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“Intrinsic Clocks” presents an array of current research 
activities on intrinsic clocks and their contributions 
to biology and physiology. It elucidates the current 
models for the intrinsic clocks, their molecular 
components and key mechanisms as well as the key 
brain regions and animal models for their behavioral 
analysis.

It provides a timely view on how these clocks guide 
behavior, and how their disruption may cause 
depressive-like behavior and impairment in cognitive 
functions. Thereby, any specific method by which the 
mood-related functions of the intrinsic clocks might 
be influenced bears therapeutic potential and has 
clinical interest.

The importance of some of these mechanisms was 
highlighted by the 2017 award of the Nobel Prize in 
Physiology or Medicine to Jeffrey C. Hall, Michael 

Rosbash, and Michael W. Young for their discoveries of the genetic control of the daily biological 
rhythm. The key to the explanation was the discovery of transcription-translation feedback 
loops of the so-called “clock genes.”
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Editorial on the Research Topic

Intrinsic Clocks

The existence of living organisms on our planet has been dependent on and co-evolved with the 
foreseeable variations in environmental conditions oscillating over recurring periods. All species 
have responded to these exogenous rhythms by developing endogenous clocks that allow for an 
approximate, but reliable estimation of the periodic changes and elicit corresponding adaptive 
processes.

The importance of these mechanisms for health and disease has been highlighted by the 2017 
award of the Nobel Prize in Physiology or Medicine to Jeffrey C. Hall, Michael Rosbash, and Michael 
W. Young for their discoveries of the genetic control of the daily biological rhythm. They explained 
in molecular terms how the gene named as period contributed to the emergence (eclosion from the 
pupal case) rhythm of a population and to the locomotor activity of individual flies (Drosophila 
melanogaster). The key to the explanation was the discovery of transcription-translation feedback 
loops of the so-called “clock genes.”

This research topic on Intrinsic Clocks which appeared earlier comprises a well-balanced collec-
tion of original research and review articles on endogenous rhythms from seasonal and monthly to 
daily and hourly oscillations in different experimental model systems with analytical approaches 
from systemic to cellular and molecular levels.

Serchov and Heumann in their review focus on the role of Ras, an enzyme which hydrolyzes 
guanosine triphosphate and dependent intracellular signaling cascades in the regulation of the 
circadian rhythm in mice. They elegantly summarize how Ras activity forms a molecular bridge 
between entrainment of the suprachiasmatic nucleus that is the master clock in the brain and synaptic 
plasticity in dependent brain regions, such as the hippocampus, and corresponding functions. The 
extensive study by Chiang et al. specifically investigated rhythmic alterations in the murine hip-
pocampus. They characterized the protein phosphorylation using a mass spectrometry approach 
with which they provided large-scale quantitative analysis of the daily oscillation of hippocampal 
phosphorylation events over a range of biological pathways. The hippocampus is a key focus also 
in the review by Urs Albrecht. It features the role of circadian proteins in the control of adult 
hippocampal neurogenesis, reciprocally implicated in depression and antidepressant responses. 
He discusses neurobiological mechanisms implicated in the pathogenesis of mood disorders, such 
as monoaminergic neurotransmission and stress response by the hypothalamic–pituitary–adrenal 
axis. The hypothalamus and the pituitary are further involved in seasonal cycles as highlighted in 
the review by Lewis and Ebling who elaborate in detail on the role of tanycytes, pituitary radial glial 
cells, in the regulation of circannual clocks in hamsters. They provide evidence supporting their 
hypothesis that tanycytes serve as central organizers of seasonal rhythms in the adult hypothalamus. 
Raible et al. present in their review on marine animals the current insight in the cellular mecha-
nisms in molecular detail the monthly or semi-monthly rhythms. They express their worry about 
light pollution and further review the relevance of circalunar rhythms to mammalian physiology 
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and reproduction in specific. They speculate that these rhythms 
may be the remnant of evolutionary ancient clocks, which were 
uncoupled from a natural entrainment mechanism.

Bourguignon and Storch summarize recent findings of the 
cellular substrate and mechanism, which generate locomotor 
activity with periods of 2–6 h. Such rhythms are normally inte-
grated with circadian rhythms, but often lack the period stability 
and expression robustness. They further review the concept of 
the dopaminergic ultradian oscillator and show that ultradian 
locomotor rhythms rely on cells in the brain using dopamine for 
transmission. Intriguingly, Monje et al. report in their study on 
interleukin-6 knockout mice that the ultradian locomotor rhythm 
was impaired under both light-entrained and free-running con-
ditions, whereas the circadian period and the level of locomotor 
activity as well as the phase shift response to light exposure at 
night remained normal. During the day, Cry1 and Bhlhe41 expres-
sion levels were increased whereas those of Nr1d2 were decreased 
in the hippocampus. Liu and Zhang first created mutants of 
cryptochrome circadian clock 1 (Cry1) protein at potential phos-
phorylation sites and conducted thereafter a screen in Cry1/Cry2 
double deficient cells. They targeted at identifying mutations that 
disrupted circadian rhythms. They found that these single amino 
acid substitutions changed not only the circadian period, but also 
repression activity, protein stability, or cellular localization of the 
protein. Concerning the circadian period, Narasimamurthy and 
Virshup elucidate in their review the molecular mechanisms that 

regulate an enigma of the clock. Unlike other chemical reactions, 
the output of the clock as measured with the period remains 
nearly constant with fluctuations in ambient temperature. This 
is called as temperature compensation. The key lies especially 
in the mechanism that controls the stability of period circadian 
clock 2 protein. Clock-enhancing small molecules have become 
of particular interest as candidate chronotherapeutics, since 
there is a close association of circadian amplitude dampening 
with progression of chronic diseases, especially that of mood 
disorders. Gloston et al. present in their review an update of the 
regulatory mechanisms of circadian amplitude and the current 
status of these small molecules of therapeutic interest. Millius 
and Ueda introduce the readers to study of biology which takes 
advantage of engineering and mathematical tools to model and 
test the behaviors of the intrinsic clocks. It has evolved through 
the development of both wet lab and in silico work. The goal here 
is to understand the clocks that are made up of a range of complex 
properties of cells, tissues, and organisms.

The cross-section of studies comprised in this research topic 
on Intrinsic Clocks highlights the vibrant scientific activity in the 
field of the investigation of endogenous biological rhythms and 
their relevance for physiology and pathology.

aUtHor CoNtriBUtioNS

TP and DP planned and wrote the manuscript together.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2018 Partonen and Pollak. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License (CC BY). The use, 

distribution or reproduction in other forums is permitted, provided the original 
author(s) and the copyright owner are credited and that the original publication 
in this journal is cited, in accordance with accepted academic practice. No use, 
distribution or reproduction is permitted which does not comply with these 
terms.

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive
https://doi.org/10.3389/fneur.2017.00614
https://doi.org/10.3389/fneur.2017.00099
https://doi.org/10.3389/fneur.2016.00159
https://doi.org/10.3389/fneur.2017.00161
https://doi.org/10.3389/fneur.2017.00161
https://doi.org/10.3389/fneur.2017.00100
https://doi.org/10.3389/fneur.2017.00025
https://doi.org/10.3389/fneur.2017.00025
http://creativecommons.org/licenses/by/4.0/


February 2017 | Volume 8 | Article 307

Mini Review
published: 07 February 2017

doi: 10.3389/fneur.2017.00030

Frontiers in Neurology | www.frontiersin.org

Edited by: 
Daniela D. Pollak,  

Medical University of Vienna, Austria

Reviewed by: 
Axel Steiger,  

Max Planck Institute of Psychiatry, 
Germany  

Toru Takumi,  
Riken Brain Science Institute, Japan  

Rae Silver,  
Columbia University, USA

*Correspondence:
Urs Albrecht  

urs.albrecht@unifr.ch

Specialty section: 
This article was submitted to 

Sleep and Chronobiology,  
a section of the journal  
Frontiers in Neurology

Received: 06 December 2016
Accepted: 23 January 2017

Published: 07 February 2017

Citation: 
Albrecht U (2017) Molecular 

Mechanisms in Mood Regulation 
Involving the Circadian Clock.  

Front. Neurol. 8:30.  
doi: 10.3389/fneur.2017.00030

Molecular Mechanisms in 
Mood Regulation involving 
the Circadian Clock
Urs Albrecht*
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The circadian system coordinates activities and functions in cells and tissues in order to 
optimize body functions in anticipation to daily changes in the environment. Disruption of 
the circadian system, due to irregular lifestyle such as rotating shift work, frequent travel 
across time-zones, or chronic stress, is correlated with several diseases such as obesity, 
cancer, and neurological disorders. Molecular mechanisms linking the circadian clock 
with neurological functions have been uncovered suggesting that disruption of the clock 
may be critically involved in the development of mood disorders. In this mini-review, I will 
summarize molecular mechanisms in which clock components play a central role for 
mood regulation. Such mechanisms have been identified in the monoaminergic system, 
the HPA axis, and neurogenesis.

Keywords: clock genes, depression, monoamines, glucocorticoids, neurogenesis

A plethora of human genetic studies have identified polymorphisms in clock genes that associate 
with psychiatric disorders [reviewed in Ref. (1)]. This suggested that abnormalities in clock genes 
may be one of the causes for the development of mood disorders. At the cellular level, clock genes 
(Bmal1, Clock, Per, Cry, Rev-erb, and Ror) make up an autoregulatory transcriptional/translational 
feedback loop with a period of about 24 h (Figure 1, top gray circle) [reviewed in Ref. (2)]. These 
clock genes and their proteins not only self-promote their own temporally fluctuating transcrip-
tion but they also regulate transcription of target genes (Figure 1) and/or modulate key molecular 
pathways via protein–protein interactions, such as the monoaminergic system, the HPA axis, or 
neurogenic pathways.

TRAnSCRiPTiOnAL ReGULATiOn OF MOnOAMine SiGnALinG 
BY CLOCK COMPOnenTS

Neuroimaging studies in humans indicated that the monoaminergic system (dopamine, serotonin, 
and noradrenaline) was altered in subjects with mood disorders (3). This was further supported by 
optogenetic studies, in which control of neuronal activity of dopamine neurons in mice modulated 
mood, anxiety, and reward, confirming the importance of the monoaminergic system in mood-
related behaviors (4, 5).

Interestingly, several studies described daily changes in dopamine, serotonin, and noradrena-
line levels [reviewed in Ref. (6)]. Because these molecules modulate arousal, motivation, and 
reward, one would expect them to be targeted at the activity period of the day in order to avoid 
conflicts with sleep signals. Hence, monoaminergic signaling is likely to be regulated by the 
circadian clock, either directly or indirectly. In the last years, several investigations aimed at 
uncovering the role of circadian clock components in the direct transcriptional regulation of 
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FiGURe 1 | Molecular regulation of clock and clock-controlled genes of the monoaminergic system and neurogenesis. The clock proteins BMAL1 
(green), CLOCK (blue), and NPAS2 (blue) bind to E-box elements present in the promoters of clock genes (Per, Cry, Rorα, and Rev-erbα) and the clock-controlled 
gene for monoamine oxidase A (Maoa). PER (red) and cryptochrome (CRY, orange) proteins inhibit the action of BMAL1/CLOCK and BMAL1/NPAS2 heterodimers, 
respectively. The nuclear receptors [retinoic orphan receptor α (RORα, rose)] and REV-ERBα (purple) both bind to RORE elements of dopamine receptor 3 (Drd3), 
fatty acid binding protein 7 (Fabp7), and tyrosine hydroxylase (Th) in a competitive manner and activate or inhibit their expression, respectively. The nuclear receptor 
Nurr1 (yellow) regulates Th via its NR promoter element. Via protein–protein interactions, PER2 can modulate the actions of REV-ERBα and Nurr1 (hatched arrow). 
This regulation results in temporally regulated expression of the dopamine synthesizing (TH, green square) and degrading enzymes (MAOA, red square) leading to 
fluctuating levels of dopamine in the striatum.
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elements important for monoaminergic signaling, such as the 
enzymes monoamine oxidase (MAO) and tyrosine hydroxylase 
(TH) both key enzymes for the degradation and synthesis of 
dopamine, respectively.

Dopamine degradation is under clock control. This was first 
suggested by the observation that the clock components BMAL1 
and NPAS2 transcriptionally activated a luciferase reporter 
driven by the murine monoamine oxidase A (Maoa) promoter 
in a circadian fashion. This indicated that these two clock 
components directly regulated Maoa transcription (Figure 1). 
This notion was further strengthened by the observation that 

BMAL1 protein was recruited to the Maoa promoter in brain 
tissue (7). Interestingly, the regulation by BMAL1/NPAS2 
was modulated by PER2 in a positive fashion, but not in the 
predicted negative manner (Figure  1). This lead to increased 
Maoa mRNA levels (7). This finding suggested potential tissue 
specific regulatory factors that turned PER2 into a positive regu-
lator of BMAL1/NPAS2-driven transcriptional regulation in 
the striatum. As a consequence of lack of PER2, not only Maoa 
mRNA but also MAOA protein levels were decreased. Hence, 
dopamine degradation was reduced, and dopamine levels in 
the nucleus accumbens were increased. This was paralleled by 
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FiGURe 2 | Hypothetical model on the interaction of circadian clock 
proteins with the glucocorticoid receptor (GR). REV-ERBα (REV, purple) 
gates nuclear localization of the GR (gray) via an unknown mechanism 
probably involving heat shock protein 90 (HSP90, yellow). GR function is 
inhibited by cryptochrome (CRY, orange) proteins and is modulated by 
CLOCK (blue) via acetylation (Ac), although it is unclear whether this 
happens in the cytoplasm and/or the nucleus. GR regulates target genes 
such as catechol-O-methyltransferase (Comt) whose protein is an enzyme 
(COMT, red square) that degrades 3,4-dihydroxyphenylacetic acid (DOPAC) 
to homovanillic acid (HVA). GR may also interact with Nurr1 to modulate 
tyrosine hydroxylase (Th) expression thereby influencing dopamine 
production.
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a depression-resistant-like phenotype and changes in neuronal 
activity in response to MAO inhibitors in mice (7). These find-
ings strongly suggested that the degradation of monoamines 
was clock modulated. It is very likely that the described clock-
mediated regulation of monoamines is relevant for humans, 
because single-nucleotide polymorphisms in Per2, Bmal1, and 
Npas2 associated in an additive fashion with seasonal affective 
disorder or winter depression (8).

A recent study showed that not only dopamine degradation 
but also dopamine synthesis is under clock influence. The mouse, 
rat, and human Th promoters were repressed by REV-ERBα, and 
they were activated by retinoic orphan receptor α (RORα) and 
nuclear receptor-related protein 1 (NURR1) (9). Chromatin 
immunoprecipitation experiments revealed that REV-ERBα 
and NURR1 were binding to the Th promoter in an antagonistic 
manner (9). In accordance with this mechanism (Figure 1), Rev-
erbα knock-out mice displayed elevated Th mRNA and protein 
levels leading to increased dopamine amounts and firing rate in 
the striatum (9, 10). As a consequence, these animals showed 
less depression-like and anxiety-like behavior compared to wild-
type animals (9). The temporal regulation of TH may be further 
modulated through protein–protein interactions. For example, 
PER2 has the potential to interact with both REV-ERBα and 
NURR1 proteins (11), which would allow temporal synchroniza-
tion of the action of these two nuclear receptors (Figure 1, top 
right, hatched arrow). This is, however, a speculation and needs 
verification.

