When
probed with open-ended questions (Bechara et al., 1997), post-
decision wagering replicated the original findings: subjects chose
advantageously from the decks before they showed any evidence of
conscious awareness as revealed by post-decision wagering. How-
ever, when probed with a more intrusive questionnaire (Maia and
McClelland, 2004), advantageous deck choices and optimal post-
decision wagers developed concurrently. These results reconcile
the previous findings and underline the fact that detailed inquiry
of conscious awareness can alter the very conscious access one
intends to measure.

The validity of post-decision wagering as a probe of con-
sciousness, however, has yet to be fully demonstrated (Koch and
Preuschoff, 2007; Clifford et al., 2008a; Schurger and Sher, 2008;
Dienes and Seth, 2010; Fleming and Dolan, 2010; Sandberg et al.,
2010). The ensuing critiques have argued that there is a distinction
between true performance without awareness on the one hand,
and simply a reluctance, on the other hand, to gamble with weak
sensory evidence despite full awareness (Clifford et al., 2008a). This
second possibility is “risk aversion” (Koch and Preuschoff, 2007;
Schurger and Sher, 2008), the well-known finding that people will
often make a choice that has a lower expected value than some
other option, if it also has less variance in its payoffs. This phenom-
enon is accounted for by assuming that people maximize utility
rather than expected value, where utility is a concave function
of value for risk-averse individuals (and convex for risk-seeking
individuals) (Kahneman and Tversky, 1979; Rabin, 2000; Holt and

Laury, 2002). Therefore, risk-averse subjects often turn down gam-
bles with positive expected value, simply because the variance (or
their belief about the variance) in payoffs is sufficiently high that
their utility for the gamble is lower than an alternative option.
In other words, subjects’ wagering strategies may be a reflection
of their attitude toward risk, and so sub-optimal wagering may
be perfectly consistent with their preferences (Schurger and Sher,
2008). In fact, Dienes and Seth (2010) found correlation between
risk aversion and the degree of non-conscious knowledge inferred
from wagering. It is therefore critical to understand the role of risk
aversion in post-decision wagering in order to fully dissect the role
of non-conscious processes in decision making.

There are additional aspects in the task design of the IGT
itself (Fellows, 2004; Dunn et al., 2006; Bossaerts et al., 2008),
which preclude an unequivocal interpretation either for or against
non-conscious decision making. Notably, the IGT has at most
one onset of awareness and is essentially a one-shot experiment,
where subjects are not allowed to practice the task and they are
not informed of any critical information about the task structure
(e.g., the possible payoff structure for each deck, when the task
ends, etc.). In such a situation, people are known to exhibit ambi-
guity aversion (Ellsberg, 1963; Camerer and Weber, 1992; Rode
et al., 1999; Hsu et al., 2005), which may or may not be related
to non-conscious decision making. In the economics literature,
ambiguity refers to situations where the probabilities of the dif-
ferent outcomes are unknown. Ambiguity aversion then refers to
the fact that most people tend to avoid choosing options where
the probabilities are unknown. It is important to note that risk
aversion and ambiguity aversion are separate phenomena. Risk
aversion describes an individual’s aversion to variance in pay-
offs while ambiguity aversion describes an individual’s aversion to
unknown probabilities (lack of information about the likelihood
of the outcomes).

In addition, due to the IGT’s one-shot nature, subjects can
notice which decks are good at most once during the experiment.
This is statistically inefficient, yielding effects that are sometimes
unreliable even in healthy normal controls (Dunn et al., 2006).
While a previous study (Oya et al., 2005) applied a reinforcement
learning algorithm to the IGT to solve some of these difficulties, it
remains unclear how to incorporate risk aversion effects into rein-
forcement learning under the unconstrained parameters of the
original IGT (Bossaerts et al., 2008).

The goal of our study was to test for non-conscious decision
making while ruling out other explanations. Toward that aim, we
modified the IGT in four important ways. First, we incorporated
post-decision wagering to probe subjects’ awareness indirectly in
each trial (Persaud et al., 2007). Second, to improve statistical
power, we repeatedly reshuffled deck-payoff contingencies once
subjects noticed the contingency, resulting in multiple epochs of
learning, and choice within each subject. Third, to eliminate ambi-
guity and heterogeneous priors about the task structure, we told
subjects the structure of the game by detailing the distribution of
payoffs from the four decks (but without identifying the location of
the decks). This also allowed us to apply a formal Bayesian model
to subjects’ choices. Fourth, we measured each subject’s risk aver-
sion profile with a similar but explicit task where they were asked
to wager on various gambles with different expected values and
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levels of risk (shown explicitly). We incorporated this measure of
explicit risk aversion into the Bayesian model to predict subjects’
wagering behaviors.

With our modified version of the IGT, we replicated the finding
that there is a gap between when subjects start to choose optimally
in the IGT and when they start to bet high in the post-decision
wagering task (Persaud et al., 2007). Subjects wagered high much
less often than predicted from the Bayesian model incorporating
their risk aversion profiles. Thus, the discrepancy between good
choice behavior yet poor wagering cannot be fully explained by risk
aversion alone. We also found that risk aversion in our modified
IGT and in the explicit task were uncorrelated. We suggest that risk
aversion observed in our version of the IGT may reflect processes
that are distinct from those at work when payoff probabilities are
explicitly known. Such implicit risk aversion may arise from the
feeling of risk (Loewenstein et al., 2001) under complicated real
life situations where no explicit probabilities are available and may
be an instance of a “somatic marker” that helps us navigate choices
and plans in everyday life (Damasio, 1994).

MATERIALS AND METHODS
SUBJECTS AND EXPERIMENTAL PROCEDURE
We carried out two experiments, involving separate subject sam-
ples. Each experiment consisted of the two phases described below,
but their order was counterbalanced.

Experiment 1
Sixteen students (six females) from the California Institute of
Technology (Caltech) gave written informed consent according
to a protocol approved by the Caltech IRB. The age of subjects
ranged from 18 to 24 (mean = 21). Their psychological and eco-
nomic background information was collected at the end of the
experiment.

All participants first participated in 100 trials of a computer-
ized version of the IGT (Bechara et al., 1994) with post-decision
wagering (Persaud et al., 2007), followed by two versions of our
learning task (Figure 1A) without knowledge of the task structure
or the payoffs. Data from these prior tasks are not analyzed or
presented in the present study, but it is important to note that they

FIGURE 1 |Task structure. (A) The learning task with post-decision
wagering. Four decks were presented to subjects on a computer display.
After subjects chose a card, they wagered either $50 or $25. Subjects saw
the outcome of the trial immediately after wagering. (B) The explicit risk
aversion task. Identical payoff structures were used as in the learning task.

The payoff structure was depicted with pie charts. The probability with
which each pie chart would be selected was indicated by a yellow
percentage. Subjects wagered either $50 or $25. (C) The payoff structures
for four decks in the simple (left) and the complex (right) version of the
tasks.
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provided all subjects with a substantial and equal amount of prior
background experience.

Each subject then underwent two phases of the experiment in
the same fixed order:

Phase 1–Two versions of the learning task with post-decision
wagering, after being informed of the payoff distributions from
the different types of decks, 100 trials each.

Phase 2–Two versions of the explicit risk aversion task
(Figure 1B), the first version with 50 trials of the “simple” gamble
and the second with 100 trials of the“complex”gamble (Figure 1C,
see below for details of different versions of the task).

Subjects were familiarized with the tasks and post-decision
wagering through practice trials (∼20 trials). Within each phase,
the order of the two versions of the tasks was randomized across
subjects. Questionnaires were given after each phase to make sure
subjects understood the tasks.

Subjects were paid a fixed amount for their participation ($5),
a fixed amount ($3) for the IGT, as well as a variable amount
for their performance (mean = $5.34) in the learning and explicit
tasks. For the learning task, subjects were paid the amount they
earned, which was divided by 2000. For the explicit risk aversion
task, subjects were paid at the end of their experiment, based on
their earnings from one randomly selected trial.

Experiment 2
We conducted Experiment 2 with 20 naïve Caltech subjects. The
tasks in Experiment 2 were identical to those in Experiment 1, with
four important differences:

1) Subjects did not receive any prior background tasks (IGT or
learning task), as they had in Experiment 1.

2) The two phases were done in a fixed order (Phase 2 first, then
Phase 1), counterbalancing the order from Experiment 1.

3) Subjects underwent two explicit risk aversion tasks, 100 trials
of the “simple” and 100 trials of the “complex” gamble. Unlike
Experiment 1, here we paid subjects for every trial, in order to
match the payment scheme with the learning task (see below
for details).

4) All subjects were tested simultaneously in a social science
experimental laboratory with many cubicles with computer
terminals for each individual rather than individually as in
Experiment 1.

In this experiment, subjects were paid a fixed amount for their
participation ($10) in addition to a variable amount based on
their performance in all four tasks (simple and complex versions
of the explicit and learning tasks). Prior to each phase, subjects
were familiarized with each task through 10 practice trials.

LEARNING TASK WITH POST-DECISION WAGERING
Subjects were given a $2000 loan of play money in the begin-
ning and told that their goal was simply to earn as much play
money as possible. In each trial, four decks with different col-
ored symbols were presented on the display (Figure 1A). Subjects
clicked on one of the decks using a mouse. After selecting a card,
they wagered either $50 or $25 by clicking on the upper or lower
half of the flipped card, respectively. After wagering, the payoff

of the selected card was displayed as a multiplier for the wagered
amount (X WAGER). For example, if a subject wagered $50 and
got a X(−2) payoff, they would lose $100 in that trial. Note that the
final outcome (i.e., loss of $100) was not shown to the subjects.
At the time of the payoff, the positive multiplier was associated
with a happy icon and a positive laughter sound (070-who2.wav1)
while the negative multiplier was associated with a sad icon and
an obnoxious sound of shattered glass (truckcollide.wav2).

We randomized the spatial positions of the decks in each trial,
thus forcing subjects to learn solely about the association between
their appearance and their payoff. To encourage quick decisions
relying on gut feelings, we instructed subjects to respond within
1.5 s after the deck presentation. If they did not move the mouse
within this time interval, we randomized the deck positions again
(<5% of trials). If they moved the mouse to one of the decks but
failed to click on it, we regarded the deck under the mouse cur-
sor as their choice (<5% of trials). We did not impose any time
pressure for wagering responses.

We employed two learning tasks differing in complexity. In the
simple version of the task, the payoff was either X(+1) or X(−1;
Figure 1C left). The expected payoff was positive (+0.6) for one
deck and negative (−0.4) for the other three decks. In the com-
plex version of the task (Figure 1C right), the possible payoffs
were X(+2), X(+1), X(−1), and X(−2). The expected payoff was
positive (+0.6) for two decks and negative (−0.6) for the other
two decks. In the complex version, one positive, and one nega-
tive deck had high variance (2.44) and the others had low variance
(1.84). We refer to positive (or negative) decks as“good”(or“bad”)
decks.

The theoretical expected earnings over 100 trials with random
deck choice are $-281.25 for the simple version and $0 for the
complex version. In Experiment 1, subjects earned $781 ± 474
(mean ± SD) in the simple version and $747 ± 346 in the complex
version, and in Experiment 2, subjects earned $345 ± 347 in the
simple version and $891 ± 408 in the complex version, confirm-
ing that subjects performed well above-chance (p < 10−6 for both
versions in both experiments, one-tailed t -test).

Subjects were told that the optimal strategy is (1) to initially
explore the four decks while wagering $25 and (2) to exploit
the good deck while wagering $50 once they notice which deck
is most likely to give a positive payoff. 35 out of 36 subjects
discovered the good deck and then repeatedly chose from it
(Figure 2A)3. After six to eight consecutive choices from a good
deck, we showed a text message, “Game Restarted,” on the dis-
play to notify the subject that the deck-reward contingencies were
reassigned and that the subject should explore again (red bars
in Figure 2A). The number of consecutive choices required for
each reassignment was randomly chosen from six to eight to
reduce subjects’ anticipation for the next reassignment and to
have sufficient trials to observe the evolution of wagering behavior
(Figure 2B).

1http://www.moviewavs.com/
2http://download848.mediafire.com/
3We observed one subject who purposely chose from a bad deck every few trials. This
subject told us after the experiment that he tried to beat our game by occasionally
selecting a bad deck after selecting the good deck a few times in a row.
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FIGURE 2 | Results from one subject in the complex learning task.

(A) The history of card selection. Initially, the subject sampled from four
decks, then discovered the good deck and stuck with this deck until the
reshuffle (red vertical bars). Small red arrows indicate the trial where the
subject started to choose from the good deck consistently, which we
define as “the onset of good deck choice.” The red circles indicate the trials
where the subject received a negative payoff. (B) The history of actual
wagering (red) and the predicted probability of a high wager based on the
explicit task results (blue). (C) The Bayesian probability for an objectively
good deck [the good deck in the upper row in (A)] being a good deck. As
the evidence accumulates, this probability updates from 0.5 (the Bayesian
prior). It increases when this good deck is selected with a positive outcome
or when other decks are selected with a negative outcome. (D) The aligned
results of nine onsets of consecutive good deck selection from this subject.
The probability of good deck selection (black) and wagering high (red) are
aligned at the onsets (shown as the red arrow). The green line is the
Bayesian probability of the chosen deck being a good deck.

EXPLICIT RISK AVERSION TASK
To measure each subject’s risk aversion, we employed a standard
technique from experimental economics. In each trial, we showed
two or four pie charts for the simple or the complex version of the
risk aversion task, respectively (Figure 1B). These pie charts are
identical to the payoff distribution charts from the instructions for
the learning task (Figure 1C). The goal was to mimic the infor-
mation structure from the learning task as closely as possible in
order to maximize the predictive power of the risk aversion model

from one task to the other. During the wagering stage, the learning
task can be thought of as being equivalent to the risk aversion task,
except that in the learning task the subjects estimate the probabili-
ties (indicated explicitly here in yellow in Figure 1B) based on their
previous card draws. For example, in the simple version of the risk
aversion task, if the good and bad decks have explicitly stated prob-
abilities of 70% and 30% respectively, this would correspond to a
situation in the learning task, where the subject draws a card from a
deck they believe to be good and is (subjectively) 70% sure that the
chosen deck is good (a good deck is a deck with positive expected
payoff). In reality, its unlikely that subjects assign explicit proba-
bilities to the decks in the learning task. But they may behave“as if”
they are tracking the Bayesian probabilities (Hampton et al., 2006).

The probabilities assigned to the pie charts in the explicit task
ranged from 0.25 to 0.70 for the simple version and from 0.35
to 0.85 for the complex version. There was no time restriction.
The order of the simple and complex versions was randomized
across subjects. In this explicit task, the subjects’ goal was again to
maximize their payoff.

In Experiment 1 and 2, we implemented two ways of payment in
this explicit task. In Experiment 1, we randomly picked one of the
150 trials from the explicit tasks (combining simple and complex
versions), selected one of the pie charts according to their proba-
bilities, then selected one of the possible payoffs from that pie chart
according to the probabilities in the chart, and finally multiplied
the chosen payoff by the subject’s wager. Subjects were shown this
procedure on the display animation and understood this proce-
dure during practice sessions for both versions of the explicit task.
In Experiment 2, we gave subjects a $2000 loan of play money in
the beginning and we told them that the goal was simply to earn as
much play money as possible. We gave trial-by-trial feedback (with
the same sound and icon as in the learning task), accumulated the
total amount of play money and paid subjects the amount they
earned which was divided by 2000.

BAYESIAN UPDATING TO ESTIMATE SUBJECTIVE PROBABILITY
We computed the Bayesian probability of the chosen deck being
the good deck using a Bayesian model (Figure 2C). Briefly, this
model computes the probability of each deck being the good deck,
given the distribution of payoffs from each type of deck (good or
bad) and the actual history of positive and negative payoffs to the
subject. The probabilities for all four decks were updated after each
choice. We describe the details of our Bayesian model and assess
how well our assumptions are justified in the Appendix.

The Bayesian model of learning that we used was chosen for
its simplicity and descriptive power in other learning research
(Ghahramani, 2001; Daw et al., 2005; Hampton et al., 2006;
Brodersen et al., 2008). We compared our Bayesian model with the
prevailing cognitive models (Busemeyer and Stout, 2002), includ-
ing a variant of reinforcement learning,and showed that our model
is superior in predicting choices and wagers. We describe the details
of the model comparison in the Appendix.

PREDICTING WAGERING BEHAVIOR IN THE LEARNING TASK AND DATA
FITTING
In the explicit task, the probability of subjects wagering high
increases with the probability for the good deck in a sigmoidal

www.frontiersin.org February 2012 | Volume 3 | Article 50 | 23

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Wang et al. Conscious and non-conscious decision-making

manner (Figures 3C,D,G,H, blue curves). Combining this psycho-
metric function in the explicit task with the Bayesian probabilities
computed in each trial, we tried to predict the probability of a
high wager in the learning trials. If the subjects were learning the
probabilities like Bayesians (even roughly) then their choice char-
acteristics in the explicit risk aversion task should help predict their
wagering behavior in the learning task.

We used local regression to obtain smooth psychometric curves
shown in Figures 3C,D,G,H and 4G,H. We used the Locfit pack-
age (Loader, 1999) included in the Chronux Toolbox4 (Mitra and
Bokil, 2008) in MATLAB. We used a Gaussian kernel and a bino-
mial local likelihood fitting family. To stabilize the fit, we defined
the probability of a high wager as 0 at a good deck probability
of 0. For each subject, we optimized the smoothing width using
a cross-validation method by (1) randomly dividing the dataset
into halves, a training and a test data set, (2) obtaining the best fit
to the training set for each of the different smoothing widths, and
(3) computing the squared difference between the fitted curve and
the actual data from the test set, which was not used during curve
fitting. We repeated the above cross-validation procedure 10 times
and chose the smoothing width that minimized the overall error
for the test set. For Figures 3C,D,G,H, we averaged the derived
smoothed curves across subjects.

RISK AVERSION INDEX AND RISK-SENSITIVITY INDEX
We defined a risk aversion index (RAI) as the point (x-axis in
Figures 3C,D,G,H) where the probability of a high wager (y-axis)
reaches 0.5. We derived the RAI from the fitted curve for each sub-
ject. We also defined a risk-sensitivity index (RSI) as the steepness
of the fitted curve as follows:

RSI =
(Probability of high wager at p = 0.75)

−(Probability of high wager at p = 0.25)

0.75 − 0.25

Due to the nature of the task and noise in the learning task, tra-
ditional models of risk aversion (Kahneman and Tversky, 1979;
Rabin, 2000; Holt and Laury, 2002) did not fit the data well.
Our measures of risk aversion are simple but do a better job of
characterizing subjects’ risk aversion, as demonstrated by the high
within-subject correlations between the simple and complex ver-
sions of the explicit tasks as well as those of the learning tasks (see
Results).

RESULTS
LEARNING TASK WITH POST-DECISION WAGERING
In our novel learning task, the deck-payoff contingency switched
after subjects repeatedly selected cards from a deck with posi-
tive expected value (a “good” deck). In each trial, subjects first
selected a card from one of four decks, and then wagered either
$50 or $25. Immediately after wagering, subjects saw their pay-
off as a multiplier of the wager amount, that is, either X(+2),
X(+1), X(−1), or X(−2). The total amount of the payoff (i.e., the
wagered amount times the multiplier) was not shown explicitly on
the display (Figure 1A).

4http://chronux.org/

We show a typical subject’s behavior for deck selection and
wagering in Figures 2A,B. Initially, the subject sampled from sev-
eral decks, then settled on the good deck. He stuck with this deck
until the reshuffle. As for wagering, he started off wagering low but
eventually wagered high after several selections from the good deck
(red line). After the reshuffle,he returned to wagering low. Interest-
ingly, his actual wagering behavior lagged behind his theoretically
predicted wagering behavior (blue line), which incorporated his
risk aversion as measured in the explicit task (see below). This
lag is consistent with non-conscious optimal choice, and we will
return to this point later.

To analyze when subjects started to wager high, in Figures 2D
and 3A,B,E,F, we aligned card selection and wagering to the onset
of good deck selection. Figure 2D shows that the exemplar subject
never wagered high (the red line) before he found the good deck.
On subsequent draws from the good deck, the subject increasingly
wagered high, and by the sixth card the subject was always wager-
ing high. Figures 3A,B (Experiment 1, n = 16) and Figures 3E,F
(Experiment 2, n = 20) show similar trends at the group level
in both the simple and complex versions of the learning task
in both experiments. Subjects wagered high (the red lines) on
less than 100% of the trials even after repeatedly choosing from
the good deck (up to seven cards after the onset of good deck
selection).

This alone does not yet prove that subjects were choosing the
advantageous good deck(s) without conscious awareness; it merely
suggests that subjects needed to build up to a certain level of confi-
dence in their selection before making a high wager. We therefore
used a Bayesian model to estimate subjects’ beliefs about which
decks were the good ones and then used those beliefs to predict
the subjects’ wagering behavior. The model’s prediction was based
on the past history of outcomes for the subjects as well as their risk
aversion.

EXPLICITLY MEASURING RISK AVERSION
To measure risk aversion, we asked subjects to wager $50 or $25
in a situation where the probability of the chosen deck being
good or bad was explicitly available (the explicit risk aversion task,
Figure 1B). Note that in the learning task (Figure 1A), subjects
might never have had an explicit representation of this probabil-
ity, even if they computed it implicitly in order to guide choice and
wagering.

The resulting psychometric curves for high wagers in the
explicit task are shown by the blue curves in Figures 3C,D,G,H. As
an example, for the simple version of the explicit task in Experi-
ment1, subjects wagered high more than 90% of the time when the
probability of being a good deck exceeded 0.65. They wagered high
only 50% of the time when the explicit probability of being a good
deck was 0.55, consistent with published risk aversion results from
experimental economics (Kahneman and Tversky, 1979; Rabin,
2000; Holt and Laury, 2002).

We then analyzed how often subjects wagered high in the learn-
ing task as a function of the Bayesian probability of the chosen deck
being the good one (Figures 3C,D,G,H, red curves). When making
their wagering decisions in the learning task, subjects’ psychome-
tric curves shifted to the right, suggesting that they became more
risk-averse. Furthermore, the curves became flatter, suggesting that
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FIGURE 3 | Wagering behavior in the learning task cannot be completely

accounted for by the risk aversion measured in the explicit task [(A–D):

Experiment 1; (E–H): Experiment 2]. (A,B,E,F)The actual probability of a high
wager (red) is aligned across multiple onsets of good deck selection [(A,E) for
the simple version and (B,F) for the complex version of the learning task]. The
x -axis denotes the trial relative to the onset of good deck selection. The
probability of good deck selection (black) as well as the predicted probability
of a high wager (based on the explicit task; blue) are also aligned at the onset

of good deck selection. The black vertical bars indicate a significant difference
between the predicted and actual probability of a high wager. *, **, and ***
indicate significance levels of p < 0.05, p < 0.01, and p < 0.001, respectively.
(C,D,G,H) The probability of a high wager as a function of the explicit
probability in the risk aversion task (blue) and as a function of the Bayesian
probability in the learning task (red) for the simple (C,G) and for the complex
(D,H) versions of the tasks. The curves are obtained by averaging individually
fitted curves using local regression. Shading denotes 1 SEM across subjects.
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FIGURE 4 | Subject-specific risk aversion indices (RAI) are correlated

between the simple and complex versions of the tasks, but not between

the explicit and learning tasks. (A,B) RAI was highly correlated between the
simple (x -axis) and complex (y -axis) versions within the explicit tasks (A) and
within the learning tasks (B). (C,D) RAI was uncorrelated across the learning
(x -axis) and the explicit task (y -axis) in either the simple (C) or the complex

(D) versions. Blue dots represent subjects from Experiment 1 and green dots
represent subjects from Experiment 2. (E–H) The results from two exemplar
subjects indicated by the red arrows in (D). Their behaviors are presented in
the same format as in Figures 3A–D. (E,G) A subject who preferred to wager
high in the learning but not in the explicit task. (F,H) A subject who showed
extreme risk aversion only in the learning task.
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subjects were less sensitive to the payoffs during the learning task.
To quantify these effects, we computed two indices for each sub-
ject: a RAI and a RSI. RAI represents the explicit probability of
the deck being “good” at which subjects wagered high in 50% of
the trials. RAI approaches 1 if subjects are risk-averse (i.e., those
who wager high only when they are sure to win). If subjects are
risk-neutral, RAI is 0.45 (due to the negative expected payoffs
for the random choice strategy) for the simple and 0.5 for the
complex versions of the task. In Experiment 1 (Figures 3C,D),
RAI was higher in the learning tasks (RAI = 0.633 for the simple
and 0.775 for the complex) than in the explicit risk aversion tasks
(RAI = 0.548 for the simple and 0.576 for the complex, paired t -
test, p = 0.007 for the simple, and p = 0.002 for the complex). In
Experiment 2 (Figures 3G,H), for the complex version, RAI was
higher in the learning tasks (RAI = 0.702) than in the explicit tasks
(RAI = 0.520, p = 0.045). For the simple version, RAI in the learn-
ing task (0.476) was not different from that in the explicit task
(RAI = 0.467, p = 0.15). RSI is the slope of the curve, representing
the sensitivity to the change in probability. In Experiment 1, RSI
was smaller in the learning tasks (RSI = 1.12 for the simple and
0.70 for the complex) than in the explicit tasks (RSI = 1.97 for the
simple and 1.78 for the complex, paired t -test, p < 10−5 for both
the simple and the complex versions). In Experiment 2, RSI was
also smaller in the learning tasks (RAI = 1.06 for the simple and
0.949 for the complex) than in the explicit tasks (RAI = 1.87 for
the simple and 1.83 for the complex, p < 10−4 for both the simple
and the complex versions).

Overall, the results from Experiment 1 and 2 were consis-
tent although there was some difference in the simple version of
the task. RAI in both the learning and explicit task was signifi-
cantly lower in Experiment 2 than Experiment 1 (unpaired t -test,
p = 0.016 for the learning and p < 0.001 for the explicit task; see
Discussion). The RSI was not significantly different between the
two experiments.

Looking at Figure 3C more closely, in the explicit task sub-
jects wagered high in 100% of the trials where the probability of
choosing from the good deck was 70%. However, in the learning
task they wagered high in less than 65% of the trials where the
Bayesian probability was at the same level. Our analysis reveals
that this phenomenon is a combined effect of lower RSI (i.e., flat-
ter psychometric curves) indicating an insensitivity to the payoffs,
and higher RAI (i.e., rightward shift of the curves) indicating that
subjects were more risk-averse during the learning task than the
explicit task.

THE DELAYED ONSET OF AWARENESS COMPARED TO THE ONSET OF
GOOD CARD CHOICE
We predicted the probability of a high wager for each trial in
the learning task based on the actual payoff history in the learn-
ing task and the risk aversion profile in the explicit task (as in
Figures 3C,D,G,H). First, we computed the Bayesian probability
for each trial based on the history of payoffs (Figure 2C). Then, we
derived the probability of a high wager by drawing a vertical line
from the Bayesian probability (on the x-axis) in the risk aversion
sigmoidal curve and finding the corresponding y-value. This was
repeated for each trial (Figure 2B, blue curve). If there is a period
of non-conscious decision making, we should see a gap between

the actual and the predicted probability of high wagers even after
taking into account each subject’s risk aversion.

In Figures 3A,B,E,F, the blue curves show the proportion of tri-
als in which subjects would have wagered high if they had explicitly
been shown the Bayesian probability that they were choosing from
the good deck. We see that subjects wagered high much less fre-
quently in the actual gambling task (red) than predicted based on
risk aversion and the Bayesian probabilities (blue). In both experi-
ments, the gaps between the two curves were significantly different
at most points: in Experiment 1 for the simple version, p < 0.05
for points from +1 to +5, p = 0.055 for +6, and p = 0.088 for +7;
for the complex, p < 0.05 for all the points after 0, and in Exper-
iment 2 for the simple, p < 0.05 for points from +1 to +7 except
+5 (p = 0.069); for the complex, p < 0.05 for all the points from
0 to +6, and p = 0.062 for +7; two-tailed paired t -test, corrected
for multiple comparisons for trial 0 to trial +7 with false discovery
rate (FDR) of 0.05 (Benjamini and Hochberg, 1995).

Thus, even when we take into account the effects of risk
aversion, we still find that subjects did not wager optimally. We
conclude that we cannot fully explain the gap between choosing
optimally and wagering high (Bechara et al., 1997; Persaud et al.,
2007) based solely on risk aversion (Clifford et al., 2008a; Schurger
and Sher, 2008; Dienes and Seth, 2010).

RISK AVERSION IN THE LEARNING TASK IS UNCORRELATED WITH THAT
MEASURED IN THE EXPLICIT TASK
Even if risk aversion does not completely account for behavior in
the learning task, we would expect to see a correlation between risk
aversion measures in the two tasks, since it is generally assumed
that risk aversion is an individual personality trait that should
be fairly stable across tasks, especially over short periods of time
(Harrison et al., 2005; Koch and Preuschoff, 2007). To check this
assumption, we ran a correlation analysis on the risk aversion
measures.

Within-subject RAIs were highly correlated between two lev-
els of payoff complexity within the explicit tasks for Experi-
ment 1 (Figure 4A, blue dots, Spearman correlation test:ρ = 0.81,
p = 0.00022) and for Experiment 2 (green dots, ρ = 0.58,
p = 0.01). This was also true within the learning tasks for Exper-
iment 1 (Figure 4B, blue dots, ρ = 0.6, p = 0.024) and Experi-
ment 2 (green dots, ρ = 0.5, p = 0.026). When we combined data
from both Experiment 1 and 2, we found strong correlations
within the explicit (ρ = 0.72, p = 1.2 × 10−6) and the learning
tasks (ρ = 0.5, p = 0.0028). This reliable correlation is consistent
with the assumption that risk aversion is a fixed factor specific to
each subject. However, within-subject RAIs across the learning and
the explicit tasks were uncorrelated in both levels of task complex-
ity. Within the simple version, the correlation coefficient (ρ) was
−0.24 (p = 0.39) in Experiment 1, 0.021 (p = 0.93) in Experiment
2 and 0.19 (p = 0.28) when we combined the data from Experi-
ment 1 and 2 to increase statistical power (see Figure 4C). Within
the complex version, we again found no correlation between
the tasks (ρ= −0.28, p = 0.31 for Experiment 1; ρ = −0.074,
p = 0.76 for Experiment 2; ρ = −0.15, p = 0.39 for combined;
see Figure 4D). We show exemplar subjects who showed strik-
ing inconsistency between the learning and the explicit tasks in
Figures 4E–H.
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MEAN CHOICE-WAGER GAP IN THE LEARNING TASK IS
UNCORRELATED WITH RAI MEASURED IN THE EXPLICIT TASK
To verify that risk aversion is uncorrelated between tasks, we
further analyzed the correlation between RAI estimated from
the explicit task (50% crossing points of the blue curves in
Figures 3C,D,G,H) and mean choice-wager gap from the learning
task (i.e., the mean difference between black and red curves from
0 to +7 in Figure 2D). RAI from the explicit task did not correlate
with the mean choice-wager gap in the simple (ρ = 0.021,p = 0.94)
or complex version (ρ = −0.13, p = 0.65) of Experiment 1 nor
in the simple (ρ = 0.18, p = 0.45) or complex version (ρ = 0.23,
p = 0.34) of Experiment 2.

We also analyzed the correlation between RAI and mean choice-
wager gap both estimated from the learning task. Within the
learning task, RAI was correlated with the mean choice-wager
gap in the simple (ρ = 0.55, p = 0.034) and the complex ver-
sion (ρ = 0.83, p = 0.00012) of Experiment 1 as well as in the
simple (ρ = 0.54, p = 0.014) and the complex version (ρ = 0.48,
p = 0.033) of Experiment 2.

Taken together, the gap between actual choice and wagering
behavior in the learning task was not correlated with risk aversion
estimated from the explicit task, while it was correlated with the
risk aversion estimated from the learning task. This is consistent
with the results presented in Figure 4.

COMPARISON BETWEEN THE SIMPLE AND COMPLEX VERSION OF THE
TASK
We used a simple and a complex version of the task to allow easy or
more difficult conscious access to the contingencies between decks
and their expected outcomes (see Figure 1C and Materials and
Methods for details). We expected to observe an increased period
of non-conscious decision making in the complex version as the
complexity of the payoff histories exceeds the capacity of con-
scious working memory (Bechara et al., 1997; Dijksterhuis et al.,
2006). When we aligned all the variables at the onset of good deck
selection (Figures 3A,B,E,F), the difference between the predicted
and the actual probability of high wagers (i.e., the gap between the
blue and red curves from trial 0 to +7) was larger in the complex
version than in the simple version (p = 0.0075 for Experiment 1
and p = 0.0013 for Experiment 2). This is consistent with the idea
that non-conscious decision making is likely to be induced when
the task is more complex.

DISCUSSION
The original IGT has been cited as evidence for non-conscious
decision making. However, due to its unconstrained nature, there
may be alternative explanations other than non-conscious decision
making. Here we reported evidence that casts doubt on several
of those alternative explanations. To exclude explanations due
to risk aversion and ambiguity aversion (Fellows, 2004; Dunn
et al., 2006; Koch and Preuschoff, 2007; Clifford et al., 2008a,b;
Schurger and Sher, 2008; Dienes and Seth, 2010; Fleming and
Dolan, 2010; Sandberg et al., 2010), we modified the original
IGT in several respects. In particular, we showed that risk aver-
sion could not explain the entire effect of non-conscious decision
making in our task. Furthermore, we found that risk aversion
observed during the learning task was not correlated with risk

aversion elicited during a similar gambling task with explicit
probabilities. We suggest that these two types of risk aversion
may map onto an emotional feeling of risk on the one hand,
and an explicitly accessible representation of risk on the other
hand.

In our learning tasks, subjects were able to discover the good
decks and stick with them. However, as in Persaud et al. (2007),
we found that it generally took several choice–outcome experi-
ences from a good deck before subjects were willing to place
high wagers on the outcomes. Interestingly, some subjects con-
tinued to wager low even after selecting from the good deck six to
eight trials in a row. The reason for this reluctance to wager high
could be that subjects were unaware of the deck-reward contin-
gencies and selected cards using non-conscious decision making
(Bechara et al., 1997; Persaud et al., 2007). Alternatively, subjects
may have been risk-averse and not willing to wager high until
they were confident enough that they were choosing from the
good deck (Clifford et al., 2008a; Schurger and Sher, 2008). What
we found partially supports both explanations: subjects showed
strong risk aversion in our modified version of the IGT, that is,
they showed RAI values significantly larger than risk-neutral in
all the learning tasks except the simple version in Experiment
2. However, this did not account for all of the temporal gap
between the onsets of optimal choice and advantageous wagering
in the experiments. We conclude that people can choose advanta-
geously without full awareness of why they do so, at least to some
extent.

By carrying out two independent experiments on two pools
of naïve subjects (n = 16 and 20), we replicated most of the
findings. With two different experiments, we ruled out some of
the potential artifacts, including the effects of (1) the extent of
prior practice, (2) the order of the learning and explicit risk aver-
sion task, (3) the presence of trial-by-trial feedback and payment,
and (4) the testing environment (one-to-one experiment typical
of psychophysics experiments and group experiments typical of
experimental economics).

While most effects between the two experiments were sim-
ilar, we observed two differences in the simple version of the
task. First, in both the learning and the explicit task, the RAI
was lower for Experiment 2 than Experiment 1. The lower lev-
els of risk aversion in Experiment 2 would be expected when
paying subjects for many trials rather than one, but we can-
not rule out the possibility that the other experimental changes
played a role as well. Second, the RAI was not different between
the explicit and learning tasks in the simple version in Experi-
ment 2 (Figure 3G). This could be because the simple version
of the task itself may not be optimal to induce the effects that
we were looking for. This interpretation is consistent with past
studies (Bechara et al., 1997; Dijksterhuis et al., 2006), suggesting
that evidence for non-conscious decision making is more evident
in complex tasks where subjects rely less on conscious working
memory.

NON-CONSCIOUS DECISION MAKING AND POST-DECISION WAGERING
In this study, we applied post-decision wagering to assess if advan-
tageous decision making can occur non-consciously. While our
wagering procedure asked subjects to simply bet high or low,
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we do not believe that subjects’ confidence level is all or noth-
ing, as is sometimes assumed in perceptual consciousness. In fact,
we believe that confidence is graded and more or less continu-
ous on a trial-by-trial basis, which is the basis of our Bayesian
model.

Over the last decades, convincing evidence for non-conscious
processing has been established in at least two ways. First,
while showing complete lack of detectability/discriminability (e.g.,
chance performance or d′ = 0) of stimuli with a direct task that
assesses awareness of the stimuli, robust non-conscious processing
has been shown with indirect measures, such as behavioral priming
effects and neurophysiological signals (for a review, see Hannula
et al., 2005; Kouider and Dehaene, 2007). Second, above-chance
behavioral performance can be considered to be non-consciously
mediated if the level of conscious confidence, reported in a forced
manner, is completely uncorrelated with performance (Kolb and
Braun, 1995; Kunimoto et al., 2001; Persaud et al., 2007). Non-
conscious processing in our task has been established via the
second method with conscious confidence indirectly assessed with
post-decision wagering.

Recently, the nature of post-decision wagering as a way to
assess conscious confidence has been intensely debated (Koch and
Preuschoff, 2007; Clifford et al., 2008a; Schurger and Sher, 2008;
Dienes and Seth, 2010; Fleming and Dolan, 2010; Sandberg et al.,
2010). Some emphasize the advantage of post-decision wagering
(Koch and Preuschoff, 2007; Persaud et al., 2007). It is highly intu-
itive and easy to administer, even for children (Ruffman et al.,
2001) or animals (Kornell et al., 2007; Kiani and Shadlen, 2009),
compared to confidence ratings. As post-decision wagering indi-
rectly assesses conscious confidence, it is less likely to alter task
performance than direct confidence ratings, which might affect
performance because it forces subjects to introspect in an unnat-
ural way (Koch and Preuschoff, 2007). Furthermore, the monetary
incentives ensure that subjects are motivated to reveal all the infor-
mation they have for their advantageous decisions (Persaud et al.,
2007).

Others have pointed out disadvantages with post-decision
wagering (Clifford et al., 2008a; Schurger and Sher, 2008; Dienes
and Seth, 2010; Fleming and Dolan, 2010; Sandberg et al., 2010).
Post-decision wagering may be subject to economic context, which
might influence conscious confidence. For example, risk aversion
may lead to different wagering behavior even when the underlying
conscious confidence is the same. In fact, using backward masking
in sensory psychophysics, Fleming and Dolan (2010) showed that
risk aversion discouraged high wagers. Furthermore, Sandberg
et al. (2010) have suggested that other meta-cognitive measures
such as a perceptual awareness scale could improve our ability to
detect weak conscious confidence.

In our study, we chose post-decision wagering for the assess-
ment of conscious confidence because we can use the same wager-
ing task during both learning and explicit risk aversion tasks and
we can directly examine the role of risk aversion on an individ-
ual basis across two very similar tasks. Future work is needed to
see whether non-conscious, advantageous decision making can be
confirmed with other methods, such as allowing subjects to bet on
a continuous scale rather than just high or low.

ADVANTAGES OF OUR MODIFIED VERSION OF THE IGT
It has been argued that the task design of the IGT confounds
several factors known to play an important role in decision
making (Fellows, 2004; Sanfey and Cohen, 2004; Dunn et al.,
2006), which undermined previous attempts to demonstrate non-
conscious decision making. We sought to avoid these confounds
by modifying the original IGT in several important ways. First, we
incorporated post-decision wagering to indirectly measure sub-
jects’ conscious awareness of the deck-payoff contingency in every
trial (Persaud et al., 2007). Second, we introduced a reshuffling
procedure to observe multiple episodes of learning and choice
within a single subject, resulting in greater statistical power. Such
a feature is desirable not only for behavioral studies like ours,
but also for neurophysiological experiments (Fukui et al., 2005;
Oya et al., 2005). In fact, despite its wide application in behav-
ioral studies, the IGT, which can induce at most a single onset
of awareness, has been used only in a few imaging studies in
good part due to this statistical limitation. Third, we addressed
the concern about heterogeneous priors on the task structure by
explicitly telling the subjects the distributions of payoffs from the
four decks and letting them practice the task. This also helped
to eliminate the effects of ambiguity aversion, which have been
shown to cause subjects to avoid gambles with unknown prob-
abilities (Ellsberg, 1963; Camerer and Weber, 1992; Rode et al.,
1999; Hsu et al., 2005). This improvement was also critical for
our Bayesian modeling analysis. If subjects did not know anything
about the task structure we could still have used a reinforcement
learning algorithm (Oya et al., 2005), but it is unclear how to com-
bine such a model with risk aversion (Bossaerts et al., 2008). In fact,
the model comparison (see Appendix) suggests that our Bayesian
model with knowledge of the task structure performs better in
predicting subjects’ behavior than the one without this knowledge
and other related reinforcement learning models (Busemeyer and
Stout, 2002).

In fairness to alternative explanations, our experiment did not
explicitly measure subjects’ beliefs about the different deck prob-
abilities, and so we cannot rule out the possibility that subjects’
beliefs were non-Bayesian. Although our novel gambling task elim-
inated ambiguity about the task structure, subjects still had to learn
and estimate the probabilities of selecting from a good deck and
were thus facing compound lotteries with potentially inaccurate
probabilities. In the learning task, there is the potential for indi-
vidual differences in learning rates, in differential memory for
positive versus negative payoffs, in ability to keep the payoff distri-
butions described in the instructions in working memory, and in
the discounting of past outcomes, etc. These individual differences
would have only affected the learning task but not the explicit task,
which could account for the divergence in risk aversion between
the tasks. We did observe that the psychometric curves relating the
probability of a high wager to the probability of being a good deck
(Figures 3C,D,G,H) were flatter in the learning than in the explicit
tasks. Though we described it as evidence that subjects become less
risk sensitive, alternative accounts are also possible. In the learning
task, inaccurate estimation of the probabilities could result in an
observed insensitivity to risk. Further experiments will be needed
to address these issues.
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MULTIPLE MECHANISMS FOR DECISION MAKING UNDER RISK
The behavioral and neural correlates of decision making under
risk have been extensively investigated and it has been shown
that components of risk, such as variance of probability and
reward, influence the activity of midbrain dopamine neurons
as well as the activation of ventral prefrontal, insular, and cin-
gulate cortices (Bechara et al., 1999; Critchley et al., 2001;
Smith et al., 2002; Fiorillo et al., 2003; Tobler et al., 2007;
Christopoulos et al., 2009). Interestingly, Huettel et al. (2006)
have argued that decision making under risk and under ambi-
guity are supported by distinct mechanisms, with risk preference
encoded in the posterior parietal cortex and ambiguity pref-
erence encoded in the lateral prefrontal cortex. In our study,
we did not observe significant correlation between risk aver-
sion in the learning and explicit tasks. It is even more intriguing
because the tasks were so similar and they were done in the same
session, with very similar stimuli and identical payoffs. Impor-
tantly, the high correlations of risk aversion between the simple
and complex versions of the task within each of the learning
and the explicit task ruled out that the non-significant corre-
lations were due to subjects’ confusion, or a lack of statistical
power.

Inconsistency between risk aversion in the learning and the
explicit tasks (Figure 4) suggests the possibility of two separable
psychological processes for the computation of risk: one process
may depend on an explicit and verbally accessible representation
of risk (since this is how the risk information was provided in
the first place), while the other process may depend on an emo-
tional feeling of risk based on experienced outcomes that need not
be accessible to explicit verbal report (Loewenstein et al., 2001).
Our findings suggest a description–experience gap between risk
in explicit and implicit tasks. Recently, some studies have demon-
strated this description–experience gap. FitzGerald et al. (2010)
showed that the risk of learned options is correlated with activity
in the anterior cingulate cortex while the risk of described options
is correlated with activity in the bilateral anterior insula cortices.
Erev et al. (2010) found that decisions from description were pre-
dicted best by different models than those that predicted decisions
from experience.

Distinctive processes for risk computation have been suggested
in recent studies in normal subjects (Hertwig and Erev, 2009),
as well as with lesion patients and psychiatric populations. When
normal subjects learn probabilities from experience, they can show
a reversed risk preference compared to when they are notified of
the risk through description of the probabilities (Hertwig and
Erev, 2009). Patients with damage to the ventromedial prefrontal

cortex can cognitively assess appropriate behaviors but cannot
act accordingly in real life, a dissociation which is in part repli-
cated in the IGT (Anderson et al., 1999; Krajbich et al., 2009).
Pathological gamblers are obsessed by risky gambles (Holden,
2001; Potenza et al., 2001). With some drug treatments, their
risk aversion can be enhanced to a level higher than in healthy
controls (Brañas-Garza et al., 2007), however, their pathologi-
cal behaviors are prone to relapse in real life (Holden, 2001).
Interestingly, these clinical populations are capable of comput-
ing risks cognitively. However, they fail to choose appropriately
in everyday life, possibly because of an inability to implement
risk mechanisms based on emotional feelings (Loewenstein et al.,
2001).

While Dienes and Seth (2010) found correlation between risk
aversion and the degree of non-conscious knowledge inferred from
wagering, we did not get an analogous result. We believe that our
two separate risk models described above could explain this dis-
cordance. For tasks that do not involve learning and emotional
feeling of risks, such as those employed by Dienes and Seth, the
explicit risk mechanism is likely at work. Obviously, further studies
are needed to test these ideas.

Taken together with these other results, the present findings
suggest that these two processes for risk computation may be
subserved by distinctive neuronal mechanisms within the pre-
frontal cortex (Tobler et al., 2007; Christopoulos et al., 2009),
posterior cingulate cortex (McCoy and Platt, 2005), and insula
or components of the basal ganglia (Preuschoff et al., 2006).
Whether emotional experiences (Damasio, 1994; Bechara et al.,
1997, 2000) guide subjects in our learning task in a non-
conscious manner is an important open question for future
studies.
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APPENDIX
BAYESIAN INFERENCE MODEL: ASSUMPTION AND VALIDATION
We constructed a Bayesian inference model to estimate the prob-
ability of each deck being the good deck. This estimated prob-
ability would be a good proxy of how actual subjects would
feel about each deck (1) if subjects have perfect memory of the
payoff structure and can keep track of the Bayesian probability
associated with each deck (assuming the Markov property) and
(2) if subjects understand and utilize the structure of the gam-
bling task. Further, (3) if subjects were to select the deck and
to wager on the chosen card based on the Bayesian probability,
we should be able to predict the choice and the wager behavior
well.

We quantified the performance of the Bayesian model in their
ability to predict subjects’ choices and wagers on a trial-by-
trial basis using signal detection theory (SDT; Macmillan and
Creelman, 2005).

For prediction of a choice in a given trial, we say that the model
made a correct prediction (i.e., hit) when it assigned the highest
Bayesian probability to the deck that the subject actually chose in
that trial. If the model assigned the highest probability to an uns-
elected deck, we regarded it as a false alarm. Further, we regarded
the assigned highest probability as the confidence the model had
in each prediction. By shifting the threshold for this confidence of
the model from zero to one, we were able to construct ROC curves,
which quantify how successfully the model could predict subjects’
behavior. For the following analysis, we computed the area under
the ROC curve, which we call A′ for short. A′ for the choice was
0.80 ± 0.13 (mean ± SD) for the simple version and 0.80 ± 0.11 for
the complex version in Experiment 1, and 0.77 ± 0.13 for the sim-
ple version and 0.74 ± 0.14 for the complex version in Experiment
2.

For prediction of wagering in a given trial, the model always
predicts a high wager with a confidence expressed as the assigned
probability for the chosen deck. Again, by shifting the confidence
threshold, we constructed ROC curves and computed A′ for the
wager prediction. A′ for the wagering was 0.87 ± 0.11 for the
simple version and 0.77 ± 0.13 for the complex version in Exper-
iment 1, and 0.84 ± 0.12 for the simple version and 0.82 ± 0.16
for the complex version in Experiment 2. Although it is far from
perfect (i.e., A′ = 1; p < 0.0005), A′ was significantly higher than
chance [chance A′ would be 0.5, A′ > 0.5 with p < 10−6 (t -test)].

There could be several reasons why subjects’ choices and wagers
were sub-optimal. First, subjects may not remember the payoff
structures and lose track of the Bayesian probabilities (assumption
1 was wrong). This may be the case for the complex version, but is
highly unlikely for the simple version. Second, subjects might not
have understood or utilized the task structure. We took great care
to familiarize subjects with the procedures, showed them the pay-
off structures (Figure 1C) and even explained the optimal strategy
(see Materials and Methods) prior to the experiment. In Experi-
ment 1, there were three practice sessions before entering the final
critical sessions. Still, it is possible that subjects may have adopted
other strategies, such as the “gambler’s fallacy”; A spurious belief
such as “after three positive outcomes in a row, I tend to receive a
negative outcome” might have affected their decisions, which we
did not model.

Below, we describe our implementation of the Bayesian model.
Assuming a subject satisfies assumptions 1 and 2, we can compute
the Bayesian probability of each deck being the good deck as:

pi,t = P(Di,t = Good), i = 1, 2, 3, 4 (A1)

Where pi,t denotes the probability of deck i being the good deck at
trial t, and Di,t represents the state of deck i at trial t (Di,t = Good
or Di,t = Bad).

In the simple version of the learning task, there is only one good
deck, thus the sum of pi,t across the four decks is equal to 1.

∑

i=1,2,3,4

pi,t = 1 (A2)

In the complex version, there are two good decks, thus the sum
of pi,t across the decks is equal to 2.

∑

i=1,2,3,4

pi,t = 2 (A3)

After each trial, we update pi,t+1 using the Bayesian updating
rule based on the behavior and the outcome at trial t. We used a
two-stage updating rule, first for the selected deck and then the
other three unselected decks.

The Bayesian updating rule for the selected deck
We applied the Bayesian model to update the probability of deck
i being a good deck at trial t + 1 (pi,t+1) based on the probability
of deck i being a good deck at trial t (pi,t) and the actual payoff
(value) observed at trial t (Vt, representing the reward or loss the
subject received at trial t ) as follows:

pi,t+1 = P
(
Di,t+1 = Good

) = P
(
Di,t = Good|Vt

)

= P
(
Vt |Di,t = Good

) · P
(
Di,t = Good

)

P (Vt )

= P
(
Vt |Di,t = Good

) · P
(
Di,t = Good

)

∑

i
P

(
Vt |Di,t

) · P
(
Di,t

)

=P(Vt |Di,t =Good) ∗ P(Di,t =Good)
/
(P(Vt |Di,t =Good)

∗ P(Di,t =Good) + P(Vt |Di,t = Bad) ∗ P(Di,t =Bad))

=P(Vt |Di,t =Good) ∗ P(Di,t =Good)
/
(P(Vt |Di,t =Good)

∗ pi,t + P(Vt |Di,t =Bad) ∗ (1 − pi,t ))

(A4)

The updating rule for the unselected decks
Following the update of pi,t+1 for the selected deck, we updated
pi,t+1 for the other decks that were not selected at trial t. Following
Eqs A2 and A3, we updated the probability of each unselected deck
being a good deck at trial t + 1 based on pi,t and the behavior and
the outcome at trial t as follows:

(a) If the selected deck gave a reward (i.e., Vt > 0),

pi,t+1 = pi,t − pi,t∑

i={1,2,3,4},i �=Ai

pi,t
· (

pA,t+1 − pA,t
)

(A5)

where At represents the deck selected at trial t.
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(b) If the selected deck gave a punishment (i.e., Vt < 0),

pi,t+1 = pi,t + 1 − pi,t∑

i={1,2,3,4}, i �=Ai

(
1 − pi,t

) ·(pA,t − pA,t+1
)

(A6)

At the beginning of the experiment as well as after the reshuffle
of the deck-reward contingency, we reset pi,t to 0.25 and 0.5 for
the simple and the complex versions, respectively.

Equations A4–A6 have the Markov property that only knowl-
edge of the probabilities (pi,t, i = 1,2,3,4), selected action (At), and
the value of the action (Vt) from the current trial are needed to
calculate the probabilities of the next trial (pi,t+1, i = 1,2,3,4).

MODEL COMPARISON
We compared the performance of four other models to that of ours
in predicting subjects’ choices and wagers. Here, we used models
that represent three popular conceptual variants in the decision
making literature, especially the ones that were applied to the real
data in the IGT (Busemeyer and Stout, 2002). We replicated Buse-
meyer and Stout’s four models: a Strategy-Switching Heuristic
Choice Model (Heuristic for short), a Bayesian-Expected Util-
ity Model (Bayes_EU for short), an Expectancy–Valence Learning

Model (this is essentially a reinforcement learning model, RL for
short), and a Baseline Model. We followed the exact definition
of these models and the readers can refer to (Busemeyer and
Stout, 2002) for the details of these models. While these mod-
els used three free parameters, our Bayesian model did not have
any free parameters to fit. However, our Bayesian updating rules
and inclusion of the knowledge of the task structure constrains
the model in a way that may not be suitable for different tasks
other than ours. Thus, comparisons of the model based on the
number of free parameters or residual error in fitting are not well
suited. Thus, we relied on the predictive performance based on
SDT (Macmillan and Creelman, 2005) as a framework for model
comparison.

We tuned three parameters for a given set of the data (i.e., each
subject had the simple and the complex version of the learning
task, resulting in six free parameters) in each of these models care-
fully to ensure that the models were well fitted. We quantified
whether each model could predict subjects’ choice and wagering
behavior using SDT as we did for our model. The results of the
model comparison are shown in Figure A1.

As can be seen from the figure, three models from Buse-
meyer and Stout (2002), namely Baseline model, Heuristic model,

FIGURE A1 | Model comparison results of Experiment 1 (A,B,E,F) and

Experiment 2 (C,D,G,H). A′ (y -axis) was computed to quantify how well each
model (labeled on x -axis) can predict deck choice (A–D) and wagering
behavior (E–H). Simple (A,C,E,G) and complex (B,D,F,H) versions were
analyzed separately. Each black dot represents A′ of an individual subject.

Green squares denote the median of A′. Error bars denote 1 SEM across
subjects. RL, Busemeyer and Stout’s (2002) reinforcement learning model
(blue bars); Bayesian, our Bayesian inference model (red bars); Bayesian (w/o
K n), a version of our Bayesian inference model without incorporating the
knowledge of the task structure (magenta bars).
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Table A1 | Comparisons of prediction performance for deck choice.

B and S RL Our Bayesian p-Value

Exp 1 simple 0.77 ± 0.13 0.80 ± 0.13 p = 0.16

Exp 1 complex 0.83 ± 0.13 0.80 ± 0.11 p = 0.17

Exp 2 simple 0.78 ± 0.10 0.77 ± 0.13 p = 0.69

Exp 2 complex 0.83 ± 0.11 0.74 ± 0.14 p = 0.0014

Mean ± 1 SD.

and Bayes_EU model, performed poorly in all cases and we
will not describe them further. This trend is consistent with
Busemeyer and Stout’s (2002) model evaluation using G2 mea-
sures.

For predicting deck choice (Figures A1A–D), Busemeyer and
Stout’s (2002) RL model (blue bars) performed similarly to our
Bayesian inference model (red). For the details, see Table A1. We
evaluated the significance of the difference with p-values from
two-tailed paired t -tests.

For predicting wagering behavior (Figures A1E–H), the RL
model performed significantly worse than our Bayesian inference
model (red). For the details, see Table A2. We evaluated the sig-
nificance of the difference with p-values from two-tailed paired
t -tests.

Table A2 | Comparisons of prediction performance for wagering

behavior.

B and S RL Our Bayesian p-Value

Exp 1 simple 0.80 ± 0.11 0.87 ± 0.11 p = 0.032

Exp 1 complex 0.66 ± 0.10 0.77 ± 0.13 p = 0.0015

Exp 2 simple 0.75 ± 0.13 0.84 ± 0.12 p = 0.0043

Exp 2 complex 0.68 ± 0.13 0.82 ± 0.16 p = 0.00022

Further, in all cases, our Bayesian inference model (red bars in
Figure A1) outperformed a variant of this Bayesian model that
does not incorporate knowledge of the task structure (magenta
bars in Figure A1, paired t -test, p < 0.05 in all cases).

Taken together, we conclude that the RL model predicts choice
behavior equally well or slightly better than our Bayesian inference
model while it predicts wagering behavior much worse than our
model in all cases.
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The Iowa GamblingTask (IGT) is in many respects the gold standard for demonstrating deci-
sion making in drug using groups. However, it is not clear how basic task properties such
as the frequency and magnitude of rewards and losses affect choice behavior in drug users
and even in healthy players. In this study, we used a variant of the IGT, the Soochow Gam-
bling Task (SGT), to observe choice behavior in opiate users and healthy decision makers
in a task where reward frequency is not confounded with the long-term outcome of each
alternative. In both opiate users (n = 26) and healthy controls (n = 27), we show that reward
frequency strongly influences choice behavior in the IGT and SGT. Neither group showed
a consistent preference across tasks for alternatives with good long-term outcomes, but
rather, subjects appeared to prefer alternatives that win most frequently. We interpret this
as evidence to suggest that healthy players perform better than opiate users on the IGT
because they are able to utilize gain–loss frequencies to guide their choice behavior on the
task.This challenges the previous notion that poorer performance on the IGT in drug users
is due to an inability to be guided by future consequences.

Keywords: Iowa Gambling Task, Soochow Gambling Task, choice behavior, decision-making, opiate users, drug

users

INTRODUCTION
Illicit drug use is a “risky” activity associated with negative conse-
quences such as family and work disruption, overdose, addiction,
and accidents from intoxication. Given such risks, an important
question is why some people engage in this behavior. This ques-
tion has prompted research into the thought processes underlying
decisions under risk in drug users. Many findings indicate that
drug users, when viewed as a group, are more sensitive to a range
of rewarding stimuli and also less sensitive to loss (Rogers and
Robbins, 2001; Bechara, 2005). In addition, drug users appear to
have difficulty learning from past negative experiences to make
more beneficial decisions in the future (Grant et al., 2000; Ersche
et al., 2005; Brand et al., 2008). Of course, decisions involving risk
are highly variable, and the type, value, and likelihood of rewards
and losses can all influence choice. Thus, to understand why drug
users take more risks, it is necessary to describe how factors related
to learning, reward, and loss influence choice behavior. To this end,
laboratory decision tasks allow a level of control not possible in
the “real world,” and several tasks are now widely used to study
decisions under risk in drug users (CGT: Rogers et al., 1999; IGT:
Bechara and Damasio, 2002; BART: Lejuez et al., 2002).

The Iowa Gambling Task (IGT; Bechara et al., 1997) is arguably
the most popular decision task used in studies of clinical samples.
Players choose from four “decks of cards” over a series of trials,
with each selection resulting in a monetary reward and occasion-
ally a monetary loss. A key feature of this task is that unbeknownst
to the player, the decks vary in their win/loss frequencies and final
outcomes. Players must make selections, experience the outcomes,
and then develop their preferences through this experience. For a
player to finish the IGT with a positive balance, the player must

overcome an initial preference for decks that have large gains but
large losses (with overall net losses), and switch their preference
to decks that have relatively small rewards but less severe losses,
ending with an overall net gain.

A typical finding in the IGT literature is that both drug users
and healthy non-users prefer decks with net losses in the beginning
stages of the task, but only healthy non-users shift their preference
to the decks with the net gains as the task progresses (Bechara and
Damasio, 2002; Stout et al., 2004, 2005). This finding suggests that
drug users (unlike non-users) fail to learn from experience that
the decks with large gains actually yield even larger losses, result-
ing in the negative expected value of the losing IGT decks. Instead,
they continue to show a preference for losing decks either because
they over-attend to the frequent large gains and under-attend to
large losses, or because they are not attracted to the decks in which
gains (and losses) are both smaller (Grant et al., 2000; Ersche et al.,
2005).

To date, the most common method for analyzing IGT per-
formance is by combining selections from decks with negative
expected value (decks A and B) and decks with positive expected
value (decks C and D; Bechara et al., 1994; Grant et al., 2000).
However, pairing decks in this way obscures the influence of win
frequency on IGT performance, because decks within each pairing
differ in terms of win frequency. This issue was first described by
(Chiu et al., 2008). In studies where IGT decks have been analyzed
individually, drug users and non-users show a clear preference for
decks with high frequency wins (Verdejo-Garcia et al., 2007). Drug
users perform poorly because they prefer the high frequency win
deck with higher risk (Deck B). Non-users start the task prefer-
ring this same deck, but as the task progresses, they typically shift
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their preference to the other high frequency win deck, which has
relatively lower wins on every selection but also lower magnitude
losses. So, although drug users and controls appear to prefer fre-
quent win decks in the IGT, it is difficult to gage the strength of
this factor’s influence on decision making in each group because
players have the option to switch from a high frequency win deck
with negative expected value to a high frequency win deck with
positive expected value. Would healthy decision makers develop a
preference for decks with positive expected value in the IGT if a
high frequency win alternative was not available?

To clarify the relative importance of expected value and win
frequency on healthy decision makers’ choices, Chiu et al. (2008)
designed the Soochow Gambling Task (SGT). The key difference
between the SGT and IGT is that both SGT decks with positive
expected values have lower frequency wins than decks with negative
expected values. Thus, in the SGT there is a negative correlation
between expected value and win frequency which enables studying
the relative influence of each factor on performance of the task.
The selection patterns observed by Chiu et al. (2008) show that
healthy players had no preference for decks with positive expected
value, but rather, they preferred decks with high frequency wins
despite those decks having negative expected value. In the SGT
at least, healthy decision makers make what would be considered
poor decisions overall, and win frequency appears to be a stronger
influence than expected value. Applying the same interpretation
to these findings as has been applied numerous times to the IGT;
healthy decision makers appear insensitive to future consequences
(Ahn et al., 2008; Chiu et al., 2008).

Why do healthy decision makers prefer high frequency win
decks in the IGT and SGT? Research comparing descriptive and
experienced based choices may provide some clues. In contrast
to descriptive choices, where decision makers tend to overvalue
low probability outcomes, decision makers tend to undervalue low
probability outcomes when their decisions are based on feedback
from past outcomes (Barron and Leider, 2009; Barron and Lei-
der, 2009). That is, for experienced based choices, decision makers
tend to prefer alternatives with a higher chance of being rewarded,
even when the magnitude of the reward is smaller (Barron and
Erev, 2003; see Rakow and Newell, 2010 for review). This may
explain the pattern observed in the IGT and SGT, where both drug
users and controls appear to prefer decks with the highest proba-
bility of winning (i.e., high frequency win decks). In the IGT, one
high frequency win deck, Deck B, has negative expected value and
the other, Deck D, has positive expected value. In the SGT, both
high frequency win decks have negative expected value, which may
explain why healthy players fail to develop a preference for decks
with positive expected value as the task progresses.

Thus, the SGT can help to clarify the relative importance
of factors such as expected value, win frequency and wins/loss
magnitude on drug users’ choices. And, given the difficulty of
disentangling the influence of expected value, win frequency and
sensitivity to risk in the IGT, a study that includes both the IGT and
SGT will improve the accuracy in interpreting differences between
drug users and non-users and broaden the available data upon
which to base interpretations of decision characteristics in drug
users. To maximize the possibility of seeing differences between
drug users and controls in these two tasks, we examined opiate

users in outpatient treatment rather than a group of milder drug
users from the community. In both the IGT and SGT, we expected
drug users to prefer high frequency win decks with high magnitude
wins and losses, yielding overall losses in the IGT and in the SGT.

MATERIAL AND METHODS
SUBJECTS
We recruited 26 drug users (M = 34.23 years, SD = 8.79; male,
21) from Turning Point Alcohol and Drug Centre, a commu-
nity outpatient service in inner Melbourne. These participants
were either currently using illicit opiates (e.g., heroin) and/or
taking prescribed opiate substitution medication (methadone,
buprenorphine). Participants were asked to abstain from illicit
drugs and alcohol for 12 h prior to the testing session (exclud-
ing opiate substitution medication). If participants reported using
alcohol or drugs less than 12 h before the test session, or had
a blood alcohol level reading above 0.05 mg/kg on arrival, their
test session was postponed for at least 1 day. Test sessions were
postponed for at least 2 days if participants arrived in a visi-
bly intoxicated state or if they were experiencing acute with-
drawal symptoms. We also recruited 27 control participants
(M = 35 years, SD = 10.44; male, 22) using fliers and newspaper
advertisements. Control participants had not used illicit drugs
in the previous 6 months, had no history drug or alcohol prob-
lems, and had a blood alcohol level <0.05 mg/kg confirmed
on arrival to the test session. Screening questions were used to
ensure that participants from both groups had no history of psy-
chosis. All participants provided written informed consent, and
the Monash University Human Ethics Committee approved all
study procedures.

Groups were matched on age, t (51) = 0.29,p = 0.77 and gender,
χ2(1, N = 53) < 0.01, p = 0.95 (see Table 1), but drug users had
lower education, t (51) = 2.83, p < 0.01, higher unemployment,
χ2(1, N = 53) 16.89, p < 0.001 and reported more incidences
of head injury requiring hospitalization compared to non-users,
χ2(1, N = 53) 9.73, p < 0.01 (Table 1).

STUDY PROCEDURE
Participants from both groups underwent the same testing proce-
dure in a single test session. During the initial part of the session,
demographic characteristics, medical information, and substance
use histories were recorded. A battery of computerized decision
making tasks and a series of questionnaires followed. Testing took
between 2 and 3 h for each participant, and was typically longer
for drug users because their substance use histories were more
extensive. Only a subset of the data collected is reported here.

CHARACTERIZATION OF PARTICIPANTS
Substance use
Lifetime substance use and frequency of use over 30 days prior
to testing were recorded using the drug use section of the addic-
tion severity index (ASI; Mclellan et al., 1980). We also determined
alcohol related problems over the past 12 months (e.g., health, rela-
tionship, occupational, legal) using the Michigan Alcohol Screen-
ing Test (MAST; Selzer, 1971), and illicit drug related problems
using the Drug Abuse Screening Test (DAST; Skinner, 1982). The
MAST and DAST probe alcohol and drug related problems over
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Table 1 | Summary of demographic, mood, personality, and substance use variables.

Controls (n = 27) Drug users (n = 26)

M (SD) % M (SD) %

Age 35 (10.44) 34.23 (8.79)

Gender (male) 81.49 80.67

Est. IQ (WTAR) 35.15 (8.23) 32.42 (10.22)

Education (years)* 14.74 (2.93) 12.25 (3.46)

Employed* 66.67 11.54

Head inj. requiring hospital* 3.70 38.46

Mood/anxiety dis.* 18.51 53.85

Anxiety (past week; HADS)* 5.41 (2.42) 9.73 (3.66)

Depression (past week; HADS)* 3.11 (3.09) 7.50 (3.42)

Impulsivity (Eysenck I7)* 5.41 (3.65) 10.46 (4.62)

Antisociality (MMPI-PD)* 15.52 (4.50) 24.44 (6.31)

Alcohol

Past month use 59.26 59.26

Past month use (numb. days) 3.22 (5.77) 7.42 (9.12)

Lifetime use (years) 11.70 (10.78) 13.69 (8.69)

Problems (MAST) 0.44 (0.66) 8.23 (6.71)

Tobacco

Never 74.10 3.85

Quit 11.11 0

Current (occasional) 7.41 0

Current (daily) 7.41 96.15

Cannabis

Past month use 0 42.31

Past month use (numb. days) 0 8.15 (11.75)

Lifetime use (years) 1.74 (5.35) 8.81 (7.84)

Amphetamine

Past month use 0 23.10

Past month use (numb. days) 0 0.50 (1.14)

Lifetime use (years) 0 5.04 (6.45)

Heroin

Past month use 0 73.10

Past month use (numb. days) 0 5.85 (6.44)

Lifetime use (years) 0 9.35 (6.75)

Prescr. Methadone (current)

Past month use 0 46.15

Past month use (numb. days) 0 13.69 (15)

Lifetime use (years) 0 1.96 (3.23)

Parent hist. (sub. problems)* 3.70 50

Illicit drug problems (DAST) 0.30 (0.61) 14.54 (4.34)

*P < 0.05.

the past 12 months through a series of questions requiring a yes/no
response. Parental history of substance use problems was also
recorded.

As expected, the opiate user’s group scored higher on the DAST,
t (51) = −16.58, p < 0.001 and MAST, t (51) = −5.89, p < 0.001
compared to the control group. They also used a range of drugs
for longer and more frequently over their lifetime (including
alcohol and tobacco; see Table 1) and were more likely to have
a parent with a substance use problem, χ2(1, N = 53) 14.60,
p < 0.001.

ESTIMATED IQ, MOOD, AND PERSONALITY
We estimated participant IQ using the Wechsler Test of Adult Read-
ing (WTAR; Wechsler, 2001). The WTAR requires participants
to read a list of 50 words to the experimenter, with word diffi-
culty increasing further down the list. The number of correctly
pronounced words is a strong predictor of general IQ (Wech-
sler, 2001). We also determined recent symptoms of depression
and anxiety over the previous week using the Hospital Anxiety
and Depression Scales (HADS; Zigmond and Snaith, 1983). The
HADS is self-administered and has 16 questions (8 for anxiety
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and 8 for depression). Each question has four response lev-
els scored from 0 (e.g., not at all) to 3 (e.g., definitely). Total
scores range from 0 to 21 for each subscale, with higher scores
indicating greater anxiety/depression symptomatology. We also
assessed “rash impulsivity” using the Eysenck Impulsiveness Scale
of the Eysenck Impulsivity Venturesomeness and Empathy Scales
(Eysenck et al., 1985). The Impulsiveness scale is self-administered,
and requires participants to answer 19 yes/no questions. Scores
range between 0 and 19, with higher scores indicating greater
impulsive tendencies. We assessed antisocial tendencies using the
Minnesota Multiphasic Personality Inventory, psychopathic devi-
ate subscale (MMPI-PD; Butcher et al., 1989). The MMPI-PD is
a self-administered questionnaire consisting of 50 true/false ques-
tions. Scores range between 0 and 50, with higher scores indicating
greater antisocial tendencies.

Drug users and non-users had comparable WTAR scores,
t (51) = 1.07, p = 0.29 but drug users reported higher symptoms of
depression, t (51) = −4.90, p < 0.001 and anxiety, t (51) = −5.09,
p < 0.001 (HADS) and were more likely to report a history of
mood disorder compared to the control group, χ2(1, N = 53)
7.19, p < 0.01. Drug users also had higher self-reported impulsiv-
ity (Eysenck I7), t (51) = −4.43, p < 0.001 and higher antisociality
(MMPI-PD scale), t (51) = −5.90, p < 0.001.

