Editors
2
Impact
Loading...
Attachment of electromagnetic sensors on thorax and scapula (A), and distal humeral cuff (B).
6,087 views
18 citations
Original Research
10 September 2015
Biomechanics of Pediatric Manual Wheelchair Mobility
Brooke A. Slavens
4 more and 
Gerald F. Harris
Group mean joint ranges of motion (degrees) for the proximal joints (top row: thorax, sternoclavicular, and acromioclavicular) and the distal joints (bottom row: glenohumeral, elbow, and wrist) during each functional mobility task, propulsion (black), start (blue), and stop (red). One SD is represented by the thin vertical bar. Tasks connected by an asterisk are statistically significantly different (p < 0.01).

Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting, and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the handrim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces, and moments of 14 children with spinal cord injury (SCI) during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI.

9,329 views
15 citations
Perspective
27 July 2015
(A) Peak hand-rim resultant force profile as a function of time during steady state wheelchair propulsion. Inset illustrates subtle variations in peak force over four pushes. (B) Resultant shoulder force output during the push phase of ~300 pushes of steady state wheelchair propulsion. Dashed line depicts mean resultant force, while triangles depict individual cycle peak resultant shoulder force.
5,233 views
19 citations
Experimental setup: (A) Manual wheelchair ergometer consisting of supporting frame, controlling computer and split rollers. (B) Subject on ergometer with markers affixed to the body and wheel.
4,343 views
40 citations