Interestingly, REV-ERBα and RORα were described to regu-
late the expression of the dopamine D3 receptor gene (Drd3) 
in an antagonistic manner (12) (Figure  1). This provided a 
molecular explanation why this receptor was expressed in a 
diurnal manner in the striatum (13). DRD3 inhibits adenylyl 
cyclase through inhibitory G-proteins [reviewed in Ref. (14)] 
and mutation of DRD3 in mice suggested an involvement of 
this receptor in mediating emotional behavior and depression 
in mice (15). A role of NPAS2 in the regulation of Drd3 has also 
been suggested (16), although it is unclear how NPAS2 would 
regulate the Drd3 promoter. Taken together, it appears that 
REV-ERBα and RORα synchronize dopamine production and 
the expression of DRD3 in the striatum probably to optimally 
restrict dopamine signaling in the striatum to a particular 
time window. This implies that the targeting of DRD3 and/or 
REV-ERBα/RORα by pharmacological agents may benefit from 
timed application. This would reduce dosage and diminish side 
effects such as weight gain, which is observed often in patients 
treated for mood disorders.

MOLeCULAR ReGULATiOn OF 
COMPOnenTS OF THe HPA AXiS 
BY CLOCK PROTeinS

Epidemiological studies suggested that stressful life events play 
a role in the etiology of depression (17), and hypercortisolemia 
was observed in a subset of patients with depression [reviewed 
in Ref. (18)]. Furthermore, antidepressant treatment appeared 
to stabilize the function of the HPA axis via the serotonergic 

system (19), suggesting an involvement of the HPA axis and 
glucocorticoids in mood regulation [reviewed in Ref. (20)].

Conditional mutagenesis in mice of the glucocorticoid recep-
tor (GR) in the nervous system provided evidence for the impor-
tance of GR signaling in emotional behavior (21). Overexpression 
of GR lead to depressive-like behavior, and these mice showed 
enhanced sensitization to cocaine (22), consistent with observa-
tions that GR may be a potential target to reduce cocaine abuse 
(23). Interestingly, GR bound to NURR1 thereby increasing the 
transcriptional potential of NURR1 to induce TH (24) (Figure 1). 
Hence, the amount of nuclear GR appeared to be important for 
this function. Although glucocorticoids displayed circadian 
rhythmicity [reviewed in Ref. (25)], GR expression was constant 
over 24 h in the liver, which applies most likely to the brain as 
well. However, GR nuclear localization appeared to be gated by 
REV-ERBα in the liver with nuclear GR levels high at zeitgeber 
time 20 (activity period of mice) (26). If this would apply to 
the brain, REV-ERBα would gate binding of GR to NURR1 for 
induction of the Th promoter (Figure  2). As illustrated above, 
mood-related behavior and dopamine levels were changed in 
Rev-erbα−/− mice, and this may also involve GR, which regulates 
catechol-O-methyltransferase (26), an enzyme degrading the 
MAOA product 3,4-dihydroxyphenylacetic acid to homovanillic 
acid. Therefore, it is likely that the monoaminergic system and the 
glucocorticoid pathway are linked via GR.

The cryptochrome (CRY) proteins interact with GR in a 
ligand-dependent manner in mouse liver leading to rhythmic 
repression of GR activity (27). Additionally, the CRY proteins 
participate in glucocorticoid-dependent suppression of the HPA 
axis and the production of endogenous glucocorticoids (27). Mice 
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lacking Cry1 showed depression-like behavior combined with 
reduced levels of dopamine in the striatum (28). This phenotype 
was most likely the result of the effects of CRY on both pathways 
illustrated in Figures 1 and 2. Furthermore, GR was acetylated by 
CLOCK, which lead to decreased sensitivity to glucocorticoids in 
the morning in humans and to an increased sensitivity at night 
when acetylation was reversed (29).

Recently, CHRONO, a protein that acts as a repressor in the 
circadian clock mechanism similar to CRY2 appeared to have the 
potential to interact with GR as well (30). Interestingly, Chrono 
mRNA was induced in the hypothalamus after stress stimulation 
whereas Cry2 mRNA was not. This suggested that CHRONO may 
be a stress-inducible repressor of the circadian clock coupling the 
clock with the HPA axis (30). However, it is not known whether 
Chrono knock-out mice display alterations in mood-related 
behaviors.

TRAnSCRiPTiOnAL ReGULATiOn OF 
neUROGeneSiS BY CLOCK PROTeinS

Adult neurogenesis is an important process to replace lost or 
dysfunctional neurons with new neurons produced from neu-
ronal stem cells. Most of them are found in the subventricular 
zone lining the lateral ventricles and the subgranular zone of 
the hippocampal dentate gyrus. Environmental stimuli, such as 
stress, physical activity, sleep deprivation, enriched living condi-
tions, and jet-lag, can influence adult hippocampal neurogenesis 
in mammals (31–35). These environmental stimuli directly affect 
the circadian clock as well [reviewed in Ref. (36)], suggesting 
that the clock plays a mediator role between environmental 
change and neurogenesis. Animal studies showed that chronic 
stress and depression-inducing behavior reduced hippocampal 
neurogenesis while antidepressants enhanced it (37), suggesting 
a connection between neurogenesis and depressive behavior 
(38). Hence, change of the clock by environmental stimuli may 
affect neurogenesis, which in turn affects mood-related behav-
iors. Interestingly, neurogenesis varied over the day (39–42), 
and mutations in clock genes affected adult hippocampal 
neurogenesis (28, 43–46). The effect of the clock on this process 
was at least in part due to the control of the timing of cell-cycle 
entry and exit of quiescent neural progenitor cells (QNPs) (47). 
For example, absence of Per2 abolished the gating of cell-cycle 
entrance of QNPs (43, 47), whereas lack of Bmal1 resulted in 
constitutively high levels of proliferation and delayed cell-cycle 
exit (46, 47).

On the molecular level evidence of direct clock gene-medi-
ated regulation of neurogenesis is scarce. The mechanism of 

Clock- and Bmal1-mediated neuronal differentiation appeared 
to be associated with the neurogenic transcription factor 
NeuroD1 (48), although a direct regulation of its promoter 
by clock genes was not shown. In contrast, the regulation of 
fatty acid binding protein 7 (Fabp7), also termed brain lipid-
binding protein, by the clock component REV-ERBα has been 
elucidated (44). FABP7 facilitates the solubility of long-chain 
fatty acids and is implicated in cell growth and differentiation 
(49). It affects neuronal differentiation (50) and is a marker for 
neuronal progenitor cells (51, 52). The promoter of the Fabp7 
gene was directly suppressed by REV-ERBα, and this suppres-
sion was relieved by RORα, a positive competitor of REV-ERBα 
(Figure  1) (44). Mice lacking Rev-erbα displayed increased 
levels of FABP7, which was associated with alterations in mood-
related behaviors, changes in hippocampus-dependent cognitive 
performance, and increased hippocampal neurogenesis (44).

Taken together, this overview illustrates multiple levels of 
molecular mood regulation with REV-ERBα (and PER2 as REV-
ERBα modulator) being involved in all of the processes described; 
regulation of the monoaminergic system, the HPA axis, and 
neurogenesis.

In the future, a better understanding of the hypothetical 
molecular processes illustrated in Figure 2 will be of great impor-
tance, because it is unknown whether CRY and CLOCK affect GR 
function in the nucleus or the cytoplasm. This would distinguish 
whether the influence of these two clock components is directly 
on transcription or on modulation of GR protein stability and 
transport, which would influence GR-mediated transcription in 
an indirect manner. Furthermore, the posttranslational regula-
tion of REV-ERBα is poorly understood with the exception of 
its residues S55/S59, which are phosphorylated by GSK3β and 
may mediate cellular sensitivity to lithium (53). Time–of-day-
dependent phosphorylation sites on REV-ERBα and GR (54) may 
contribute to the gated regulation of nuclear presence of these 
two receptors and hence on the regulation of metabolism and 
mood-related behaviors.
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The small GTPase Ras is a universal eukaryotic cytoplasmic membrane-anchored 
protein, which regulates diverse downstream signal transduction pathways that play an 
important role in the proper functioning of neurons. Ras activity is a central regulator of 
structural and functional synaptic plasticity in the adult nervous system, where it chan-
nels neuronal responses to various extracellular cues allowing the organism to adapt 
to complex environmental stimuli. The suprachiasmatic nucleus (SCN) is the principle 
pacemaker of the circadian clock, and the circadian and photic regulation of Ras activity 
in the SCN is an important modulator of the clockwork. We have generated transgenic 
mouse expressing constitutively active V12-H-Ras selectively in neurons via a synapsin I 
promoter (synRas mice), which serves as a suitable model to study the role of neuronal 
Ras signaling. Modulation of Ras activity affects ERK1,2/CREB signaling and glycogen 
synthase kinase-3 beta expression in the SCN, which in turn modify the photoentrain-
ment of the clock and the fine tuning the circadian period length. The main focus of this 
review is to offer an overview of the function of Ras signaling in the circadian rhythm and 
its potential role in learning and memory consolidation.

Keywords: Ras, circadian, glycogen synthase kinase-3 beta, synRas mice, eRK1/2

inTRODUCTiOn

Most organisms living on earth exhibit circadian rhythm controlled by autonomous timekeeping 
circadian clock. The circadian oscillation of intracellular clock is driven by transcription/transla-
tion-based feedback/feedforward loops, composed of a set of clock genes, as well as kinases and 
phosphatases that regulate the localization and stability of the clock gene protein products. Positive 
regulatory elements are BMAL1 and CLOCK, which form heterodimer and regulate the rhythmic 
transcription of Period (Per1 and Per2) and Cryptochrome (Cry1 and Cry2) genes. The PER and 
CRY proteins interact and translocate to the nucleus, where they act as negative regulators inhibiting 
further transcriptional activation. In addition to the transcriptional regulation, posttranslational 
mechanisms, such as phosphorylation of core clock proteins, play an important role in the regulation 
of the circadian clock. The casein kinases and glycogen synthase kinase-3 beta (GSK3β) have a criti-
cal function in the control of circadian period length by phosphorylating several core clock proteins, 
regulating their degradation, protein stability, and nuclear translocation (1–5).

In mammals, the circadian master pacemaker is located in the suprachiasmatic nucleus (SCN) 
of the ventral hypothalamus (6, 7). The SCN synchronize numerous biochemical, physiological, and 
behavioral processes in the peripheral organs with an approximate 24 h periodicity. An important 
feature of circadian clockwork is the ability to be reset by light, thus, allowing animals to adjust their 
biological rhythms to changes in the length of daytime and nighttime (6).
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Recently, we demonstrated that the circadian and photic acti-
vation of the small GTPase Ras is an important modulator of the 
clockwork in the SCN. Ras activity fine tunes the period length 
and modulates photoentrainment of the circadian clock (8). The 
main focus of this review is to offer an overview of the function 
of Ras signaling in the circadian rhythm and its potential role in 
learning and memory consolidation.

Ras SiGnALinG AnD synRas MOUSe 
MODeL

Ras is a universal eukaryotic intracellular membrane-anchored 
protein, which cycles between inactive GDP-bound and the 
signaling competent GTP-bound conformation. Several extra-
cellular signals from multiple receptor types and intracellular 
second messengers converge onto the activation of Ras, includ-
ing neurotrophin tyrosine kinase receptors, G-protein-coupled 
receptors, and local increase of intracellular Ca2+ concentra-
tion or Ca-calmodulin kinase II, resulting in the activation of 
NMDA receptors or voltage-gated Ca2+ channels (9, 10). Ras 
once activated transduces signals to several signaling pathways, 
including the major mitogen-activated protein kinase (MAPK)/
extracellular-regulated kinase (ERK) cascade and phosphati-
dylinositol-3 kinase/Akt pathway. Ras plays a central role as a 
regulator of structural and functional synaptic plasticity in the 
adult mammalian brain modulating neuronal architecture and 
synaptic connectivity and tuning synaptic efficacy (11–14).

In order to study the role of Ras and its specific downstream 
effectors, we have generated a transgenic mouse model, which 
expresses constitutively active V12-H-Ras selectively in neu-
rons via synapsin I promoter (synRas mice) (15). The synRas 
mice have brain hypertrophy, which results from an increased 
cell size and changed morphology of the pyramidal neurons   
(14, 15). The constitutively activated Ras increases the dendritic 
length, complexity, and spine density leading to a change in 
synaptic connectivity in the synRas mice cortex (12–14, 16). The 
investigation of the signal transduction in the synRas neurons 
showed that the expression of the constitutively activated V12-
H-Ras leads to drastic increase of Ras activity and correspond-
ing elevation of the phosphorylation level of MAPK (ERK1,2) 
in the cortex and hippocampus. No such changes have been 
observed in PI(3)K/Akt activity in adult synRas mice (15). In 
addition, we found increased total expression level of GSK3β 
(17), which might be result of enhanced Ras–MAPK signal-
ing and ETS-p300 transcriptional complex activation (18). 
Furthermore, specific increases of pCREB and brain-derived 
neurotrophic factor (BDNF) levels in the cortex of synRas mice 
during the developmental stages—postnatal day 7—have been 
described (19).

Ras SiGnALinG AnD 
PHOTOenTRAinMenT OF THe 
CiRCADiAn CLOCK in SCn

The potential involvement of Ras signaling in the regulation of 
circadian clock has been proposed in numerous studies (8, 20–27).  

The small GTPase Ras appears to be the major effector of BDNF-
mediated signaling and one of the main upstream regulators of 
ERK pathway resulting in elevated levels of CREB phosphoryla-
tion (19) (Figure  1). Indeed, the activation of MAPK pathway 
and particularly ERK1,2 and its coupling to the activation of 
transcription factors Elk-1 and CREB (28, 29) is an important 
molecular mechanism for photoentrainment of the SCN 
(Figure 1). In vivo studies have shown that inhibition of ERK1,2 
in mouse SCN attenuates both the phase shifting effects of light 
(28, 30) and immediate early gene expression (31). BDNF and 
its receptor, TrkB, are also necessary for photic resetting. BDNF 
protein levels oscillate in the SCN with high levels at night, when 
photic stimulation and glutamate can reset the circadian clock-
work (32). The inhibition of TrkB receptors blocks photic- and 
glutamate-induced clock resetting (33, 34).

Consistently, photic stimulation at early and late subjective 
night activates Ras in the SCN (8) and Ras activation correlates 
with the length of the light exposure (20), suggesting a direct 
involvement of Ras in the signaling pathways, coupling photic 
input to the SCN clock. The light stimuli induce glutamate release 
from the nerve terminals of the retino-hypothalamic tract, which 
results in activation of NMDA receptors with a subsequent influx 
of Ca2+ (35, 36), activating the Ca2+-calmodulin kinase II that in 
turn stimulates Ras (9, 10) (Figure 1).

Direct evidences for the involvement of Ras in the molecular 
mechanisms that adjust the circadian clock to the light/dark 
cycle come from the synRas mice (8, 25). The enhanced Ras 
activation in the SCN of synRas mice leads to potentiation of 
the light-induced phase delays at early night and total inhibition 
of the light-induced phase advances at late night of spontane-
ous locomotor activity (8). The magnitude of Ras-regulated 
ERK phosphorylation correlates with the extent of the phase 
delays at early subjective night—with stronger ERK activation 
leading to larger phase delays in circadian behavior (20, 37). 
ERK1,2 phosphorylates p90 ribosomal S6 kinase, which in turn 
phosphorylates CREB, required for the photic resetting of the 
SCN (38, 39). In addition, ERK1,2/CREB pathway couples light 
to immediate early genes expression c-Fos, a robust marker of 
SCN activation by photic stimuli, and the induction of the clock 
gene PER1 (31, 40, 41). Therefore, the enhanced activation of the 
Ras/ERK1,2/CREB pathway in the SCN of synRas mice at early 
subjective night leads to increased phase delays and enhanced 
photic induction of c-Fos protein expression in the SCN. Though 
several reports have shown that the photic stimulation of ERK1,2/
CREB phosphorylation is an essential event for the clock pho-
toentrainment, the activation of this pathway is not sufficient to 
induce c-Fos expression and phase advance the clock of synRas 
mice at late subjective night (8, 37). Thus, the enhanced basal 
levels of activation of Ras/ERK in the SCN of synRas mice at early 
subjective night phase delay the circadian clock and compensate 
the photic-induced resetting in the late subjective night.