DECISION MAKING TASKS: THE IGT AND THE SGT
In the IGT (Bechara et al., 1997), players select from four “decks
of cards” over a series of trials. On each trial, players receive a
monetary reward or loss following their selection, with the fre-
quency and magnitude of wins and losses differing across decks.
Players are not given any information about the decks. Instead,
they must learn from experience to choose from the decks that
will maximize net return overall. Decks A and B have a large fixed
reward ($1.00), and occasional large losses ($2.5 to 12.50). Over 10
selections, these decks return a net loss of $2.50 (Table 2). Decks
C and D return a relatively small fixed reward ($0.50) compare
to decks A and B, but also relatively small occasional losses ($0.25
to $2.50). Over 10 selections, these decks return a net reward of
$2.50 (Table 2). Therefore, in order to finish the game on a positive

balance, participants must make a higher proportion of selections
from decks C and D overall.

Most studies using the IGT assess the total proportion (or num-
ber) of“good”deck selections over the course of the task to evaluate
performance. However, recent findings suggest that combining
decks for analysis can mask important patterns unique to each
deck (Dunn et al., 2006; Yechiam et al., 2008). For this reason,
we focused on individual deck selections and did not combine
decks based on long-term outcome as some previous studies have.
Given that changes can occur in preference as player experience the
payoffs of each deck, we also analyzed changes in the mean pro-
portion of selections from each deck a function of task progression
(blocks 1–6).

The SGT (Chiu et al., 2008) is also computerized, requiring
players to choose from four “decks of cards” over a series of tri-
als. Like the IGT, players are not given any information about the
decks. Two decks (A and B) have a fixed reward every selection
(A, $1.00; B, $0.50) and a fixed loss every five selections (A, $5.25;
B, $3.25)1. Ten selections from these decks results in a net loss of
$2.50 (Table 2). The two other decks (C and D) have a fixed loss
every selection (C, $1.00; D, $0.50) and a fixed reward every five
selections (C, $5.25; D, $3.25). Ten selections from these decks
results in a net reward of $2.50 (Table 2). Thus, unlike the IGT,
decks that win frequently in the SGT (A, B) have a negative long-
term value. We used the same approach to analyze SGT selections
as described above for the IGT.

For both tasks, players began the game with a starting bal-
ance of $20.00 and received any money earned above this balance
at the end of the task (120 trials). Players could not lose any
money. The total balance was updated on-screen after every selec-
tion and players were also provided with feedback about the
net change in balance every 20 trials (6 blocks). Each trial was
player-initiated, and there were no time restrictions. Decks were
positioned on the computer screen, from left to right, randomly

1Note that in contrast to the IGT, which presents wins and losses (when they occur)
separately on each trial, in the SGT, only a net win or loss is presented.

Table 2 |The pay-off distributions of the Iowa GamblingTask and Soochow GamblingTask for the first 10 trials, adapted from Ahn et al. (2008).

IGT A B C D SGT A B C D

Expected value of 10 trials −$2.50 −$2.50 $2.50 $2.50 Expected value of five trials −$2.50 −$2.50 $2.50 $2.50

Gain on every trial $1.00 $1.00 $0.50 $0.50 Gain on every trial $1.00 $0.50 −$1.00 −$0.50

Loss on each trial Loss on each trial

Trial 1 −$1.00 −$0.50

Trial 2 −$1.00 −$0.50

Trial 3 −$1.00 −$0.50

Trial 4 −$1.00 −$0.50

Trial 5 −$5.25 −$3.25

Trial 6 −$1.50 −$0.25 −$1.00 −$0.50

Trial 7 −$2.00 −$0.75 −$1.00 −$0.50

Trial 8 −$2.50 −$0.50 −$1.00 −$0.50

Trial 9 −$3.00 −$0.50 −$1.00 −$0.50

Trial 10 −$3.50 $12.50 −$0.50 −$2.50 −$5.25 −$3.25
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across participants, and the order of tasks was counterbalanced
between participants.

STATISTICAL ANALYSIS
Demographic, substance use, mood, and personality measures
were compared between groups using two-tailed independent
samples t -tests for continuous variables (e.g., age, education) and
chi square tests for categorical variables (e.g., gender, employment
status). We computed separate repeated measures ANOVAs for the
SGT and IGT to analyze the mean proportion of selections from
each deck (A, B, C, D) across the 6 task blocks (repeated mea-
sures). Group was included as a between-subjects factor in this
analysis (drug users, controls). Paired samples t -tests were used
to explore significant (p < 0.05) main effects of deck, and one-
way ANOVAs to explore interactions between deck and group.
Interaction effects involving the factor of task block were explored
using repeated measures ANOVAs. Greenhouse–Geisser adjusted
degrees of freedom (and p values) are reported when Mauchly’s
Test of Sphericity was significant.

To further explore the influence of win frequency, magnitude,
and expected value on deck preference, we also examined Pearson’s
correlations between the number of selections from each deck in
the IGT with the decks in the SGT across a combined sample
of drug users and controls. We expected decks with similar win
frequency and win/loss magnitude characteristics would be more
strongly related than other decks in the same task, but not decks
with the same expected values.

RESULTS
IGT AND SGT DECK SELECTIONS
We analyzed SGT selections to determine how deck preferences
developed during the task in each group. We found a main effect
of deck in the SGT, F(3,153) = 9.17, p < 0.001, but no inter-
action between deck and group, F(3,153) = 0.17, p > 0.05, deck
and block, F(15,765) = 1.24, p > 0.05, or deck, block, and group,
F(15,765) = 1.12, p > 0.05. This indicates that both groups devel-
oped similar preferences and did not change those preferences
over the course of the task. Both groups overwhelmingly pre-
ferred high frequency win deck A (bad long-term outcome) to all
other decks [deck B, t (52) = 4.58, p < 0.001, deck C, t (52) = 3.05,
p < 0.01, deck D, t (52) = 5.13, p < 0.001; Figure 1]. We also found
a trend for both groups to prefer high frequency win deck (deck
B; bad long-term outcome) over low frequency win deck D (good
long-term outcome), t (52) = 1.85, p = 0.07 (Figures 1B,D).

For the IGT, our aim was to replicate previous findings (Stout
et al., 2004, 2005), both in terms of initial preferences in each group
(deck B) and changes in preference during the task (no change in
substance users, healthy controls switch to deck D). We found a
main effect of deck, F(3,153) = 25.20, p < 0.001 and an interac-
tion between deck and group, F(3,153) = 4.58, p < 0.05, and deck,
block, and group, F(15,765) = 1.66, p = 0.05. This finding repli-
cates previous studies in that drug users and controls developed
different deck preferences and that these preferences changed dur-
ing task in a group specific way (Grant et al., 2000; Verdejo-Garcia
et al., 2007; Verdejo-Garcia and Perez-Garcia, 2007). Interesting

FIGURE 1 | Mean proportion of SGT selections from deck A (A) deck B (B) deck C (C) deck D (D) from blocks 1–6. Each block = 20 trials. Error bars 95%
CI. *P < 0.05.
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effects were in high frequency decks B and D. The controls
made more deck D selections than opiate users F(1,52) = 5.20,
p < 0.05 (Figure 2D). For controls, there was a significant increase
in deck D selections across the task F(5,130) = 2.74, p < 0.05,
suggesting learning in this group, whereas in opiate users there
appears to be no change as the task progressed, F(5,125) = 0.52,
p > 0.05. In contrast, controls made significantly fewer selections
from deck B compared to opiate users F(1,52) = 6.52, p < 0.05,
and although deck B selections appeared to decrease slightly
across the task in controls and increase slightly in opiate users,
this interaction was not significant [F(5,255) = 1.813, p > 0.05;

Figure 2B]. deck A selections were comparable between groups,
F(1,52) = 0.02, p > 0.05, as were deck C selections, F(1,52) = 0.44,
p > 0.05 (Figures 2A,C).

CORRELATIONS BETWEEN IGT AND SGT DECK SELECTIONS
Consistent with the reasoning behind the SGT (i.e., deck expected
value does not guide choice), selections from SGT decks with
positive expected value (C, D “good decks”) were not associated
with selections from IGT decks with positive expected value (C,
D “good decks”), r(53) = 0.06, p > 0.05 (Figure 3B). In contrast,
we found correlations between decks with similar win frequency

FIGURE 2 | Mean proportion of IGT selections from deck A (A) deck B (B) deck C (C) deck D (D) from blocks 1–6. Each block = 20 trials. Error bars 95% CI.
*P < 0.05.

FIGURE 3 | Scatter plots showing the association between mean proportion of IGT and SGT selections for IGT deck B and SGT deck A (A) IGT deck C

and SGT deck D (B) and IGT deck C and SGT deck A (C).
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and win/loss magnitude characteristics. Participants who selected
more from deck A in the SGT (high frequency win, high magni-
tude win/loss) also tended to select more from deck B in the IGT
(also high frequency win,high magnitude win/loss), r(53) = 0.251,
p < 0.07 (Figure 3A). In addition, participants who selected more
from SGT deck A tended to make fewer selections from IGT deck
C (low win frequency, low magnitude win/loss), r(53) = −0.530,
p < 0.001 (Figure 3C). However, IGT deck D selections were not
related to SGT deck B selections, despite both decks being high
frequency win, low magnitude win/loss, r(53) = 0.090, p > 0.05.

DISCUSSION
Many studies have found that drug users perform poorly in the
IGT, but it is unclear how the basic properties of this task are related
to choice behavior. Our aim was to identify patterns of responding
across the IGT and SGT in relation to each deck’s expected value,
its win frequency and win/loss magnitude. Our data indicate that
opiate users and healthy controls are strongly influenced by win
frequency, with both groups preferring high frequency win decks
to low frequency win decks in the IGT and SGT.

Although the deck property of expected value has been the pri-
mary focus of most previous studies (Bechara et al., 1994, 1997,
2000) its influence on choice behavior was not obvious. Similar
to Chiu et al. (2008) and Ahn et al. (2008), healthy controls pre-
ferred decks with positive expected value in the IGT, but negative
expected value decks in the SGT. In addition, selections from decks
with the same expected value were not correlated across the IGT
and SGT. Thus, if expected value does influence choice behav-
ior in healthy decision makers, as suggested in previous literature
(Bechara et al., 1997), the effect does not appear to generalize from
the IGT to the SGT.

One possibility raised by Chiu et al. (2008) is that controls pre-
fer decks with positive expected value in the IGT because they do
not have a lower win frequency. The SGT reveals that when behav-
ior based on win frequency and expected value lead to different
choices, win frequency is a stronger influence on choice behavior
in this context (Ahn et al., 2008; Chiu et al., 2008). Our study con-
firms this finding and extends it to a group of drug users. Across
both tasks, we found only one difference between opiate users and
controls. In the SGT, both groups preferred SGT Deck A (high
frequency win, high magnitude win/loss, negative expected value)
and did not learn to maximize their earnings by shifting their pref-
erence to decks with positive expected value (C, D). In the IGT,
both groups preferred Deck B early on (high frequency win, high
magnitude win/loss, negative expected value), but only controls
shifted their preference to Deck D in the later stages of the task
(high frequency, low reward/loss magnitude).

To explain this pattern of results, we need to consider the win
frequency and win/loss magnitude characteristics of IGT decks B
and D. Deck D returns half the reward per selection compared to
Deck B ($0.5 vs. $1), but has less harsh occasional losses ($2.50 vs.
$12.50). Thus, it is likely that controls were motivated to shift their
preference to Deck D after experiencing the large losses associated
with Deck B. So why did not drug users also shift their prefer-
ence from Deck B to Deck D? Previous studies suggest that drug
users are more sensitive to rewarding stimuli and less sensitive to
loss/punishment (Rogers and Robbins, 2001; Stout et al., 2004,

2005; Bechara, 2005). Thus drug users may have been relatively
more attracted to the large rewards associated with Deck B, and
less affected by this deck’s large losses. This combination would
reduce the likelihood of drug users shifting their preference to a
lower paying deck with the same win frequency.

To understand why controls shifted their preference in the IGT
but not in the SGT, it may help to consider IGT decks again. In the
IGT, when players shift from Deck B to Deck D, they forgo 50% of
the reward (per selection), but also get an 80% reduction in loss. In
the SGT, when players shift from Deck A to Deck B, they forgo 50%
of the reward, but only get a 38% reduction in loss. We can only
speculate, but it could be that players are aware of this trade-off on
some level and decide that it is not worth it in the SGT. This is fun-
damentally different to the suggestion that healthy controls learn
the expected value of decks and shift their preference accordingly.
Indeed, given that decision makers have been shown to undervalue
low probability alternatives in experience-based choices (Barron
and Leider, 2009; Barron and Yechiam, 2009), it is not surprising
that players strongly preferred alternatives in both tasks that had
the highest probability of winning. Furthermore, the correlation
between high frequency win decks across the IGT and SGT found
in this study, suggests that the strength of this preference is robust
across related decision situations. This does not appear to be the
case for the factor of expected value.

Of course, this is the first study to evaluate IGT and SGT
performance together in drug users, so replication in a larger,
more representative sample is required. Our sample of drug users
also had high levels of head injury requiring hospitalization and
high levels of anxiety and depression. These characteristics could
reasonably affect decision processes, particularly the evaluation
of reward and loss which appear to be important processes for
understanding why choice behavior differs between drug users
and non-users in the IGT Nevertheless, head injury, anxiety and
depression are common characteristics in this population and in
many respects inseparable from drug use disorders (Rogers and
Robbins, 2001). We are encouraged however by our replication of
previous IGT findings in cannabis users (Fridberg et al., 2010),
which indicates that our sample was not unique in terms of their
decision making abilities or tendencies.

In conclusion, given the importance of tasks such as the IGT for
understanding decision making in clinical samples such as those
in treatment for drug use, we know surprisingly little about how
the basic properties of this task influence choice behavior. Our
data indicated that opiate users and healthy controls are similarly
influenced by win frequency across the IGT and SGT, but appear
to value wins and losses differently, at least in the IGT. This may
explain divergent choice behavior observed between groups later
in the IGT. Future studies should determine how individual dif-
ferences in the valuation of reward and loss affect choice behavior
in this context.
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Previous research has shown that regret-driven neural networks predict behavior in
repeated completely mixed games remarkably well, substantially equating the perfor-
mance of the most accurate established models of learning. This result prompts the
question of what is the added value of modeling learning through neural networks. We
submit that this modeling approach allows for models that are able to distinguish among
and respond differently to different payoff structures. Moreover, the process of catego-
rization of a game is implicitly carried out by these models, thus without the need of any
external explicit theory of similarity between games. To validate our claims, we designed
and ran two multigame experiments in which subjects faced, in random sequence, differ-
ent instances of two completely mixed 2 × 2 games.Then, we tested on our experimental
data two regret-driven neural network models, and compared their performance with that
of other established models of learning and Nash equilibrium.

Keywords: neural networks, learning, categorization, regret, cross-game learning, mixed strategy equilibrium,

repeated games

INTRODUCTION
In everyday life, interactive as well as individual decision prob-
lems very rarely repeat themselves identically over time; rather,
the experience on which most human learning is based comes
from the continuous encounter of different instances of different
decision tasks.

The current paper proposes an experimental study in which
subjects faced different instances of two interactive decision prob-
lems (games), making a step forward in the realism of the strategic
situations simulated in the lab. Specifically, subjects played in
sequence different completely mixed games1, each obtained by
multiplying the payoffs of one of two archetypal games for a ran-
domly drawn constant. In each sequence, the perturbed payoff
games of the two types were randomly shuffled. Thus, at each
trial, subjects’ task was twofold: recognize the type of the current
game and act in accordance to this categorization.

In spite of its evident economic relevance, the topic of human
interactive learning in mutating strategic settings has not received
until now much attention, from both an experimental and
modeling perspective.

One important stream of literature on this topic includes stud-
ies in which the experimental design is recognizably divided into
two parts, according to which the repeated play of a stage game
is followed by the repeated play of another one. The main goal of
these studies is that of assessing the effects of learning spillovers
(or transfer) from the first to the second part of the experiment
(as in Kagel, 1995; Knez and Camerer, 2000; Devetag, 2005), also

1Games with a unique Nash equilibrium in mixed strategies.

conditional to different environmental and framing conditions
(as in Cooper and Kagel, 2003, 2008). In a different experimen-
tal paradigm, Rankin et al. (2000) propose a design in which
players faced sequences of similar but not identical stag-hunt
games, and whose goal is that of evaluating the basins of attrac-
tions of the risk- and payoff-dominant strategies in the game
space.

Our experimental design distinguishes from those illustrated
above for two key features. First, subjects played different instances
of two different games, and, second, the instances of the two games
occurred in random order, thus without inducing any evident
partition in the experiment structure; at the beginning of our
experiments, subjects were only told that they would have faced a
sequence of interactive decision problems.

From the modeling perspective, a similarity-based decision
process was for the first time formalized in the “Case-Based Deci-
sion Theory” (Gilboa and Schmeidler, 1995), according to which
decisions are made based on the consequences from actions taken
in similar past situations. Besides, the case-based approach was for
the first time applied to game theory with the “fictitious play by
cases” model proposed by LiCalzi (1995). This model addresses
the situation in which players play sequentially different games,
and the play in the current game is only affected by experiences
with past similar games. In this vein, Sgroi and Zizzo (2007, 2009)
explore neural networks’ capability of learning game-playing rules
and of generalizing them to never previously encountered games.
The authors show that back-propagations neural network can
learn to play Nash pure strategies, and use these skills when facing
new games with a success rate close to that observed in experiments
with human subjects.
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The contribution by Marchiori and Warglien (2008) has shown
that, in repeatedly played completely mixed games, reinforcement
learning models have limited predictive power, and that the best
predictors, i.e., a fictitious play model and a neural network fed
back by a measure of regret, have substantially the same accu-
racy. The current paper extends this research and shows that the
added value of modeling learning by means of neural networks
is that of capturing subjects’ sensitivity to dynamic changes in
the payoff structure. Specifically, we introduce a variant of the
zero-parameter Perceptron-Based (PB0) model, which we call
SOFTMAX-PB0, test these two neural network models on the
data from our multigame experiments, and compare their per-
formance with that of other established learning models and Nash
equilibrium.

THE MULTIGAME EXPERIMENTS
The current paper proposes two multigame experiments, whose
goal is that of improving our understanding of the processes of
categorization in games. Eight groups of eight subjects each par-
ticipated in the experiments, and each group played a different
sequence of 120 games (see Table A3 in Appendix). Within each
group, half of the subjects were assigned the role of row player and
the others that of column player; at each round, subjects assigned
to different roles were randomly and anonymously paired. At the
end of each round, subjects were provided with feedback about
their and their opponents’ actions and payoffs.

The experimental design is summarized in Table 1.

EXPERIMENT 1
Four groups of subjects played four game sequences built start-
ing from two 2 × 2 constant-sum games (henceforth game A and
game B; see Table 1). Game A and B payoffs were chosen in such a
way that equilibrium probabilities for one player were not so dif-
ferent [respectively, P(U ) = 0.9 and 0.7], whereas the other player
was supposed to reverse his/her strategy [respectively, P(L) = 0.1
and 0.9]. Moreover, to get a balanced experimental design, payoffs
in each cell of the two games where chosen to sum up to the same
constant.

To build each sequence, 60 “type A” games were obtained by
multiplying game A’s payoffs for 60 randomly drawn constants2

(normally distributed with mean 10 and SD 4). The same proce-
dure was used to obtain 60 “type B” games3. Type A and B games
were then shuffled in such a way that in each block of 10 trials there
were five type A and five type B games in random order. Thus, in
each block of 10 trials subjects could face the same number of type
A and type B games.

Participants
Thirty-two students from the faculties of Economics, Law, and
Sociology of the University of Trento (Italy) participated in Exper-
iment 1. Subjects were paid based on their cumulated payoff in
12 randomly selected trials plus a show-up fee (see Experimental
Instructions in Appendix).

Results
Figure 1 reports the relative frequency of U and L choices in blocks
of 10 trials, separately for type A and B games.

Observed behavior in type A games is not well approximated
by Nash equilibrium. Row players play Nash mixture in the
first two blocks [for which P(U ) = 0.89], but the proportion
of U choices eventually converges to 0.74. As for the column
players, play starts close to random behavior in the first block
and converges to 0.33, higher than the 0.1 predicted by Nash’s
theory.

The predictive power of Nash equilibrium in type B games
is also rather poor. In equilibrium, row players are supposed
to choose action U with probability 0.7, whereas observed
play converges to the relative frequency of 0.9. Column play-
ers are predicted to choose action L 90% of the times, but
the observed proportion converges, from the third block, to
about 0.4.

2Only positive values were considered.
3Thus type A and B games had, respectively, the same mixed strategy equilibrium
of games A and B.

Table 1 |The two pairs of completely mixed archetypal games used for building the game sequences in the two experiments.

Archetypal games

Game A Game B

Experiment 1 Player 2 L R Player 2 L R

Player 1 Player 1

U 17, 5 16, 6 U 5, 17 2, 20

D 8, 14 17, 5 D 4, 18 11, 11

Nash Eq.: P (U ) = 0.9, P (L) = 0.1 Nash Eq.: P (U ) = 0.7, P (L) = 0.9

Game A Game C

Experiment 2 Player 2 L R Player 2 L R

Player 1 Player 1

U 17, 5 16, 6 U 17, 5 15, 7

D 8, 14 17, 5 D 15, 7 18, 4

Nash Eq.: P (U ) = 0.9, P (L) = 0.1 Nash Eq.: P (U ) = 0.6, P (L) = 0.6
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FIGURE 1 | Observed proportions of U and L choices averaged over blocks of 10 trials, separately for type A and B games.

FIGURE 2 | Observed proportions of U and L choices averaged over blocks of 10 trials, separately for type A and C games.

EXPERIMENT 2
Experiment 2 was identical to the previous one, except for the
fact that games A and C were used to build the four sequences
(see Table 1). Game C was chosen in such a way that equilib-
rium probabilities were, for both players, close to equal chance;
thus, no reversal of choice strategies was implied. Also in this
case, in each cell of games A and B, payoffs sum up to the same
constant.

Participants
Thirty-two students from the faculties of Economics, Law, and
Sociology of the University of Trento (Italy) participated in Exper-
iment 2. Subjects were paid based on their cumulated payoff in

12 randomly selected trials plus a show-up fee (see Experimental
Instructions in Appendix).

Results
Figure 2 illustrates the results from Experiment 2. The relative
frequency of U choices in type A games is systematically higher
than that predicted by Nash’s theory, similarly to what happened in
Experiment 1. It is interesting to note that, in type C games, empir-
ical behavior of both row and column players eventually converges
to Nash play [P(U ) = P(L) = 0.6], confirming that Nash equilib-
rium is a good predictor (at least in the long run) when predicted
choice probabilities are close to 0.5 (Erev and Roth, 1998; Erev and
Haruvy, in preparation).
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Cross-game learning
The question of how play in type A games is affected by the simul-
taneous play of games of a different kind can be easily answered by
comparing choice frequencies in type A games in the two experi-
ments. To this end, we ran a two-way, repeated measures analysis
(results are summarized in A1 and A2 in Appendix), in which we
tested the effects of the variables Experiment (i.e., the experimental
condition) and Time, and of their interaction on choice frequen-
cies for both row and column players. As a result, the variable
Experiment has no significant effect, implying that no cross-game
learning is taking place. We conclude that, when games of just two
types are present, subjects are able to recognize the two strategic
situations and act without confounding them.

THE MODEL
Since when McCulloch and Pitts (1943) introduced the first neu-
ronal model in 1943, artificial neural networks have usually been
intended as mathematical devices for solving problems of classifi-
cation and statistical pattern recognition (see for example, Hertz
et al., 1991; Bishop, 1995). For this reason, neural network-based
learning models are the most natural candidates for predicting
data from our multigame experiments, wherein a categorization
task is implicit.

We present here a variant of the PB0 model proposed in Mar-
chiori and Warglien (2008), which we call SOFTMAX-PB0. This
model is a simple perceptron, i.e., a one-layer feed-forward neural
network (Rosenblatt,1958; Hopfield,1987); its input units (labeled
with ini) are as many as the game payoffs, whereas its output units
(labeled with outj) are as many as the actions available to a player.
Different from the PB0 model, according to SOFTMAX-PB0, the
activation states of output units are determined via the softmax
rule (1), and can thus be readily interpreted as choice probabilities.

outj = e

∑

i
ini wij

∑

k
e

∑

n
innwnk

, (1)

The term wij in (1) is the weight of the connection from input
unit ini to output unit outj.

Compared to the use of the tanh activation function, calcu-
lating activation states via the softmax rule avoids the premature
saturation of output units, and in general results in a better fit of
the data and has important theoretical implications4.

Adaptive learning from time step t − 1 to time step t occurs
through modifications in the connection weights as follows:

wt
ij = wt−1

ij + Δwij , (2)

with:

Δwij = −λ ·
(

targj − outj

)
· regret · ini . (3)

In the current model, the parameter λ that appears in (3) is
replaced by a deterministic function, whose value at time step
t is defined as the ratio between the experienced cumulated
regret and the maximum cumulated regret. It is worth noting
that the SOFTMAX-PB0 is non-parametric, as also in the softmax
activation function (1) no free parameters are introduced.

In (3), targj is the ex-post best response to the other players’
actions, and it is equal to one if action j was the best response, and
zero otherwise. Finally, the regret term is simply defined as the
difference between the maximum obtainable payoff given other
players’ actions and the payoff actually received.

The SOFTMAX-PB0 and the PB0 models, behavior is the
result of adjustments in the direction of the ex-post best response
(ex-post rationalizing process), and these adjustments are pro-
portional to a measure of regret, consistently with findings in the
neuroscientific field (Coricelli et al., 2005; Daw et al., 2006).

The SOFTMAX-PB0 model, as well as the PB0 one, presents
some architectural analogies with established models of learning
in games, but it has also some peculiar features that differenti-
ate it from its competitors, as illustrated in Figure 3. Established
learning models have two main cyclic component processes: (1)
behavior is generated by some stochastic choice rule that maps

4Moreover, when outputs are calculated via (1), the updating rule (3) leads to Cross-
Entropy minimization or, in other terms, to the maximization of the likelihood of
observing a given training set.

FIGURE 3 | Adapted from Marchiori and Warglien (2008): General architecture of a “propensities and stochastic choice rule” learning model (left), and

general architecture of the (SOFTMAX-)PB0 model (right).
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propensities into probabilities of play; (2) Learning employs feed-
back to modify propensities, which in turn affect subsequent
choices.

The (SOFTMAX-)PB0 model’s architecture is only partially
similar to that of the other learning models. What distinguishes
our models is the direct dependence of choice behavior upon game
payoffs (represented in the“input layer”). Whereas in a typical eco-
nomic learning model choice is a function of propensities only,
here it is function of both propensities and the payoffs of the
game.

This architecture provides the (SOFTMAX-)PB0 model with a
peculiar capability to discriminate among different games. Con-
ventional learning models in economics are designed for repeated
games. There is learning, but no discrimination or generalization:
the simulated agent is unable to discriminate between different
games at a certain moment; if given abruptly a different game, it
would respond in the same way, or just throw away what it had
previously learned. On the other hand, discrimination is some-
thing perceptrons do very well, and since the output is also directly
affected by perceived inputs (the activation states of input units),
a network, besides learning, will respond differently to different
games.

THE SAMPLING PARADIGM FOR MODELING LEARNING
Particularly relevant to the current analysis are the two contri-
bution by Erev (2011) and by Gonzalez and Dutt (2011), in
which the INERTIA SAMPLING AND WEIGHTING (I-SAW)
and INSTANCE BASED LEARNING (IBL) models are proposed.
According to these models, agents are supposed to make their
decisions based on samples from their past experience. These mod-
els have been shown to capture important regularities of human
behavior in decisions from experience (Erev et al., 2010; Gonzalez
et al., 2011).

The most obvious way of modifying these models in order to
perform conditional behavior is that of considering agents that
draw from a subset of past experiences that are relevant to the
current decision task. However, such an implementation would
imply an exogenous intervention for the classification of the situa-
tion at hand, requiring an explicit theory of what is similar/relevant
to what. On the other hand, the modeling approach based on sam-
pling easily gives account for learning spillover effects (Marchiori
et al., unpublished).

However, the classification operated by the (SOFTMAX-)PB0
model is endogenous; agents just observe inputs and respond to
them without any external intervention and the entire process of
classification is implicit in the structure of the model itself.

MATERIALS AND METHODS
Predicted choice frequencies were obtained by averaging results
over 150 simulations, and, for parametric models, this proce-
dure was repeated for each parameter configuration. Table 2
collects the description of the portions of the parameter spaces
investigated.

We tested models’ predictive power by considering esti-
mated choice frequencies corresponding to the parameter con-
figurations that minimized the mean square deviation (hence-
forth MSD; Friedman, 1983; Selten, 1998) in our two exper-
iments. Considering average MSD scores in the two experi-
ments does not penalize directly the number of free parameters
of a model; therefore, in this analysis, parametric models are
advantaged over the non-parametric PB0 and SOFTMAX-PB0
ones.

In our comparative analysis, we considered the following learn-
ing models: normalized fictitious play (NFP; Erev et al., 2007);
normalized reinforcement learning (NRL; Erev et al., 2007); Erev
and Roth’s reinforcement learning (REL; Erev and Roth, 1998);
reinforcement learning (RL; Erev et al., 2007); stochastic fictitious
play (Erev et al., 2007); and self-tuning experience weighted attrac-
tion (stEWA; Ho et al., 2007). Section “Competitor Models and
Investigated Portions of Parameter Spaces” in Appendix briefly
reviews these models.

SIMULATION RESULTS AND DISCUSSION
Although simple perceptrons suffer severe theoretical limitations
in the discrimination tasks they can carry out (Minsky and Papert,
1969; Hertz et al., 1991), our simulation results show that they are
nonetheless able to discriminate between two different strategic
situations and predict well choice behavior observed in our multi-
game experiments. Simulation results are collected in Figure 4
and, more in detail, in Tables 3 and 4.

Established learning models are not able to discriminate
between the two different game structures, providing the same
“average” behavior for both types of games (see Tables 3 and 4),
and are always outperformed by Nash equilibrium. On the con-
trary, the SOFTMAX-PB0 and PB0 models are able to replicate
subjects’ conditional behavior, due to the direct dependence of
their response on game payoffs, remarkably outperforming Nash
equilibrium and all the other models of learning considered in this
analysis.

Comparison of the performance of the PB0 and SOFTMAX-
PB0 models shows how the introduction of the softmax rule
for calculating output units’ activations improves the fit of the
data.

Table 2 | Explored portions of parameter spaces and the parameter configurations yielding the lowest average MSD in the two experiments.

Model Portions of parameter spaces considered Best fit parameters

NFP λ in [1.5, 4.0] by = 0.25 w in [0.1, 0.9] by = 0.1 λ = 4.0, w = 0.7

NRL λ in [3.0, 7.0] by = 0.5 w in [0.10, 0.90] by = 0.05 λ = 5.5, w = 0.50

RE λ in [2.2, 3.4] by = 0.1 N (1) in [27, 34] by = 1 λ = 2.7, N (1) = 31

RL λ in [6.0, 10.0] by = 0.5 w in [0.10, 0.90] by = 0.05 λ = 10.0, w = 0.50

SFP λ in [10.0, 14.0] by = 0.5 w in [0.05, 0.90] by = 0.05 λ = 13.0, w = 0.75

stEWA λ in [1, 9] by = 0.1 λ = 5.8

www.frontiersin.org December 2011 | Volume 5 | Article 139 | 48

http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Marchiori and Warglien Modeling learning and categorization

FIGURE 4 | Predicted and observed choice frequencies in Experiment 1 (top panels) and 2 (lower panels).

Table 3 | Predicted and observed choice frequencies in Experiment 1.

MSD Type A games Type B games

Blocks 1 2 3 4 5 6 1 2 3 4 5 6

Empirical P (U ) 0.89 0.89 0.84 0.81 0.76 0.74 0.16 0.32 0.41 0.39 0.42 0.38

P (L) 0.53 0.40 0.26 0.26 0.26 0.26 0.74 0.78 0.85 0.86 0.91 0.91

Nash 0.053 P (U ) 0.90 0.90 0.90 0.90 0.90 0.90 0.70 0.70 0.70 0.70 0.70 0.70

P (L) 0.10 0.10 0.10 0.10 0.10 0.10 0.90 0.90 0.90 0.90 0.90 0.90

NFP 0.081 P (U ) 0.55 0.65 0.57 0.56 0.58 0.51 0.62 0.51 0.63 0.60 0.56 0.67

P (L) 0.59 0.50 0.60 0.54 0.64 0.55 0.64 0.65 0.60 0.70 0.57 0.62

NRL 0.094 P (U ) 0.59 0.40 0.68 0.65 0.64 0.64 0.58 0.43 0.68 0.66 0.64 0.64

P (L) 0.65 0.73 0.54 0.53 0.54 0.57 0.67 0.70 0.53 0.53 0.54 0.55

PB0 0.024 P (U ) 0.78 0.96 0.97 0.96 0.95 0.95 0.49 0.35 0.26 0.28 0.16 0.25

P (L) 0.77 0.68 0.47 0.38 0.35 0.33 0.71 0.80 0.85 0.86 0.93 0.87

REL 0.076 P (U ) 0.50 0.49 0.51 0.51 0.51 0.49 0.51 0.48 0.51 0.50 0.49 0.49

P (L) 0.50 0.50 0.50 0.49 0.50 0.49 0.50 0.50 0.51 0.50 0.49 0.49

RL 0.097 P (U ) 0.60 0.37 0.64 0.63 0.63 0.64 0.57 0.40 0.64 0.63 0.63 0.64

P (L) 0.60 0.70 0.47 0.49 0.51 0.57 0.62 0.67 0.47 0.49 0.51 0.55

SFP 0.094 P (U ) 0.57 0.53 0.67 0.59 0.51 0.50 0.63 0.50 0.48 0.42 0.60 0.60

P (L) 0.54 0.50 0.51 0.32 0.52 0.41 0.58 0.69 0.65 0.79 0.68 0.69

SOFTMAX-PB0 0.018 P (U ) 0.84 0.97 0.95 0.90 0.90 0.92 0.46 0.28 0.25 0.31 0.31 0.31

P (L) 0.76 0.56 0.32 0.39 0.51 0.46 0.72 0.82 0.87 0.83 0.89 0.82

stEWA 0.086 P (U ) 0.62 0.64 0.64 0.64 0.64 0.64 0.67 0.64 0.64 0.64 0.64 0.64

P (L) 0.72 0.75 0.75 0.75 0.75 0.75 0.74 0.75 0.75 0.75 0.75 0.75

The second column from the left reports the MSD scores associated to each model. For parametric models, predicted frequencies have been obtained with the

parameter configuration reported in the fourth column ofTable 2.
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Table 4 | Predicted and observed choice frequencies in Experiment 2.

MSD Type A games Type C games

Blocks 1 2 3 4 5 6 1 2 3 4 5 6

Empirical P (U ) 0.88 0.88 0.86 0.92 0.88 0.86 0.42 0.60 0.60 0.68 0.56 0.63

P (L) 0.51 0.43 0.44 0.43 0.33 0.42 0.78 0.75 0.82 0.70 0.63 0.60

Nash 0.034 P (U ) 0.90 0.90 0.90 0.90 0.90 0.90 0.60 0.60 0.60 0.60 0.60 0.60

P (L) 0.10 0.10 0.10 0.10 0.10 0.10 0.60 0.60 0.60 0.60 0.60 0.60

NFP 0.036 P (U ) 0.62 0.69 0.59 0.66 0.61 0.65 0.62 0.55 0.64 0.64 0.64 0.57

P (L) 0.50 0.50 0.57 0.50 0.56 0.51 0.57 0.51 0.46 0.54 0.50 0.52

NRL 0.047 P (U ) 0.72 0.92 0.87 0.58 0.56 0.70 0.76 0.85 0.86 0.61 0.55 0.70

P (L) 0.52 0.49 0.45 0.43 0.49 0.49 0.56 0.57 0.60 0.46 0.49 0.49

PB0 0.029 P (U ) 0.75 0.85 0.89 0.88 0.95 0.93 0.78 0.73 0.56 0.50 0.53 0.46

P (L) 0.57 0.55 0.55 0.51 0.61 0.70 0.54 0.45 0.52 0.56 0.57 0.57

REL 0.055 P (U ) 0.51 0.49 0.51 0.51 0.50 0.51 0.50 0.51 0.52 0.50 0.51 0.51

P (L) 0.50 0.50 0.49 0.50 0.51 0.49 0.50 0.51 0.50 0.50 0.49 0.49

RL 0.053 P (U ) 0.71 0.93 0.88 0.56 0.52 0.68 0.75 0.87 0.87 0.59 0.50 0.68

P (L) 0.53 0.49 0.47 0.41 0.52 0.52 0.55 0.59 0.59 0.44 0.52 0.52

SFP 0.036 P (U ) 0.62 0.71 0.59 0.61 0.60 0.70 0.59 0.50 0.59 0.60 0.63 0.40

P (L) 0.51 0.48 0.55 0.41 0.46 0.50 0.58 0.51 0.47 0.56 0.56 0.60

SOFTMAX-PB0 0.028 P (U ) 0.77 0.83 0.87 0.85 0.93 0.90 0.80 0.68 0.54 0.56 0.59 0.48

P (L) 0.56 0.61 0.55 0.49 0.60 0.70 0.52 0.46 0.53 0.61 0.56 0.58

stEWA 0.058 P (U ) 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54

P (L) 0.61 0.63 0.64 0.64 0.64 0.64 0.61 0.63 0.64 0.64 0.64 0.64

The second column from the left reports the MSD scores associated to each model. For parametric models, predicted frequencies have been obtained with the

parameter configuration reported in the fourth column ofTable 2.

CROSS-GAME LEARNING
As reported at the end of Section “The Multigame Experiments,”
our experimental data do not provide evidence of cross-game
learning. In regard to this, simulation results show that there is
a partial qualitative parallelism between the (SOFTMAX-)PB0
model’s predictions and observed behavior. For example, for
the row player, the (SOFTMAX-)PB0 model provides very sim-
ilar trajectories in the two experiments. However, if we con-
sider column player’s predicted behavior, the (SOFTMAX-)PB0
model produces very different trajectories in the two experi-
ments. This might imply that the (SOFTMAX-)PB0’s structure
is not complex enough to completely avoid spillover effects
across games, although this aspect would deserve a more sys-
tematic investigation. However, it is not difficult to imagine
situations in which learning spillovers do take place and this
feature of the (SOFTMAX-)PB0 model would turn out to be
advantageous.

CONCLUSION
The present paper presents an experimental design in which sub-
jects faced a sequence of different interactive decision problems,
making a step forward in the realism of the situations simu-
lated in the lab. The problems in the sequences were different
instances of two 2 × 2 completely mixed games. Thus, at each
trial, subjects’ task was twofold: recognize the type of the current
decision problem, and then act according to this categorization.
Our experimental results show that subjects are able to recog-
nize the two different game structures in each sequence and play

accordingly to this classification. Moreover, our experimental data
do not provide evidence of cross-game learning, as there are no
significant differences in the play of type A games in the two
experiments.

Our experiments were designed with the precise goal of test-
ing the discrimination capability of the PB0 and SOFTMAX-
PB0 neural network models in comparison with that of other
established models of learning proposed in the Psychology and
Economics literature. Simulation results show that traditional
“attraction and stochastic choice rule” learning models are not
able to discriminate between the different strategic situations, pro-
viding a poor “average” behavior, and are always outperformed
by Nash equilibrium. On the contrary, the (SOFTMAX-)PB0
model is able to replicate subjects’ conditional behavior, due
to the direct dependence of its response on game payoffs, and
performs better than standard theory of equilibrium. This lat-
ter fact is particularly remarkable; in our experiments, the two
classes of games were built based on their Nash equilibrium, so
that the classification was induced by the different equilibrium
predictions. On the contrary, our neural network models of adap-
tive learning were able to classify the different game structures
without any external and predetermined partition of the game
space.

We are well aware of the need for a more systematic and compre-
hensive analysis of categorization in games. Further experimental
research could focus, for example, on sequences with more than
two types of games, or on the effects of different degrees of payoff
perturbations on learning spillovers.
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APPENDIX
EXPERIMENTAL INSTRUCTIONS
Instructions
You are participating in an experiment on interactive decision-
making funded by the Italian Ministry of University and Research
(MIUR). This experiment is not aimed at evaluating you nei-
ther academically nor personally, and the results will be published
under strict anonymity.

You will be paid based on your performance, privately and in
cash, according to the rules described below.

During the experiment, you will not be allowed to communi-
cate with the other participants, neither verbally nor in any other
way. If you have any problem or questions, raise your hand and a
member of the staff will immediately contact you.

The experiment will consist of 120 rounds, and at each round
you will face an interactive decision task. Specifically, at each
round, you will be randomly matched with another participant
and your payoff will depend on both your decision and that of
the other participant. The structure of each decision task will be
represented as shown in the following figure:

The other player

(column player)

Action 1 Action 2

YOU (row player) Action 1 (6, 4) (4, 7)

Action 2 (3, 4) (5, 6)

You have been assigned the role of “row player”: therefore, the
other player will always play the role of “column player.”

For each player two actions are available (labeled“Action 1”and
“Action 2”). For every possible combination of actions by row and
column players, there corresponds a cell in the matrix. In every cell
there are two numbers between parentheses: the first number cor-
responds to YOUR payoff (in experimental currency units), and
the second corresponds to the payoff of the other player (again in
experimental currency units).

As an example, referring to the matrix reported below, if YOU
choose to play “Action 1” and the other player chooses to play
“Action 2,” then the payoffs will be four for YOU (row player) and
seven for the other player (column player).

The other player

(column player)

Action 1 Action 2

YOU (row player) Action 1 (6, 4) (4, 7)

Action 2 (3, 4) (5, 6)

Please, remember that the experiment will consist of 120
rounds. At each round, you will be shown a sequence of two
screenshots.

The first screenshot will show you the current payoff matrix,
and you will be invited to make a decision. In order to make a
decision, you must type either “1” or “2” in the box labeled “your
decision,” and then click on the button “confirm.” Once you have

clicked the confirmation button, you cannot change your deci-
sion. You will have a maximum of 30 s to choose: after those 30 s
a blinking red message will appear on the right-up corner of the
screen and spur you to make a decision. Delaying your decision
will cause the other participants to wait for you.

Once all players have made their decision, the second screen-
shot will appear on your monitor. In this second screenshot there
will be reported the action you chose, the action chosen by the
other player, your respective payoffs, and the payoff matrix you
saw in the first screenshot.

The second screenshot will be visible on your monitor for 10 s
and then another round will start.

This process will be repeated for 120 times. After all rounds have
been played, the experiment will be over and the procedure of pay-
ment will start. In order to determine your payment, 12 integers
between 1 and 120 will be randomly drawn without replacement.
In this way, 12 out of the 120 rounds will be randomly selected and
you will be paid based on their outcomes. One experimental cur-
rency unit is equivalent to 10 eurocents (10 experimental units = 1
euro). Moreover, independently from your performance, you will
be paid an additional show-up fee of 5 euro.

Before the beginning of the experiment, you will be asked to
fill a questionnaire to verify whether the instructions have been
understood. Then the experiment will start.

At the end of the experiment, you will be asked to fill a
questionnaire for your payment.

Thank you for your kind cooperation!

REPEATED MEASURES ANOVA
COMPETITOR MODELS AND INVESTIGATED PORTIONS OF PARAMETER
SPACES
The REL model (Erev et al., 1999, 2002)
Attractions updating. The propensity of player i to play her k-th
pure strategy at period t + 1 is given by:

aij (t + 1) =
{

aij (t )·[N (1)+Cij (t )−1]+x
N (1)+Cij (t ) if k = j

aij (t ) otherwise
,

Table A1 |Two-way, repeated measures ANOVA (row players).

df Sum Sq Mean Sq F value Pr(>F )

Experiment 1 0.03 0.03 0.90 0.38

Residuals 6 0.23 0.04

We tested the model Proportion (U) ∼ Experiment ∗Time + Error (between

groups). The effect of the experimental condition is not significant.

Table A2 |Two-way, repeated measures ANOVA (Column players).

df Sum Sq Mean Sq F value Pr(>F )

Experiment 1 0.11 0.11 1.07 0.34

Residuals 6 0.61 0.10

We tested the model Proportion (L) ∼ Experiment ∗Time + Error (between

groups). The effect of the experimental condition is not significant.
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Table A3 |Two of the game sequences played in Experiment 1 and 2.

Profile: Sequence 1 – Experiment 1 Sequence 1 – Experiment 2

U, L U, R D, L D, R U, L U, R D, L D, R

Game 1 190 56 179 67 89 156 190 56 93 27 87 32 43 76 93 27

Game 2 58 199 23 235 47 211 129 129 120 35 113 42 56 99 120 35

Game 3 152 44 143 53 71 125 152 44 166 49 156 58 78 137 166 49

Game 4 74 21 70 26 35 61 74 21 125 37 111 51 111 51 133 29

Game 5 235 69 221 83 110 194 235 69 156 46 147 55 73 128 156 46

Game 6 33 115 13 135 27 121 74 74 186 54 175 65 87 153 186 54

Game 7 135 39 127 47 63 111 135 39 91 26 80 37 80 37 96 21

Game 8 72 244 28 288 57 259 158 158 106 31 93 43 93 43 112 25

Game 9 34 118 13 139 27 125 76 76 163 48 144 67 144 67 173 38

Game 10 42 142 16 168 33 151 92 92 148 43 131 61 131 61 157 34

Game 11 52 180 21 211 42 190 116 116 162 47 142 66 142 66 171 38

Game 12 170 50 160 60 80 140 170 50 170 50 160 60 80 140 170 50

Game 13 51 174 20 205 41 185 113 113 105 30 92 43 92 43 111 24

Game 14 53 183 21 215 43 194 118 118 195 57 184 69 92 161 195 57

Game 15 124 36 117 44 58 102 124 36 212 62 199 74 99 174 212 62

Game 16 62 213 25 250 50 225 137 137 188 55 177 66 88 155 188 55

Game 17 232 68 218 81 109 191 232 68 141 41 124 58 124 58 149 33

Game 18 64 219 25 258 51 232 141 141 74 21 65 30 65 30 78 17

Game 19 218 64 205 77 102 180 218 64 298 87 263 122 263 122 315 70

Game 20 192 56 181 68 90 158 192 56 183 54 172 64 86 151 183 54

Game 21 60 205 24 242 48 217 133 133 173 51 153 71 153 71 183 40

Game 22 100 29 94 35 47 82 100 29 95 27 83 39 83 39 100 22

Game 23 49 166 19 196 39 176 107 107 106 31 100 37 50 87 106 31

Game 24 148 43 139 52 69 122 148 43 97 28 91 34 45 80 97 28

Game 25 79 270 31 318 63 286 175 175 109 32 102 38 51 90 109 32

Game 26 246 72 232 87 116 203 246 72 189 55 178 66 89 155 189 55

Game 27 61 210 24 247 49 222 135 135 148 43 131 61 131 61 157 34

Game 28 142 42 134 50 67 117 142 42 158 46 140 65 140 65 168 37

Game 29 229 67 215 80 107 188 229 67 161 47 142 66 142 66 171 38

Game 30 48 166 19 195 39 175 107 107 153 45 144 54 72 126 153 45

Game 31 54 183 21 216 43 194 118 118 164 48 145 67 145 67 174 38

Game 32 203 59 191 71 95 167 203 59 182 53 171 64 85 150 182 53

Game 33 72 245 28 288 57 259 158 158 109 32 96 45 96 45 116 25

Game 34 52 179 21 210 42 189 116 116 170 50 150 70 150 70 180 40

Game 35 170 50 160 60 80 140 170 50 128 37 120 45 60 105 128 37

Game 36 151 44 142 53 71 124 151 44 166 48 156 58 78 136 166 48

Game 37 171 50 161 60 80 141 171 50 220 64 207 77 103 181 220 64

Game 38 61 209 24 246 49 222 135 135 164 48 145 67 145 67 174 38

Game 39 44 150 17 176 35 158 97 97 72 21 64 29 64 29 77 17

Game 40 146 43 137 51 68 120 146 43 92 27 86 32 43 75 92 27

Game 41 240 70 225 84 112 197 240 70 144 42 135 50 67 118 144 42

Game 42 74 252 29 296 59 267 163 163 240 70 212 99 212 99 255 56

Game 43 240 70 226 85 113 198 240 70 38 11 33 15 33 15 40 8

Game 44 122 35 114 43 57 100 122 35 189 55 167 78 167 78 201 44

Game 45 47 161 18 189 37 170 104 104 145 42 137 51 68 119 145 42

(Continued)
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Table A3 | Continued

Profile: Sequence 1 – Experiment 1 Sequence 1 – Experiment 2

U, L U, R D, L D, R U, L U, R D, L D, R

Game 46 41 140 16 165 33 149 91 91 151 44 133 62 133 62 160 35

Game 47 203 59 191 71 95 167 203 59 190 56 179 67 89 156 190 56

Game 48 52 180 21 211 42 190 116 116 146 43 137 51 68 120 146 43

Game 49 61 209 24 246 49 221 135 135 182 53 160 75 160 75 193 42

Game 50 180 53 169 63 84 148 180 53 216 63 203 76 101 178 216 63

Game 51 198 58 187 70 93 163 198 58 239 70 211 98 211 98 253 56

Game 52 196 57 185 69 92 162 196 57 115 34 109 40 54 95 115 34

Game 53 284 83 268 100 134 234 284 83 142 41 134 50 67 117 142 41

Game 54 44 152 17 179 35 161 98 98 90 26 84 31 42 74 90 26

Game 55 34 117 13 138 27 124 75 75 152 44 134 62 134 62 161 35

Game 56 26 91 10 107 21 97 59 59 156 46 138 64 138 64 165 36

Game 57 57 196 23 231 46 208 127 127 210 61 185 86 185 86 222 49

Game 58 121 35 113 42 56 99 121 35 238 70 210 98 210 98 252 56

Game 59 187 55 176 66 88 154 187 55 180 53 170 63 85 148 180 53

Game 60 54 184 21 217 43 195 119 119 82 24 77 29 38 67 82 24

Game 61 61 209 24 245 49 221 135 135 177 52 156 73 156 73 188 41

Game 62 35 121 14 142 28 128 78 78 141 41 133 49 66 116 141 41

Game 63 21 73 8 87 17 78 47 47 235 69 221 83 110 194 235 69

Game 64 208 61 196 73 98 171 208 61 278 82 246 114 246 114 295 65

Game 65 163 47 153 57 76 134 163 47 235 69 221 83 110 193 235 69

Game 66 42 143 16 168 33 151 92 92 204 60 180 84 180 84 216 48

Game 67 31 107 12 126 25 114 69 69 201 59 178 83 178 83 213 47

Game 68 258 75 243 91 121 212 258 75 159 46 150 56 75 131 159 46

Game 69 163 48 153 57 76 134 163 48 163 48 153 57 76 134 163 48

Game 70 125 37 118 44 59 103 125 37 161 47 142 66 142 66 170 37

Game 71 47 162 19 191 38 171 105 105 177 52 167 62 83 146 177 52

Game 72 147 43 138 52 69 121 147 43 169 49 159 59 79 139 169 49

Game 73 18 64 7 75 15 67 41 41 59 17 52 24 52 24 63 14

Game 74 145 42 136 51 68 119 145 42 185 54 163 76 163 76 196 43

Game 75 38 130 15 153 30 138 84 84 108 31 102 38 51 89 108 31

Game 76 132 39 124 46 62 109 132 39 218 64 205 77 102 180 218 64

Game 77 79 271 31 319 63 287 175 175 168 49 148 69 148 69 178 39

Game 78 118 34 111 41 55 97 118 34 128 37 112 52 112 52 135 30

Game 79 123 36 116 43 58 101 123 36 187 55 165 77 165 77 198 44

Game 80 44 152 17 178 35 161 98 98 225 66 212 79 106 186 225 66

Game 81 54 186 21 219 43 197 120 120 121 35 107 50 107 50 128 28

Game 82 125 36 117 44 58 103 125 36 269 79 237 110 237 110 284 63

Game 83 232 68 218 82 109 191 232 68 237 69 209 97 209 97 251 55

Game 84 61 210 24 247 49 223 136 136 196 57 185 69 92 162 196 57

Game 85 41 140 16 165 33 148 90 90 55 16 52 19 26 45 55 16

Game 86 29 100 11 118 23 106 65 65 202 59 190 71 95 166 202 59

Game 87 155 45 146 54 73 128 155 45 125 36 118 44 59 103 125 36

Game 88 131 38 123 46 61 107 131 38 121 35 114 42 57 100 121 35

Game 89 58 198 23 233 46 210 128 128 187 55 165 77 165 77 198 44

Game 90 315 92 296 111 148 259 315 92 256 75 226 105 226 105 271 60

(Continued)
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Table A3 | Continued

Profile: Sequence 1 – Experiment 1 Sequence 1 – Experiment 2

U, L U, R D, L D, R U, L U, R D, L D, R

Game 91 200 58 188 70 94 165 200 58 228 67 215 80 107 188 228 67

Game 92 220 64 207 77 103 181 220 64 135 39 119 55 119 55 143 31

Game 93 43 146 17 172 34 155 95 95 155 45 146 54 73 128 155 45

Game 94 161 47 152 57 76 133 161 47 116 34 109 40 54 95 116 34

Game 95 186 54 175 65 87 153 186 54 270 79 238 111 238 111 286 63

Game 96 30 104 12 123 24 111 67 67 151 44 142 53 71 125 151 44

Game 97 55 189 22 222 44 200 122 122 148 43 140 52 70 122 148 43

Game 98 218 64 205 77 102 179 218 64 195 57 172 80 172 80 206 45

Game 99 51 174 20 205 41 184 113 113 193 56 170 79 170 79 204 45

Game 100 62 211 24 249 49 224 137 137 196 57 173 80 173 80 208 46

Game 101 202 59 190 71 95 166 202 59 145 42 136 51 68 119 145 42

Game 102 67 230 27 271 54 244 149 149 156 45 137 64 137 64 165 36

Game 103 62 212 25 250 50 225 137 137 169 49 149 69 149 69 179 39

Game 104 195 57 183 68 91 160 195 57 123 36 108 50 108 50 130 28

Game 105 266 78 250 94 125 219 266 78 129 38 121 45 60 106 129 38

Game 106 64 218 25 257 51 231 141 141 123 36 116 43 58 101 123 36

Game 107 103 30 97 36 48 85 103 30 218 64 192 89 192 89 230 51

Game 108 45 154 18 181 36 163 100 100 152 44 134 62 134 62 161 35

Game 109 40 137 16 162 32 145 89 89 228 67 215 80 107 188 228 67

Game 110 111 32 104 39 52 91 111 32 227 66 214 80 107 187 227 66

Game 111 44 150 17 177 35 159 97 97 159 46 150 56 75 131 159 46

Game 112 47 159 18 188 37 169 103 103 189 55 167 78 167 78 201 44

Game 113 29 101 11 119 23 107 65 65 183 54 172 64 86 151 183 54

Game 114 135 39 127 47 63 111 135 39 59 17 56 21 28 49 59 17

Game 115 143 42 135 50 67 118 143 42 208 61 184 85 184 85 221 49

Game 116 44 151 17 178 35 160 98 98 160 47 141 66 141 66 170 37

Game 117 207 61 195 73 97 171 207 61 146 43 129 60 129 60 155 34

Game 118 32 109 12 129 25 116 70 70 204 60 180 84 180 84 216 48

Game 119 195 57 183 68 91 160 195 57 138 40 130 48 65 113 138 40

Game 120 110 32 104 39 52 91 110 32 199 58 188 70 94 164 199 58

where Cij(t ) indicates the number of times that strategy j has been
chosen in the first t rounds, x is the obtained payoff, and N (1)
a parameter of the model determining the weight of the initial
attractions.

Stochastic choice rule. Player i’s choice probabilities are calcu-
lated as follows:

pik (t ) =
exp

[
λ·aik (t )

S(t )

]

∑
j exp

[
λ·aij (t )

S(t )

] ,

where λ is a sensitivity parameter, whereas S(t ) gives a measure of
payoff variability.

Initial attractions. S(1) is defined as the expected absolute dis-
tance between the payoff from random choices and the expected

payoff given random choices, denoted as A(1). At period t > 1:

S (t + 1) = S (t ) · [t + m · N (1)] + |A (t ) − x|
t + m · N (1) + 1

,

where x is the received payoff, m the number of player i’s pure
strategies, and A(t + 1) is:

S (t + 1) = A (t ) · [t + m · N (1)] + x

t + m · N (1) + 1
.

Initial attractions are such that aij(1) = A(1), for all i and j. This
model has two free parameters, namely λ and N (1).

The RL model (Erev and Roth, 1998; Erev et al., 2007)
Initial propensities. Initial propensities are set equal to the
expected payoff from random choice [denoted by A(1)], so that
aij(1) = A(1), for all i and j.
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Attractions updating. Propensities are updated as follows:

aij (t + 1) =
{

(1 − w) · aij (t ) + w · vik (x) if j = k

aij (t ) otherwise
,

where vij(t ) is the realized payoff, and w parameter expressing the
weight of past experience. The updating rule above implies agents’
insensitivity to foregone payoffs.

Stochastic choice rule. Choice probabilities are calculated as
follows:

pik (t ) = exp [λ · aik (t )]
∑

j exp
[
λ · aij (t )

] ,

where λ is a payoff sensitivity parameter.

The NRL model (Erev et al., 2007)
Initial propensities. Initial propensities are set equal to the
expected payoff from random choice [denoted by A(1)], so that
aij(1) = A(1), for all i and j.

Attractions updating. Propensities are updated according to the
following:

aij (t + 1) =
{

(1 − w) · aij (t ) + w · vik (x) if j = k

aij (t ) otherwise
,

where vij(t ) is the realized payoff and w a weight parameter. The
updating rule implies agents’ insensitivity to foregone payoffs.

Stochastic choice rule. Choice probabilities are defined as:

pik (t ) =
exp

[
λ·aik (t )

S(t )

]

∑
j exp

[
λ·aij (t )

S(t )

] ,

where S(t ) gives a measure of payoff variability and λ is payoff
sensitivity parameter.

S (t + 1) = (1 − w) · S (t ) + w
∣
∣max {recent1, recent2} − vij (t )

∣
∣ ,

where recenti is the most recent experienced payoff from action
i = 1, 2. At the first period, recenti = A(1), and S(1) is set equal to
λ. Similarly to the NFP model, payoff sensitivity [the ratio λ/S(t )]
is assumed to decrease with payoff variability.

The NFP model (Erev et al., 2007; Ert and Erev, 2007)
Initial propensities. Initial propensities are set equal to the
expected payoff from random choice [denoted by A(1)], so that
aij(1) = A(1), for all i and j.

Attractions updating. Propensities are updated according to the
following:

aij(t + 1) = (1 − w)·aij(t ) + w·vij(t ), for all i and j,

where vij(t ) is the expected payoff in the selected cell and w is a
parameter that measures sensitivity to foregone payoffs.

Stochastic choice rule. Choice probabilities are obtained as
follows:

pik (t ) =
exp

[
λ·aik (t )

S(t )

]

∑
j exp

[
λ·aij (t )

S(t )

] ,

where S(t ) gives a measure of payoff variability, and λ is payoff
sensitivity parameter.

S (t + 1) = (1 − w) · S (t ) + w
∣
∣max {recent1, recent2} − vij (t )

∣
∣ ,

where recenti is the last experienced payoff from action i = 1, 2. At
the first period, recenti = A(1), and S(1) is set equal to λ.

The SFP model (Erev et al., 2007)
Initial propensities. Initial propensities are set equal to the
expected payoff from random choice [denoted by A(1)], so that
aij(1) = A(1), for all i and j.

Attractions updating. Propensities are updated according to the
following:

aij(t + 1) = (1 − w)·aij(t ) + w·vij(t ), for all i and j,

where vij(t ) is the expected payoff in the selected cell and, w is a
parameter that measures sensitivity to foregone payoffs.

Stochastic choice rule. Choice probabilities are calculated as
follows:

pik (t ) = exp [λ · aik (t )]
∑

j exp
[
λ · aij (t )

] ,

where λ is a payoff sensitivity parameter.

The stEWA model (Camerer and Ho, 1999; Ho et al., 2007)
Attractions updating. At time t, player i associates to his j-th
pure strategy the attraction aij(t ), given by:

aij (t ) =
φi (t ) · N (t − 1) · aij (t − 1) + [

δij (t )
+ (

1 − δij (t )
) · I

(
sij , si (t )

)] · πi
(
sij , s−i (t )

)

N (t − 1) · φi (t ) + 1
,

where si(t ) and s−i(t ) are the strategies played by player i and
his opponents, respectively, and πi(sij,s−i(t )) is the ex-post payoff
deriving from playing strategy j, and I (·) is the Kronecker function.
Functions δij(t ) and φi(t ) are called, respectively, attention func-
tion and change detector function. The latter depends primarily on
the difference between the relative frequencies of chosen strategies
in the most recent periods and the relative frequencies calculated
on the entire series of actions. The attention function essentially
determines the importance that players give to past experience.

Stochastic choice rule. Choice probabilities are calculated as
follows:

pij (t + 1) = exp
(
λ · aij (t )

)

∑
j exp

(
λ · aij (t )

) ,

where λ is the unique free parameter of the model.
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Initial attractions. Authors suggest at least four ways of setting
initial attractions aij(0). In our implementation, initial attractions
are set equal to the average payoff from random choice, leading to
first period uniformly distributed choices.
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In decision from experience, the source of probability information affects how probability
is distorted in the decision task. Understanding how and why probability is distorted is a
key issue in understanding the peculiar character of experience-based decision. We con-
sider how probability information is used not just in decision-making but also in a wide
variety of cognitive, perceptual, and motor tasks. Very similar patterns of distortion of prob-
ability/frequency information have been found in visual frequency estimation, frequency
estimation based on memory, signal detection theory, and in the use of probability informa-
tion in decision-making under risk and uncertainty. We show that distortion of probability
in all cases is well captured as linear transformations of the log odds of frequency and/or
probability, a model with a slope parameter, and an intercept parameter. We then consider
how task and experience influence these two parameters and the resulting distortion of
probability. We review how the probability distortions change in systematic ways with task
and report three experiments on frequency distortion where the distortions change sys-
tematically in the same task. We found that the slope of frequency distortions decreases
with the sample size, which is echoed by findings in decision from experience. We review
previous models of the representation of uncertainty and find that none can account for
the empirical findings.

Keywords: log odds, subjective probability, probability distortion, frequency estimation, decision-making,

uncertainty

Estimates of the frequency of events by human observers are typi-
cally distorted. In Figure 1A we re-plot data from one of the earliest
reports of this phenomenon (Attneave, 1953). Attneave asked par-
ticipants to estimate the relative frequency of English letters in
text and Figure 1A is a plot of their frequency estimates versus
actual frequency. Although participants had considerable expe-
rience with English text, the estimates were markedly distorted,
with the relative frequency of rare letters overestimated, that of
common letters, underestimated.

Such S-shaped distortions1 of relative frequency and probabil-
ity are found in many research areas including decision under risk
(for reviews see Gonzalez and Wu, 1999; Luce, 2000), visual per-
ception (Pitz, 1966; Brooke and MacRae, 1977; Varey et al., 1990),
memory (Attneave, 1953; Lichtenstein et al., 1978), and movement
planning under risk (Wu et al., 2009, 2011).

Figure 1B shows an example from decision under risk (Tversky
and Kahneman, 1992). Different participants in the same experi-
ment can have different distortions (Gonzalez and Wu, 1999; Luce,
2000) and a single participant can exhibit different distortion pat-
terns in different tasks (Brooke and MacRae, 1977; Wu et al., 2009)

1We use the term “distortion” to cover transformations in probability or relative
frequency implicit in tasks involving probability or relative frequency. We use “S-
shaped”to refer to both S-shaped and inverted-S-shaped. Precisely,Attneave’s (1953)
case is an inverted-S-shaped distortion.

or in different conditions of a single task (Tversky and Kahneman,
1992). We currently do not know what controls probability distor-
tion or why it varies as it does. Gonzalez and Wu (1999) identified
this issue as central to research on decision under risk.

We use a two-parameter family of transformations to char-
acterize the distortions of frequency/probability. This family of
distortion functions is defined by the implicit equation,

Lo
(
π

(
p
)) = γ Lo

(
p
) + (1 − γ) Lo

(
p0

)
(1)

where p denotes true frequency/probability, π(p) denotes the
corresponding distorted frequency/probability estimate and,

Lo(p) = log
p

1 − p
(2)

is the log odds (Barnard, 1949) or logit function (Berkson, 1944).
The transformation is an S-shaped curve (examples shown in both
panels of Figure 2).

The two parameters of the family are readily interpretable. The
parameter γ in Eq. 1 is the slope of the linear transformation and
the remaining parameter p0 is the “fixed point” of the linear trans-
formation, the value of p which is mapped to itself. To show this,
we need only set p = p0 and simplify to get,

Lo
(
π

(
p0

)) = γ Lo
(
p0

) + (1 − γ) Lo
(
p0

) = Lo
(
p0

)
. (3)
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FIGURE 1 | S-shaped distortions of frequency estimates. (A) Estimated
relative frequencies of occurrence of English letters in text plotted versus
actual relative frequency from Attneave (1953). (B) Subjective probability of
winning a gamble (decision weight) plotted versus objective probability
from Tversky and Kahneman (1992). R2 denotes the proportion of variance
accounted by the fit.

FIGURE 2 | Demonstration of the effects of varying the parameters γ

and p0. The parameter p0 in the LLO function is the “fixed point” of the
transformation, the value of p which is mapped to itself. The parameter γ, is
the slope of the linear transformation on log odds scales, and on linear
scales, is the slope of the curve at the crossover point p0. Left: p0 fixed at
0.4 and γ varied between 0.2 and 1.8. Note that the line at γ = 1 overlaps
with the diagonal line, i.e., no distortion of probability. Right: γ fixed at 0.6
and p0 varied between 0.1 and 0.9.

Since Lo() is invertible, π(p0) = p0. We refer to p0 as the
crossover point.

In Figure 2 we illustrate more generally how the two parame-
ters affect the shape of the distortion function, plotting π against
p on linear scales. The transformation maps 0–0, 1–1, and p0 to
p0. At point (p0, p0), the slope of the curve equals γ. When γ = 1,
π(p) = p, the curve overlaps with the diagonal line, that is, there is
no distortion at all. When γ > 1 and 0 < p0 < 1 we see an S-shaped
curve. When 0 < γ < 1 and 0 < p0 < 1 we see an inverted-S-shaped
curve. When the crossover point p0 is set to either 0 or 1, the curve
is no longer S-shaped but simply concave or convex.

This family of functions, with a slightly different parameteriza-
tion, has been previously used to model frequency distortion (Pitz,
1966). In decision under risk or uncertainty, it has been used to
model probability distortion (Goldstein and Einhorn, 1987; Tver-
sky and Fox, 1995; Gonzalez and Wu, 1999). A one-parameter form

without the intercept term was first used by Karmarkar (1979) to
explain the Allais paradox (Allais, 1953). Following Gonzalez and
Wu (1999) we refer to this family of functions as “LLO.”

The LLO function we use is just one family of the functions that
can capture the S-shaped transformations. Prelec (1998) proposed
another family of functions, which, in most cases, are empirically
indistinguishable from the LLO function (Luce, 2000). We return
to this point below.

The present paper is organized into four sections. In
Section “Ubiquitous Log Odds in Human Judgment and Deci-
sion,” we demonstrate good fits of the LLO function to fre-
quency/probability data in a wide variety of experimental tasks.
We retrieved data for p and π from tables or figures of published
papers and re-plotted them on the log odds scales. The parameters
(γ and p0) and goodness-of-fit (R2) of the LLO fit are shown on
each plot. We see dramatic differences in γ and p0 across tasks
and individuals. We are concerned with two questions: how can
we explain the LLO transformation? What determines the slope
γ and crossover point p0? We address these two questions in the
following sections.

We conducted three experiments to investigate the factors that
influence γ and p0. We report them in Section “What Controls
the Slope and the Crossover Point?” The task we used was to
estimate the relative frequency of a category of symbols in a
visual display. We observed systematic distortions of relative fre-
quency consistent with the LLO function and identified several
factors that influence γ and p0. We discuss the results in the
light of recent findings in decision under risk, especially those
in the name of “decision from experience” (Hertwig et al., 2004;
Hau et al., 2010).

Although no attempts have been made to explain the various
S-shaped distortions of frequency/probability in one theory, there
are quite a few accounts for the distortion in one specific task
or area. In Section “Previous Accounts of Probability Distortion,”
we review these theories or models and contrast them with the
empirical findings summarized in Sections “Ubiquitous Log Odds
in Human Judgment and Decision” and “What Controls the Slope
and the Crossover Point?”

In Section “LLO as the Human Representation of Uncertainty,”
we argue that log odds is a fundamental representation of fre-
quency/probability used by the human brain. The LLO transfor-
mation in various areas is not coincidence but reflects a common
mechanism to deal with uncertainty.

UBIQUITOUS LOG ODDS IN HUMAN JUDGMENT AND
DECISION
We now demonstrate that the subjective frequency/probability in
a wide variety of tasks can be fitted by the LLO function with two
parameters γ and p0. In the accompanying figures, we plot sub-
jective frequency/probability versus true frequency/probability on
log odds scales. On these scales the LLO function is a straight line
with slope γ and crossover point p0. Black dots denote data points.
The blue line denotes the LLO fit. When you read the plot, note
how different γ and p0 can be for different tasks or individuals.
These plots pose quantitative tests for any theory that is aimed at
accounting for probability distortions.
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FIGURE 3 | Linear in log odds fits: frequency estimates. The two data
sets in Figures 1A,B are re-plotted on log odds scales as (A,B),
respectively. The blue line is the best-fitting LLO fit. R2 denotes the
proportion of variance accounted by the fit. The S-shaped distortions of
frequency/probability on linear scales in Figures 1A,B are well captured by
the LLO fits.

FREQUENCY ESTIMATION
We introduced Attneave (1953) earlier as an example of overesti-
mation of small relative frequency and underestimation of large
relative frequencies. In his experiment, participants estimated the
relative frequency of each letter in written English (Figure 1A).
While a linear fit could only account for 63% of the variance, the
LLO function fitted to the same data transformed in Figure 3A
accounts for 77% of the variance.

Note that the relative frequency of even the most common letter
(“e”) is less than 0.15. Intriguingly, the estimated crossover point
p̂0, 0.044, for Attneave’s (1953) data is not far from 1/26 (=0.039),
the reciprocal of the number of letters in the alphabet. We return
to this point later.

Another impressive example is Lichtenstein et al. (1978). Par-
ticipants were given a list of 41 possible causes of death in the US,
such as flood, homicide, and motor vehicle accidents (MVA). Par-
ticipants were asked to estimate the frequencies of the causes. The
true frequency of one cause was provided to participants as a refer-
ence. One group of participants was provided with the frequency
of Electrocution (1000) as the reference and a second group, the
frequency of MVA (50000). We divided the true frequencies and
estimated frequencies (averaged across participants) by the US
population (2.05 × 108) to obtain the relative frequencies, p and
π. We noticed that although some specific causes were unreason-
ably overestimated relative to others (e.g., floods were estimated
to take more lives than asthma although the latter is nine times
more likely), the overestimation or underestimation of relative
frequency of all causes as a whole can be satisfactorily accounted
by the LLO function. Figure 4A shows the LLO fits for the two
groups.

