Environmental change associated with urbanization is considered one of the major threats to biodiversity. Some species nevertheless seem to thrive in the urban areas, probably associated with selection for phenotypes that match urban habitats. Previous research defined different “copying styles” in distress behavior during the handling of birds. These behaviors vary along a continuum from “proactive” to “reactive” copers. By studying avian distress behaviors we aimed to broaden our understanding of the relationship between coping styles and urbanization. Using a large-scale comparative study of seven paired rural and urban sites across Europe, we assayed distress behaviors during handling of urban and rural-dwelling populations of the great tit Parus major. We detected no consistent pairwise differences in breath rate between urban and rural habitats. However, urban great tits displayed more distress calling (fear screams) and higher pecking rate (handling aggression) than rural birds. These findings suggest that urban great tits have a more proactive coping strategy when dealing with stressful conditions. This finding is in line with previous studies implying that urban great tits are more explorative, less neophobic, and display shorter flight distances than their rural counterparts, representing further aspects of the same “proactive,” coping strategy. Future research should investigate whether reported differences in distress behavior are due to local adaption caused by natural selection or due to phenotypic plasticity.
The practice of garden bird feeding is a global phenomenon, involving millions of people and vast quantities of food annually. Many people engage in the practice of feeding assuming that birds gain some benefit from the food they provide, yet recent studies have revealed the potential for detrimental impacts as well. However, there is still a paucity of information on the impacts of feeding, including the ubiquity of these impacts among and within feeder-visiting species. Consistency in feeder use among birds is likely an important determinant of this. Individual birds and species that make frequent use of feeders are more likely to experience both the benefits and detrimental impacts of supplementary food. We investigated patterns of feeder use by garden birds visiting experimental feeding stations in Auckland, New Zealand, with the specific aim of determining whether use of supplementary food was consistent or variable among individuals and species. We used camera traps as well as Radio Frequency Identification (RFID) technology to examine intra- and interspecific feeder visitation patterns and to discern species associations. Eleven bird species were detected using feeding stations, however, two introduced species (house sparrow Passer domesticus and spotted dove Streptopelia chinensis) dominated visitation events. These species were present at feeders most frequently, with the largest conspecific group sizes. Significant associations were detected among a number of species, suggesting interspecific interactions are important in determining feeder use. We also found within-species differences in feeder use for all focal species, with individual variation greatest in house sparrows. Furthermore, season had an important influence on most visitation parameters. The observed individual and species-specific differences in supplementary food resource use imply that the impacts of garden bird feeding are not universal. Crucially, particularly given the avifaunal context in New Zealand, resource dominance by introduced species could have potential negative outcomes for native species conservation in cities.
Urban development is rapidly expanding across the globe and is a major driver of environmental change. Despite considerable improvements in our understanding of how species richness responds to urbanization, there is still insufficient knowledge of how other measures of assemblage composition and structure respond to urban development. Functional diversity metrics provide a useful approach for quantifying ecological function. We compare avian functional diversity in 25 urban areas, located across the globe, with paired non-urban assemblages using a database of 27 functional traits that capture variation in resource use (amount and type of resources and how they are acquired) across the 529 species occurring across these assemblages. Using three standard functional diversity metrics (FD, MNTD, and convex hull) we quantify observed functional diversity and, using standardized effect sizes, how this diverges from that expected under random community assembly null models. We use regression trees to investigate whether human population density, amount of vegetation and city size (spatial extent of urban land), bio-region and use of semi-natural or agricultural assemblages as a baseline modulate the effect of urbanization on functional diversity. Our analyses suggest that observed functional diversity of urban avian assemblages is not consistently different from that of non-urban assemblages. After accounting for species richness avian functional diversity is higher in cities than areas of semi-natural habitat. This creates a paradox as species responses to urban development are determined by their ecological traits, which should generate assemblages clustered within a narrow range of trait space. Greater habitat diversity within cities compared to semi-natural areas dominated by a single habitat may enhance functional diversity in cities and explain this paradox. Regression trees further suggest that smaller urban areas, lower human population densities and increased vegetation all enhance the functional diversity of urban areas. A city's attributes can thus influence the functional diversity of its biological assemblages, and their associated ecological functions. This has important implications for the debate regarding how we should grow the world's cities whilst maintaining their ecological function.
Urban sprawl is associated with deep and intense modifications of the natural habitats of wild vertebrates. Although, many species are unable to cope with such an environment, a few species can be found in cities and can help us assessing the impact of urbanization on wildlife. Urban-related environmental modifications are multiple and some of them seem beneficial while others seem rather detrimental to wild vertebrates. Moreover, the impact of these modifications on wild vertebrates is likely to vary depending on the phase of the annual life-cycle. Therefore, it is challenging to get a comprehensive picture of the impact of urbanization on wild vertebrates. Overall, urbanization is usually associated with reduced breeding performances in wild birds, but the impact of urbanization on the phenotype and quality of developing offspring has been less studied. In this study, we specifically investigated the impact of urbanization on several proxies of individual quality in great tits (Parus major). We concomitantly measured body size (tarsus length and body mass), plumage coloration, and telomere length in 14-days old chicks issued from 4 populations (two pairs of urban/rural populations located in two different geographical areas of France). First, rural chicks were significantly taller and heavier than urban birds although this impact of urbanization on body size/body mass appears only true for the most urbanized site. Interestingly, body size was also affected by the geographical area of capture, suggesting that regional environmental conditions may attenuate or exacerbate the influence of urbanization on nestling growth. Second, the carotenoid-based yellow plumage of rural nestlings was more colorful than that of urban birds, independently of the area of capture. This suggests that urban birds probably have a low-carotenoid diet relative to rural birds. Finally, telomere length did not differ between rural and urban chicks. These results suggest that urbanization probably imposes large developmental constraints in wild vertebrates and that this impact may primarily be related to constraining nutritional conditions.
Behavioral adjustment is a key factor that facilitates species' coexistence with humans in a rapidly urbanizing world. Because urban animals often experience reduced predation risk compared to their rural counterparts, and because escape behavior is energetically costly, we expect that urban environments will select for increased tolerance to humans. Many studies have supported this expectation by demonstrating that urban birds have reduced flight initiation distance (FID = predator-prey distance when escape by the prey begins) than rural birds. Here, we advanced this approach and, for the first time, assessed how 32 species of birds, found in 92 paired urban-rural populations, along a 3,900 km latitudinal gradient across Europe, changed their predation risk assessment and escape strategy as a function of living in urban areas. We found that urban birds took longer than rural birds to be alerted to human approaches, and urban birds tolerated closer human approach than rural birds. While both rural and urban populations took longer to become aware of an approaching human as latitude increased, this behavioral change with latitude is more intense in urban birds (for a given unit of latitude, urban birds increased their pre-detection distance more than rural birds). We also found that as mean alert distance was shorter, urban birds escaped more quickly from approaching humans, but there was no such a relationship in rural populations. Although, both rural and urban populations tended to escape more quickly as latitude increased, urban birds delayed their escape more at low latitudes when compared with rural birds. These results suggest that urban birds in Europe live under lower predation risk than their rural counterparts. Furthermore, the patterns found in our study indicate that birds prioritize the reduction of on-going monitoring costs when predation risk is low. We conclude that splitting escape variables into constituent components may provide additional and complementary information on the underlying causes of escape. This new approach is essential for understanding, predicting, and managing wildlife in a rapidly urbanizing world.