Ras SiGnALinG AnD CiRCADiAn  
PeRiOD LenGTH

Several reports demonstrated circadian oscillation of Ras 
activity in various brain regions and peripheral organs, 
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FiGURe 1 | Schematic outline of intracellular Ras signaling pathways in the suprachiasmatic nucleus (SCN) regulating circadian clockwork. Solid lines show the 
signal pathways observed in the SCN, and broken lines indicate hypothetical pathways observed in other neuronal systems. Glutamate/NMDA and brain-derived 
neurotrophic factor (BDNF)/TrkB are the major ligand–receptor systems within SCN involved in the light-induced phase shifting circadian clock. The light stimuli at 
night induce glutamate and BDNF release, which result in activation of NMDA receptors (with a subsequent influx of Ca2+, activating the Ca2+-calmodulin kinase II) 
and TrkB receptor that in turn stimulates Ras. Ras is also negatively regulated by the circadian protein SCN circadian oscillatory protein (SCOP). Ras activates 
ERK1,2 pathway, which couples to transcriptional factors CREB and Elk-1 phosphorylation, that regulate the transcription of the immediate early genes sFos, JunB, 
and EGR1, clock protein Per1, the regulator of ERK1,2 pathway MAPK phosphatase 1 (MKP-1). Enhanced Ras signaling via ERK1,2 also activates ETS-p300 
transcriptional complex, which in turn regulates circadian clock proteins modulator glycogen synthase kinase-3 beta (GSK-3β). Other abbreviations are explained in 
manuscript. Please note: Ras downstream effector pathways other than RAF kinase, such as PI3 kinase and Ral/GDF have been omitted for reasons of simplicity 
and lack of specific information in the SCN.
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including chick pineal gland (23), mouse hippocampus (22), 
liver (26), and SCN (8). Potential regulator of Ras activity in 
the brain is the SCN circadian oscillatory protein (SCOP) 
(42). The expression of SCOP reach peak levels during late 
subjective night to inhibit the Ras/ERK pathway by binding 
to the nucleotide-free state of Ras and preventing the binding 
of GTP (42, 43) (Figure  1). Furthermore, Ras is one of the 
main targets for neurotrophins (44). BDNF mRNA and protein 
levels show a circadian oscillation in different regions of the 
brain (32, 33, 45–48). Given that multiple extracellular signals 
such as growth factors and cytokines can stimulate Ras activa-
tion in a context-dependent manner, circadian oscillations of 

circulating humoral factors may lead to rhythmic Ras activa-
tion in the liver.

Numerous studies support a model that the circadian acti-
vation of ERK1,2 is regulated by the oscillating activation of 
Ras via the classical Ras–MAPK pathway, which is commonly 
involved in numerous intracellular events. The Ras-mediated 
regulation of ERK1,2 activity is conserved mechanism used in 
many clock-containing tissues, such as the mammalian SCN, as 
well as in other regions, like hippocampus, pineal gland, and liver 
(8, 22, 23, 26, 30). Indeed, the data from synRas mice show that 
the enhanced Ras activity increases ERK1,2 phosphorylation at 
early subjective night (8). However, the circadian regulation of 
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FiGURe 2 | The role of Ras in the regulation of circadian clockwork and 
learning and memory. The circadian and photic regulation of Ras activity in 
the suprachiasmatic nucleus modulates the light-induced phase resetting of 
the clock and fine tunes the circadian period length. The circadian 
modulation of Ras signaling might have potential role in learning and memory.
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pERK1,2 levels was preserved, as result of the rhythmic oscil-
lation of the endogenous Ras and the rhythmic expression of 
MAPK phosphatase 1 (MKP-1) (8, 20) (Figure 1). MKP-1 shows 
circadian oscillation with the peak time at night in mouse liver 
and the SCN (8, 26).

It has been recently shown that modulation of Ras activity 
affects the period length (τ) of circadian oscillation (8). Enhanced 
activation of Ras in the SCN of synRas mice results of shortening 
of τ, while in vitro inhibition of Ras activity lengthens the circadian 
oscillation of BMAL1 promoter-driven luciferase activity (8). By 
contrast, inducible overexpression of Ras in cancer cell lines dis-
rupts the circadian clock enhances the circadian period, while Ras 
inhibition leads to a shortening of period length, as mathemati-
cally predicted by simulations of BMAL1-mediated transcription 
(24). However, the mechanism of Ras-mediated modulation of the 
circadian period length is not well investigated yet. Though, the 
fine tuning of the molecular clock might have a tumor suppressive 
role in Ras-driven lung cancer (49).

Within the regulation of τ, phosphorylation of core clock 
proteins plays an important role, as it determines their stabil-
ity and degradation (1–3). GSK3β acts as one of the upstream 
kinases phosphorylating several clock proteins, such as CLOCK, 
BMAL1, PER 2, Rev-erbα, and CRY2 (1, 4, 5, 50–53) (Figure 1). 
Enhanced Ras activity results in high total protein expression and 
low levels of deactivating phosphorylation of GSK3β in the SCN 
(8), as well as increased GSK3β activity in the cortex of synRas 
mice (17). Moreover, the inhibition of Ras activity decreases 
protein expression and increases inhibitory phosphorylation 
level of GSK3β in vitro (8). Thus, the increased GSK3β activity 
leads to a shortening, whereas a decreased function leads to 
substantial lengthening, of the circadian period length (1, 51, 52). 
By contrast, other studies show that GSK3β inhibition shortens 
the circadian period in  vitro (50), while its chronic activation 
lengthens the period of mice (54). Interestingly, Ras-mediated 
regulation of τ may also be a result of the direct influence of Ras 
on the MAPK pathway. Reduction of MAPK signaling by dele-
tion of MSK1, a target kinase of ERK1,2, results in a lengthened 
period of circadian behavior (55). In addition, downregulation 
of ERK1,2 activity inhibits the rhythm and dampens the basal 
level of the expression of several clock genes (56). Taken together, 
these data suggest that changes in GTP-Ras levels influence τ via 
modulation of ERK1,2 and GSK3β activity.

ROLe OF Ras in LeARninG AnD 
MeMORY COnSOLiDATiOn

The circadian clocks regulate various neural functions, including 
cognitive performance. Several studies have demonstrated diur-
nal modulation of learning and memory in different paradigms, 
such as Morris water maze task (57), novel object recognition 
task (58), and fear-related tasks (59). Many investigators have 
linked Ras and ERK1/2 to learning and memory, since tempo-
ral modulation of ERK1/2 activation by Ras is known to play 
a critical role in several forms of neuroplasticity (60). Spatial 
and declarative memories are processed in the hippocampus 
(61), where Ras/MAPK pathway and the downstream CREB 

transcriptional pathway play an important role. Indeed, it is 
reported that Ras, ERK, and CREB activities show daily (basal) 
fluctuations in the mouse hippocampus (22). It has been recently 
shown that the consolidation of long-term recognition memory 
is a circadian-regulated process, mediated by the Ras-inhibitory 
protein SCOP (62). On the other hand, synRas mice showed 
impaired spatial short-term memory associated also with a 
reduced proliferation of newborn cells in the dentate gyrus of 
the hippocampus (63, 64) and decreased short-term recognition 
memory (65, 66). All these studies suggest that modulation of 
Ras activity is critical for memory performance, but a question 
remains as to whether and how circadian regulation of Ras is 
associated in this process.

Several reports suggest that a disordered circadian system is 
implicated in the etiology and symptomatology of many psychi-
atric disorders. Interestingly, the therapeutic action of lithium, 
an effective mood stabilizer for bipolar affective disorder, may be 
related to direct effects on the circadian clock via the inhibition of 
GSK-3β (51, 67). Although this enzyme has a number of functions 
that could potentially mediate the therapeutic effects of lithium 
(68), one possibility is via its function as a central regulator of 
the circadian clock. Consistently, it has been shown recently that 
activation of GSK-3β may link to the activity in the SCN neurons 
by regulating their persistent sodium currents (69). However, in 
order to understand how timing of action potentials is coupled to 
the pacemaker activity in the SCN, it still needs to be investigated 
how Ras signaling encodes electrical activity specifically in the 
SCN neurons.

COnCLUSiOn

The small GTPase Ras activity plays a role as a central regulator 
of structural and functional synaptic plasticity in the nervous sys-
tem, where it mediates neuronal responses to various extracellular 
cues allowing the organism to adapt to complex environmental 
stimuli. Thus, the circadian and photic regulation of Ras activity 
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in the SCN is an important modulator of the clockwork influencing 
the light-induced phase resetting of the clock and fine tuning the 
circadian period length. Furthermore, the circadian modulation 
of Ras signaling might have potential role in memory consolidation 
and mood regulation (Figure  2). However, the involvement of 
Ras-controlled GSK-3β expression and its mechanism of regula-
tion in the pathophysiology of bipolar disorder still remain to be 
investigated.
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Phosphoproteome Profiling reveals 
circadian clock regulation of 
Posttranslational Modifications 
in the Murine hippocampus
Cheng-Kang Chiang1,2†, Bo Xu1†, Neel Mehta3, Janice Mayne1, Warren Y. L. Sun1,  
Kai Cheng1, Zhibin Ning1, Jing Dong4, Hanfa Zou4, Hai-Ying Mary Cheng3* and 
Daniel Figeys1,5,6*

1 Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, 
University of Ottawa, Ottawa, ON, Canada, 2 Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, 
Taiwan, 3 Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada, 4 Key Laboratory of 
Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 
China, 5 Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada, 6 Canadian 
Institute for Advanced Research, Toronto, ON, Canada

The circadian clock is an endogenous oscillator that drives daily rhythms in physiology, 
behavior, and gene expression. The underlying mechanisms of circadian timekeeping 
are cell-autonomous and involve oscillatory expression of core clock genes that is driven 
by interconnecting transcription–translation feedback loops (TTFLs). Circadian clock 
TTFLs are further regulated by posttranslational modifications, in particular, phosphory-
lation. The hippocampus plays an important role in spatial memory and the conversion of 
short- to long-term memory. Several studies have reported the presence of a peripheral 
oscillator in the hippocampus and have highlighted the importance of circadian regulation 
in memory formation. Given the general importance of phosphorylation in circadian clock 
regulation, we performed global quantitative proteome and phosphoproteome analyses 
of the murine hippocampus across the circadian cycle, applying spiked-in labeled ref-
erence and high accuracy mass spectrometry (MS). Of the 3,052 proteins and 2,868 
phosphosites on 1,368 proteins that were accurately quantified, 1.7% of proteins and 
5.2% of phosphorylation events exhibited time-of-day-dependent expression profiles. 
The majority of circadian phosphopeptides displayed abrupt fluctuations at mid-to-late 
day without underlying rhythms of protein abundance. Bioinformatic analysis of cyclic 
phosphorylation events revealed their diverse distribution in different biological path-
ways, most notably, cytoskeletal organization and neuronal morphogenesis. This study 
provides the first large-scale, quantitative MS analysis of the circadian phosphoproteome 
and proteome of the murine hippocampus and highlights the significance of rhythmic 
regulation at the posttranslational level in this peripheral oscillator. In addition to providing 
molecular insights into the hippocampal circadian clock, our results will assist in the 
understanding of genetic factors that underlie rhythms-associated pathological states 
of the hippocampus.

Keywords: hippocampus, circadian rhythm, quantitative proteome and phosphoproteome analysis, 
phosphorylation, kinase–substrate relations
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inTrODUcTiOn

Many behavioral and physiological processes exhibit daily fluc-
tuations or circadian rhythms, which are governed by an intrinsic 
timekeeping mechanism. The circadian system ensures that the 
timing of these processes is optimal with respect to other ongoing 
internal events as well as to the external environment. In mam-
mals, a central pacemaker that is situated in the suprachiasmatic 
nucleus (SCN) of the brain coordinates rhythms in peripheral 
tissues (1–3). Circadian timekeeping, be it central or peripheral, is 
a cell-autonomous phenomenon that is based on interconnecting 
transcription–translation feedback loops. To date, several large-
scale proteomic studies of circadian regulation within the SCN (4, 
5) as well as in peripheral tissues such as the heart (6) and liver 
(7, 8) have been conducted to understand clock-controlled mecha-
nisms at the protein level. Chiang et al. (4) reported that temporal 
regulation of mitochondrial oxidative phosphorylation, as well as 
posttranscriptional regulation, plays an essential role in the SCN. 
Robles et al. (7) and Mauvoisin et al. (8) showed that metabolic and 
physiological functions in the liver are under circadian control at 
the transcriptional, posttranscriptional, and posttranslational levels.

In addition to the liver, several studies have reported the pres-
ence of circadian oscillations within the hippocampus, a region 
in the brain associated with the conversion of short- to long-term 
memory (9, 10). Schaaf et al. (11) and Wang et al. (12) found that 
the expression of brain-derived neurotrophic factor and Period2 
(Per2), respectively, are circadian in the rodent hippocampus. 
Furthermore, genetic ablation of Per2 or Period1 (Per1) in mice 
leads to disruptions in hippocampal-dependent trace fear con-
ditioning (12) and spatial memory performance (13). Given the 
pivotal role of cAMP-responsive element-binding protein (CREB) 
in memory processing (14–16), the observed rhythm in CREB 
phosphorylation in the hippocampus (13), but also in the SCN 
(14–16), provides a molecular mechanism by which the circadian 
clock may control the formation of long-term memories. Overall, 
the evidence of circadian rhythmicity within the hippocampus has 
provided an intriguing basis for understanding memory formation.

To understand how hippocampal function is impacted by the 
circadian clock, we sought to define the circadian proteome and 
phosphoproteome of the murine hippocampus, since phospho-
rylation is a major posttranslational modification (PTM) that 
regulates protein function. Using super-stable isotope labeling by 
amino acids in cell culture (super-SILAC) (17) and high accuracy 
mass spectrometry (MS), we identified in our unbiased screen a 
total of 4,953 unique proteins and 9,478 phosphorylation events. 
Out of those, there were 149 phosphorylation events that displayed 
circadian profiles of expression at the posttranslational level only. 
Bioinformatic analyses revealed that the circadian phosphopro-
teome peaked in the mid-to-late day and that those rhythmic 
phosphoproteins were preferably involved in diverse biological 
functions such as synaptic processes and cytoskeletal organization.

MaTerials anD MeThODs

ethics statement
All animal experiments were conducted at the University of 
Toronto at Mississauga and were approved by the local animal 

care committee in compliance with institutional guidelines and 
the Canadian Council on Animal Care. Male C57BL/6J mice 
purchased from the Jackson Laboratory (Bar Harbor, ME, USA) 
were utilized for all experiments. Mice were group-housed in 
polycarbonate cages and given ad libitum access to rodent chow 
and water throughout the study.