In the above two examples, participants’ estimation of fre-
quency was based on their memory of events (e.g., reading of
a case of lethal events on the newspaper). To show the LLO trans-
formation is not unique to memory nor to sequential presentation
of events, our third example is Varey et al. (1990), which demon-
strates an LLO transformation in frequency estimation from one
visual stimulus. The task was to estimate the relative frequency of

either black or white dots among an array of black and white dots.
White dots were always less than half of the total number of dots.
Eleven levels of relative frequency were used. Participants reported
the relative frequency immediately after they saw the visual dis-
play. Varey et al. (1990) found considerable distortion of relative
frequency. Figure 4B shows the LLO fits separately for participants
who estimated the relative frequency of white dots and those who
estimated black dots.

CONFIDENCE RATING
Confidence rating refers to the task where participants estimate
the probability of correctness or success of their own action. For
example, in Gigerenzer et al. (1991), participants answered forced-
choice questions like “Who was born first? (a) Buddha or (b)
Aristotle” and then chose for each question how confident they
were to be correct: 50, 51–60, 61–70, 71–80, 81–90, 91–99, or 100%
confident. Participants choosing 51–60% were counted to be 55%
confident about the answer, and so on. Converted to proportion,
the rated confidence is a counterpart of estimated probability, π.
The true probability, p, in the confidence rating task is defined
as the relative frequency to be correct for a specific choice of
confidence level. We re-plot the representative set condition of
Gigerenzer et al. (1991) Figure 6 in Figure 5A. The slope γ of
the LLO fit is greater than one. That is, an underestimation of
small probability (the probability of the harder task) and overes-
timation of large probability (the probability of the easier task). A
qualitative description of this phenomenon is usually referred as
a hard–easy effect. This pattern is the reverse of that of the above
examples of frequency estimation tasks. We discuss this difference
later.

Gigerenzer et al. (1991) is an example of human confidence on
a cognitive task. Similar LLO transformations are found in confi-
dence ratings in motor tasks. McGraw et al. (2004) required par-
ticipants to attempt basketball shots and give a confidence rating
before each attempt. Their results are re-plotted as Figure 5B.

DECISION UNDER RISK OR UNCERTAINTY
A classical task of decision under risk is to choose between two
gambles or between one gamble and one sure payoff. Kahne-
man and Tversky (1979) proposed that the subjective probability
used in decision-making, a.k.a. the decision weight function2, is a
non-linear function of the probability stated in the gamble.

Based on their choices between different gambles and different
sure payoffs, participants’ decision weight (a counterpart of π) for
any specific stated probability (p) can be estimated. In Figures 1B
and 3B, we re-plot the decision weight for gains of Tversky and
Kahneman (1992) against stated probability on linear scales and
log odds scales. The LLO fit explains 97% of the variance, with
γ = 0.60 and p0 = 0.40.

The data presented in most decision-making studies are aver-
aged across participants. As an exception, Gonzalez and Wu (1999)
elicited decision weights for each individual participants. We

2We use the generic term “probability distortion” to refer to non-linear transfor-
mations of probability in different kinds of task. In decision under risk, the term
“probability weight function” or “decision weight function” would coincide with
what we refer to as probability distortion.
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FIGURE 4 | Linear in log odds fits: frequency estimates from memory

or perception. Estimated relative frequency is plotted against true relative
frequency on log odds scales and fitted by the LLO function. Black dots
denote data. The blue line denotes the LLO fit. R2 denotes the proportion
of variance accounted by the fit. (A) Estimated frequency of lethal events
from Lichtenstein et al. (1978). Participants were asked to estimate the
number of occurrences of different causes of death per year in the US. The
actual frequency of one cause was provided as a reference for participants
to estimate the frequencies of the other causes. The relative estimated
and actual frequencies in the plot were the frequencies divided by the

then US population. Left: when the frequency of Electrocution (1000) was
given as reference. Right: when the frequency of MVA (motor vehicle
accident, 50000) was given as reference. (B) Estimated frequency of
visual stimuli from Varey et al. (1990). The task was to estimate the relative
frequency of black or white dots among a visual array of black and white
dots. The proportion of black dots was larger than the proportion of white
dots. Two groups of participants respectively estimated the relative
frequency of white dots (small p) and black dots (large p). Left: the white
dots group (p ≤ 0.5) was estimated. Right: the black dots group (p ≥ 0.5)
was estimated.

re-plot their results on log odds scales in Figure 6A. Each panel
is for one participant. The large individual differences are impres-
sive. The slope γ ranges from 0.17 to 0.82, with a median of 0.30.
The crossover point p0 ranges from 0.26 to 0.98, with a median of
0.46. The only common point across participants seems to be that
all the slopes are lesser than one.

When the probabilities of possible consequences of a decision
are known, it is decision under risk. When the probabilities are
unknown, it is decision under uncertainty. Tversky and Fox (1995)
compared probability distortions in decision under risk versus
uncertainty. We re-plot their Figures 7–9 on log odds scales in
Figure 6B. In the left panel (decision under risk), the probability
associated with a gamble, p, was explicitly stated. In the middle
and right panels (decision under uncertainty), the probability p

was the probability of a specific event in Super Bowl or Dow-Jones
and came from participants’ own judgments. Similar probability
distortions are revealed in the three panels.

SIGNAL DETECTION THEORY
Signal detection theory (Green and Swets, 1966/1974) is an appli-
cation of statistical decision theory (Blackwell and Girshick, 1954)
to deciding whether a signal is present. In each trial, the observer
makes the decision based on her perception of the stimulus. There
are four possible outcomes: hit (correctly say “yes” at signal pres-
ence), miss (incorrectly say “no” at signal presence), false alarm
(FA, incorrectly say “yes” at signal absence), and correct rejection
(CR, correctly say “no” at signal absence). If each outcome is asso-
ciated with a specific payoff and the prior probability of a signal
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FIGURE 5 | Linear in log odds fits: confidence rating for cognitive and

motor responses. Estimated probability of being correct or successful is
plotted versus the actual probability on log odds scales and fitted by the
LLO function. Black dots denote data. The blue line denotes the LLO fit. R2

denotes the proportion of variance accounted by the fit. (A) Estimated
probability of being correct in general-knowledge questions from
Gigerenzer et al. (1991). Participants first chose an answer for two
alternative general-knowledge questions and then indicated the probability
that the answer was correct. (B) Estimated probability of success in
basketball shooting from McGraw et al. (2004). Participants rated their
probability of success before each basketball shot.

is known, there exists an optimal decision criterion, maximizing
expected gain. This decision criterion is determined by the prior
probability of signal and the specified rewards.

Based on the relative frequencies of hit, miss, FA, and CR, the
actual decision criterion used by the observer can be measured
and the experiment can compare the subject’s decision criterion
with the optimal criterion. Systematic deviations from the opti-
mal decision criterion have been found in many studies (Green
and Swets, 1966/1974; Healy and Kubovy, 1981). It is as if par-
ticipants overestimate the prior probability when it is small and
underestimate the prior probability when it is large.

In Figure 7, we plot Tanner et al.’s (Green and Swets, 1966/1974)
data from an auditory signal detection task for one participant on
log odds scales. Each data point is obtained from a block of 600
trials with a specific probability of signal present. The straight line
is the LLO fit. The slope γ of the probability distortion is 0.36.

In a cognitive signal detection task where participants were
asked to classify a number into two categories with different means
(Healy and Kubovy, 1981), a similar slope, 0.30, was found.

SUMMARY
At this moment, you are probably intrigued by the same two ques-
tions as the authors are: why does probability distortion in so
many tasks conform to an LLO transformation? What determines
the slope γ and crossover point p0?

The plots we present here reflect only part of the empirical
results we have reviewed. To provide a more complete picture, we
clarify the following two points.

First, the slope γof the LLO transformation is not determined
by the type of task. The slope γ of the same task can be less than
one under some conditions and greater than one under others, not
to mention the quantitative differences. For example, the typical
distortion in relative frequency estimation is an overestimation

of small relative frequency and underestimation of large relative
frequency, corresponding to γ < 1. But in a visual task that resem-
bles Varey et al. (1990), Brooke and MacRae (1977) found the
reverse distortion pattern: an underestimation of small relative
frequencies and overestimation of large relative frequencies.

In decision-making under uncertainty, a reversal is reported
in Wu et al. (2009), where the probability of a specific outcome is
determined by the variance of participants’ own motor errors. The
reverse distortion pattern is also implied in a variant of the clas-
sical task of decision under risk called “decision from experience”
(Hertwig et al., 2004; Ungemach et al., 2009), in which partici-
pants acquire the probability of specific outcomes by sampling the
environment themselves. We will go into more details in the next
section.

Second, the crossover point of the LLO transformation is not
determined by the type of task, either. See the difference between
Attneave (1953) and Lichtenstein et al. (1978).

Luce (2000, Section 3.4.1–3.4.2) discusses the form of the prob-
ability weighting function noting that it is not always S-shaped but
can be a simple convex or concave curve. As we noted above, LLO
with the crossover point set to 0 or 1 can generate such shapes.

While the LLO family provides good fits to all of the data we
have obtained, a two-parameter form of Prelec’s model of the
probability weighting function (Prelec, 1998; Luce, 2000, Section
3.4) also provides good fits (not reported here). We concentrate
on LLO primarily because of the ready interpretability of its para-
meters and its links to current work on the neural representation
of uncertainty discussed below. As Luce (2000) notes, it is difficult
to discriminate competing models of the probability weighting
function in decision under risk by their fits to data.

WHAT CONTROLS THE SLOPE AND THE CROSSOVER POINT?
What controls the slope γ and crossover point of the LLO trans-
formation in a specific task? In this section we report three new
experiments on frequency/probability distortions.

Gonzalez and Wu (1999) identified some of the factors that
make decision under risk a less than ideal paradigm for studying
distortions in probability. The most evident is that analysis of data
requires simultaneous consideration of probability distortion and
valuation of outcomes.

The task we consider here is estimation of the relative frequency
of one color of dot among a crowd of two or more colors of dots,
a task used by Varey et al. (1990) and other earlier researchers
(Stevens and Galanter, 1957). The task is illustrated in the two
displays on Figure 8A which consists of 200 (left) or 600 (right)
dots placed at random. In both cases, 20% of the dots are black.
The observer viewed briefly presented arrays like these and judged
the relative frequency of black dots (alternatively, white dots). We
varied the true relative frequencies from trial to trial and fit the
estimated relative frequencies against the true relative frequencies
with the LLO function to obtain γ and p0. We compared γ and p0

across conditions.

EXPERIMENT 1: SLOPE
In earlier studies on frequency estimation, some researchers found
that small relative frequencies are overestimated and large relative
frequencies underestimated (Stevens and Galanter, 1957; Erlick,
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FIGURE 6 | Linear in log odds fits: decision under risk or uncertainty.

Decision weight is plotted versus experimenter-stated probability (in decision
under risk) or self-judged probability (in decision under uncertainty) and fitted
by the LLO function. Black dots denote data. The blue line denotes the LLO
fit. R2 denotes the proportion of variance accounted by the fit. (A) Decision
weights of individual participants from Gonzalez and Wu (1999). Each panel is
for one participant. Participants chose between a two-outcome lottery and a
sure reward. The probability of winning the larger reward of the lottery was
stated as p. Decision weight, the counterpart of subjective probability π, was
inferred from each participant’s choices based on the Cumulative Prospect

Theory. Re-plotted from Figure 6 of Gonzalez and Wu (1999). (B) Decision
weights from Tversky and Fox (1995). Participants chose between a lottery
offering a probability of a reward or otherwise zero and a sure reward. The
probability of winning the larger reward of the lottery p was stated (left panel),
or estimated by participants themselves as the probability of a specific Super
Bowl prospect (middle panel), or as the probability of a specific Dow-Jones
prospect (right panel). Decision weight, the counterpart of subjective
probability π, was inferred from participants’ choices based on the Cumulative
Prospect Theory Re-plotted respectively from Figures 7–9 of Tversky and Fox
(1995).

1964; Varey et al., 1990) while others found no distortion or
even the reverse distortion (Shuford, 1961; Pitz, 1966; Brooke
and MacRae, 1977). Different researchers obtained contradictory
results even when the task they used was almost the same (e.g.,
Erlick, 1964; Pitz, 1966). Expressed in the language of LLO, it is a
controversy about the slope γ. There is clue in the literature that
the numerosity of samples might play a role.

In Experiment 1, participants estimated the relative frequency
of either black or white dots among black and white dots. Each
participant completed eight blocks. We examined the effects of
two factors on γ and p0: experience (block number) and sample
numerosity, N, the total number of dots in a trial, which could be
200, 300, 400, 500, or 600.

Methods
Participants. Eleven participants, seven female and four male,
participated. Six of them estimated the relative frequency of
black dots, the remaining five, white. One additional partici-
pant was excluded from the analysis because of marked inaccu-
racy. All participants gave informed consent and were paid $12/h
for their time. The University Committee on activities involving
human subjects (UCAIHS) at New York University approved the
experiment.

Apparatus and Stimuli. Stimuli were black and white dots dis-
played on a gray background. They were presented on a SONY
GDM-FW900 Trinitron 24′′ CRT monitor controlled by a Dell
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FIGURE 7 | Linear in log odds fit: signal detection theory. Estimated
probability of signal present is plotted against the true probability on log
odds scales for one participant. Black dots denote data. The blue line
denotes the LLO fit. R2 denotes the proportion of variance accounted by
the fit. In Tanner et al. (1956), c.f. Green and Swets (1966/1974), participants
were asked to report whether a sound signal was present or absent.
Estimated probability was inferred from the participant’s decision criterion
based on signal detection theory. Data are from Table 4-1 of Green and
Swets (1966/1974).

Pentium D Optiplex 745 computer using the Psychophysics Tool-
box (Brainard, 1997; Pelli, 1997). A chinrest was used to help
maintain a viewing distance of 40 cm. The dots were randomly
scattered uniformly within a 17˚ × 17˚ area at the center of screen.
Each dot had a nominal diameter of 0.26˚.

Procedure. On each trial the display of black and white dots was
presented for 1.5 s. Participants were asked to estimate the relative
frequency of black or white dots. Their estimates were numbers
between 1 and 999 interpreted as their estimate of relative fre-
quency out of as 1000. Each participant made estimates for only
one color of dots (black or white) and the color assigned to each
participant was randomized. Participants were encouraged to be
as accurate as possible. No feedback was given.

Trials were organized into blocks of 100 trials. In each block all
of the relative frequencies 0.01, 0.02, . . ., 0.99 except 0.50 occurred
once and 0.50 occurred twice. The total number of dots (numeros-
ity, N ) in a display could be 200, 300, 400, 500, or 600, with each
numerosity occurring in 20 trials of each block. Their order within
a block was randomized. Each participant completed two sessions
of four blocks on two different days, completing a total of two ses-
sions × four blocks × 100 trials = 800 trials. Before the first block
of each session there were five trials of practice.

Results
Effect of experience. The experimental blocks were numbered
from 1 to 8 in order. We refer to block index as experience. We
fitted the estimated relative frequency to Eq. 1 separately for each
participant and each block and then averaged the coefficients γ

and p0 across the 11 participants.
Starting from slightly less than one, the slope γ became shal-

lower with experience (Figure 8B), dropping by 16% from Block

1 (0.91) to Block 8 (0.76). A repeated-measures ANOVA showed
a significant effect of experience on γ, F(7,70) = 5.59, p < 0.0001,
η2

p = 0.36. Post hoc analyses using Tukey’s honestly significant
difference criterion at 0.05 significance level indicated that Block
1 had a significantly larger γ than all the other blocks except
Block 2.

The crossover point p0 fluctuated around 1/2 (0.5) in all
the blocks, ranging from 0.42 to 0.55. According to a repeated-
measures ANOVA, p0 did not vary significantly across blocks,
F(7,70) = 0.69, p = 0.68, η2

p = 0.06. We concluded that expe-
rience affected the slope parameter γ but not the crossover
point p0.

Effect of sample numerosity. We used a similar procedure to
analyze the effect of sample numerosity as we used in the effect of
experience above.

As sample numerosity increased, the slope γ declined
(Figure 8C). The γ for displays of 600 dots (0.73) was 18% smaller
than that of 200 dots (0.88). A repeated-measures ANOVA showed
a significant effect of sample numerosity on γ, F(4,40) = 17.71,
p < 0.0001, η2

p = 0.64. Post hoc analyses using Tukey’s honestly
significant difference criterion at 0.05 significance level indicated
significant decline from 200 to all the larger numerosities, and
from 300 to 500 and 600.

Moreover, the relationship of γ to N can be best fitted with a
function with one-parameter C :

γ = log C
/

log N (4)

A least-squares fit of Eq. 4 captured 99% of the variance of γ

(Figure 8D). The estimate for the parameter C was 104.
The crossover point p0 was 0.50, 0.54, 0.51, 0.68, 0.68, respec-

tively for the numerosity of 200, 300, 400, 500, 600. Similar to
experience, the effect of sample numerosity failed to reach signifi-
cance, F(4,40) = 2.17, p = 0.08, η2

p = 0.18. To conclude, we found
that sample numerosity affected the γ but found only a marginally
significant effect of sample numerosity on p0.

EXPERIMENT 2: CROSSOVER POINT
What determines the crossover point p0? In Experiment 1, p0 was
around 0.5 and little affected by experience or sample numeros-
ity. But recall that the estimation of the relative frequency of the
26 English letters (Attneave, 1953) ends up with p0 = 0.044, very
different from 0.5 and coincidently not far from 1/26. Fox and
Rottenstreich, 2003; See et al., 2006) suggested that when there are
m categories, the crossover point should be p0 = 1/m.

Experiment 2 was focused on testing the prediction of
p0 = 1/m. The results of Experiment 1 were consistent with the
prediction where there were two categories of dots, black and
white. In Experiment 2, we set m = 4 (participants were asked
to estimate the relative frequency of a specific color among four
colors of dots).

Methods
Participants. Ten participants, nine female and one male, par-
ticipated. None had participated in Experiment 1. All reported
normal color vision and passed a color counting test. All subjects
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FIGURE 8 | Slope of distortion in relative frequency estimation. The
methods and results of Experiment 1. (A) Examples of the relative frequency
task: what proportion of the dots are black? The left display contains 200 dots
in total, the right, 600. In both displays, 20% of the dots are black. (B) Effect
of experience. The mean slope γ across 11 participants is plotted against block
index, one to four for the first session, five to eight for the second session.
Later blocks are supposed to be associated with more experience. More

experience led to greater distortion (γ further from 1). Error bars denote SEs
of the mean. (C) Effect of sample numerosity. The slope γ across 11
participants is plotted as a function of sample numerosity N (the total number
of dots displayed in a trial). Larger sample numerosity resulted in greater
distortion (γ further from 1). Error bars denote SEs of the mean. (D) The
function of the mean γ to sample numerosity, N. Dots denote data. Solid line
denotes the fit of γ as proportional to the reciprocal of log N.

gave informed consent and were paid $12/h for their time. The
UCAIHS at New York University approved the experiment.

Apparatus and stimuli. The same as Experiment 1, except that
dots could any of four colors, red, green, white, or black.

Procedure. In each trial a display of black, white, red, and green
dots were presented for 3 s. Afterward one of the four colors was
randomly chosen and participants were asked to estimate the rel-
ative frequency of dots of this specific color. As in Experiment 1,
participants input a number between 1 and 999 as the numerator
of 1000 and no feedback was given.

In any trial, the relative frequencies of the four colors were
multinomial-like random distributions centered at (0.1, 0.2, 0.3,
0.4) and each relative frequency was constrained to be no less
than 0.02. The order of relative frequencies for different colors
was randomized. The total number of dots in a display could be
400, 500, or 600, each numerosity occurring in 32 trials of a block.
Each participant completed one session of five blocks. That is, five
blocks × 96 trials = 480 trials in total.

Results
Fox and Rottenstreich, 2003; See et al., 2006) suggested the
crossover point of 1/m but reasoned that it is because people are
using a“guessing 1/m”when they are totally ignorant of the relative
frequency. In our case, because the to-be-estimated color was indi-
cated after the display of dots, there is a good chance participants
might fail to encode the color in question.

In an attempt to further test the “guessing 1/m” heuristic, we
considered an additional measure. The preferred response of a
participant was defined as the value (rounded to the second digit
after the decimal point) that the participant used most often in
estimation. The actual relative frequencies in all trials were close
to uniformly distributed within the range of [0.06, 0.36] and had
a much lower density outside. If on some proportion of trials
observers defaulted to the fixed prior value 0.25, as suggested by the
heuristic, we would expect to find a “spike” in observers’ estimates
of relative frequency at that value.

For each participant, we left out the trials whose estimated rel-
ative frequencies were within preferred response ± 0.04 and fit the
remaining trials to Eq. 1 to get the crossover point.
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FIGURE 9 | Evidence for log odds as an inherent representation of

uncertainty. Participants saw pairs of photos of faces. One group of
participants rated the similarity between the two faces in each pair. A second
group judged whether the two persons on each pair were related or not. (A)

The similarity rating of two children faces is a linear transformation of the log

odds of the two children being judged to be related. Reproduced from
Maloney and Dal Martello (2006). (B) The similarity rating of two adult faces is
a linear transformation of the log odds of the two adults being judged to be
related. Reproduced from DeBruine et al. (2009). R2 denotes the proportion
of variance accounted by the linear fit. See text for implications.

For the 10 participants, we computed the mean and 95% con-
fidence interval separately for crossover point and for preferred
response. The crossover point was 0.22 ± 0.07, indistinguishable
from 1/4 (0.25). Note that it was much lower than 0.5. If this were
the result of the“guessing 1/4”heuristic, we would expect a positive
correlation between crossover point and preferred response. How-
ever, no significant correlation was detected, Pearson’s r = 0.29,
p = 0.42. Moreover, the preferred response was 0.18 ± 0.06, lower
than 1/4 (0.25).

We concluded that the prediction of p0 = 1/m, was supported,
but it was unlikely to be the result of the heuristics discussed above.

EXPERIMENT 3: SLOPE AND DISCRIMINABILITY
Tversky and Kahneman (1992) and Gonzalez and Wu (1999) con-
jecture that the shape of the probability weighting function is
controlled by the “discriminability” of probabilities. In Experi-
ment 3, we tested the “discriminability hypothesis” for relative
visual numerosity judgments. We measured the just noticeable dif-
ference (JND) of relative frequency at 0.5 for the five numerosities
used in Experiment 1. If the shallower slope for a larger sample
numerosity is caused by a lower discriminability (as consistent
with the intuition that a larger numerosity makes the estimation
task more difficult), we would expect that the JND increases with
an increasing numerosity.

Methods
Participants. Ten participants, seven female and three male,
participated. None had participated in Experiment 1 or 2. One
additional participant was excluded for failing to converge in the
adaptive staircase procedures we used to measure JND. All subjects

gave informed consent and were paid $12/h for their time. The
UCAIHS at New York University approved the experiment.

Apparatus and stimuli. Same as Experiment 1.

Procedure. On each trial two displays of black and white dots were
presented, each for 1.5 s, separated by a blank screen of 1 s. Half of
the participants judged which display had a higher proportion of
black dots, and the other half, white dots.

As in Experiment 1, the total number of dots (numerosity, N ) in
a display could be 200, 300, 400, 500, or 600. The two displays in a
trial always had the same numerosity. To avoid participants com-
paring the number of black or white dots of the two displays rather
than judging the proportion, we jittered the actual numerosity of
each display randomly within the range of ±4%.

The proportion of black or white dots of one display was fixed
at 0.5. The proportion of the other was adjusted by adaptive stair-
case procedures. For each of the five numerosity conditions, there
was one 1-up/2-down staircase of 100 trials, resulting in 500 trials
in total Each staircase had multiplicative step sizes of 0.175, 0.1125,
0.0625, 0.05 log unit, respectively for the first, second, third, and
the remaining reversals. The five staircases were interleaved. Five
practice trials preceded the formal experiment.

Results
The 1-up/2-down staircase procedure converges to the 70.7% JND
threshold. For each participant and numerosity condition,we aver-
aged all the trials after the first two reversals to compute the thresh-
old. The mean threshold across participants was 0.57, 0.57, 0.56,
0.56, 0.55, respectively for the numerosity of 200, 300, 400, 500,
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600. According to a repeated-measures ANOVA, there was no sig-
nificant difference in the JND threshold for different numerosities,
F(4,36) = 2.05, p = 0.11, η2

p = 0.18. Differences in discriminabil-
ity are not responsible for the differences in probability distortion
observed in Experiment 1.

DISCUSSION
As demonstrated in Section “Ubiquitous Log Odds in Human
Judgment and Decision,” the distortions of relative frequency
and/or probability in a variety of judgment and decision tasks are
closely approximated by a linear transformation of the log odds
with two parameters, the slope γ and crossover point p0 (LLO,
the Eq. 1). We investigated in three experiments what determines
these two parameters of the distortion of relative visual frequency.

In Experiment 1 we found that slope γ decreased with increas-
ing experience or larger sample numerosity. Intuitively, these
trends are surprising, because an accumulation of experience or
a larger sample size should reduce “noise” and thus lead to more
accurate estimation. Interesting, the slope γ was proportional to
the reciprocal of log N. We cannot find a satisfactory explanation
for these effects in the literature. However, there is a parallel sam-
ple numerosity effect emerging in an area of decision under risk.
We explore the implications under the subtitles below.

In both Experiment 1 and 2 we found that the crossover point
p0 agrees with a prediction of p0 = 1/m. Our results are consistent
with the category effect found in Fox and Rottenstreich, 2003; See
et al., 2006), but we also showed that this is unlikely to be due to
the “guessing 1/m” heuristic they suggested.

Decisions from experience
Recently, research on decision-making has begun to focus on how
the source of probability/frequency information affects probabil-
ity distortion. This new research area contrasts “decision from
experience” (Barron and Erev, 2003; Hertwig et al., 2004; Hadar
and Fox, 2009; Ungemach et al., 2009; for review, see Rakow and
Newell, 2010), to traditional “decision from description.”

What are the implications of our results for decision from
experience? A typical finding in decision from experience is an
underweighting of small probabilities (e.g., Hertwig et al., 2004),
as opposed to the overweighting of small probabilities in decision
from description (Luce, 2000). Several authors (Hertwig et al.,
2004; Hadar and Fox, 2009) conjectured that this reversal is due
to probability estimates based on small samples. Consistent with
their conjecture, Hau et al. (2010) found that the magnitude of
underweighting of small probabilities decreased as sample size
increased. With a very large sample size, Glaser et al. (in press)
even obtained the classical pattern of an overweighting of small
probabilities.

In the language of LLO, the larger the numerosity (sample size),
the shallower the slope of the probability distortion (underweight-
ing small probabilities corresponds to a slope of over one). Note
that this effect of sampling size on the probability distortion in
decision from experience qualitatively parallels to what is found in
Experiment 1. And according to Eq. 4, the empirical fit we found
for γ, when N = C, there would be no probability distortion. We
conjecture that for decision from experience, there exists a specific
sample size at which there is no distortion of probability.

There is another hint in the literature that the highly ordered
changes in probability distortion that we observe in visual
numerosity tasks would also show up in decision-making tasks
where probability information is presented as visual numeros-
ity. Denes-Raj and Epstein (1994) asked participants to choose
between two bowls filled with jelly beans, one large (100 jelly
beans) and one small (10 jelly beans). Participants were explic-
itly told the proportion of winning jellybeans in both bowls by
the experimenters but they still showed a strong preference for
the large bowl with 60% of participants choosing a large bowl
with 9/100 winning jellybeans over a small bowl with 1/10 win-
ning jellybeans. This outcome suggests an effect of numerosity
qualitatively consistent with our results.

We have also shown that we can systematically manipulate
the crossover point p0 in a relative visual numerosity task. The
crossover point is often assumed not to vary in decision-making
under risk (Tversky and Kahneman, 1992; Tversky and Fox, 1995;
Prelec, 1998). Our results lead to the conjecture that, in decisions
with relative frequency signaled by displays with m > 2 categories,
the crossover point will vary systematically.

Confidence ratings
Gigerenzer (Gigerenzer et al., 1991; Gigerenzer, 1994) distin-
guished between human reasoning about single-event probability
and frequency. When asked to rate their confidence about one
event, people’s default response was to treat the event as a special
one that never occurred before and will never occur after, rather
than to group the event into a category of events whose frequency
is observable.

Probability distortion in confidence rating typically has a slope
of γ > 1 (see Figure 5), as reversed to the typical pattern in fre-
quency estimation and decision-making. We conjecture this to be
a special case of the sample numerosity effect. That is, γ > 1 when
the sample numerosity is very small. It was as if people treat the
to-be-rated action as a single-event and sampled very few previous
events to making the confidence rating.

PREVIOUS ACCOUNTS OF PROBABILITY DISTORTION
Why do humans distort frequency/probability in the ways that
they do? The subjective probability may deviate from the true
probability for many reasons, but no simple reason can explain
the S-shaped patterns we have observed.

For example, people might overestimate the frequencies of
the events that attract more media exposure (Lichtenstein et al.,
1978) or are just more accessible to memory retrieval (Tversky
and Kahneman, 1974). But this would not cause a patterned
distortion of all events. People might be risk-averse in order to
maximize biological utility (Real, 1991), or just be irrationally risk-
seeking, but neither risk-averse nor risk-seeking tendencies could
explain the coexistence of overestimation and underestimation of
probabilities.

The S-shaped distortion has received much attention in quite
a few areas. Theories and models have been developed to account
for the S-shaped distortion in a specific area, although little efforts
have been made to build a unified theory for all the areas. In
this section, we briefly describe the representative theories and
models, organizing them by area. Their predictions, quantitative
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or qualitative, on slope, and crossover point of the distortion are
compared with the empirical results we summarized in Sections
“Ubiquitous Log Odds in Human Judgment and Decision” and
“What Controls the Slope and the Crossover Point?”

FREQUENCY ESTIMATION
Power models
Spence’s (1990) power model and Hollands and Dyre’s (2000)
extension of it, the cyclical power model, are intended to explain
the S-shaped patterned distortion in proportion judgment. Pro-
portion here refers to the ratio of the magnitude of a smaller
stimulus to the magnitude of a larger one on a specific physi-
cal scale, such as length, weight, time, and numerosity. Relative
frequency can be regarded as the proportion of numerosity.

The basic assumption is Stevens’ power law: the perceived mag-
nitude of a physical magnitude, such as the number of black dots
in a visual array of different colors of dots, is a power function
of the physical magnitude with a specific exponential. We apply
the power assumption to the estimation of relative frequency as
below. Suppose among N dots, there are n1 black dots and n2

other colors of dots. The perceived numerosity would be nα
1 and

nα
2 , respectively. Accordingly, the estimated relative frequency of

black dots is:

π = nα
1

nα
1 + nα

2

(5)

Dividing both the numerator and denominator of the right side
by N α, we get the perceived relative frequency as a function of the
true relative frequencies:

π
(
p
) = pα

pα + (
1 − p

)α (6)

It is easy to see this is a variant of LLO (substitute Eq. 6 into Eq. 1)
which predicts γ = α and p0 = 0.5. Thus an S-shaped distortion
follows the assumption of Stevens’ power law.

Hollands and Dyre (2000) assumed that the slope of the distor-
tion of the proportion of a specific physical magnitude depends
on the Stevens exponent of the physical magnitude. For instance,
length, area, and volume have different Stevens exponential but
the exponent of each of them is fixed. This prediction has some
difficulties in applying to the estimation of relative frequency. The
experiment we reported in Section “What Controls the Slope and
the Crossover Point?” would imply that the exponent is not fixed
and changes systematically with the total numerosity.

As to the crossover point, Hollands and Dyre (2000) treated it
as an arbitrary value, depending on the reference point available
to the observer at the time of judgment. This is not consistent
with our observation that p0 = 1/m, where m is the number of
categories.

Support theory
Tversky et al.’s support theory (Tversky and Koehler, 1994; Rot-
tenstreich and Tversky, 1997) concerns how humans estimate
the probability of specific events. The term degree of support
refers to the strength of evidence for a hypothesis. The estimated

probability of an event is the degree of support for the presence
of the event divided by the sum of the degrees of support for the
presence and absence of the event.

To explain the inverted-S-shaped distortion of relative fre-
quency, Fox and Rottenstreich, 2003; See et al., 2006) added two
assumptions to support theory. First, they assumed that the orig-
inal degree of support for both the presence and absence of an
event are proportional to the corresponding frequencies. Second,
before transforming the degree of support into probability, the log
odds of degree of support is linearly combined with a prior log
odds and the coefficients of the two add up to 1. Following these
two assumptions, the resulting estimated probability has the same
form as the LLO function.

The value of the prior probability was the crossover point. Fox
and Rottenstreich, 2003; See et al., 2006) called this prior the
ignorance prior, echoing the human tendency for equal division
when in total ignorance of probability information. It follows that
p0 = 1/m.

However, the weighted addition of a true log odds and a prior
log odds would lead to a γ never greater than 1, unless the prior log
odds has a negative weight. Therefore, it cannot explain the γ > 1
cases (Shuford, 1961; Pitz, 1966; Brooke and MacRae, 1977).

The slope of the distortion equals the weight assigned to the
true log odds in the combination. Fox and Rottenstreich, 2003;
See et al., 2006) suggested that it is positively correlated with the
confidence level of the individual who makes the estimation. We
consider next model of the distortion of confidence ratings.

CONFIDENCE RATINGS
Calibration model
The calibration model of Smith and Ferrell (1983) attributes the
probability distortion in confidence rating to a misperception of
one’s ability to discriminate between correct and incorrect answers,
or between successful and unsuccessful actions.

The calibration model borrows the framework of signal detec-
tion theory. Correctness and wrongness of an answer, or success
and failure of an action, are considered as two alternative states, i.e.,
signal present and absent. The observer’s confidence, is assumed
to be have a constant mapping to the perceived likelihood ratio
of the two states. If the discriminability between the two states
is perceived to be larger than the true value, small probabilities
would be underestimated and large probabilities overestimated,
amounting to γ > 1 (as in Figure 5). If the discriminability were
underestimated, the reverse pattern would show up.

The calibration model does not necessarily lead to an LLO
transformation and does not have any specific predictions for the
selection of slope and crossover point.

Stochastic model
Erev et al., 1994; Wallsten et al., 1997) propose that the over-
and under-confidence observed in confidence ratings are caused
by stochastic error in response. They assume that at a specific
time for a specific event, the participant experiences a degree of
confidence and translates this experience into an overt report of
confidence level by a response rule. The experienced degree of
confidence is the log odds of the true judgment plus a random
error drawn from a Gaussian distribution. The larger the variance
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of the random error, the greater the slope of probability distortion
deviates from one.

With some specific response rules, the S-shaped distortion can
be produced. The predictions of the stochastic model are not
intuitive and are illustrated in their computational simulation.
One of the predictions states that the underestimation of small
probability and overestimation of large probability (i.e., the γ > 1
pattern) widely identified in confidence rating tasks, a seemingly
reverse pattern of regression-to-the-mean, is actually a kind of
regression-to-the-mean phenomenon disguised by the way how
the true probability is defined. The true probability in the confi-
dence rating task is usually defined as the actual success rate of
a specific confidence level. That is, successful and unsuccessful
actions are grouped by participants’ confidence rating. Wallsten
et al. (1997) re-analyzed previous empirical studies and show that
if, instead, the true probability of success is computed for each
action as an average across participants, the γ > 1 pattern would
be obtained.

However, we doubt this effect of true probability definition can
apply to the confidence rating data of McGraw et al. (2004), in
which the γ > 1 pattern holds even when the success rate of bas-
ketball shot is grouped by the distance to the basket rather than by
participants’ confidence rating (not shown in Figure 5B).

DECISION UNDER RISK OR UNCERTAINTY
Adaptive probability theory
Martins (2006) proposed an adaptive probability theory model to
explain the inverted-S-shaped distortion of probability in deci-
sion under risk. The observed distortions, under this account,
reflect a misuse of Bayesian reference. In everyday life, people
observe the frequency of a specific event in finite samples of events.
The observed relative frequency of the event, even in the absence
of observation errors, may deviate from the true probability of
the event due to the random nature of sampling. To reduce the
influence of sampling error, Martin assumes that people intro-
duce a prior sample and combines it with the observed sample by
Bayes’ rule. The resulting estimated probability would be a linear
combination of the observed frequency and the prior probability,
determined by three parameters: the size of the imagined sample
n, the frequency of the event in the prior sample a, the frequency
of the other events in the prior sample b. But Martins (2006) did
not characterize what controls these parameters or motivate the
choice of prior. Martins (2006) further argued that, in the exper-
imental condition, in front of a lottery, e.g., a probability of 0.1
to win $100, participants treat the probability stated by the exper-
imenter not as a true probability, but as an observed frequency
from an imagined sample. The decision weight was the result of
the Bayesian inference for the true probability.

The involvement of a prior could explain why the estimated
probabilities shrink toward a center. However, for any specific n,
instead of a S-shaped transform, the estimated probability would
be a linear function of the observed relative frequency, To over-
come this difficulty, Martins (2006) assumes that sample size n
changes with the observed relative frequency, greater for extreme
probabilities and less for smaller probabilities. Thus, the parame-
ter n is actually not one-parameter and is chosen arbitrarily to
make theory conform to data.

Another difficulty that adaptive probability theory encounters
is the underweighting of small probability observed in studies of
decision from experience (e.g., Hertwig et al., 2004). Although
Martins (2006) did not suggest the theory could be applied to
decisions where the probability information comes from sam-
pling, there is no obvious reason that people would not make
the Bayesian inference with a real sample.

FUTURE DIRECTIONS
In this article we examined probability distortion in human judg-
ment and the factors that affect it. An evident direction for future
research is to develop process-based models of human use of
probability and frequency information. The theories and mod-
els we reviewed above are among those that use specific cognitive
processes to explain the emergency of the S-shaped distortion of
probability (other examples include Stewart et al., 2006; Gayer,
2010, to name a few). While a full treatment of them is beyond
the scope of the current paper, it would be interesting to see
whether any existing process-based models can be modified to
account for the changes in slope and crossover point we have
summarized.

LLO AS THE HUMAN REPRESENTATION OF UNCERTAINTY
We conjecture that log odds to be a fundamental representation
of frequency/probability used by the human brain. Here are a few
pieces of evidence.

PEOPLE ARE LESS BIASED WHEN RESPONDING IN LOG ODDS
Phillips and Edwards (1966) asked participants to estimate the
probability of one hypothesis to be correct among two alternative
hypotheses. There were two types of bags of poker chips, differing
in their proportions of red chips and blue chips. Participants were
informed the proportions. They were given random draws from
one bag and were asked to estimate the probability of each type of
bag the sample came from. Participants responded with devices in
the format of probability, log probability, or log odds. Phillips and
Edwards found that when responding in log odds, participants had
the least deviation from the correct answer.

SIMILARITY RATING AMOUNTS TO READING OUT LOG ODDS
Maloney and Dal Martello (2006) provided evidence of the
involvement of log odds in kinship perception. Participants saw
pairs of photos of children faces. The task of one group of partici-
pants was to judge for each pair whether the children were siblings
or not. The task of the other group was to rate the similarity
between the two faces shown in each pair. The similarity rating of
a pair proved to be proportional to the log likelihood ratio of the
pair to be and not to be sibling (Figure 9A). It is as if participants
were reading out the log likelihood ratio when required to rate the
similarity of two faces. DeBruine et al. (2009) replicated this result
several times using young adult faces (Figure 9B).

A PLAUSIBLE NEURAL REPRESENTATION OF LOG ODDS
Gold and Shadlen (2001, 2002) propose a computational mecha-
nism for neurons to represent the likelihood ratio of one hypothe-
sis against another. Consider the binary decision whether hypoth-
esis h1 or hypothesis h0 is true. Assume there is a pair of sensory
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neurons:“neuron”and“antineuron.”The firing rate of “neuron,”x,
is a random variable whose distribution is conditional on whether
h1 or h0 is true. So does the firing rate of “antineuron,” y. The
random distribution of y conditional on h1 is the same as the
random distribution of x conditional on h0, and vice versa. For
many families of random distributions, such as Gaussian, Poisson,
and exponential distributions, Gold and Shadlen prove that the
log likelihood ratio of h1 to h0, is a linear function of the firing
rate differences between “neuron” and “antineuron,” x − y. While
Gold and Shadlen were concerned with making a decision between
two alternatives, their proposed neural circuit can potentially be
taken as a representation of uncertainty of frequency in log odds
form. That is, the log odds can be encoded by two neurons as the
difference between their firing rates.

CONCLUDING REMARKS
Log odds has been independently developed to fit psychophysical
data in many areas of perception and cognition over the course of
many years. As early as 1884, Peirce and Jastrow (1885) speculated
that the degree of confidence participants gave to their sensation
difference judgments was proportional to the log odds of their
answers being right. Pitz (1966) used the linear log odds function
as a convenient way to fit the data of estimated frequency to true
frequency.

In the decision area, Karmarkar (1978, 1979) used a one-
parameter linear log odds function to model decision weights.
Goldstein and Einhorn (1987) modified Karmarkar’s equation
to include the intercept parameter, which was followed by later
researchers (Tversky and Fox, 1995; Gonzalez and Wu, 1999; Kilka
and Weber, 2001).

For signal detection theory, it is a common practice to plot
the actual decision criterion against the optimal decision criterion
in the log scale (Green and Swets, 1966/1974; Healy and Kubovy,
1981). It amounts to our log odds plot and the observed distortion
of probability is referred to as “conservatism.”

We are seeking for a general explanation for the linear transfor-
mation of log odds in these various areas. No matter how different
these tasks look like, they are connected by the same evolution-
ary aim: using possibly imperfect probabilistic information to
make decisions that lead to the greatest chance of survival. It is
therefore surprising, at first glance, that organisms systematically
distort probability. It is doubly surprising that the same pattern of
distortion (LLO) is found across a wide variety of tasks.

A full explanation of the phenomena just described would
require not only that we account for the form of the distortion but
also for the large differences in the values of the two parameters
across tasks and individuals and the factors that affect parameter
settings. The key question that remains is, then, what determines
the slope and crossover point of the linear log odds transforma-
tion? We found that in one task we could identify experimental
factors that controlled both the slope and crossover point of the
LLO transformation of perceived relative numerosity. We conjec-
ture that there are factors in each of the domains we considered that
are responsible for the particular choice of probability distortion
observed. We need only find out what they are.
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The construct of risk taking is studied through the prism of the relation between tonic
arousal and risk taking behavior. Several theories have proposed that high aroused individ-
uals tend to exhibit risk aversion.We posit that this arousal–behavior association is activated
much more strongly in risks with losses, as losses increase arousal and trigger relevant
traits associated with the sensitivity to risk. In three studies we examined risk taking in
experience-based decision tasks, with either token losses or relative-losses (in the gain
domain). In Study 1 we found a negative correlation between pre-task pupil diameter and
risk taking in the loss domain but not in the gain domain. In Study 2 we re-analyzed a
previous pupillometry dataset involving symmetric mixed gains and losses. We found that
the negative correlation in this mixed condition emerged even while the participants did
not show loss aversion. This finding was replicated in Study 3. Thus, the effect of losses
on arousal provides sufficient conditions for the moderation of the tonic arousal–behavior
association. The findings suggest an important role for losses in the psychological and
physiological experience of risk.

Keywords: risk, arousal, experience, decision, personality, individual differences, pupil

INTRODUCTION
In this study we examine the relation between losses and the
psychophysiological experience of risk. Economic theory tradi-
tionally defines risk attitude as the sensitivity to payoff vari-
ance (Markowitz, 1952; Pratt, 1964; Sharpe, 1964; and see recent
studies which relate brain activity to perceptions of risk as vari-
ance, e.g., Preuschoff et al., 2006, 2008). Yet several theories have
proposed that losses are somehow implicated in the feeling of
risk. For example, Coombs and Lehner (1981, 1984) examined
a basic lottery where individuals have an equal chance of win-
ning or losing $10. They found that adding $10 to the loss
increased perceived risk more than adding the same amount
to the gain, and therefore suggested that the constructs of risk
and loss are not independent (see also Duxbury and Summers,
2004). A similar argument is made by attention-based theories
of losses, though these theories posit a more general effect of
losses on the sensitivity to incentives (Taylor, 1991; Yechiam and
Hochman, 2011). Prospect theory (Kahneman and Tversky, 1979)
likewise argues that loss aversion is an important component
that steers people away from taking risk when it involves gains
and losses, because the subjective weight of losses is larger than
the subjective weight of equivalent gains. We examine whether
losses are an inherent part of what make things risky through
the prism of the relation between tonic arousal and risk taking
behavior.

Several theories of personality have converged to predict a
negative association between tonic arousal and risk taking. In
their sensation seeking theory, Zuckerman et al. (1964) suggested
that individuals differ in the level of stimulation required for
maintaining optimal arousal, with those exhibiting lower levels
of arousal requiring more stimulation in order to reach their
optimal level of arousal. Since risk taking is one form by which

stimulation is achieved, this account suggests that low tonic
arousal is associated with a greater tendency to take risk (Far-
ley and Farley, 1972; Ellis, 1987; McNamara and Ballard, 1999)1.
Eysenck’s (1967) personality theory similarly characterized extro-
verts as low-arousal individuals, who seek stimulating activities
in order to heighten their arousal levels (see also Gray, 1987).
A somewhat modified account appears in theories of trait anx-
iety (Zuckerman, 1960; Eysenck, 1992). The literature on trait
anxiety suggests that anxious individuals are chronically more
aroused on the one hand, and avoid risk and uncertainty on
the other (Eysenck, 1992); thus, high arousal is naturally asso-
ciated with risk aversion. In support of this prediction, studies
have shown that high sensation seekers exhibit lower galvanic skin
response (GSR) in response to various stimuli (Stelmack et al.,
1983; Plouffe and Stelmack, 1986) and even at rest (Gatzke-Kopp
et al., 2002).

We propose that the association between tonic arousal and risk
taking is moderated by the presence of losses in the experience
of risk. It is relatively well known that losses increase arousal
and attention (Taylor, 1991; Rozin and Royzman, 2001). Recently,
several studies have found that this attentional effect is exhib-
ited independently from loss aversion (Hochman et al., 2010;
Hochman and Yechiam, 2011; Yechiam and Telpaz, in press). Based
on these findings, we have proposed that this attentional effect of
losses provides sufficient conditions for many of the phenomena
attributed to losses (Yechiam and Hochman, 2011). For example,
it was found that the effect of losses on consistency in risk taking

1In later writings Zuckerman (1990) maintained the idea of a negative association
between arousal level and sensation seeking but focused on the complex interaction
between the high reactivity of the dopaminergic system and the weakly reactive
serotonergic system.
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behavior emerges even in the absence of loss aversion (Yechiam
and Telpaz, in press). Similarly, the effect of losses on decision
performance was demonstrated even in tasks where usually par-
ticipants exhibit no loss aversion (Bereby-Meyer and Erev, 1998;
Erev et al., 1999). These effects are explained by a mere increase in
on-task attention in response to losses.

Here, we extend this argument to suggest that because losses
increase arousal and attention more than gains, risks with losses
are more “rewarding” for individuals with low tonic arousal. Like-
wise, risks without losses are less intimidating for those having high
arousal. Thus, without losses sensation seekers might not consis-
tently relish and replenish on the risky experience, while anxious
people might not be consistently intimidated by it. Therefore, the
postulated negative correlation between tonic arousal and risk tak-
ing is observed more reliably for risky situations that involve losses.
It is further predicted that this effect of losses is not contingent on
the decision weight asymmetry induced by losses (i.e., loss aver-
sion; Kahneman and Tversky, 1979). We suggest that the arousal
and attention produced by losses are sufficient for producing this
effect.

To examine these predictions, we used a pupillometric measure
of tonic arousal. The pupil diameter (PD) is an immediate and
direct index of autonomic activation (Granholm and Steinhauer,
2004). Changes in PD are controlled by two muscles, the dilator
and the sphincter, which are differentially influenced by activity
in the sympathetic and parasympathetic branches of the auto-
nomic nervous system. The former channel is mediated primarily
by norepinephrine and the latter by acetylcholine (Hutchins and
Corbett, 1997). Thus, differently from the GSR, the PD is affected
by both branches modulating autonomic arousal, and not only
the sympathetic branch. Parasympathetic arousal may be relevant
to risk taking behavior since this system is known to have a role
in defensive reaction and anxiety (Lyonfields et al., 1995). Also,
importantly, the tonic PD is unaffected by physical fitness fac-
tors (Filipe et al., 2003) and body mass (Piha et al., 1994; Filipe
et al., 2003), which is not the case in other autonomic measures,
such as heart rate and blood pressure (Gelber et al., 1997; Ren-
nie et al., 2003). Accordingly, individual differences in physical
capability affect tonic PD to a lesser extent than in other arousal
measures.

There is very little data on whether PD is a reliable measure
of tonic arousal. To clarify this issue, we conducted a pilot study
where we measured the mean pupil size of 26 student participants
for 1 min during rest, on two consecutive days. The test–retest cor-
relation between the different measurements was high (r = 0.83,
p < 0.01), supporting the reliability of the PD as a measure of tonic
arousal.

STUDY 1: LOSS VERSUS GAIN DOMAIN RISKS
In this study we focused on two choice problems, one involving
risks in the gain domain and the other involving risks in the loss
domain. The two choice problems were as follows:

Problem 1. Gain Condition:

S 600 with certainty
R 0 or 1200 with equal probability P(R) = 0.38

Problem 2. Loss Condition:

S −600 with certainty
R −1200 or 0 with equal probability P(R) = 0.52

In each choice problem, the participants selected among two alter-
natives with equal expected value, a safe alternative (S) and a riskier
alternative (R). These two problems are identical but for fact that
in the Loss condition all outcomes are multiplied by −1. P(R)
denotes the average proportion of R selections in Study 1.

The two choice problems were administered in an experience-
based task. The participants were not provided with a writ-
ten description of the payoffs but rather had to learn to make
choices by sampling the alternatives and receiving feedback. The
task began with the participant facing two blank buttons. Upon
selecting a button a payoff was sampled from the alternative’s
payoff distribution and the participant was presented with this
payoff as feedback. The use of experience-based tasks is com-
mon in studies of physiological arousal and brain activity (e.g.,
Bechara et al., 1997). Risk taking in these experiential tasks
is typically operationalized as the average proportion of selec-
tions from the alternative with the higher variance payoffs (see
Yechiam and Ert, 2011). Our main prediction was that the asso-
ciation between tonic pupil size (as recorded prior to the task)
and risk taking level would be more pronounced in the Loss
condition.

METHOD
Participants
The participants were 20 undergraduates from the Technion (12
men and 8 women). Their average age was 23 (ranging from 20
to 27). Upon completing the experiment, they were given a fixed
fee which was updated according to the accumulated amount of
tokens won (or lost) in the experimental task. The conversion rate
of experimental tokens to money was 1 Israeli Shekel per 1000
point earned (participants were informed of the conversion rate
beforehand).

Behavioral task
All participants completed two experience-based decision tasks
involving 100 trials. Half of them performed the Loss condition
task followed by the Gain condition task and the others performed
the tasks in reverse order. In both tasks, they were asked to oper-
ate a “money machine” with two choice alternatives presented as
blank virtual buttons (see Hertwig et al., 2004; Newell and Rakow,
2007; Erev and Haruvy, in press). They were informed simply that
their task would be to repeatedly select a button in the machine
in order to maximize their total earning. They were further told
that they would perform two tasks but their final payoffs would
be set according to the accumulating amount from one of the
tasks, selected at random. This was done to prevent diversification
biases and income effects across different tasks (Cho and Luce,
1995).

Each button selection was followed by the presentation of
the obtained payoff and the accumulated payoff, allowing par-
ticipants to learn to select the choice alternatives from their
experience. The outcomes from the two buttons were drawn
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from the payoff distributions for the Gain and Loss condition
problems presented above. The allocation of the Safe and Risky
alternative to the left and right buttons was randomized for each
participant, but was kept constant throughout an experimen-
tal condition (e.g., in the Gain condition). The outcomes were
randomly generated on each trial from the alternative’s payoff
distribution.

PD measure
Pupillometry data was collected using ViewPoint PC 60 EyeFrame
system (Arrington Research, Scottsdale, Arizona). The system
operates with a single tiny camera and an infrared illuminator
mounted on a lightweight frame facing toward the participant’s
dominant eye, and supported by comfortable head straps. It
records pupil data at approximately 30 frames per second (fps).
Pre-task pupil size samples were taken just after the calibration
and prior to the start of the decision-making task for a period
of 30 s. During this time the participants looked at the center of
the screen and were asked to wait for the experimenter’s instruc-
tions. The eye tracking measures continued while the participants
performed the decision task.

Like other autonomic measures (e.g., GSR) the tonic pupil size
is affected by gender, with some studies demonstrating larger pupil
sizes for women than men (Zinn, 1972; Alexandridis, 1985) though
this is disputed (see Jones, 1990; Filipe et al., 2003). Accordingly,
we examined the possible effect of gender on the pre-task PD, as
well as on risk taking levels.

Design and analysis
Our main prediction pertained to the negative association between
pre-task arousal and risk taking in the two within-subject task
conditions. We therefore used a one-tailed test for this analysis (as
explicitly noted in the results below). For all other analyses, we
used two-tailed tests.

RESULTS AND DISCUSSION
Risk taking and pupil diameter during the task
The average proportion of risky selections in the Gain condition
was 0.38 (SD = 0.23), while in the Loss condition it was 0.52
(SD = 0.24). Thus, the findings show greater risk seeking with
losses. This pattern is similar to the reflection effect observed by
Kahneman and Tversky’s (1979). An examination of the median
behavior showed more distinct changes in risk taking as a function
of the payoff domain, with 0.4 selections of the risky alternative
in the Gain condition and 0.63 in the Loss condition. This differ-
ence between conditions was statistically significant [t (19) = 2.38,
p = 0.03]. The correlation between P(R) in the two conditions was
r = 0.37, p = 0.10; as found previously (Ert and Yechiam, 2010;
Yechiam and Ert, 2011) participants had a somewhat consistent
tendency to prefer certainty to risk or vise versa, though it was not
statistically significant.

Although our main predictions pertained to pre-task PD, we
also measured the PD during the task. The results are shown
in Figure 1. Consistent with previous studies (e.g., Satterthwaite
et al., 2007; Hochman and Yechiam, 2011) the participants’ PD
was higher following losses (of −1200 or −600) compared to
equivalent gains. The difference between the PD following losses

FIGURE 1 | Mean pupil diameter in the Loss and Gain conditions (in

mm) across participants and events (of loss: − 600 or − 1200, or of

gain: 600 or 1200). Time zero denotes the outcome presentation onset.

and gains was significant 0.375–0.875 s following the outcome
presentation [t (19) = 2.71, p = 0.04]2.

To examine the effect of losses on extended arousal we also
compared the response time in the Gain and Loss conditions (see
Porges, 1992). Previously, RTs were found to be longer in loss com-
pared to gain domain tasks (e.g.,Yechiam and Telpaz, in press). The
average RT in the Loss condition was 0.61 s while in the Gain con-
dition it was 0.46 s. The difference was significant [t (19) = 2.52,
p = 0.02]. Thus, losses seemed to increase both immediate arousal
and processing time beyond gains.

Pre-task pupil diameter
Scatter plots of risk taking proportions by pre-task PD appear
in Figure 2. As clearly indicated in the figure, individuals with
high pre-task PD tended to make fewer risky selections in the
Loss condition, but this was much less evident in the Gain
condition. In the Loss condition the correlation between pre-
task PD and P(R) was r = −0.44, p = 0.026 (one tailed). In the
gain condition the correlation was only r = −0.25, p = 0.15 (one
tailed).

To verify that this result is not due to women partici-
pants having larger PDs (as found previously; e.g., Alexan-
dridis, 1985) and also taking less risk, we examined gender dif-
ferences in the studied variables. The pre-task PD in women
(Mean = 3.62 mm, SD = 0.40) was actually smaller than that of
the men (Mean = 4.26 mm, SD = 0.40), but the difference did not
reach significance t (18) = 1.69, p = 0.11. Additionally, there were
no significant gender differences in the proportion of risky selec-
tions in the Loss and Gain conditions. We can thus rule out gender
as leading to major differences in the studied variables.

The results are consistent with our prediction that tonic
arousal – risk taking associations should be stronger in the
Loss condition compared to the Gain condition. The direction
of the effect is in turn consistent with the prediction of the

2Note that as shown in Figure 1 there was a (non-significant) difference in PD before
obtaining losses and gains. This is to be expected given the fact that the participants
knew they were about to face losses.
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FIGURE 2 | Scatter plot and regression lines of the proportion of risky

selections across 100 trials by pre-task PD in Study 1. Top: Loss
condition. Bottom: Gain condition.

aforementioned personality theories: those showing low-arousal
tended to take more risk. We have argued that this phenomenon
is due to the attentional effects of losses. However, an alternative
explanation is that it is due to loss aversion. If one assumes that
(a) losses have greater subjective weight than gains, and (b) peo-
ple behave more reliably in tasks that are of importance to them
(Judd and Krosnick, 1989; Chaiken and Maheswaran, 1994; Kan-
fer et al., 1994), then it stands to reason that individuals would
exhibit more reliable risk taking behavior in a loss-domain task.
Loss aversion can therefore increase the association between tonic
arousal and risk taking behavior. In our second study we therefore
examined whether these effect of losses can be observed simul-
taneously with no loss aversion, namely with the participants
showing no behavioral tendency to give greater weight to losses
over gains.

STUDY 2: MIXED GAINS AND LOSSES RISK
In experience-based tasks it was previously found that people do
not display loss aversion when the risk involves symmetric gains
and losses (see Erev et al., 2008; Silberberg et al., 2008; Hochman
and Yechiam, 2011; Yechiam and Telpaz, in press). While the gener-
ality of this finding into other situations is a matter or controversy
(Rick, 2011), the fact that in the experiential setting there is no loss
aversion provides a testing ground for whether different effects
of losses may emerge even in the absence of a decision weight
asymmetry of the sort proposed by Kahneman and Tversky (1979).

The study focused on the following two choice problems:

Problem 3. Gain Condition:

S 2 or 4 with equal probability
R 1 or 5 with equal probability P(R) = 0.49

Problem 4. Mixed Condition:

S −1 or 1 with equal probability
R −2 or 2 with equal probability P(R) = 0.54

The term Mixed refers to a choice problem producing both gains
and losses. In the studied Mixed condition the risky alternative
produced gains and losses of the same probability and magnitude.
Under loss aversion people should avoid risk in this situation.
An existing pupillometry dataset (Hochman and Yechiam, 2011;
Study 1) in which these two problems were administered was used.
Previous analyses of the data focused only on phasic (i.e., on-task)
arousal (Hochman and Yechiam, 2011). We tested whether the
association between tonic pupil size and risk taking would be more
pronounced in risks with losses, even while the participants were
loss neutral.

METHOD
Participants
Twenty-five undergraduates from the Technion (13 men and 12
women) participated in the study. The participants were given
a fixed fee and were also compensated according to the number
of points earned in the experimental task, at a rate of 0.1 Israeli
Shekel per 1 point earned (they were informed of the conversion
rate beforehand).

Behavioral task
All participants completed two experience-based decision tasks
involving 60 trials. Approximately half of them performed the
Mixed condition task followed by the Gain condition task and
the other half performed the tasks in reverse order. The instruc-
tions were as in Study 1. The tasks involved operating a “money
machine” with two choice alternatives. The payoffs were drawn
from the outcomes of the Gain and Mixed conditions above. In
order to make the incentive structure less obvious, a constant of
0.1–0.5 (in 0.1 intervals) was randomly added or subtracted from
the sampled payoff in every trial. Additionally, to eliminate possi-
ble surprise effects that would be non-symmetric with respect to
gains and losses, payoffs were delivered in a deterministic fashion.
Each choice alternative initially produced either a gain/relative-
gain or a loss/relative-loss, which was switched to a payoff from
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the opposite domain on each selection. About half of the partici-
pants were presented with a gain/relative-gain in the first selection,
while for the other participants this order was reversed.

PD measure
Pre-task pupil size was examined as in Study 1. Due to a technical
problem we did not get pre-task results from two of the partici-
pants. Thus, all correlations with tonic PD are based on a sample
size of 23.

RESULTS AND DISCUSSION
As reported in Hochman and Yechiam (2011), the average propor-
tion of risky selections in the Mixed condition was not significantly
different from 0.5 (Mean = 0.54, SD = 0.15). Clearly, the partici-
pants did not avoid the alternative incurring larger losses. Addi-
tionally, the average proportion of risky selections in the Mixed
condition and in the Gain condition (Mean = 0.49, SD = 0.23)
was quite similar, t (24) = 1.07, p = 0.30. Thus, the participants
exhibited no loss aversion in this experience-based choice task.

Differently from Study 1, the correlation between risky choices
in the two task conditions was close to zero (r = −0.02, p = 0.91).
This is consistent with previous results showing that consistency
across domains is impaired when there is no sure thing alternative
(Yechiam and Ert, 2011).

Scatter plots of risk taking proportions by pre-task PD appear
in Figure 3. As illustrated in the figure, individuals with high
pre-task PD tended to take less risk in the Mixed condition.
In the Gain condition a surprising reverse trend was observed:
those with higher pre-task PD actually took more risk. Correla-
tion analyses showed that in the Mixed condition the pre-task PD
was negatively correlated with the proportion of risky choices,
r = −0.37, p = 0.04 (one tailed), while in the Gain condition,
pre-task PD was positively correlated with risky choices, r = 0.47,
p = 0.02.

We examined whether the positive effect found in the Gain
condition is a product of boredom at the end of the task. Pre-
vious findings suggest that in monotonous tasks that have little
cognitive requirement, individuals with moderate levels of arousal
seek to maintain their arousal (Fischer et al., 2008). One way to
increase arousal may be to explore both alternatives and thus to
also take risk (see Iglesias-Parro et al., 2001). Possibly, this situ-
ation was more likely to develop in the Gain condition because
losses are more arousing. Also, recall that the task in Study
2 was more monotonic than in Study 1 because of the gain–
loss–gain–loss pattern. In the first half of the task, the negative
correlation for the Mixed condition remained about the same,
r = −0.41, p = 0.05. By contrast, the positive correlation in the
Gain task was found to be non-significant, r = 0.30, p = 0.17.
Thus, consistent with the boredom-based explanation, the pos-
itive correlation for the Gain condition emerged only in the sec-
ond half of the task (Gain: r = 43, p = 0.04; Mixed: r = −0.40,
p = 0.06). For both halves of the task, the negative correlation pre-
dicted by personality theories was only apparent when the risk
involved losses, and this was found simultaneously with no loss
aversion.

We also examined gender differences in the studied variables.
The pre-task PD in women (Mean = 4.59 mm, SD = 1.59) was

FIGURE 3 | Scatter plot and regression lines of the proportion of risky

selections across trials by pre-task PD in Study 2.Top: Mixed condition.

Bottom: Gain condition.

larger than that of the men (Mean = 3.92 mm, SD = 0.85) but not
in a significant manner, t (21) = 1.24, p = 0.22. Additionally, there
were no significant gender differences in the proportion of risky
selections in the Mixed and Gain conditions. In fact, when aggre-
gating the results across the two studies, the PD for both genders
was quite similar (mean difference of 0.09 mm).

STUDY 3: REPLICATION USING MIXED GAINS AND LOSSES
To examine the interpretation that the positive correlation in the
Gain condition was a product of low task demands, we replicated
Study 2 with time pressure and a secondary requirement to per-
form an arithmetic task between choice trials. We expected to
replicate the negative correlation observed in Study 2 for risky
losses, but not the positive correlation observed for risky gains.
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METHOD
Participants
Forty undergraduate students from the Technion (20 women and
20 men) participated in the experiment. Their average age was 24
(ranging from 19 to 28). Participants were given a fixed fee and
were also compensated according to the number of points earned
in the experimental task, with a conversion rate of 0.1 Israeli Shekel
per 1 point earned.

Behavioral task
The decision task consisted of two buttons and two counters, as in
Study 2. Participants performed 30 trials in each of the two exper-
imental conditions (Mixed and Gain). The order of the Mixed and
Gain task conditions was counter-balanced so that half of the par-
ticipants performed each task first. The choice outcomes were as
in Study 2. The participants received no prior information con-
cerning the choice outcomes, and learned to make choices from
their experience. An arithmetic task was administered along with
the decision task, as follows.

In each trial participants made their decision and afterward per-
formed an arithmetic task. They were required to accomplish both
tasks in 7.5 s, and failure to do so resulted in a loss of three points.
The arithmetic problems were presented in the upper section of
the screen. The answers were typed using a virtual keypad. The task
involved adding or multiplying a single-digit number with a two-
digit number. The exact numbers were randomly generated in each
trial (the single-digit number was chosen from a uniform distrib-
ution ranging from 2 to 6, and the two-digit number was chosen
from a uniform distribution ranging from 10 to 17). If partici-
pants answered the arithmetic question incorrectly they received
an“incorrect answer”feedback but could give other answers within
the 7.5 s time window. The task included a time meter which
noted the time left until the end of each trial. When participants
answered the arithmetic problem correctly the screen elements
of that task were darkened. Each participant was randomly allo-
cated to receive either addition or multiplication questions. As the
allocation of the participants into the addition or multiplication
questions had no effect on the studied correlations, we pooled
across this manipulation.

PD measure
Pre-task pupil size was examined as in Study 1. Due to a tech-
nical problem we did not get pre-task results from one of the
participants, leaving a total of 39 participants.

RESULTS AND DISCUSSION
We first examined the difference between risk taking patterns in
the Mixed and Gain conditions. As in Study 2, the proportion
of risky selections in the two task conditions was quite similar,
0.46 (SD = 0.19) in the Mixed condition and 0.46 in the Gain
condition (SD = 0.25), t (37) = 0.02, p = 0.98. Scatter plots of risk
taking proportions by pre-task arousal levels (in PD) appear in
Figure 4. In the Mixed condition the participants’ pre-task PD
was negatively correlated with the proportion of risky selections
(r = −0.34, p = 0.02, one tailed). However, in the Gain condition
there was no significant correlation between the two measures
(r = 0.07, p = 0.33, one tailed). Thus, the positive association in

FIGURE 4 | Scatter plot and regression lines of the proportion of risky

selections across trials by pre-task PD in Study 3. Top: Mixed condition.
Bottom: Gain condition.

the Gain condition found in Studies 1 and 2 did not emerge in a
statistically significant manner in Study 33.

To sum up, in this study where the decision task was performed
with moderate time pressure and with an additional cognitive
requirement, we replicated the negative correlation between tonic
PD and risk taking with losses. However, as opposed to Study 2,
there was no positive association between arousal and risk taking
in the gain domain. The findings are therefore consistent with the
prediction of the attentional model of losses, which implies that

3An examination of possible gender effects revealed that the pupil size of women
(Mean = 3.83 mm., SD = 0.83) was not significantly different from that of the
men [Mean = 4.02 mm., SD = 1.08], t (37) = 0.59, p = 0.56. There were also no
significant gender differences in risk taking both in the Mixed and Gain conditions.
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losses do not reverse the association between tonic PD and risk
taking but rather, accentuate it.

GENERAL DISCUSSION
Several theories of personality and traits predict a negative associ-
ation between arousal level and risk taking (e.g., Zuckerman et al.,
1964; Gray, 1987; Zuckerman, 1990; Eysenck, 1992). Though the
exact mechanisms that lead to this negative correlation are differ-
ent in each theory, their general idea is similar: they suggest that
people exhibiting lower levels of internal arousal seek stimulation
by taking risk. Here, we hypothesized that the negative association
between tonic arousal and risk taking would be enhanced in risks
with losses, due to the simple fact that losses increase arousal and
on-task attention (Yechiam and Hochman, 2011).

The results of our three pupillometry studies supported the pre-
dicted moderating effect of losses. In Study 1 we have shown that
in a loss-domain task there was a significant negative correlation
between pre-task PD and the proportion of risky selections. In an
equivalent gain domain task this negative correlation was much
lower and not statistically significant. In Study 2 we examined
whether these effects of losses on arousal–behavior relationship
are due to loss aversion. For this purpose we studied a previ-
ous pupillometry database (Hochman and Yechiam, 2011) which
included a choice task with symmetric gains and losses, and an
equivalent task in the gain domain. While the participants showed
no loss aversion on average, a negative correlation between pre-
task arousal and risk taking was only observed in the condition
with losses.

Somewhat surprisingly, in this second study we found that
across all trials there was a positive correlation between pre-
task arousal and risk taking in the gain domain. We argued,
however, this positive association did not represent a general pat-
tern. This was supported by a block by block analysis, which
showed that the positive association only appeared in the sec-
ond half of the task. We explicitly examined this assertion in
Study 3, where we showed that administering the decision task
in a more demanding environment (involving time pressure and
a secondary task) eliminated the positive correlation in the gain
domain. In this study, as in Study 1, in the absence of losses there
was a zero correlation between arousal and risk taking, and the
addition of losses produced a negative correlation between these
measures.

We proposed that the negative correlation between tonic
arousal and risk taking in the conditions with losses reflects the
effect of losses on arousal and attention. This explanation was sup-
ported by our findings that losses led to significantly elevated pupil
size and response time compared to equivalent gains during the
decision task. Our results are consistent with past findings on the
effect of losses on arousal (e.g., Hochman and Yechiam, 2011).

Taken together, the current results suggest that losses are an
inherent part of what makes things risky. Indeed, the dictionary
definition of risk equates it with loss. For example, In Merriam
Webster (2011) risk’s first definition is “possibility of loss or injury
(peril).” Similarly, the Oxford English Dictionary (OED, 1982)
defines risk as “hazard, danger, exposure to mischance, or peril.”
Indeed, while there is some disagreement about the ancient origin
of the word, it is considered to have come to the English language

from the French word risque, and in this language it was adapted
from Italian risco, which stands for “navigating among dangerous
rocks” (Timmerman, 1986). In Hebrew the word “sikun” which
denotes risk is derived from sakana, or danger. The economic def-
inition of risk, which is based on the variance of the outcomes and
is almost universally accepted as a way of operationally defining
risk, ignores the relation between risk and losses.

Here we have shown that losses matter. When individuals with
low tonic arousal take risk they only do so for risks that involve
losses. Therefore, in adjusting their behavioral responses to their
arousal states, people “acknowledge” things as risky only when
losses are part of them. In risks that do not include losses, the link
between arousal and risk taking is severed. We have also shown
that this property of losses does not depend on loss aversion,
and emerges in experience-based tasks, where typically and in our
study as well, no loss aversion is exhibited (Erev et al., 2008). Thus,
the studied effect of losses appears to be quite general. We have
therefore suggested that it may be due to the effect of losses on
arousal and attention, rather than due to an asymmetry in decision
weights.

