Chemicals in the environment and brain development: importance of neuroendocrinological approaches

142.9K
views
73
authors
16
articles
Cover image for research topic "Chemicals in the environment and brain development: importance of neuroendocrinological approaches"
Editors
3
Impact
Loading...
10,909 views
74 citations

Metabolic disease subclinical hypothyroidism (SCH) is closely associated with depression-like behavior both in human and animal studies, and our previous studies have identified the antidepressant effect of resveratrol (RES) in stressed rat model. The aim of this study was to investigate whether RES would manifest an antidepressant effect in SCH rat model and explore the possible mechanism. A SCH rat model was induced by hemi-thyroid electrocauterization, after which the model rats in the RES and LT4 groups received a daily intragastric injection of RES at the dose of 15 mg/kg or LT4 at the dose of 60 μg/kg for 16 days. The rats’ plasma concentrations of thyroid hormones were measured. Behavioral performance and hypothalamic–pituitary–adrenal (HPA) activity were evaluated. The protein expression levels of the Wnt/β-catenin in the hippocampus were detected by western blot. The results showed that RES treatment downregulated the elevated plasma thyroid-stimulating hormone concentration and the hypothalamic mRNA expression of thyrotropin-releasing hormone in the SCH rats. RES-treated rats showed increased rearing frequency and distance in the open-field test, increased sucrose preference in the sucrose preference test, and decreased immobility in the forced swimming test compared with SCH rats. The ratio of the adrenal gland weight to body weight, the plasma corticosterone levels, and the hypothalamic corticotrophin-releasing hormone mRNA expression were reduced in the RES-treated rats. Moreover, RES treatment upregulated the relative ratio of phosphorylated-GSK3β (p-GSK3β)/GSK3β and protein levels of p-GSK3β, cyclin D1, and c-myc, while downregulating the relative ratio of phosphorylated-β-catenin (p-β-catenin)/β-catenin and expression of GSK3β in the hippocampus. These findings suggest that RES exerts anxiolytic- and antidepressant-like effect in SCH rats by downregulating hyperactivity of the HPA axis and regulating both the HPT axis and the Wnt/β-catenin pathway.

14,524 views
87 citations
Mini Review
20 April 2016

The rapid increase of the prevalence of autism spectrum disorder (ASD) suggests that exposure to chemicals may impact the development of ASD. Therefore, we reviewed literature on the following chemicals, nutrient to investigate their association with ASD: (1) smoke/tobacco, (2) alcohol, (3) air pollution, (4) pesticides, (5) endocrine-disrupting chemicals, (6) heavy metals, (7) micronutrients, (8) fatty acid, and (9) parental obesity as a proxy of accumulation of specific chemicals or nutritional status. Several chemical exposures such as air pollution (e.g., particular matter 2.5), pesticides, bisphenol A, phthalates, mercury, and nutrition deficiency such as folic acid, vitamin D, or fatty acid may possibly be associated with an increased risk of ASD, whereas other traditional risk factors such as smoking/tobacco, alcohol, or polychlorinated biphenyls are less likely to be associated with ASD. Further research is needed to accumulate evidence on the association between chemical exposure and nutrient deficiencies and ASD in various doses and populations.

28,822 views
92 citations
Original Research
24 March 2016
Estrogenic Effects of Several BPA Analogs in the Developing Zebrafish Brain
Joel Cano-Nicolau
4 more and 
Pascal Coumailleau
Distribution of cyp19a1b transcripts in 7-dpf old zebrafish brains after treatments with EE2 (A2–K2) and BPA (A3–K3) and compared to the DMSO control (A1–K1). Images of transverse sections through the rostrocaudal axis of brains. Arrowheads highlight areas of labeling. For all images, dorsal is to the top. Scale bar = 50 μm.

Important set of studies have demonstrated the endocrine disrupting activity of Bisphenol A (BPA). The present work aimed at defining estrogenic-like activity of several BPA structural analogs, including BPS, BPF, BPAF, and BPAP, on 4- or 7-day post-fertilization (dpf) zebrafish larva as an in vivo model. We measured the induction level of the estrogen-sensitive marker cyp19a1b gene (Aromatase B), expressed in the brain, using three different in situ/in vivo strategies: (1) Quantification of cyp19a1b transcripts using RT-qPCR in wild type 7-dpf larva brains exposed to bisphenols; (2) Detection and distribution of cyp19a1b transcripts using in situ hybridization on 7-dpf brain sections (hypothalamus); and (3) Quantification of the cyp19a1b promoter activity in live cyp19a1b-GFP transgenic zebrafish (EASZY assay) at 4-dpf larval stage. These three different experimental approaches demonstrated that BPS, BPF, or BPAF exposure, similarly to BPA, significantly activates the expression of the estrogenic marker in the brain of developing zebrafish. In vitro experiments using both reporter gene assay in a glial cell context and competitive ligand binding assays strongly suggested that up-regulation of cyp19a1b is largely mediated by the zebrafish estrogen nuclear receptor alpha (zfERα). Importantly, and in contrast to other tested bisphenol A analogs, the bisphenol AP (BPAP) did not show estrogenic activity in our model.

15,550 views
110 citations
23,654 views
207 citations