Tissue collection
Thirty male C57BL6/J mice, aged 8–12  weeks, were stably 
entrained for a minimum of 2 weeks to a 12-h light:12-h dark 
(LD) schedule (light intensity during the light phase was 200 lux) 
prior to transfer to complete darkness (DD) for two full cycles. 
Dark adaptation was achieved by placing cages into light-tight 
ventilated cabinets. On day 3 of DD, five mice were sacrificed at 
each time point corresponding to circadian time (CT) 2, 6, 10, 
14, 18, and 22, where CT was defined by the Zeitgeber time of the 
previous LD schedule. Mice were killed by cervical dislocation 
and decapitated under dim red light, and eyes were covered with 
black electrical tape. Subsequently, whole hippocampal tissues 
were dissected, immediately flash-frozen in liquid nitrogen, and 
stored at −80°C until further processing.

Proteomic analysis of hippocampal 
Tissues Using super-silac-Based 
Quantitative Ms
To isotopically label murine cells, five cell lines, including 
Neuro-2a (neuroblastoma), AtT-20 (pituitary) acquired from 
ATCC (Manassas, VA, USA), mHypoE-N38, mHypoA-2/21 
(CLU-181), and mHypoA-2/28 (CLU-188) (hypothalamus) 
acquired from Cedarlane Laboratories (Toronto, ON, Canada) 
were individually cultured in SILAC media at 37°C in a 5% CO2 
humidified incubator. For the SILAC media, customized DMEM 
by AthenaES (Baltimore, MD, USA) in which the natural lysine 
and arginine were replaced by heavy isotope-labeled amino acids, 
13C6 15N4 l-arginine (Arg 10) and 13C6 15N2 l-lysine (Lys 8) was 
supplemented with 10% (v/v) dialyzed FBS (GIBCO-Invitrogen; 
Burlington, ON, Canada), 1  mM sodium pyruvate (GIBCO-
Invitrogen), and 28  μg/mL gentamicin (GIBCO-Invitrogen). 
Complete (>98%) incorporation of the isotopically labeled 
amino acids into cellular proteins was achieved after at least 10 
cell doublings in SILAC media.

Hippocampal tissues were homogenized in 300  μL of lysis 
buffer (8  M urea, 50  mM Tris–HCl (pH 7.5)), 100  mM DTT, 
4% (v/v) SDS, 1 mM sodium orthovanadate supplemented with 
proteinase inhibitor cocktail (Roche, Mississauga, ON, Canada) 
and phosphoSTOP phosphatase inhibitor cocktail (Roche) with 
a pellet pestle and sonicated three times with 10  s pulses each 
(>30 s) on ice between each pulse. Protein concentrations were 
determined using the Bio-Rad DC Protein Assay. Hippocampal 
lysates (1 mg) and super SILAC-labeled cell lysates (0.2 mg from 
each of Neuro-2a, AtT-20, mHypoE-N38, CLU-181, and CLU-
188 cells) were mixed at a 1:1 weight ratio, and SDS in solution 
was removed by an overnight incubation at −20°C in five volumes 
of ice-cold precipitation buffer [acetone/ethanol/acetic acid 
(v/v/v) = 50/50/0.1]. The precipitated proteins were washed twice 
with ice-cold acetone, and the protein pellets were redissolved in 
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50 mM NH4HCO3 solution containing 8M urea. For in-solution 
trypsin digestion, 1.2 mg of proteins in each sample was reduced 
with 5 mM DTT (Sigma, St. Louis, MO, USA) at 60°C for 1 h and 
alkylated with 10 mM iodoacetamide (Sigma) in the dark (40 min 
at room temperature). Each sample was diluted in fivefold volume 
of 50 mM NH4HCO3 (pH 8.5) solution to reduce the urea concen-
tration to <2 M and digested overnight with TPCK-treated trypsin 
(Worthington, Lakewood, NJ, USA) at an enzyme-to-protein ratio 
of 1:25 (w/w). For proteomic analysis, 0.1 mg of resulting peptides 
were fractionated through an in-house constructed strong cation 
exchange (SCX) column with five pH fractions (pH 4.0, 6.0, 8.0, 
10.0, and 12.0) followed by desalting with in-house C18 desalting 
cartridges and dried in a speed-vac prior to LC-MS analysis. The 
remaining 1.1 mg of tryptic peptides were desalted by SepPak C18 
cartridges (Waters, Mississauga, ON, Canada), dried, and SCX 
fractionated into four fractions (pH 4.0, 6.0, 8.0, and 12.0) prior 
to phosphoproteome enrichment.

hippocampal Phosphoproteome 
enrichment by Ti4+-iMac chromatography
Ti4+-IMAC beads preparation and the phosphopeptide enrich-
ment procedure were performed as described previously (18). 
Samples were resuspended in 1  mL loading buffer (80% (v/v) 
acetonitrile (ACN) and 6% (v/v) TFA) with 300 μL of Ti4+-IMAC 
bead slurry (10 mg beads in 1 mL of loading buffer) for 30 min 
at 4°C. After centrifugation (16,000  ×  g, 10  min), beads were 
washed with 200  μL of washing buffer 1 [50% (v/v) ACN, 6% 
(v/v) TFA, and 200  mM NaCl], followed by two washes with 
200 μL of washing buffer 2 [30% (v/v) ACN and 0.1% (v/v) TFA]. 
Phosphopeptides were eluted from the beads using 200 μL of 10% 
(v/v) ammonia solution for 15  min and sonicated for another 
15 min at 4°C. After centrifugation, the retrieved supernatants 
were collected, acidified with 10% (v/v) TFA, desalted with in-
house C18 desalting cartridges, and dried in a speed-vac prior to 
LC-MS analysis.

lc-Ms analyses
All resulting peptide fractions were reconstituted in 20 μL of 0.1% 
(v/v) FA and 4 μL of each sample was analyzed by online reverse-
phase LC-MS/MS platform consisting of an Eksigent NanoLC-
Ultra 2D plus system (AB SCIEX) coupled with a Q Exactive 
Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Fisher 
Scientific, San Jose, CA, USA) via a nano-electrospray source. 
Peptide mixtures were separated by reverse phase chromatogra-
phy using a home-packed ReproSil-Pur C18-AQ column (75 μm 
internal diameter × 15 cm, 1.9 μm, 200 Å pore size; Dr. Maisch 
GmbH, Ammerbuch, Germany) in 2  h LC gradient of 2–80% 
buffer B [ACN in 0.1% (v/v) FA] at a flow rate of 300 nL/min. 
The Q Exactive instrument was operated in the data-dependent 
mode to simultaneously measure survey scan MS spectra (from 
m/z 400–2,000) in the Orbitrap analyzer at resolution R = 70,000. 
Up to the 12 most intense peaks with charge state ≥2 and above 
a signal threshold of 500 counts were selected for fragmentation 
in the ion trap via higher-energy collisional dissociation. System 
controlling and data collection were carried out by Xcalibur 
software version 2.2 (Thermo Scientific).

Mass-spectrometry Database search and 
Bioinformatic analysis
Mass spectrometry data from the hippocampal proteome and 
phosphoproteome were analyzed and quantified with MaxQuant 
(version 1.3.0.5) using Andromeda as the search engine against 
the UniProt (release 2014_04) database restricted to Mouse 
(Mus musculus) taxonomy concatenated with decoy reversed 
sequences. The precursor ion mass tolerance was 6  ppm and 
fragment mass deviation was 0.5  Da for MS/MS spectra. The 
search included variable modifications of methionine oxida-
tion, N-terminal acetylation, Ser/Thr/Tyr phosphorylation, and 
fixed modification of cysteine carbamidomethylation. Trypsin/P 
(cleavage after Lysine and Arginine, including Lysine–Proline 
and Arginine–Proline) was set as the cleavage specificity with 
two missed cleavages. The false discovery rate (FDR) cutoffs 
for peptide and protein identification were both set to 0.01 and 
the minimum peptide length was set to 7. Identification across 
different replicates and adjacent fractions were achieved by 
enabling match between runs option within a time window of 
2 min. Default settings were used for all the other parameters in 
MaxQuant. The proteingroup file from hippocampal proteome 
and Phospho (STY) Sites file from the phosphoproteome were 
imported into Perseus (version 1.5.2.4) for the analysis. The raw 
proteomic and phosphoproteomic datasets (4,953 proteins and 
9,478 phosphosites, respectively) were filtered to include only 
proteins/phosphosites with quantification values in a minimum 
of 15 of 30 MS measurements (or 30 independent hippocampal 
samples), resulting in a stringently quantified dataset of 3,052 
proteins and 2,868 phosphosites, respectively. Hierarchical clus-
tering analysis, using the median value of logarithmized values 
for the normalized L/H ratio of each protein and phosphopeptide 
profile, was performed after z-score normalization of the data 
within Euclidean distances.

To identify the subset of 24-h rhythmic proteins and phos-
phopeptides, JTK_CYCLE algorithm (19) was used on the hip-
pocampal proteomic (3,052 proteins) or the phosphoproteomic 
(2,868 phosphorylation events) dataset under R language. Prior 
to JTK_CYCLE analysis of those two datasets, any missing values 
(i.e., not detected by MS) were replaced with 0 and the minimum 
values observed in each screen (4), respectively. Only if both 
replacement methods showed a significant profile [p-Values 
(ADJ.P) less than 0.05] were the corresponding proteins/phos-
phopeptides classified as displaying a circadian rhythm. To find 
the 8- or 12-h rhythmic proteins and phosphoproteins within 
the 3,052-protein and 2,868-phosphoprotein datasets, another 
JTK_CYCLE analysis was separately performed with period 
lengths set at 8- and 12-h.

Unsupervised clustering analysis (fuzzy c-means) of the tem-
poral profiles of cycling phosphopeptides was performed using 
the Mfuzz package (20) in R. The gene ontology (GO) annotation 
and pathway enrichment analysis of circadian phosphoproteins 
were implemented using the DAVID (21). The ingenuity pathway 
analysis (IPA) software (version 7.5) was utilized to analyze the 
biological functions, protein–protein interactions, and signaling 
pathway annotations of the rhythmically expressed proteins and 
phosphoproteins. Motif analysis was performed using iceLogo 
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FigUre 1 | global proteomic and phosphoproteomic analysis of the murine hippocampus. (a) Schematic overview of super-SILAC-based quantification of 
the murine hippocampal proteome and phosphoproteome. Proteins extracted from hippocampal tissues of individual mice [n = 5 per circadian time (CT); 6 CT in 
total] were mixed with equal quantities of protein lysates from a super-SILAC mix (five isotopically labeled cells), digested with trypsin, and processed by SCX 
fractionation with Ti4+-IMAC chromatography (phosphoproteome analysis) and without (proteome analysis). (B) Plot of 17 proteins and 67 phosphorylation events 
that were identified in the light (hippocampal tissues), but not heavy (super-SILAC mix), counterpart. x-axis indicates the number of hippocampal samples in which 
these proteins and phosphosites were detected. (c) Venn diagram indicates that 660 proteins were accurately quantified in both the proteome (orange) and 
phosphoproteome (blue) datasets, whereas 708 were found only in the phosphoproteome. (D) Representative scatter plots showing biological replicate 
measurement in proteomic and phosphoproteomic screens with a high degree of correlation among those 30 biological samples.
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(22), scoring by percent difference with a significance threshold 
of 0.05 for a sequence window of 15 amino acids surrounding 
the phosphorylated residues on hippocampal circadian phos-
phopeptides. Protein interaction network analysis of the cycling 
phosphoproteome was performed with the STRING (23) using 
medium to high confidence (0.5–0.7) and with co-expression 
and experiments as active prediction methods. iGPS 1.0 (24) was 
used to predict possible site-specific kinase–substrate relations 
(ssKSRs) between putative protein kinases (PKs) and circadian 
hippocampal phosphopeptides using a high threshold.

The MS proteomics and phosphoproteomics data have 
been deposited to the ProteomeXchange Consortium (http://
www.proteomexchange.org) via the PRIDE partner repository 
(25) with the dataset identifier PXD005668 and PXD005669, 
respectively.

resUlTs

super-silac-Based Quantitative 
Proteomic and Phosphoproteomic 
analysis of the Murine hippocampus
To explore the circadian proteome and phosphoproteome of 
the murine hippocampus, we stably entrained male C57BL/6J 
mice to a LD cycle and transferred them to constant darkness 

(DD) for 2 days. On day 3 of DD, hippocampal tissues were 
harvested from five mice at each of six time points, spaced 
4  h apart (Figure  1A), to yield five independent biological 
replicates for each time point (5 mice per CT, n  =  30 total 
mice). The proteome and phosphoproteome dynamics in 
the murine hippocampus over a 24-h cycle were then inves-
tigated by the state-of-art super-SILAC-based proteomics 
quantification method (17). This method, which results in 
accurate quantification, uses isotopically labeled peptides 
from a combination of five different SILAC-labeled cell lines 
with high labeling efficiency to serve as internal standards 
for MS-based analysis. Our super-SILAC mix included pro-
teins from Neuro-2a (neuroblastoma), AtT-20 (pituitary), 
mHypoE-N38, mHypoA-2/21 (CLU-181), and mHypoA-2/28 
(CLU-188) (hypothalamus) cells. “Light” hippocampal protein 
lysates (600  μg) were mixed with “heavy” lysates from our 
super-SILAC mix (120  μg of each cell line) at a 1:1 weight 
ratio. Following protein precipitation and tryptic digestion, 
0.1 mg of the tryptic peptide mixtures were separated into five 
fractions for proteomic analysis, whereas 1.2 mg of resulting 
peptides were used for phosphopeptide enrichment analysis by 
Ti4+-IMAC chromatography (18). All fractions were analyzed 
by nanoLC-MS/MS on a Q-Exactive MS in a total of 300 runs.

Out of the 4,953 proteins and 9,478 phosphorylation events 
identified in our proteome and phosphoproteome analysis, there 
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FigUre 2 | Overview of the hippocampal circadian proteome and phosphoproteome. (a) The left pie chart indicates the proportions of proteins that 
exhibit a circadian (orange), ultradian (8 or 12 h, green) or non-rhythmic (gray) temporal profile of abundance. The right pie chart illustrates the proportion of the 
phosphoproteome that exhibits a circadian (blue), ultradian (green), or non-rhythmic (dark-gray) pattern of phosphorylation (JTK_CYCLE algorithm, p < 0.05). 
(B) Venn diagram indicates that only four genes showed a circadian expression profile at both the protein (orange) and phosphorylation level (blue), whereas the 
majority of circadian phosphorylation events (97 phosphosites on 78 phosphoproteins) were non-rhythmic in terms of protein abundance (gray, hippocampal 
proteome). (c) Abundance profiles of the circadian phosphoproteome (blue) showed a higher magnitude of fluctuation than the circadian proteome (orange). Both 
datasets displayed a higher fold change than the total quantified dataset (gray). x-Axis indicates fold changes (log2 normalized ratios) of the proteome (left) and 
phosphoproteome (right) in a 24-h cycle. y-axis indicates the number of proteins or phosphopeptides from the total proteome/phosphoproteome (left y-axis) or from 
the circadian proteome/phosphoproteome (right y-axis). (D) Four proteins (Abr, Dpysl3, Marcks, and Spna2) exhibited a circadian profile at both the protein (orange) 
and phosphorylation (green and blue) level.
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were 17 (0.3%) proteins and 67 (0.7%) phosphorylation events 
that were identified in the light samples that did not have a 
heavy counterpart (Figure 1B). Of these, only one protein (Ly-6/
neurotoxin-like protein 1; Uniprot ID: Q9WVC2) was detected in 
more than half of the samples without a corresponding SILAC-
labeled peak from the super-SILAC pooled standard. With a 
FDR of 1% at the peptide level, 6,204 of 9,478 phosphosites were 
classified as class I phosphorylation sites (localization probability 
score >0.75), with a distribution of 90.4% phosphoserine, 9.2% 
phosphothreonine, and 3.4% phosphotyrosine residues.