Our findings do not preclude, however, that there may be other
factors which can serve as cues that a given situation is risky. Pos-
sibly, after a prolonged learning period individuals may learn to
associate an alternative producing relative gains and relative-losses
(or small gains) as risky. Yet in our study this did not happen in
the course of 100 repeated choice trials. Factors such as the size of
the relative-loss could play a part in this. Another important lim-
itation of the current studies is the small sample sizes used. This
issue is especially pertinent in the context of examining individual
differences (see e.g., Stanovich and West, 2008).

The current findings may explain some of the mixed findings
in the literature on the association between physiological indices
of tonic arousal and sensation seeking. Gerra et al.’s (1999) study
of healthy adults demonstrated a positive association between NE
concentration and sensation seeking on Zuckerman et al.’s (1964)
scale, whereas similar studies of clinical populations reported
negative correlations (Ballenger et al., 1983; Arque et al., 1988;
Zuckerman, 1994). Studies of tonic endocrine levels in patholog-
ical gamblers also obtained mixed results (Ramirez et al., 1988;
Roy et al., 1988; Schmitt et al., 1998). The Sensation Seeking Scale
is a list of activities (e.g., “I would like to take the sport of water
skiing,” “I would not like to learn to fly an airplane”) without
explicit information concerning the perceived outcomes of those
activities. Possibly, some individuals find these activities more dan-
gerous; and this activates the negative association between tonic
arousal and risk taking. Yet for others who find these activities less
dangerous, this may not occur.

The current findings may also be relevant to the issue of risk
communication. The experimental results suggest that presenting
the negative side effect of risky products (e.g., cigarets) is a double
edged sword. On the one hand, it reduces the attractiveness of the
risky alternative; but on the other hand it may increase the arousal
associated with it and this can actually attract some individuals.
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Psychol. 2:344. doi: 10.3389/fpsyg.2011.00344

The contribution by Yechiam and Telpaz 
(Y&T) published in Frontiers in Cognitive 
Science places it in a corpus of literature 
which bridges at least three different disci-
plines, i.e., psychology, economics, and neu-
roscience. The goal of this line of research is 
to explore the neurological and physiologi-
cal underpinnings of one of the central top-
ics in judgment and decision-making (JDM) 
research – choice behavior in decisions from 
experience. Y&T successfully contributes to 
this goal by demonstrating a novel effect 
that losses increase experimental partici-
pants’ arousal as measured by pupil dilata-
tion, which in turn positively correlates with 
a risk aversion behavior. They hypothesize 
that participants’ attention is increased in 
decision problems involving losses, which 
trigger an innate prudent behavior in situ-
ations entailing danger and/or hazard. 
Interestingly, Y&T find that the nature of 
attention is not selective, i.e., when losses are 
present, participants are shown to devote 
more attention to the task as a whole rather 
than to the single negative outcomes, in 
contrast to Prospect Theory’s loss aversion.

Y&T’s contribution can be highlighted 
in the context of research on the neural 
mechanism underlying loss aversion (see, 
for example, Breiter et al., 2001; Tom et al., 
2007). These studies suggest that behavioral 
loss aversion in decisions from description 
reflects an asymmetric response to gain and 
losses in the neural system encoding for 
reward values (the ventromedial prefron-
tal cortex, orbitofrontal cortex, and ventral 
striatum). What makes Y&T’s contribution 
particularly noteworthy is their mediating 
attentional hypothesis, which links physi-

ological mechanisms to the psychological 
processes involved in experience-based 
decisions.

One of the possible future developments 
from Y&T’s work is that of drawing on their 
attentional hypothesis to explain depend-
ence of risk aversion on the payoff level, as 
observed in the Experimental Economics lit-
erature (Harrison et al., 2005; Holt and Laury, 
2005). Specifically, it has been observed that 
participants’ degree of risk aversion increases 
significantly as actual positive payoffs are 
scaled up, and that this effect is negligible 
when payoffs are hypothetical. These findings 
provide an opportunity to widen the scope of 
the attentional hypothesis. Specifically, pay-
offs corresponding to large cash amounts 
might have the analogous effects of losses of 
increasing arousal and of triggering a higher 
level of risk aversion; whereas hypothetical 
payoffs might result in a substantial inhibi-
tion of attention. Therefore, the motivation 
implied by real stakes can be interpreted as 
one of the possible boundary conditions (see 
below) for Y&T’s attentional hypothesis, giv-
ing rise to a question of the relative weight 
of attention and motivation in shaping risk 
attitudes.

Y&T’s report can also be contextual-
ized within the wide literature on indi-
vidual differences in reasoning, judgment 
and decision making (e.g., Stanovich and 
West, 2000) and their implications to the 
rationality debate. The prototypical finding 
in that literature is the correlation between 
cognitive ability and normative respond-
ing, with a strong emphasis on normative 
evaluation of rationality. This so-called 
“normativist” approach has recently been 
subject to criticism (Elqayam and Evans, 
2011) as unhelpful in developing a psycho-
logical theory of human rationality. It is 
therefore noteworthy that Y&T take their 
individual differences work in a completely 
different direction, with what seems to be a 
purely ‘descriptivist’ approach, with no nor-

mativist connotations. As one reviewer of 
this manuscript put it, any behavior in this 
setting could be justified as ‘rational’. The 
behavioral patterns described vary qualita-
tively rather than quantitatively. This is typi-
cal of descriptivist approaches to cognitive 
variability higher mental processing (Evans 
and Elqayam, 2011). Given the dearth of 
such focus in higher mental processing, this 
is a welcome development.

Lastly, a potentially significant issue 
here is the implications to risk aversion 
as originally portrayed in prospect theory 
(Kahneman and Tversky, 1979). One could 
argue that Y&T contribute to defining 
boundary conditions for Prospect Theory, 
by proposing an alternative explanation for 
specific settings in which Prospect Theory 
is not supported by empirical evidence1. 
Indeed, as a unified theory of risk aversion 
is not yet at hand, knowing the range of 
application of each of the existing theories 
is crucial.

One reason that Y&T in particular, and 
decisions from experience in general, can 
define boundary conditions, is their focus on 
the processing level of analysis. Marr (1982) 
famously distinguished between three levels 
of analysis regarding any information pro-
cessing system: The computational level, 
which portrays the function computed by 
the system (e.g., arithmetic is a pocket calcu-
lator’s function); the algorithmic level, which 
has to do with processes (e.g., the calcula-
tor’s software); and the implementational 
level, which explores the physical under-
pinnings of the system – its hardware/wet-
ware characterization (e.g., the calculator’s 

1Note that Prospect Theory cannot explain the typical 
behavioral patterns found in decisions from experien-
ce studies (see, for example, Barron and Erev, 2003, 
and Erev and Haruvy, 2010), unless one assumes para-
meter values that imply no loss aversion, linear value 
function (at least with low stakes), and underweigh-
ting of rare events. We are grateful to an anonymous 
reviewer for pointing this out.
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chip). Viewed in these terms, we see pros-
pect theory as portraying behavior mainly 
on the computational (i.e., functional) level 
of analysis; or, as some authors put it – an 
“axiomatic” system (see Wakker, 2010). In 
contrast, Y&T explore the attentional pro-
cesses (algorithmic level), and their physi-
ological underpinnings (implementational 
level). As Marr commented, levels of analysis 
interact, with different processes sometimes 
computing different functions, as is the case 
here. Research questions about processing 
and physiology are much rarer in judgment 
and decision making research than com-
putational level questions (although see, 
e.g., Breiter et al., 2001; Tom et al., 2007), 
and studies that combine several levels of 
analysis, as Y&T have done, are even rarer. 
This makes Y&T’s contribution of particular 
interest to scholars of human thinking and 
decision making.
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Do decisions from description and from experience trigger different cognitive processes?
We investigated this general question using cognitive modeling, eye-tracking, and phys-
iological arousal measures. Three novel findings indeed suggest qualitatively different
processes between the two types of decisions. First, comparative modeling indicates
that evidence-accumulation models assuming averaging of all fixation-sampled outcomes
predict choices best in decisions from experience, whereas Cumulative Prospect Theory
predicts choices best in decisions from descriptions. Second, arousal decreased with
increasing difference in expected value between gambles in description-based choices
but not in experience. Third, the relation between attention and subjective weights given
to outcomes was stronger for experience-based than for description-based tasks. Overall,
our results indicate that processes in experience-based risky choice can be captured by
sampling-and-averaging evidence-accumulation model. This model cannot be generalized
to description-based decisions, in which more complex mechanisms are involved.

Keywords: risky choices, description vs. experience gap, sampling, eye-tracking, evidence-accumulation, prospect

theory

INTRODUCTION
According to standards of rationality, choices between risky
prospects should depend on the utility of possible outcomes and
their respective probabilities. Choices should thus be invariant to
different formats of information presentation. Classic work, how-
ever, has shown that this invariance assumption is systematically
violated: for example, framing effects (e.g., presenting information
in terms of gains vs. losses) have a profound effect both on choice
behavior (e.g., Tversky and Kahneman, 1981; Kühberger, 1998;
Maule and Villejoubert, 2007) and judgments (e.g., Hilbig, 2009,
2012). Recently, there has been an upsurge of interest in the influ-
ence of one specific aspect of information presentation, namely
whether choice-relevant information is exhaustively described or
actively sampled, that is, experienced.

A growing body of research suggests a “gap” between decisions
that are based on description and decisions that are based on
experience (Barron and Erev, 2003; Hertwig et al., 2004; Erev and
Barron, 2005; Yechiam et al., 2005a; Jessup et al., 2008). Indeed,
this gap was recently corroborated on a neuronal level (FitzGerald
et al., 2010). In description-based risky choice, the outcomes and
their respective probabilities are fully described for both options.
By contrast, in experience-based decisions, no such conclusive
information is provided; rather, participants have to learn which
outcomes might occur and what their approximate probabilities
are through experience. For example, Barron and Erev (2003)
presented the following choice problem to participants: get three
points for sure vs. get four points with 0.8 probability, and zero

points otherwise. Instead of receiving such a full description of the
options, participants were required to make 400 selections between
the two gambles by pressing one of two unmarked buttons. Each
selection returned an outcome drawn from the underlying payoff
structure of the corresponding option. The accumulated outcomes
were converted into money and paid to the participants. Accord-
ing to previous findings, participants in an all gain domain should
prefer the safer option due to (myopic) risk aversion (e.g., Kah-
neman and Tversky, 1979). By contrast, Barron and Erev (2003)
found a preference for the riskier option (66%) when participants
based their choices on experience. This difference between descrip-
tion vs. experience-based decisions concerning the preference for
risky options (and other choice phenomena) is considered the
descriptions-experience-“gap” (Hertwig and Erev, 2009)1.

1Note, however, that the choice problem in Barron and Erev (2003) differed from
a description-based task not only by in terms of how information was acquired.
Rather, whereas description-based tasks usually require a one-shot decision, the
feedback task used in Barron and Erev required participants to make repeated choices
with feedback, all of which had monetary consequences. To rule out that specifi-
cally this feedback aspect may have driven the “gap,” subsequent research replicated
the “gap” in a one-shot experience-based task (i.e., sampling task): Participants
again sample single outcomes drawn from each of the choice options. However,
none of these samples is consequential. Instead, after the sampling phase, partic-
ipants make a single consequential choice (e.g., Hertwig et al., 2004). Although
both experience-based paradigms reveal choice patterns that differ from those
typically found in the description-based paradigm, recent research also indicates
considerable differences between the two experience-based tasks. Specifically, the
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While the description-experience “gap” has been found con-
sistently, there still are open questions concerning the underlying
cognitive mechanisms (Hertwig and Erev, 2009; Ungemach et al.,
2009). In particular, it is unsolved whether choices in both for-
mats are essentially governed by the same processes. Alternatively,
and on top of obvious differences resulting from the fact that
information might have to be transformed before integration, they
might trigger qualitatively distinct cognitive processes. To address
these questions we herein test hypotheses concerning the processes
underlying one-shot experience-based decisions in comparison to
decisions from descriptions.

For an in-depth process analysis we resort to measurement of
information sampling using eye-tracking and analyze differences
in physiological arousal in response to specific task characteristics.
While previous research was limited to the analyses of information
sampling for experience-based decisions only (i.e., by looking at
button-press behavior), an eye-tracking approach provides insight
concerning information sampling in both paradigms. To the best
of our knowledge, we are the first to apply fixation-based-sampling
models to both experience- and description-based risky choice. In
addition, we directly test whether the degree of attention given to
outcomes corresponds to their actual probability of occurrence –
as is a cornerstone assumption of prominent sampling models for
risky choice (Busemeyer and Townsend, 1993; Roe et al., 2001;
Johnson and Busemeyer, 2005). Findings from other eye-tracking
studies in the description paradigm indicate that there is at least
some relation between objective probability and attention in risky
choice (Fiedler and Glöckner, submitted) and in the valuations of
single gambles (Ashby et al., 2012). Nevertheless, other factors such
as outcomes (Ashby et al., 2012; Fiedler and Glöckner, submitted)
and emerging preference (Innocenti et al.,2010; Glöckner and Her-
bold, 2011; Glöckner et al., 2012; Fiedler and Glöckner, submitted)
have been shown to influence attention as well (see also Armel
et al., 2008; Milosavljevic et al., 2010; Krajbich and Rangel, 2011).

UNDERWEIGHTING AND OVERWEIGHTING OF SMALL PROBABILITY
OUTCOMES
One of the main differences between decisions from experience
and decisions from descriptions concerns the implications of
observed choice behavior for the subjective evaluation of rare
events (i.e., outcomes with small probabilities). According to
Cumulative Prospect Theory (Kahneman and Tversky, 1979; Tver-
sky and Kahneman, 1992), the most prominent model for risky
choice, there should be an overweighting of rare events. By con-
trast, it has been argued that the choice patterns observed in
decision from experience imply that rare events are underweighted
(Hertwig et al., 2004; Erev and Barron, 2005; Hertwig and Erev,
2009). Specifically, analyses of choices suggest that in description-
based tasks, people behave as if they overweight small probabilities,
whereas they behave as if they underweight small probabilities in
experience-based tasks. As described above, in description-based
tasks, participants mostly (64%) prefer a certain-outcome option

description-experience “gap” is much stronger in the feedback task as compared
to the sampling task (Camilleri and Newell, 2011b). In addition, the differences
between the two experience-based paradigms are actually larger than between
sampling and description.

with an intermediate expected value (e.g., 100%, 3C) over an
option with higher expected value but comprising an undesir-
able rare event (e.g., 80%, 4C, 20%, 0C); however, they show a
reversed pattern in an experience-based task (12% choices for
the certain alternative; Hertwig et al., 2004). Since the rare event
is undesirable, this is in line with underweighting the probabil-
ity of rare events in experience-based tasks but overweighting
them in description-based tasks. Vice versa, when the rare event
was desirable (e.g., 20%, C32, 80% C0), the risky alternative
was preferred by the majority of participants in the description-
based task, but only by the minority of the participants in the
experience-based task.

MODERATORS AND POTENTIAL EXPLANATIONS
Two potential explanations of the description-experience “gap”
that were previously proposed are sampling bias and recency
effects2. Sampling bias refers to the tendency of individuals to
draw small (and thus biased) samples. In Hertwig et al. (2004), for
example, participants in the experience condition sampled only
a median of 7.5 outcomes per option, even though they could
have sampled endlessly without (monetary) costs. As a result, most
based their final choice on a biased sample, which contained the
rare event less often than its objective probability3. In view of these
results and similar findings, some authors have proposed that the
description-experience gap is little more than sampling error plus
Prospect Theory (Fox and Hadar, 2006), suggesting that “people
make equivalent choices when they use equivalent information to
base their decision (on), regardless of presentation mode” (Camil-
leri and Newell, 2011a, p. 282). Indeed, recent studies show that
the description-experience gap reduces under conditions in which
more representative sampling is induced (e.g., Ungemach et al.,
2009; Camilleri and Newell, 2011a) or when large representative
samples can be drawn in parallel and very speedily (Hilbig and
Glöckner, 2011). However, although the ubiquitous importance
of sampling biases is out of question (e.g., Fiedler, 1996, 2008;
Fiedler et al., 2000; Kareev and Fiedler, 2006), it has been found
that even when individuals draw on large and representative sam-
ples the “gap” – though reduced – is not eliminated (Ungemach
et al., 2009). Ungemach et al. (2009) argue that sampling bias alone
can thus not account for the “gap.”

Recency effects refer to the tendency to focus on events more
recently encountered (e.g., Hogarth and Einhorn, 1992). Particu-
larly, only a subset of the most recent samples could be taken into
account in choice. Since rare events have a lower probability to be
included in these recent samples (simply because they are rare; see

2Two explanations that have also been suggested but will not be considered further
herein are that individuals might underestimate the probabilities of rare events (i.e.,
estimation error; Hertwig and Erev, 2009) and that individuals might use differ-
ent decision policies (Hills and Hertwig, 2010) reflected in either often switching
between options (i.e., piece-wise sampling) or continuous sampling within one
option (i.e., comprehensive sampling).
3In Hertwig et al. (2004) 78% of the participants made choices based on a sample
of information which contained the rare event less often than its objective proba-
bility. Note that this is not caused by unequal (biased) sampling between options
but due to a mere statistical effect that in small samples the majority of individuals
often do not get to see the rare event at all. More precisely, the mean of the relative
sampling frequency of the rare events equals their objective probability but due to
the skewness in the distribution the median falls below the mean.
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also text footnote 3), choices are likely to imply underweighting of
these events. However, findings concerning this recency effect are
equivocal. Some studies found that the second half of the samples
drawn by participants predicted choices better than the first half
(Hertwig et al., 2004), while others failed to find evidence for such
recency effects (e.g., Ungemach et al., 2009).

Thus, the accumulated empirical evidence suggests that rare
events are treated differently in description vs. experience-based
decision making (Hau et al., 2010). However, it has been argued
that biased sampling and recency cannot fully account for the
description-experience gap (Ungemach et al., 2009). As such,
knowledge on the mechanisms that contribute to the description-
experience gap is incomplete (Hertwig and Erev, 2009; Ungemach
et al., 2009; Ludvig and Spetch, 2011) which, in turn, highlights
the importance of directly examining underlying processes.

Hertwig and Erev (2009) consider the possibility that the dif-
ferent statistical formats of information presentation (i.e., stated
probabilities vs. experienced events) might trigger qualitatively
different cognitive processes. The current study aims to identify
such qualitative differences in processing, which stand in contrast
to obvious differences that merely result from the fact that infor-
mation has to be transformed in different ways before it can be
integrated into a decision. For example, participants may first need
to form an estimate of the outcomes’ probabilities in the experi-
ence format, but then integrate outcomes and probabilities based
on the same cognitive process as participants who are provided
with the exact probabilities (in the description format). There-
fore, we focus on qualitative differences in terms of information
integration. An example would be that in one format participants
might rely on deliberately multiplying outcomes and (weighted)
probabilities and adding them up whereas in the other format they
may rely on automatic processes of memory retrieval in order to
decide which option is better.

THEORETICAL BACKGROUND AND METHODOLOGICAL APPROACH
Herein, we investigated decisions from the perspective of evidence-
accumulation models (e.g., Busemeyer and Townsend, 1993; Roe
et al., 2001; Johnson and Busemeyer, 2005; Raab and Johnson,
2007; Armel et al., 2008; Milosavljevic et al., 2010; Pleskac and
Busemeyer, 2010), an important class of process models for deci-
sion making (see also Rieskamp, 2008; Hilbig and Pohl, 2009;
Glöckner and Herbold, 2011; Hilbig and Glöckner, 2011). To bet-
ter understand the underlying processes of description-based and
experience-based decisions, we used a combination of process-
tracing techniques, including recording of eye-fixations (via eye-
tracking), cognitive modeling, and physiological arousal measure-
ment (indexed by skin conductance response and pupil dilation).
Moreover, these measures were used on a set of decisions that
were randomly generated and somewhat more complex than in
previously used tasks (see also Hilbig and Glöckner, 2011). This
simultaneous reliance on multiple measures in a complex set of
stimuli extends the scope of previous examinations and enables
direct tests of (i) whether individuals indeed treat rare events dif-
ferently under experience vs. description, and (ii) which types of
processing differences contribute to this “gap.”

Eye-fixation can provide important information about the
weight (or importance) given to different pieces of information

during the decision process (e.g., Raab and Johnson, 2007; Kra-
jbich and Rangel, 2011; Glöckner et al., 2012). Since several
evidence-accumulation models suggest that attention to outcomes
should be proportional to its importance or subjective probability
(Busemeyer and Townsend, 1993; Busemeyer and Johnson, 2004;
Johnson and Busemeyer, 2005), eye-fixations can be used to inves-
tigate whether there are differences in the visual attention given to
the rare events in both paradigms. If individuals overweight rare
events, then these events are expected to receive a higher relative
proportion of attention as compared to their objective probability.
By contrast, if rare events are underweighted, they will receive a
lower relative proportion of attention. Our data also allows testing
whether overt attention is related to probability of outcomes at
all. As mentioned above, some (but not all; see e.g., Armel and
Rangel, 2008, for a different approach) evidence-accumulation
models predict that attention to an outcome should increase with
its probability and predict that “the outcome probabilities dictate
where attention shifts, but only the outcome values are used in
determining the momentary evaluation”(Johnson and Busemeyer,
2005, p. 843)4.

Cognitive modeling and model comparisons additionally yield
insight on how (and with which properties) the underlying
processes employed by decision-makers can best be described (e.g.,
Yechiam and Busemeyer, 2005; Yechiam et al., 2005b; Yechiam and
Ert, 2007). For example, evidence-accumulation models assume
that individuals repeatedly sample information about the avail-
able options, and use these samples to evaluate the options. The
sampled information is automatically accumulated in a serial man-
ner, until one option is perceived as sufficiently better than the
other, and thus chosen. In the following, we rely on naïve imple-
mentations of evidence-accumulation models (i.e., averaging and
summing models) to examine whether one-shot choices that are
made from description vs. experience can be captured by different
process models and how well the models explain behavior overall.
Averaging models assume that decision-makers average the sam-
pled outcomes for both alternative, and choose the option with
the higher average. By contrast, summing models assume that
decision-makers sum the sampled outcomes of each alternative,
and choose the option with the higher sum.

In both paradigms “samples of information” were operational-
ized by the number of eye-fixations to respective outcomes. These
models were contrasted with a baseline Expected Value Model and
Cumulative Prospect Theory assuming objective probabilities and
outcomes of gambles. In the experience condition we additionally
tested a strategy assuming that participants chose the option with
the highest average outcome based on the subjectively sampled
outcomes. In addition, to test the recency account for decisions
from experience, this averaging model was also applied using
only recent subsets of samples. A previous model comparison by
Erev et al. (2010) indicates that (probabilistic implementations
of) Cumulative Prospect Theory predict choices best in decisions

4Note that this model statement is concerned with mental sampling. Therefore our
test necessitates accepting the empirically well supported eye-mind hypothesis (Just
and Carpenter, 1976) stating that individuals fixate the information they process.
Also note that Prospect Theory (Kahneman and Tversky, 1979) is an as-if model,
which does not necessarily imply a relation between decision weights and attention.
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from descriptions but that the same theory performs poorly in
predicting decisions from experience. Decisions from experience,
in contrast, were found to be best described by an “Ensemble
model” relying on the average prediction of four models including
sampling models and Cumulative Prospect Theory.

Finally, potential differences in arousal between descriptions
and experience were investigated. We were interested in the influ-
ence of the “difficulty” of the decision on arousal in the two
paradigms, where difficulty is indicated by the similarity of options
in expected values. Previous studies on probabilistic inferences
(Hochman et al., 2010) and risky choice (Glöckner and Hochman,
2011) show that arousal increases with increasing conflict between
the available information. Generalized to the risky choice para-
digm used in the current study, arousal should be high (vs. low) if
both gambles are similar concerning their expected value and/or
expected utility since “pros” and “cons” for the alternatives are
about equally strong in such a case (vs. one alternative being clearly
better than the other). Thus, differences in the pattern of arousal
for “easy” vs. “difficult” choices between the two paradigms should
be an indicator for different underlying processes5. Such a com-
parison is critically informative concerning the question whether
the “gap” is caused by relatively trivial differences in preprocess-
ing of information only. If this were the case, a similar effect of
difficulty on arousal would be expected in the experience and the
description condition.

MATERIALS AND METHODS
PARTICIPANTS AND DESIGN
Forty-four students from the University of Bonn took part in
the experiment (52.3% female, mean age 23 years) and were ran-
domly assigned to the experience or the description condition. We
manipulated within-subjects whether the rare event was more
or less desirable and whether there was a high or a low differ-
ence in expected value (EV-diff) between gambles resulting in a
2 (experience vs. description) × 2 (rare event more vs. less desir-
able) × 2 (EV-diff low vs. high) mixed design. The experiment
lasted about 45 min. Participants were students recruited from the
MPI Decision Lab subject pool using the database-system ORSEE
(Greiner, 2004). Participants received a show up fee of 5C plus a
performance-contingent payment for the study yielding additional
payoffs between 0.1 and 29.8C (average total: 18.3C which equals
approximately 25.7 USD). The experiment was hence incentivized
and there was no deception involved.

MATERIAL
Participants made 60 decisions between two gambles with two
outcomes each that had an average EV of 10C. In 38 target tri-
als an option comprising a rare event (low-probability outcome)
was paired with an option comprising intermediate-probability
outcomes only (i.e., between 0.33 and 0.66). The remaining 22
decisions were filler tasks with options comprising intermediate-
probability outcomes only (all between 0.33 and 0.66). For 20 of
the 38 target decisions, the low-probability outcome was desirable

5These differences may thereby be explained by multiple process accounts. We do
not aim to distinguish between them and they have to be further dissected in future
research.

(i.e., the rare outcome was more than twice as large as the non-rare
outcome), while for the other 18 target decisions it was undesirable
(i.e., the rare outcome was less than half as large as the non-rare
outcome). Half of the tasks were constructed so as to yield a small
difference in EV between gambles (EV-diff < 0.50C), whereas the
other half had a higher difference in EV (i.e., 3C < EV-diff < 4C).
All decisions were randomly generated under the above restric-
tions using gambles with positive outcomes only, the values of
which ranged from 0.10C to 30C. One of the target decisions
had to be excluded due to a programming error leaving us with
a total of 814 (22 participants × 37 decisions) choices per condi-
tions as basis for the analyses. All decision tasks, their assignment
to the within-subjects conditions, and average choices are listed in
Appendix A.

APPARATUS
Eye movements were recorded using the Eyegaze binocular sys-
tem (LC Technologies) with remote binocular sampling rate of
120 Hz and an accuracy of about 0.45˚. Images were presented
on a 17′′ color monitor (Samsung Syncmaster 740B, refresh rate
60 Hz, reaction time 5 ms) with a native resolution of 1280 × 1024.
Fixations were identified using a 30 pixel tolerance (i.e., added
max-min deviation for x and y-coordinates) and a minimum
fixation time of 50 ms. Physiological arousal was measured by
recording skin conductance responses using a NEXUS-8 system
with a sampling rate of 32 samples per second. We used Butter-
worth (first order) filters to correct for high frequency and low
frequency noise in the data6.

PROCEDURE
In the description condition we relied on a procedure similar to
the one used in Glöckner and Herbold (2011) which was slightly
adapted by including a new decision screen to make it as similar
as possible to the experience condition (Figure 1). Upon arrival,
participants were familiarized with the decision task by reading a
comprehensive instruction including screenshots of the paradigm.
In both conditions, they were instructed to sample information as
long as they liked. The decision screen was shown once partic-
ipants pressed the space bar. Decisions were made by pressing
buttons marked with “A” and “B” on the keyboard. In the experi-
ence condition, participants were additionally told that sampling
also worked through pressing buttons “A” and “B” (see Figure 1).
Individuals were calibrated and connected to the NEXUS (using
the middle finger and the ring finger of the non-dominant hand).
The experiment started with a test trial followed by the 60 deci-
sions7. In both conditions, the position in which the two gambles
were presented on screen (i.e., left or right) was counterbalanced
between subjects.

6We used a filter allowing a band from 0.1 to 1 Hz. To test the robustness of our find-
ings we also conducted the analysis using a FIR Bandpass 128 filter [Parks–McClellan
(optimal)] with the same band which essentially led to the same results.
7Due to a programming error, order was randomized only in the experience con-
dition but it was fixed in the description condition (using the order presented in
Appendix A). Note, however, that gambles were randomly generated, half of them
were side-reversed which was counterbalanced between subjects, and they were
intermixed with blocks of distractors. We therefore consider it very unlikely that
this difference could have influenced our results. We nevertheless cannot completely
rule out this possibility.
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FIGURE 1 | Procedure in the experience (top panel) and the description (bottom panel) condition. Note. RT means response time.

Each decision started with a blank screen (6 s) followed by a
fixation cross (0.5 s) to center attention on the middle of the
screen. Next, the gambles were presented in an ellipsoid dis-
play which ensured that information was equally distant from
the initial fixation point in both conditions (Figure 1). Infor-
mation for one gamble was presented on the left and for the
other on the right side. After (explicit or implicit) sampling
(information search phase) and pressing the space bar the deci-
sion screen appeared and individuals made their decision (deci-
sion phase). The analysis of fixations was done for the infor-
mation search phase, whereas the analysis of arousal was done
separately both for the information search phase and the deci-
sion phase. The decision phase was exactly identical in the two
conditions.

RESULTS
SAMPLING OF RARE EVENT
In the experience condition we observed an average of 32
(Md = 30) information inspections, that is, for each decision, indi-
viduals pressed each of the two buttons about 16 times, which took
them 12.8 s on average. The sampling rate is on the upper end of
the spectrum observed in previous investigations which may be
due to the relatively large monetary incentives (Hau et al., 2010
report median total sampling rates between 11 and 33 in a review
of several previous studies). Consequently, sampling rates of low-
probability outcomes (M = 0.084, SE = 0.0045) were relatively

unbiased and reflected the average objective probabilities of these
outcomes well (M = 0.0745).

As described above, we use fixations to outcomes as a proxy for
information sampling in both paradigms. Note that the infor-
mation display was much richer in the description condition
containing eight pieces of information (i.e., four outcomes and
four probabilities) than in the experience condition only showing
one outcome at a time (see Figure 1). In the experience paradigm,
there was an average of 53.5 fixations to outcomes per decision
(Md = 48). Fixations also showed relatively unbiased sampling of
rare events which received 0.08 of the fixations to the respective
gamble. This proportion is calculated as the number of fixations
to the rare event divided by the total fixations to the rare event
and the alternative outcome of the respective gamble (Figure 2).
As pointed out in the previous section, the presentation rate
of the rare event (i.e., how often the rare event was shown in
the gambles containing a rare event) was 0.084. Hence, partici-
pants did not show particularly increased or decreased fixation
rates to rare events. Fixations roughly reflected the presentation
(=sampling) rate and were thus also in line with the objective
probability of the rare events. In the description condition, we
observed 43.9 fixations on average (Md = 35) per decision with
more fixations directed to outcomes (58%) than to probabili-
ties (42%). In contrast to the experience condition, rare events
were strongly oversampled in the description condition: the low-
probability outcomes received 0.50 of all fixations within the
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FIGURE 2 | Proportion of fixations to the rare events compared to their

objective probability. Note. Proportions of fixations are calculated using
fixations to outcomes only. Proportions are calculated within gambles as
the number of fixations to the rare event divided by the total fixations to the
rare event and the alternative outcome of the respective gamble. Note that
in the experience condition, the sampling rate of the rare event was 0.084,
which is roughly reflects in the fixation rate.

respective gamble which is significantly higher than their objec-
tive probability, t (21) = 65.7, p < 0.001 (Figure 2)8. Note, that a
fixation rate of 0.50 is expected if both outcomes receive equal
attention. For all 22 participants, the (fixation-based) sampling
percentage of rare events was higher than the objective probability
of these events.

In sum, there was relatively unbiased sampling of rare events in
the experience condition but “oversampling” of rare events in the
description condition in terms of attention. In fact, there seems
to be no contingency between probability of the rare outcome
and the proportion of attention it receives in the descriptions
format (but, see Fiedler and Glöckner, submitted, for a more gen-
eral analysis). In contrast, in the experience condition when only
one piece of information is presented at a time, sampling rates
measured by button-press and by fixation show a high degree of
convergence. We nevertheless use both in the model comparison
described below.

8Analyzing total fixation durations instead of number of fixations led to the same
conclusions.
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FIGURE 3 | Choices in line with overweighting of small probabilities.

Note. Higher scores in p(overweighting) indicate stronger overweighting of
rare events.

CHOICES
Overall analysis
We coded choices to indicate overweighting of small probabil-
ities (i.e., 1 = choice for the gamble indicating overweighting;
0 = otherwise; see Appendix A) and plot this variable in Figure 3.
Surprisingly, the option that – if chosen by the participants – would
indicate overweighting of small probabilities was not chosen more
often in the description than in the experience condition. The
experience condition even shows a tendency toward stronger over-
weighting of small probabilities as compared to the description
condition.

Note that placing more weight to an undesirable outcome of a
gamble (i.e., an outcome with a relatively low monetary value) nec-
essarily implies placing less weight on the more desirable outcome
in this gamble (holding expected value constant). Hence, if the
low-probability outcome were overweighted, the gamble with the
rare event should become more attractive with increasing values
of the low-probability outcome (c.f. Hilbig and Glöckner, 2011).
Consider, for example, a gamble paying 4C with 80% probabil-
ity and otherwise nothing. Overweighting the (undesirable) 0C
outcome would reduce the probability of choosing this option as
compared to an option comprising the same expected value, but
with only one sure outcome (e.g., 3.2C). Vice versa, if the 0C out-
come were replaced by, say, a 10C (and thus desirable) outcome,
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overweighting this rare event would increase the probability of
choosing this gamble (again compared to an option comprising
the same expected value, but with one sure outcome).

We therefore analyzed whether low-probability outcomes are
over- or underweighted by conducting a logistic regressions pre-
dicting choice of the option comprising the low-probability out-
come by its value (i.e., desirability; values are outcomes in Euro as
described in Appendix A), controlling for differences in expected
value. If low probabilities are overweighted, the proportion of
choices of the corresponding option should increase with increas-
ing value of the outcome (c.f. Hilbig and Glöckner, 2011). That is,
the odds-ratio coefficient for Low-Probability Outcome should be
above one indicating that the probability for choosing the gamble
increases with the value of the low-probability outcome9.

As expected, significant overweighting was observed in decision
from description (Table 1, model 1; considering a one-sided test
which is justified due to our a priori hypothesis, see Baron, 2010).
Interestingly, however, we observed significant overweighting also
for the experience condition (Table 1, model 2). The overall
analysis indicated that there was no difference concerning over-
weighting between conditions as indicated by the non-significant
interaction term (Table 1, model 3).

In sum, although we find oversampling of rare events in the
description condition as compared to the experience condition,
choice patterns in both conditions indicated overweighting of
rare events. Interestingly, this result speaks against the hypoth-
esis that decisions in both conditions are based on the same

9Here and in all following regressions we used cluster correction on the level of
subjects to correct for dependencies in errors caused by the repeated measurement
design (Rogers, 1993). We also conducted the analyses using multi-level random
effects models (i.e., random intercept), which leads to the same conclusions.

Table 1 | Logistic regression of choices for the gamble comprising the

rare event (pchoice).

(1) (2) (3)

pchoice

description

pchoice

experience

pchoice

overall

Low-probability outcome

(centered)

1.025+

(1.95)

1.045***

(4.03)

1.035***

(4.30)

Presentation format
†

0.982

(−0.09)

Presentation

format × low-probability

outcome

1.022

(1.30)

EV-difference 1.563***

(10.57)

1.422***

(6.12)

1.488***

(10.56)

N 814 814 1628

Pseudo R2 0.185 0.151 0.166

Exponentiated coefficients representing odds-ratios (z statistics in parentheses);

cluster correction used at the level of participants to account for dependencies

due to repeated measurement.
† Coding: 0 = descriptions, 1 = experience (centered).
+p < 0.10, ***p < 0.001 (all two-sided test).

evidence-accumulation process of fixation-sampled information,
since according to such models, low-probability outcomes should
have had much more relative influence on choices in descriptions
as compared to experience due to the strong oversampling in the
former (as reported in the previous section).

Determinants of choices in the experience condition
We split tasks depending on whether the rare event was sam-
pled (i.e., shown on the screen) (a) never, (b) once, or (c) more
than once and reran the logistic regression predicting choices
of the option comprising this low-probability outcome (again,
with the value of the low-probability outcome and EV-difference
as predictors). We found significant underweighting of low-
probability outcomes for trials in which the rare event was not
sampled (odds-ratio = 0.97, z = −2.33, p = 0.02), but overweight-
ing for trials in which it was sampled once (odds-ratio = 1.08,
z = 5.50, p < 0.001) or several times (odds-ratio = 1.11, z = 7.44,
p < 0.001). Overweighting of rare events thus increases with the
number of times they are sampled as indicated by a signifi-
cant Number of Samples ×Value of the Low-Probability Out-
come interaction (odds-ratio = 1.05, z = 5.21, p < 0.001). The
description-experience “gap” hence reduces with increasing num-
ber of samples drawn and might heavily depend on the fact that,
in typical studies, many individuals do not sample the rare event at
all. Thus, the high overall number of samples drawn in the current
study might contribute to the fact that no evidence for under-
weighting of small probabilities is implied by the choice patterns
in the experience condition.

COMPARING MODELS FOR RISKY CHOICES IN EXPERIENCE – AND
DESCRIPTION-BASED DECISIONS
Model specification
To investigate the underlying processes more closely we calcu-
lated the predictive power of different naïve implementations
of evidence-accumulation models and compared them against
several competitors. Thereby, all models were implemented in a
stochastic manner using a logistic choice rule (details see below)
in which the probability of choosing a gamble increases with the
difference in value (V diff) between gambles. The models only dif-
fer in the way in which values V for each gamble are calculated
and therefore in V diff .

As basic comparison standard, we used two models that
relied on objective probabilities and outcomes or transforma-
tions of these. Specifically, we considered an expected value model
(EVobjective), and an implementation of Cumulative Prospect The-
ory (CPTobjective) with the parameters from Tversky and Kah-
neman, 1992 (i.e., α = 0.88, γ = 0.61, λ = 2.25; all outcomes
positive).

For the experience condition, participants might simply choose
the option with the higher average of outcomes that was sam-
pled by pressing buttons. We calculated predictions from such
sampling-based models, which rely on the sampled outcomes
for each gamble (or subsets of them). The first implementation
takes into account all samples (SampAverAll). Note that partic-
ipants have no other information than the sampled outcomes.
Given this information deficit (and ignoring opportunity costs),
SampAverAll is the optimal strategy to maximize chances to win
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money in this paradigm. As mentioned in the introduction, sam-
pling average models might also be implemented using the most
recent samples only. To test these alternative implementations, two
further models that average over the last 10 (SampAverRec10) or
the last five samples (SampAverRec5) per decision were calculated.
These sample sizes were used since estimated average samples for
recency (and also other sampling-based) models in Erev et al.,
2010, e.g., see Table 3C) were between 5 and 10 (but see Discus-
sion for limitations of this approach). To test whether summing
instead of averaging of outcomes can account better for the data,
we also included a model assuming summation of all sampled
outcomes (SampSum). Note that for all sampling-based mod-
els introduced in this section one sample refers to one sampled
outcome, independently of how often individuals looked at them.

More importantly, we considered averaging and summation
models implementing evidence-accumulation based on partic-
ipants actual fixations. In these model variants, valuations of
gambles are based on the distribution of fixations to specific
outcomes. Conceptually, fixation-based summation models (Fix-
Summation) assume that preferences are constructed in a dynamic
process in which each fixation to an outcome adds evidence for
the respective gamble which is proportional to the value of the
outcome. Fixation-based averaging models (FixAveraging) do the
same but additionally correct for the number of fixations to each
gamble so that the option with the higher average evidence is
selected10. Appendix B provides a formal description of the models
implemented.

For all models, we used a multi-level logistic regression model
to predict individual choices of the option comprising the rare
event based on difference in value between gambles (V diff).

Model estimation
We estimated the model fit to the choice data using multi-level
(mixed-effect) logistic regressions assuming normally distributed
N (0, σ2

u) random intercept ui according to:

f (z) = 1

1 + exp(−z)
(1)

and

z = β0 + β1(Vdiff)it + ui (2)

with i indexing subjects and t indexing tasks.
All models have three estimated parameters (β0, β1, σ2

u). The
best model was selected based on the Bayesian Information Cri-
terion (BIC, Schwarz, 1978). To test the stability of the estimation
we also reran the analyses using a logistic regression with cluster
correction for standard errors which provides pseudo R2 values
indicating how much variance can be explained by a model.

10Note that – in contrast to averaging models – summation models take into account
biased sampling toward one of the options. For decisions with all non-negative out-
comes increased attention toward one option should lead to a choice bias in favor
of this option. This implementation of fixation-based summation models is simi-
lar to evidence-accumulation models suggested by Rangel, Krajbich and colleagues
(Armel et al., 2008; Krajbich and Rangel, 2011).

Model fitting results
In the experience conditions, the fixation-based averaging model
(FixAveraging) provided the best fit to the data (Table 2). The
sampling-based averaging model taking into account all samples
(SampAverAll) performed nearly as well, whereas all other mod-
els turned out considerably worse. Models relying on only the
most recent samples performed poorly, as did the sampling-based
summation model and the fixation-based summation model.

In the description condition, by contrast, Cumulative Prospect
Theory (CPTobjective) performed best, whereas both fixation-
based models performed poorly. Overall, these findings indicate
that attention-based evidence-accumulation models can account
better for experience-based choices than for description-based
choices.

Robustness checks and further analyses
In the experience condition, sampling of outcomes and fixations
to the respective outcomes are necessarily highly correlated. As
one would expect, the predictions of the two best models in the
experience paradigm SampAverAll and FixAveraging were there-
fore also highly correlated (b = 0.93, t = 93.60, p < 0.001). We
tested whether, despite this high degree of overlap, both mod-
els make unique contributions in predicting choices by including
both predictors simultaneously in a logistic regression (clustering
at the participant level and correcting for individual differences
using dummies). The predictors of both models remained signifi-
cant at p < 0.05 indicating that both models have unique predictive
power.

We conducted further tests of whether modified implementa-
tions of the models mentioned above improve model fit. First, one
might suspect that our implementations of fixation-based models

Table 2 | Model comparison predicting choices for the rare event.

Model class Description Experience

BIC Pseudo

R2

BIC Pseudo

R2

OBJECTIVE PROBABILITY AND OUTCOME-BASED MODELS

EVobjective 871 0.18 858 0.12

CPTobjective 832 0.21 799 0.18

SAMPLING-BASED MODELS

SampAverAll 768 0.21

SampAverRec10 872 0.11

SampAverRec5 867 0.12

SampSum 876 0.11

FIXATION-BASED MODELS

FixAveraging 1009 0.05 767 0.22

FixSummation 991 0.07 828 0.17

Observations 813 751

BIC scores are from multi-level logistic regressions described in Equations 1 and

2; Pseudo R2 are from a logistic regression with cluster correction using the

same predictors. Low BIC scores and high pseudo R2 indicate a better fit of the

model to the data. The best fitting models for both conditions are in bold. Trials

were excluded from the comparison if there were no fixations recorded to any

outcome within the respective trial.
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might be suboptimal since they take into account frequency of
fixations only and ignore the duration of these fixations. To test
this hypothesis, we calculated model implementations for the Fix-
Averaging and the FixSummation models in which each fixated
outcome is weighted by the duration of the respective fixation. In
both conditions, model fit decreased when weighting fixation by
duration compared to using frequency of fixations. Second, in the
description condition, fixations to outcomes and their probabili-
ties might both be considered to provide evidence of attention to
the respective gamble. We therefore implemented fixation-based
models in which each fixation to a probability was also counted
as evidence for the outcome connected with this probability. In
both implementations, the model fit improved slightly (by about
three BIC points), which, however, does not change any of above
conclusions.

AROUSAL MEASURES: PUPIL DILATION AND SKIN CONDUCTANCE
RESPONSE
Finally, we analyzed increases in physiological arousal between
conditions and tasks as measured by (a) pupil dilation and (b)
skin conductance response. A focus was placed on differences in
affective responses to our manipulation of EV-difference between
conditions, indicating differences in processing. As dependent
measures we calculated peak arousal scores, that is, the maximum
increase of arousal as measured by pupil dilation and skin conduc-
tance from baseline (i.e., measured at fixation cross presentation)
in the respective part of the decision process. We thereby con-
ducted analyses separately for the information search phase (i.e.,
in which the information about the options was presented and
sampled) and the decision phase (i.e., in which the decision screen
was presented). Due to unsystematic breakdowns of the NEXUS
system, we lost parts of the data for several participants, leaving us
with 33 (out of the 44) complete sets for the analysis of skin con-
ductance (15 experience, 18 description). Peak arousal scores for
pupil dilation and skin conductance response showed a medium
correlation [r = 0.34, t (35) = 2.13, p < 0.05; scores aggregated at
the task level].

Pupil dilation
For both conditions, we regressed pupil dilation scores on absolute
EV-difference (based on objective probabilities and outcomes),
controlling for effects of trial order by including trial num-
ber as predictor, and differences between subjects by including
subject dummies. In the description condition, pupil dilation
decreased with increasing EV-difference, which was not the case
in the experience condition (Figure 4, left). The effect in the
description condition turned out significant both in the infor-
mation search phase [b = −0.014, t (21) = −3.03, p = 0.006] and
the decision phase [b = −0.010, t (21) = −2.11, p = 0.047]. In the
experience condition, the effect was not significant [informa-
tion search phase: b = −0.00097, t (21) = 0.29, p = 0.77; decision
phase: b = −0.0029, t (21) = −0.66, p = 0.518]11 which also holds

11In the description condition trial order (jointly calculated over search and decision
phase) turned out significant as well, b = −0.0022, t (21) = −4.16, p < 0.001, which
was not the case in the experience condition, b = 0.0002, t (21) = 0.47, p = 0.644. A
further regression analysis was conducted including two-way interaction terms for

when using experienced (i.e., subjectively sampled) probabilities
to calculate EV-difference instead of objective probabilities (both
p > 0.25).

Skin conductance response
We regressed skin conductance response scores on absolute EV-
difference, controlling for effects of trial order, and differences
between subjects by including subject dummies. The results nicely
converge with the findings concerning pupil dilation: skin con-
ductance response decreased with increasing EV-difference in the
description condition but not (or much less so) in the experi-
ence condition (Figure 4, right). EV-difference did not predict
arousal for the experience condition, neither in the information
search phase nor in the phase in which the decision screen was
shown (both p > 0.23). In the description condition, by contrast,
we found strong corresponding effects in both the search phase
[b = −0.034, t (17) = −2.31, p = 0.034] and the decision phase
[b = −0.022, t (17) = −3.04, p = 0.007]. Since the decision phase
was exactly identical in both conditions, the difference between
conditions indicates that there might be qualitative differences in
processing between both conditions that do not only concern triv-
ial differences in information search but also the way in which
information is integrated. We will discuss this issue in more detail
the Section “Discussion.”

Note, however, that the general level of arousal did not dif-
fer significantly between conditions, neither for pupil dilation
[b = −0.009, t (43) = 0.5, p = 0.62] nor for skin conductance
response [b = 0.023, t (32) = 0.87, p = 0.40], and coefficients even
pointed in opposite directions (condition dummy coded with
Experience = 1).

DISCUSSION
In the current work, we examined processing differences between
one-shot decisions from description vs. experience using eye-
tracking, cognitive modeling, and physiological arousal. Concern-
ing choices, we did not find underweighting of low-probability
outcomes in experience-based decisions and therefore our results
do not replicate the description-experience gap in choices. It is
noteworthy that this also holds when considering the 37 deci-
sions independently (see Appendix A). Although we did not
expect this result, it is interesting since it is in line with recent
evidence pointing at important moderators for observing the
descriptions-experience “gap12.”

First, our findings are in line with Camilleri and Newell (2011b)
who find that behavior in one-shot experience-based decisions
(i.e., sampling information and then making one decision that is
incentivized) leads to behavior more in line with decisions from
description compared to repeated experience-based decision (i.e.,
each sample is incentivized and individuals receive immediate

condition by EV-diff and condition by trial number (all variables centered) in the
model (but excluding subject dummies). As indicated by the trial order coefficients
reported above, participants in the two conditions reacted differently on trial order
[IE: b = 0.0023, t (21) = 3.83, p < 0.001]. Most importantly, however, the interaction
effect of EV-diff and condition was significant even when controlling for this effect
[IE: b = 0.0117, t (21) = 2.58, p = 0.013].
12Of course, it is also generally important to report non-replications to avoid the
problem of publication bias (Renkewitz et al., 2011).
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FIGURE 4 | Physiological arousal. Note. The graphs show predicted
peak arousal scores for Pupil Dilation (left panel) and Skin
Conductance Response (right panel) with high numbers indicating
high arousal. Both scores are differences from baseline measured at

presentation of the fixation cross preceding the respective trial. Pupil
dilation scores are in millimeters and refer to changes in radius.
Graphs are based on a joint analysis over information search phase
and decision phase.

feedback; see also text footnote 1, above). Second, in our study,
participants sampled more than twice as often as participants in
the original study on one-shot experience-based decisions by Her-
twig et al. (2004). As a consequence of this low sampling rate, 78%
of their participants sampled the rare event less often than expected
(Camilleri and Newell, 2011b). We did not observe such a bias in
sampling. Therefore, our findings are in line with Ungemach et al.
(2009) in showing that the gap reduces with increasing sample size
and the argument that the effect is largely driven by biased samples
(Fox and Hadar, 2006; Camilleri and Newell, 2011b).

Most importantly, even though choices did not reveal a “gap”
between descriptions and experience, a more in-depth model com-
parison based on choices as well as an analysis of process measures
suggest that the underlying cognitive processes in the two types of
paradigms are markedly different.

EVIDENCE FOR QUALITATIVE PROCESSING DIFFERENCES BETWEEN
DECISIONS FROM DESCRIPTION VS. DECISIONS FROM EXPERIENCE
Our findings indicate qualitative processing differences between
decisions from description and decisions from experience that
go beyond trivial differences concerning preprocessing of infor-
mation. As such, the current results speak against the hypoth-
esis that individuals merely transform information in an initial

preprocessing stage, but later rely on the same integration process
in both paradigms. This conclusion is based on three novel findings
which we briefly summarize in what follows.

First, the model comparison for choices indicates that notably
different models explain choices best in the two conditions, which
replicates and extends findings from Erev et al. (2010). Evidence-
accumulations models assuming sampling of outcomes by fixation
and linear integration of these outcomes, which have been sug-
gested as models for risky choices in general (Busemeyer and
Townsend, 1993), can account well for decisions in the experience
paradigm but not in the description paradigm. In the description
paradigm, by contrast, Cumulative Prospect Theory was the best
model, which converges with other recent findings from com-
prehensive model comparisons (Erev et al., 2010; Glöckner and
Pachur, 2012).

Second, we find that an effect of EV-difference on arousal,
as measured by pupil dilation and skin conductance response,
can be found in description-based but not in experience-based
choices. If the same cognitive processes had been at work for
information integration in both conditions, the effect of EV-
difference on arousal should have been comparable. Together
with the modeling results, the physiological data suggests that
decisions from descriptions involve more complex mathematical
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processes of computation such as coherence construction (Glöck-
ner and Betsch, 2008; see Models for Decision from Description,
for details) or other ways of subjectively weighting outcomes (Ayal
and Hochman, 2009), which are highly affected by expected value
differences (see Ayal and Hochman,2009; Glöckner and Hochman,
2011). By contrast, experience-based decisions might involve sim-
pler processes based on linear integration and a comparison of the
averages of experienced outcomes13. These processes appear to be
more similar to accumulation of fixation-sampled evidence until
a certain threshold is reached (Busemeyer and Townsend, 1993;
Raab and Johnson, 2007; Krajbich and Rangel, 2011). Alternatively,
they might also be similar to memory prompting (Dougherty et al.,
1999; Thomas et al., 2008) or instance-based learning (Lejarraga
et al., 2012)14. Presumably, these types of processes essentially
require little more than remembering what was previously seen.
Since these types of decisions are more easily constructed, they are
arguably less sensitive to task-difficulty manipulations (e.g., dif-
ferences in expected values). Of course, this interpretation of the
arousal results will require further tests in future research.

Third, the link between attention measured by overt fixations
and weight placed on specific outcomes in the decision tasks seems
to be much stronger in decisions from experience than in deci-
sions from descriptions. In the latter, our findings indicate that
despite substantial fixation-based oversampling of rare events,
there was relatively little overweighting and thus, fixation-based
models perform relatively poorly (despite predictive power well
above chance-level). In the experience condition, by contrast, the
good model fit for fixation-based models indicates that the relation
between attention and weight is quite strong.

MODELS FOR DECISIONS FROM EXPERIENCE
The current findings speak to several important questions con-
cerning the specific processes underlying decisions from experi-
ence in the sampling paradigm. Specifically, they support the idea
that certain implementations of evidence-accumulation models
(Busemeyer and Townsend, 1993; see also Roe et al., 2001; Raab
and Johnson, 2007; Jessup et al., 2008; Krajbich and Rangel, 2011)
can account well for processes in decisions from experience. In
addition, our data provide relatively clear hints on which imple-
mentations should be preferred: first, models assuming averaging
of outcomes are superior to models assuming summing. This
speaks against models assuming evidence-accumulation without
standardization for the number of samples. Prominent evidence-
accumulation models for decision making are conceptually based
on the idea that there is a mere process of accumulation which does
not include standardization for number of samples (e.g., Buse-
meyer and Townsend, 1993; Johnson and Busemeyer, 2005; Raab
and Johnson, 2007; Krajbich and Rangel, 2011). Second, mod-
els taking into account all samples account for behavior better
than recency-based models which rely only on a subset of sam-
ples. Note, however, that our investigation did not address models
which assume that the number of recently sampled outcomes is a

13One factor contributing to this might be the simpler information display in the
experience condition (see Figure 1).
14For a more general classification of these kinds of processes and their role in
decision making, see also Glöckner and Witteman (2010).

free parameter that reflect individual differences in sampling size.
Thus, we cannot rule out the possibility that such more complex
models, as well as models which assume decreasing weights for
outcomes that are less recent may further improve the predictive
power for participants’ behavior in decisions from sampling.

MODELS FOR DECISIONS FROM DESCRIPTION
In line with prior evidence, our results indicate that choices in risky
decisions from descriptions can be described adequately by Cumu-
lative Process Theory (e.g., Tversky and Kahneman, 1992; Glöck-
ner and Pachur, 2012)15. Nevertheless, process implementations
of this theory assuming serial stepwise calculations of weighted
sums have been rejected (Glöckner and Herbold, 2011). Instead,
processes that rely at least partially on more complex automatic-
intuitive mechanisms have received support. Process measures in
Glöckner and Herbold were most in line with implementations of
coherence construction models. The suggested adaptation of the
Parallel Constraint Satisfaction Model (Thagard, 1989; Holyoak
and Simon, 1999; Simon et al., 2004; Betsch and Glöckner, 2010)
to risky choice assumes that probability weighted outcomes are
used as competing pros and cons (i.e., cues) speaking for one or
the other option and that initial advantages of one option are
accentuated by partially relying on automatic-intuitive processes.
The effect of conflict manipulated by decreasing EV-difference (as
opposed to coherence) on arousal observed in the current study
provides further support for this approach, and is in line with
previous findings demonstrating a link between coherence and
arousal (Hochman et al., 2010; Glöckner and Hochman, 2011). As
noted above, the arousal findings might, however, also be explained
by other mechanisms and further research is needed to investigate
the processes underlying risky choice from description.

SUMMARY
The current results demonstrate that there are considerable dif-
ferences in the cognitive processes underlying one-shot decisions
from experience vs. description. In experience-based decisions,
individuals are not explicitly provided with probability infor-
mation and therefore evaluate options in a way that can be
well-captured by naïve evidence-accumulation models assuming
averaging of all fixation-sampled outcomes. The process seems to
be based on a linear integration and a comparison of the averages.
Thus, the difference between expected values of options does not
influence arousal. Decisions from descriptions, by contrast, can-
not be described well by fixation-based evidence-accumulation.
Choices are more in line with Cumulative Prospect Theory, which,
however, does not claim to describe processes. The findings that
(i) different models account for choices best in the two paradigms,
(ii) arousal increases with difference in expected value between
options only in descriptions but not in experience, and (iii) the
link between attention and weight given to certain outcomes is
much stronger in experience indicate that qualitatively different
kinds of processes are at work.

15It should be noted that CPT has been rejected in favor of competing models in
complex multi-outcome risky choices (Birnbaum, 2006, 2008a,b) but it is nonethe-
less considered a good paramorphic model for risky choices between two options
with two outcomes each.
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APPENDICES
APPENDIX A

Gamble comprising rare event Alternative gamble Desirable rare event EV-diff Percentage choosing the

low-probability option

Description Sampling

(N = 22) (N = 22)

10.4C (0.94)/27.3C (0.06)a,b 12.6C (0.63)/0.2C (0.37) Yes High 1 0.818*

26C (0.09)/10.4C (0.91)a,b 11.7C (0.60)/4.1C (0.40) Yes High 1 0.864+

7C (0.91)/18C (0.09)a 3.4C (0.61)/23.8C (0.39)b Yes High 0.591 0.409

7.3C (0.93)/23.8C (0.07)a 3.9C (0.60)/23C (0.40)b Yes High 0.409 0.682+

7.3C (0.94)/27C (0.06)a 3.9C (0.60)/23.5C (0.40)b Yes High 0.318 0.591+

25.7C (0.05)/10.6C (0.95)a,b 19.7C (0.40)/0.10C (0.60) Yes High 1 0.955

10.6C (0.92)/23.5C (0.08)a,b 1.1C (0.59)/17.9C (0.41) Yes High 1 0.909

22.8C (0.06)/7.6C (0.94)a 5.9C (0.55)/20.2C (0.45)b Yes High 0.273 0.455

26.8C (0.07)/10.3C (0.93)a,b 13C (0.60)/1.5C (0.40) Yes High 1 0.909

23.7C (0.06)/7.1C (0.94)a 24C (0.41)/3.6C (0.59)b Yes High 0.409 0.682+

8.7C (0.90)/1.6C (0.10)b 1.2C (0.35)/16.7C (0.65)a No High 0.682 0.455

0.4C (0.08)/8.4C (0.92)b 8.6C (0.39)/13.1C (0.61)a No High 0.091 0.045

0.1C (0.05)/9.3(0.95) 24.4C (0.40)/3.5C (0.60)a,b No High 0.273 0.364

6.1C (0.09)/12.7(0.91)b 10C (0.43)/7.2C (0.57)a No High 0.864 0.909

1.7C (0.08)/8.8C (0.92) 9.8C (0.47)/13.7C (0.53)a,b No High 0.045 0.045

12.3C (0.93)/0.70C (0.07)b 9C (0.54)/7.3C (0.46)a No High 0.273 0.545+

6.1C (0.05)/12.5C (0.95)b 2.3C (0.56)/16C (0.44)a No High 1 0.864+

1.5C (0.09)/12.5C (0.91)b 12.7C (0.61)/0.10C (0.39)a No High 0.955 0.909

12.2C (0.94)/3.7C (0.06)b 2.3C (0.39)/12.2C (0.61)a No High 0.909 0.955

1.7C (0.06)/8.4C (0.94) 13C (0.52)/10.3C (0.48)a,b No High 0.045 0

24.4C (0.07)/9C (0.93)a,b 5.8C (0.42)/12.8C (0.58) Yes Low 0.682 0.818

29.4C (0.10)/8C (0.90)a 12.3C (0.57)/7.3C (0.43)b Yes Low 0.636 0.682

9.6C (0.94)/22.9C (0.06)a,b 12.1C (0.43)/8.7C (0.57) Yes Low 0.727 0.727

8.7C (0.91)/18.3C (0.09)a 15.5C (0.46)/5.2C (0.54)b Yes Low 0.545 0.773

26.5C (0.09)/8.3C (0.91)a 1.9C (0.36)/15C (0.64)b Yes Low 0.818 0.864

8.6C (0.91)/22.7C (0.09)a 5.5C (0.43)/13.2C (0.57)b Yes Low 0.682 0.636

29.8C (0.07)/8.9C (0.93)a,b,c 2.7C (0.47)/17.1C (0.53) Yes Low

9C (0.92)/18.2C (0.08)a,b 5.3C (0.48)/13.3C (0.52) Yes Low 0.773 0.818

8.8C (0.92)/24.2C (0.08)a 5.4C (0.35)/13.2C (0.65)b Yes Low 0.591 0.773

9C (0.91)/21.3C (0.09)a 13.2C (0.45)/8.4C (0.55)b Yes Low 0.727 0.5

1C (0.08)/10.7C (0.92) 20.3C (0.45)/1.9C (0.55)a,b No Low 0.727 0.591

2.9C (0.06)/10.6C (0.94) 1.2C (0.65)/27.5C (0.35)a,b No Low 0.864 0.818

1.4C (0.09)/10.3C (0.91) 14.8C (0.40)/6C (0.60)a,b No Low 0.727 0.227*

4C (0.06)/11.2C (0.94)b 2.8C (0.53)/18.3C (0.47)a No Low 0.682 0.545

5C (0.08)/10.8C (0.92)b 2.1C (0.57)/19.9C (0.43)a No Low 0.591 0.591

2.2C (0.08)/10.2C (0.92) 4.4C (0.47)/14.2C (0.53)a,b No Low 0.591 0.864*

2.7C (0.05)/10.6C (0.95)b 5.5C (0.57)/16.2C (0.43)a No Low 0.773 0.636

9.8C (0.92)/4.3C (0.08) 1.1C (0.37)/14.9C (0.63)a,b No Low 0.909 0.682+

The table shows all gambles and the probabilities of choosing the gamble with the low-probability outcome.Two-sample z-tests for equal proportions were conducted

comparing percentages between conditions.
aGamble should be more often chosen if small probabilities are overweighted.
bGamble with the higher expected value.
cDecision excluded from analysis due to partially wrong information presentation caused by a programming error.
+p < 0.10; *p < 0.05.
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APPENDIX B
Summation models
To implement summation models we calculate V diff as follows:

Vdiff =
(

f
f

A1
oA1 + f

f
A2

oA2

)
−

(
f

f
B1

oB1 + f
f

B2
oB2

)
(A1)

Where A and B represent the two choice options, O represent
the outcome, 1 and 2 the first and second outcome of each option,

and f
f

X indicate the number of fixations to the outcomes X.

Averaging models
For averaging models, the sums of sampled outcomes for each
option were additionally standardized by the total number of
fixations to the respective option according to:

Vdiff =
(

f
f

A1
oA1 + f

f
A2

oA2

)

f
f

A1
+ f

f
A2

−
(

f
f

B1
oB1 + f

f
B2

oB2

)

f
f

B1
+ f

f
B2

. (A2)

www.frontiersin.org June 2012 | Volume 3 | Article 173 | 97

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


ORIGINAL RESEARCH ARTICLE
published: 03 April 2012

doi: 10.3389/fnins.2012.00043

The impact of deliberative strategy dissociates ERP
components related to conflict processing vs.
reinforcement learning
Christopher M. Warren* and Clay B. Holroyd

Department of Psychology, University of Victoria, Victoria, BC, Canada

Edited by:

Itzhak Aharon, The Interdisciplinary
Center, Israel

Reviewed by:

Eldad Yechiam, Technion – Israel
Institute of Technology, Israel
Patrick Simen, Oberlin College, USA

*Correspondence:

Christopher M. Warren, Department
of Psychology, University of Victoria,
P. O. Box 3050, Victoria, BC, Canada
V8W 3P5.
e-mail: cwarren@uvic.ca

We applied the event-related brain potential (ERP) technique to investigate the involvement
of two neuromodulatory systems in learning and decision making: The locus coeruleus–
norepinephrine system (NE system) and the mesencephalic dopamine system (DA sys-
tem). We have previously presented evidence that the N2, a negative deflection in the
ERP elicited by task-relevant events that begins approximately 200 ms after onset of the
eliciting stimulus and that is sensitive to low-probability events, is a manifestation of cortex-
wide noradrenergic modulation recruited to facilitate the processing of unexpected stimuli.
Further, we hold that the impact of DA reinforcement learning signals on the anterior cingu-
late cortex (ACC) produces a component of the ERP called the feedback-related negativity
(FRN). The N2 and the FRN share a similar time range, a similar topography, and similar
antecedent conditions. We varied factors related to the degree of cognitive deliberation
across a series of experiments to dissociate these two ERP components. Across four
experiments we varied the demand for a deliberative strategy, from passively watching
feedback, to more complex/challenging decision tasks. Consistent with our predictions,
the FRN was largest in the experiment involving active learning and smallest in the experi-
ment involving passive learning whereas the N2 exhibited the opposite effect. Within each
experiment, when subjects attended to color, the N2 was maximal at frontal–central sites,
and when they attended to gender it was maximal over lateral-occipital areas, whereas the
topology of the FRN was frontal–central in both task conditions. We conclude that both
the DA system and the NE system act in concert when learning from rewards that vary
in expectedness, but that the DA system is relatively more exercised when subjects are
relatively more engaged by the learning task.

Keywords: norepinephrine, dopamine, N2, feedback error-related negativity, anterior cingulate cortex, locus

coeruleus, event-related potential, fusiform gyrus

INTRODUCTION
Adaptive decision making depends on both fast and efficient pro-
cessing of stimulus events for effective responding (e.g., Servan-
Schreiber et al., 1990) and slow trial-to-trial learning of action val-
ues for optimizing the selection process (e.g., Schultz et al., 1997).
The catecholinergic neuromodulatory systems that distribute nor-
epinephrine (NE) and dopamine (DA) have been implicated in
these two groups of processes, respectively (Servan-Schreiber et al.,
1990; Schultz et al., 1997). Further, putative manifestations of these
systems have been identified in the human electroencephalogram
(EEG; Holroyd and Coles, 2002; Nieuwenhuis et al., 2005a,b; War-
ren et al., 2011). However, the way these two systems interact has
yet to be explored.

The locus coeruleus–norepinephrine system (NE system) is
believed to play a key role in facilitating fast and effective pro-
cessing of task-relevant stimuli (Usher et al., 1999). The locus
coeruleus (LC) is a neuromodulatory nucleus in the midbrain
that briefly enhances cortical processing in reaction to motiva-
tionally salient or conflict-inducing events (Usher et al., 1999;
Gilzenrat et al., 2002). The LC is the primary source of NE to the

cortex and other regions (Berridge and Waterhouse, 2003), where
NE release increases the responsivity of individual neurons and
improves the signal-to-noise ratio of associated neural networks
(Servan-Schreiber et al., 1990). Single-cell recordings from the LC
in monkeys show that the LC releases NE in phasic bursts to moti-
vationally salient events, and periods of greater phasic release of
NE are associated with better performance in target discrimination
tasks (Usher et al., 1999). The NE system is also auto-inhibitory,
such that phasic bursts of NE are followed by a refractory-like1

period lasting ∼500 ms characterized by reduced or arrested NE
supply to the cortex.

In a previous paper (Warren et al., 2011), we proposed that
the impact of phasic bursts of NE on cortical processing mani-
fests in the human EEG as an increase in amplitude of the N2,
a negative deflection of the human event-related brain potential
(ERP) occurring between about 200 and 300 ms after the onset

1As opposed to the potassium-mediated refractory period common to individual
neurons throughout the brain.
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of the eliciting stimulus, the amplitude of which is exercised by
unexpected or conflict-inducing events (e.g., Nieuwenhuis et al.,
2003). This theory is a modification of a previous “LC–P3 theory”
that holds that the phasic bursts of NE produce the P3 – a promi-
nent, positive deflection in the ERP that immediately follows the
N2 – rather than the N2 itself (Nieuwenhuis et al., 2005a). Thus,
our “modified LC–P3 theory” develops this account by proposing
that the LC burst impacts cortical activity somewhat earlier than
originally proposed, during the time period of the N2 (∼250 ms
post-stimulus), whereas the LC refractory period coincides with
P3 generation.

A key prediction of our proposal is that any change in the
ERP due to noradrenergic modulation should exhibit a variable
scalp distribution dependent on relative engagement of the dif-
ferent cortical areas giving rise to the ERP. This position follows
from two key characteristics of the NE system. First, the broadly
dispersed efferent projection system of the LC distributes NE to
all regions of the cortex, so any given phasic release can modu-
late neural activity (and the associated N2) anywhere in cortex
(Berridge and Waterhouse, 2003; Nieuwenhuis et al., 2007). Sec-
ond, NE-mediated changes in activity should be greatest in cortical
areas that are most engaged by the task at hand because increasing
the signal-to-noise ratio in the entire cortex will have the great-
est impact in those areas (Nieuwenhuis et al., 2005a, 2011). This
position contrasts with theories of the N2 which posit that the
N2 is produced specifically by the anterior cingulate cortex (ACC)
and should therefore exhibit a relatively fixed topology, maximal
at frontal–central regions of the scalp (e.g., van Veen and Carter,
2002a,b; Yeung et al., 2004).

In previous work, we supported the modified LC–P3 theory by
demonstrating that the scalp distribution of the N2 varies widely
according to task changes that relatively engage different cortical
areas (Warren et al., 2011). We presented subjects with pictures
of male and female faces that were tinted either blue or yellow.
Subjects attended to either the gender or the color of the faces
and counted targets in an oddball task. The impact of frequency
was isolated by subtracting frequent stimulus trials from infre-
quent stimulus trials, yielding a difference-wave representative
of the change in neural activity specifically caused by differences
in stimulus probability (and putatively due to differences in NE
recruitment). When subjects attended to the color of the face, the
N2 in the difference wave was maximal over frontal–central regions
as is often observed in simple oddball tasks (e.g., Nieuwenhuis
et al., 2003; Holroyd et al., 2008; but see Folstein and Van Pet-
ten, 2007), consistent with arguments that the N2 is generated
in the ACC (van Veen and Carter, 2002a,b; Yeung et al., 2004).
By contrast, when subjects attended to the gender of the faces
the N2 in the difference wave was maximal over lateral-occipital
regions, consistent with a relatively large change in activity within
the fusiform face-processing area (FFA). This study demonstrated
that identical task stimuli (colored faces) presented with identical
task designs (standards and deviants) can nevertheless radically
alter the topology of the N2 depending on which aspect of the
stimuli participants are instructed to attend.

An interesting special case of the N2 occurs when the eliciting
stimulus is a feedback stimulus in a reward/no-reward paradigm. A
negative feedback stimulus (e.g., that indicates a potential reward

was not received) elicits a frontal–central negative deflection in the
same time range as the N2, but positive feedback does not (Miltner
et al., 1997). This difference is called the feedback-related negativ-
ity (FRN), and is usually measured with a difference wave approach
whereby the ERP to reward feedback is subtracted from the ERP
to error feedback (Holroyd and Krigolson, 2007). It is important
to note that the FRN may be characterized by variance in the ERP
associated with both negative and positive feedback. Source local-
ization studies suggest that the FRN is generated in, or very close
to, the ACC (Gehring and Willoughby, 2002; Miltner et al., 2003;
Hewig et al., 2007). Additionally, a neurocomputational theory
of this ERP component is based on the seminal observation that
rewarding events elicit phasic bursts of dopamine (DA) activity
that are utilized by the targets of the DA system (including the
ACC) for the purpose of adaptive decision making (Schultz et al.,
1997; Holroyd and Coles, 2002). In particular, single-cell record-
ings from primates show increased phasic DA activity in response
to unexpected rewards or reward predictors, and shallow dips from
baseline DA activity in response to punishment or to the absence of
expected rewards (e.g., Schultz, 2002). Holroyd and Coles (2002)
proposed the reinforcement learning theory of the FRN, which
holds that the FRN reflects the impact of these phasic DA signals
on the ACC such that motor neurons in the ACC are inhibited and
disinhibited by phasic increases and decreases of DA, respectively.

Recent evidence suggests that these phasic DA signals specifi-
cally modify the amplitude of the N2. According to this position,
the ACC produces a negative deflection to unexpected task-
relevant events (the N2), including unexpected negative feedback
and unexpected reward feedback. However, unexpected reward
feedback also elicits a dopamine-induced positive deflection (“the
reward positivity”) that is superimposed over the N2 and cancels
it out (Holroyd et al., 2008). In other words, unexpected error
and reward feedback elicit the N2, but unexpected reward feed-
back also elicits a reward positivity that obscures the N2, creating
the difference observed between the ERPs to positive and negative
feedback (the FRN).

To dissociate the reward positivity from the N2, a recent multi-
experiment study presented subjects with complicated reward
feedback that indicated not only whether a subject had won or
lost money, but also what response was required of them for the
subsequent trial (Baker and Holroyd, 2011). In one experiment,
a stimulus-induced delay in reward processing caused the reward
positivity to appear about 100 ms later than usual (peaking at
about 350 ms), thereby exposing the N2 on those trials. When
the reward-feedback stimulus was simplified in further experi-
ments, the reward positivity appeared earlier and attenuated the
N2. Furthermore, factors related to response conflict impacted
N2 amplitude and reduced the reward positivity on high-conflict
reward trials.

The ACC has been posited to be the neural generator of both
the N2 (van Veen and Carter, 2002a,b; Yeung et al., 2004) and
the FRN (Holroyd and Coles, 2002). Furthermore, here we have
proposed that noradrenergic modulation enhances activity in the
ACC and all across the cortex, amplifying the N2 in target areas.
Thus, there are three factors that push the amplitude of the N2 at
frontal–central scalp locations up and down: ACC activity, nora-
drenergic modulation, and dopaminergic modulation. If we have
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any chance of understanding how the frontal–central N2 provides
insight into ACC function, we need to understand how these sys-
tems interact – otherwise we will be at a loss to interpret N2
data.

To investigate this issue, we employed the same paradigm used
in our previous study (Warren et al., 2011), presenting subjects
with male or female faces tinted either blue or yellow, with fre-
quent or infrequent category presentations based on either the
gender or the color of the faces. But here the stimuli also indicated
reward or no-reward, allowing us to simultaneously examine the
N2 and the FRN. We manipulated the amplitudes of the reward
positivity and the N2 along two independent dimensions. Along
one dimension, we varied (across subjects) the degree of partic-
ipant engagement in a feedback task, which is known to affect
FRN amplitude. For example, Yeung et al. (2005) manipulated
the degree to which a deliberative strategy was required of sub-
jects, from passively observing reward/no-reward outcomes, to
actively making a decision that would result in either reward or
no-reward. The FRN was significantly larger when subjects utilized
the feedback to optimize their decisions, as opposed to passively
collecting rewards (see also Holroyd et al., 2009; Li et al., 2011;
Peterson et al., 2011). We implemented this manipulation across
three experiments wherein subjects passively collected rewards in
Experiment 1 (Passive Experiment), made a decision based on
multiple stimulus feature-response combinations in Experiment
2 (Active Experiment), and intermediate to these, made a deci-
sion based on relatively simple response–reward contingencies in
Experiment 3 (Moderate Experiment). We predicted that the FRN
would be largest in the Active Experiment and reduced or absent in
the others. By contrast, we predicted that the N2 would be smaller
with increasing task engagement because of component overlap
with the reward positivity elicited by infrequent rewards.

Along the second dimension we varied N2 amplitude by manip-
ulating (within subjects) the attended dimension of the feedback:
Subjects were required to attend to either the color or the gender
of the feedback stimuli (male or female faces tinted either blue or
yellow). We predicted that switching from color to gender would
move the N2 from frontal–central to lateral-occipital regions of
the scalp. By contrast, we predicted that the FRN would remain
frontal–central irrespective of the attended dimension of the feed-
back. Further, we predicted that we would observe maximal inter-
ference between the two components in the color condition of the
Active Experiment, where both the N2 and the reward positivity
are frontal–central. These results would validate our claim that the
N2 and FRN are produced by distinct neural mechanisms, one that
produces a negativity to infrequent events that has a variable scalp
distribution consistent with a noradrenergic origin, and one that
produces a positivity to rewards and a negativity to no-rewards that
has a frontal–central scalp distribution consistent with genesis in
the ACC.

EXPERIMENT 1: PASSIVE LEARNING
In the Passive Experiment we sought to replicate the results of our
previous study by engaging the NE system and the N2 in an oddball
task with minimal involvement of reinforcement learning systems
and therefore minimal interference from the FRN. We employed
the exact same paradigm as reported in our previous work

(Warren et al., 2011) except that instead of counting stimuli asso-
ciated with a target category (e.g., male faces), subjects counted
earnings accrued with each stimulus presentation (e.g., if subjects
were told that they would be given 5 cents for each male face);
they were asked to report the sum once during the block and a
second time at the end of the block. Importantly, because partic-
ipants were not required to make an overt response on each trial,
we expected this task to elicit only a small FRN, if any (Yeung
et al., 2005; Holroyd et al., 2009; Li et al., 2011). Further, as we
observed previously, we predicted that relative engagement of the
FFA in the attend-gender condition would enhance the N2 over
lateral-occipital sites, whereas relative engagement of the ACC in
the attend-color condition would enhance the N2 over frontal–
central sites. Finally, we predicted that the FRN – to the extent that
it was present – would not exhibit any changes in scalp topography.

METHOD
Methods were identical across all four experiments except where
indicated.

Participants
Twenty-one people (three males) completed this experiment. For
all experiments reported in this paper, participants signed up
through the research participation system at the University of
Victoria, Canada, and were compensated with extra credit in
an undergraduate psychology course or were paid $20.00 Cana-
dian for their time. This project (Experiments 1 through 4) was
approved by the human subjects review board at the University of
Victoria and conducted in accordance with the ethical standards
prescribed in the 1964 Declaration of Helsinki.

Apparatus and procedure
Participants were seated comfortably, approximately 50 cm in
front of a computer screen, in an electromagnetically shielded
booth. Stimuli consisted of male or female faces (30 examples
of each, lifted from black and white photos, excluding hair and
contour of head) and tinted either blue or yellow (∼4.4˚ visual
angle). In a previous experiment (Warren et al., 2011), we used
a larger set of the same stimuli (40 males and 40 females), but
because the error rates in discriminating between male and female
faces were high, here we selected a subset of those stimuli: The
75% that were most accurately discriminated previously. For both
stimulus dimensions (color, gender), one stimulus type occurred
infrequently (20% of all trials). The order of stimulus presentation
was randomized with replacement. At the beginning of each block,
subjects were instructed by the computer program to keep track
of presentations of a specific target stimulus (blue faces, yellow
faces, male faces, or female faces), which when presented would
indicate a winning trial. The task consisted of eight blocks of 75
trials each (600 total trials), counterbalanced such that each of the
four stimulus types (blue males, yellow males, blue females, yellow
females) occurred in two blocks as the target, and of those two
blocks, once as a frequent target and once as an infrequent target.
Stimuli were presented for 1200 ms and were separated by a fixa-
tion cross displayed for 300 ms (see Figure 1, Passive Learning, for
a graphic representation of the task).

Each presentation of the target stimulus category indicated that
the subject won $0.05. Subjects were instructed to keep track of the
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FIGURE 1 | Graphic representation of the four experiments.

money won and were required to report their count twice per block
(at a random trial number about halfway through each block, and
at the end of each block). This method yielded 16 reports of the
subject’s money count. Subjects reported their count by answering
an eight-choice multiple choice question, choosing from several
ranges within which the correct count fell (e.g., between $0.30 and
$0.50, or between $ 0.55 and $0.75, etc.). We assessed accuracy
by dividing the number of correct reports by the number of total
reports.

Data acquisition
The EEG was recorded from 41 electrode locations arranged in
the standard 10–20 layout using Brain Vision Recorder software
(Version 1.3, Brain Products, Munich, Germany). During record-
ing, the EEG data were referenced to the average voltage across
channels, sampled at 250 Hz, and amplified (Quick Amp, Brain
Products) and filtered through a passband of 0.017–67.5 Hz (90 dB
octave roll off). Impedances were below 12 kΩ.

EEG data analysis
The EEG data were filtered off-line through a 0.1- to 20-Hz
passband phase-shift-free Butterworth filter and re-referenced to
linked mastoids. Ocular artifacts were removed using the algo-
rithm described by Gratton et al. (1983). Trials in which the
change in voltage at any channel exceed 35 μV per sampling point
were removed. In total, 0.02% of the data were discarded. Thou-
sand ms epochs of data were extracted from the continuous EEG
from 200 ms before stimulus onset to 800 ms after. The data were
baseline-corrected according to the average amplitude of the EEG
over the 200-ms preceding stimulus presentation and ERPs were
created by averaging the EEG data for each condition, electrode
site, and participant.

To isolate the effect of reward independent of frequency,we sub-
tracted the ERPs associated with reward from the ERPs associated

with no-reward yielding an attend-color FRN and attend-gender
FRN that were equated for the effect of stimulus probability.
This method maximized the signal-to-noise ratio in the ERPs, as
opposed to averaging the ERPs separately for the infrequent reward
trials, frequent reward trials, infrequent no-reward trials, and fre-
quent no-reward trials. Similarly, to isolate the effect of frequency
independent of reward feedback, we subtracted the ERP associated
with the frequently occurring stimuli from the ERP associated with
the infrequently occurring stimuli, collapsed across reward condi-
tion, yielding a difference-wave N2 (dN2) for each task condition
(attend-color, attend-gender). Thus, each of the infrequent and
frequent ERPs contained equal numbers of reward and no-reward
trials such that the difference between these ERPs were equated
for the effects of reward. Note that because NE system activity
causes a change in the relative activation of the underlying cortical
systems (i.e., making ERP components larger), the impact of NE
on the ERP is most appropriately measured in a difference wave
that isolates that change. We distinguish between the dN2, and the
“raw” N2 in light of this consideration. The interaction of the raw
N2 and the reward positivity to the four individual conditions was
examined separately in an across-group comparison (below).

The amplitudes of the dN2 and FRN were assessed using a base-
to-peak measure as follows: For each subject in each condition, the
most negative peak between 200 and 280 ms in the attend-color
condition, or 300 vs. 380 ms in the attend-gender condition was
identified and recorded as the dN2/FRN peak amplitude. The base
amplitude of the dN2/FRN was then taken as the most positive
voltage prior to the dN2/FRN and these values were subtracted
from the dN2/FRN peak amplitude, yielding our base-to-peak
measures. This procedure controls for overlap with the P2, a pos-
itive deflection that typically immediately precedes the dN2 and
that can push the dN2 into positive peak values. Note that because
the FRN is not typically preceded by any notable deflection in the
difference wave, the base measure is approximately 0 μVs; for this
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reason the base-to-peak measure of the FRN is equivalent to a peak
amplitude measure. However, we chose to assess FRN base-to-peak
for consistency with our method for assessing dN2 amplitude.

In assessing the change in component topology across task
conditions, we focused on two electrode sites representative of
frontal–central and lateral-occipital scalp regions as we did in our
previous study, specifically at channel locations FCz and P8. Both
the FRN and the dN2 are typically maximal at channel FCz (e.g.,
Holroyd et al., 2008) and the dN2 was maximal at channel P8 in
the attend-gender condition of our previous study (Warren et al.,
2011). Single-tailed t -tests were applied to assess the amplitudes
of these ERP components at these channels because of our a pri-
ori hypotheses of the direction of each difference. For example, we
predicted that the dN2 would be larger at channel P8 than at chan-
nel FCz for the attend-gender condition; a dN2 that was larger at
FCz than at P8 would run contrary to our hypothesis.

RESULTS
Behavioral results
Mean accuracy was 79.2% (SD = 14.4%) for the attend-color con-
dition and 68.5% (SD = 21.2%) for the attend-gender condition.
The data of one subject were eliminated from further analy-
sis because the accuracy score was more than 2 SD below the
mean in the attend-color condition. For the remaining 20 subjects,
mean accuracy was 80.6% (SD = 13.1%) for the attend-color con-
dition and 70% (SD = 20.4%) for the attend-gender condition.
This difference approached significance using a two-tailed t -test,
t (19) = −2.0, p < 0.10.

EEG results
The raw ERPs, difference waves and scalp distributions are shown
in Figure 2. Inspection of the scalp distributions suggests that
the attend-color dN2 was maximal over frontal–central sites (FCz,
−4.5 μV) whereas the attend-gender dN2 was maximal at lateral-
occipital regions (PO8, −3.5 μV). This impression was confirmed
with a 2 × 2 ANOVA on dN2 amplitude with electrode (FCz vs.
P8) and task (attend-color vs. attend-gender) as repeated factors.
There was an effect of task such that the dN2 was larger in the
attend-color condition (−4.0 μV) than the attend-gender condi-
tion (−2.8 μV), F(1, 19) = 10.8, p < 0.01, η2 = 0.36. There was
also an interaction of electrode and task, F(1, 19) = 6.8, p < 0.05,
η2 = 0.26, and one-tailed paired samples t -tests revealed that in the
attend-color condition, the dN2 was larger at FCz than P8 (−4.5
vs. −3.4 μV), t (19) = −2.0, p < 0.05, whereas in the attend-gender
condition the dN2 was larger at P8 than at FCz (−3.2 vs. −2.5 μV),
t (19) = 2.0, p < 0.05.

Inspection of the scalp distributions in Figure 2 further indi-
cates that the FRN was distributed over posterior, rather than
frontal, regions of the head in both the attend-color (Pz, −5.2 μV)
and attend-gender (POz, −4.0 μV, followed by Pz, −4.0 μV) con-
ditions. A 2 × 2 ANOVA on FRN amplitude with electrode and
task as repeated factors revealed an effect of electrode such that
the FRN was larger at FCz than at P8 (−3.5 vs. −2.9 μV), F(1,
19) = 4.8, p < 0.05, η2 = 0.20. There was a trend toward a main
effect of task such that the attend-color task yielded a larger FRN
than the attend-gender task (−3.5 vs. −2.9 μV), F(1, 19) = 4.0,
p < 0.10, η2 = 0.18. There was also a trend toward an interaction

of electrode and task, F(1, 19) = 3.2, p < 0.10, η2 = 0.14, and
one-tailed paired samples t -tests revealed that in the attend-
color condition, the FRN was larger at FCz than P8 (−4.1 vs.
−3.0 μV), t (19) = −2.3, p < 0.05, whereas there was no signif-
icant difference in the attend-gender condition (FCz: −3.0 μV;
P8: −2.9 μV, p > 0.05). An additional check indicated that the
FRN was larger at Pz than FCz in the attend-gender condi-
tion, t (19) = 2.9, p < 0.01, but not in the attend-color condition,
t (19) = 1.4, p > 0.05.

DISCUSSION
We proposed that the dN2 is a manifestation of cortex-wide NE
neuromodulation, and predicted that the impact of NE modula-
tion on cortex and therefore the topology of the dN2 should vary
according to task demands. By contrast, a standard theory of the
FRN holds that it is produced by the impact of DA signals on ACC
activity, and therefore that the FRN should appear with a consis-
tent frontal–central scalp topology across task conditions. Here,
we replicated our previous finding that the dN2 changes from
exhibiting a primarily central scalp distribution when subjects
categorize tinted faces based on color to a more lateral-occipital
distribution when subjects categorize the same face stimuli based
on the gender of the face. Further, although the FRN was larger at
frontal central regions in both the attend-color and attend-gender
conditions, it was not significantly larger at FCz than P8 in the
attend-gender condition, it was relatively small overall (ranging
from −2.9 to −4.1 μV), and it exhibited a scalp distribution that
was mostly posterior (see Figure 2). These results are inconsistent
with the identification of this component with the FRN (Miltner
et al., 1997) and indicate that (as predicted) this task did not pro-
duce a robust FRN. We conclude that, with minimal interference
from the FRN, the dN2 exhibits a prominent yet variable scalp
distribution.

EXPERIMENT 2: ACTIVE LEARNING
The Active Experiment maximized engagement of the system
underlying the FRN by presenting subjects with an apparently
complex decision task that encouraged deliberation. Subjects were
asked to choose between two elaborate images of tarot cards pre-
sented side-by-side on a computer screen by pressing either a left
or right key on a keyboard. Six different cards were paired a total
of 15 different ways. The subjects were told that with each pair-
ing one card had a better chance of winning than the other, and
that they were required to learn which card to pick in any spe-
cific pairing (as opposed to finding which of the six cards had the
best chance of winning overall). The complexity of the stimulus
displays was intended to cultivate a sense that the task was chal-
lenging yet learnable (when in fact it was not). In so doing we
expected the feedback stimuli to elicit a relatively large FRN with
a frontal–central scalp topography for both the attend-gender and
attend-color conditions. We further predicted that the FRN would
interfere with the production of the dN2 in both the attend-color
and attend-gender conditions.

METHOD
Participants
Twenty people (six males) participated in this study.
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FIGURE 2 | Grand average ERPs for Experiment 1, recorded from

channel FCz and P8 (see labels) and scalp distributions associated

with the difference waves. The top row shows the “raw” ERPs for each
of the frequency by reward conditions across tasks and electrodes. The
middle row shows the dN2 and FRN difference waves across task and

electrodes. The bottom row shows the scalp distributions of the dN2 and
FRN across tasks. The scalp distributions reflect the base-to-peak measure
of each of the dN2 and FRN. The black star on the scalp map denotes
channel FCz, and the white star denotes P8. Note that negative is
plotted up.

Apparatus and procedure
Stimuli and procedure were the same as in the Passive Experi-
ment except where indicated. Each trial began with presentation
of two tarot cards appearing on a computer display side-by-side
(see Figure 1, Active Learning). Instead of passively counting their
accumulated winnings as in the Passive Experiment, subjects were
required to choose between the two tarot cards by pressing the
appropriate key on the keyboard. The choice screen was displayed
until the participant made their decision. When a selection was
made the cards were replaced by a fixation cross for 600 ms and
then the face-feedback stimulus was presented for 1200 ms. The
feedback stimuli were presented and organized in the same manner
as in the Passive Experiment.

Tarot cards were detailed images (six images in total) pre-
sented in random pairs. Subjects were instructed to try to learn
which cards had a better chance of “paying off” in any given
pairing, and to maximize their winnings by consistently making

the best choice. In addition, subjects were told there would be
“hard” blocks in which the pay-off chances for making the right
choice were only 10 and 30%, and “easy” blocks in which the
pay-off chances were 70 and 90%. Because of the length of the
task, the number of trials was reduced from 600 in the Passive
Experiment to 400 for the Active Experiment. The task con-
sisted of eight blocks of 50 trials each and the conditions were
counterbalanced across blocks as in the Passive Experiment. Addi-
tionally, we included only 8 (rather than 16) money count reports
(one per block). As in the Passive Experiment, we assessed accu-
racy in reporting the money count for the Active Experiment
by dividing the number of correct reports by the number total
reports.

EEG data acquisition and analysis
The EEG data were acquired and analyzed and the dN2 and FRN
were assessed in the same way as in the Passive Experiment.
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RESULTS
Behavioral results
The mean accuracy was 82.5% (SD = 21.6%) for the attend-color
condition and 86.2% (SD = 15.1%) for the attend-gender
condition. This effect of task condition on accuracy was not
significant (p > 0.05).

EEG results
The raw ERPs, difference waves and scalp maps are shown in
Figure 3. Inspection of the scalp distributions suggests that the
attend-color dN2 was mostly flat across the scalp but that it exhib-
ited a maximum over lateral-occipital sites (PO7, −3.8 μV). This
was also true for the attend-gender dN2 (PO7, −3.7 μV). A 2 × 2
ANOVA on dN2 amplitude with electrode (FCz vs. P8) and task
(attend-color vs. attend-gender) as repeated factors yielded no sig-
nificant effects (all ps > 0.05). The mean dN2 amplitudes were as
follows: Attend-color: FCz, −3.1 μV, P8, −3.1 μV; attend-gender:
FCz, −3.1 μV, P8, −3.1 μV.

Inspection of the scalp distributions of the FRN indicates the
FRN was strongly frontal–central in both conditions (attend-
color: FCz, −6.7 μV; attend-gender: Cz −5.2 μV followed by
CP1, −5.1 μV, and FCz, −5.0 μV). A 2 × 2 ANOVA on FRN
amplitude with electrode and task as repeated factors confirmed
this impression, revealing an effect of electrode such that the FRN
was larger at FCz than at P8 (−5.9 vs. −4.3 μV), F(1, 19) = 14.3,
p < 0.01, η2 = 0.43. There was also an effect of task such that the
attend-color FRN was larger than the attend-gender FRN (−5.6
vs. −4.5 μV), F(1, 19) = 5.9, p < 0.05, η2 = 0.24. The interaction
of electrode and condition was not significant (p > 0.05). Fur-
ther analysis revealed that in the attend-color condition the FRN
was significantly larger at FCz than at P8 (−6.7 vs. −4.6 μV),
t (19) = −3.2, p < 0.01, and in the attend-gender condition the
FRN was also larger at FCz than at P8 (−5.0 vs. −4.0 μV),
t (19) = −2.2, p < 0.05. An additional t -test revealed that the scalp
distribution of the attend-gender FRN was not significantly larger
at Cz than FCz (p > 0.05).

FIGURE 3 | Grand average ERPs for Experiment 2, recorded from

channel FCz and P8 (see labels) and scalp distributions associated

with the difference waves. The top row shows the “raw” ERPs for each
of the frequency by reward conditions across tasks and electrodes. The
middle row shows the dN2 and FRN difference waves across task and

electrodes. The bottom row shows the scalp distributions of the dN2 and
FRN across tasks. The scalp distributions reflect the base-to-peak measure
of each of the dN2 and FRN. The black star on the scalp map denotes
channel FCz, and the white star denotes P8. Note that negative is
plotted up.
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DISCUSSION
As predicted, increasing the complexity of the stimulus dis-
play resulted in a larger FRN for both the attend-color and
attend-gender conditions, evidently because these task elements
were better able to engage the system that produces the FRN.
Further, the FRN appeared frontal central in both conditions, as
predicted. By contrast, the dN2 was small and its topology was
relatively flat in contrast to the results of the Passive Experiment
and our previous work (Warren et al., 2011). We suggest that com-
ponent overlap with the FRN reduced dN2 amplitude in this task
in both the attend-color and attend-gender conditions, a ques-
tion that we will return to in our across experiments analysis (see
below).

EXPERIMENT 3: MODERATE LEARNING
The probability manipulation in the Passive Experiment elicited
a strong dN2 but the passive nature of the task did not strongly
engage the systems that produce the FRN. By contrast, the chal-
lenging learning task utilized in the Active Experiment produced
a large FRN that strongly attenuated the dN2. In the Moderate
Experiment, we sought to utilize a task that would produce both
a dN2 and FRN to compare the two components within a single
experiment. We therefore simplified the decision task in the Active
Experiment such that it would engage (putatively) the DA system
sufficiently to produce a FRN, but not so strongly that the FRN
would obscure the dN2. We predicted that in this task the dN2
would exhibit a variable scalp distribution across the attend-color
and attend-gender conditions, whereas the FRN would not.

METHOD
Participants
Twenty-two people (five males) participated in this study.

Apparatus and procedure
Stimuli and procedure were the same as in the Passive Experiment
and the Active Experiment except where indicated. Instead of pas-
sively watching faces or choosing between two tarot cards, on each
trial participants made a choice between a left or right key press.
The decision screen consisted only of the words“left or right?” (see
Figure 1, Moderate Learning). Participants chose between a left or
right key press and were subsequently presented with the face-
feedback stimulus. Subjects were told that for a random number
of consecutive trials, each key had a set probability of “paying off,”
and the underlying probabilities would change randomly approx-
imately every 20 trials. Subjects were instructed to try to maximize
their winnings by finding and choosing the “better” key during
any given set of trials, and to switch their choice whenever they
suspected the underlying probabilities had changed. Subjects were
told there would be easy blocks of trials with high probabilities of
pay-off, and hard blocks of trials with low probabilities of pay-off,
just as in the Active Experiment. The decision screen was presented
until subjects made a choice whereupon a fixation cross was pre-
sented for 500 ms, followed by the face feedback for 1000 ms. Trial
numbers were increased to 100 trials per block over eight blocks,
counterbalanced across blocks in the same manner as in the Passive
Experiment.

Subjects were required to report their exact reward earnings
count for each set of trials (starting at zero from the last accuracy

test), twice per block, for a total of 16 reports. Responses within
$0.25 of the correct count were coded as correct; total accuracy was
defined as the number of correct reports divided by the number
of total reports (16).

EEG data acquisition and analysis
The EEG data were acquired and analyzed, and the dN2 and FRN
were assessed as in the Passive and Active experiments.

RESULTS
Behavioral results
Mean accuracy was 90.3% (SD = 11.5%) in the attend-color con-
dition and 84.7% (SD = 18.5%) in the attend-gender condition.
We eliminated the data from three subjects for having either
attend-color or attend-gender accuracy scores more than 2 SD
below the mean. With these subjects eliminated, attend-color
accuracy was 92.8% (SD = 7.6%) and attend-gender accuracy was
90.8% (SD = 8.2%). This difference in accuracy was not significant
(p > 0.05).

EEG results
The raw ERPs, difference waves and scalp maps are shown in
Figure 4. Inspection of the scalp distributions suggest the attend-
color dN2 was mostly frontal central (FCz, 4.5 μV) but with a left-
lateral-occipital maximum (PO7, −4.6 μV). A two-tailed t -test
indicated these channels were not significantly different (p > 0.05).
The attend-gender dN2 was maximal at PO8 (−3.2 μV). The
impression of a mostly frontal–central attend-color dN2 was sup-
ported by the results of 2 × 2 ANOVA on dN2 amplitude with
electrode and task as repeated factors. There was an effect of task
such that the attend-color dN2 was larger than the attend-gender
dN2 (−4.1 vs. −2.5 μV), F(1, 18) = 13.9, p < 0.01, η2 = 0.44,
and there was an interaction of task and electrode such that the
attend-color dN2 was larger at FCz than P8 (−4.5 vs. −3.7 μV),
whereas the attend-gender dN2 was larger at P8 than FCz (−2.9 vs.
−2.1 μV), F(1, 18) = 10.0, p < 0.01, η2 = 0.36. One-tailed paired
t -tests indicated these differences were significant, attend-color:
t (18) = −1.9, p < 0.05; attend-gender: t (18) = 2.7, p < 0.01.

By contrast, inspection of the scalp maps in Figure 4 suggests
that the attend-color FRN was relatively shallow and maximal
at central channels (CPz, −4.6 μV, followed by Pz, −4.5 μV, Cz,
−4.5 μV, CP1, −4.5 μV, and FCz, −4.4 μV). The attend-gender
FRN was maximal at CPz (−4.2), followed by Cz (−4.0 μV); FCz
was the seventh most negative channel (−3.6 μV). Two-tailed t -
tests indicated in the attend-color condition the amplitude of
the FRN at CPz (where it was maximal) and FCz did not differ
significantly (p > 0.05), but in the attend-gender condition the
amplitude of the FRN was larger at CPz than FCz, t (18) = 2.6,
p < 0.05. A 2 × 2 ANOVA on FRN amplitude revealed an effect of
electrode such that the FRN was larger at FCz than at P8 (−4.0
vs. −2.7 μV), F(1, 18) = 10.4, p < 0.01, η2 = 0.37. The effect of
task was also significant such that the attend-color task yielded a
larger FRN than the attend-gender task (−3.7 vs. −3.0 μV), F(1,
18) = 5.8 p < 0.05,η2 = 0.24. The interaction of electrode and task
was not significant (p > 0.05). As in Experiments 1 and 2, we used
one-tailed paired samples t -tests comparing FRN amplitude at
FCz and P8 in the attend-color and attend-gender conditions. In
the attend-color condition, the FRN was significantly larger at
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FIGURE 4 | Grand average ERPs for Experiment 3, recorded from

channel FCz and P8 (see labels) and scalp distributions associated

with the difference waves. The top row shows the “raw” ERPs for each
of the frequency by reward conditions across tasks and electrodes. The
middle row shows the dN2 and FRN difference waves across task and

electrodes. The bottom row shows the scalp distributions of the dN2 and
FRN across tasks. The scalp distributions reflect the base-to-peak measure
of each of the dN2 and FRN. The black star on the scalp map denotes
channel FCz, and the white star denotes P8. Note that negative is
plotted up.

FCz than at P8 (−4.4 vs. −2.9 μV), t (18) = −2.9, p < 0.01. In the
attend-gender condition, the FRN was also larger at FCz (−3.6 vs.
−2.5 μV), t (18) = −2.7, p < 0.01.

DISCUSSION
As predicted, we found that in a task designed to engage the
learning system only moderately, a FRN was elicited over cen-
tral scalp sites irrespective of whether participants attended to the
faces or tint of the feedback stimuli. However, the scalp distri-
bution of FRN in the attend-gender distribution was somewhat
more parietal than in the attend-color condition, which is indica-
tive of component overlap with the P3; we suggest that the P3
on reward trials was exposed by the reduced FRN in this con-
dition. Also as predicted, the scalp distribution of the dN2 var-
ied between frontal–central and (right) lateral-occipital locations
depending on which stimulus attribute participants attended.
However, in the attend-color condition the amplitude of the dN2

at left-lateral-occipital location PO7 was comparable to that of
FCz. This unexpected anomaly was addressed with the following
experiment.

EXPERIMENT 4: CONTROL TASK
As a control, we ran an additional experiment that followed a
more standard approach for eliciting the dN2 and FRN. Namely,
we dissociated face processing from color processing entirely by
employing the same task as in the Moderate Experiment, but
in one condition the stimuli consisted only of yellow and blue
colors (without faces), and in a second condition the stimuli con-
sisted of male and female faces (without colors; see Figure 1,
Control). In principle, in the previous experiments the mere pres-
ence of the information on the unattended dimension could have
influenced processing along the attended dimension, thereby dis-
rupting the dN2 or FRN. Thus the control experiment allowed
for a pure assessment of these ERP components in a relatively
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standard oddball task. The Control Experiment was identical to
the Moderate Experiment except for this change.

METHOD
Participants
Nineteen people (five males) participated in this study.

Apparatus and procedure
Stimuli and procedure were exactly the same as in the Moderate
Experiment except that in the attend-gender task, monochromatic
faces were presented as feedback, and in the attend-color task, blue
and yellow rectangles (exact same size as the face stimuli) were
presented as feedback (Figure 1, Control).

EEG data acquisition and analysis
The EEG data were acquired and analyzed, and the dN2 and FRN
were assessed as in the Passive, Active, and Moderate Experiments.

RESULTS
Behavioral results
Mean accuracy was 94.1% (SD = 9.7%) in the attend-color con-
dition and 88.2% (SD = 16.9%) in the attend-gender condition.
We eliminated the data from one subject whose accuracy scores on
both the attend-gender and attend-color trials was more than 2 SD
below the mean. For the remaining subjects, attend-color accuracy
was 95.8% (SD = 6.1%) and attend-gender accuracy was 91.0%
(SD = 12.0%). This difference was not significant (p > 0.05).

EEG results
The raw ERPs, difference waves and scalp maps are shown in
Figure 5. Inspection of the scalp maps suggests the attend-color
dN2 was maximal at frontal–central sites (FCz, −4.8 μV) and
the attend-gender dN2 was maximal lateral-occipital sites (PO8,
−3.0 μV). This impression was confirmed by a 2 × 2 ANOVA on
dN2 amplitude with electrode and task as repeated factors, indi-
cating an effect of task such that the attend-color dN2 was larger
than the attend-gender dN2 (−4.3 vs. −2.5 μV), F(1, 17) = 34.0,
p < 0.001, η2 = 0.67, and an interaction of task and electrode
such that the attend-color dN2 was larger at FCz than P8 (−4.8
vs. −3.8 μV), whereas the attend-gender dN2 was larger at P8
than FCz (−3.0 vs. −2.0 μV), F(1, 17) = 18.0, p < 0.01, η2 = 0.51.
One-tailed paired t -tests indicated that these differences were
significant, attend-color: t (17) = −2.5, p < 0.05; attend-gender:
t (17) = 3.0, p < 0.01.

By contrast, inspection of the scalp maps in Figure 5 sug-
gests that the attend-color FRN was shallowly distributed over
central channels (CPz, −6.5 μV; FCz was the fifth most nega-
tive electrode, −6.3 μV). A paired t -test indicated no significant
difference between these channels (p > 0.05). The attend-gender
FRN also appeared shallowly distributed over central channels
(FCz, −4.3 μV, followed by CPz, −4.3 μV). Another paired t -
test indicated no significant difference between these channels
(p > 0.05). A 2 × 2 ANOVA on FRN amplitude revealed an
effect of electrode such that the FRN was larger at FCz than
at P8 (−5.3 vs. −3.5 μV), F(1, 17) = 12.8, p < 0.01, η2 = 0.43.
The effect of task was also significant (−5.2 vs. −3.6 μV), F(1,
17) = 15.3, p < 0.01, η2 = 0.47, and there was no interaction of
electrode and task (p > 0.05). One-tailed paired samples t -tests

indicated that the FRN was significantly larger at FCz than P8 in
both the attend-color and attend-gender conditions, attend-color:
−6.3 vs. −4.1 μV, t (17) = −3.3, p < 0.01; attend-gender:. −4.3 vs.
−2.8 μV, t (17) = −3.0, p < 0.01.

DISCUSSION
The Control Experiment confirmed that the scalp distribution of
the dN2, but not that of the FRN, is sensitive to the dimension
of the eliciting stimulus attended to by the participant. Further,
this experiment accounted for the potentially confounding influ-
ence of stimulus information along the unattended dimension.
The left-lateral-occipital maximum observed in the Moderate
Experiment was not reproduced in the Control Experiment, sug-
gesting that inadvertent processing of the irrelevant dimension
may have exercised the FFA in the attend-color condition of that
experiment. Of course, it is also possible that the left-posterior
maximum observed in that condition was simply a statistical
fluke.

BETWEEN SUBJECTS ANALYSIS (ACROSS EXPERIMENTS)
Experiments 1–4 confirmed our prediction that the scalp distri-
bution of the FRN would remain frontal central whereas that of
the dN2 would change according to task demands. Further, we
found that the FRN interfered with the dN2 in conditions where
the FRN was large. However, the specific nature of the interfer-
ence remains to be investigated. To do so, we compared how these
components varied across (rather than within) experiments to
examine systematically the effects of increasing FRN amplitude
on the dN2. For this purpose we focused on the attend-color con-
dition where the effects of the interaction were greatest (because
both components in this condition are frontal–central). Further-
more, we compared the results of the Passive,Active, and Moderate
Learning Experiments, but not the Control Experiment, as the
stimuli in the last experiment deviated from the first three and
thus are not fully comparable. Finally, to investigate the specific
mechanism driving changes in the FRN and dN2 across exper-
iments, we assessed the base-to-peak amplitude of “raw” N2 in
each of the four conditions separately: Frequent reward, frequent
no-reward, infrequent reward, and infrequent no-reward. We pre-
dicted that, all other things being equal, the raw N2 would be
larger to infrequent relative to frequent events (due to NE activ-
ity), but that this increase would be attenuated in the case of
infrequent rewards (due to overlap with the DA-driven reward
positivity).

METHOD
We began with an across-experiment comparison of dN2 and FRN
amplitudes. (It should be noted that these experiments were per-
formed sequentially, rather than treated as three counterbalanced
conditions within a single experiment). To analyze the raw N2s for
each of the four reward by frequency conditions for each exper-
iment, we quantified the size of the raw-N2 base-to-peak as the
change in voltage between the peak of the raw P2 and the peak
of the raw N2. The N2 peak was assessed as the maximum neg-
ative amplitude in the ERP between 200 and 300 ms after onset
of the feedback stimulus, and the raw P2 peak was assessed as
the maximum positive voltage between 100 ms after onset of the
feedback stimulus and the latency of the N2 peak for each subject
and condition.
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FIGURE 5 | Grand average ERPs for Experiment 4, recorded from

channel FCz and P8 (see labels) and scalp distributions associated

with the difference waves. The top row shows the “raw” ERPs for each
of the frequency by reward conditions across tasks and electrodes. The
middle row shows the dN2 and FRN difference waves across task and

electrodes. The bottom row shows the scalp distributions of the dN2 and
FRN across tasks. The scalp distributions reflect the base-to-peak measure
of each of the dN2 and FRN. The black star on the scalp map denotes
channel FCz, and the white star denotes P8. Note that negative is
plotted up.

Lastly, we normalized N2 amplitude across subjects to assess
within-subject variance in raw-N2 amplitude across conditions.
To do so, we converted the raw-N2 values to z-scores as follows: For
each subject, we determined the mean and SD of the raw-N2 val-
ues across the infrequent no-reward, infrequent reward, frequent
no-reward, and frequent reward conditions. We then divided the
difference between each raw-N2 value and the mean raw-N2 value
by the SD of the raw-N2 values [see Figure 7 for raw (top) and
normalized (bottom) means].

RESULTS
A 3 × 2 mixed ANOVA with component (dN2 vs. FRN) as a
repeated factor and Experiment (1–3) as a between subjects fac-
tor revealed a significant main effect of component such that the
FRN was larger than the dN2 (−5.1 vs. −4.0 μV), F(1, 56) = 6.4,
p < 0.05, η2 = 0.10. There was also an interaction of experiment
and component indicating that the FRN and dN2 changed in

different ways across experiments, F(3, 56) = 10.2, p < 0.001,
η2 = 0.27 (Figure 6). The between subjects effect of experiment
was not significant (p > 0.05).

We decomposed the interaction of component and experiment
with a set of three two-tailed independent samples t -tests (exp. 1
vs. exp. 2, exp. 1 vs. exp. 3, exp. 2 vs. exp. 3) for each component.
The dN2 was larger in the Passive Experiment than in the Active
Experiment (−4.5 vs. −3.1 μV), t (38) = 2.0, p = 0.05. The dN2
in the Moderate Experiment (−4.5 μV) was not significantly dif-
ferent than in the Passive Experiment (p > 0.05). The dN2 in the
Moderate Experiment trended toward being significantly larger
than the dN2 in Active Experiment, t (37) = 1.9, p < 0.10. By con-
trast, the FRN exhibited a different pattern across experiments. The
FRN in the Active Experiment was significantly larger than in the
Passive Experiment (−6.7 vs. −4.1 μV), t (38) = 3.0, p < 0.01, and
also significantly larger than the FRN in the Moderate Experiment
(−4.4 μV), t (37) = −2.5, p < 0.05, whereas the FRN between the
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FIGURE 6 | Mean dN2 and FRN base-to-peak amplitudes across

experiments. Note that negative is plotted up. Error bars represent 95%
within subjects confidence intervals.

Passive and Moderate Experiments did not differ significantly
(p > 0.05). Levene’s test for equality of variances was significant
for the FRN comparison between the Passive and Active, and
Active and Moderate Experiments, but the difference remained
significant when the correction was applied (p < 0.01, p < 0.05,
respectively). These results suggest that the Active Experiment was
the critical experiment for demonstrating a change in the dN2
and FRN across experiments: The dN2 was smallest in the Active
Experiment and similar between the Passive and Moderate Exper-
iments, whereas the FRN was largest in Active Experiment and
similar between the Passive and Moderate Experiments.

To investigate what caused the changes in the dN2 and FRN
amplitudes across experiments,we examined the normalized“raw”
N2 values (see Methods). We subjected raw-N2 z-scores (Figure 7,
bottom) to a 2 × 2 × 3 mixed ANOVA with reward condition
(reward vs. no-reward), frequency condition (infrequent vs. fre-
quent) as repeated factors, and Experiment (1–3) as a between
subjects factor. This analysis revealed a main effect of reward con-
dition such that rewards produced a less negative raw N2 than no-
rewards, F(1, 56) = 19.5, p < 0.001, η2 = 0.26, and a main effect of
frequency condition such that the infrequent raw N2 was more
negative than the frequent raw N2, F(1, 56) = 27.3, p < 0.001,
η2 = 0.33. There was also an interaction of reward condition and
frequency condition such that the effect of reward was larger
in the infrequent condition than in the frequent condition, F(1,
56) = 6.1, p < 0.05, η2 = 0.10. In addition, experiment interacted
with both reward condition, F(2, 56) = 3.6, p < 0.05, η2 = 0.11,
and frequency condition, F(2, 56) = 4.7, p < 0.05, η2 = 0.14, such
that the difference between frequent and infrequent normalized
raw N2s was smallest, and the difference between reward and no-
reward normalized raw N2s was largest in the Active Experiment.

We used independent samples t -tests on normalized raw-N2
values to uncover which of the four normalized raw N2s (infre-
quent no-reward, infrequent reward, frequent no-reward, and
frequent reward) best accounted for the change in the FRN and
dN2 across experiments (Figure 7, bottom). The infrequent, no-
reward raw N2 was similar across experiments (all ps > 0.05), as
was the frequent, reward raw N2 (all ps > 0.05). The frequent,

FIGURE 7 | Normalized (bottom) and un-normalized (top) raw-N2

z-scores and amplitudes across experiments for each of the frequency

by reward conditions. Note that negative is plotted up. Error bars
represent 95% confidence intervals for the mean of each condition by
experiment.

no-reward raw N2 was significantly larger in the Active Exper-
iment than in the Passive Experiment, t (38) = −3.0, p < 0.01,
whereas the infrequent, reward raw N2 was significantly smaller
in the Active Learning than Passive Experiment, t (38) = −3.1,
p < 0.005. Results were the same in comparing the Active Experi-
ment with the Moderate Experiment: The frequent, no-reward raw
N2 was larger in the Active Experiment, t (37) = −3.1, p < 0.005,
whereas the infrequent reward raw N2 was smaller in Active
Experiment, t (37) = 2.9,p < 0.01. There were no significant differ-
ences between the Passive Learning and Moderate Experiments (all
ps > 0.05). These results suggest that the apparent need for greater
deliberative strategy in the Active Experiment produced a larger
negativity to frequent no-reward trials, and a greater attenuation
of the raw N2 on infrequent reward trials.

DISCUSSION
We examined how challenging subjects with an involving learn-
ing and decision-making task impacted dN2 and FRN amplitude
across experiments. We demonstrated that across three experi-
ments, the task that most engaged a deliberative learning strategy
enhanced the FRN and simultaneously attenuated the dN2, albeit
the latter finding only trended toward statistical significance for the
comparison between the Active vs. Moderate Experiments. We also
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examined the raw N2s that underlie the dN2 and FRN as a func-
tion of frequency, reward, and learning engagement. We converted
the raw-N2 values to z-scores to control for between subjects vari-
ability in the overall size of the raw N2, and then analyzed how
the normalized N2s for each of the frequent reward, frequent no-
reward, infrequent reward, and infrequent no-reward conditions
changed across experiments according to task demands. Indepen-
dent samples t -tests on raw-N2 z-scores indicated that the larger
FRN and smaller dN2 in the Active Learning experiment were
driven both by a larger raw N2 to frequent no-rewards and greater
attenuation of the raw N2 to infrequent rewards compared to the
Passive Learning and Moderate Experiments. These contrasting
changes worked synergistically to increase the amplitude of the
FRN but against each other to decrease the amplitude of the dN2.

GENERAL DISCUSSION
The modified LC–P3 theory holds that the dN2 is produced by
the impact of a brief, cortex-wide increase in cortical NE due to
phasic LC firing in response to infrequent, task-relevant events.
In support of this, we demonstrated that the dN2 exhibits a scalp
distribution that changes according to task specifics in a manner
consistent with a noradrenergic origin. Furthermore, the modified
LC–P3 theory and the reinforcement learning theory of the FRN
together hold that the dN2 and FRN are driven independently
by modulation of the raw N2 at frontal–central channels by both
the NE system and the DA system. We suggest that whereas NE
amplifies the raw N2, DA depresses it, such that these influences
interfere with one another in producing scalp potentials over ante-
rior regions of the scalp. We demonstrated that factors which
exercise learning and decision-making systems enhance the FRN
but attenuate the dN2. Furthermore, we provided evidence that
these changes in the FRN and dN2 are driven most strongly by
an enhanced negativity to frequent no-rewards and an attenuated
positivity to infrequent rewards.

As the name indicates, our account of the relationship between
NE system activity and the dN2 is a modification of the origi-
nal LC–P3 theory (Nieuwenhuis et al., 2005a). Below we review
the LC–P3 theory in detail and provide the motivation for our
modification to it.

THE ORIGINAL LC–P3 THEORY
The P3 is a positive deflection in the ERP typically peaking ∼300–
500 ms after the eliciting stimulus. It has a broad, parietal scalp
distribution that is thought to represent the summation of activ-
ity in multiple, dispersed neural generators (e.g., Johnson, 1993).
Nieuwenhuis et al. (2005a) characterize four main categories of
conditions that influence P3 amplitude: Subjective probability
(unexpected events elicit a larger P3 than expected events), motiva-
tional salience (targets elicit a larger P3 than distracters), applied
attention (attended stimuli elicit a larger P3 than ignored stim-
uli, and targets elicit a larger P3 under conditions that demand
full attention compared to dual-task conditions), and attention-
capturing stimuli (task-irrelevant stimuli that are highly deviant
from the stimulus context elicit a larger P3 than less deviant
stimuli).

The LC–P3 theory (Nieuwenhuis et al., 2005a) proposes that
the P3 is an electrophysiological manifestation of cortex-wide
noradrenergic modulation through the LC efferent projection

system. In support of the LC–P3 theory, Nieuwenhuis and col-
leagues presented a comprehensive review of the literature, mar-
shaling abundant evidence that conditions antecedent to phasic
LC firing are the same as those conditions that exercise the P3.
Additionally, Nieuwenhuis et al. (2005a) refer to psychopharma-
cological and animal lesion studies for support for the link between
the P3 and noradrenergic modulation. By and large, noradrenergic
agonists such as clonidine and direct lesions of the LC have been
reported to reduce the amplitude of a P3-like potential observed
in monkeys (e.g., Pineda et al., 1989; Pineda and Westerfield, 1993;
Swick et al., 1994), and Halliday et al. (1994) found that clonidine
reduced the amplitude of the P3 in human subjects.

ISSUES WITH THE ORIGINAL LC–P3 THEORY
The LC–P3 theory possesses considerable explanatory power and
accounts for a wide range of existing data. However, two issues
warrant further examination. First, neurophysiological evidence
indicates that the NE phasic burst arrives in cortex too early to
produce the P3 directly. Aston-Jones and Cohen (2005) suggest
NE should reach the cortex within approximately 170 ms of tar-
get onset, but the P3 typically does not begin for another 50 ms
until about 220 ms following target onset (and reaches maximum
amplitude from about 300 to 600 ms post-stimulus). Thus there is
greater than a 50-ms discrepancy between the time of NE arrival
in cortex and the onset of the P3. Although this estimate of the
timing of NE arrival is based on single-cell recordings in monkeys,
Aston-Jones et al. (1985) demonstrated that conduction speeds in
NE-releasing neurons vary across species such that the actual tim-
ing of NE arrival in cortex is relatively preserved despite varying
axonal distances. Further, P3 onset sometimes occurs after motor
response initiation suggesting that the underlying mechanism does
not directly implement the stimulus–response mapping (as would
be expected if it reflected a signal detection process mediated by
the LC) but rather is involved in a subsequent, related process
(Ritter et al., 1979; Duncan-Johnson and Donchin, 1982; Krigol-
son et al., 2008). For example, Krigolson et al. (2008) found that
when a target changed location in a continuous tracking task, par-
ticipants adjusted their motor behavior accordingly even before
the change in target location elicited the P3. In contrast, studies
in monkeys indicate that (unlike the P3) phasic LC activity con-
sistently precedes behavioral responding and has been strongly
associated with processes that lead to the response (e.g., Clayton
et al., 2004; Rajkowski et al., 2004).

A second issue with the original LC–P3 theory is related to
the “attentional blink,” a deficit in stimulus processing attributed
to the LC refractory period (e.g., Usher et al., 1999; Nieuwen-
huis et al., 2005a,b; Warren et al., 2009). When two targets are
embedded within a rapid serial visual presentation task, the first
target can be reported with high accuracy but the second tar-
get is reported with significantly worse accuracy if it is presented
within a window 200–600 ms after onset of the first target (Ray-
mond et al., 1992); spared accuracy for the second target when it
appears within 200 ms of onset of the first is termed “lag-1 spar-
ing.”Nieuwenhuis et al. (2005a,b) argued that the properties of the
NE system could account for the attentional blink: They proposed
that the onset of the first-target elicits NE system phasic response,
with the subsequent flood of NE to the cortex benefiting process-
ing of the first target, and also the second target if the second target
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is presented within ∼100 ms of the first – thus accounting for lag-
1 sparing. After this initial period of effective target processing
(∼200 ms from onset of the first target to offset of a second-target
presented 100 ms later), the LC is inhibited and cortical levels of
NE are not sufficient to process effectively any targets presented
200–600 ms after onset of the first target – accounting for the atten-
tional blink. Consistent with this proposal, McArthur et al. (1999)
showed a significant negative correlation between the amplitude
of the first-target P3 and second-target accuracy, such that the size
and temporal profile of any subject’s attentional blink mirrored the
size and temporal profile of that subject’s first-target P3; according
to the LC–P3/LC-AB theories, larger bursts of NE to the first tar-
get result in larger P3s, followed by a relatively deep or extended
refractory periods that produces a larger attentional blink.

Nevertheless, this proposal raises the question: If the P3 reflects
the NE burst, which should facilitate stimulus processing, then
why does the P3 peak during the period of the attentional blink
(between 300 and 500 ms after the first target), which by defin-
ition is a period of impaired stimulus processing? Instead, one
might predict that the electrophysiological manifestation of NE
activity would precede the attentional blink, during the time of
effective of stimulus processing associated with lag-1 sparing.

THE MODIFIED LC–P3 THEORY
Nieuwenhuis and colleagues provide alternative explanations for
these apparent discrepancies within the LC–P3 account (see
Nieuwenhuis et al., 2005b; Nieuwenhuis and Jepma, 2010). How-
ever, the assumption that the dN2 (rather than the P3) reflects the
LC-induced enhancement of cortical processing eliminates these
issues outright. This modification accounts for the two issues
above as follows. First, it aligns the timing of the putative ERP
response to NE activity (the dN2, occurring at about 200 ms post-
stimulus, as opposed to the P3, which occurs about 300–600 ms
post-stimulus) with the actual timing of the phasic NE signal
(about 170 ms post-stimulus). Furthermore, unlike P3 onset, the
onset of the N2 consistently precedes the overt behavior (e.g.,
Krigolson et al., 2008); in fact, detailed analyses of RT data to com-
patible stimuli in a speeded response compatibility task suggests
that stimulus information begins to impact the response selection
mechanism at about 170 ms post-stimulus (during N2 onset) and
exerts the maximal impact on the response selection process about
250 ms post-stimulus (during N2 maximum; Holroyd et al., 2005).
Second, the modified theory associates the P3 with the period of
impaired cortical processing due to NE depletion (rather than
abundance), which corresponds to the time profile of the atten-
tional blink. Additionally, the modified theory provides an ERP
correlate of both NE abundance (the dN2) and NE depletion (the
P3) in the cortex and naturally accounts for the evidently close
relationship between the two ERP components, because the dura-
tion of the refractory period of the LC (P3) is directly related to
the size of the initial NE burst (N2).

Critically, the evidence reviewed by Nieuwenhuis et al. (2005a)
as support for the original LC–P3 theory applies equally well to
the modified LC theory. For example, the amplitudes of both the
P3 and the N2 are sensitive to the same factors: The P3 is typ-
ically preceded by the N2, and in early studies of the impact of
stimulus probability on the ERP, these two ERP components were
collectively termed the N2/P3 complex because of their tendency

to co-vary in amplitude and latency (e.g., Duncan-Johnson and
Donchin, 1977; see also Ritter et al., 1979). In fact, all of the
antecedent conditions noted by Nieuwenhuis and colleagues to
apply to both P3 amplitude and LC phasic activity also apply to N2
amplitude. Thus, both N2 amplitude and P3 amplitude increase
with increasing unexpectedness of a task-relevant event, and both
are larger to targets than non-targets (e.g., Courchesne et al., 1975;
Squires et al., 1975, 1976; Simson et al., 1976; Duncan-Johnson
and Donchin, 1977; Ritter et al., 1979; Nieuwenhuis et al., 2003).
Both also scale to the amount of attention paid to a stimulus, with
a larger N2 and larger P3 to attended vs. unattended stimuli, and to
attention-capturing/highly deviant stimuli vs. less deviant stimuli
(Hillyard et al., 1971; Courchesne et al., 1975; Squires et al., 1975,
1977; Ford et al., 1976; Daffner et al., 2000a,b; Folstein et al., 2008).

INTERACTION OF THE NE AND DA SYSTEMS
The reinforcement learning theory of the FRN holds that DA dips
and bursts modulate ongoing activity in the ACC. Specifically,
reward feedback elicits a phasic burst of DA that produces a posi-
tivity in the ERP typically between 200 and 300 ms of the eliciting
stimulus (Holroyd et al., 2008), whereas no-reward feedback elicits
a dip in DA that produces a negative deflection in the same time
range (Holroyd and Coles, 2002). Furthermore, the theory holds
that DA signals scale according to the degree of expectedness of
the feedback, such that infrequent rewards elicit a larger DA burst
and reward positivity than frequent rewards, and infrequent no-
rewards elicit larger DA dips and negative deflections than frequent
no-rewards. Critically, the theory proposes that the FRN reflects
DA-dependent modulation of ACC activity but does not specify
exactly what neural process is being modulated. However, empiri-
cal evidence suggests that the ACC produces a negative deflection
(the N2) that perhaps reflects response conflict or a related stimu-
lus/response decision-making process (e.g., Botvinick et al., 2001).
Thus it has been argued that the reward positivity elicited by pha-
sic DA activity attenuates the N2 produced in the ACC (Holroyd,
2004; Holroyd et al., 2008). The proposal that dopamine dips
increase N2 amplitude by disinhibiting ACC activity has remained
unconfirmed (Holroyd and Coles, 2002), perhaps because phasic
decreases from baseline DA activity are relatively shallow when
compared to the relatively large increases in DA activity associated
with phasic bursts.

According to the modified LC–P3 theory, infrequent events
elicit a phasic release of NE that enhances cortical processing and
produces an amplified negative deflection in the ERP between
about 200 and 300 ms after onset of the eliciting stimulus. Criti-
cally, NE modifies activity in the same time range as the putative
DA signals, including ACC activity when it is present. According
to this position, increased NE gives rise to a larger N2 produced in
the ACC. Thus, the two factors push and pull the frontal–central
N2 associated with ACC activity up and down.

Here we examined the interaction of the NE and DA systems by
including both a frequency and reward manipulation within the
same experiment. We hold that frequency insofar as it relates to the
expectedness of reward or no-reward has an effect on the DA sys-
tem independent of its effect on the NE system. For the NE system,
infrequent events consistently increase NE release and the asso-
ciated negativity, whereas for the DA system infrequent rewards
produce a relatively large burst in DA and associated positivity
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and infrequent no-rewards elicit a relatively large dip in DA and
an associated negativity. Consistent with this, we observed a signif-
icant interaction of frequency and reward such that the difference
in N2 amplitude between reward and no-reward was larger when
rewards and no-rewards were infrequent relative to when they were
frequent. This replicates previous work on the effect of reward-
expectedness on the FRN (Holroyd et al., 2003, 2009; Hajcak et al.,
2007; Baker and Holroyd, 2009).

We further examined the interaction of the NE and DA systems
by systematically manipulating the degree of participant engage-
ment in reward tasks – and by extension putatively the degree
of DA system engagement – across three experiments. In keeping
with the reinforcement learning theory of the FRN, we predicted
that the enhanced FRN in the Active Experiment would be driven
by both a greater attenuation of the raw N2 to reward feedback
and by a greater enhancement of the raw N2 on no-reward trials.
Consistent with this, independent samples t -tests on normalized
raw-N2 amplitude indicated that in the Active Experiment, the raw
N2 to infrequent reward feedback was significantly smaller than
the raw N2 to infrequent reward feedback in both the Passive and
Moderate Experiments, suggesting that greater DA system engage-
ment resulted in a larger DA-associated positivity that attenuated
the raw N2. Similarly, the raw N2 to frequent no-reward feedback
was significantly larger in the Active experiment than in the Passive
and Moderate Experiments, suggesting a larger DA dip enhanced
the raw N2 in the Active Experiment. These differences cannot be
attributed to greater engagement of the NE system in the Active
Experiment (rather than greater DA system engagement) because
greater NE release would have produced a larger negativity to
infrequent reward feedback.

The finding of a decrease in the amplitude of the raw-N2 to
infrequent reward feedback in the Active Experiment relative to
the other experiments is expected in light of previous work associ-
ating reward processing with a positive deflection in the ERP that
attenuates the N2 (e.g., Holroyd et al., 2008; Baker and Holroyd,
2011). However, the finding of an increased raw N2 to frequent
no-reward feedback in the Active Experiment relative to the other
experiments to our knowledge constitutes the first evidence of
an increased negative deflection elicited by no-reward feedback.
Although the reinforcement learning theory of the FRN holds
that brief decreases in DA activity in response to unexpected no-
reward feedback increase the amplitude of a negative deflection
in the ERP (Holroyd and Coles, 2002), the FRN difference-wave
approach cannot determine whether the difference between the
ERPs is due to a positivity to rewards, a negativity to no-rewards,
or both (Holroyd et al., 2008). Our results indicate that the raw
N2 is increased to no-reward feedback as predicted by the rein-
forcement learning theory of the FRN (Holroyd and Coles, 2002),
especially under conditions that demand high task engagement.

The raw N2s to infrequent no-rewards and frequent rewards
were not statistically different between the Active Experiment and
either of the Passive or Moderate Experiments. This raises the
question: Why are frequent no-rewards and infrequent rewards
particularly sensitive to changes in deliberative strategy, whereas
infrequent no-rewards and frequent rewards are relatively insen-
sitive? The answer may have to do with the fact that both the
infrequent no-reward feedback and the frequent reward feedback
always occurred in the same blocks of trials. In this context rewards

accumulated frequently (and therefore no-rewards were infre-
quent). Perhaps this condition of the Active Experiment is much
like the Passive and Moderate experiments, in the sense that sub-
jects could disengage from the task because it was apparently easy.
By contrast, subjects would have remained engaged in the blocks
where rewards were infrequent and no-rewards frequent. Hence
with increasing engagement of learning and decision systems
across experiments, subjects may have been similarly unmoved to
rewards and no-rewards in easy blocks but differentially reactive
to rewards and no-rewards in difficult blocks.

OTHER ISSUES
These experiments were intended to exercise the system that pro-
duces the FRN differentially – most in the Active Experiment,
least in the Passive Experiment, and to an intermediate degree in
the Moderate Experiment2. Note that the Active Experiment was
characterized by 15 potentially learnable relationships whereas the
Moderate Experiment was characterized by only two such relation-
ships (left button vs. right button). Thus although the degree of
engagement in the Moderate Experiment was likely larger than
in the Passive Experiment, this difference may have been small
relative to the Active Experiment.

A second notable issue is the fact that the base-to-peak mea-
sure of the raw N2s can fail to capture some variability in the ERP
due specifically to the reward positivity. That is, the base-to-peak
method is insensitive to positive deflections that go beyond atten-
uating the N2 to create a positive deflection in the same time range:
The most positive value for the raw N2 that can be assessed is 0 μV,
because the algorithm finds the most negative value in the N2 time
window and subtracts from that the most positive value preceding
it. Despite this limitation, the method nevertheless yielded signif-
icant differences in the raw N2 across experiments that confirmed
our hypotheses.

Finally, we observed a main effect of task such that the attend-
color dN2 was larger than the attend-gender dN2, and the attend-
color FRN was larger than the attend-gender FRN. This is a replica-
tion of our previous dN2 results (Warren et al., 2011). We interpret
this effect as being due to both increased latency jitter in the attend-
gender condition because of longer categorization latency, and also
lower accuracy and confidence in the attend-gender condition, a
factor known to attenuate the dN2 (Hillyard et al., 1971).

CONCLUSION
Both the NE system and the DA system modulate processing in
the ACC. However, whereas the NE system includes the ACC
among many cortical targets, innervation by the DA system of
frontal midline cortex is especially great. Consistent with this dis-
tinction, we demonstrated that the dN2, an ERP component that
we propose reflects noradrenergic modulation of cortical activity,
exhibits a scalp distribution that is maximal at varying locations
dependent on the relative engagement of specific cortical areas.
By contrast, the FRN, which has been associated with DA sys-
tem activity, is consistently maximal at scalp locations over the
ACC. Furthermore, we demonstrated that under conditions in

2In fact, a linear regression analysis not reported here demonstrated FRN amplitude
was significantly predicted by task engagement across experiments, while the dN2
exhibited a trend toward the inverse relationship.
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which the DA system should be highly engaged – specifically,
in an apparently complex learning and decision-making task –
the neural processes underlying the FRN and dN2 appeared to
interfere with one another such that the FRN was enhanced and
the dN2 was attenuated. Finally, we demonstrated that negative
feedback stimuli (i.e., feedback associated with the absence of a
potential reward) were associated with a negative deflection in
the ERP that was larger than the raw-N2 typically elicited by
motivationally salient events. Taken together, these results paint
a picture of two neuromodulatory systems that have relatively

independent effects on the ERP despite considerable overlap in
the space and time domains as well as shared antecedent con-
ditions. The ACC seems to be at the center of this overlap:
recruiting the NE system, which in turn facilitates processing
by the ACC and other brain areas, and utilizing DA bursts and
dips for the purpose of adaptive decision making. These consid-
erations suggest the ACC plays a crucial role in both fast and
efficient processing of task-relevant events and adaptive decision
making based on a reinforcement history implemented by the DA
system.
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Backward induction is a benchmark of game theoretic rationality, yet surprisingly little is
known as to how humans discover and initially learn to apply this abstract solution concept
in experimental settings. We use behavioral and functional magnetic resonance imaging
(fMRI) data to study the way in which subjects playing in a sequential game of perfect
information learn the optimal backward induction strategy for the game. Experimental data
from our two studies support two main findings: First, subjects converge to a common
process of recursive inference similar to the backward induction procedure for solving the
game.The process is recursive because earlier insights and conclusions are used as inputs
in later steps of the inference. This process is matched by a similar pattern in brain acti-
vation, which also proceeds backward, following the prediction error: brain activity initially
codes the responses to losses in final positions; in later trials this activity shifts to the
starting position. Second, the learning process is not exclusively cognitive, but instead
combines experience-based learning and abstract reasoning. Critical experiences leading
to the adoption of an improved solution strategy appear to be stimulated by brain activ-
ity in the reward system. This indicates that the negative affect induced by initial failures
facilitates the switch to a different method of solving the problem. Abstract reasoning is
combined with this response, and is expressed by activation in the ventrolateral prefrontal
cortex. Differences in brain activation match differences in performance between subjects
who show different learning speeds.

Keywords: neuroeconomics, game theory, backward induction, learning, deductive reasoning

1. INTRODUCTION
Backward induction (BI) is a recursive algorithm, wherein infer-
ences regarding a decision problem made at an earlier stage are
applied to the process of deriving yet further inferences on the
problem. As a mathematical construction, backward induction
constitutes a benchmark of game theoretic rationality that pre-
scribes the behavior of rational players in finite sequential games
of perfect information. In game theory, the concept is at the basis
of abstract theorems; most notably Zermelo’s (1908,1912) the-
orem on the existence of equilibria in pure strategies for those
games, or Selten’s (1965) and Selten and Stoecker’s (1986) theorem
characterizing Sub-game perfect equilibria.

In contrast to its applicability in mathematical proofs,backward
induction has at times been considered inapposite as a descriptive
account of the cognitive processes operating in human subjects
during the sort of strategic interactions that game theorists would
conceptually represent as sequential games (e.g., Fey et al., 1996;
Aymard and Serra, 2001; Johnson et al., 2002). In part, backward
inductive reasoning has been considered an unlikely description of
the human thought process during such game situations, because
it requires the cognitive enactment of a solution concept that
is considerably complex and ostensibly unnatural. However, we
find evidence that subjects playing the sequential game of perfect
information in our experiment have a common pattern of learning

the optimal solution, and that although individuals may differ in
their speeds for producing this pattern, this path is common and
reproduces the steps of the backward induction algorithm.

To argue effectively this conclusion, we first review what the
backward induction algorithm prescribes. We illustrate backward
induction in finite sequential games of perfect information. These
are games in which players alternate in actions, know, and remem-
ber precisely the choices made by other players in previous stages
of the game, and know exactly the payoff structure for all players
involved. A strategy for a player is a rule assigning a move at every
decision point. For these games, backward induction prescribes
the following procedure to construct a strategy for every player:
At the very last stage of the sequential game, when the final player
makes the last choice of the game, she should move to maximize
her payoff from the choice made at this stage. We can call this step
the last stage. Since the game ends at the last stage, and because
payoffs are known, rationality prescribes the outcome of the last
player’s choice. In other words, all players, including the last player
herself, can unambiguously determine what would constitute the
payoff maximizing choice given the options available at the last
stage. The second to last player should anticipate the unambigu-
ous criteria according to which the last player will choose, and
conclude that his second to last choice will ultimately yield the
payoffs induced by the optimal move of the last player. After this
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has been established, the original game is effectively replaced by a
game with shorter length where the last move is eliminated and the
payoff at the last stage is defined to be the payoff following the opti-
mal choice of the last player. Iterating this process until the initial
decision point is reached produces a strategy for every player.

Backward inductive reasoning relies in an essential way on
the human ability for recursive thought, which itself has been
posited as a prerequisite for quintessential human achievements
such as language acquisition and basic numeracy (Hauser et al.,
2002). Hence, to the extent that this innate human ability to think
recursively manifests itself in strategic games, there may indeed
exist a link between fundamental cognitive processes in humans
and the abstract game theoretic concept of backward induction.
Following this conjecture, we conduct two studies of a particu-
lar strategic social interaction that facilitates recursive learning.
These studies were designed to address two fundamental ques-
tions: First, what are the neural correlates of recursive learning
in the strategic environment, and second, how do the cogni-
tive processes involved in recursive learning connect to abstract
backward inductive reasoning.

2. EXPERIMENTAL PARADIGM
2.1. HIT-N GAME
The finite sequential game which subjects play in our experiment
is played by two parties on a virtual playing board, and is the
same as used in Gneezy et al. (2010), Bouton (1901–1902), and
Dufwenberg et al. (2009). The board used to display the game in
the imaging study is presented in Figure 1.

For the basic variant of the Hit-N game used in this experiment,
the first player to move is allowed to move a single common play-
ing piece on the board, and she is allowed to move it only forward,
by 1, 2, or 3 positions; no more or no less. The move then goes to
the second player, who is allowed the same action of moving the
figure 1, 2, or 3 positions forward. From thereon the opportunity
to move according to the 1-2-or-3-only rule alternates between

the two players. The player who reaches the final position (15 in
experiment 1) first wins that game. We refer to this game as G(15,
3). A second game in our experiment involves the game G(17, 4)
which is played on a virtual playing board of length 17, and allows
players to move 1, 2, 3, or 4 positions forward.

We apply backward induction reasoning to this game to derive
the optimal strategy: Players moving in position 12, 13, or 14 can
win by reaching position 15 immediately. It follows that players
moving at 11 have lost, since they can only move to 12, 13, or 14,
where the opponent, as we have just seen, wins. Players can now
replace the original game with the shorter game where the first
player to reach position 11 wins: a move is optimal in the original
game if and only if it is optimal in the reduced game. The same
argument, repeated, shows that the player who first gets to posi-
tion 7 wins; after which it can be concluded that the first to reach
3 wins. In summary, all positions different from 3, 7, and 11 are
winning positions, because from there the player who is moving
can reach either position 3, 7, or 11, and win: she just has to be sure
to move there. On the other hand, positions 3, 7, and 11 are losing
positions, and there is not much that the player moving there can
do but hope for an error of the opponent. The argument we have
just presented is the BI solution to G(15, 3). A similar argument
shows that the losing positions in G(17, 4) are {2},{7}, {12}, and
the groups of winning positions are {1}, {3, 4, 5, 6}, {8, 9, 10, 11},
{13, 14, 15, 16}.

2.1.1. The behavioral study
We use data from (Gneezy et al., 2010) as a behavioral sample, and
focus here on error rate, response time, and their relation. A total
of 72 subjects competed in 20 trials of G(15, 3), and 52 out of the
72 subjects played an additional 10 trials of G(17, 4).The incentive
structure for G(15, 3) promised $5 for winning more than 5 trials
over the 20 game period, and $20 for winning more than 11 trials.
For G(17, 4) subjects were promised $10 for winning more than 5
games.

FIGURE 1 | Board of positions for the game G(15, 3). This is the board
of positions used in the imaging experiment. The superimposed red
rectangles indicate the losing positions 3, 7, and 11. The green rectangles

indicate the winning positions. In the lower section of the Figure 2

displays indicate the current score of the subject and the (computer)
opponent.
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2.2. THE fMRI STUDY
A total of 12 subjects participated in the MRI study. They played
first 20 trials of G(15, 3), then 20 trials of G(17, 4) against a
computer. The game, incentives, and instructions include three
modifications to those used in the behavioral study. First, subjects
are informed that they are playing a computer, programmed to win
and subject to small errors. Also subjects play 20 trials of G(17, 4)
(compared to 10 trials in study 1). Finally subjects were allowed
10 s to make a choice on each of their turns.