For further downstream bioinformatic analyses, we extracted 
from the raw dataset only the accurately quantified proteins 
and phosphorylation events. This resulted in more stringent, 
filtered datasets of 3,052 proteins (referred to as the hippocam-
pal proteome, Table S1 in Supplementary Material) and 2,868 
class I phosphorylation sites on 1,368 proteins (referred to 
as the hippocampal phosphoproteome, p  >  0.75, Table S2 in 
Supplementary Material). Of the 1,368 phosphoproteins iden-
tified, 660 were accurately quantified in both the proteome and 
phosphoproteome datasets, whereas 708 were found only in 
the phosphoproteome, but not proteome, dataset (Figure 1C). 
Pairwise Pearson’s correlation analysis of 30 independent MS 
measurements (Tables S3 and S4 in Supplementary Material) 
on both hippocampal proteome and phosphoproteome data 

showed good reproducibility of our results (Figure 1D), with 
an average Pearson r value of 0.943 and 0.895, respectively.

circadian Oscillations of the Murine 
hippocampal Proteome and 
Phosphoproteome
To further identify proteins and phosphoproteins that showed 
a circadian pattern of abundance in our murine hippocampal 
dataset, JTK_CYCLE algorithm (19) was employed to identify 
rhythmic subsets of proteins and phosphorylation events with a 
period of 24 h. Ultradian patterns were identified by setting the 
period to 8 and 12 h. As shown in Figure 2A, 51 of 3,052 (1.7%) 
proteins (referred to as the circadian proteome, Table S5 in 
Supplementary Material) and 149 of 2,868 (5.2%) phosphoryla-
tion events on 125 proteins (referred to as the circadian phos-
phoproteome, Table S6 in Supplementary Material) exhibited 
a 24-h rhythm of abundance (p < 0.05, JTK_CYCLE), whereas 
less than 1% of hippocampal proteins (22/3,052, 0.7%) and 
phosphorylation events (24/2,868, 0.8%) exhibited ultradian 
oscillations with periods of 8 or 12 h. Notably, for the majority 
of circadian phosphopeptides, the corresponding proteins were 
non-rhythmic (97 phosphorylation sites on 78 proteins, 97/149, 
65.1%); only 4 genes (6 phosphosites, 6/149, 4.0%) showed a 
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FigUre 3 | Time-of-day profile of the circadian proteome and phosphoproteome over a 24 h cycle. (a) Hierarchical clustering of the circadian proteome 
(left) and circadian phosphoproteome (right) in the hippocampus. (B) Frequency distribution of abundance phases shows that the circadian proteome is evenly 
distributed across the 24-h cycle, whereas the circadian phosphoproteome peaks in the mid-to-late day. (c) Temporal expression profile of five phosphorylation 
patterns that are under circadian control in the hippocampus. (D) Sequence logos analysis (iceLogo) of the total circadian phosphoproteome (top) as well as the 
subsets that peak specifically at CT8 (middle) and CT10 (bottom).
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circadian expression profile at both the protein and phospho-
rylation level (Figure 2B).

Next, we analyzed the magnitude of the fluctuations in the 
circadian proteome and phosphoproteome by calculating the 
fold change of those cyclic subsets with the logarithmic nor-
malized expression ratios across six CT. The mean logarithmic 
fold change of the circadian proteome is 0.73, whereas it is 1.26 
for the circadian phosphoproteome (Figure  2C). The abun-
dance profiles of both datasets displayed a higher fold change 
than the total quantified datasets (i.e., total proteome and 
total phosphoproteome) (Figure 2C). In cases where both the 
phosphorylation event and the protein abundance fluctuated 
in a circadian fashion, the amplitude of the phosphorylation 
rhythm exceeded the amplitude of the protein rhythm by 
approximately 40%. For example, Abr, Dpysl3, Marcks, and 
Spna2 exhibited circadian rhythms both in their phosphoryla-
tion status and in total protein abundance, but the magnitude 
of the oscillation was greater for the former than it was for the 
latter (Figure 2D).

Collectively, our data reveal that a substantial portion of the 
hippocampal proteome exhibits significantly greater time-of-day 
oscillations at the level of phosphorylation than at the level of 

protein abundance, suggesting that posttranslational mechanisms 
play a prominent role in shaping the functions of proteins in the 
hippocampus.

Phase and site-specific Motif enriched 
analysis of the circadian hippocampal 
Proteome and Phosphoproteome
To further characterize the time-of-day-dependent proteome and 
phosphoproteome of the murine hippocampus, we analyzed the 
data by hierarchical clustering using the z-score normalization 
of the median value of normalized logarithmic expression ratios 
across a 24-h cycle. As shown in Figure 3A, peak times in the 
oscillations of the circadian proteome were evenly distributed 
across the 24-h cycle, whereas within the circadian phosphopro-
teome, the peak in abundance was largely confined to the mid-
to-late day time points (CT6 and CT10). As shown in Figure 3C, 
unsupervised clustering analysis (fuzzy c-means) of the temporal 
profiles of cycling phosphopeptides revealed that approximately 
70% of the temporal phosphorylation patterns had a marked 
increase in expression starting at CT2 and peaking by mid-to-late 
day (CT6 to CT10) and a gradual decline to trough levels in the 
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FigUre 4 | Functional analysis and physical interaction of the circadian phosphoproteome. Graphical distribution of overrepresented gene ontology (GO) 
terms of the circadian phosphoproteome against the accurately quantified phosphoproteome dataset in (a) cellular component, (B) molecular function, and (c) 
biological process by DAVID. (D) The largest physical interaction network of the circadian phosphoproteome in the STRING database is comprised of proteins that 
are described by the GO terms cell morphogenesis involved in neuron differentiation and cytoskeleton organization. Each node represents a protein that is colored 
according to its peak phase (yellow: between CT0 and CT8, green: at CT8, blue: at CT10, and red: between CT10 and CT24) at the phosphorylation level. Proteins 
outlined by a hexagon are enriched in cytoskeleton organization (blue), cell morphogenesis involved in neuron differentiation (red), or both (green) by DAVID BP-FAT 
analysis (Fisher’s exact test, p < 0.05). Inset (upper right): the pie chart indicates the proportion of phosphopeptides that belong to the four different peak phase 
categories.
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late night (CT22). By plotting the frequency of oscillation phases 
of the circadian proteome and phosphoproteome, Figure  3B 
revealed that the phases of cycling proteins were distributed from 
CT6 to CT22, whereas the circadian phosphoproteins mainly 
peaked at CT8 (71/149 phosphosites, 47.7%) and CT10 (38/149 
phosphosites, 25.5%).

Enrichment of amino acids surrounding the phosphorylated 
residues can be useful in revealing the broad classes of kinases that 
might control circadian phospho-oscillations in the hippocam-
pus. To identify potential patterns in the enriched amino acids 
surrounding the phosphorylated residues of those cycling phos-
phoproteins, we employed iceLogo analysis (22) on the circadian 
phosphoproteome as well as on the peaking phosphoproteome at 
CT8 and CT10. Relative to all identified phosphorylation events in 
the murine hippocampus, circadian phosphoproteins were signifi-
cantly overrepresented (p < 0.05) with basophilic-containing motifs, 
including arginine and lysine at the −2 to −7 positions, as well as 
hydrophobic amino acids at the −5 position (Figure 3D). Closer 
examination of the consensus of the cycling phosphoproteome 
that peaked at CT8 found a greater preference toward leucine and 

arginine/lysine residues at the −5 and −3 positions (Figure 3D). 
Phosphopeptides that peaked at CT10 exhibited an enriched motif 
composition that was similar to the circadian phosphoproteome 
with only modest differences at the C-terminal region (Figure 3D).

Differential Distribution of the circadian 
Proteome and Phosphoproteome in the 
Murine hippocampus
To gain insight into the subcellular locations of, and biological 
processes associated with, the rhythmic phosphoproteins identi-
fied in our study, we performed GO enrichment analyses by 
using the bioinformatics resources available via the Database for 
Annotation, Visualization, and Integrated Discovery (DAVID, 
version 6.8, https://david.ncifcrf.gov/). Three available GO cat-
egories were utilized to classify the biological processes, cellular 
components, and molecular functions of phosphoproteins that 
were overrepresented in our dataset (Figures  4A–C). Relative 
to the accurately quantified hippocampal phosphoproteome, 
the circadian phosphoproteome was significantly enriched for 
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FigUre 5 | Protein interaction network of cyclic hippocampal proteins and phosphoproteins. Network indicating direct physical interactions between the 
circadian proteome (node symbol: square) and the circadian phosphoproteome (node symbol: circle). Phases of peak abundance are denoted by different colors 
(yellow: between CT0 and CT8, green: at CT8, blue: at CT10, and red: between CT10 and CT24). Symbols indicate proteins and/or phosphorylation events that are 
involved in mTOR signaling (@), protein kinase A signaling ($), and RhoA signaling (#) pathways. Proteins connected by edges (red lines) are enriched in cellular 
assembly and organization, cellular function, and maintenance process.
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GO-FAT cellular components that were classified as postsynaptic 
specialization and neuron part (Fisher’s exact test, p  <  0.05) 
(Figure 4A), whereas cytoskeletal protein binding was the most 
highly enriched category in the GO-FAT molecular functions 
analysis (Figure  4B). Additionally, several metabolic pathways 
including cytoskeleton organization, cell morphogenesis involved 
in neuron differentiation, and neuron projection morphogenesis 
were significantly enriched in this dataset based on GO-FAT 
biological process analysis (Figure 4C).

To delve further into the potential biological relevance of 
the cycling phosphoproteome within the hippocampus, we 
constructed functional protein–protein interaction networks 
of the circadian phosphoproteome in the STRING database 
(Figure  4D). Out of 149 circadian phosphorylation events on 
125 proteins, 57 proteins (73 phosphopeptides, 73/149 = 49.0%) 
exhibited a high degree of connectivity in a functional protein 

network (Figure  4D). This network included a relatively large 
number of proteins where the phosphorylation events occurred at 
CT8 (54.8%) and CT10 (21.9%). Notably, many of these phospho-
rylation events that peaked at CT8 and CT10 occurred on proteins 
that were classified by the GO terms cytoskeletal protein binding 
and/or cell morphogenesis involved in neuron differentiation.

Next, we investigated the relationship between the circadian 
proteome and circadian phosphoproteome by constructing a 
direct protein interaction network using STRING, in an attempt 
to understand the underlying mechanisms for circadian post-
translational regulation in the hippocampus. The top functions 
within the largest protein interaction network that was con-
structed (Figure 5) were cellular assembly and organization, and 
cellular function and maintenance. This network included a large 
number of proteins that are involved in several known canonical 
pathways by IPA, including mTOR signaling (p  =  3.02E−05), 
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FigUre 6 | Protein phosphorylation networks of the circadian phosphoproteome with putatively active protein kinases (PKs). Protein interaction 
networks of potential site-specific kinase–substrate relations between the circadian phosphoproteome and putative PKs by iGPS. (a) Top five PK groups (symbol: 
square) preferentially modify more phosphorylation sites on the circadian phosphoproteome. (B) Twenty-seven PKs (symbol: diamond) significantly modify more 
phosphorylation sites on the circadian phosphoproteome than the hippocampal phosphoproteome (Yates’ chi-squared test, p < 0.05). Each edge (line) in the 
network represents a circadian phosphorylation event that is mediated by the specified kinase. Phases of peak abundance of the circadian phosphoproteome (node 
symbol: circle) are denoted by different colors (yellow: between CT0 and CT8, green: at CT8, blue: at CT10, and red: between CT10 and CT24).
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protein kinase A (PKA) signaling (p  =  6.76E−05), and RhoA 
signaling (p  =  4.27E−04). Prior studies have shown that 
phosphorylation of eIF4E, 4EBP1, rpS6, Akt, and ERK1/2 
(components of the mTOR pathway) are rhythmic in the murine 
hippocampus and disrupting their diurnal oscillations impairs 
memory consolidation (26). Similar effects on memory consoli-
dation were observed upon inhibition of PKA activity in the rat 
hippocampus (27).

Our collective data suggest that phosphorylation events 
within the hippocampus, particularly those associated with the 
cytoskeleton and neuronal differentiation, are under circadian 
regulation, peaking in the mid-to-late day. Furthermore, some 
of these phosphorylation events are associated with PKs that are 
known to be clock-controlled and/or that regulate the entrain-
ment of the clock by light (28, 29).

Kinase responses and Predicted Kinase 
regulators of cycling Phosphopeptides in 
the hippocampus
Identification of phosphorylation sites with their cognate PKs is 
important in understanding signal transduction within complex 
biological systems. In order to identify putative PKs underlying 
the circadian phosphoproteome, we utilized iGPS [GPS algo-
rithm with the interaction filter, 1.0 (24)] to find kinase-specific 
phosphorylation sites at a high stringency level. In our system-
atic elucidation of ssKSRs from a circadian phosphoproteomic 
dataset of 149 phosphorylation events, 662 potential ssKSRs 
were identified among 190 PKs and 40 phosphosites (in 34 

proteins), yielding a coverage rate of 26.8% (40/149). As shown 
in Figure  6A, top-ranking PK groups that were predicted to 
phosphorylate those sites belong to the AGC, CMGC, CAMK, 
STE, and TKL PK groups. Downstream Yates’ chi-squared test 
showed that, when compared to the 2,868 accurately quantified 
phosphoproteome, a significantly higher proportion of circadian 
phosphorylation events (p < 0.05) were predicted to be modified 
by 27 PKs that belong to the AKT (v-Akt murine thymoma viral 
oncogene), CAMK2 (Ca2+/calmodulin PK II), CAMKL (Ca2+/
calmodulin PK like), or STE20 kinase families (Figure 6B).

DiscUssiOn

Major advancements in mass spectrometric methodologies 
coupled with phosphopeptide enrichment strategies have allowed 
us to obtain an unbiased view of phosphorylation dynamics in 
a systematic manner (18, 30, 31). In this study, we utilize the 
super-SILAC-based quantitative proteomics approach as well 
as phophoproteomics technology to gain a first look into the 
circadian phosphoproteome of the murine hippocampus. Out of 
3,052 proteins and 2,868 phosphopeptides that were stringently 
quantified, 51 (1.7%) proteins and 149 (5.2%) phosphosites 
exhibited a circadian expression profile. Compared to the 
recently published proteome studies of the SCN (4) and liver (7, 
8), our proteomic and phosphoproteomic screens failed to detect 
any core clock proteins, likely due to their significantly lower 
abundance relative to the many cytoplasmic proteins, which 
were detected. Furthermore, although the percentage of detected 
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circadian phosphoproteins in the hippocampus was similar to the 
percentage of the SCN or hepatic proteome that was rhythmic 
based on three previous studies (2.2% in the SCN, Chiang et al.; 
6.0% in the liver, Robles et al.; 4.8% in the liver, Mauvoisin et al.), 
the percentage of rhythmic hippocampal proteins was markedly 
lower.

Protein phosphorylation and dephophorylation are highly 
controlled biochemical processes that respond to various 
intracellular and extracellular stimuli. Phosphorylation status 
modulates protein functions, which in turn regulate crucial 
biological processes and development. Wang et al. (32) showed 
that phosphosites on nuclear proteins in the liver were bimodally 
distributed at peak times in the middle of the day and the night. 
Robles et al. (33) discovered that phosphorylation cycles in the 
liver were much greater in amplitude than the fluctuations in 
protein abundance and markedly differed in phase when com-
pared to the cycling proteome. In our present study, we noticed 
that the circadian phosphorylation events that occurred in the 
murine hippocampus peaked primarily at mid-to-late day (CT8 
to CT10). Furthermore, the mean fold-change of the hippocam-
pal circadian phosphoproteome was much greater than that of the 
hippocampal circadian proteome. The relatively high amplitude 
of phosphorylation rhythms is particularly noteworthy given that 
the hippocampus lacks intrinsic circadian rhythmicity at the level 
of Per1 gene expression when cultured ex vivo (34). This suggests 
that hippocampal rhythms are either posttranscriptional or post-
translational in nature or require ongoing signals from the SCN 
to maintain them.