Data were collected at the Center for Magnetic Resonance
Research (CMRR) at University of Minnesota using a 3-T Siemens
Trio scanner. Both studies were approved by the Institutional
Review Board (IRB) at the University of Minnesota. Subjects in
both studies signed an informed consent form after they were
given the instructions.

3. MODEL
To motivate the need for a theoretical model and the structure
we are going to use, we begin by considering the relation between
two key observable variables, response time and error rate. The
response time is the length of the time interval between the
moment in which the move of the opponent (another player or
the computer) is observed and the moment in which the subject
makes his next move. To define the error rate, we focus on G(15, 3)
and note that at every winning position one, and only one, of the
possible moves is correct, and the other two are incorrect. An error
is the choice of the wrong move, and the error rate is the frequency
of this event, conditional on the position being a winning position
for the subject (these are the only positions at which an error is
possible). The correct response rate is the difference from 1 of the
error rate.

How are these two variables related? It may be reasonable to
assume that, everything else being equal, a longer response time
is associated with a higher correct response rate. This for example
would be the case if the response time were varied exogenously,
since by thinking about the problem for a longer time the sub-
ject would be more likely to achieve a richer understanding of
what constitutes a good move. We point out that the condition of
everything else being equal is crucial for this assertion. Consid-
ering now, that the length of the response time is not exogenous,
but is decided upon by the subject who is reasoning about the
decision, the relationship between response time and error rate
may be different; indeed reversed: Since the reasoning activity can
be assumed – in some measure – costly, a decision maker may
compare and trade-off the estimated returns and costs from the
reasoning activity. If the returns are estimated to be low, he may
prefer to discontinue the process. If they are high, he might con-
tinue. Consider also, ability as an individual characteristic: An
individual with lower cognitive skills may find the returns to his
reasoning unsatisfactory, stop early, and be more likely to make
the wrong choice. Similarly, a subject who has not acquired a basic
familiarity with the game may conclude very little from his exam-
ination, stop cognitively engaging, and commit errors at a high
rate. Both cognitive ability and problem familiarity are subsumed
under the concept of ability. Considering response time as a choice
variable together with differences in ability, the average relation at
the individual level between response time and correct response

rate may therefore be negative. In our data we find this to be the
case. Figure 2 illustrates this point.

The simple regression in Table 1 of the correct response rate
on the individual average response time confirms the negative
relation, again in both games.

Given the observed relation it appears particularly useful to
consider a model in which response time is endogenously deter-
mined, and that reflects the notion that subjects choose to think
about a problem, decide whether to stop thinking, and only then
select a move.

3.1. OPTIMAL INFORMATION PROCESSING
In our experiment, at each turn, a player observes the position in
the game, considers a set of potential cues and insights, and tries to
identify the best move at the current position. At any point in time
before choosing a move, he can terminate the process and then
make a move determined by the conclusions reached up to this
point. If he does not terminate the process, he has to decide the
intensity of the effort devoted to the decision. The quality of his
decision will then depend on his ability to reason about the game
as well as his effort in doing so. We consider ability as an individual
characteristic of the player, and this may describe both a player’s
natural, general skills, as well as her acquired understanding of
the game. We also consider effort as a choice variable. Ultimately,
both effort and ability contribute positively to the agent’s problem
solving success.

We model the above process as an optimal information acqui-
sition problem to be solved in the time interval before the move.
In the model, the subject has to choose an action, and has beliefs
over which of the feasible actions [for example, the set {1, 2, 3}
in G(15, 3)] in currently the best. In every instant during this
process the agent can observe an informative signal on what the
best action is, update her belief, and decide whether to continue the
information acquisition process or to stop and choose what, given
the current belief, is the optimal action. The model outlined above
constitutes a general inter-temporal decision problem which can
be formulated as a dynamic programming problem with an action
set that consists of the agent’s effort and the decision to continue
or stop processing information about the game. The state space
of the problem is the set of beliefs over the action set, assigning
to each action the probability that it is the best action. Informa-
tion acquired in every instant is a partially informative signal on
the true state; that is, on which among the feasible actions is the
optimal one.

3.2. MODEL PREDICTIONS
It is clear that if ability is so low that any processed signal is entirely
non-informative, the optimal time spent should be zero, and that
correct response rates in this case will consequently be low. This
is likely to occur in the early stages of the game, when subjects are
just beginning to familiarize with the task, and lack even the basic
insights to make even minor headway into the problem. At this
stage we should observe a short response time and a high error
rate. The effect should also be more pronounced at the difficult
positions, those further from the end: this is because reasoning
about the best move can only produce useful insights when the
individual has some idea of what happens in later stages of the
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FIGURE 2 | Average response time and average correct rate. The averages are computed for each subject over the trials for the G(15, 3) (on the left) and
G(17, 4) on the right.

Table 1 | Average response time and average correct rate OLS for both

games.

RT 15 (b/se) RT 17 (b/se)

Avg. correct G(15, 3) −8.581*** (1.766)

Avg. correct G(17, 4) −8.633*** (1.797)

Constant 10.993*** (0.952) 11.010*** (1.017)

r2 0.252 0.316

N 72 52

*p < 0.05, **p < 0.01, ***p < 0.001.

game, at positions closer to the end. In the initial rounds this
understanding of the game at later stages is lacking, and the sub-
ject may prefer to discontinue the reasoning soon because it is not
producing any useful insights.

At the opposite extreme, if ability is so large that the signal is
completely informative, only a short time will be necessary while
still leading to a high correct response rate. This is likely to occur of
course at the late stages of the game, when a subject has an overall
understanding of the optimal strategy. It is also likely to occur at
the final positions, where very simple reasoning can provide the
conclusion.

Between these two extremes, where signal is partly informative,
the optimal policy will prescribe a positive response time. Overall
the relation between ability and response time is non-monotonic:

likely to be increasing for low values of ability, and decreasing for
higher values.

A specific conclusion of the model is that the response time at
a position is not necessarily monotonically increasing or decreas-
ing with experience, but might instead be first increasing and then
decreasing. At the early stages, low experience, which corresponds
to low ability, induces an early stopping of the reasoning process
(the information acquisition in our model), a short response time
and a high error rate. At intermediate stages, as the subject acquires
some basic understanding of the game, reasoning becomes more
informative, hence stopping is postponed. Finally, in later periods
the response time declines as subjects simply implement a solution
algorithm which they now understand.

We will see that subjects’ behavior broadly matches these pre-
dictions, and provide the conceptual framework for the analysis
of the imaging data.

4. RESULTS
4.1. BEHAVIORAL RESULTS
We review the basic behavioral results presented in Gneezy et al.
(2010) to prepare for the analysis of the imaging data. To analyze
error rate, we define a subject’s error j as a subject’s failure to move
the marker to j, whenever this is possible and moving to j is part
of the winning strategy. In G(15, 3) the possible errors of interest
are failures to move the marker to any of the positions 3, 7, 11,
or 15 whenever this would be possible. The error rate at j, ej, is
the fraction of times the error is made over the times the subject
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could avoid the error. For example e3 is calculated as the number
of times the subject had the opportunity of moving her opponent
to position 3, yet failed to do so, divided by the times the subject
held the move at position 1 or 2 in the game. The average error
rate is the number of errors made at a winning position divided
by the number of times the subject was in a winning position.

Response times for subjects show a marked decline across trials
(see Figure 3), with subjects requiring more than 8 s on average to
make a choice during the first three periods of the game, but not
even half of that during the last 3 periods.

There is a substantial difference in the evolution of the response
time in the two games. Consider first the game G(15, 3): Note that
the first trial has a very special role, since it is the one where sub-
jects get acquainted with the task, and the rules of the game. If we
ignore the first trial we see that the response time increases from
the second to the fourth trial, and then declines, as the model
predicts.

For the first trial of G(15, 3) the error rate is 0.38, which is sig-
nificantly lower than the average error rate that would be expected
if choices were made randomly. Across 20 trials of study 1, the error
rate steadily declines until it almost reaches zero: see Figure 4.

The four possible errors in G(15, 3) occur at significantly dif-
ferent rates. No subject deviates from the winning strategy choice
at the final 3 positions (e15 = 0). Error rates and average period
marking the last occurrence of a particular error are lower for
positions closer to the game’s end (e3 ≥ e7 ≥ e11): see Figure 5.

Each of the differences between e3, e7, and e11 is statistically sig-
nificant (p < 0.01), and the pattern suggests that subjects indeed
learn to identify losing positions in a sequential manner that begins
from the game’s final positions. These observations indicate that
subjects progress through a sequence of minor realizations toward

FIGURE 3 | Response time. Average response time across trials in G(15, 3)
and G(17, 4). The plot shows an unexpectedly long response time for the
very first trial, which is driven by subjects’ response time at the initial onset
of the game (see also Figure 7). At the onset of the game subjects appear
to require additional time to familiarize themselves with the game
environment. Removing the initial position of the initial round produces an
increase in response time for G(15, 3) in line with model predictions.

becoming proficient in the Hit game. The above trends for G(15, 3)
replicate in G(17,4). For both games we observe lower error rates at
later positions, and an overall decrease of error rates over repeated
trials. Average response times decline across trials in both games.

Subjects make significantly fewer mistakes in G(17, 4) than in
G(15, 3) indicating that subjects transfer some of their acquired
skill to the new game. Observing however, that only 20 out of 72
subjects manage to commit zero errors in G(17, 4), it is likely, that
most subjects have not fully developed the explicit BI solution to
the sequential game after 20 trials of G(15, 3).

Figure 6 illustrates the average response time in the losing
positions, for each of the periods.

For position 11, the losing position which is closest to the end,
the highest response time occurs in the first period, and declines in
the periods thereafter. The peak for position 7 is reached at period

FIGURE 4 | Error rate by period. Average error by type for G(15, 3).

FIGURE 5 | Last trial for error. Whisker plot of trial during which the last
error occurred; separated by type.

www.frontiersin.org February 2012 | Volume 6 | Article 23 | 119

http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Hawes et al. Experience and abstract reasoning

4, and that for position 3 is reached at period 5. As the model pre-
dicts, the response time is non-monotonic over the periods. For
example the response time in period 7 is low at the initial stages,
when subjects typically have a limited understanding of the game,
but increases as the insight that the position 11 is a losing position
is acquired and becomes available in the analysis of what to do at
position 7. In later periods the response time at position 7 declines.

A similar relation can be seen in Figure 7, which illustrates the
average response time at winning positions for G(15, 3).

In this case too, the peak for the middle positions (winning
positions {4, 5, 6} and {8, 9, 10}) is reached after an initial low
value. The peak is reached at period 4 for {4, 5, 6} and at period
3 for {8, 8, 10}. The response time at the very first positions {1,

FIGURE 6 | Response times in losing positions, G(15, 3). For each of the
20 periods in which the game G(15, 3) was played we report the average
response time at each of the losing positions, 3, 7, and 11.

FIGURE 7 | Response times in winning positions. As in the previous
Figure 6 we report for each of the 20 periods in which the game G(15, 3)
was played the average response time at each of the four winning positions
groups.

2} increases slowly; the maximum is reached at period 8, after an
initial spike in period 1 which is likely to be due to the fact that
the very first instance of position 1 is also the subjects’ very first
encounter with the game. The response time at the easy positions
{12, 13, 14} monotonically declines after the initial period.

The figures we have seen present instructive average values over
individuals’ response times. A more accurate description is pro-
vided by the panel data regressions in Table 2 for G(15,3) game and
Table 3 G(17, 4) for which the dependent variable is the response
time and the time variable for the panel is the index of the period.
The independent variables are dummy variables corresponding
to the groups of positions. They are indexed in increasing order
according to their position on the board, left to right. For example,
the first group of winning positions (Win Pos 1) in game G(15, 3)
indicates the set of positions {1, 2}. The second group of losing
positions for G(17, 4) indicates the position 7. In both regressions
the variable dropped is the final group of winning positions, that
is {10, 11, 12} for G(15, 3) and {13, 14, 15, 16} for G(17, 4).

The constant value is similar in both games, and around 4 s.
The main effect of learning the game is estimated by the vari-
ables period and period square , indicating a significant and fast

Table 2 | Response time in G(15, 3): panel data analysis.

RT151(b/se) RT152 (b/se) RT153 (b/se)

Win pos 1 1.472*** (0.447) 1.293*** (0.432) 1.299*** (0.432)

Win pos 2 2.979*** (0.446) 2.690*** (0.432) 2.679*** (0.432)

Win pos 3 3.095*** (0.456) 3.009*** (0.442) 3.005*** (0.442)

Losing pos 1 4.223*** (0.499) 4.820*** (0.484) 4.849*** (0.484)

Losing pos 2 6.726*** (0.474) 6.946*** (0.459) 6.969*** (0.459)

Losing pos 3 1.280*** (0.466) 1.299*** (0.451) 1.306*** (0.451)

Period −0.381*** (0.021) −0.561*** (0.088)

Period square 0.009** (0.004)

Constant 3.800*** (0.396) 7.801*** (0.447) 8.460*** (0.544)

r2

N 5044 5044 5044

*p < 0.05, **p < 0.01, ***p < 0.001.

Table 3 | Response time in G(17, 4): panel data analysis.

RT171 (b/se) RT172 (b/se) RT173 (b/se)

Win pos 1 2.972*** (0.920) 2.957*** (0.886) 2.958*** (0.874)

Win pos 2 3.307*** (0.904) 3.140*** (0.870) 3.066*** (0.859)

Win pos 3 2.711*** (0.913) 2.653*** (0.879) 2.637*** (0.868)

Losing pos 1 2.866*** (0.984) 3.327*** (0.948) 3.420*** (0.936)

Losing pos 2 4.078*** (0.943) 4.205*** (0.908) 4.262*** (0.896)

Losing pos 3 0.802 (0.926) 0.773 (0.891) 0.774 (0.880)

Period −0.964*** (0.091) −3.110*** (0.359)

Period square 0.204*** (0.033)

Constant 3.866*** (0.694) 8.429*** (0.797) 12.565*** (1.033)

r2

N 1442 1442 1442

*p < 0.05, **p < 0.01, ***p < 0.001.
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[particularly in the game G(17, 4)] decline over time. The other
variables confirm what we have seen in the aggregate analysis of
the figures. Most notably, the increase in response time at losing
positions is significantly higher than the one induced by winning
positions; making more likely the conjecture that subjects carry
over into the analysis of positions further from the end, insights
they have obtained from the losing position 11, and possibly search
for equivalent insight among positions earlier in the game.

4.2. THE fMRI DATA
4.2.1. Expected activation patterns and regions of interest
On the basis of the model and the analysis of the behavioral data we
can formulate hypotheses to be tested in the study of the imaging
data.

Learning of the method of backward induction should begin
with the negative affective response experienced with moving at
position 11, and realizing that the game is lost at that point.
This experience should involve the reward system, particularly
the Striatum (Schultz et al., 1997). We explore this hypothesis
in section 4.3.

The predicted striatal response should be stronger, and occur
earlier with subjects for whom behavioral evidence indicates that
they posses a better understanding of the optimal strategy. We
explore this hypothesis in section 4.4.

Further, the analysis of behavioral data has shown longer
response times at the losing positions of game G(15, 3). The brain
activation at these three positions should be similar, but should
occur at different points in time during the experimental ses-
sion. Brain activation should involve both areas associated with
reward system and areas involved in abstract reasoning. We test
this hypothesis in section 5 (see in particular in Figure 11).

One of our main assertions is, that the affective response
induced by the understanding that the game is lost at position
11 should occur together with activation of frontal areas involved
in planning, particularly VLPFC (Crescentini et al., 2011). This
hypothesis is also examined in section 4.5.

In what follows we present results obtained from an event-
related random effects general linear model (rfxGLM) with 16
predictors. Predictors are dummy variables indicating the 7 sets of
positions for G(15, 3) over the first 10 trials (Early) and the last
10 trials (Late). A dummy variable indicating the computer’s turn,
and a constant term complete the model. The omitted variable
corresponds to a resting period between trials. Unless explicitly
stated, all results reported here are significant at an uncorrected
threshold of p ≤ 0.005; t (11) ≥ 3.59 for the full sample, or with
t (5) ≥ 4.77 when split into Fast and Slow Learners. Fast Learners
are defined as the 6 subjects with the lowest average error rate over
both games. These are incidentally also the 6 subjects with the
most wins in G(15, 3). Correspondingly, Slow Learners are the 6
subjects with the highest average error rates.

The model and observed behavior suggests that subjects
become proficient at the Hit-15 game via a sequence of insights
pertaining to their experience at losing positions; the generic
manifestation of which is the avoidance of the losing position
at 11, followed by avoidance of position 7, and for some sub-
jects avoidance of position 3. These adaptations, which are likely
accompanied by (conscious) realization of these positions as losing

positions happen at dramatically varying rates between subjects,
and have critical relation to models of prediction error processing
and temporal difference learning (see e.g., Schultz et al., 1997,
or Daw et al., 2010). According to models of prediction error-
based learning, unexpected occurrences of losing positions should
be accompanied by corresponding BOLD signal change in areas
involved with prediction error (PE) tracking, such as the Stria-
tum (Schultz et al., 1997) and Insula (Preuschoff et al., 2008). We
expect to see these PE responses whenever subjects first realize
that a given position is a losing position, and also when subjects
are unexpectedly placed onto an already identified losing posi-
tion; both of which necessitate a yet incomplete understanding of
the game, when played against a reasonably proficient opponent
such as the computer program used for this study. This expecta-
tion follows, because prediction error responses should become
less pronounced as subjects gain greater insight into the game as
a consequence of their increased ability to accurately predict the
games outcome. Hence, once the game’s losing positions have been
identified, finding oneself at a subsequent losing position becomes
almost perfectly predictable at earlier stages, wherefore prediction
errors should eventually approach zero.

4.3. PREDICTION ERROR RESPONSE IN THE STRIATUM AND INSULA
All subjects in the fMRI sample learn to identify position 11 as a
losing position at some point during the game. In agreement with
the idea that the identification of position 11 as a losing position
induces an activation in the reward system, we find significant dif-
ferences in striatal activation for subjects considering a move at
losing position 11 compared to when considering a move at win-
ning position {1, 2}. The difference in activation is in the direction
of a negative prediction error, and an illustration is provided in
Figure 8. (See also Appendix for time course graphs of BOLD
activation).

Figure 8 also shows significant positive activation of the left
and right Insula at coordinates (41, 19, 3), as subjects perceive
the near inevitability of losing the game at position 11. This acti-
vation is consistent with the Insula’s involvement in processing
negative affect, and it’s role in signaling negative prediction errors
(Seymour et al., 2004)

4.4. PREDICTION ERROR RESPONSE FOR FAST LEARNERS
Given our main interest in the neural signature of the sequential,
recursive way in which subjects learn the solution to the Hit-N
game, we concentrate in Figure 9 on the Fast Learners; those sub-
jects who actually manage to quickly reduce the amount of errors
they make in the game.

The left panel of Figure 9 contrasts activation at position 11
to activation at position {1, 2} for Fast Learners. Consistent with
the role of the Striatum in signaling prediction errors, we find that
subjects show a strong initial negative response in the Striatum at
losing position 11 during the first 10 rounds, which diminishes or
disappears during the last 10 rounds. Figure 10C shows that this
change of Striatal activity for Fast Learners is statistically signif-
icant at an uncorrected threshold of p ≤ 0.005, [t (5) ≥ 4.77]. At
the same threshold, we observe significant activity in the Insula
during both time periods.

www.frontiersin.org February 2012 | Volume 6 | Article 23 | 121

http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Hawes et al. Experience and abstract reasoning

FIGURE 8 | Brain activity at the losing position 11 in G(15, 3). Contrast
obtained from a GLM with 16 predictors on all 12 subjects. In the GLM we
use the same 7 groupings for positions in the game, and differentiate
between positions during the first (early) and last (late) 10 trials, for a total
of 14 predictors. An additional predictor for computer choices and a
constant term describe the full model. The contrast used in the figure
shows activation when the current position is 11 during both early and late
trials compared to activation at positions {1, 2} during early and late trials.
The map shows activation at a false discovery rate q < 0.05.

Our analysis also shows strong activity in the Insula at position
7 compared to {1, 2} during early trials, and eventually activ-
ity in the Striatum at position 7 during late trials; indicating a
shift of the prediction error from position 11 to position 7; the
sequence – as we have already shown – in which subjects learn the
losing positions.

Figure 10 provides support to the above observations by over-
laying the contrasts of early and late activity at position 11 (com-
pared to {1, 2}) for both Fast and Slow learners. Slow learners
exhibit detectable striatal activation in direction of a prediction
error only during the last 10 trials; consistent with the observation
that these subjects learn the game according to the same general
pattern, but at a slower pace, than subjects classified as Fast Learn-
ers. However, the direct test of the effects of Early/Late periods,
Fast/Slow learners, and the interaction term of these classifica-
tions, shown in Table 4, did not identify a statistically significant
effect for the interaction (p = 0.158).

4.5. EXPERIENCE-BASED LEARNING AND ABSTRACT REASONING
The center image of Figure 10C identifies a cluster of voxels
in the ventrolateral prefrontal cortex (VLPFC; 47, 40, 3) with

FIGURE 9 | Progression of activation at losing position 11 for fast

learners. GLM and contrasts as for Figure 8, but limited to Fast Learners.

strong positive activation during the early losing position for Fast
Learners. We are left to investigate the activity in this area when
subjects are in losing positions for the game G(15, 3).

Our analysis of losing positions, illustrated in Figure 11, shows
statistically significant increases of activation in the VLPFC at all
of the losing positions during G(15, 3). Given this region’s associ-
ation with tasks requiring spatial imagery in deductive reasoning
(see Knauff et al., 2002 or Crescentini et al., 2011) the observation
of higher activity during losing positions is of particular interest,
as it indicates the special contribution that the experience of a los-
ing position seems to make toward subject’s progress in learning
the game.

Figure 11 shows overlapping regions of activation for all losing
positions experienced by Fast Learners that is most pronounced
at position 11, and least pronounced at position 3; once again
highlighting the critical nature of the initial losing position 11 for
subject’s learning experience with the game.

5. CONCLUSION
We have explored how subjects learn to play the Hit-N game, and
how this process converges for all subjects to learning the optimal
strategy with the method of backward induction. We found strong
evidence for a sequential learning process in which subjects learn
the losing positions at the game’s end first. We showed that the
behavioral characteristics (in error rate and response time) of this
sequential learning process are consistent with a basic search model
in which subjects choose an optimal search effort conditional on
their ability and associated search costs.

We have also shown a neural pattern of activation in the brain’s
reward system, including the Insula and Striatum, that mirrors
the behaviorally implied pattern of subjects learning to identify
losing positions from the game’s end. In particular, we find that
the rate at which subjects learn to identify losing positions is
also reflected by a differential onset of prediction error response
between Fast and Slow Learners. A critical finding of our study
is the implication of the prefrontal cortex in subject’s progres-
sion toward finding the solution to the Hit-N game. Here we find
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FIGURE 10 | Progression of activation in fast and slow learners.

(A) Contrast obtained from a GLM with 16 predictors on 6 subjects
classified as Slow Learners. The depicted contrast shows activation at
position 11 compared to activation at position 1, 2 during late trials.
p < 0.005 uncorrected, t > 4.77. (B) Same model as (A). The depicted
image subtracts the contrast obtained for positions 11 vs {1, 2} in late
periods from the contrast obtained for those positions during early
periods. Positive identification of Striatum in this contrast, is driven by a

more strongly negative activation at position 11 in late periods for Slow
learning subject. (C) 12 predictor GLM for 6 subjects classified as Fast
Learners. As in (B), we show the subtraction of the contrast (11 early-1,
2 early)–(11 late-1, 2). We find activation in Medial Prefrontal Gyrus
(MPFG), VLPFC, and Striatum. Negative identification in Striatum is
driven by a more strongly negative response at position 11 during early
trials for Fast Learners. p < 0.005 uncorrected for all images depicted
here.

Table 4 | Interaction between fast/slow learner, and early/late trial on

BOLD signal contrast position 11 – position {1, 2} in Striatum.

Perc. BOLD (b/se)

Dummy for fast learners −0.09366 (0.08354)

Dummy for first 10 periods 0.15197 (0.32534)

Interaction term 0.17345 (0.11814)

Constant 1.02843*** (0.23005)

r2 0.2144

N 24

*p < 0.05, **p < 0.01, ***p < 0.001.

that activity in VLPFC is higher at losing positions than at corre-
sponding winning positions. Taken together, these findings point
toward a cognitive process in which the affective experience of a
losing position feeds critically into the subject’s abstract cognitive
engagement with the task.

While most of our discussion concentrated on subject’s success
in recursively learning to identify losing positions in the Hit-N
game, it is clear that such a process – although enabling subjects to
master any length Hit-N game – is not equivalent to an abstract,
explicit understanding of the BI solution to the game; one which
could be transferred instantaneously to other similar games, such
as G(17, 4). We see then, in both of our studies, that most sub-
jects, despite quickly becoming highly proficient in G(15, 3), fail to
instantaneously achieve proficiency in G(17, 4). Instead, subjects
require an abbreviated learning period also for the second game.

What seems remarkable about the transition of behavior from
G(15, 3) to G(17, 4) is that subjects, even without ostensibly
having explicit knowledge of the BI solution at the time they
begin G(17, 4), nonetheless commit fewer errors, and require a
shorter learning phase for the theoretically more difficult second
game. This observation provides strong indication that the recur-
sive learning algorithm that enables learning of G(15, 3) is also a
contributor to the development of a precursory understanding of
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FIGURE 11 | Fast learners at the losing positions. Contrast for Fast
Learners during first 10 periods at p < 0.005. The contrasts used are for
each of the three losing position, compared to the predictor given by the
game being in position {1, 2}. For example the contrast for the position 3
indicates the comparison between position 3 and position {1, 2}. The top
panel shows the clusters in VLPFC activated for the different contrasts.
The lower panel shows the activation for the contrasts (3,{1, 2}), (7,{1, 2}),
and (11,{1, 2}). Activation in VLPFC is not found in Fast Learners during the
last 10 rounds, and Slow Learners show it only during the last 10 rounds

for 11-{1, 2}. As shown in Figure 5, Fast Learners do not make mistakes
past round 10, while Slow Learners commit mistakes even at position e11
past round 10. It should be also noted here that a direct test of the
interaction between subjects’ categorization as Fast/Slow Learner and a
dummy variable indicating Early/Late trials did not yield a statistically
significant effect (p = 0.158 two-sided, seeTable 4). We believe that the
failure to identify such an effect at conventional significance level in our
data may be due to small sample size, and an insufficiently precise
measure of when subjects learn the game.

the game’s abstract solution. One implication of this finding is that
complex cognitive insights, such as understanding that backward
inductive reasoning provides a solution to the general Hit-N game,
can arise from the interaction of experience-based reward system
responses and abstract reasoning within a relatively simple model.
The fact that an experience-based understanding derived from
playing G(15, 3) is effective in improving subject’s performance
in G(17, 4) suggests that at least some higher-order cognition and
insights might be motivated and prepared by joint activity in the
brain’s reward system and prefrontal cortex.

6. MATERIALS AND METHODS
6.1. MRI DATA ACQUISITION
High resolution anatomical images were acquired first, using a
Siemens t 1-weighted 3D flash 1 mm sequence. Then, functional
images were acquired using echo planar imaging with Repetition
Time (TR) 2000 ms, Echo Time (TE) 23 ms, flip angle 90˚, 64 × 64
matrix, 38 slices per scan, axial slices 3 mm thick with no gap. The
voxel size was 3 mm × 3 mm × 3 mm.

The data were then preprocessed and analyzed using Brain
Voyager QX 2.1. The anatomical images were transformed into
Talairach space in 2 steps: first the cerebrum was rotated into
anterior commissure – posterior commissure (AC-PC) plane

using trilinear transformation, second we identified 8 reference
points (AC, PC, and 6 boundary points) to fit the cerebrum into
the Talairach template using trilinear transformation. We pre-
processed functional data by performing slice scan time correction,
3D movement correction relative to the first volume using trilin-
ear estimation and interpolation, removal of linear trend together
with low frequency non-linear trends using a high-pass filter.
Next, we co-registered functional with anatomical data to obtain
Talairach referenced voxel time courses, to which we applied spatial
smoothing using a Gaussian filter of 7 mm.

GLM MODELS
fMRI analysis was performed in Brain Voyager QX version 2.1.
Contrasts obtained for G(15, 3) are based on the results of an
event-related general linear model with random effects using 16
predictors. Seven predictors signify the period in which a subject
contemplates any of the positions {1, 2}, {3}, {4, 5, 6}, {7}, {8, 9,
10}, {11}, {12, 13, 14} during the first 10 trials of G(15, 3). Another
7 predictors signify the same position during the last 10 trials. An
additional predictor for times in which the computer is moving
and an intercept term describe the model. Contrasts obtained for
G(17, 4) are based on the results of an event-related general linear
model with random effects using 16 predictors. Seven predictors
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signify the period in which a subject contemplates any of the
positions {1}, {2}, {3, 4, 5, 6}, {7}, {9, 10, 11}, {12}, {13, 14, 15, 16}
during the first 10 trials of G(17, 4). Another 7 predictors signify
the same position during the last 10 trials. An additional predictor
for times in which the computer is moving and an intercept term
describe the model.

6.3. FAST AND SLOW LEARNERS
The fMRI study consists of 12 subjects. For analysis comparing
Fast and Slow Learners in G(15, 3), subjects were split into groups

according to their overall error rate (a subject is slow if the error
rate is larger than 40%), which also constitutes a splitting accord-
ing to Wins in G(15, 3) (a subject is slow if the number of wins in
that game is less than five). Both are median values, but they are
also values at which there is a large change of performance.
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APPENDIX
The following figures show time series plots of percentage BOLD
signal change in the game G(15, 3) for clusters defined by the
contrast of positions 11-{1, 2}, using t = 4.5, cs = 100. The x-axis
represents positions in G(15, 3).

In graphs comparing early (first 10) and late (last 10) trials,
error bars are for the mean condition over all 20 trials.

FIGURE A1 |Time series of percentage BOLD change for G(15,3).

FIGURE A2 |Time series of percentage BOLD change for G(15,3).

FIGURE A3 |Time series of percentage BOLD change for G(15,3).

FIGURE A4 |Time series of percentage BOLD change for G(15,3).
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FIGURE A5 |Time series of percentage BOLD change for G(15,3).

FIGURE A6 |Time series of percentage BOLD change for G(15,3).

FIGURE A7 |Time series of percentage BOLD change for G(15,3).
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The process of evaluating risks and benefits involves a complex neural network that includes
the dorsolateral prefrontal cortex (DLPFC). It has been proposed that in conflict and reward
situations, theta-band (4–8 Hz) oscillatory activity in the frontal cortex may reflect an elec-
trophysiological mechanism for coordinating neural networks monitoring behavior, as well
as facilitating task-specific adaptive changes. The goal of the present study was to investi-
gate the hypothesis that theta-band oscillatory balance between right and left frontal and
prefrontal regions, with a predominance role to the right hemisphere (RH), is crucial for
regulatory control during decision-making under risk. In order to explore this hypothesis,
we used transcranial alternating current stimulation, a novel technique that provides the
opportunity to explore the functional role of neuronal oscillatory activities and to establish
a causal link between specific oscillations and functional lateralization in risky decision-
making situations. For this aim, healthy participants were randomly allocated to one of
three stimulation groups (LH stimulation/RH stimulation/Sham stimulation), with active AC
stimulation delivered in a frequency-dependent manner (at 6.5 Hz; 1 mA peak-to-peak).
During the AC stimulation, participants performed the Balloon Analog RiskTask.This exper-
iment revealed that participants receiving LH stimulation displayed riskier decision-making
style compared to sham and RH stimulation groups. However, there was no difference in
decision-making behaviors between sham and RH stimulation groups. The current study
extends the notion that DLPFC activity is critical for adaptive decision-making in the con-
text of risk-taking and emphasis the role of theta-band oscillatory activity during risky
decision-making situations.

Keywords: DLPFC, BART, risk-taking, theta-band oscillations, lateralization

INTRODUCTION
When facing risky situations humans have to weigh up the con-
sequences of failure against the rewards for success. Assessing risk
inevitably involves a conflict between the desire to win and the fear
of penalty. In such situations, the ability to identify and weight risks
and benefits is highly important in order to make proper predic-
tions concerning potential outcomes that will best serve individual
survival and future goals. In this regard, the cognitive architec-
ture, neural, and electrophysiological basis of decision-making
processes in the context of risk-taking has gained a lot of atten-
tion in the last two decades. Studies of patients with focal brain
lesion (e.g., Bechara et al., 1994, 1996; Tranel et al., 2002), along-
side numerous neuroimaging and electroencephalogram (EEG)
studies (e.g., Rogers et al., 1999; Paulus et al., 2001; Sanfey et al.,
2003a,b; Ernst and Paulus, 2005; Trepel et al., 2005; Krain et al.,
2006; Rao et al., 2008; Gianotti et al., 2009; Hare et al., 2009;
Mohr et al., 2010) suggest that decision-making processes involve
a distributed subcortical–cortical network that includes multiple
prefrontal, parietal, limbic, and subcortical regions.

Within this network, prefrontal cortex (PFC) involvement
appears to be vital in decision-making under risk. Based on

traumatic brain injuries or other pathologies affecting the PFC
(Bechara et al., 1996; Rahman et al., 2001) it seems that PFC
dysfunction typically manifests in a tendency for riskier decision-
making behavior and an apparent disregard for negative conse-
quences of actions during risky decision-making. In particular,
the dorsolateral prefrontal cortex (DLPFC) has been considered
to play an important role in decision-making under risk, probably
due to its function in executive control, goal maintenance, and
inhibitory control (Miller and Cohen, 2001; Knoch et al., 2006;
Rao et al., 2008; Hare et al., 2009), as well as decision imple-
mentation (Mohr et al., 2010). This hypothesis seems particularly
plausible for right hemisphere (RH) role in risky decision-making
under risk (“RH hypothesis”), and mostly pronounced in right
PFC/DLPFC function as found in patients with right-sided lesions
(Tranel et al., 2002; Clark et al., 2003), and is supported by sev-
eral neuroimaging, EEG, and brain stimulation studies (e.g., van’t
Wout et al., 2005; Knoch et al., 2006; Fecteau et al., 2007a; Gianotti
et al., 2009), and by a recent meta-analysis (Mohr et al., 2010). For
instance, a repetitive transcranial magnetic stimulation (rTMS)
study showed that individuals displayed riskier decision-making
in a standard gambling paradigm after disruption of the right, but
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not the left, DLPFC (Knoch et al., 2006). Mohr et al. (2010) found
that the right DLPFC (in conjunction with parietal cortex) has a
role in risk processing during decision-making, particularly in the
implementation of the risk decision, and the integration of the
risk information with other aspects that may be relevant.

However, several findings call in to question the RH hypothesis
role in risky decision-making under risk. For instance, a tran-
scranial direct current stimulation (tDCS) study showed that after
bilateral DC stimulation individuals displayed a conservative, risk-
averse response style in a standard gambling paradigm (Fecteau
et al., 2007b). In this study, unilateral DC stimulation to left or
right DLPFC did not affect decision-making style at all, whereas
both kinds of bilateral DC stimulations, regardless of electrodes
polarity, produced the same behavioral outcome. Furthermore, in
another tDCS study it has been found that DC modulation of
the DLPFC influenced driving behavior, with anodal excitation of
both the left and the right DLPFC leads to a more careful driving
behavior (Beeli et al., 2008). Similar to Fecteau et al. (2007b), Beeli
et al. (2008) did not find any clear functional lateralization pat-
terns. These findings add to previous studies and suggestions such
as Clark et al. (2003) report that patients with left-sided prefrontal
lesions also displayed abnormal risk-taking behaviors, and to a
meta-analysis of different neuroimaging studies which revealed
that risky and ambiguous decision-making elicited activity bilat-
erally in the PFC (mainly orbitofrontal and DLPFC; Krain et al.,
2006). This variety of evidence suggests that functional DLPFC
lateralization in risk-taking behavior is still an unsolved issue that
calls for further examination. Moreover, past studies, mostly stud-
ies that utilized brain stimulation techniques such as TMS and
tDCS are restricted in the way they can uncover what is the elec-
trophysiological mechanism that underlies the cognitive process
in question.

Regional patterns of oscillatory activities can take place accord-
ing to the behavioral tasks on which the brain is currently engaged
(Thut and Miniussi, 2009). Studies into the role of brain oscil-
lations in conflict and reward situations have demonstrated the
relevance of oscillations in the theta-band (4–8 Hz). In particular,
theta-band oscillatory activity over the medial frontal cortex has
been proposed to reflect an electrophysiological mechanism for
coordinating neural networks involved in monitoring behavior
and the environment as well as facilitating task-specific adap-
tive changes in performance in conjunction with lateral PFC
and sensory–motor areas. Different studies have identified that
an induced oscillatory response in the theta-band during feed-
back processing is greater in power and phase coherence following
negative feedback or errors relative to positive feedback or wins
(e.g., Luu and Tucker, 2001; Luu et al., 2003, 2004; Cohen et al.,
2007, 2008; Marco-Pallares et al., 2008; Cavanagh et al., 2009,
2010; Christie and Tata, 2009; van de Vijver et al., 2011). Fur-
thermore, when an action or outcome is suboptimal and medial
frontal cortex signals a need for adjustment, this also appears to
lead to an increase in cognitive control, possibly via the addi-
tional recruitment of lateral PFC (Kerns et al., 2004; Ridderinkhof
et al., 2004). Lateral PFC is assumed to adjust higher-level decision-
making strategies to changing contexts and demands and to inte-
grate information over time (McClure et al., 2004; Lee and Seo,
2007).

There is some evidence for the lateralization of the electrophys-
iological mechanism involved in risk-taking behavior. Gianotti
et al. (2009) reported that individual’s tonic cortical lateral PFC
asymmetry in theta and delta bands predicted their behavior in
a standard gambling paradigm. In other words, the extent to
which baseline slow-wave oscillations in theta and delta bands
was greater in the RH than in the left hemisphere, was posi-
tively associated with level of risk taken in Slovic’s (1966) risk
task. Specifically, using a source localization technique, they found
that the baseline cortical activity in the right PFC predicts indi-
vidual risk-taking behavior. A recent study by Christie and Tata
(2009) showed that feedback-induced theta during the Iowa gam-
bling task (IGT) was substantially right lateralized. Christie and
Tata’s (2009) finding adds to previous suggestions (Gehring and
Willoughby, 2004; Marco-Pallares et al., 2008), which promote the
hypothesis that medial frontal theta and the recruitment of right
lateral PFC reward-related theta-band oscillatory activity may be
regarded as the electrophysiological mechanism which mediates
decision-making processes during risk-taking situations. In the
current study, we aim to investigate this hypothesis and specifi-
cally the notion that theta-band oscillatory balance between right
and left regions, with a predominance role to the RH, is crucial for
regulatory control during decision-making under risk. To the best
of our knowledge, no past study has reported a direct causal link
between oscillations and lateralization patterns to risky decision-
making behaviors. In order to investigate this hypothesis, we used a
novel stimulation technique called transcranial alternating current
stimulation (tACS).

Transcranial alternating current stimulation provides a power-
ful approach to establish the functional role of neuronal oscillatory
activities in the human brain and to explore the functional role of
neural oscillations in cognitive tasks by stimulating the brain with
biophysically relevant frequencies during task performance. tACS
is supposed to induce regional brain oscillations in a frequency-
dependent manner, thereby interacting with specific functions of
the stimulated region (Kanai et al., 2008, 2010; Pogosyan et al.,
2009; Thut and Miniussi, 2009; Zaehle et al., 2010; Paulus, 2011).
This technique is still largely unexplored and volume conduction
effects are not wholly understood (Kanai et al., 2010; Zaghi et al.,
2010; Feurra et al., 2011; Schutter and Hortensius, 2011). Never-
theless, recent studies have demonstrated tACS efficiency in differ-
ent domains. For instance, Kanai et al. (2010) showed that cortical
excitability of the visual cortex as measured by the thresholds for
TMS evoked phosphenes, exhibits frequency dependency whereby
20 Hz tACS over the visual cortex enhances the sensitivity of the
visual cortex. A recent study by Zaehle et al. (2010) provided direct
physiological evidence of interaction between tACS and ongoing
alpha oscillation in the occipital region. When tACS was delivered
at the alpha-frequency, entrainment of the EEG amplitude in this
frequency was observed. A recent study demonstrated that stim-
ulation in alpha and gamma bands over the associative sensory
cortex induced positive sensory sensations (Feurra et al., 2011).
It has also been demonstrated that tACS at prefrontal sites during
sleep improved procedural memory consolidation (Marshall et al.,
2006).

Transcranial alternating current stimulation differ from other
stimulation techniques that modulate brain frequencies, most
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notably rTMS. In general, low-frequency rTMS (<1 Hz) is often
used to decrease excitability in an off-line mode (e.g., the task is
administrated after the stimulation). In contrast, AC stimulation
can possibly lead to one of two outputs: by inducing synchro-
nous changes in brain activity, the AC stimulation can enhance
ongoing oscillations and to increase/enhance cortical excitability,
or AC stimulation can interrupt with ongoing cortical activity
by introducing cortical noise, thus disrupt cortical excitability.
This technique therefore allows us to exploit both properties of
“enhancement” and “interference” in an on-line paradigm.

In the current study, we investigated whether on-line tACS
can modulate the neural excitability of left and right PFC in a
frequency-dependent manner. We aimed to examine whether risk-
taking strategies can be modified in healthy individuals and to pro-
vide direct evidence for the causal role of lateralized hemispheric
control, frequency-dependent, of risk-taking during a gambling
game. Specifically, we focused on the theta-band (4–8 Hz) as the
main oscillatory frequency and the DLPFC as the main structure
of interest. In the current experiment, participants were randomly
allocated to one out of three stimulation conditions that included
right or left AC stimulation, or a sham stimulation, and performed
the Balloon Analog Risk Task (BART; Lejuez et al., 2002) during
the AC stimulation.

The BART is a task which involves learning from experience
(i.e., experience-based decision), that was originally developed to
be used as a behavioral measure of risk-taking tendencies. The
task has been found to have a convergent validity with real-world
risk-related situations, and provides an ecologically valid model to
assess human risk-taking propensity and behavior (Lejuez et al.,
2002; Schonberg et al., 2011). The average number of adjusted
pumps a person tolerates in the task was found to correlate with
self-reported drinking, smoking, risky sexual behaviors, and sub-
stance use in healthy adults and adolescents (Lejuez et al., 2002,
2003a,b, 2004, 2005; Aklin et al., 2005; Hunt et al., 2005).

We predicted that AC stimulation over the right DLPFC would
increase RH theta-band power; consequently, participants would
display a more conservative, risk-averse response style (i.e., smaller
number of average adjusted pumps during the BART compare
to sham). On the other hand, AC stimulation over left DLPFC
was predicted to increase LH theta-band power, thus violate the
hemispherical balance,and to disrupt decision-making processing;
thus, we expected that participants would display riskier decision-
making style (i.e., larger number of average adjusted pumps during
the BART compare to sham). Finally, we investigated whether
individual differences such as gender and trait motivation charac-
teristics may moderate tACS effectiveness on performance, since
both factors have been suggested to moderate decision-making
processes to some extent (Tranel et al., 2005; Demaree et al., 2008).

MATERIALS AND METHODS
PARTICIPANTS
Participants in the experiment were 27 healthy college students
(mean age = 23.89 SD = 2.45; range 18–30 years, 13 male, 14
female), each participant received 40 Shekel (equivalent to ∼10$)
for participating in the experiment. All participants gave informed
consent in accordance with the Declaration of Helsinki and
the procedures had the approval of the local ethics committee.

Participants had no metallic implants, previous history of any
neurological disorders, medication, or substance abuse. All par-
ticipants were right-handed as assessed by the Edinburgh Hand-
edness Inventory (handedness score ≥90; Oldfield, 1971). The
participants were randomly allocated to one of three stimulation
groups [LH stimulation (N = 9)/RH stimulation (N = 8)/Sham
stimulation (N = 10)].

BALLOON ANALOG RISK TASK
In the BART (Lejuez et al., 2002; Hunt et al., 2005), participants
have to make a choice in a context of increasing risk. Participants
inflated a computerized balloon by pushing a “pump” button. The
balloon can explode at any moment. Participants have to decide
after each pump whether to keep pumping and risk explosion,
or to stop. In our modified version of the BART, participants
accumulated points in a temporary bank with each pump (10
points). When the participant decided to stop pumping, the accu-
mulated points transferred to a permanent bank. However, if the
balloon explodes, all of the points accumulated in the tempo-
rary bank were lost. The probability that a balloon would explode
was fixed at 1/128 for the first pump. If the balloon did not
explode after the first pump, the probability that the balloon
would explode was 1/127 on the second pump, 1/126 on the
third pump, and so on until the 128th pump the probability of
an explosion was 1/1 or a certainty. According to this algorithm,
the average breakpoint was 64 pumps. Detailed instructions pro-
vided to the participants were based on those provided by Lejuez
et al. (2002). Following instructions and a short guided practice,
the task was administered until 30 balloons (i.e., trials) were com-
pleted. Note that participants did not actually receive the final
sum of points stored in the permanent bank. Instead, they were
informed at the beginning of the session that they are part of a
tournament in which they play against other participants, for the
prize of 250 Shekel (equivalent to ∼70$), and their objective was
to obtain the largest amount of points possible in order to win the
prize.

Similar to previous studies that used the BART (e.g., Lejuez
et al., 2002), the main outcome measure of the current examina-
tion was the adjusted number of pumps. In addition, total number
of balloon explosions on the BART was calculated. Adjusted values
were calculated based on the average number of balloon pumps
on those balloons that did not explode. Adjusted values are prefer-
able, because including balloon pumps from all trials (including
those in which balloons exploded) result in the inclusion of trials
in which the participants were forced to stop pumping because
of the explosion (Lejuez et al., 2002; Aklin et al., 2005). Because
the adjusted value consisted only of no-explosion trials, it con-
siders being an index of a more adaptive (non-punitive) form
of risk-taking behavior (Hunt et al., 2005). In contrast, evaluat-
ing the frequency of balloon explosions provided an index of a
more maladaptive form of risk-taking whereby risk exceeded an
acceptable level and ultimately was punished (via explosion and
loss of money; Hunt et al., 2005). Furthermore, because the BART
was performed during the whole stimulation duration, we calcu-
lated the time course of this measures (adjusted number of pumps
and frequency of balloon explosions for three blocks, each block
contain 10 balloons).
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FIGURE 1 | Overview of the study design. Participants arrived at the
lab, answered the BIS/BAS scales (Carver and White, 1994), and were
randomly assigned into one of three stimulation conditions: left, right,
or sham stimulation. After a short practice, sham or AC stimulation
administered and lasted a total of 15 min, with 6.5 Hz, 1 mA

peak-to-peak intensity in the active stimulation conditions. The
stimulation started 5 min before the task began and was delivered
during the entire course of the BART, which lasted <10 min. Before and
after stimulation and the BART participants performed the
line-bisection task.

In addition, a recent advance in modeling methods of the
BART task, originally introduced by Wallsten et al. (2005), vali-
dated recently by Bishara et al. (2009), and further developed by
van Ravenzwaaij et al. (2011) propose a model where BART per-
formance is governed by different component processes such as
risk-taking (involving the tradeoff between reward and penalties)
and general sensitivity to payoff which affects task performance.
Whereas adjusted values and frequency of balloon explosions
are usually considered to tap the construct of risk-taking, payoff
sensitivity can be measured with the evaluation of participants’
deviation from the optimal expected-value strategy. We report
these measures in the Results section.

tACS AND GENERAL PROCEDURE
A double blind, randomized and sham-controlled trial was used
in a between participants design (see Figure 1). The experi-
ment included three types of stimulation, two active stimulation
conditions and one sham condition. We used the international
EEG 10/20 system to determine stimulation sites. To stimulate
the LH, one electrode was placed over the left DLPFC (F3) and
the reference electrode was placed over the left temporal (CP5).
To stimulate the RH, one electrode was placed over the right
DLPFC (F4) and the reference electrode was placed over the
right temporal (CP6). For sham stimulation, the electrodes were
placed in the same positions as for active conditions (half of
the participants with LH montage and the other half with RH
montage).

The stimulation started 5 min before the task began and was
delivered during the entire course of the BART, which lasted
<10 min. tACS was induced by two 5 cm × 5 cm saline-soaked
synthetic sponge electrodes and delivered by a battery-driven,
constant-current stimulator (Magstim Ltd., Wales). The waveform
of the stimulation was sinusoidal and there was no DC offset. AC
was delivered at a frequency of 6.5 Hz and the intensity was 1 mA
(peak-to-peak). For active stimulation conditions the AC stimula-
tion was delivered for 15 min. For sham stimulation, stimulation
was delivered for 30 s and then turned off. Thus, participants felt
the initial itching sensation associated with brain stimulation but
received no active current for the rest of the stimulation period.
This method of sham stimulation has been shown to be reliable
with respect to DC stimulation (Gandiga et al., 2006). In the

present study participants were kept blinded with regard to the
type of the stimulation; the AC procedure used, with AC delivered
at a frequency of 6.5 Hz, did not induce any flickering sensation or
any other side effects, as verified by questioning participants after
the stimulation.

ASSESSMENT OF MOTIVATION
At the start of the session, participants completed the BIS/BAS
scales (Carver and White, 1994) in order to evaluate trait moti-
vational characteristics. The BIS/BAS scales (Carver and White,
1994) measures two independent based dimensions of motivation
(Gray, 1987; Pickering and Gray, 1999; Gray and McNaughton,
2000): the BAS, which regulates responses to rewarding stimuli,
and the BIS, which regulates inhibitory processes to aversive stim-
uli. All items were judged on a four-point scale ranging from 1 (“I
strongly agree”) to 4 (“I strongly disagree”). The BIS/BAS scales
assess one behavioral inhibition measure (BIS; e.g.,“I worry about
making mistakes”) and three personality measures related behav-
ioral approach (BAS): (1) The positive anticipation of rewarding
events (BAS Reward Responsiveness – BAS RR; e.g., “When I see
an opportunity for something I like I get excited right away”); (2)
Items tapping strong pursuit rewards (BAS Drive – BAS D; e.g.,
“I go out of my way to get things I want”); (3) The tendency to
seek out new rewarding situations (BAS Fun Seeking – BAS F;
e.g., “I am always willing to try something new if I think it will
be fun”).

LINE-BISECTION
Before and immediately after BART performance and AC stimu-
lation, participants performed two line-bisection trials as a simple
and non-invasive behavioral measure of a hemispheric bias. On
each trial, participants were asked to mark the exact center of a
180-mm black line printed horizontally on a white sheet of paper.
The line was printed at mid height of the page and was closer to
the right border on one trial and closer to the left border on the
other. Participants used a fine-point pen to bisect the line as accu-
rately as they could. Scores reflected the percent of deviation from
the center of the line: positive scores reflect a bias to the right side
(stronger LH activation), and negative scores reflect a bias to the
left side (stronger RH activation; Goldstein et al., 2010; Nash et al.,
2010).
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FIGURE 2 | Graphic display of the average number of adjusted pumps (the total pumps of the balloon that did not explode) for each stimulation

group (A) and the average number of adjusted pumps for each group and time period (B). Error bars indicate SEM. *p < 0.05.

RESULTS
BART PERFORMANCE
The data from the BART task was analyzed with a mixed
AVOVA model that included one between-subject factor and
one within-subject factors. The between-subject factor was Stim-
ulation Group (LH stimulation/RH stimulation/sham stimula-
tion) and the within-subject factor was Time (first block/second
block/third block). Average number of adjusted pumps and total
number of balloon explosions served as the dependent variables.
When relevant, post hoc analyses were performed using a Bonfer-
roni correction for multiple comparisons. Three participants (two
in the sham group and one in the LH stimulation group) were
excluded from all analyses as outliers (2 SD above or below the
mean of the group for the adjusted number of pumps).

The analysis of average number of adjusted pumps revealed
a main effect for Stimulation Group [F (2,21) = 5.63, p < 0.05;
η2

p = 0.35; see Figure 2]. Post hoc tests revealed an effect and show
that the LH stimulation group differed significantly from both
the sham stimulation (p < 0.05) and RH stimulation (p < 0.05)
groups. In addition, the analysis revealed a main effect for Time
[F (2,42) = 5.93, p < 0.05; η2

p = 0.22]. A trend analysis showed a

linear trend across blocks one to three [F (1,21) = 7.60, p < 0.05;
η2

p = 0.26]. Post hoc tests reinforced this linear trend, and revealed
that the first and the last blocks differed significantly (p < 0.05).
However, the analysis did not reveal any significant interaction
between the two factors (F < 1).

The analysis of total number of balloon explosions also revealed
a main effect for Stimulation Group [F (2,21) = 6.63, p < 0.01;
η2

p = 0.39; see Figure 3A]. Post hoc tests revealed that the LH stim-
ulation group differed significantly from sham stimulation group
(p < 0.01), and marginally differed from RH stimulation group
(p = 0.056). In addition, the analysis revealed a marginal effect for
Time [F (2,42) = 2.96, p = 0.06; η2

p = 0.12]. Post hoc tests revealed
that there was no significance different between the first block
(M = 3; SD = 1.56) and the second block (M = 2.75; SD = 1.32).
However, the second and the third block (M = 3.54; SD = 1.31)
differed significantly (p < 0.001). The analysis did not reveal any
significant interaction between the two factors (F < 1).

We further analyzed balloon explosions frequencies by defining
for each participant whether a balloon explosion was a one-time
explosion or a sequential explosion (a one-time explosion was
defined as the number of total balloon explosions minus number
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FIGURE 3 | Graphic display of the different balloon explosions

frequencies dependent measures. (A) Explosions.Tot = total number of
balloon explosions; (B) One-time = total number of one-time balloon

explosions; (C) Seq.Tot = total number of sequential balloon explosion; (D)

Max.Seq = maximum number of balloon explosions in a sequence. Error bars
indicate SEM. *p < 0.05. **p < 0.01.

Table 1 | Pearson’s correlations among different BART performance parameters.

(1) (2) (3) (4) (5) (6)

(1) One-time –

(2) Seq.Tot −0.51** –

(3) Max.Seq −0.22 0.76*** –

(4) Pumps.Adj 0.28 0.56*** 0.65*** –

(5) Points.Tot 0.35* 0.35* 0.47** 0.94*** –

(6) Explosions.Tot 0.22 0.74*** 0.69*** 0.85*** 0.67*** –

One-time = total number of one-time balloon explosions; Seq.Tot = total number of sequential balloon explosion; Max.Seq = maximum number of balloon explosions

in a sequence; Pumps.Adj = average adjusted number of pumps; Points.Tot = total points earned; Explosions.Tot = total number of balloon explosions.
*Correlation is significant at the 0.05 level (one-tailed).
**Correlation is significant at the 0.05 level (two-tailed).
***Correlation is significant at the 0.01 level (two-tailed).

of explosions in trial n that were followed by no-explosion in trial
n + 1; sequential explosion was defined as the number of total
balloon explosions minus total number of explosions in trial n
that were followed by an explosion in trial n + 1, n + 2, etc.; the
two measures are complementary). In addition, based on this sim-
ple calculation, we also defined another variable term “Maximum
sequential explosions” that reflected the highest number of bal-
loon explosions in a sequence for each participant. Consequently,
each participant had three additional measures of the original
balloon explosions frequency. The rationale to use these indices
is based upon the idea that the use of a maladaptive index of
risk-taking (e.g., number of balloon explosions) in a task with a
random schedule of explosions may create an artifact with respect
to the actual number of explosions that were a result of a risk
behavior that exceeded an acceptable level and resulted in an
explosion. Overall, the new indices were used in order to verify
whether participants in the LH stimulation group indeed tend

to pump the balloon more, a tendency that may be manifested
not only in a higher overall number of explosions compare to the
two other stimulation groups, but particularly in a higher num-
ber of non-random explosions. Pearson’s correlations coefficients
between the three newly defined measures and the other origi-
nal BART parameters were calculated and presented in Table 1.
The correlations of number of sequential explosions and maxi-
mum sequential explosions to the other BART known parameters
suggest that these variables are reliably correlated, contrary to the
number of one-time explosions.

Furthermore, based on these new measures, we conducted a
MANOVA with Stimulation Group as between-subject factor and
each of the newly defined measures as the dependent variables.
We reveled a Stimulation Group effect [Wilks’ Lambda = 0.45,
F (6,38) = 3.13, p < 0.05; η2

p = 0.32]. Follow-up testing showed that
no stimulation group effect was found with respect to number of
one-time explosion (F < 1; see Figure 3B). However, a Stimulation
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Table 2 | Demographics and motivation information for the Sham, LH, and RH stimulation groups.

Variables and measures Group

Sham stimulation (N = 8) LH stimulation (N = 8) RH stimulation (N = 8)

DEMOGRAPHICS

Gender 5 Males/3 females 3 Males/5 females 4 Males/4 females

Age 25 (3.59) 22.87 (1.55) 23.62 (2.07)

Years of education 14.75 (1.08) 13.25 (0.88) 14 (1.07)

BIS/BAS SCORES

BIS 13.50 (2.26) 13.12 (2.53) 14.50 (3.20)

BAS 22.75 (6.92) 21.62 (4.68) 23.87 (5.44)

BAS D 7.87 (2.23) 7.12 (2.85) 8.25 (1.91)

BAS FS 7.37 (3.45) 7.75 (1.90) 7.25 (2.12)

BAS RR 7.50 (2.45) 6.75 (1.83) 8.37 (2.13)

Values shown as mean (SD). BIS, behavioral inhibition system; BAS, behavioral approach system; BAS D, behavioral approach drive; BAS FS, behavioral approach fun

seeking; BAR RR, behavioral approach reward responsiveness.

Group effect was found with respect to number of sequential
explosions [F (2,21) = 4.34, p < 0.05; η2

p = 0.29; see Figure 3C].
Post hoc tests revealed that the LH stimulation group differed
significantly from the sham stimulation group (p < 0.05). A sim-
ilar effect was reveled with respect to the maximum of sequential
explosions [F (2,21) = 7.61, p < 0.01; η2

p = 0.42; see Figure 3D].
Post hoc tests revealed robust effect and show that the LH stimula-
tion group differed significantly from both the sham stimulation
(p < 0.01) and RH stimulation (p < 0.01) groups. These analyses
confirmed and elaborated on our previous mentioned results by
demonstrating that participants who received the LH stimulation
demonstrated a strategy of risky decision all along the BART, which
systematically differed to the sham and RH stimulation groups. All
the groups tolerated a similar number of one-time explosions, that
resulted from the inherent nature of the task, but only participants
receiving LH stimulation displayed a tolerance for losses, and in
particular, sequential losses.

Lastly, we computed a behavioral index that taps partici-
pants’ behavior in relation to optimal behavior in the BART
task (e.g., payoff sensitivity). The optimal expected-value strat-
egy was to pump 64 times and then stop. Explosion points
were determined for each balloon in the manner described (i.e.,
each pump had an a priori probability of 1/128 of yielding an
explosion) but with the constraint that explosions were sched-
uled to occur on average on Pump 64 over the entire 30 bal-
loons and within each sub-block of 10. We calculated the mean
squared distance (MSD) of each participant number of pumps
at a given trial from the optimal number of pumps. MSD there-
fore reflects participants’ sensitivity to payoffs, so that a closer
score to zero represents an optimal strategy. Pearson’s correla-
tions coefficients between this measure and the two main BART
outcome parameters reported earlier (e.g., average number of
adjusted pumps and total number of balloon explosions) were per-
formed, and showed a very high correlation (r = −0.91, p < 0.000;
r = −0.80, p < 0.000; for adjusted pumps and balloon explosions,
respectively). The fact that these parameters are highly correlated
indicates that payoff sensitivity and risk-taking measures are
confounded.

GENDER AND MOTIVATION BIAS
We investigated a possible moderation effect of individual dif-
ferences such as gender and trait motivation characteristics (see
Table 2 for descriptive statistics) on performance. First, we
separately entered gender as a covariate to the mixed AVOVA
models reported earlier. There was no significant effect to gen-
der or any significant interactions with other factors in any of
the models. Second, in order to investigate the role of moti-
vation bias on performance, we separately entered BAS, BIS,
and BAS subscales scores as covariates to the mixed AVOVA
models reported earlier. All models produced non-significant
effects for motivation bias. The stimulation groups did not dif-
fer in any demographic variables or in any BIS/BAS parameter
(F < 1).

LINE-BISECTION BIAS
In order to evaluate how BART performance and AC stimula-
tion affected hemispheric bias as measured by the line-bisection,
we analyzed line-bisection scores in a mixed ANOVA model
that included Stimulation Group (LH stimulation/RH stimula-
tion/sham stimulation) as the between-subject factor and Time
(Before/After) as the within-subject factor. The analysis revealed
a main effect for Time [F (1,18) = 23.70, p < 0.000; η2

p = 0.53].
The line-bisection index was more negative after performing the
BART task (M = −0.16, SE = 0.06) compare to before (M = 0.18,
SE = 0.07), indicating that the BART had the expected hemispheric
effect, i.e., RH engagement which lead to stronger RH activation.
This asymmetry shift can be further emphasized – 18 out of 24 par-
ticipants achieved a positive line-bisection score before the BART
and AC manipulation (this was significantly higher than 50% by a
binomial test, p < 0.05), but after task and stimulation, 18 out of 24
achieved a negative score (this was significantly higher than 50% by
a binomial test, p < 0.05). We separately analyzed before and after
line-bisection scores for the different AC groups using paired sam-
ples t -tests. Participants in the Sham [t (7) = 3.25, p < 0.05] and
RH stimulation [t (7) = 5.6, p < 0.001] groups showed the asym-
metry shift, however participants in the LH stimulation showed
only a non-significant trend [t (7) = 1.47, n.s]. This finding implies
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that the BART did not produce the expected asymmetry shift
within the LH stimulation group.

DISCUSSION
The current study explored the cognitive architecture, neural, and
electrophysiological basis of decision-making processes in the con-
text of risk-taking. Overall, we report that participants receiving
AC stimulation of 6.5 Hz to the LH, with one electrode located
over the left DLPFC and the reference electrode located over left
temporal cortex, displayed a risky response style, making more
pumps on the BART, and tolerated a larger number of balloon
explosions than those with sham stimulation and those with RH
stimulation. This is the first study showing that neuromodulation
in the theta-band can causally modulate decision-making style in
healthy participants. In addition, this result supports previous evi-
dence showing that the DLPFC is causally involved in modulating
risky decision-making behaviors.

The current result supports, to some extent, the hypothesis that
the theta-band oscillatory balance between right and left regions
is crucial for regulatory control during decision-making under
risk. As predicted, participants receiving AC stimulation to the LH
displayed a risky response style. It has been proposed that in con-
flict and reward situations, theta-band oscillatory activity over the
frontal medial cortex may reflect an electrophysiological mech-
anism for coordinating neural networks involved in monitoring
behavior and the environment as well as facilitating task-specific
adaptive changes. Furthermore, induced oscillatory response dur-
ing feedback processing found to be greater in power and phase
coherence following negative feedback or errors relative to positive
feedback or wins (Luu and Tucker, 2001; Luu et al., 2003, 2004;
Cohen et al., 2007, 2008; Marco-Pallares et al., 2008; Cavanagh
et al., 2009, 2010; Christie and Tata, 2009; van de Vijver et al., 2011).
We propose that AC stimulation at the theta-band to the LH, cre-
ated continuous disruption to participants’ ability to process and
adjust their actions based on negative feedback or errors, as shown
by their persistent tendency to tolerate losses, and in particular,
sequential losses. We further claim that the balance between right
and left regions, and in particular, the predominance of the RH,
is needed in order to be able to adopt a conservative, risk-averse
response style during the BART. Since we interfered with this bal-
ance and especially with RH dominance, participants lacked the
ability to adjust their risk-taking behaviors and tend to display a
risky response style.

Previous studies addressed the relative contribution of the right
and the left prefrontal regions in risk-taking behaviors and particu-
larly the role of the DLPFC in this kind of behavior. Various studies
have provided clear evidence for the role of the right DLPFC in
decision-making and risk-taking situations. Using low-frequency
rTMS van’t Wout et al. (2005) found a disruption to the right
DLPFC resulted in accepting more frequently unfair offers and
taking longer to refuse unfair offers. Knoch et al. (2006) reported
that suppression of activity in the right but not the left DLPFC
with low-frequency rTMS made participants choose high-risk
prospects more often. Moreover, using a different brain stimu-
lation methodology, i.e., tDCS, Fecteau et al. (2007b) showed that
during right anodal/left cathodal stimulation over the DLPFC,
participants chose more often the safe prospect compared with

the sham and reversed polarization groups. However, other stud-
ies have not found clear lateralization effects (e.g., Fecteau et al.,
2007b; Beeli et al., 2008). It has been suggested that divergent
results from different brain stimulation studies might be due to
differences in the risk-taking paradigm used and/or the method
of stimulation involved (Fecteau et al., 2007b).

Our results are in line with the RH hypothesis in risk-taking
behaviors, and address lateralization in terms of electrophysi-
ological balance between left and right cortical regions in the
theta bend. Previous suggestions (Gehring and Willoughby, 2004;
Marco-Pallares et al., 2008; Christie and Tata, 2009) have already
raised the hypothesis that right medial frontal/prefrontal theta may
be regarded as the electrophysiological mechanism which mediates
decision-making processes during risk-taking situations, and the
present study adds a causal link between the electrophysiological
mechanism and theta-band activity to actual behavior.

In addition, it is important to note that we address lateralization
in terms of hemispheric shift. It has been recently reported that
BART performance elicited greater activity in the right DLPFC
(Rao et al., 2008) providing further support to previous stud-
ies of patients with right-sided lesions (Tranel et al., 2002; Clark
et al., 2003) that reported on a dysfunction in risky decision-
making behaviors. Apart from the main findings reported earlier,
the simple asymmetry index (i.e., the line-bisection task) provided
further support for this hypothesis, and showed that only in the
sham and RH stimulation groups, but not LH stimulation group,
line-bisection bias was more negative after performing the BART
compare to baseline performance. This finding indicates that the
BART had the expected hemispheric effect, i.e., a RH enduring
engagement, which was reflected by a stronger RH activation in
those groups only. Tendencies toward rightward versus leftward
errors in estimating the actual midpoints are taken to reflect rel-
ative primacy of right versus left visual fields, respectively, and
neural activity in the contralateral hemisphere (Kinsbourne, 1970;
Milner et al., 1992; Goldstein et al., 2010). Even though previous
research suggests line-bisection bias may be more a marker of pari-
etal than prefrontal function (Vallar and Perani, 1986), the simple
and non-invasive line-bisection task has been recently found to
serve as a neural index of asymmetrical activity related to the
DLPFC (Nash et al., 2010).

In the present study, we failed to find an effect for AC stimula-
tion over the RH. We expected that following RH stimulation, par-
ticipants would display a more conservative, risk-averse response
style. The results suggest that participants who received this stim-
ulation behave as participants in the sham stimulation. This null
result can be marked as a “floor effect” and can be explained
in terms of behavioral, methodological, and electrophysiological
aspects. First, with respect to behavior, this “floor effect” prob-
ably represents a possible limitation of our ability to modulate
risk-taking behavior in healthy participants, and to increase their
risk-averse response style. It is possible that RH stimulation will be
more affective with populations that show deficits in risk-taking
tasks such as patients with lesions in the PFC and other clinical
populations, such as drug abusers, alcoholics, and pathological
gamblers (Bechara et al., 1996; Rahman et al., 2001). Second, this
“floor effect” may be also a direct outcome of the task proper-
ties, in which it is easy to demonstrate what is considered to be a
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risky behavior (e.g., a large number of adjusted pumps and a large
number of balloon explosions), but it may be harder to reveal
an overcautious, conservative, risk-averse response style. Third,
this “floor effect” can be referred as close to the idea of the so
called “natural frequency” (Rosanova et al., 2009), by which dif-
ferent corticothalamic brain modules are tuned to oscillate at a
topographically organized “natural frequency.” It is possible that
the AC stimulation to the RH interacted with the neuronal oscil-
latory activity that already evoked by the task, i.e., the “natural
frequency” that characterizes the decision-making processes that
usually take place during processing, thus did not modulate any
cortical activity or risk-taking behavior.

Overall, our results suggest that during risk-taking situa-
tions, the hemispheric balance is important. This suggestion may
account for previous conflicting results, mentioned earlier, regard-
ing the relative contribution of the right and left PFC/DLPFC in
risky decision-making behaviors. This balance can metaphorically
be described as a seesaw between left and right frontal/prefrontal
areas that is theta dependent. The right hemispheric shift is vital,
and especially the recruitment of right lateral PFC, in order to pro-
mote a conservative, risk-averse response style. Hence, it is clear
that right prefrontal regions must be functionally and anatomi-
cally intact in order to facilitate such an on-line shift. However,
the LH is also crucial for this shift, and especially the balance
between the two. Theta-band tonic activity balance between left
and right prefrontal regions has been found to predict risk-taking
behavior (Gianotti et al., 2009), showing the importance of the
hemispheric balance right from a pre-stage of risk-taking situa-
tions. In addition, this hypothesis is similar to a novel framework
of risk processing suggested by Mohr et al. (2010). Based on a
meta-analysis on the neural basis of risky behavior, the authors
proposed a potential mechanism of risky decision-making that
involves two parallel and reciprocal risk processes; one is emotional
and the other one is cognitive. These processes involve the anterior
insula and the thalamus as the key regions which mediate emo-
tional processing, whereas the dorsomedial PFC evaluates the risk
of the stimulus on a cognitive level. According to their framework,
both parts of risk processing (emotional and cognitive) inform the
actual decision process performed in DLPFC and parietal cortex.
It is possible that our hypothesis represents, to some extent, Mohr
et al.’s (2010) framework, with the frontal/prefrontal hemispheric
balance as the cognitive level of processing, and the mandatory
recruitment of the right DLPFC as the exaction phase. This sugges-
tion is reasonable given the findings that when the medial frontal
cortex signals a need for adjustment, this also involves an addi-
tional recruitment of lateral PFC (Kerns et al., 2004; Ridderinkhof
et al., 2004).

A final note, apart from matters of lateralization, the cur-
rent study addressed the issue of cognitive processes that govern
BART performance. Previous work highlighted the role of two key
concepts, namely, risk-taking and payoff sensitivity (e.g., Bishara
et al., 2009). However, in the current study, risk-taking and pay-
off sensitivity measures were highly correlated, and presumably
are confounded, and means that in practice these definitions of
performance are interchangeable, at least for the specific task par-
adigm used. Therefore, it is difficult to distinguish between these
two-component processes and as a consequence to draw a firm

conclusion to whether participants in the different stimulation
groups were more risk-averse or risk seeking, since participants
respond in a risk-aversive manner in general. This issue has been
acknowledged previously (e.g., Freeman and Muraven, 2010). In
the current experiment, average number of pumps per group was
below the average explosion point across balloons (64, which is
also the optimal number of pumps to maximize earnings), hence
the group that pumped the balloon more earned more points.
This finding is not unique to our experiment, as participants gen-
erally respond in a risk-aversive manner on the BART (see also
Lejuez et al., 2002, 2003a; Bornovalova et al., 2009; Freeman and
Muraven, 2010). Apparently, human subjects and also rats (see
Jentsch et al., 2010) exhibit risk-averse profiles when performing
the BART (or BART alike task in the case of rats), producing fewer
than the optimal number of responses, and earning less than pos-
sible probably because of over-estimation of the risk associated
with the task (Bornovalova et al., 2009; Jentsch et al., 2010).