Downstream consensus motif enrichment analysis indicated 
that circadian hippocampal phosphopeptides, regardless of their 
peak phase, were good substrates for CAMK2 (R-X-X-S/T) (35) 
and PKD (L/I-X-R-X-X-S/T) (36), whereas those phosphopep-
tides that peaked specifically at CT10 possessed a favorable 
kinase–substrate relations with PKA (R-R-X-S/T-Y, where Y 
tends to be a hydrophobic residue) (37). Saraf et al. found that 
phosphorylation of eIF4E (Ser209), 4EBP1 (Thr37/Thr46), 
ERK1/2 (Thr202/Tyr204), and Akt (Ser473) in the hippocampus 
peaked in the mid-day to activate translation initiation and 
promote memory consolidation (26). Abolishing diurnal oscil-
lations in phosphorylation of the aforementioned proteins in the 
hippocampus leads to a reduction in contextual memory (26). 
Our bioinformatics analysis also pointed to the possibility that 
several putative PKs belonging to the AKT, CAMK (CAMK2 and 
CAMKL), and STE (STE20) PK families that may play a promi-
nent role in shaping the landscape of circadian phosphorylation 
events in the hippocampus. STE20 kinases are best known as 
members of the MAPK cascade. Eckel-Mahan et al. (38) found 
that daytime rhythms of MAPK activity in the hippocampus are 
accompanied by parallel oscillations in cAMP levels and Ras 
activity. In light of these previous findings, our results suggest 
that PKs from the CAMK and CAMKL families contribute to 
the circadian rhythms of protein phosphorylation within the 
hippocampus.

Notably, our GO enrichment analysis revealed that proteins that 
are categorized under postsynaptic specialization and postsynaptic 
density, as well as cell morphogenesis involved in neuron dif-
ferentiation and cytoskeleton organization, exhibited time-of-day 

dependent fluctuations in their phosphorylation status. Along 
these lines, rats experience a rapid increase in dendritic spine den-
sity of CA1 pyramidal neurons shortly after entering the dark phase 
and their awake state, an effect that is mediated by various kinase 
pathways including MAPK/ERK, PKA, and PKC (39). Moreover, 
there is evidence that the sleep–wake cycle, which is coordinated by 
the circadian timing system, is linked to structural plasticity within 
the hippocampus and memory processes (40). The observed peak 
in hippocampal protein phosphorylation at CT8–10 suggests that 
the circadian timing system may be mediating anticipatory changes 
in proteins that are implicated in synapse function or cytoskeletal 
organization, in preparation for the structural changes that occur 
in the hippocampus shortly after wake onset.

Finally, our functional interaction network analysis of the 
circadian proteome and phosphoproteome indicates that signal-
ing by mTOR, PKA, and RhoA in the hippocampus is under 
circadian regulation. Interestingly, PRKCA and CDC42, both of 
which fluctuate at the level of protein expression, appear to be 
major hubs that connect to rhythmically phosphorylated proteins 
implicated in PKA and mTOR signaling (in the case of PRKCA), 
and RhoA signaling (in the case of CDC42) (Figure 5). PRKCA 
has previously been implicated in photic entrainment of the 
SCN through posttranslational regulation of PER2 stability and 
nucleocytoplasmic trafficking (41). CDC42 belongs to the Rho 
family and is critical for postsynaptic structural plasticity of CA1 
pyramidal neurons (42). Our study revealed that CDC42 protein 
levels peaked at CT6, preceding the peak in cyclic phosphoryla-
tion events that are linked to RhoA signaling by at least 2 h. The 
collective data from our study strongly suggest that rhythmic 
PTM is an important mechanism by which the circadian clock 
exerts temporal control of hippocampal function.

cOnclUsiOn

Ours is the first study that investigates the circadian control 
of the global phosphoproteome of the murine hippocampus. 
Approximately 5% of detected phosphorylation events within the 
hippocampus oscillate in a circadian fashion and reach their peak 
in the mid-to-late day. In addition to this synchronicity in their 
peak phase, many of these phosphoproteins were associated with 
fundamental neuronal processes including neuronal structure. 
Our bioinformatics analysis also revealed putative ssKSRs within 
the hippocampus, thereby providing a better understanding of 
the mechanisms that underlie circadian regulation of hippocam-
pal function.
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An Overview of Monthly Rhythms 
and Clocks
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1 Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria, 2 Research Platform “Rhythms of Life”, 
University of Vienna, Vienna Biocenter, Vienna, Austria

Organisms have evolved to cope with geophysical cycles of different period lengths. In 
this review, we focus on the adaptations of animals to the lunar cycle, specifically, on the 
occurrence of biological rhythms with monthly (circalunar) or semi-monthly (circasemilunar)  
period lengths. Systematic experimental investigation, starting in the early twentieth cen-
tury, has allowed scientists to distinguish between mythological belief and scientific facts 
concerning the influence of the lunar cycle on animals. These studies revealed that marine 
animals of various taxa exhibit circalunar or circasemilunar reproductive rhythms. Some 
of these rely on endogenous oscillators (circalunar or circasemilunar clocks), whereas 
others are directly driven by external cues, such as the changes in nocturnal illuminance. 
We review current insight in the molecular and cellular mechanisms involved in circalu-
nar rhythms, focusing on recent work in corals, annelid worms, midges, and fishes. In 
several of these model systems, the transcript levels of some core circadian clock genes 
are affected by both light and endogenous circalunar oscillations. How these and other 
molecular changes relate to the changes in physiology or behavior over the lunar cycle 
remains to be determined. We further review the possible relevance of circalunar rhythms 
for terrestrial species, with a particular focus on mammalian reproduction. Studies on cir-
calunar rhythms of conception or birth rates extend to humans, where the lunar cycle was 
suggested to also affect sleep and mental health. While these reports remain controversial, 
factors like the increase in “light pollution” by artificial light might contribute to discrepancies 
between studies. We finally discuss the existence of circalunar oscillations in mammalian 
physiology. We speculate that these oscillations could be the remnant of ancient circalunar 
oscillators that were secondarily uncoupled from a natural entrainment mechanism, but 
still maintained relevance for structuring the timing of reproduction or physiology. The 
analysis and comparison of circalunar rhythms and clocks are currently challenging due to 
the heterogeneity of samples concerning species diversity, environmental conditions, and 
chronobiological conditions. We suggest that future research will benefit from the develop-
ment of standardized experimental paradigms, and common principles for recording and 
reporting environmental conditions, especially light spectra and intensities.

Keywords: circalunar, circadian, moon, light, sleep, mood, marine, reproduction

THe OCCURReNCe OF CiRCALUNAR RHYTHMS AND CLOCKS

Physiological processes and behaviors often occur at specific times. Similar to human societies 
that follow not only the pace of the watch but also that of the calendar, many organisms structure 
their behavior and physiology not only by the regular cycles generated by the changes of sun 
(daily and seasonal timing) but also the cycles of the moon (monthly timing). Moreover, different 
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timing regimes can also be used in combination, for instance, 
to synchronizing reproduction to a particular season of the 
year, particular day(s) of the month and specific hours during  
these days.

Generally, periodic organismal processes (biological rhythms) 
can be orchestrated in two different ways (Figure 1A). On the 
one hand, they may be generated directly by changes in the 
regular external cues. Such a setting allows a given rhythm to 
adjust rapidly to any sudden changes in the external cues, but in 
turn makes the rhythm inherently sensitive to disturbance. On 
the other hand, organisms can possess internal timing systems of 
the respective period length (so-called biological clocks) that are 
adjusted to the external cues, but able to continue to run indepen-
dently, thereby making the biological rhythm more robust against 
short-term disturbances. The evolution of such biological clocks 
has likely been favored by the extreme stability of geophysical 
cycles and the advantages organisms have when they can not only 
react to regular changes in the environment but also anticipate 
these changes and prepare accordingly.

Whereas biological rhythms have been observed over centu-
ries, molecular details have so far best been worked out for the 
biological rhythms and clocks running on a 24-h cycle, reflecting 
the day and night cycle. Over recent years, progress has also been 
made in the molecular understanding of seasonal rhythms. Both 
rhythms reflect the natural cycles of the sun. This review focuses 
on rhythms and clocks of period lengths provided by the moon. 
These run with around 29.5  days (circalunar rhythms/clocks) 
or 14.75 days (circasemilunar rhythms/clocks) (see Figure 1A). 
The moon also generates rhythms with shorter period length of 
12.4 and 24.8 h, so-called circatidal and circalunidian rhythms, 
respectively (1–5). We do not discuss these rhythms in our review, 
because they cover a time scale that is very different from the 
monthly and semi-monthly rhythms, and are thus likely to be 
functionally distinct.

Circalunar and circasemilunar rhythms are widespread 
among organisms, especially in the context of reproductive 
cycles of marine animals. This fact was likely already noted by 
fishermen in antiquity, due to the practical implication that the 
size of the (edible) gonads of local sea urchins varied over the 
lunar month (6). The notion became a piece of cultural memory 
through its generalization in Aristotle’s work (De partibus 
animalium IV, 5), and its further tradition by classical authors 
[see Ref. (6) for the historical reception of the concept]. In the 
1920s, the British zoologist Harold Munro Fox put the classical 
statements to systematic scientific tests, confirming the observa-
tion of lunar phase-dependent gonad changes in the Egyptian 
sea urchin Diadema setosus, while dismissing the concept for 
several other species (6, 7). Fox and other researchers (6–8) also 
started to compile published evidence for circalunar and circa-
semilunar rhythms in other marine species, a list that has stead-
ily grown over the course of subsequent decades (2). Figure 1B 
provides some of the well-established examples for circalunar 
reproductive cycles in marine animals: the seasonal spawning of 
tropical corals such as Acropora during full moon nights (9), the 
reproduction of the annelid worm Platynereis during the waxing 
moon (10, 11), the precise emergence of the midge Clunio at neap 
tides (12), the lunar cycles of gonad growth in the sea urchin 

D. setosus (6, 7), as well as the circalunar spawning of several fish 
species (13), such as the goldlined spinefoot (Siganus guttatus) 
in tropical reefs (14), the California grunion (Leuresthes tenuis) 
(15), or the mummichog (Fundulus heteroclitus) (16). Besides 
its impact on reproductive cycles, the lunar cycle also affects 
the behavior of marine animals. For instance, during the Arctic 
winter, massive waves of diel vertical migration of the zooplank-
ton are linked to the lunar cycle, reflecting the importance of 
moonlight as the predominant light stimulus in that period (17). 
While our review focuses on the animal kingdom, it should be 
noted that circalunar or circasemilunar reproductive rhythms 
also exist in species of other eukaryotic kingdoms, such as the 
brown alga Dictyota dichotoma (kingdom Chromalveolata) 
(18) or the Peruvian apple cactus Cereus peruvianus (kingdom 
Archaeplastida) (19, 20).

The aforementioned distinction between externally regu-
lated rhythms and clock-mediated rhythms is also relevant for 
the discussion on the occurrence of circalunar rhythms. On 
the one hand, a reliable, monthly fluctuating environmental 
stimulus—such as the light stimulus of the full moon, or the 
mechanical stimulus of the spring/neap tides—can directly 
cause variation in animal physiology, pigmentation, or behavior, 
or trigger subsequent hormonal changes. In each of these cases, 
the stimulus directly translates into an observable biological 
rhythm (schematized in Figure  1C as “Stimulus-controlled”). 
On the other hand, the respective stimulus can also act to 
entrain a circalunar timing mechanism (a circalunar clock, 
also referred to as “circalunar oscillator” in this review). This 
clock then drives the observed circalunar rhythm (Figure 1C, 
“Clock-controlled”). A classical experimental approach in 
chronobiology that distinguishes between these two possibili-
ties is the omission of the stimulus after an initial “entrainment” 
phase (Figure 1C, “Entrainment”) [see, e.g., Ref. (21)]. Whereas 
a circalunar rhythm produced by direct impact will not persist 
under such conditions, a clock-mediated circalunar rhythm 
will be able to persist. Currently, nomenclature for such omis-
sion experiments differs [e.g., “free-running full moon” (22);  
“constant new moon” (23)].

APPROACHeS TO UNRAveL THe 
MOLeCULAR AND CeLLULAR 
MeCHANiSMS OF CiRCALUNAR 
RHYTHMS AND CLOCKS iN MARiNe 
SYSTeMS

Even though circalunar and circasemilunar rhythms and clocks 
are widespread, and common in the marine environment, 
researchers have only recently started to tackle the underlying 
molecular and cellular changes and mechanisms. Most of the 
molecular data focus so far on the analysis of known circadian 
clock genes, putative photoreceptors, as well as transcriptomic 
studies over the course of circalunar rhythms (see Table  1). It 
lies in the nature of these approaches that most of the results are 
still on the correlative level. Here, we provide an overview of a 
selection of recent molecular approaches and try to derive more 
general conclusions from these studies.
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FigURe 1 | Circalunar and circasemilunar rhythms and clocks/oscillators are widely present in the animal kingdom. (A) Common biological rhythms 
linked to the moon cycle can be classified into circalunar and circasemilunar rhythms based on their periodicity, reflecting the re-occurrence of specific events/states 
once or twice, respectively, during the lunar month. Note that these events/states can be matched with any of the lunar phases, with the example showing 
synchrony with the full/new moon. (B) Circalunar/circasemilunar rhythms are found in a broad range of animals, as demonstrated by the phylogenetic position of 
individual animal groups in which reproductive cycles have been linked to the lunar phase (see text). (C) Biological rhythms either reflect direct response of an 
organism to changes in the respective environmental stimulus, such as nocturnal light (top; “Stimulus-controlled”); or they are driven by endogenous clocks that are 
entrained/set by a particular state of the environmental stimulus (bottom; “Clock-controlled”). As the environmental stimulus is not required for an endogenous clock 
to continue, a clock-mediated biological rhythm also “free-runs” if the environmental stimulus is experimentally removed.
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TABLe 1 | Overview on gene differences in the context of the lunar cycle.

Species genes analyzed for being affected by nocturnal light or circalunar clock Analytical 
method(s)

Reference

Acropora millipora 
(coral)

cry1, cry2 expression at noon vs. midnight during new moon and full moon, protein location in tissue 
(note that coral cry1 and cry2 are not equivalent to bilaterian cry1/cry2)

qPCR Levy et al. (24)

A. millipora (coral) cry1, cry2, clk, cycle, tim, eya expression 2 sampling regimes:

 – every 4 h during new and full moon
 – midnight on 4 moon phases and 4 different lunar light regimes (normal lunar cycles, constant new 

moon, constant full moon)

qPCR Brady et al. (23)

A. millipora (coral) Transcriptome from various diel and lunar timepoints Quantitative 
RNAseq

Kaniewska et al. (25)

Acropora gemmifera 
(coral)

Transcriptome from two diel and four lunar timepoints Quantitative 
RNAseq

Oldach et al. (26)

Favia fragum (coral) cry1, cry2, clk, cycle expression at various diel and lunar timepoints qPCR Hoadley et al. (27)

Platynereis dumerilii 
(annelid worm)

clock, bmal (cycle), tr-cry, L-cry, period, pdp1, vrille qPCR Zantke et al. (22), 
Tessmar-Raible et al. 