Several limitations must be considered when interpreting the
results. First, the present study used only one band of stimula-
tion frequency, was restricted to specific locations, and measured
behavioral effects of a particular risk-taking paradigm. Future
research should elaborate the scope of reference and examine
more bands, in various cortical locations using a verity of risk-
taking paradigms. Second, no direct assessment of DLPFC activity
was made by any imaging technique before and/or after tACS
stimulation, so any attempt to bond between DLPFC activity,
tACS effects, and risk-taking behaviors call for further exami-
nation. Future research should document neural baseline and
changes accruing after AC stimulation in order to be able to
infer about the neural circuitry and the mechanisms that are
influenced by AC stimulation. Third, we stimulated all partici-
pants in the active conditions in our study with 6.5 Hz, thereby
ignored possible inter individual variability that may be captured
and elaborate our knowledge regarding the electrophysiological
mechanism in question. For example, it is possible to stimu-
late each participant with her/his transition frequency (TF). TF
shows a large inter individual variability ranging from about 4
to 7 Hz (Klimesch et al., 1996; Klimesch, 1999), so TF can be
measured in order to create a tailored stimulation for each par-
ticipant in future studies. Forth, in the present study we did not
find that individual differences such as gender and/or trait motiva-
tion characteristics moderate tACS effectiveness on performance.
Although we did not find a gender or motivation difference in
the BART measures, additional studies should specifically explore
whether there is a gender or motivational bias in decision-making
in regards to brain stimulation. Finally, in the current study, we
employed a procedure similar to the one used by Hunt et al.
(2005), where participants did not actually receive money for
their BART performance, rather they were competing for a mon-
etary prize. It is possible that this kind of incentive procedure
may have generated a competitive environment and may have
bias choice behavior. Future research is needed to clarify this
issue.

CONCLUSION
The current study report a novel finding demonstrating that
neuromodulation in the theta bend can causally modulate
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decision-making style by increasing risk-taking behavior in
healthy participants and provides further support to previous
evidence by showing that the DLPFC is causally involved in
modulating decision-making. This study may inspire the use of
tACS to further examination of risky decision-making behav-
iors, and hopefully in the near future would be beneficial as
a therapeutic tool for patients with different brain lesions and
other clinical populations, such as drug abusers, alcoholics,

and pathological gamblers who show deficits in this kind of
behavior.
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There is a growing interest for the determinants of human choice behavior in social set-
tings. Upon initial contact, investment choices in social settings can be inherently risky, as
the degree to which the other person will reciprocate is unknown. Nevertheless, people
have been shown to exhibit prosocial behavior even in one-shot laboratory settings where
all interaction has been taken away. A logical step has been to link such behavior to trait
empathy-related neurobiological networks. However, as a social interaction unfolds, the
degree of uncertainty with respect to the expected payoff of choice behavior may change
as a function of the interaction. Here we attempt to capture this factor. We show that the
interpersonal tie one develops with another person during interaction – rather than trait
empathy – motivates investment in a public good that is shared with an anonymous inter-
action partner. We examined how individual differences in trait empathy and interpersonal
ties modulate neural responses to imposed monetary sharing. After, but not before interac-
tion in a public good game, sharing prompted activation of neural systems associated with
reward (striatum), empathy (anterior insular cortex and anterior cingulate cortex) as well
as altruism, and social significance [posterior superior temporal sulcus (pSTS)]. Although
these activations could be linked to both empathy and interpersonal ties, only tie-related
pSTS activation predicted prosocial behavior during subsequent interaction, suggesting a
neural substrate for keeping track of social relevance.

Keywords: interpersonal ties, social ties, empathy, social decision-making, public good game, pSTS, ACC, insula

INTRODUCTION
In experience-based decision-making, rather than being provided
with a description of the probability distribution of outcomes
associated with certain choices, subjects have incomplete infor-
mation about choice outcomes and their respective probabili-
ties. Information regarding choice–outcome is acquired and inte-
grated through continuous or pre-choice sampling with feedback.
Evidence seems to suggest that people have different choice–
preferences in decisions-from-experience paradigms than dur-
ing description-based choice paradigms, although the origins of
this putative preference gap are still under investigation (Rakow
and Newell, 2010). Given the naturalistic nature of experience-
based decision-making, disentangling its underlying cognitive
and neural mechanisms may be crucial to understanding human
choice behavior. Economic trade for example, is an omnipresent
real-world example of experience-based decision-making. The
probability distribution of outcomes during economic interac-
tions can often only be gauged through the interaction itself. Inter-
estingly, intermediate outcomes of the interaction may impact the
probability distribution of future outcomes, lessening the degree

of uncertainty along the way. Hence, not only is the subject gauging
the probability distribution of outcomes, he or she may actually
modulate the probability distribution of outcomes as the interac-
tion unfolds. It has been suggested that interaction partners keep
track of this dynamic process internally by means of the interper-
sonal tie one develops with one’s interaction partner (van Dijk
et al., 2002; van Winden et al., 2008). Another suggested influence
on human choice behavior in social settings has been the presence
of empathy (e.g., Hein et al., 2010). Here, we attempt to establish
how well a trait variable like empathy and a dynamic state variable
such as the interpersonal tie are able to predict prosocial choices
during interactive decision-making.

The willingness to share resources without guarantee of return-
benefit is crucial to achieve cooperation. This is illustrated by the
Public Good family of economic games, where free riding typically
leads to a breakdown of cooperation (Isaac and Walker, 1988).
Experimental evidence suggests that the willingness to invest in
a public good (including the voluntary punishment of free rid-
ers) is motivated by social factors beyond immediate personal
gain (Fehr and Gächter, 2002; Rilling et al., 2002). These factors
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are often captured using the term altruism, which is observed in
humans as well as various other mammals (Fehr and Fischbacher,
2003; de Waal, 2008). Many have linked the proximate cause of
altruism to empathy, referring to the capacity to experience and
understand the affective state of another person (Batson, 1991;
Eisenberg, 2000; de Waal, 2008; Singer and Lamm, 2009). Recently,
neural evidence has been presented in support of this view, linking
empathy-related activation in the insula (Hein et al., 2010; Masten
et al., 2011) and medial prefrontal cortex (Mathur et al., 2010; Mas-
ten et al., 2011) to prosocial behavior. Empathy promotes social
cohesion (Farrow et al., 2001), scales with feelings of group mem-
bership (Sturmer et al., 2006) and as such may be a key motive for
the willingness to share.

Individual differences in the willingness to share are often
described in terms of social value orientations (Van Lange, 1999),
which can be estimated by having subjects make choices between
different monetary distributions regarding themselves and an
unspecified other (Liebrand, 1984; Haruno and Frith, 2010). Social
value orientation, like empathy, is considered to be a trait-like,
stable disposition (Van Lange, 1999). However, recent evidence
suggests that social value orientation toward an interaction partner
can change, depending on the success or failure of an intermediate
interaction (van Dijk et al., 2002). A complementary influence
on prosocial behavior might therefore be the development of
interpersonal ties, or feelings of social connectedness with an inter-
action partner. Such ties are different from empathy in that they
consist of the extent to which someone cares about another person
(van Dijk et al., 2002), rather than one’s ability to share some-
one’s emotions (Eisenberg, 2000; de Waal, 2008; Singer and Lamm,
2009). The degree to which one is able to experience empathy
seems to be a personality characteristic (Mehrabian, 1997; Singer
et al., 2004b), while interpersonal ties are dynamic, resulting from
interaction itself (van Dijk et al., 2002; van Winden et al., 2008).
Positively developing ties may instill prosocial behavior, while neg-
atively developing ties may be associated with antisocial behavior,
such as a reduced willingness to invest further in the other’s well-
being, or even vengeful behavior, such as punishing the other at a
cost to oneself (Fehr and Gächter, 2002).

Compared to empathy, the cognitive, affective, and neural
mechanisms of interpersonal ties have remained relatively exempt
of empirical scrutiny. Various studies have focused on normative
aspects of social interactions, such as trust (King-Casas et al., 2005)
and fairness (Singer et al., 2006). Other studies have focused on the
neural basis of cooperation itself. For example, left orbitofrontal
cortex (OFC) and medial parts of the frontal cortex have been
associated with cooperative and competitive behavior respectively
(Decety et al., 2004). Cooperative behavior in an iterated prisoner’s
dilemma game has also been found to elicit increased activity in
reward-related areas such as the striatum (Moll et al., 2006; Haber
and Knutson, 2010), as well as the ventromedial prefrontal cortex
(VMPFC) and the OFC (Rilling et al., 2002). Increased (decreased)
VMPFC activation has further been found when inferring gener-
ous (selfish) play in a public good game played by others (Cooper
et al., 2010). Although these regions may be involved in the for-
mation of interpersonal ties, it is unknown whether they are also
involved in keeping track of such ties over longer periods of time.
Studies on social cognition point to the relevance of the posterior

superior temporal sulcus (pSTS) in representing the social signif-
icance of other agents. For example, gray matter density abnor-
malities in the STS have been associated with autism in children
(Boddaert et al., 2004), stimuli that have acquired relevance dur-
ing meaningful social interaction (e.g., faces of cooperative game
partners) have been shown to activate the pSTS (Singer et al.,
2004a); the (p)STS is important in keeping track of one’s influence
on other agent’s intentions and strategies (Hampton et al., 2008;
Haruno and Kawato, 2009); and activation of the pSTS during
the perception of agency correlates with individuals’ self-reported
altruism (Tankersley et al., 2007).

To determine the influence of empathy and interpersonal ties
in determining prosocial behavior, we first established the pres-
ence of neural responses related to empathy and interpersonal
ties during computer controlled (imposed) sharing. In a second
step, we determined how these neural responses related to previ-
ous cooperation success and whether they predicted subsequent
prosocial behavior. To establish neural empathy and tie-related
responses during computer-imposed sharing, we administered a
distributional outcome test (DOT; Liebrand, 1984; Haruno and
Frith, 2010), with monetary outcomes benefiting the other at
the expense of oneself and vice versa (see Table 1), both before
and after anonymous interaction in a public good game. In the
DOT, subjects were repeatedly confronted with changing payoff
distributions, of which the computer would choose one on each
trial. We used functional magnetic resonance imaging (fMRI) to
examine individual differences in the neural responses to DOT
outcomes. Subtracting fMRI responses during the pre-interaction
DOT from the responses during the post-interaction DOT, allowed
us to isolate neural responses to sharing that could be related to
the intermediate public good game interaction (see Materials and
Methods). Choices between distributional outcomes were made
by the computer, kept equal across participants, and kept equal
between pre- and post-interaction DOTs, to ensure that neural
responses could be compared across time and across participants.

MATERIALS AND METHODS
SUBJECTS
We collected data from 34 interaction pairs. Due to our complex
experimental setup, five subjects had to be excluded from analysis
because of computer or human error during data collection and
transfer. Subjects were students from the University of Amsterdam
or international exchange students enrolled in courses at the Uni-
versity of Amsterdam. All subjects gave written informed consent
prior to the onset of the experiment. The 29 subjects in the scanner
had an average age of 22.6 (SD ± 2.7), 14 were female. Their 29
interaction partners had an average age of 23.3 (SD ± 4.5), 11 were
female. In 14 interaction pairs both partners had the same sex. In
five pairs both partners were female. Chi-square and t -tests con-
firmed that the scanning group did not differ significantly from
the group outside the scanner in age, sex, or any of the behavioral
measures.

EXPERIMENTAL PROCEDURE
Subjects were tested in pairs. One subject was positioned in the
scanner while the other was seated in a separate room behind a lap-
top. The procedure was fully anonymous, such that subjects would
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Table 1 | Alternatives during the scanned pre- and post-interaction distributional outcome test (DOT).

Trial Alternative A Alternative B Other gains at

expense of self

Self gains at

expense of other

Equality in one of

the alternatives

Self Other Self Other

1 500 0 498 44 x

2 498 44 492 87 x

3 492 87 483 129 x

4 483 129 470 171 x

5 470 171 354 354 x

6 354 354 171 470 x

7 498 44 500 0 x

8 492 87 498 44 x

9 483 129 492 87 x

10 470 171 483 129 x

11 354 354 470 171 x

12 171 470 354 354 x

13 −500 0 −498 −44 x

14 −498 −44 −492 −87 x

15 −492 −87 −483 −129 x

16 −483 −129 −470 −171 x

17 −470 −171 −354 −354 x

18 −354 −354 −171 −470 x

19 −498 −44 −500 0 x

20 −492 −87 −498 −44 x

21 −483 −129 −492 −87 x

22 −470 −171 −483 −129 x

23 −354 −354 −470 −171 x

24 −171 −470 −354 −354 x

Sum 0 0 0 0

The temporal order in which the trials were presented was randomized for each subject. Whether an alternative would appear on the screen as (Alternative A) or

(Alternative B) was randomized on every trial. The computer would always choose what is designated here as (Alternative A).

never see each other or get any information about the other sub-
ject other than through computer-interfaced interaction during
the public good game. The study was divided into two main parts:
(1) a scanning phase and (2) a post-scanning part in which subjects
filled out exit questions and an empathy questionnaire. Afterward,
subjects were paid out. Average earnings totaled to around 45 euros
per subject.

The scanning phase consisted of three scanning blocks. In the
first block, we administered a pre-interaction DOT to test neural
responses to different monetary distributions. In the second block,
the subject pair played a two-person public good game. In the third
block subjects were administered a post-interaction DOT. Right
after the post-interaction DOT, subjects played the final rounds of
the public good game. After scanning, subjects completed a gen-
eral exit questionnaire and the balanced emotional empathy scale
(BEES; Mehrabian and Epstein, 1972; Mehrabian, 1997).

DISTRIBUTIONAL OUTCOME TEST
Before and after public good game interaction, the DOT was
administered, containing 24 test items (see Table 1). These test
items were chosen because behavioral pilot testing showed that
they discriminated most strongly between subjects when given

the ability to freely choose among them. In the DOT however,
subjects would not make a choice between the two payoff com-
binations themselves, but the computer would “randomly” pick
an alternative. Unbeknownst to subjects, computer choices were
predetermined such that the chosen alternatives and the resulting
payouts were the same between participants and between the pre-
and post-interaction DOT. Also unbeknownst to subjects, both
the sum of the chosen distributions and the sum of the alternative
distributions was zero, both for allocations to self and allocations
to other.

At the start of each trial, subjects were asked to carefully inspect
the payoff combinations presented by the computer, and to assess
which alternative they preferred. Upon pressing a button, the alter-
natives would start to alternately highlight at a decreasing rate,
until settling down on one of them (the “computer choice”). No
changes were made to the display during the ensuing 8 s, so that
a clean measure of a subject’s neural response to the “computer
choice” could be taken. To keep subjects engaged in this otherwise
passive task, they were asked to subsequently indicate whether
they agreed or disagreed with the computer choice using a simple
yes/no button press, after which the test would continue to the
next trial.
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Importantly, the pre- and post-interaction DOT were identi-
cal in all respects, except for one difference. In the pre-interaction
DOT,subjects were informed that the“other”was a random subject
from the experiment, while in the post-interaction DOT, subjects
were informed that the“other”was one’s (anonymous) interaction
partner during the preceding public good game. Hence differ-
ences between neural responses to the post- and pre-interaction
DOT acted as a post–pre-interaction contrast, isolating differential
neural responses to sharing as a result of the intermediate public
good game interaction. Subtracting the pre-interaction DOT from
the post-interaction DOT removes effects that cannot be related
to the intermediate public good game interaction.

Therefore, we subtracted the normalized pre-interaction DOT
fMRI signal from the post-interaction DOT signal, to isolate the
component of the DOT response that may have been impacted
by the intermediate public good game interaction (see below for
analysis details). This is a non-standard fMRI analysis step, but
pertinent to the type of information we wanted to extract from
our design. We were interested in isolating changes in neural com-
ponents of sharing preference as a result of experience-induced
change over time (i.e., as a result of public good game inter-
action). The difference signal of neural responses acquired at
different moments in time – while keeping all other variables the
same – provided this measure.

PUBLIC GOOD GAME
The intermediate public good game was a finite, non-linear, self-
paced public good game described elsewhere (van Dijk et al.,
2002). The game consisted of 29 rounds between two sub-
jects. On every round, subjects were given 12 monetary units,
which they could divide freely between their private account
and a public account. The payoff consequences of contribu-
tions to the public account were made explicit by use of an

on-screen payoff table (see Table 2). Payoffs in this table were
given by 14∗(X + Y ) + 32∗(12 − X) − (12 − X)2 − 160, where X
represents a subject’s own contribution to the public account,
while Y denotes the other subject’s contribution to the public
account. The Pareto-optimum was at 10 tokens in the public
good, but players could decide to invest more than 10 tokens,
increasing the other’s payoff at one’s own expense. Likewise,partic-
ipants could invest less than the Nash-equilibrium (three tokens),
resulting in a payoff below Nash for the other at one’s own expense.

Prior to the public good game, extensive on-screen instructions
were given, followed by nine multiple-choice questions to check
understanding. At round 25, the public good game was unex-
pectedly interrupted for the post-interaction DOT. Right after
the post-interaction DOT subjects finished the last four rounds
of the public good game. At the end of the experiment, payoffs
were converted to real currency and paid out along with the other
payouts.

POST-SCAN QUESTIONNAIRES FOR EMPATHY AND INTERPERSONAL
TIES
After scanning, subjects completed an exit questionnaire and an
empathy scale questionnaire. Interpersonal ties were measured
during the exit questionnaire. Subjects were asked to indicate the
interpersonal tie they felt with the subject they had interacted with
during the public good game. The question was:

Please indicate on the scale below how much you like or dislike the
participant you were paired with in part 2 and 3 of the experiment.
Circle the number of your choice, where 1 stands for “very unpleasant
person” and 9 stands for “very nice person.”

Below was a 9-point scale running from “very unpleasant per-
son” to “very nice person.” Note that a value below five signals
a negative tie, whereas a value above five signals a positive tie.
Ratings emanated from previous cooperation success, as there

Table 2 | Payoff table during the public good game.

Other

Public Y 0 1 2 3 4 5 6 7 8 9 10 11 12

X Private 12 11 10 9 8 7 6 5 4 3 2 1 0

Y
o

u

0 12 80 94 108 122 136 150 164 178 192 206 220 234 248

1 11 85 99 113 127 141 155 169 183 197 211 225 239 253

2 10 88 102 116 130 144 158 172 186 200 214 228 242 256

3 9 89 103 117 131 145 159 173 187 201 215 229 243 257

4 8 88 102 116 130 144 158 172 186 200 214 228 242 256

5 7 85 99 113 127 141 155 169 183 197 211 225 239 253

6 6 80 94 108 122 136 150 164 178 192 206 220 234 248

7 5 73 87 101 115 129 143 157 171 185 199 213 227 241

8 4 64 78 92 106 120 134 148 162 176 190 204 218 232

9 3 53 67 81 95 109 123 137 151 165 179 193 207 221

10 2 40 54 68 82 96 110 124 138 152 166 180 194 208

11 1 25 39 53 67 81 95 109 123 137 151 165 179 193

12 0 8 22 36 50 64 78 92 106 120 134 148 162 176

X denotes a participant’s own contribution to the public account,Y denotes the other’s contribution to the public account. Private is what is left in a participant’s private

account given that contribution level. The cell where X and Y cross shows one’s own payoff given those contribution levels.
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were no encounters between partners other than during anony-
mous interaction in the public good game. In addition, the exit
questionnaire contained some questions on interaction strategy
and control questions to check whether there had indeed been
no contact with the other subject other than through computer-
mediated interaction. To assess trait empathy, subjects completed
the BEES (Mehrabian and Epstein, 1972; Mehrabian, 1997) after
they had completed the exit questionnaire.

PAST COOPERATION SUCCESS AND FUTURE INVESTMENT BEHAVIOR
As a measure of previous cooperation success, we calculated the
other’s average contribution to the public good in the last five
rounds prior to the second DOT (round 21–25; van Dijk et al.,
2002). Future investment behavior was defined as a player’s own
average contribution to the public good in the rounds following
the second DOT (round 26–28). The final round (round 29) was
not included in the average because of the well-known “end” effect
(Ledyard, 1995). A t -test confirmed that contribution in round 29
differed significantly from contribution in round 28 [t (28) = 2.22,
p = 0.03], while this was not the case between round 28 and 27
[t (28) = 0.81, p = 0.42] or between round 27 and 26 [t (28) = 0.85,
p = 0.40]. There was also no change between round 25 and round
26, either in one’s own contribution [t (28) = 0.57, p = 0.57] or
in the other’s contribution to the public good [t (28) = 1.22,
p = 0.23], showing that the interruption by the second DOT did
not significantly impact subsequent public good game behavior.
Control analyses confirmed that changing the size of the interval
over which interaction success or future investment behavior was
measured did not change the results.

IMAGE ACQUISITION AND PRE-PROCESSING
Images were acquired on a Philips 3 T Intera scanner. The func-
tional recordings were acquired using a T2∗-weighted sequence
[40 coronal slices; flip angle (FA), 80˚; echo time (TE), 30 ms; rep-
etition time (TR), 2.3 s; slice thickness, 3 mm; field of view (FOV),
220 mm × 220 mm; in-plane voxel resolution, 2.3 mm × 2.3 mm].
Sessions ended with the acquisition of a high-resolution anatom-
ical image using a T1 turbo field echo sequence [182 coronal
slices; FA, 8˚; TE, 4.6 ms; TR, 9.6 s; slice thickness, 1.2 mm, FOV,
256 mm × 256 mm; in-plane voxel resolution, 1 mm × 1 mm].
Pre-processing and data analysis was performed using the fMRI
expert analysis tool (FEAT), v5.98 from the FMRIB’s soft-
ware library (FSL) package (http://www.fmrib.ox.ac.uk/fsl). fMRI
images were motion corrected, slice-time aligned, aligned to the
structural image of the subject, and spatially smoothed using a
Gaussian kernel of 5 mm and high-pass temporally filtered using a
Gaussian envelope of 50 s. Anatomical brains were extracted from
the structural images, and transformed to the standard space of
the Montreal Neurological Institute (MNI) using FMRIB’s non-
linear image registration tool (FNIRT). Finally, the functional data
were co-registered to the MNI brain using non-linear parameters
obtained from FNIRT.

DATA ANALYSIS
For each subject, general linear models (GLMs) were specified
separately for the pre- and post-interaction DOT. A predictor was
created for each trial, corresponding to the moment at which the

“computer choice” (see Table 1) was presented to the subject. All
predictors were convolved with a standard double gamma hemo-
dynamic response function. The resulting GLMs were applied to
the (pre-processed) fMRI signals that were acquired during the
pre- and post-interaction DOT.

Next, the mean percent signal change on each trial of the
pre- and post-interaction DOT was extracted for each subject
and each region of interest (ROI). Trials were averaged depend-
ing on the sharing context (see Table 1): for each subject and
each ROI, an average was created for trials in which the other
obtained monetary gains at the expense of oneself (“Other gains
at expense of Self”), and another average was created for trials in
which oneself gained at the expense of the other (“Self gains at
expense of Other”), separately for the pre- and post-interaction
DOT. Subsequently, the resulting pre-interaction DOT averages
were subtracted from the post-interaction DOT averages of corre-
sponding sharing contexts, isolating the part of the neural response
that was affected by the intermediate public good game experience,
while subtracting out the bare neural responses to the monetary
divisions in these sharing contexts (which were equal in both
DOTs).

The post- minus pre-public good game interaction DOT dif-
ference signals from these sharing contexts (“Self gains at expense
of Other” and “Other gains at expense of Self”) for each of the
ROIs were correlated against the empathy and interpersonal tie
measures, as well as against the measures for past cooperation suc-
cess and future investment behavior. Because we computed a lot
of correlations, one needs to correct for multiple comparisons, as
some correlations will turn up significant at the conventional 0.05
level by chance alone. We corrected for multiple comparisons by
means of the false discovery rate (FDR) correction, which fixes the
expected proportion of incorrectly rejected null hypotheses (type I
errors) given the number of tests that were performed (Benjamini
and Hochberg, 1995). All reported statistics in the experiment are
two-tailed.

To summarize, the subtraction method and the FDR correc-
tion each correct for a potential source of spurious correlation:
(1) The subtraction of the pre-interaction DOT from the post-
interaction DOT isolates the part of the signal that can be related
to the intermediate public good game. The subtraction method
removes correlations between the DOT and our dependent mea-
sures that are not related to the intermediate public good game.
Such correlations may be coincidental but “real” within the spe-
cific sample that we measured from, or they may even be real in the
population at large. Regardless, the subtraction method removes
them. (2) The FDR correction thresholds the resulting post- minus
pre-interaction correlations such that they cannot be attributed to
measurement errors (noise). The correlations that are identified
using the combination of these two methods can therefore be
attributed to the intermediate public good game, and cannot be
attributed to chance.

To establish whether empathy and interpersonal ties might
interact to predict behavior, we carried out a regression analysis.
We used the BEES and liking ratings as measures for empathy and
social ties respectively. An interaction term of the two was added.
All terms were regressed onto the subject’s future contributions in
the three rounds following the second DOT.
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SELECTION OF REGIONS OF INTEREST
For ROI selection, the results from the lower level DOT analy-
sis were combined using a fixed effects higher-level analysis, in
which corresponding trials from the pre- and post-interaction
DOT were matched. Note that in this particular analysis, trials
from the pre- and post-interaction DOT were combined (effec-
tively averaged), rather than subtracted. Subsequently, the result-
ing individual subject statistics were analyzed at a group level
using FMRIB’s Local Analysis of Mixed Effects (FLAME1). At
this stage, an F-test was performed over all 24 trials, allowing
us to test in a non-directional way in what regions the combined
pre- and post-interaction DOT contributed significantly to the
fMRI signal at a group level. By using a non-directional F-test,
the statistics were indifferent to the direction of hemodynamic
changes between different types of trials within the DOT. Clus-
ters with Z -values higher than 3.1 (uncorrected) were considered
for inclusion as ROIs into the final analysis. From these clusters,

FIGURE 1 | Regions of interest involved in empathy (ACC, bilateral

AIC), social significance (bilateral pSTS) and reward processing

(striatum). Cross-sections of the brain are shown at MNI coordinates
X = 4, Y = 25, and Z = −8. Voxels shown exceed an uncorrected threshold
of Z > 3.1 (p < 0.001) on an F -test over the averaged pre- and
post-interaction DOT trials (also see Figure 2 and Materials and Methods).

ROIs were selected on anatomical grounds that are known to be
involved in reward processing (striatum; Rilling et al., 2002; Moll
et al., 2006; Haber and Knutson, 2010), empathy [anterior insu-
lar cortex (AIC) and anterior cingulate cortex (ACC)] (Wicker
et al., 2003; Singer et al., 2004b; Singer and Lamm, 2009), social
significance (pSTS; Singer et al., 2004a; Tankersley et al., 2007;
Hampton et al., 2008), and social decision-making (VMPFC and
OFC; Rilling et al., 2002; Decety et al., 2004). As striatal activity
was part of a larger cluster, we extracted voxels from this cluster
using the Harvard–Oxford Subcortical Structural Atlas included
in the FSL package. Only voxels that had more than 50% prob-
ability of belonging to the nucleus accumbens (ventral striatum)
or caudate (dorsal striatum) were included. No voxels exceeded
the threshold in the putamen. See Figure 1 for selected clusters.
For the entire activation map of the F-test and the selection of
ventral and dorsal striatum see Figure 2, for a list of all clusters see
Table 3.

Because the DOT data used for ROI selection were also used
during hypothesis testing, a possible concern could be selection
bias resulting from the non-independence error or “double dip-
ping” (Kriegeskorte et al., 2009). However, the statistical tests used
during hypothesis testing were not affected by circularity. For one,
the result statistics used during ROI selection were different from
those used during hypothesis testing. ROI selection was done on
the averaged pre- and post-interaction DOT, while during hypoth-
esis testing the pre- interaction DOT was subtracted from the
post-interaction DOT. More to the point however, hypothesis test-
ing was done by correlating this difference signal against measures
of empathy, interpersonal ties, and interaction success, while none
of these behavioral measures were used when generating the F-
statistics used for ROI selection. Critically, this ensured that none
of our results could be explained by double dipping.

FIGURE 2 | Regions activated by an F -test over the 24 trials from

the (averaged) pre- and post-interaction DOT. Voxels exceeding
Z = 3.1 (p < 0.001, uncorrected) in clusters larger than 40 voxels are
shown in green, with selected regions of interest (AIC, ACC,

striatum, pSTS, VMPFC, and left OFC) shown in hot (yellow/orange;
top). Ventral and dorsal striatum are depicted separately in blue/green
(bottom).Table 3 lists all clusters and MNI coordinates of cluster
peak values.
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Table 3 | Locus of peak activations in clusters resulting from an F -test over the 24 trials from the (averaged) pre- and post-interaction DOT

(Z > 3.1, cluster size > 40).

Cluster index Brain region MNI coordinates of

peak activation (mm)

Z score

x y z

1 Ventromedial prefrontal cortex (VMPFC) −2 64 −10 4

2 Left posterior superior temporal sulcus −56 −40 −6 4.43

3 Left orbitofrontal cortex (OFC) −22 48 −26 5.32

4 Right posterior superior temporal sulcus 62 −26 −10 4.73

5 Near right lateral ventricle 26 −44 16 6.11

6 Left anterior insular cortex (AIC) −30 26 −6 6.31

7 Left precuneus −8 −52 28 4.42

8 Left central opercular cortex (middle part of the Sylvian fissure) −66 −14 8 5

9 Left angular gyrus −50 −72 30 4.26

10 Left parietal opercular cortex (posterior part of the Sylvian fissure) −46 −36 16 6.37

11 Left postcentral gyrus −38 −22 50 7.91

12 Right anterior insular cortex (AIC) 34 24 −6 8.21

13 Left superior temporal gyrus (posterior) 64 −30 14 7.05

14 Mid cingulate cortex (MCC) 4 0 28 6.62

15 Posterior cingulate cortex (PCC) 2 −34 26 6.88

16 Left early visual cortex (V1, V2, V3) −16 −88 −20 8.21

17 Right early visual cortex (V1, V2, V3) 20 −90 −18 8.21

18 Left Precentral Gyrus −44 −2 26 8.21

19 Anterior cingulate cortex (ACC) 2 24 38 8.21

20 Occipitoparietal cortex, extending into precentral gyrus and inferior frontal gyrus

on the right, and into cerebellum, brain stem, thalamus, and striatum ventrally

0 −78 20 8.21

Regions of interest used in subsequent analyses are underlined.

RESULTS
ORTHOGONALITY OF TRAIT EMPATHY AND INTERPERSONAL TIES
Trait empathy was measured post-experimentally using the BEES
(Mehrabian and Epstein, 1972; Mehrabian, 1997). Interpersonal
ties were measured in an exit questionnaire in which subjects were
asked to rate how much they liked or disliked their interaction
partner. To assess whether these measures were somehow corre-
lated, we calculated their correlation coefficient. This showed that
our empathy and our interpersonal ties measure were unrelated
(r = −0.06, p = 0.76).

NEURAL CORRELATES OF EMPATHY DURING IMPOSED SHARING
In order to assess the presence of neural correlates of trait empa-
thy during imposed sharing, we correlated BEES scores with the
post- minus pre-interaction neural DOT responses during the
“Self gains at expense of Other” and “Other gains at expense of
Self” sharing contexts, in all regions of interest (see Table 4). The
FDR-corrected significance level at which these correlations were
evaluated is 0.0043, as marked by three asterisks (see bottom of
Table 4 on the next page). After correction for multiple com-
parisons, the BEES scores showed correlations in AIC [r = 0.61,
p = 0.0004] (Figure 3, top), ACC (r = 0.64, p = 0.0002; Figure 3,
middle), and the striatum [r = 0.53, p = 0.0043] (Figure 3, bot-
tom). This shows that responses in these areas were stronger
for empathic subjects than for non-empathic subjects after, but

not before interaction (Figure 4). Notably, empathy only cor-
related with neural responses to sharing when the other gained
at one’s own expense, and not the other way around (all
p > 0.3).

NEURAL CORRELATES OF INTERPERSONAL TIES DURING IMPOSED
SHARING
Similar to the empathy analyses, we correlated liking ratings
with post- minus pre-interaction neural DOT responses in both
sharing contexts for all regions of interest (see Table 4). After
correction for multiple comparisons, only the pSTS correlated
significantly with our interpersonal tie measure, and only when
oneself gains at the expense of the other (r = 0.58, p = 0.0011),
and not vice versa (r = 0.32, p = 0.0928; Figure 5, top). This
suggests that gaining at another person’s expense invokes acti-
vation in the pSTS, where the degree of activation correlates
positively with the interpersonal tie one has developed with
that person during previous interaction. Receiving reward at
another’s expense may invoke a tie-related response in the pSTS,
where a strong response corresponds with a positive interper-
sonal tie with the other person, and a weak response corre-
sponds with a negative tie. Again, the correlation is specific
to the post- minus pre-interaction DOT, emphasizing the rel-
evance of the intermediate interaction in driving the response
(Figure 6).
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Table 4 | Correlations for sharing with measures of empathy, social ties, past cooperation success, and future investment behavior.

Region of interest Self gains at the

expense of other

Other gains at the

expense of self

Pearson p-Value Pearson p-Value

CORRELATIONS WITH BALANCED EMOTIONAL EMPATHY SCALE (BEES)

Anterior insular cortex (AIC) 0.03 0.8582 0.61 0.0004***

Left AIC −0.06 0.7632 0.63 0.0003***

Right AIC 0.16 0.4079 0.46 0.0127*

Striatum −0.18 0.3507 0.52 0.0043***

Dorsal striatum (caudate) −0.10 0.5940 0.55 0.0020***

Left dorsal striatum −0.17 0.3831 0.43 0.0203*

Right dorsal striatum −0.01 0.9485 0.59 0.0008***

Ventral striatum (nucleus accumbens) −0.23 0.2304 0.39 0.0344*

Left ventral striatum 0.00 0.9914 0.16 0.3941

Right ventral striatum −0.37 0.0495* 0.48 0.0089**

Posterior superior temporal sulcus (pSTS) −0.20 0.2999 0.28 0.1396

Left pSTS −0.21 0.2639 0.27 0.1645

Right pSTS −0.12 0.5230 0.19 0.3299

Anterior cingulate cortex (ACC) 0.14 0.4607 0.64 0.0002***

Left orbitofrontal cortex (OFC) −0.14 0.4680 0.18 0.3472

Ventromedial prefrontal cortex (VMPFC) −0.04 0.8170 0.38 0.0447*

CORRELATIONS WITH 9-POINT LIKE SCALE (INTERPERSONALTIE)

Anterior insular cortex (AIC) 0.19 0.3270 −0.12 0.5420

Left AIC 0.18 0.3566 −0.08 0.6744

Right AIC 0.14 0.4591 −0.14 0.4571

Striatum 0.09 0.6362 0.11 0.5562

Dorsal striatum (caudate) 0.21 0.2718 0.11 0.5875

Left dorsal striatum 0.21 0.2695 0.21 0.2786

Right dorsal striatum 0.18 0.3585 −0.01 0.9613

Ventral striatum (nucleus accumbens) −0.07 0.7293 0.10 0.5887

Left ventral striatum −0.15 0.4435 0.23 0.2341

Right ventral striatum 0.01 0.9594 −0.06 0.7757

Posterior superior temporal sulcus (pSTS) 0.58 0.0011*** 0.32 0.0928

Left pSTS 0.40 0.0312* 0.01 0.9485

Right pSTS 0.57 0.0013*** 0.54 0.0027***

Anterior cingulate cortex (ACC) 0.26 0.1684 −0.08 0.6835

Left orbitofrontal cortex (OFC) −0.45 0.0149* 0.27 0.1630

Ventromedial prefrontal cortex (VMPFC) −0.12 0.5337 −0.06 0.7670

CORRELATIONS WITH CONTRIBUTION OF OTHER IN ROUND 21–25 (PREVIOUS COOPERATION SUCCESS)

Anterior insular cortex (AIC) −0.13 0.5160 −0.20 0.3105

Left AIC −0.04 0.8382 −0.24 0.2062

Right AIC −0.21 0.2732 −0.09 0.6486

Striatum 0.29 0.1209 0.01 0.9705

Dorsal striatum (caudate) 0.34 0.0684 0.02 0.9200

Left dorsal striatum 0.43 0.0201* 0.11 0.5619

Right dorsal striatum 0.19 0.3227 −0.07 0.7080

Ventral striatum (nucleus accumbens) 0.17 0.3664 −0.01 0.9707

Left ventral striatum 0.11 0.5854 0.01 0.9729

Right ventral striatum 0.19 0.3132 −0.02 0.9257

Posterior superior temporal sulcus (pSTS) 0.63 0.0003*** 0.38 0.0413*

Left pSTS 0.68 0.0000*** 0.22 0.2610

Right pSTS 0.38 0.0436* 0.42 0.0245*

Anterior cingulate cortex (ACC) 0.08 0.6826 −0.13 0.5135

(Continued)

Frontiers in Neuroscience | Decision Neuroscience March 2012 | Volume 6 | Article 28 | 146

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive


Fahrenfort et al. The neural correlate of interpersonal ties

Table 4 | Continued

Region of interest Self gains at the

expense of other

Other gains at the

expense of self

Pearson p-Value Pearson p-Value

Left orbitofrontal cortex (OFC) −0.19 0.3304 −0.01 0.9397

Ventromedial prefrontal cortex (VMPFC) 0.04 0.8315 0.11 0.5656

CORRELATIONS WITH CONTRIBUTION OF SELF IN ROUND 26–28 (FUTURE INVESTMENT BEHAVIOR)

Anterior insular cortex (AIC) 0.01 0.9629 0.14 0.4710

Left AIC 0.08 0.6689 0.11 0.5857

Right AIC −0.10 0.5981 0.16 0.4176

Striatum 0.29 0.1209 0.33 0.0809

Dorsal striatum (caudate) 0.33 0.0793 0.34 0.0754

Left dorsal striatum 0.38 0.0420* 0.43 0.0185*

Right dorsal striatum 0.22 0.2444 0.19 0.3207

Ventral striatum (nucleus accumbens) 0.19 0.3285 0.27 0.1574

Left ventral striatum 0.14 0.4651 0.22 0.2530

Right ventral striatum 0.19 0.3279 0.22 0.2499

Posterior superior temporal sulcus (pSTS) 0.58 0.0009*** 0.47 0.0108*

Left pSTS 0.60 0.0006*** 0.29 0.1293

Right pSTS 0.39 0.0371* 0.48 0.0081**

Anterior cingulate cortex (ACC) 0.16 0.4054 0.21 0.2844

Left orbitofrontal cortex (OFC) −0.12 0.5450 0.05 0.7980

Ventromedial prefrontal cortex (VMPFC) −0.13 0.4989 −0.12 0.5288

N = 29.

*p ≤ 0.05.

**p ≤ 0.01.

***p ≤ 0.0043, False discovery rate (FDR) corrected value of 0.05 over all correlations in the table.

RELATIONSHIP TO PAST COOPERATION SUCCESS AND FUTURE
INVESTMENT BEHAVIOR
To determine the degree to which these sharing-related responses
are driven by past cooperation success, and/or predict cooperation
in the continuation of the public good game after the second DOT,
we correlated all post- minus pre-DOT responses with past cooper-
ation success and future behavior (Table 4, second part). Previous
cooperation success was defined as the other’s mean contribution
to the public good in the five rounds prior to administering the
post-interaction DOT (van Dijk et al., 2002), while future coop-
eration was defined as one’s own mean contribution to the public
good in the three rounds after the second DOT (see Materials and
Methods). Past cooperation success (Figure 5, middle) as well as
future cooperation (Figure 5, bottom) in the public good game
correlated only with the pSTS, again particularly for outcomes
that entail gains at the expense of the other (past success: r = 0.63,
p = 0.0003; future cooperation: r = 0.58, p = 0.0009).

REGRESSION ANALYSIS OF EMPATHY–TIE INTERACTION
Finally, we wanted to determine whether our empathy and inter-
personal ties measures – or their interaction – might be used to
predict cooperative behavior directly. We carried out a regres-
sion analyses, in which we regressed our behavioral measures for
empathy and interpersonal ties, plus an interaction term, onto
the average contribution to the public good in the rounds fol-
lowing the second DOT (our behavioral measure for cooperative

behavior in the public good game). The overall model was signifi-
cant: [F(3,25) = 3.59, p = 0.0277]. Moreover, it was driven only by
our interpersonal ties measure (p = 0.004), and not by the BEES
(p = 0.184) or by the interaction of the two (p = 0.171). This
result confirms the influence of interpersonal ties – rather than
empathy – in establishing prosocial behavior during interaction.

DISCUSSION
We isolated the influence of public good game interaction on
neural responses in different sharing contexts, by subtracting
normalized fMRI signals that were separated in time by the inter-
action. We investigated the post- minus pre-interaction differ-
ence signal in these sharing contexts (other gains at one’s own
expense and vice versa), subtracting out the raw neural responses
to the division of monetary resources themselves. This somewhat
unconventional analysis method allowed us to uniquely isolate the
influence of intermediate public good game interaction on neural
responses during imposed sharing, and determine the relation
of these responses to empathy, interpersonal ties, past coopera-
tion success, and future prosocial investment behavior. We found
neural correlates of empathy and interpersonal tie measures in
these interaction-related fMRI signals, showing that our neural
correlates of these measures depend on the intermediate public
good game interaction. Moreover, we show that the neural cor-
relate of the interpersonal tie measure is uniquely related to past
cooperation success and future prosocial investment behavior.
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FIGURE 3 | Correlations between empathy scores (BEES) and Δ

percent signal change of post- minus pre-interaction DOT. Correlations
are shown for AIC (top) and ACC (middle) and striatum (bottom) for trials in
which the other gains at the expense of oneself (left panels, in red), and for
those in which oneself gains at the expense of the other (right panels, in
blue). Correlations before and after public good game interaction separately
can be found in Figure 4. All correlations are listed inTable 4.

Although neural correlates of empathy only emerged after
having interacted with the other participant (Figure 4), these cor-
relates could not be related to previous cooperation success or to
future choice behavior (Table 4). Thus, while these correlates only
emerged as a result of interaction, they do not seem to result from
specific choice outcomes, or result in specific choices. This suggests
that the relationship between trait empathy and economic interac-
tion is more generic. One possibility may be that trait empathy is
only expressed when the other person turns out to be a “real” actor
in the world. Bear in mind that during the pre-interaction DOT,
subjects are told that the “other” is a random anonymous subject
from the experiment and that there is no interaction with that par-
ticipant. The combination of anonymity and a lack of interaction

FIGURE 4 | Correlations between scores on the BEES and percent

signal change in AIC (top), ACC (middle), and striatum (bottom),

separately for the pre- and post-interaction DOT. Correlations are shown
for sharing in which the other gains at the expense of self (in red), and for
sharing in which oneself gains at the expense of the other (in blue),
separately for the DOT prior to interaction (pre-interaction, first and third
column) and for the second DOT (post-interaction, second and forth
column).

may lead to dehumanization, lessening empathic responses during
the pre-interaction DOT (Cehajic et al., 2009).

The pSTS correlate of the interpersonal tie on the other hand,
exhibits a more specific interaction-related pattern. Like empathy,
it only emerges as a result of public good game interaction. How-
ever, this signal could also be linked to previous cooperation
success and to future cooperative choice behavior in subsequent
rounds of the public good game. Moreover, tie-related activity
only correlated with pSTS activation in the context of receiving a
monetary reward at the expense of the other. This seems to link
pSTS activation to positive choice outcomes. Possibly, the degree
to which self-favoring outcomes engender activation in the pSTS
depends directly on past cooperation success, extending previous
findings on the role of the pSTS in tracking the effects of one’s
actions on other agents’ decisions (Hampton et al., 2008). Sim-
ilarly, Haruno and Kawato (2009) have shown that the degree
to which subjects are able to exploit other agent’s strategies is
uniquely predicted by STS activity. We suggest that pSTS activation
during forced sharing correlates with the interpersonal tie one has
developed with another participant during previous interaction,
even though this activation is captured outside and apart from
the interaction. This alludes to a long-term representation of the
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FIGURE 5 | Correlations between interpersonal tie-scores (top), past

cooperation success (middle) as well as future investment behavior

(bottom), and Δ percent signal change of post- minus pre-interaction

DOT. Correlations are shown for the pSTS, for trials in which the other gains
at the expense of oneself (left panels, in red), and for those in which
oneself gains at the expense of the other (right panels, in blue).
Correlations before and after public good game interaction separately can
be found in Figure 6. All correlations are listed inTable 4.

interpersonal tie that outlasts representations that are temporally
contained within the time frame of the interaction itself.

Taken together, our results suggest that during economic
interaction, tie-related mechanisms are more closely involved in
experience-based choice than trait empathy. As we established
that our trait empathy measure and our interpersonal tie mea-
sure were uncorrelated, it seems unlikely that trait empathy plays a
direct role in the formation of interpersonal ties and choice behav-
ior during economic interaction. However, trait empathy might
play a modulating role in determining the influence of interper-
sonal ties on experience-based choice. A regression analysis of
our empathy and interpersonal ties measures together with an
interaction term established that only interpersonal ties predicted

FIGURE 6 | Correlations between liking (top), past cooperation success

(middle) and future investment behavior (bottom), and percent signal

change in the pSTS, separately for the pre- and post-interaction DOT.

Correlations are shown for sharing in which the other gains at the expense
of self (in red), and for sharing in which oneself gains at the expense of the
other (in blue), separately for the DOT prior to interaction (pre-interaction,
first and third column) and for the second DOT (post-interaction, second
and forth column).

cooperative behavior. This suggests that neither trait empathy,
nor its interaction with interpersonal ties, determines subsequent
choice behavior.

Importantly, we measured empathy in our experiment by estab-
lishing the degree to which someone is able to experience empathic
emotions. Therefore, only trait-like aspects of empathy were con-
sidered. However, the degree to which empathy is experienced at
any given moment in time can change depending on the situ-
ational context. For example, a person may feel more empathy
toward a person that behaves nicely than toward a person that
does not (Singer et al., 2006). As we did not measure the degree
of empathy experienced during the experiment directly, we could
not assess the influence of empathic experience on choice behavior
directly. Other studies suggest that feelings of empathy or activ-
ity in empathy-related networks do play a role during prosocial
behavior (Hein et al., 2010; Masten et al., 2011), which seems to be
at odds with the findings we present here. Importantly however,
these studies investigated non-interactive instances of prosocial
behavior, in which the other is not expected to reciprocate the good
deed bestowed onto them. Experiments like these often use verbal
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descriptions or passive viewing of characters. In our experiment,
participants were involved in actual interaction with interaction
partners. So even if feelings of empathic concern play a role during
choice behavior, our results suggest that in interactive experience-
based contexts such as the one investigated here, this influence
cannot be traced back to a stable empathic trait.

We find correlations between trait empathy and the AIC and
ACC only when the other gains at one’s own expense, and not
when resource transfer is in the opposite direction. In the DOT,
negative (resource-losing) events for oneself go hand in hand with
positive (resource-gaining) events for the other. Hence, outcomes
that benefit the other at one’s own expense can either be inter-
preted as “painful” (resource-losing) events for oneself, as positive
(resource-gaining) events for the other, or as a combination of the
two. AIC and ACC have been implicated in empathy for both posi-
tive (Jabbi et al., 2007) and negative (Wicker et al., 2003) events, but
also in a more general brain network known as the “pain matrix,”
thought to be involved in the perception and appraisal of pain
(Singer et al., 2004b). Following reverse inference, one interpre-
tation might be that there is a correlation between trait empathy
and one’s own “pain” responses when having to share. If true, one
would expect to also see them in the pre-interaction DOT. This
is not the case (see Figure 4), suggesting that the correlations are
driven by empathic concern for the other’s benefit as a result of
having interacted with that person, rather than by pain over one’s
own loss. In line with this interpretation, we not only found cor-
relations in AIC and ACC, but also in striatal circuitry typically
associated with reward processing (Moll et al., 2006; Haber and
Knutson, 2010). Although speculative, another person’s benefit
may register more strongly as a reward signal for individuals with
higher empathy levels.

This finding is interesting in light of common theorizing about
empathy. Empathy is generally thought to be “other-oriented,”
being able to tune into or share the affective experiences of oth-
ers (positive or negative; de Waal, 2008; Singer and Lamm, 2009).
Here, we have the special situation where a positive event for the
other is accompanied by a negative event for oneself and vice versa
(sharing). We only see correlations with empathy when the other
gains at one’s own expense and not the other way around. This sug-
gests that the “other-orientation” of empathy is modulated by the
direction of the resource transfer involved in sharing. Empathic
subjects engage empathy-related structures (AIC, ACC) during
sharing – even when these events are painful for themselves – but
only when their own suffering helps the other along, and not the
other way around. Although speculative, empathic subjects may
use their ability to empathize to help alleviate, counterbalance,
compensate, or justify their own suffering when having to share,
while empathy-related responses do not manifest when the tables
are turned, possibly as a result of joy over one’s own profit.

More generally, the expression of neural correlates of empa-
thy and interpersonal ties in different sharing contexts may tell us
something about their function in prosocial behavior. While the
interpersonal tie correlate seems to be expressed more strongly
in a sharing context where oneself benefits at the other’s expense,
the network structure involved in empathy seems to be engaged
more strongly when one suffers loss that benefits another. This
may point to different functional contributions of these regions

to prosocial behavior. The pSTS may be used to keep track of
the utility that other agents constitute in the short run, enabling
immediate prosocial behavior during interaction. The empathy
network on the other hand, may work to overcome negative emo-
tions that are associated with loss. Although our study suggests that
this is not translated into short-term investment choices during
economic interaction, it may enable cooperative behavior in the
long run, countering the adverse effects of absorbing temporary
loss associated with social interactions.

Summarizing, previous cooperation success and future coop-
eration did not correlate with activations in structures related
to empathy (AIC, ACC), reward (striatum), or social decision-
making (OFC, VMPFC). However, previous cooperation success
and future cooperation did correlate with pSTS activation, which
we found to be related to interpersonal ties. This suggests that
interpersonal ties and trait empathy may recruit different neural
networks, of which only the former drives cooperative behavior
during interaction. Moreover, individual differences in pSTS acti-
vation predicted individual differences in prosocial investment
behavior in subsequent rounds of the public good game. This
predictive value is important, as it suggests that the pSTS plays
a role in keeping track of the dynamically evolving interper-
sonal tie underlying the willingness to invest in a shared public
good. We conclude that during experience-based economic inter-
action, networks are engaged that keep track of interpersonal ties
over longer periods of time, possibly enabling choice–outcome
estimation in social settings, with the pSTS emerging as a key
element.

A word of caution is also in order. The regions that were
highlighted in our experiment have previously been related to
many elementary operations, of which we discuss only a few.
For example, the pSTS has also been linked to perception of
biological motion (Perrett et al., 1989; Bonda et al., 1996), per-
ception of intentional action (Castelli et al., 2000; Saxe et al.,
2004) as well as speech perception (Demonet et al., 1992; Mot-
tonen et al., 2006). AIC has been implicated in eye movements
(Anderson et al., 1994), speech production (Dronkers, 1996; Ack-
ermann and Riecker, 2004), higher-order learning (Seymour et al.,
2004), interoceptive awareness (Critchley et al., 2004; Khalsa et al.,
2009), and even consciousness at large (Craig, 2009). Likewise,
the ACC has been implicated in interoception (Critchley et al.,
2004; Khalsa et al., 2009), reward based decision-making (Bush
et al., 2002), error detection and conflict monitoring (Gehring
et al., 1993), and various related cognitive and emotional processes
(Lane et al., 1998; Bush et al., 2000). The striatum has tradition-
ally been implicated in planning and modulation of movement
(Rolls, 1994), but recently more prominently in reward process-
ing (Moll et al., 2006; Haber and Knutson, 2010), novelty-based
choice behavior (Wittmann et al., 2008), and higher-order learn-
ing (Seymour et al., 2004). Together, this paints a picture of a
highly complex network in which regions work together to achieve
certain functions, plausibly providing different functions in differ-
ent contexts and at different moments in time. Although we have
attempted to isolate empathy and tie-related mechanisms, the idea
that these mechanisms are solely implemented in the regions that
we highlight is most likely an oversimplification. More likely, these
functions are achieved through interactions between and within
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regions, executing various more elementary subprocesses to pro-
vide more complex higher-order functions. Our study does not
allow us to tease apart empathy and tie-related mechanisms into
their elementary processes. However, it does provide pointers as
to where these higher-order functions seem to be expressed most
strongly, and what their role is in interactive experience-based
choice. Relatedly, it deserves mention that we did not have a control

group in which the other participant in the post-interaction DOT
was either a non-human player (computer) or another anonymous
participant from the experiment. Although it is unlikely that the
specific activation patterns we observed can be attributed to non-
specific effects such as game repetition, boredom or exhaustion,
future studies employing a similar design might do well to include
such controls.
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We formulate and test a model that allows sharp separation between two different ways
in which environment affects evaluation of outcomes, by comparing social vs. private and
personal responsibility vs. chance. In the experiment, subjects chose between two lotter-
ies, one low-risk and one high-risk. They could then observe the outcomes. By varying the
environment between private (they could observe the outcome of the chosen lottery and
the outcome of the lottery they had not chosen) and social (they could observe the out-
come of the lottery chosen by another subject) we can differentiate the response and brain
activity following the feedback in social and private settings. The evidence suggests that
envy and pride are significant motives driving decisions and outcomes evaluation, stronger
than private emotions like regret and rejoice, with ventral striatum playing a key role. When
we focus on the outcome evaluation stage we demonstrate that BOLD signal in ventral
striatum is increasing in the difference between obtained and counterfactual payoffs. For a
given difference in payoffs, striatal responses are more pronounced in social than in private
environment. Moreover, a positive interaction (complementarity) between social compari-
son and personal responsibility is reflected in the pattern of activity in the ventral striatum.
At decision stage we observe getting ahead of the Joneses effect in ventral striatum with
subjective value of risk larger in social than in private environment.

Keywords: envy, pride, social comparison, responsibility, regret

INTRODUCTION
We investigate neural correlates of envy and pride during choice
and evaluation of outcomes. Envy is a negative emotion experi-
enced when an individual receives a worse outcome than someone
else; correspondingly, pride is a positive emotion experienced
when that outcome is better than the other’s. Human subjects may
feel envy and pride for different reasons. A classical view (Social
Comparison Theory; Festinger, 1954) is that comparing our per-
formance with others’ can give us a useful signal about our skill,
information that we may want to have even if we are not inter-
ested in relative comparisons, and envy and pride simply help us
to learn from such experience. The other classical view is formu-
lated for example by Veblen (1899): individuals strive for social
dominance, which is their ultimate objective, and envy and pride
reflect responses to differences in social status.

Until recently economics has focused mainly on situations
where social comparison is not considered, and the utility of
an economic agent depends only on one’s obtained outcomes
and is independent of others’ outcomes. The works on conspic-
uous consumption in quest for social status (Veblen, 1899) or
relative-income theory of consumption (Duesenberry, 1949) were
rather isolated examples of incorporating social comparison into
economics. More recently the empirical literature on subjective
well-being shows importance of relative-income (Blanchflower
and Oswald, 2004; Luttmer, 2005; Dynan and Ravina, 2007).
The experimental work on other-regarding preferences suggests

that players in simple strategic situations are influenced by rel-
ative outcomes (Fehr and Schmidt, 1999; Charness and Rabin,
2002). Social comparison was demonstrated to matter potentially
in many applications like internal wage structure in a firm (Frank,
1984), use of prizes instead of wages as optimal motivation devices
(Dubey et al., 2005), or pro-cyclical tax policy as a stabilization tool
(Ljungqvist and Uhlig, 2000), and many others. In finance, social
comparison can account for the observed under-diversification of
households’ portfolios (Roussanov, 2010). Social comparison has
a potentially broad impact in economics because it affects the cen-
tral concept of utility function. In this light the more important
becomes thorough understanding of social comparison including
its neurobiological basis.

Neuroeconomics focuses on understanding neural basis of
reward system (neurobiological utility), beliefs formation and
emotions that impact decisions, ex post evaluations, and learn-
ing (Glimcher et al., 2008). Numerous studies point to ventral
striatum and orbito-frontal cortex as essential regions that process
reward and values in the brain (McClure et al., 2003; O’Doherty
et al., 2003; Preuschoff et al., 2006; Glimcher et al., 2008; Caplin
et al., 2010). Social aspects of reward processing were addressed
by several papers in neuroeconomics (Sanfey et al., 2003; Knoch
et al., 2006; Singer et al., 2006; Takahashi et al., 2009). Two most
related papers to ours show that ventral striatum is sensitive to
social comparison (Fliessbach et al., 2007; Dvash et al., 2010).
The first paper (Fliessbach et al., 2007) demonstrates that BOLD
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signal in ventral striatum increases as the ratio of relative-income
increases to subject’s advantage (1:2, 1:1, 2:1). In the second paper
(Dvash et al., 2010) the effect of social comparison in ventral stria-
tum is demonstrated by benchmarking social treatment to the
treatment with absolute payoff only (no information about oth-
ers’ outcomes). The limitation of these fMRI studies is that one
cannot exclude the possibility that the main effect comes from
a different type of comparison than social one, i.e., counterfac-
tual comparison reflected by activity in ventral striatum (Camille
et al., 2004; Coricelli et al., 2005). Using counterfactual compari-
son as a benchmark social comparison was demonstrated in skin
conductance responses (Bault et al., 2008).

There are at least four factors that distinguish our fMRI study
from the related work in neuroeconomics we mentioned. First, we
consider envy and pride in social comparison as social correspon-
dents of regret and rejoice in counterfactual comparison, which we
use as a benchmark for the former. This is a much higher bar for
social comparison to pass as compared to those in the mentioned
papers. Second, the present study is the first in neuroeconomics to
weigh two classical explanations of social comparison described
in the first paragraph: Veblen’s social status and Festinger’s drive
to compare abilities. Third, thanks to large variability in outcomes
we are able to test robustness of social comparison to loser/winner
effect. Forth, using a two-lottery choice task allows us to investigate
social comparison at decision stage unlike earlier studies (Fliess-
bach et al., 2007; Dvash et al., 2010). The studies (Bault et al., 2008,
2011), where a similar design is used, are closely related. Differ-
ently from Bault et al. (2011), in the current study the emphasis is
in the decomposition of the counterfactual comparison in chance
and personal responsibility, based on a specific formal model that
we now present.

THEORETICAL FRAMEWORK
Our work can be conceptualized within the axiomatic framework
of social decision theory laid out in Maccheroni et al. (forth
coming), hereafter MMR, who extend regret theory (Loomes
and Sudgen, 1982) into social context, with envy and pride as
social correspondents of regret and rejoice. The theory consid-
ers a decision-maker that observes both the outcome x obtained
from his choice, and the counterfactual outcome y, that is an out-
come he could have had alternatively. The value function V (x, y)
of outcome profile (x, y) is a sum of personal utility u(x) from
the obtained outcome x and relative utility G(x − y). The lat-
ter part captures importance of counterfactual comparison of the
obtained outcome x vs. the counterfactual outcome y. This is a
generalization of classical expected utility theory, incorporating
relative utility. How important relative utility is for well-being of
decision-maker, given x and y, potentially depends on the nature
of counterfactual outcome y.

The model allows a distinction between private and social envi-
ronments. In private environment a counterfactual outcome y is
just what the individual could have had. In social environment a
counterfactual outcome y is what he could have had, but some-
one else obtained. Independently of distinction between private
vs. social environment, this setup may distinguish between chance
and personal responsibility. In case of chance, a decision-maker
obtained x rather than y due to pure luck. This occurs for example

when x and y are outcomes of the same chosen lottery, but drawn
independently. As for personal responsibility a decision-maker
could have obtained a counterfactual outcome y if he had made a
different choice. In general, the ex post value function is:

V i
j (x , y) = u(x) + Gi

j (x − y) (1)

where the superscript i denotes private or social environment, and
j denotes chance or personal responsibility. To evaluate lotteries
ex ante, before choice is made, a decision-maker uses expectation
of a value function V i

j (x , y) with respect to a subjective belief over

states of nature. One of the main features of the model is that it pro-
vides separation of the personal u(x) and relative Gi

j (x −y) utility:

here we focus on the latter. The Gi
j functions have natural interpre-

tation, for example: the function G0
0 is the disappointment/elation

function (private environment and chance responsibility), the
function G0

1 the regret/rejoice function (private environment and
personal responsibility), and G1

j the envy/gloating function (social

environment, and either chance or personal responsibility).

HYPOTHESES
Our primary objective is to investigate social comparison at out-
come evaluation stage. To simplify the analysis we assume that
functions Gi

j (x − y) are linear, and we refer to Gi
j as a slope. If

this model is taken as a model of the ex ante choice, then a linear
G function would make the model identical to expected utility:
that is, it would produce the same choice as that of an individual
that ignores inter-personal comparisons. For this reason we rather
interpret linear functions Gi

j (x − y) as approximations to true

non-linear functions. We state now formally our hypotheses:

1. Counterfactual comparison: Gi
j > 0 for all i, j.

2. Social comparison: G1
j − G0

j > 0.

3. Personal responsibility: Gi
1 − Gi

0 > 0.
4. Positive interaction (complementarity) between social com-

parison and personal responsibility effects: G1
1 − G0

1
> G1

0 − G0
0 .

5. Correspondence between behavioral and neural effects.

The first hypothesis asserts that the subjective value of the obtained
outcome x, while a decision-maker could have had the outcome
y, depends on the comparison of x and y, or Gi

j �= 0. In addi-

tion, we hypothesize that the functions Gi
j are increasing. In other

words, the subject’s relative utility Gi
j is increasing in the subject’s

advantage (that is the difference x − y) over the counterfactual
payoff. The second hypothesis of social comparison states that
the counterfactual comparison matters more in a social than in a
private environment. Simply, if a subject earns $1 more than the
other person his relative utility is larger as compared to earning
$1 more than the counterfactual outcome in private environ-
ment. The third hypothesis concerns personal responsibility effect,
which states that the counterfactual comparison is more important
in case of personal rather than chance responsibility. Intuitively,
the subject is more affected in terms of relative utility if advan-
tage (or x − y) in counterfactual comparison is due to his choice
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FIGURE 1 |Trial timing with duration and sequence of events. The study
focuses on ex post evaluation stage that is divided into two events: outcome
event and comparison event. The events presented in this Figure refer to the
treatment of social environment and personal responsibility. At comparison

event, a subject (“you”) conducts counterfactual comparison of “what you
got” as compared to “what you could have had, but the other got.” The
clause “but the other got” extends counterfactual comparison into social
comparison.

rather than just pure chance. The forth hypothesis is positive
interaction (complementarity) between social comparison and
personal responsibility effects. It is about personal responsibility
effect being stronger in the social than in the private environment.
The last fifth hypothesis is the correspondence between the neural
and behavioral effects.

MATERIALS AND METHODS
PARTICIPANTS
We recruited 63 participants from introductory courses in micro-
economics and macroeconomics at University of Minnesota to
participate in 21 experimental sessions. In each session one partici-
pant was placed inside magnetic resonance imaging (MRI) scanner
and two other at computers outside the scanner in a separate
room. All subjects in each experimental session faced otherwise
the same task. The 21 scanned participants were right-handed,
healthy males, aged 18–20 years old (mean 18.5, SD 0.6). Forty-two
subjects (18 females and 24 males) participated in the experiment
outside the scanner. We later discovered that the subject in the
scanner and one of the other two had a personal relationship, so we
drop this session from analysis and analyze data from 20 sessions.
All subjects gave informed consent to participate according to
the procedures approved by University of Minnesota Institutional
Review Board.

EXPERIMENTAL TASK
Subjects chose between two lotteries in each of 70 consecutive
rounds. Each lottery had two possible outcomes ranging from a
minimum value of −$5 to a maximum of $25. Three subjects
performed the same task in each experimental session. One male
subject was placed inside MRI machine. The two others made
choices at computers through a remote connection in a separate
room. We dropped one session from analysis due to violation of

experimental procedures. The main focus of this paper is on the
20 scanned subjects, for whom we collected both behavioral and
neural data according to the study procedures. Subjects were con-
nected over computer network. No deception was used at any
time. Subjects chose repeatedly a lottery from a pair of lotteries,
a low-risk and a high-risk one. In a typical trial each subject had
2 s to evaluate lotteries, and then made a decision without time
constraints: see Figure 1. Choice was followed by display of lotter-
ies for 2 s, and then determination of outcome for each. Lotteries
together with final outcomes were then shown for 2 s (outcome
event). Subjects then observed for 5 s two bars representing the
obtained payoff and the counterfactual payoff (comparison event).
Each of 70 trials ended with a subjective rating on the integer scale
0–10 (we labeled 0 as bad, 5 as neutral, 10 as good) without time
constraints. The outcomes of lotteries were drawn once and for all
using the actual probabilities for each of 72 trials. These outcomes
were the same in all 21 experimental sessions.

TIMING
Each of 70 periods started with a fixation screen pre-announcing
either the social or the private environment. Next, we asked the
subject to choose from two lotteries. After a display of 2 s, a cue
was given indicating that a choice could be made. The subject had
unlimited time to decide his choice of lottery. The average choice
time was 5 s. The lottery chosen by the subject was highlighted
for 2 s for decision confirmation. Sometimes, a subject in addi-
tion learned the choice of lottery by one other subject selected
randomly. This could lead to the delay of presentation of choices
that last 0.7 s on average. After that an arrow appeared over the pie
chart describing each lottery on the screen, started to spin instantly,
and stopped pointing to the outcome of lottery after an average
spinning time of 1.9 s. Pie charts and arrows pointing to outcomes
were kept on the screen for 2 s. After that, a subject was presented
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for fixed 5 s with his obtained payoff vs. the counterfactual payoff
he could have had according to the relevant condition. This event,
called comparison event, is the main focus of brain data analysis.
The period ended with the question“How did that make you feel?”
that a subject answered on the integer scale 0–10, with 0 – “Bad,”
5 – “Neutral,” and 10 – “Good.”

PAYMENTS
Subjects received a fixed participation payment of $15; the subject
in the MRI machine received additional $25. In addition subjects
were paid the outcomes of three randomly determined out of
those they had chosen during 70 periods. Outcomes of lotteries
varied from −$5 to $25, so losses were possible. To cover poten-
tial losses a participant received an additional payment of $15.
The three paid lotteries were drawn at the end of the session. The
total fixed payment was $55 to a scanned subject and $30 to a
subject participating outside MRI scanner. The average additional
payment from the three paid lotteries to subjects scanned in MRI
was $11.25, with minimum −$4, maximum $39, and SD $10.97.
The average performance payment to subjects participating out-
side MRI was $12.80, with minimum −$7, maximum $46, and SD
$12.39.

ANALYSIS
At the decision stage there was only one factor with two levels:
private vs. social environment. In the social environment each sub-
ject was choosing a lottery expecting to learn its outcome as well
as choice and obtained outcome of the other randomly matched
subject. In contrast in private environment a subject was not pro-
vided with any information about others. At the evaluation stage
we used 2 × 2 factorial design.

The two independent factors were: environment and responsi-
bility. Each factor had two levels: private vs. social environment,
and chance vs. personal responsibility. There were 20 trials in
each of three treatments: (private, personal), (social, chance), and
(social, personal). There were 10 trials in the treatment (private,
chance). The order of treatments in a session was random. We
used the set of 20 different pairs of lotteries shown at most once
in each treatment, see Table A1 in Appendix.

We now explain the four treatments present at the evaluation
stage, the stage consisting of outcome and comparison events, see
Figure A1 in Appendix for displays used in different treatments. In
treatment (private, chance) a subject saw at outcome event only the
lottery he chose, and at comparison event the obtained outcome
vs. the unrealized outcome within the chosen lottery. In contrast in
treatment (private, personal) a subject observed at outcome event
both the lottery he chose and the lottery he did not choose, fol-
lowed with comparison event presenting the outcome of chosen
lottery vs. the outcome of lottery he could but did not choose.
Treatment (social, chance) occurred if subjects in a random match
chose the same lottery. In this case we resolved the same lottery
independently for each subject in the match. Consequently, a sub-
ject in the match observed at outcome event the two instances of
the same lottery, one instance applying to him and other instance
applying to other subject. The outcome event was followed with
comparison event presenting subject’s outcome vs. other’s out-
come. Finally, treatment (social, personal) occurred if subjects in a

random match chose different lotteries. At outcome stage a subject
observed a lottery he chose and a lottery chosen by the other
subject in a random match. This was followed with a comparison
event presenting subject’s outcome against the outcome obtained
by the other.

fMRI ACQUISITION AND PREPROCESSING
We collected data at Magnetic Resonance Research Center at Uni-
versity of Minnesota using 3T Siemens Trio scanner. High resolu-
tion anatomical images were obtained using Siemens T1-weighted
3D flash 1 mm sequence. Functional images were acquired using
echo planar imaging with repetition time (TR) 2000 ms, echo time
(TE) 23 ms, flip angle 90˚, 64 × 64 matrix, 38 slices per scan, axial
slices 3 mm thick with no gap, voxel size 3 mm × 3 mm × 3 mm.
Functional images were acquired with an oblique 30˚ angle to
the anterior commissure–posterior commissure (AC–PC) line to
optimize signal acquisition from orbito-frontal cortex. The data
were preprocessed and analyzed using Brain Voyager QX 1.8.
The anatomical images were transformed into Talairach space
in two steps: first the cerebrum was rotated into AC–PC plane
using trilinear transformation, second we identified eight refer-
ence points (AC, PC, and six boundary points) to fit the cerebrum
into Talairach template using trilinear transformation. We pre-
processed functional data performing slice scan time correction,
3D movement correction relative to the first volume using trilinear
estimation and interpolation, removal of linear trend together with
low frequency non-linear trends using high-pass filter. Next, we co-
registered functional with anatomical data to obtain Talairach ref-
erenced voxel time courses, to which we applied spatial smoothing
using Gaussian filter of 7 mm.

fMRI ANALYSIS
The analysis was performed in Brain Voyager QX; the statistical
analysis in Stata. We used GLM model with continuous pre-
dictors of interest convolved with two-gamma hemo-dynamic
response function (Bv̈chel et al., 1998). We proceeded in three steps
separately for decision and outcome evaluation stages. First, we
performed whole-brain analysis with treatments collapsed using
random-effects General Linear Model (RFX GLM) to identify
functional region-of-interests (ROIs). We then examined treat-
ment effects in the regions identified in the first step. We finally
performed whole-brain analysis with RFX GLM focusing on rel-
ative treatment effects. At ex post outcome evaluation stage we
focused on two events of interest: outcome and comparison, while
controlling for the remaining events of no interest with dummy
variables. We implemented model designs with continuous predic-
tors of product of delta function (a box car function over 500 ms)
and value of advantage at event comparison. In model designs dif-
ferentiating between treatments we used separate predictors of
advantage for each treatment considered. We controlled for the
obtained payoff by a subject with a continuous predictor being
a product of delta function (2000 ms) and value of the obtained
payoff by a subject at event outcome. In analyzing ex ante evalu-
ation of choice alternatives we focused on the event lotteries. We
implemented model designs with continuous predictors of prod-
uct of delta function (500 ms) and value of risk-adjusted return of
high-risk lottery at the event lotteries.
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Table 1 | Counterfactual comparisons in behavioral data.

Private (i = 0) Social (i = 1)

Personal (j = 1) G0
1 = 0.169 (t = 7.7) G1

1 = 0.185 (t = 6.2)

Chance (j = 0) G0
0 = 0.098 (t = 6.1) G1

0 = 0.113 (t = 6.8)

The coefficients Gi
j on advantage (with t-values in brackets) from the regression

analysis of affective ratings as a function of the obtained outcome (payoff = x), and

counterfactual comparison (advantage = x − y) of the obtained outcome (x) and

counterfactual outcome (y) made in different conditions. The constant is 4.896

(t = 55.84) and the coefficient of the payoff is 0.147 (t = 9.06) with R2 = 58.9%.

RESULTS
BEHAVIORAL RESULTS
We focus on the question how self reported affective ratings (vari-
able affect ) depend on subjects’obtained outcome (variable payoff)
and counterfactual comparison relevant to treatment (variable
advantage). The variable advantage is the difference between the
payoff obtained by the subject and the counterfactual payoff. We
estimate the model given by Eq. 2 using OLS with robust SE
corrected for in-subject correlation in observations:

affect = α + β · payoff +
∑

i,j=0,1

Gi
j · advantagei

j (2)

The results reported in Table 1 confirm hypothesis that coun-
terfactual comparisons matter in the evaluations of outcomes of
choices, for example the estimated Gi

j coefficients are positive

and significantly different from 0. The affective rating of outcome
profile depends not only on the obtained payoff but also on the
counterfactual comparison.

To investigate the effect of personal responsibility we test
whether the importance of counterfactual comparisons is higher
in personal than in chance responsibility separately for the pri-
vate (G0

1 − G0
0 ) > 0 and the social (G1

1 − G1
0 ) > 0 environment

using the above estimates of Gi
j . The personal responsibility effect

is highly significant in both cases according to a two-sided Wald
test: F(1, 19) = 26.28 with p < 0.001 and F(1, 19) = 13.28 with
p = 0.002, respectively. Similarly for the social comparison effect
we test whether the importance of counterfactual comparisons is
higher in the social than in the private environment separately for
chance (G1

0 − G0
0 ) > 0 and personal (G1

1 − G0
1 ) > 0 responsi-

bility treatments. The social comparison effect has the right sign
but is not significant in both cases using two-sided Wald test: F(1,
19) = 1.24 with p > 0.1 and F(1, 19) = 0.77 with >0.1, respec-
tively. To check the forth hypothesis of positive interaction between
social comparison and personal responsibility we construct the
complementarity index CI:

CI =
(
G1

1 + G0
0

) − (
G0

1 + G1
0

)

0.25 · (
G1

1 + G0
0 + G0

1 + G1
0

) (3)

The numerator in Eq. 3 captures the degree of complementarity
between two factors. If it is positive then factors are comple-
mentary (positive interaction), if zero they are independent (no
interaction), and if negative they are substitutable (negative inter-
action). The denominator in Eq. 3 is a normalization introduced

so that CI is independent of scaling of variables. We estimated CI
individual by individual finding mean CI = 0.21, which is positive
as hypothesized. However, we cannot reject the hypothesis that
the two factors: environment and responsibility are independent
(Wilcoxon signed-rank test, z = 0.34, p > 0.1).

fMRI RESULTS
We performed whole-brain analysis of ex post evaluation of out-
comes. The evaluation stage was partitioned in two distinct events:
outcome event (which lasted 2 s) followed immediately by compar-
ison event (5 s), see Figure 1. During the outcome event subjects
were shown the lotteries, relevant to treatment, and their out-
comes. In the comparison event subjects observed the obtained
outcome vs. the counterfactual outcome, with the latter vary-
ing according to treatments. In the statistical models we test we
use the outcome event to control for the obtained payoff, while
during the comparison event we focus on counterfactual compar-
ison. The partitioning of the outcome evaluation stage into two
events allowed us to better control the nature of counterfactual
comparison between the obtained and counterfactual outcomes,
while also temporally decouple the predictors of the obtained and
counterfactual payoffs.

UNIVERSAL NETWORK FOR COUNTERFACTUALS
Our strategy is to first identify brain areas that are involved in coun-
terfactual comparisons in general, without differentiating between
different treatments. To this end we use model design with lin-
ear predictors (Bv̈chel et al., 1998) in the obtained payoff and the
advantage (with all treatments collapsed) and consider the contrast
of advantage against the baseline. With conservative threshold of
p < 0.01 (Bonferroni corrected) we find increased activations only
in striatum bilaterally, see Figure 2A. However, with more liberal
threshold of p < 0.02 (FDR corrected) we find also other clusters
associated with reward processing like mPFC and OFC, see Table 2,
among other regions, see Table A2 in Appendix. In the second
step we extract average BOLD time-series from the regions iden-
tified above and perform ROI analysis to test our hypotheses. We

FIGURE 2 | Regions of interest identified. (A) Ventral striatum bilaterally
shows increased activity at the contrast of linear advantage against the
baseline with p < 0.01 (Bonferroni corrected). (B) Anterior insula bilaterally
shows increased activity at the contrast with dummy predictors: Social
Loss less Private Loss with p < 0.001 (uncorrected), where Loss = 1 if
advantage <0, and 0 otherwise. Details of coordinates inTable 2.
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Table 2 | Areas in universal network for counterfactuals.

ROIs Average coordinates Max t Size p-Value

x y z

l LGP −14 2 −4 8.7 350 p < 0.01 Bonf.

r LGP 17 2 −3 6.0 66 p < 0.01 Bonf.

OFC −4 23 −12 4.1 150 p < 0.02 FDR

mPFC −2 43 −2 4.8 572 p < 0.01 FDR

l/r, left/right; LGP, lateral globus pallidus; OFC, orbito-frontal cortex; mPFC, medial prefrontal cortex.

differentiate between different treatments by considering model
designs with one factor at the time, instead of two, in order to
increase power. For clarity we report below the results on the
left ventral striatum, and very similar results on the right ventral
striatum are reported in the Appendix.

We ran random-effects panel regression to explain aver-
age BOLD time-series in the cluster of left striatum with lin-
ear predictors (convolved with standard two gammas hemo-
dynamic response function) in private advantage (coefficient
G0 = 0.77 with z = 7.79, p < 0.001) and social advantage (coef-
ficient G1 = 1.07 with z = 11.31, p < 0.001), while controlling for
the obtained payoff. Both coefficients are positive and significantly
different from zero, which demonstrates the involvement of left
striatum in counterfactual comparisons.

The difference in coefficients on social less private advan-
tage is positive and statistically significant (two-sided Wald test,
χ2 = 5.45, p = 0.02). The same analysis after the introduction of a
responsibility factor shows that the coefficients on chance advan-
tage (coefficient 0.79, z = 7.93, p < 0.001) and personal advan-
tage (coefficient 1.05 with z = 11.14, p < 0.001) are significantly
different from zero, with the difference between the latter and
the former positive and statistically significant (two-sided Wald
test, χ2 = 4.18, p = 0.04). The results confirm again the involve-
ment of left striatum in counterfactual processing and show that
it is stronger for personal rather than chance responsibility, see
Figure 3. To exclude the possibility that correlation of payoff
and advantage drives the results we consider the model designs
with advantage normalized to mean 0 and SD 1, without con-
trolling for payoffs. We run subject by subject regressions to
explain BOLD time-series convolved with HRF linear predictors
in normalized advantage, so that we obtain individual by individ-
ual coefficients allowing us to perform non-parametric statistical
tests. Considering environment factor we find that coefficients
on normalized private (coefficient 4.30, Wilcoxon signed-rank
test, z = 3.73, p < 0.001) and social advantage (coefficient 6.03,
Wilcoxon signed-rank test, z = 3.92, p < 0.001) are positive and
statistically significant. The difference between the latter and the
former is also positive and significant (Wilcoxon signed-rank test,
z = 1.79, p = 0.07). Switching to responsibility factor we observe
that coefficients on normalized chance (coefficient 3.49, Wilcoxon
signed-rank test, z = 3.21, p = 0.001) and personal advantage
(coefficient 6.52, Wilcoxon signed-rank test, z = 3.92, p < 0.001)
are positive and significantly different from 0. The difference
between coefficients on personal less chance normalized advantage
is positive and statistically significant (Wilcoxon signed-rank test,

FIGURE 3 | We performed ROI analysis, considering one factor at the

time, on the cluster of left ventral striatum, identified earlier as a part

of universal network for counterfactuals, showing that coefficients on

linear predictors in advantage are positive in all treatments. The
coefficient on advantage is larger in social than in private environment and
with personal than with chance responsibility.

z = 2.02, p = 0.04). The non-parametric analysis of normalized
advantage, without controlling for payoff, confirms the results
obtained in panel analysis when we controlled for payoffs.

To investigate the interaction between the two factors, envi-
ronment and responsibility, we consider the disaggregated model
design with all four treatments. We estimated neural CI (Eq. 3)
in left ventral striatum cluster to be 1.82 and significantly dif-
ferent from zero (Wilcoxon signed-rank test, z = 2.46, p = 0.01).
Further, for each participant we compute CI in the left striatal
cluster and based on affective ratings, and found that the neural
CI is positively correlated with behavioral CI with Pearson corre-
lation coefficient 0.4 see Figure 4. The OLS regression of neural
CI against behavioral CI gives a significant positive coefficient 0.94
(p = 0.08). The robust regression of neural CI vs. behavioral CI,
that weights away outliers and leverage points, gives very similar
results to OLS regression with coefficient on behavioral CI of 0.92
(p = 0.03). However, this result is not robust to entirely removing
the two extreme points from the right or two extreme outliers (see
Figure 4) from the OLS regression.

NEURAL TREATMENT EFFECTS
The previous analysis focused on the regions of interest involved in
the counterfactual comparisons in all conditions. However, some
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FIGURE 4 | BOLD data in the left ventral striatum exhibit positive

interaction, or complementarity between responsibility and

environment factors as measured by complementarity index CI = 1.82

(Wilcoxon signed-rank test, z = 2.46, p = 0.01), see Eq. 3 for definition

of CI.The Figure shows that neural CI (x -axis) predicts behavioral CI (y -axis).

brain regions may be involved selectively only in some treatments,
or may deviate from baseline in the opposite directions in differ-
ent treatments. To account for these possibilities we use model
design differentiating between private vs. social environment in
order to identify the regions of interest involved. We performed
the whole-brain analysis looking at the contrast between social
less private advantage, while controlling for payoffs (all being lin-
ear predictors). In terms of MMR model we are looking for brain
regions in which G1 − G0 �= 0. At the threshold p < 0.005 (uncor-
rected) and cluster size 50 voxels we find increased activity in right
striatum (left striatal cluster is slightly above threshold), supe-
rior frontal gyrus (SFG), and right dorsolateral prefrontal cortex
(right DLPFC) among other regions. Confirming above findings
the ROI analysis of right striatal cluster reveals that the coeffi-
cients on private G0 = 0.1 (Wilcoxon signed-rank test, z = 3.6,
p < 0.001) and social advantage G1 = 0.21 (Wilcoxon signed-rank
test, z = 3.85, p < 0.001) are positive and significantly different
from 0. In addition, the difference between coefficients on social
less private advantage G1 − G0 is positive and significantly greater
than 0 (Wilcoxon signed-rank test, z = 3.3, p < 0.001). In the
ROI analysis we computed for each participant a gloating index
(G1 − G0)/(G0 + G1) in the right striatal cluster and separately
a behavioral one based on affective ratings. Using robust regres-
sion we found behavioral gloating index to be predicted by its
neural counterpart individual by individual: a constant −0.21
(p = 0.07) and a coefficient 0.22 (p = 0.01). As caution is nec-
essary when using robust regression, we find positive correlation
of neural and behavioral gloating indices at individual level to
strengthen the finding of social comparison effect at aggregate
level documented above. In addition to right striatum we found
also SFG and right DLPFC to exhibit increased activity at the
contrast between social less private advantage, while controlling
for payoffs. However, in contrast to right striatum neither SFG
nor right DLPFC was identified to be part of universal net-
work for counterfactuals. The ROI analysis reveals that both SFG

and right DLPFC show positive linear response only to social
advantage. In case of SFG the coefficients on private advantage
G0 = −0.06 (Wilcoxon signed-rank test, z = −1.8, p = 0.07) and
social advantage G1 = 0.1 (Wilcoxon signed-rank test, z = 2.3,
p = 0.02) are significantly different from zero, but have oppo-
site signs. The last fact explains why we did not detect SFG
to be part of the universal network for counterfactuals. The
difference between coefficients on social less private advantage
G1 − G0 in SFG is positive and significant (Wilcoxon signed-rank
test, z = 3.36, p < 0.001). ROI analysis of right DLPFC exhibits
similar pattern. The similar exercise along chance vs. personal
responsibility dimension has not led to identification of other
regions than those already found in the universal network for
counterfactuals.

LOSER AND WINNER EFFECT
There exists a possibility that, rather than being more linearly
responsive to advantage in social than in private environment, the
brain regions are only more responsive to a win or a loss in social
than in private environment, no matter how large the advantage is.
In our experiment the variable advantage varied from −22 through
+21, with 34 intermediate discrete values, and contiguous values
in the interval from −11 to 11. Given this variability in advantage
we are able to run robustness check of the above findings by con-
sidering the model design with both linear and dummy predictors
of interest. In addition to linear predictors in payoff, private, and
social advantage we include dummy predictors: social win (equal
to 1 if social advantage is strictly larger than 0, and equal to 0
otherwise), and similarly defined variables social loss, private win,
and private loss.

The ROI analysis in the clusters of right stratum, SFG, and
right DLPFC, identified above shows that greater positive linear
response to social than private advantage in these regions is robust
to private/social win/loss effects. The difference in coefficients on
linear predictors of social less private advantage G1 − G0 was pos-
itive and significant in all three regions: right striatum (Wilcoxon
signed-rank test, z = 2.9, p = 0.004), SFG (Wilcoxon signed-rank
test, z = 1.8, p = 0.07), and right DLPFC (Wilcoxon signed-rank
test, z = 2.2, p = 0.03). Further, we looked at contrasts between
dummy predictors. In the whole-brain analysis in the contrast
social loss vs. private loss we found increased activity in anterior
insula bilaterally, see Figure 2B. The ROI analysis of left insula
cluster reveals a percentage BOLD change only to social loss to be
positive and significantly different from zero (Wilcoxon signed-
rank test, z = 3.3, p < 0.001), while in cases of private loss, private
win, and social win we fail to reject the hypothesis that percent-
age BOLD change is zero (Wilcoxon signed-rank test, p > 0.6), see
Figure 5.

GETTING AHEAD OF THE JONESES
Until now we presented behavioral and neural evidence that coun-
terfactual comparisons matter in ex post evaluations of choice
outcomes. They are stronger in social than private environment
and with personal than chance responsibility. We predict similar
results during the ex ante evaluations of choice alternatives, that
is, in the process leading to choice. In the analysis of ex post evalu-
ations we considered two factors: environment (private vs. social)
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FIGURE 5 | Region-of-interest analysis of left anterior insula shows

increased activity only to social loss (equal to 1 if advantage is strictly

less than 0 in social environment, and equal to 0 otherwise), and

around zero or slightly negative activity in cases of social win or

private win/loss.

and responsibility (chance vs. personal). In contrast, in the analysis
of ex ante evaluations of choice alternatives we considered envi-
ronment factor only. In the beginning of a trial subjects learned
whether they are in private or social environment but not whether
the trial involves chance or personal responsibility. The analysis of
the ex ante evaluations of choice alternatives, two binary lotteries
in our case, is complicated by the fact that outcomes of lotteries are
risky at the evaluation stage. In the previous analysis we assumed
for simplicity that relative utility in MMR model is linear. How-
ever, under the linearity assumption MMR model applied to ex
ante evaluations is equivalent to expected utility model, meaning
that both models generate the same choices and counterfactual
comparisons do not matter for choice behavior. Therefore, it is
necessary to adjust risk attitudes of subjects in the ex ante analy-
sis. Our empirical strategy is to consider risk-adjusted return as a
variable of interest. Recall that each choice situation in our study
involved two binary lotteries with similar expected values, low-
risk vs. high-risk one. We focus on the question how the choice of
high-risk lottery depended on its risk-adjusted return. We define
risk-adjusted return as expected value of lottery divided by SD.
The view that risk-adjusted return drives decisions has been sup-
ported in the literature (Weber and Johnson, 2009), which justifies
our approach.

We first examine behavioral data with logit regression aim-
ing to explain the choice of high-risk rather than low-risk lottery
with risk-adjusted return of high-risk lottery in private vs. social
environment. Borrowing intuition from finance one can interpret
the regression coefficient on risk-adjusted return as the subjective
value of risk. We run logit regression subject by subject obtain-
ing the average subjective value of risk to be 0.14 (SEM 0.22)
in private and 0.68 (SEM 0.2) in social environments. The for-
mer is not significantly different from 0 (Wilcoxon signed-rank
test, z = 0.3, p = 0.79), while the latter is positive and signifi-
cantly different from zero (Wilcoxon signed-rank test, z = 2.9,
p = 0.004). The subjective value of risk is significantly larger in

social than in private environment (Wilcoxon signed-rank test,
z = 2.4, p = 0.02). This may suggest that subjects choose more
often high-risk lotteries in social than in private environment.
However, high-risk lotteries are not all the same. Focusing on
high-risk lotteries we can consider those with below and above
median risk, namely the median of SD of high-risk lottery in the
pair of lotteries presented to subjects. The median value was $6.58.
High-risk lotteries with below median risk are chosen with lower
frequency in social (47%) than in private (52%) environment. The
reverse pattern holds for high-risk lotteries with above median risk
as subjects choose the high-risk lotteries with higher frequency
in social (42%) than in private (38%) environment. A Wilcoxon
signed-rank test shows that the first difference is not significant
(z = 1.01 and p > 0.1, while the latter is significant (z = −2.02,
p = 0.04).

This analysis suggests that subjects adjust their decisions in
social as compared to private environment in order to get ahead
of others. Our findings are consistent with the literature on expe-
rience based tasks showing social exposure to increase risk-taking
(Yechiam et al., 2008).

Guided by the behavioral results we performed analogical
analysis of neural data at the decision stage. Given our interest
in reward system, and especially in ventral striatum, our use of
risk-adjusted return as predictor in neural analysis can be jus-
tified by the finding that ventral striatum tracks both expected
reward and variance (Preuschoff et al., 2006). We first consider
the model design with linear predictor in risk-adjusted return,
without distinction between private and social environments. In
the contrast of risk-adjusted return against the baseline, with
threshold p < 0.005 uncorrected, we found increased activity in
ventral striatum bilaterally and decreased activity in OFC (see
Table 2). In the ROI analysis of the left cluster of ventral stria-
tum we looked at the linear response to risk-adjusted return in
private vs. social environment. In both cases the coefficients were
positive and significantly different from 0: private coefficient 0.04
(SEM 0.032, Wilcoxon signed-rank test, z = 1.75, p = 0.08) and
social coefficient 0.14 (SEM 0.025, Wilcoxon signed-rank test,
z = 3.5, p < 0.001). Crucially, the difference between the coeffi-
cients in social vs. private environment was positive and highly
significant (Wilcoxon signed-rank test, z = 3.1, p = 0.002). The
similar results apply to right cluster of ventral striatum. As for
OFC the analogical ROI analysis revealed that the coefficients
on risk-adjusted return were negative and significant with pri-
vate coefficient −0.17 (SEM 0.12, Wilcoxon signed-rank test,
z = −3.6, p < 0.001) and social coefficient −0.05 (SEM 0.11,
Wilcoxon signed-rank test, z = −3.1, p = 0.04). The difference
between social and private coefficients was positive and signifi-
cant (Wilcoxon signed-rank test, z = 2.4, p = 0.02). Subsequently,
we considered the model design with linear predictors in risk-
adjusted return, both in private and social environments. Look-
ing at the contrast social less private risk-adjusted return with
threshold p < 0.005 uncorrected we found increased activity in
striatum bilaterally and OFC as above. In addition we found
also increased activity in anterior cingulate cortex (ACC) and
right dorsolateral-cortex (rDLPFC) among other regions. The
ROI analysis shows that BOLD activity is decreasing in risk-
adjusted return in ACC and rDLPFC in private environment.
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The coefficients on private risk-adjusted return are negative and
significant, with coefficient in ACC equal to −0.1 (SEM 0.04,
Wilcoxon signed-rank test, z = −2.2, p = 0.03). The coefficient
in rDLPFC was −0.07 (SEM 0.04, Wilcoxon signed-rank test,
z = −1.5, p = 0.13). In contrast coefficients on social risk-adjusted
return are positive and significant with coefficient in ACC 0.07
(SEM 0.03, Wilcoxon signed-rank test, z = 1.8, p = 0.08) and the
coefficient in rDLPFC 0.08 (SEM 0.03, Wilcoxon signed-rank test,
z = 2.9, p = 0.004).

CONCLUSION
Our results put social comparison in new light and strengthen
existing findings. We document as in existing literature a crucial
role of ventral striatum, a part of brain reward system, in social
comparisons. Focusing on outcome evaluation stage we showed
that social emotions like envy and pride are stronger than cor-
responding private emotions like regret and rejoice as measured
by ventral striatum responses. First, this confirms Veblen’s view
of envy and pride as reflecting differences in social status. Sec-
ond, this is important finding as other studies established social
comparison effect in ventral striatum only against the baseline
(Fliessbach et al., 2007; Dvash et al., 2010), without reference
to any other alternative comparison process, i.e., counterfactual
comparison (Camille et al., 2004; Coricelli et al., 2005). More,
social comparison in ventral striatum is stronger in case of per-
sonal than chance responsibility for outcomes, which amounts to
positive interaction of social environment and personal respon-
sibility. We favor interpretation that difference between personal
and chance responsibility for outcomes is about how much can
be inferred about skill vs. luck of decision-maker during com-
parison process. Given this interpretation, positive interaction
of social environment and personal responsibility confirms Fes-
tinger’s view of envy and pride as helping people to learn skills
from others. We show that larger linear response in social than
in private environment to difference in outcomes is robust to
winner/loser effect. At the same time we find social loser effect
in anterior insula, a region associated with negative emotions.
Interestingly, we did not find for this region similar loser effect
in private environment or winner effects in either environment.
Nor we found differential linear response in private vs. social
environment. This suggests that the very social loss, no matter
how large evokes strong negative emotion. These findings fit well

with increased activity in anterior insula predicting rejections of
unfair offers (worse than 50:50) in ultimatum game (Sanfey et al.,
2003). We find also increased activity in areas related to Theory
of Mind reasoning in social vs. private environment. At decision
stage we observe getting ahead of the Joneses effect with subjec-
tive value of risk as measured by activity in ventral striatum being
larger in social than in private environment. Not surprisingly sub-
jects assume extreme risk more often in social than in private
environment. One another interesting aspect of brain response
to risk-adjusted return at decision stage is increased activity in
rDLPFC and ACC in social vs. private environment. Both regions
were shown previously to exhibit increased activity the higher the
decision conflict present (MacDonald et al., 2000). In this light one
interpretation of our results would be that the subjects have deci-
sion conflict in social environment whether to assume extreme
risk and possibly get ahead of others or keep taking reasonable
risks only.

Further research on social comparisons is needed to under-
stand it better. It may have far reaching consequences as social
comparison affects utility function, a central concept in econom-
ics. A direction of future research would be to focus on decision
stage and investigate idiosyncratic as compared to systematic risk
in private vs. social environment. Another interesting direction of
research to pursue is the relationship between temporal discount-
ing and social comparison, topics that independently received
considerable attention in neuroeconomics. Motivated by personal
responsibility effect in our study the hypothesis is that patient
individuals are more envious and proud if differences in relative
outcomes are mainly due to different skills. The intuition is that
patient individuals would weigh more the future differences in rel-
ative outcomes. Yet another intriguing question is the relationship
between social comparisons in different domains: me-vs.-others as
compared to among others. One possibility is that the more envi-
ous and proud individual the higher is his preference for equality
among others, for this increases chances he is in better situation
than anyone else.
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APPENDIX
In the section on the universal network for counterfactuals we
focus on reporting results concerning the left ventral striatum.
However, the results concerning the right ventral striatum are very
similar, and we omitted them in the main text in order not to
flood the reader with too many statistics, which we report here
in the Appendix. The cluster of right ventral striatum identified
as a part of the universal network for counterfactuals included
66 voxels at p < 0.01 (Bonferroni corrected). The coefficients on
private (G0 = 0.61 with z = 5.68, p < 0.001) and social advantage
(coefficient G1 = 1.08 with z = 10.56, p < 0.001) are positive and
statistically significant. The difference in coefficients on social less
private advantage is also positive and statistically significant (two-
sided Wald test, χ2 = 11.61, p < 0.001). The analysis for responsi-
bility factor shows the coefficients on chance advantage (coefficient
0.73, z = 6.79, p < 0.001) and personal advantage (coefficient 0.97
with z = 9.46, p < 0.001) to be positive and statistically significant,
with the difference between the latter and the former positive and
statistically significant (two-sided Wald test, χ2 = 2.86, p = 0.09).

As we did for the left ventral striatum in the main text to exclude
the possibility that correlation of payoff and advantage drives the
results we consider the model designs with advantage normalized
to mean 0 and SD 1, without controlling for payoffs.

Considering environment factor we find that coefficients
on normalized private (coefficient 3.39, Wilcoxon signed-rank
test, z = 3.14, p = 0.002) and social advantage (coefficient 6.47,
Wilcoxon signed-rank test, z = 3.92, p < 0.001) are positive and

statistically significant. The difference between the latter and
the former is also positive and significant (Wilcoxon signed-
rank test, z = 2.54, p = 0.01). Switching to responsibility factor
we observe that coefficients on normalized chance (coefficient
3.61, Wilcoxon signed-rank test, z = 3.25, p = 0.001) and personal
advantage (coefficient 6.52, Wilcoxon signed-rank test, z = 3.70,
p < 0.001) are positive and significantly different from 0. The
difference between coefficients on personal less chance normal-
ized advantage is positive but not significant as in the left ventral
striatum (Wilcoxon signed-rank test, z = 1.38, p = 0.17). The non-
parametric analysis of normalized advantage, without controlling
for payoff, in principle confirms the results obtained in panel
analysis when we controlled for payoffs.

To investigate the interaction between the two factors, envi-
ronment and responsibility, we consider the disaggregated model
design with all four treatments. We estimated neural CI (Eq. 3)
in right ventral striatum cluster to be 2.12 and significantly dif-
ferent from zero (Wilcoxon signed-rank test, z = 1.98, p = 0.05).
Further, for each participant we compute CI in the right striatal
cluster and based on affective ratings, and found that the neural
CI is positively correlated with behavioral CI (Pearson correla-
tion coefficient is 0.22). The OLS regression of neural CI against
behavioral CI gives positive coefficient 0.78 but not significant
(p = 0.36). In the analogical robust regression the coefficient is
0.75 (p = 0.17), also not being significant. In contrast at the left
ventral striatum the analogical coefficients were significant in both
regressions.
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Table A1 | Lotteries used in the experiment.

Pair number Lottery X = (X 1, p, X 2) LotteryY = (Y 1, q,Y 2)

X 1 p = Prob(X 1) X 2 Y 1 q = Prob(Y 1) Y 2

1 −5 0.25 0 −1 0.50 −1

2 −4 0.67 1 −2 0.50 −2

3 4 0.33 −4 −3 0.25 0

4 4 0.33 −4 −2 0.33 0

5 12 0.25 −5 1 0.50 1

6 10 0.25 −4 1 0.50 1

7 9 0.33 −5 0 0.50 1

8 8 0.25 −3 0 0.75 2

9 18 0.50 −4 9 0.67 5

10 17 0.50 −3 8 0.67 6

11 10 0.25 −1 3 0.75 1

12 12 0.33 −2 4 0.83 2

13 16 0.25 −4 2 0.50 2

14 15 0.33 −5 2 0.50 2

15 24 0.33 3 12 0.67 6

16 25 0.33 2 10 0.75 8

17 22 0.14 3 7 0.67 7

18 24 0.17 4 8 0.75 8

19 13 0.25 2 6 0.75 2

20 12 0.33 1 7 0.67 1

There are two lotteries in each choice: X = (X1, p, X2) and Y = (Y1, q, Y2), where in the lottery X the prize X1 realizes with probability p and the prize X2 realizes with

probability (1 − p), with similar notation applying to the lottery Y. The lottery pairs with odd numbers are distinct. The lottery pairs with even numbers are slightly

perturbed ones relative to the preceding odd-number pairs. We used these pairs of lotteries in all treatments, with exception of the treatment (private, chance), where

odd numbered pairs were used only. No pair was repeated within a treatment.

Table A2 | Areas in universal network for counterfactuals.

ROIs Average coordinates Size

x y z

Superior temporal gyrus 59 −7 −1 858

Inferior parietal lobule 55 −30 31 53

Culmen 44 −36 −26 211

Pyramis 41 −68 −32 142

Superior temporal gyrus 37 −1 −16 61

Medial frontal gyrus 21 30 26 152

Medial frontal gyrus 17 −44 15 56

Anterior cingulate −1 42 −2 1559

Subcallosal gyrus −4 23 −12 150

Middle frontal gyrus −30 27 45 433

Middle temporal gyrus −33 −57 16 140

Middle temporal gyrus −35 −49 9 56

Middle frontal gyrus −39 52 6 161

Inferior frontal gyrus −48 39 −2 70

The regions of interest in the universal network for counterfactuals identified in the contrast of advantage against the baseline at comparison event. The threshold is

p < 0.02 FDR corrected.

Frontiers in Psychology | Cognitive Science February 2012 | Volume 3 | Article 25 | 164

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


Grygolec et al. Envy and pride wired in the brain

FIGURE A1 |Treatments at evaluation stage as displayed to subjects. First outcome event is presented and then followed with comparison event.
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Electroencephalogram studies have identified an error-related event-related potential (ERP)
component known as the error-related negativity or ERN, thought to result from the
detection of a loss of reward during performance monitoring. However, as own errors
are always associated with a loss of reward, disentangling whether the ERN is error- or
reward-dependent has proven to be a difficult endeavor. Recently, an ERN has also been
demonstrated following the observation of other’s errors. Importantly, other people’s errors
can be associated with loss or gain depending on the cooperative or competitive context
in which they are made. The aim of the current ERP study was to disentangle the error- or
reward-dependency of performance monitoring. Twelve pairs (N = 24) of participants per-
formed and observed a speeded-choice-reaction task in two contexts. Own errors were
always associated with a loss of reward. Observed errors in the cooperative context also
yielded a loss of reward, but observed errors in the competitive context resulted in a gain.
The results showed that the ERN was present following all types of errors independent
of who made the error and the outcome of the action. Consequently, the current study
demonstrates that performance monitoring as reflected by the ERN is error-specific and
not directly dependent on reward.

Keywords: performance monitoring, response ERN, observed ERN, cooperation, competition, reward

INTRODUCTION
Human behavior is prone to errors. We slip, trip, push incorrect
buttons, and drop things on a regular basis. Fortunately, people
are in general able to detect these errors in a fast and efficient
manner. This fast error detection process is enabled by a con-
tinuous monitoring of our performance and thus importantly
facilitates goal-directed behavior. Electroencephalogram (EEG)
studies have identified an event-related potential (ERP) com-
ponent immediately following own errors known as the error-
related negativity or ERN (Falkenstein et al., 1990; Gehring et al.,
1993). The ERN is elicited 50–70 ms following an erroneous
button press and is thought to originate from areas in poste-
rior medial frontal cortex (pMFC), including anterior cingulate
cortex (ACC) and pre-supplementary motor area (pre-SMA; Hol-
royd et al., 2004; Ridderinkhof et al., 2004; De Bruijn et al.,
2009). Research and theories on the ERN and performance mon-
itoring have proposed a close link between error and reward
processing. The goal of the current study is to disentangle the
error- or reward-dependency of performance monitoring using
ERPs.

One of the most influential theories on the ERN in performance
monitoring is the reinforcement learning (RL) theory proposed by
Holroyd and Coles (2002). The ERN can be elicited immediately
following response onset, the so-called response ERN or rERN or
following negative feedback, the so-called feedback related neg-
ativity or FRN. The RL theory proposes that depending on the

knowledge available to the system, the ERN is elicited at the first
moment in time the error can be detected. Importantly, this the-
ory proposes a direct relation between performance monitoring
or error detection and reward processing. In short, the RL theory
states that whenever an error is made, the outcome of an action
turns out to be worse than expected, resulting in a loss of reward
and hence eliciting the ERN. However, as own errors are always
negative events associated with some loss of reward, disentangling
whether the ERN is error- or reward-dependent has proven to be
an extremely difficult endeavor.

Humans are social animals and for a large part of the day
involved in some form of social interaction. Experience teaches
us that people are not only able to detect their own errors, but that
they are also extremely skilled in detecting other people’s mistakes.
However, for long, research focused on performance monitoring
in individual settings, thus only reporting findings on monitoring
of our own performance.

More recently, performance monitoring research has expanded
into more social settings and an ERN, the so-called observed ERN
(oERN) has also been demonstrated following the observation
of other’s errors (Miltner et al., 2004; van Schie et al., 2004; Bates
et al., 2005). These initial ERP studies suggested that similar neural
processes are responsible for the detection of one’s own errors as
well as the detection of other’s errors. This assumption was later
confirmed in fMRI studies showing that indeed overlapping areas
in pMFC were stronger activated for own and observed errors in
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comparison to correct performance and observations (Shane et al.,
2008; De Bruijn et al., 2009).

Importantly, depending on whether the observed errors are
made in cooperative or competitive contexts they are associated
with loss or gain for the observer, respectively. Thus, we realized
that by using the overlapping mechanisms for observed and own
error detection we had a method to disentangle the error- or
reward-dependency of performance monitoring. For this aim, we
recently conducted an fMRI study in which we directly compared
monitoring of own and other’s performance in both a cooperative
and a competitive setting (De Bruijn et al., 2009). As in real-life,
own errors were associated with a loss of money in both settings,
while observed errors also resulted in a loss of money in the cooper-
ative setting, but led to a monetary gain in the competitive context.
The results from this study demonstrated that the areas in pMFC
involved in detecting own errors were similarly involved in detect-
ing other’s errors independent of the award associated with the
cooperative or competitive context, thus demonstrating the error-
specificity of these areas. On the other hand, areas known to be
involved in reward processing, like ventral striatum, were sensitive
to the nature of the context and responded in a reward-specific
manner.

Although some recent studies have investigated ERP correlates
of observed performance monitoring in cooperative and compet-
itive contexts, the focus so far has mainly been on the FRN elicited
by negative feedback. Two recent studies demonstrated increased
FRN amplitudes in a cooperative compared to a competitive set-
ting, suggesting that the FRN in these tasks were more sensitive
to the loss of reward associated with the outcome (Itagaki and
Katayama, 2008; Marco-Pallares et al., 2010). Importantly, how-
ever, a focus on the FRN has some consequences for the analyses
and the choice of paradigm. First of all, unlike the response-locked
oERN, it is difficult to fully dissociate between the FRN and the fol-
lowing stimulus-locked P300 ERP component as both are involved
in processing unexpected, but task-relevant events (see, e.g., Haj-
cak et al.,2005). This is especially the case when the FRN is analyzed
at a more central electrode like Cz. Second, the focus on the FRN
has important consequences for the paradigms used. Speeded-
choice-reaction tasks are mainly used in rERN and oERN tasks
to elicit a reasonable amount of errors. Studies aimed at investi-
gating the FRN, however, usually employ gambling tasks in which
participants have little or no control over the correctness of their
responses and thus need to fully rely on the feedback information.
So although it is generally assumed that the FRN and ERN are
reflections of the same performance monitoring process (see, e.g.,
Holroyd et al., 2004; Mars et al., 2005), important differences in
quantification and experimental design exist that may importantly
affect the exact outcomes of these observed error studies.

To our knowledge, only one recent study did investigate
observed errors relative to the moment of the actor’s response in a
cooperative and competitive context. The results from this go/no-
go study by Koban et al. (2010) were more in line with our recent
fMRI findings, by demonstrating an oERN of similar amplitude
for observed errors in both contexts. The study did demonstrate a
latency difference, with the oERN peaking later in the competitive
setting. However, when directly comparing the ERP waveforms
from the original observed error monitoring study by van Schie

et al. (2004) and those in the study by Koban et al. large differences
become apparent. Importantly, the waveforms in the Koban et
al. may alternatively be interpreted as resembling stimulus-locked
ERPs more than response-locked ERPs. These differences in ERP
waveforms raise the question whether the exact same processes are
investigated in the two paradigms.

In the observed Flanker paradigm in the van Schie et al. (2004)
study participants were seated facing each other and observed the
actor’s actual thumb movements, which were taken as the moment
of response onset. In the Koban et al. (2010) study, participants
were seated next to each other, looking at a computer screen and
inferred the correctness of the actor’s response on the basis of a
visual stimulus presented on the screen (i.e., a black frame appear-
ing around the target stimulus indicating that a response had
been given). So although ERPs were in theory time-locked to the
moment of the actor’s response, this time-point was visualized for
the observer by the presentation of a stimulus. The observer thus
had to process this abstract visual stimulus and then infer the cor-
rectness of the given response. It is plausible that this explains why
the ERP waveforms from the observation condition in the Koban
et al. study differ from the initial oERN study by van Schie et al. as
the presentation and subsequent processing of the visual stimulus
may result in a stimulus-locked ERP pattern. Consequently, it is
rather difficult to determine whether the negativities analyzed in
the Koban et al. paper are superimposed on response-locked or
stimulus/feedback-locked error-related ERPs.

An important explanation for the presence of the oERN in the
van Schie et al. (2004) study was based on sub-threshold sim-
ulation of the goal movement and comparing this to the actual
observed movement. This was supported by dedicated analyses
investigating the relative activation of the left or right motor cortex
during observation. These so-called lateralized readiness potential
(LRP) analyses demonstrated covert lateralized activation of the
motor cortex. In other words, while observing, participants acti-
vated the correct response at a sub-threshold level even before the
actor started responding and thus generated a representation of
the appropriate response following stimulus presentation. How-
ever, when they subsequently observed an error from the actor this
initial correct activation was inhibited and the observers showed
increased activation of the incorrect response. So, following the
response of the other participant, the observer’s motor system was
differentially activated as a function of the accuracy of the observed
response. This covert motor simulation may thus play a central role
in the mechanisms underlying observed error detection. Another
advantage of the setup by van Schie et al. was that it represented
a situation which was more comparable to real-life performance
monitoring in a social context, as the relation between the observed
erroneous movement and the process of performance monitoring
was very direct. This relation was more indirect in the Koban
et al. (2010) study, as the error detection process was mediated by
the presentation of a more abstract visual stimulus. As a result,
the motor simulation processes underlying observed performance
monitoring might have been weakened in the later study. In our
view, the existing differences in paradigms used and the processes
involved as well as the forthcoming uncertainties importantly war-
rant investigating the error- or reward-dependency of the ERN
using the observed flankers paradigm.
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The aim of the current study was to disentangle the error-
or reward-dependency of performance monitoring using ERPs.
This was achieved by investigating the ERN following own and
observed errors in a cooperative and competitive context using the
observed Flankers paradigm. Based on our previous fMRI study
(De Bruijn et al., 2009) and the results by Koban et al. (2010)
we expected to find similar rERN and oERN amplitudes in both
contexts, reflecting the error-dependency of this ERP component.

MATERIALS AND METHODS
PARTICIPANTS
Twelve pairs of participants (N = 24; 14 women; mean
age = 23.1 years, SD = 2.9) participated in the experiment. All
subjects were healthy volunteers recruited on the campus of the
Radboud University in Nijmegen, the Netherlands and were either
paid or awarded course credits for participation. All participants
gave their informed consent after the nature of the study had
been fully explained to them. The study was carried out in accor-
dance with the latest version of the Helsinki Declaration and was
approved by the local ethics committee of the university.

DESIGN AND PROCEDURE
The experimental setup can be seen in the left panel of Figure 1.
Two participants were scheduled for one meeting and randomly
assigned to start the task as an actor or observer. They were seated
face-to-face at a table. In the middle of the table, between the two
participants, a wooden box with a LED display was placed. The
actor responded with joystick movements in one horizontal axis.
The stick had a central position and moved back to this position
when the force was removed. The joysticks were positioned, such

that (1) the actor could easily reach the sticks with his/her thumbs
and that (2) the observer was able to see the joysticks and thumbs
well. On the actors’ side of the LED display, arrow stimuli from
a modified Flankers task were presented (Eriksen and Eriksen,
1974). On the observers’ side of the display, only the target arrow
was presented, indicating which joystick had to be moved.

Stimulus presentation was controlled with Presentation soft-
ware (Neurobehavioral Systems). Each trial began with the presen-
tation of a fixation circle (300 ms), followed by an empty display
(300 ms). Next, the stimulus was presented for 300 ms. All stimuli
consisted of five arrows. The central target arrow indicated the
goal direction of the actor’s movement. The two flanking arrows
on each side could either be congruent or incongruent with the
target. Following the stimulus, an empty display was presented for
900 ms.

Actors were instructed to touch the two joysticks with their
thumbs and respond to the target arrow as fast as possible. When
the central arrow on the display pointed to the right, they had
to press the right stick with their right thumb to the right. Anal-
ogously, they were required to press the left stick with their left
thumb to the left, when the central arrow pointed to the left.

Observers were instructed to count the errors made by the
actor (see van Schie et al., 2004). They were told that the initial
response counted and that any corrective behavior of an error was
invalid. They were asked to keep the amount of errors in mind and
write it down during the break between the blocks. After the first
condition, a break was held, and participants switched their tasks.

The task was performed in both a cooperative and a competi-
tive context. The order of these two contexts was counterbalanced
between pairs. Participants started the cooperative context with

FIGURE 1 | Setup of the observed Flankers task. Participants both
performed and observed 600 trials in a cooperative and in a
competitive context. Own errors were always associated with a loss of

money. Observed errors in the cooperative context also resulted in a
loss of reward, but observed errors in the competitive context resulted
in a gain.

www.frontiersin.org February 2012 | Volume 6 | Article 8 | 168

http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


de Bruijn and von Rhein Error- or reward-dependent performance monitoring?

a shared bonus of 10 Euros, but for each error 10 cents were
deducted from this bonus, irrespective of whether a participant
made the error or whether they observed their partner make an
error (see Figure 1, right panel and De Bruijn et al., 2009). In the
competitive context each participant started out with an individ-
ual bonus of five Euros. Again 10 cents were deducted when they
made an error themselves, but they would gain 10 cents when their
opponent made an error.

Participants performed and observed six blocks of 100 trials in
each context. As a result, the entire experiment consisted of 2400
experimental trials and 160 test trials (40 before each new con-
dition). Congruent and incongruent stimuli were presented in a
random order and equally distributed in each block (each stimulus
type was presented 150 times in each context). After each block,
there was a break of approximately 1 min.

DATA ACQUISITION AND ANALYSES
The EEG was recorded from the two participants using 27
tin electrodes mounted in an elastic electrode cap (Elec-
trocap International). Electrodes were placed at 7 mid-
line (FPz/AFz/Fz/FCz/Cz/Pz/Oz) and 20 lateral (FP1–2/F7–
8/F3–4/FC5–6/T3–4/C3–4/CP5–6/T5–6/P3–4/O1–2) locations in
accordance with an extension of the international 10–20 sys-
tem. All signals were referenced to the left mastoid, but later
re-referenced to the average of both mastoids. The vertical electro-
oculogram (EOG) was recorded bipolarly from electrodes placed
above and below the right eye. The horizontal EOG was also
recorded bipolarly from electrodes lateral to both eyes. All elec-
trode impedances were kept below 5 kΩ. The EEG and EOG signals
were amplified using a time constant of 8 s (high pass 0.02 Hz) and
were filtered off-line with a bandpass of 1–14 Hz. All signals were
digitized with a sampling rate of 500 Hz.

Trials with response times faster than 150 ms were excluded
from all analyses (1.5%). For the behavioral analyses, we ana-
lyzed performance and response times of the actors by entering
individual mean error rates and reaction times in a repeated
measures general linear model (GLM) with Context (coopera-
tive vs. competitive), Congruency (congruent vs. incongruent),
and Correctness (correct vs. incorrect) as possible within-subject
factors.

Before averaging EEG signals to ERPs, error and correct tri-
als were matched for reaction times (±4 ms; see van Schie et al.,
2004) to control for possible differential effects of the stimulus-
locked ERP components. Eye movements were corrected using
the procedure described by Gratton et al. (1983) and averaged
to ERPs separately for each subject and each condition, relative
to a 100-ms pre-response baseline. Note that a peak measure
implies the presence of a negative peak on correct ERP wave-
forms as well. However, inspection of our individual averages
revealed that this was often not the case for both the actor and
observer data. Therefore, we conducted ERN analyses in which
the ERN was quantified as a mean amplitude measure. Based
on the grand averages, we defined the rERN as the mean ampli-
tude of the interval from 0 to 150 ms after response onset and
the oERN as the mean amplitude in the 150- to 300-ms time
window after the response. Individual rERN and oERN ampli-
tudes were entered into 2 × 2 repeated measures GLMs with

Context (cooperative vs. competitive) and Correctness (correct
vs. incorrect) as within-subject factors. Finally, latencies of the
rERN and oERN peaks on incorrect responses were analyzed by
entering the individual latencies into repeated measures GLMs
with Context (cooperative vs. competitive) as within-subject
factor.

RESULTS
BEHAVIORAL ANALYSES
As expected, the analyses on error rates demonstrated a main effect
of Congruency, indicating increased error rates for incongruent
trials (22.2%) than for congruent ones [6.7%; F(1,23) = 124.08,
p < 0.001]. There was neither a main effect of Context present
[F(1,23) = 1.85, p = 0.186], nor a significant interaction between
Congruency and Context (F < 1).

When investigating reaction times for correct responses only,
we found the expected main effect for Congruency, with slower
reaction times for responses to incongruent stimuli (352 ms) com-
pared to responses to congruent stimuli [312 ms; F(1,23) = 97.05,
p < 0.001]. Neither the main effect of Context, nor the interaction
between the two was significant (both Fs < 1). When incorrect
responses were also included in the analysis, an additional effect of
Correctness was found, reflecting the usually found faster reaction
times for erroneous responses (273 ms) compared to correct ones
[332 ms; F(1,23) = 273.37, p < 0.001].

ACTOR ERP ANALYSES (rERN)
The ERP waveforms for the actor in the performance condition
are depicted in Figure 2. The well-known rERN component is vis-
ible following incorrect responses at midline electrodes with the
expected frontocentral distribution (Figure 3, upper panel) peak-
ing around 70 ms. The peak latencies were not different for the
two contexts (F < 1).

As expected, the amplitude analyses demonstrated a main
effect of Correctness, with more negative amplitudes for incor-
rect responses (−2.76 μV) compared to correct ones [3.08 μV;
F(1,23) = 75.25, p < 0.001]. Neither the main effect of Context
[F(1,23) = 2.66, p = 0.117], nor the interaction between Correct-
ness and Context (F < 1) reached significance, indicating that
rERN amplitudes did not differ between the two contexts.

OBSERVER ERP ANALYSES (oERN)
The ERP waveforms for the observer in the observation condition
are depicted in Figure 4. The oERN component is visible follow-
ing incorrect responses at the midline electrodes and also shows
the typical frontocentral distribution (Figure 3, lower panel). The
oERN peak latencies did not differ between the two contexts
(F < 1; cooperative = 232 ms; competitive = 237 ms).

Similar to the rERN outcomes, the amplitude analyses demon-
strated a main effect of Correctness, with more negative ampli-
tudes for incorrect responses (−2.75 μV) compared to correct
ones [−0.74 μV; F(1,23) = 43.71, p < 0.001]. Neither the main
effect of Context (F < 1), nor the interaction between Correct-
ness and Context [F(1,23) = 2.32, p = 0.141] reached significance,
indicating that oERN amplitudes did not differ between the two
contexts.
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FIGURE 2 | Grand average ERP waveforms for the performance condition, time-locked to the onset of the actor’s response for correct (green lines)

and incorrect (red lines) responses separately. Midline electrodes Fz, FCz, Cz, and Pz are depicted.

DISCUSSION
The current study aimed at determining the error- or reward-
dependency of performance monitoring by examining response-
locked own and observed errors in a cooperative and competitive
setting. The setup was designed with the aim to resemble real-life
interactive behavior, by enabling EEG onsets to be time-locked
to the actual actor’s movement onset in a direct and comparable
manner both for own and observed actions.

The results demonstrated the well-known rERN following
own errors in the performance condition. The amplitude and
latency of the rERN was comparable for both contexts. More-
over, a clear oERN was present following other’s errors in the
observe condition. The ERP waveform patterns for the observed
actions time-locked to movement onset were very similar to
those originally reported by van Schie et al. (2004), thus sup-
porting our assumption that we are currently investigating the
same processes and mechanisms. Importantly, the current study
showed that the amplitudes and the latencies of the oERN did
not differ between the cooperative and competitive context. As the

reward-dependency was crucially manipulated for the observed
errors (loss vs. gain) in the two contexts, our results are in favor of
an error-specific explanation of the ERN. We do not find evidence
supporting the reward-specificity of performance monitoring as
suggested by the RL theory (Holroyd and Coles, 2002).

Notably, the current outcomes are in line with a previous fMRI
study from our lab, which also revealed error-dependent activa-
tions in anterior cingulate and pre-SMA for own and observed
errors in both contexts (De Bruijn et al., 2009). Previous studies
have repeatedly demonstrated the source of the ERN to originate
from areas in pMFC, including anterior cingulate (see, e.g., Rid-
derinkhof et al., 2004; Debener et al., 2005). Reward-dependent
activations were found in the previous fMRI study in striatal areas
including nucleus accumbens. Please note that, to enable a more
direct comparison, the payoff matrix for errors in the two contexts
used in the fMRI study was the same as the one currently used.
Obviously, it is very well plausible that the reward-related acti-
vations are not reflected in the scalp-recorded ERN waveforms.
Furthermore, the current results are in line with a recent study by
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FIGURE 3 |Topographical distribution of the difference waves (incorrect

minus correct) showing the expected frontocentral distribution for the

rERN at peak onset (70 ms) in the Performance condition (upper panel)

and for the oERN at peak onset (235 ms) in the Observation condition

(lower panel). Darker colors indicate more negative amplitudes.

Koban et al. (2010), which also demonstrated similar amplitudes
for observed errors in a cooperative and competitive context. The

results from that study did however demonstrate a latency dif-
ference between the two contexts, with a later oERN peak in the
competitive compared to the cooperative context. This finding was
not present in the current data. Given the differences in methodol-
ogy and resulting ERP waveforms between the current study and
the one by Koban et al. it is difficult to draw conclusions regarding
this aspect. It is, for example, not entirely clear whether the two
paradigms measure the exact same processes.

To our knowledge, no other studies investigated the context-
sensitivity of the oERN measured relative to response onset. Two
recent studies did investigate the feedback-locked FRN in compa-
rable cooperative and competitive settings (Itagaki and Katayama,
2008; Marco-Pallares et al., 2010). The current findings are not in
line with these recent studies that demonstrated the FRN to be
sensitive to the actual reward outcome. Although it is generally
assumed that the rERN and the FRN are reflections of the same
performance monitoring process (see, e.g., Holroyd et al., 2004;
Mars et al., 2005), these divergent outcomes might suggest that
the feedback-locked and response-locked ERNs actually reflect
different processes in social performance monitoring. However,
based on currently available evidence, we would like to refrain
from concluding this. Importantly, experimental paradigms used
in rERN and FRN studies are very different and thus the exact per-
formance monitoring processes needed to perform the task may
crucially differ. The studies by Itagaki and Katayama and Marco-
Pallares et al. made use of gambling tasks to investigate the FRN
during social performance monitoring. Importantly however, per-
forming a gambling task does not require internal performance
monitoring, as participants do not have a representation of the
correct response at the moment of response onset. Participants
need to fully rely on the external feedback information to deter-
mine the correctness of their response and have no control over
the outcome. Moreover, in complete gambling tasks, participants
cannot optimize their behavior in any way, as associated feedbacks
are predetermined by a computer program and thus each trial
requires a new gamble.

Recent theories have proposed pMFC to be implicated in
regulating adaptive behavior rather than performance monitor-
ing alone. Rushworth and Behrens (2008) proposed pMFC to
be crucially involved in updating of action values, optimizing
performance, and subsequent strategy changes on the basis of
reward information. Support for this more general role comes
from studies that demonstrated amongst others pMFC to be sim-
ilarly involved in processing correct actions associated with a high
predictive value, as is the case in the beginning of learning (Walton
et al., 2004). It also explains why pMFC is often found to be acti-
vated by other signals besides errors that also trigger the need for
a behavioral change, like response conflict (Botvinick et al., 2004),
error likelihood (Brown and Braver, 2005), or pain (Eisenberger
and Lieberman, 2004; Singer et al., 2004). So, if indeed the central
role of pMFC and associated ERP components is regulation of
adaptive behavior, the exact function of the FRN elicited in tasks
lacking behavioral control may thus be open for investigation.

A recent study by Holroyd et al. (2008) recently investigated
this issue, by focusing on positive and negative ERP components
elicited by different types of stimuli and feedback. Crucially, the
authors concluded that the FRN is actually the same component
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FIGURE 4 | Grand average ERP waveforms for the observation condition, time-locked to the onset of the actor’s response for correct (green lines) and

incorrect (red lines) responses separately. Midline electrodes Fz, FCz, Cz, and Pz are depicted.

as the stimulus-locked N200, a standard visual ERP component
that is typically present in all stimulus-locked ERP waveforms.
The important consequence of this interpretation is that the FRN
is not – as generally assumed – additionally elicited on erroneous
trials, but is always present and may be reduced or even absent
on correct feedback trials. This more parsimonious interpretation
may explain, for example, why the FRN is also commonly found
on non-informative neutral feedback stimuli. Thus, the crucial
conclusion was that “events that fail to indicate that a task goal has
been achieved (including the occurrence of both neutral and error
feedback stimuli) elicit the FRN (or N200), whereas events that
do indicate that a task goal has been achieved elicit a positive ERP
component,” the so-called feedback correct-related positivity or
fCRP, significantly reducing or even canceling out the FRN/N200
(Holroyd et al., 2008). The consequence of this interpretation is
that the important neural activity is actually happening on correct
feedback trials that signal that a goal has been achieved. Although

this interesting proposal needs further investigation, it may explain
the recent FRN findings in cooperative and competitive contexts.
When participants focus on winning in a gambling task, this goal
will be achieved when an opponent receives negative feedback.
This “negative” feedback signal may thus result in increased pos-
itive amplitudes as reflected in the fCRP, importantly reducing
the FRN. This alternative interpretation of the FRN may thus
explain the reported opposite patterns of FRNs in cooperative
and competitive settings using gambling tasks.

It is obvious that future research is needed to test these theories
and hypotheses by investigating differences and possible over-
lap between these ERP components in social settings with more
directly comparable experimental paradigms. Instead of using
gambling tasks, employing for example RL or probabilistic learn-
ing paradigms may be a way to accomplish this, as participants
crucially have to use the information derived from the feedback to
optimize their behavior.
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A limitation of the current study may be that the blocked obser-
vation design does not allow for measurements on behavioral
adjustments following observed errors. However, we do believe
that the current results may also be relevant in the light of recent
behavioral work demonstrating different behavioral adjustments
following observed errors in cooperative and competitive contexts
(De Bruijn et al., 2011; Núñez Castellar et al., 2011). Post-error
slowing, i.e., slowing down following an erroneous response, is a
well-known strategic adjustment in speeded-choice-reaction tasks
(Rabbitt, 1966). It has repeatedly been shown in individual choice-
reaction paradigms like the Flankers task, but recent studies have
also demonstrated slowing down following other’s errors in more
social settings (Schuch and Tipper, 2007; De Bruijn et al., 2011;
Núñez Castellar et al., 2011). While Shuch and Tipper demon-
strated post-error slowing in response to other’s errors in a neutral
setting, we recently showed that the amount of post-error slowing
in response to observed errors critically depends on the context
in which the interaction is taking place (De Bruijn et al., 2011).
In this behavioral study, we measured both post-error slowing
following own and observed errors in both contexts. The results
of the cooperative context showed a clear relationship between
own and observed post-error slowing: people who slowed down
the most following their own errors also slowed down following
their partner’s errors. However, a different pattern was found in
the competitive context. Participants still slowed down following
their own errors, but they actually speeded up following errors
from their opponents. Núñez Castellar and co-workers recently
reported a comparable finding by demonstrating reduced post-
error slowing following a co-actor’s errors in the competitive
context compared to the cooperative one. Based on the previ-
ous fMRI study from our lab, we concluded that the findings
from our behavioral study indicated that although the error sig-
nal itself is insensitive to the context of the social interaction,

the exact formalization of the behavioral adjustments are largely
dependent on the context. The current ERP findings are in line
with this interpretation, by demonstrating the insensitivity of
the error signal to the social context at an electrophysiological
level.

To conclude, the present results demonstrate that monitoring
other’s errors that are time-locked to the actor’s response is inde-
pendent of the reward associated with the observed error. This
outcome does not fit with a strict interpretation of the RL the-
ory stating that the ERN should only be generated after a loss of
reward. However, we suggest the current findings to be more in line
with theories assuming pMFC to be crucially involved in predict-
ing outcomes and adjusting behavior (Rushworth and Behrens,
2008). In our view, the current findings may also be relevant in the
light of recent behavioral work demonstrating the social context-
specificity of the exact formalization of behavioral adjustments
following observed errors (De Bruijn et al., 2011; Núñez Castel-
lar et al., 2011). Both the context-insensitivity of the error signal
and the context-sensitivity for the following behavioral responses
make sense in daily life, as it is obvious that different actions may
be required in response to an error from one’s partner than in
response to an error made by an opponent. The current study thus
adds further support to the assumption that humans use the same
neural and cognitive mechanisms to detect observed errors inde-
pendent of the associated reward. However, we do propose that
the type of behavioral adjustments in response to those observed
errors might importantly depend on the role of the co-actor as
determined by the social context.
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Experience-based decisions can be defined 
as decisions emanating from direct or 
vicarious reinforcements that were received 
in the past. Typically, in experience-based 
decision tasks an agent repeatedly makes 
choices and receives outcomes from the 
available alternatives, so that choices are 
based on past experiences, with no explicit 
description of the payoff distributions from 
which the outcomes are drawn. The study of 
experience-based decisions has long roots 
in the works of mathematical psychologists 
during the 1950s and 1960s of the last cen-
tury (e.g., Estes and Burke, 1953; Bush and 
Mosteller, 1955; Katz, 1964). This type of 
task has been viewed as a natural continu-
ation of the behaviorist tradition involving 
animals as subjects, and multiple trials in 
which feedback is obtained on each trial. 
During the 1970s and 1980s seminal stud-
ies focusing on choices among descriptive 
gambles began to dominate the field of 
Judgment and Decision Making, paving the 
wave for the successful and influential works 
of Tversky and Kahneman (e.g., Kahneman 
and Tversky, 1979). Indeed, a review of 
the decision making literature from 1970 
to 1998 conducted by Weber et al. (2004) 
shows prominent use of description-based 
tasks over experience-based tasks.

Yet the study of experience-based deci-
sions has continued to evolve. Some of the 
workers in this subfield were neuropsychol-
ogists who used experience-based tasks as 
a natural way to evaluate individual dif-
ferences owing to these tasks having many 
choice trials (e.g., Bechara et al., 1994). 
Others were interested in the complex rela-
tions between learning and decision making 
(Erev and Roth, 1998). An interesting find-
ing that has finally defined the importance 
of contrasting the two types of tasks – expe-
rience-based decisions and description-
based decisions, was obtained by Ido Erev 
and his colleagues. Kahneman and Tversky 
(1979) showed that individuals overweight 
small probability events in their decisions 

from description. For instance, in selecting 
between an alternative producing $3 for 
sure or a gamble producing 10% chance 
to receive $32 (and otherwise zero), most 
people pick the riskier alternative, behaving 
as if they give greater weight to the rela-
tively rare event (see Hau et al., 2009). Erev 
and colleagues have demonstrated a reverse 
phenomenon in decisions from experience 
(Barron and Erev, 2003; Hertwig et al., 
2004; Yechiam et al., 2005). People tend to 
experientially select alternatives as if what 
happens most of the time has more weight 
than the rare event. Thus, people overweight 
small probability events in decisions from 
description while underweighting them in 
decisions from experience. This has been 
referred to as the description–experience 
(D–E) gap (Hertwig et al., 2004). The stud-
ies exploring the D–E gap were followed by 
further investigations examining the diver-
gent and convergent processes in these task 
types (e.g., Rakow et al., 2008; Barron and 
Yechiam, 2009; Wu et al., 2011).

In parallel to the recent advancements 
in experience-based decisions within the 
field of Judgment and Decision Making, 
there have been numerous studies of this 
type of decisions in Neuroscience. For 
example, the feedback-based error-related 
negativity (fERN; see below; e.g., Gehring 
and Willoughby, 2002) and the role of 
non-declarative knowledge in select-
ing advantageously (Bechara et al., 1997) 
were found in experience-based decisions. 
Several studies have explicitly showed that 
that experience-based tasks result in higher 
correlation between studied brain variables 
and over behavior. For example, in Aharon 
et al.’s (2001) fMRI study, participant 
evaluated the attractiveness of face images 
either descriptively or by making choices 
and receiving feedback. Brain activation 
levels in the reward circuitry (particu-
larly, the nucleus accumbens) matched the 
evaluation patterns only in the experiential 
condition. Similarly, severe damage to the 

orbitofrontal cortex was found to lead to 
decision impairments in experience-based 
tasks, but not in description-based tasks 
(Leland and Grafman, 2005). Still, many 
of the investigations of these neuroscien-
tific aspects have borrowed their theoretical 
underpinning from the study of decisions 
from description, and have not been guided 
by relevant theories of experience-based 
decisions. At the same time, many of the 
decision making studies of experience-
based tasks have taken place without aware-
ness of the relevant brain studies using this 
paradigm.

In an attempt to highlight the necessity 
of integrating the two bodies of research 
(JDM and neuroscience studies), we pre-
sent three dissociations (or “gaps”) between 
brain activation patterns and behavioral 
choices in these tasks. The majority of this 
paper is devoted to describing the three 
gaps in order to encourage further research. 
Additionally, we also suggest some direc-
tions for exploring and explaining these 
inconsistencies.

Three brain-behavior gaps in 
experience-based decisions
brain acTivaTion and behavioral 
responses To rare evenTs
The very famous “oddball” paradigm exam-
ines people’s brain responses following 
low-probability events compared to more 
frequent events. The typical result is an ele-
vated fronto-central signal approximately 
300 ms following the rare event, which is 
known as P300. The original oddball para-
digm normally required a response follow-
ing the rare event, and thus confounded 
the rarity of the event and its performance 
requirements (Squires et al., 1975). Yet the 
same findings were also replicated in task-
irrelevant rare events (Debener et al., 2005) 
and in reward prediction tasks (Karis et al., 
1983). The elevated neural activation fol-
lowing the rare event appears to be incon-
sistent with the tendency to underweight 
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rare events in experience-based decisions. 
One might argue, though, that the depend-
ent variable in decision tasks (i.e., the choice 
proportion) is also affected by the size of 
the rare payoff, and this component may 
be insufficiently integrated upon mak-
ing choices. Still, this would be inconsist-
ent with the standard way in which the 
underweighting phenomenon is explained 
(Hertwig et al., 2004). Moreover, as we shall 
see below, inconsistency between brain acti-

vation and behavior also emerges when the 
target event (e.g., a loss) is similar in size to 
the control event (e.g., a gain).

brain acTivaTion and behavioral 
responses To losses
In a seminal EEG study, Gehring and 
Willoughby (2002) demonstrated that a 
large portion of the frontal cortex exhib-
its greater rapid activation following losses 
than following equivalent gains. This 

event-related brain potential (ERP) has 
been referred to as medial frontal negativ-
ity (MFN; Gehring and Willoughby, 2002) 
or fERN (Yeung and Sanfey, 2004). Gehring 
and Willoughby (2002) suggested that the 
existence of the increased cortical response 
following losses is consistent with the behav-
ioral principle of “loss aversion,” which 
denotes an increased subjective weight of 
losses compared to gains (Kahneman and 
Tversky, 1979). Furthermore, they argued 

Figure 1 | risk taking in two studies of experience-based decisions. Top: 
Ert and Yechiam (2010). Bottom: Yechiam and Telpaz (in press). Each task involves 
the selection among a Safe option (S) and a Risky option (R). The results show 

the mean proportion of selections from the risky alternative in each trial [P(R)] in 
different conditions. The participants take less risk over time when payoffs are 
predominantly gains or losses but not in mixed gains and losses.
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memory have been known to result in acti-
vation peaks approximately 600 ms after the 
relevant stimuli (Gunter et al., 2000) and 
even later (Tu et al., 2009). Still, while this 
is a possible interpretation for these gaps, 
it is quite tentative as the relevant delayed 
processes have not been uncovered.

An alternative suggestion is that the 
rapid fronto-central activation follow-
ing monetary outcomes does not repre-
sent “instant utility” weighting of these 
outcomes (as proposed, for instance, by 
Gehring and Willoughby, 2002). Possibly, 
it could represent an attentional phenom-
enon. We (Yechiam and Hochman, 2011; 
Yechiam and Telpaz, 2011) suggested that 
an encompassing increase in frontal acti-
vation may represent the intensity of the 
attentional orienting response. Attention 
may be drawn by losses for instance, and 
this may increase the overall investment of 
cognitive resources in the task, in a sym-
metric fashion to both gains and losses. A 
related explanation involves the surprise 
value of incentives (Nevo and Erev, 2011). 
Under these explanations, the noted gaps 
are accounted for by the assertion that brain 
activation to incentives may represent cog-
nitive processes that do not have a direct 
effect on the subjective valuation of the 
stimuli that have elicited them.
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1997). This rule axiomatically leads to a 
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effect of experience on risk taking behav-
ior (Niv et al., 2002; Denrell, 2007): Under 
the Delta rule, decision makers should be 
more risk averse with experience because 
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risky alternative producing equal chances 
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about 40% chance that in reality the likeli-
hood of winning $10 will be less than 50%. 
This can lead participants to avoid the risky 
alternative in future choices. Moreover, as 
soon as the risky alternative is avoided, there 
is no mechanism that reduces this bias. The 
chance of biased sampling from the risky 
alternative continues in the next trials as 
well, and under the Delta learning rule, 
it is expected to slowly lead participants 
away from the risky alternative. But this is 
not how participants behave in experien-
tial tasks! In several studies involving such 
symmetric risky alternative (with equal 
chance of winning or losing) participants 
were found to show remarkable flatness in 
their learning curves (see Figure 1). This 
gap between the mechanism considered 
to govern learning and actual experiential 
behavior in tasks involving mixed gains and 
losses bears some similarity to the issue of 
loss sensitivity because in both cases the 
brain activation pattern is in the direction 
of avoiding risk (and potential losses) while 
behavior leans toward risk neutrality1.

parTial answers
A technical way out of theses gap involves 
the typically different temporal resolution 
of brain activation measures and behavio-
ral choices. The fERN patterns, for instance, 
were revealed in the first 300 ms after the 
choice outcomes are presented. However, 
in most studies, decision makers are given 
much more time to make behavioral deci-
sions. Thus, behavioral loss neutrality might 
be the product of delayed brain processes 
implicated in executive control. For instance, 
some executive functions of verbal working 

that the  asymmetric fERN response to losses 
represents the brain mechanism directly 
contributing to the representation of sub-
jective value, or “instant utility.” However, in 
Gehring and Willoughby’s (2002) research, 
as in other studies of experience-based 
decisions (e.g., Erev et al., 2008; Silberberg 
et al., 2008; Hochman and Yechiam, 2011; 
Yechiam and Telpaz, 2011, in press), par-
ticipants actually made behavioral choices 
as if they were loss neutral and not loss-
averse. Specifically, the fERN was observed 
in choices between an alternative producing 
+5 or −5 US cents and a second alterna-
tive producing +5 or −25 cents. Loss aver-
sion implies that in choice between a pair 
of alternatives with symmetric gains and 
losses, individuals should prefer the alter-
native producing lower losses. However, 
the two choice alternatives were selected at 
about the same rate.

This gap was replicated in follow-up 
ERP studies, some using higher payoffs 
(e.g., Nieuwenhuis et al., 2004; Yeung and 
Sanfey, 2004; Masaki et al., 2006). It has also 
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(Hochman and Yechiam, 2011; Yechiam and 
Telpaz, 2011). Interestingly, the ERP studies 
noted above did not make a big issue out 
of this discrepancy, and did not consider 
it as deserving special attention. Yet we feel 
that it is a critical issue because participants 
make experiential choices as if they are loss 
neutral while their brain acts as if it is loss 
sensitive.

The effecT of experience on risk Taking
The third brain–behavior gap we would like 
to draw attention to involves a discrepancy 
between what is known about the dynamic 
function of the dopaminergic system and 
experiential choice behavior. Under cur-
rent models of the striatum, the dopamin-
ergic system adapts to reinforcement using 
a “Delta” learning rule (Rumelhart et al., 
1986), whereby a new outcome from a given 
alternative is compared to the expectancy of 
the alternative prior to the outcomes, and 
the expectancy is updated as a function of 
the difference between the new outcome 
and the old expectancy. Brain areas within 
the striatum were found to exhibit activa-
tion patterns consistent with the implied 
mechanism of the delta rule (Schultz et al., 

1Risk neutrality over time is also inconsistent with Kahneman and Tversky’s (1979) “loss aversion” hypothesis. 
As noted in Section “Brain Activation and Behavioral Responses to Losses,” studies of experience-based decisions 
(e.g., Erev et al., 2008) typically do not find reliable behavioral manifestations of loss aversion. The studies repor-
ted in Figure 1 replicate this pattern.
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