(28)

Clunio marinus 
(dipteran insect)

Genomic loci that contain the genetic differences causing differences in monthly timing QTL mapping/
genome 
sequencing

Kaiser et al. (29)

Siganus guttatus (fish) cry1, cry3, per4 transcripts at noon during 5 different lunar phases (natural lunar light, constant new 
moon, two different coverage regimes during different phases of the night)

qPCR Fukushiro et al. (30), 
Toda et al. (31)

Cry3 protein localization in brain
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Characterization of Molecular and 
Behavioral impacts of Circalunar Rhythms 
and Clocks
The Relationship of Circadian and Circalunar 
Rhythms
As mentioned earlier, circalunar timing mechanisms rarely exist 
in isolation, but are coordinated with other timing mechanisms, 
such as daily (circadian) timing. Therefore, several studies have 
investigated if the expression of known circadian clock genes is 
affected either by nocturnal light or by the phase of a circalunar 
clock (Table 1).

In this context, the genes encoding members of the 
Cryptochrome (Cry) family have received particular attention. 
Crys are flavoproteins involved in cellular signaling, which are 
anciently related to photolyases, UV-responsive DNA repair 
enzymes (32). Molecular phylogenetic analyses show that Crys 
form multiple, evolutionarily conserved subgroups (32–34). 
Several of these subgroups are of interest for circadian clock 
research: members of the d-Cry/Cry1/Lcry family can function 
as photoreceptors (activated by short-wavelength light) in insect 
and annelid circadian clocks (22, 33, 35, 36), whereas members of 
the distinct v-Cry/Cry2/tr-Cry family function as transcriptional 
repressors in the circadian transcription/translational core loop 
[reviewed in Ref. (37)]. Members of a family called “plant-type 
Cryptochromes” also exist in animals and diatoms. In plants, 
members of this family have been shown to function as photo-
receptors for the plant circadian clock [reviewed in Ref. (38)]. 
Their role outside of the plant phylum is currently unknown (34).

Cryptochrome genes have been investigated in several coral 
species that display lunar reproductive cycles. In the coral Acropora 
millepora, three types of Crys were identified (24): Ami-Cry1 has 

closest homology to tr-Crys, Ami-Cry2 is positioned in the group 
of the 6-4 photolyases, while the third molecule, Ami-CryDash, 
is related to another ancient group of Crys that has been dubbed 
“cry-Drosophila, Arabidopsis, Synechocystis, Homo” (Cry-DASH) 
due to its broad evolutionary conservation (32). Different studies 
investigating the mRNA expression levels of cry1 and cry2 and 
their possible modulation in lunar reproductive cycles arrived at 
different results: the first study by Levy et al. showed that both 
cry1 and cry2 are induced by sunlight (with no reproducible 
transcript changes without light). In addition, when animals 
were sampled during natural full moon nights, cry2 transcript 
levels were significantly higher than during new moon nights 
(24), while cry1 levels did not show a difference. These results 
contrast with more recent research by Brady and co-workers 
in the same coral (23). While these researchers also describe 
changes in transcript levels for the cry2 gene over the lunar light 
cycle, cry2 showed elevated expression levels at midnight during 
new moon—and not full moon—nights. Furthermore, in their 
study, also cry1 levels showed fluctuations, with elevated expres-
sion levels at midnight during the first-quarter moon (23). This 
study also tested transcript oscillations under constant nocturnal 
light and lack of nocturnal light over the course of an entire 
lunar cycle. These experiments assessed if the transcriptional 
changes are under the control of an endogenous oscillator or only 
under direct light control. Interestingly, midnight cry1 and cry2 
transcript levels still showed differences at different phases of the 
lunar cycle independent of illumination, consistent with the idea 
that corals also possess a circalunar clock.

Finally, changes in gene expression in A. millepora over the 
lunar month have also been assessed using a transcriptomic 
approach (25) (also see below). In this study, cry1 transcript levels 
were highest at midnight during full moon nights (25). The cause 
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of these differences is currently unclear and could range from 
variants in the environmental conditions or different subspecies 
to higher variation in the transcript changes than previously 
anticipated. Transcript levels of cry1 and cry2 orthologs have 
also been analyzed in a different coral species, Favia fragum. 
Both genes exhibit light-controlled daily oscillations and also 
transcript level differences between different moon phases (27). 
The correlation between the moon phase and the transcript level 
is, however, not fully clear, since no full lunar cycle was analyzed. 
Taken together, despite several discrepancies, these results sug-
gest that cryptochromes are interesting genes for studying the 
effect of the lunar cycle on corals, and possibly allowing conclu-
sions on the impact of the lunar cycle on circadian biology of 
these animals. However, as corals branch off the animal tree at a 
very basal position, one restriction at this point is that it is still 
unclear which of the investigated Crys are functionally relevant 
for circadian control in corals.

The assignment of Crys to circadian functions might be less 
problematic in other taxa, where Crys have also been investigated, 
given the clearer functional subgroup position. In the golden rab-
bit fish, S. guttatus, mRNA levels of two tr-cry homologs—SgCry1 
and SgCry3—fluctuate with the lunar cycle in the brain, but not the 
ovary (30). Whereas SgCry1 levels are controlled by light, SgCry3 
levels continue to exhibit a monthly periodicity even in the absence 
of nocturnal light cues, providing strong evidence that this gene is 
under the control of an endogenous monthly clock (31).

The bristle worm Platynereis dumerilii possesses a complete 
set of animal Cry/photolyase genes, with one ortholog for each 
distinct subfamily (34). Of those, tr-Cry and L-Cry have been 
investigated with respect to nocturnal light cycles and the circalu-
nar clock of the worm (22). When tested in S2 tissue culture cells, 
Platynereis tr-Cry functions as a transcriptional repressor, but 
not a light receptor, consistent with a conserved function of this 
molecule in transcriptional circadian control. The transcripts of 
tr-cry show a clear circadian rhythmicity (both during circadian 
light–dark and dark–dark conditions). Under nocturnal light 
conditions that are sufficient to reset the circalunar clock of these 
animals, the oscillations of tr-cry are abolished, indicating that 
nocturnal light stimuli can affect circadian clock gene expression. 
Conversely, there is no significant effect of the lunar clock itself 
on the transcript levels of this gene (22, 28). Also, Platynereis 
L-cry, which functions as a light receptor when tested in S2 cells, 
shows fluctuations in transcript levels between day and night. 
These, however, do not appear to follow a regular circadian pat-
tern (22). Both nocturnal light and the circalunar clock appear to 
impact on the expression of this gene. Due to the irregularity of 
L-cry regulation, however, these changes are difficult to quantify 
reliably [Ref. (22, 28); Zantke and Tessmar-Raible, unpublished 
observations].

Besides cry genes, also other circadian clock gene homo logs 
have been studied in these animals. In the bristle worm Platynereis, 
transcript levels of the core circadian clock genes, pdp1, period, 
and clock, exhibit clear changes depending on the worm’s endog-
enous circalunar clock: compared to samples taken during new 
moon phase, levels are significantly elevated during the full moon 
phase, even in the absence of nocturnal light (“free-running full 
moon”) (22). Interestingly, a circalunar regulation that persists 

under free-running conditions has also been observed for tran-
script levels of per4 in the diencephalon of the reef fish S. guttatus. 
In the brain samples that were taken at different timed during the 
lunar cycle, this gene had its lowest expression around the first 
quarter of the moon, even if the fish were shielded from light 
during the night (31). Finally, free-running regulation was also 
observed for several coral genes, like the presumptive circadian 
clock genes Ami-cycle, Ami-clock, and Ami-tim (23).

Taken together, it appears that both natural and experimental 
changes in nocturnal illumination, as well as endogenously run-
ning circalunar clocks impact on the transcript levels of circadian 
clock gene homologs in marine organisms as diverse as corals, 
annelid worm, and fish. A major task for the future will be to work 
out if and how these transcript changes impact on the circadian 
rhythm of the respective model species. Interestingly, at least in 
the bristle worm P. dumerilii, the circalunar clock has also been 
shown to impact on circadian rhythms of locomotor activity, 
suggesting the possibility that the observed transcript regulations 
might be linked to these activity changes (22). Such behavioral 
changes might be due to hormonal fluctuations, as it has been 
shown that in several species with lunar controlled reproductive 
cycles, hormones, and hormonal receptors change with the lunar 
light cycle. In vertebrates, the melatonin pathway is one of the 
hormone pathways affected by the lunar cycle. For instance, 
moonlight changes the abundance of aanat1 (the precursor of the 
synthesis enzyme AANAT) in the eye of the goldlined spinefoot 
S. guttatus (39). Moreover, at least two of the melatonin recep-
tors in the mudskipper, Boleophthalmus pectinirostris fluctuate 
with semilunar periodicity, in phase with the aanat2 gene in the 
pineal of that species (40). Such results provide interesting entry 
points for further research into the question how nocturnal light 
modulates circadian biology of animals. In turn, another concep-
tually interesting question is if the circadian clock components 
themselves are involved in the generation of circalunar or cir-
casemilunar rhythms. Pharmacological interference experiments 
in the bristle worm P. dumerilii suggest that circadian clock gene 
oscillations are not required to maintain circalunar rhythms in 
this species (22). But this does not exclude a role for the circa-
dian clock in entraining the circalunar clock (also see discussion 
below). Moreover, mass spawnings of marine animals are often 
not only synchronized to particular days but also particular hours 
of the day—sometimes with extreme precision (8, 9, 15). Such 
cases would predict that circadian and circalunar clocks are likely 
to converge at least on the level of regulating mating behavior 
or gamete release. Research into the interaction of circadian and 
circalunar clocks may therefore reveal interesting insight into the 
coordination between distinct timing mechanisms.

Omics Approaches to Identify Fluctuations 
Correlated with the Lunar Cycle
Whereas the aforementioned work investigated specific effects 
of the lunar cycle on circadian clock components, several 
researchers have tried to complement these experiments with 
broader approaches that also explore possible rhythmicity in 
the expression of other genes. High-throughput transcriptome 
profiling has become an attractive technology for this research. 
Again, work on corals has already spearheaded this direction 
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(Table 1). Quantitative RNA sequencing was performed on two 
Acropora species over the course of the lunar cycle. Samples taken 
from Acropora millipora at three different times during the day 
on new moon vs. full moon days revealed that 2% (midnight) 
to 6% (noon) of Acropora genes fluctuate between the two lunar 
conditions. Based on functional annotation of the encoded pro-
teins, the regulated genes cover a variety of different biological 
processes, including cell communication, cell differentiation, and 
cell proliferation (25).

In the second study, Acropora gemmifera branches were sam-
pled at four different moon phases and during two different times 
of the day (noon and midnight). Two sets of regulated transcript 
types were identified from the quantitative RNA sequencing: one 
set (55 isogroups) showed diurnal expression patterns that fluctu-
ated over the course of the lunar cycle, whereas the second set (273 
isogroups) exhibited differential expression over the lunar cycle 
when noon and midnight sampling timepoints were combined 
(26). These two gene sets were largely non-overlapping, result-
ing in an overall detected change of transcripts over the lunar 
cycle of about 0.6% [Ref. (28); Vince, personal communication 
concerning which EST dataset was exactly used for the mapping 
of the reads]. When considering these numbers, it should be 
noted, however, that in the second study, sequencing reads were 
mapped across species (i.e., A. gemmifera RNAseq reads onto an 
A. millipora transcriptome). It is thus likely that the real number 
of regulated transcripts is higher, since genes with lower sequence 
conservation would not map reliably.

More such studies, especially also under free-running con-
ditions, will be needed to understand the impact of nocturnal 
light and the circalunar clock on the transcriptome of animals. 
One challenge that is already emerging from the data reviewed 
above is that experimental design, data acquisition, and analysis 
methods differ between studies, making comparisons between 
individual experiments difficult. A general trend in all of the 
reviewed studies is that both nocturnal light and free-running 
circalunar clocks impact on the transcript level of specific genes. 
The extent of this phenomenon, as well as the potential conserva-
tion of such regulated transcripts, remains to be analyzed in the 
future. Also, the functional meaning of such transcript changes 
is currently unclear.

Forward Genetic Approaches to Identify Molecules 
That Can Modulate Circalunar Timing
The third approach to identify molecular mechanisms involved in 
circalunar timing is to investigate factors that modulate this tim-
ing mechanism in natural populations. This approach draws on 
the idea that within the population of a given species, individual 
differences in timing exist. In humans, and with reference to 
daily timekeeping, such natural variants are called chronotypes, 
with the extremes of “larks” (early chronotypes) and “owls”  
(late chronotypes) (41). Individual timing differences, however, 
are neither restricted to humans nor to differences in the circadian 
clock. One very attractive model system is the non-biting marine 
midge Clunio marinus. This species possesses chronotypes with 
respect to both daily and monthly timing mechanisms, thereby 
allowing individual populations to time their emergence pre-
cisely to the local neap and spring tides (42). Importantly, these 

timing differences were shown to be genetically inherited (43). 
Combining rigorous genetic mapping of these differences with a 
high-resolution genome for this insect, as well as re-sequencing 
of distinct chronotypes, has recently allowed the identification 
of several candidate genes modulating circalunar (and circadian) 
timing in distinct C. marinus timing strains (29). Interestingly, 
the current analysis in the midge is consistent with the idea that 
circadian and circalunar timing mechanisms are distinct, as none 
of the core circadian clock genes is involved in circalunar timing 
variation (29). It is, however, currently still unclear if the gene loci 
responsible for the circalunar “chronotypes” are relevant for the 
entrainment pathway, the circalunar clock, or the output pathway. 
Hence, it can at presence not be excluded that there is an overlap 
between some components relevant for circadian and circalunar 
timing in this insect. The hope is that functional experiments 
in the midge will help to unravel by which mechanism any of 
the current candidate loci really contributes to the fine tuning of 
circalunar timing.

The Quest for the Moon Light Sensors
Another central question concerns the identity of the light 
receptor(s) that allow organisms with light-driven circalunar 
rhythmicity to perceive dim nocturnal light, and thereby endow 
these species either with the ability to directly react to nocturnal 
light or—in species where circalunar clocks exist—entrain these 
clocks to the light stimulus.

Due to their light-responsive properties, Crys—that we have 
discussed above in the framework of the circadian clock—have 
also received significant attention in this context. The afore-
mentioned study by Levy in the coral A. millepora was the first 
to propose a member of the Cryptochrome family (Cry2) as a 
possible moon light sensor that could impact on the mass spawn-
ing of the coral around full moon (24), and thereby nurtured 
further interest in this protein group in other studies of animals 
displaying circalunar rhythms, including the research into reef 
fish discussed earlier (30).

While such studies suggest a possible function of Cry mol-
ecules—albeit of distinct subgroups—as nocturnal light recep-
tors, it is important to emphasize that the speculation on the 
function of these molecules currently still relies on correlation 
between the regulation of transcript levels and environmental 
light. A functional requirement for moon light reception has 
neither been demonstrated for the reef fish nor for any of the 
corals. It is also unclear if upregulation of the respective genes 
is correlated with enhanced light receptive function, i.e., if the 
mRNA regulation translates into levels of functional protein. 
Of note, for the coral, the same authors have recently suggested 
another class of photoreceptors—a melanopsin—as possible light 
receptor relevant for gamete release, also based on RNA expres-
sion data (25).

Opsins have also been suggested to play a role in moonlight 
sensation in other models. A peculiar example is the Somalian 
cavefish Phreatichthys andruzzii. This species inhabits the dark 
phreatic layers beneath the desert and has evolved in isolation 
from surface populations for an estimated time of 3 million years 
(44). Whereas the species has lost its eyes, as well as many of its 
photoreceptor genes (45, 46), several Opsins have remained fully 
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functional (47). Together with observations that fish swim up to 
the surface of oasis fountains during moonlit nights, this has led 
to the speculation that these Opsins could be involved in moon-
light reception [Ref. (47); Bertolucci, personal communication].

Given these different proposals, a key task for the future will be 
the functional test of individual light receptors in suitable model 
species. Here, an attractive model species in which the relevance 
of Opsins and/or Cryptochrome family members for lunar light 
reception is being tested is the marine bristle worm P. dumerilii. 
A classical study tested by tissue ablation if the worm’s eyes are 
required for circalunar entrainment, concluding that the adult eyes 
are dispensable for that purpose (48). More recently, transgenesis 
and genome mutagenesis have allowed the generation of knockout 
strains for specific genes (49). A mutant strain has already been 
generated for the L-cry ortholog of the bristle worm, which is cur-
rently being used to test the contribution of this gene to circalunar 
entrainment (49). Interestingly, previous analyses on the properties 
of the light suitable for the entrainment of the worm’s circalunar 
clock suggests that nocturnal light of different wavelengths is suit-
able as entraining stimulus (11). This may indicate the involvement 
of more than one photoreceptor in this process.

Besides the search for moon light sensors, another interesting 
aspect is the actual mechanism by which organisms distinguish 
moonlight from other light. One specific question is if there are 
mechanistic parallels, or even deeper evolutionary links, between 
the detection of nocturnal light stimuli (relevant for circalunar 
rhythms or circalunar clock entrainment) and the detection of 
long vs. short photoperiods (relevant for seasonal rhythms and 
the entrainment of circannual clocks). Photoperiodism is a wide-
spread phenomenon, occurring in phyla ranging from rotifers 
and annelids to birds and mammals, helping these animals  
to anticipate the change of seasons and to adjust their physiology 
and behavior accordingly [reviewed in Ref. (50, 51)]. There are  
interesting commonalities between the detection of long pho-
toperiod and moonlight: (i) in both cases, the relevant light 
stimulus is weaker than the sunlight that animals are exposed to 
during the day: the setting or rising sun causes less than 1% of 
the illuminance of the sun at noon. For moonlight, this difference 
in light intensity is even around five to six orders of magnitude 
(see Figure 2). (ii) Even though the intensity of the relevant light 
stimulus is therefore very small, in both cases, the actual time 
point of the stimulus with respect to the 24-h cycle is highly 
relevant for its interpretation.

For photoperiodic light detection, these considerations have 
led to the proposal of a “coincidence model,” whereby the circa-
dian clock of an organism allows it to set a certain time window 
of sensitivity, in which the presence vs. absence of light—even 
if weak—can be correctly interpreted as indication of long- vs. 
short-day length (18, 55). Interestingly, molecular analyses in 
mammals have revealed a gene regulatory system that matches 
this coincidence model. In the sheep pars tuberalis, transcript 
levels of the transcription factor Eyes absent 3 (Eya3) are con-
trolled both by a circadian signal (that licenses eya3 transcription 
12 h after night fall) and by the acute levels of melatonin (that 
lead to a suppression of eya3 transcription during darkness). As 
melatonin levels are suppressed by light, the combination of these 
regulatory mechanisms leads to a specific upregulation of eya3 

only under short photoperiod (56). Melatonin-proficient mice 
appear to possess a similar ability to induce eya3, suggesting that 
this mechanism could be evolutionarily conserved (57).

Given the very low intensity of moonlight, the coincidence 
model is also one plausible model how a moonlight stimulus 
could be detected by animals and distinguished from daylight. 
Like in the case of the photoperiod, the lunar cycle leads to 
periodic changes not only in the intensity but also the time of 
nocturnal light (as moon rise and moon set move with respect 
to the circadian cycle). These features could allow an animal to 
detect a change in lunar phase by a switch in light state during a 
sensitive nocturnal period. Experimental data in the midge Clunio 
are compatible with such a model (58); likewise, in Platynereis, 
the relevant stimulus for circalunar synchronization appears to 
be that the animals obtain a switch from a “light on” state to a 
“light off ” state; notably, this could even be a switch between a 
long-day photoperiod to a short-day photoperiod, providing  
a direct parallel to photoperiodic responses in other animals (11). 
To which extent such mechanistic parallels might also be reflected 
in molecular similarities is still far from clear. It is interesting, 
however, that in one of the aforementioned studies on coral gene 
expression, Brady et al. also observed that levels of a gene with 
similarity to the eyes absent family changed when compared 
between full moon and new moon nights (23). Moreover, the 
mentioned influence of the lunar cycle on melatonin signaling 
in fish provides another interesting molecular link that might 
help to delineate similarities and differences between moonlight 
reception and photoperiodic mechanisms.

ReLevANCe FOR TeRReSTRiAL SPeCieS

As outlined earlier, the presence of circalunar rhythms and 
clocks across a broad spectrum of marine species (see Figure 1) 
is consistent with the idea that the respective timing mechanisms 
already predate the major diversifications of animals and the 
conquest of land. This would imply that also the ancestors of 
land-living animals likely possessed similar mechanisms. If so, 
is there evidence for any remnants of these mechanisms in land-
living animals, including mammals? In keeping with the distinc-
tion between direct environmental impact and clock-mediated 
processes that we referred to above, we will focus here on two 
different aspects: the impact of nocturnal light or gravitational 
cycles on the physiology of terrestrial animals, and the evidence 
for internal clocks with a monthly period.

influence of the Moon on Reproductive 
Timing of Terrestrial Animals
Given the strong role that the moon plays in popular belief and 
human mythology, scientists have generally remained critical 
toward reports of direct lunar impact on humans or other terres-
trial animals. Moreover, light pollution caused by the process of 
industrialization/electrification is a factor that is likely to obscure 
natural responses to moonlight or even disturb the respective 
rhythms (see the more extended discussion on this topic below).

Nonetheless, a series of scientific studies has produced evi-
dence for the existence of circalunar or circasemilunar rhythms 
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also in terrestrial species. These affect diverse animal phyla and 
various aspects of animal life, ranging from reproduction to 
communication or behavior related to preying or protection from 
predators [reviewed in Ref. (59)]. Here, we focus primarily on 
reproductive rhythms, as these allow to consider differences and 
similarities to the reproductive rhythms introduced in the above 
sections.

One case where reproductive timing appears to be linked to the 
lunar cycle is the Serengeti wildebeest, a grazer that migrates each 
year in herds of enormous size across the Serengeti. The calves of 

the Wildebeest are typically born in a very narrow, 3-week period 
around January or February, months before the mass migration 
in May/June (60). One likely advantage for the synchronized 
reproduction is that it reduces predation risk. Using birth dates 
as well as embryo sizes, conception dates in this animal have been 
systematically estimated. Even though exact estimates are not 
possible (60, 61), it is remarkable that the estimated dates—which 
vary from year to year on the solar calendar—consistently fall 
into a time window in April to May that is determined by two 
consecutive full moons (60). It thus appears that—on top of a 
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seasonal signal—the fine tuning of conceptions is linked to the 
lunar phase. Of note, in the equatorial region, the waning and 
waxing moon probably provides a more robust light cue than 
the small differences in solar timing. Hence, other terrestrial 
animals in the equatorial zone that display narrow reproductive 
peaks may be interesting species to search for lunar reproductive 
mechanisms.

Another example of a mammal where the time window for 
conception appears to be correlated with the moon phase is the 
European badger. Also in this species, lunar timing is superim-
posed on a seasonal breeding cycle. The animals typically mate in 
February to March, soon after the females have given birth to the 
previous litter. During lactation, the embryos are in a diapause 
state, before seasonal cues (photoperiod and temperature) lead 
to implantation around the end of December (62, 63). Dixon and 
colleagues performed a systematic, long-term video surveillance 
study on badger behavior during the mating season and also com-
piled published records from over 100  years of natural history 
literature on badger behavior (64). The study then investigated 
the exact dates at which animals copulated and also tracked 
stereotypic behavior associated with mating, such as the increase 
in territorial behavior, as evidenced by squat marking (in both 
sexes) and raised-leg urination (in males). For all of these behav-
iors, the authors observed a significant correlation to the moon 
phase, with a peak around the new moon phase.

The third, less pronounced, but surprising case linking the 
moon phase to mammalian reproduction has been reported for 
domesticated cattle. In a systematic, 3-year study on over 400 
Holstein cows raised on a Japanese farm, Yonezawa and colleagues 
recently reported a significant influence of the moon phase on 
spontaneous delivery dates, with deliveries peaking shortly before 
the full moon, while being minimal around new moon (65). As 
the animals were artificially inseminated, and the insemination 
dates were accurately recorded for each cow, the authors were 
able to show that the observed pattern was not generated by a 
fluctuation of conception frequencies. Rather, they could relate 
the observed pattern to deviations between the expected and 
actual delivery dates. Specifically, there was a significant effect 
of the moon phase in delaying (new moon) or accelerating (full 
moon to waning gibbous phase) the actual delivery for up to 
2 days (65). The resulting changes are less than 1% in gestation 
length (average: 284 days), but the study strongly suggests that in 
a well-controlled system (low genetic variation, reduced artificial 
light sources), physiologically relevant effects of moonlight can be 
determined. Given that cattle have been domesticated for around 
10,000 years (66), it is possible that this effect represents just a 
remnant of a more pronounced trait that might have been more 
relevant in the wild.

When comparing these examples with the aforementioned 
reproductive cycles in many marine animals, two aspects are 
interesting to note: (i) in terms of reproductive strategies, mam-
mals are characterized by internal fertilization and typically an 
independence of the tides. This strategy represents an obvious 
contrast to the marine broadcast spawners and species reproduc-
ing within the tidal zone, where precise synchronization of mat-
ing time between sexes is essential for maintaining reproductive 
success. Otherwise, germ products would be quickly diluted 

in the water or the substrate/niche required for egg deposition 
would be unavailable. By contrast, internally fertilizing animals 
can uncouple copulation from fertilization. This happens, for 
instance, in numerous insects, with storage of sperm for periods 
of days to months or even years. Likewise, as demonstrated by 
the example of badgers, internally fertilizing animals can also 
uncouple fertilization from embryonic development if needed. 
Therefore, if circalunar control of reproduction was indeed a 
more ancient feature of reproduction, the selective pressure to 
maintain it would have become more relaxed in species evolving 
internal fertilization strategies. Other selective advantages might 
therefore be more relevant for the maintenance/evolution of 
circalunar reproductive strategies in such lineages, for instance, 
the ability to limit the chance for predators to prey on the off-
spring (wildebeest). (ii) The two highlighted species in which 
copulations are limited (wildebeest and badgers) display a clear 
seasonality in reproduction. The lunar cycle therefore is not the 
only relevant cycle governing reproduction but is also integrated 
with information on the season. It is still unclear if these species 
use light cues to derive information on both lunar phase and 
seasonal state, or if other cues (temperature for the season; gravity 
for the lunar phase) may play a role.

effects of the Moon on Human  
Birth Rates?
Classical authors as well as popular mythology also suggest vari-
ous effects of the moon on human biology. These range from an 
influence on the menstrual cycle and birth dates to aggressive 
behavior or an impact on mental health [reviewed in Ref. (67)]. 
Any of these effects is discussed in a controversial manner. Here, 
we will mainly review three of these aspects: the question if the 
moon has an influence on human birth rate, the question if there 
is a connection between the lunar cycle and sleep, and the ques-
tion if the lunar cycle affects mental health.

Concerning reproduction, one popular claim is that human 
births are not randomly distributed over the month, but that birth 
rates differ over the course of the lunar cycle. As for the cases 
of animal reproduction mentioned earlier, scientists have begun 
to systematically analyze such claims in the twentieth century. 
One of the first studies systematically investigating the frequency 
of births in a large, longitudinal study (1948–1957, around 
250,000 births) concluded that around the full moon, birth rates  
(calculated as a sliding window of 3-day averages) were between 2 
and 3% elevated over the average, whereas the time point around 
new moon showed a reduced birth rate (2–3% below average). 
The effect was found to be statistically significant (68) and was 
also consistent with a subsequent study that was conducted for 
around 500,000 births over a shorter period (1961–1963) (69). 
Interestingly, the described differences match well with the 
differences reported by the aforementioned study by Yonezawa 
and colleagues in the parturition of cows (65). In the decades to 
follow, various studies have investigated the correlation between 
birth rates and lunar phases in independent, and partly larger, 
datasets. Results, however, varied: some found support for an 
influence of the lunar phase on birth rates, such as a study by 
Guillon and colleagues on more than 12  mio births in France 
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between 1968 and 1982 that confirmed a local maximum around 
full moons (70) (in addition to non-random distributions around 
quarter moons). Others, however, do not find evidence for a sig-
nificant correlation, such as a study by Waldhoer and colleagues 
on around 2.5 mio births in Austria between 1970 and 1999 (71). 
One way to interpret these inconsistencies is that there is no real 
influence of the moon on human births, that earlier studies are to 
be dismissed as outliers, and/or that their methodology underes-
timated false positive rates (67, 71). On the other hand, it is worth 
to consider that there could also be anthropogenic factors that 
introduce biases, especially in more modern datasets. Menaker 
and Menaker already commented that they excluded data from 
private clinics, because they displayed obvious drops in births 
correlating with weekends (especially Sundays). The authors 
attributed this to the reduced inclination of private doctors to 
come in on these days (68). Medical development over the follow-
ing decades introduced various ways in which deliveries could 
be artificially induced, for instance, by oxytocin or prostaglandin 
treatment, or amniotomy. Moreover, the frequency of caesarian 
sections has increased in many countries, now ranging around 
30% in the US, Germany, or Austria, and even higher rates in 
middle and South America, peaking at more than 50% in Brazil 
(72). Obviously, any of these techniques offers the possibility 
to induce birth before the natural date and therefore represent 
factors that would obscure any small effect on natural birth dates 
caused by the moon at modern times. Of note, both of the more 
recent studies report a significant drop of birth rates on weekends 
in their respective datasets (70, 71).

Possible Lunar effects on Mental Health 
and Sleep, and the Role of Artificial 
Nocturnal Light
Another area that has attracted significant interest is the question 
if the lunar cycle has any impact on mental state of humans. A 
connection between the moon and mental health is deeply rooted 
in etymology: the Latin word for moon (luna) is contained in the 
German word “Laune” (=mood); likewise, the Oxford Dictionary 
explains that the old Latin word “lunaticus” gave rise to French 
“lunatique” or English “lunatic,” with the word “monseoc” 
(“moon-sick”) representing an old English equivalent to this 
term. All of these terms relate to the concept that certain persons 
exhibit periodic phases of mental illness or mood swings, with 
the earliest use likely relating to epileptic episodes (73, 74). The 
question is if the link to the moon represents a mere analogy or 
mythological connection, or if it reflects a—direct or indirect—
influence of the moon on mental states.

Different authors have provided alternative explanations for 
the origin of this connection, and on the role nocturnal light 
might play in that context: one line of arguments is that in the 
pre-industrialized world, moonlit nights—especially the three 
days surrounding full moon—provided a natural opportunity to 
perform work, hunt, or travel (73), and that these nights therefore 
led to a decrease in human night sleep around the full moon until 
around 200 years ago. As reduced sleep is a common parameter 
in conditions causing mania in patients with bipolar disorder (75) 
and can also increase the chance of epileptic seizures (76, 77), 

such monthly recurring phases of reduced sleep might form the 
factual core of the popular association between the lunar phase 
and mental health (67, 73). Following this line of reasoning, 
the advent of artificial illumination ended the dependence of 
humans on moon light as an exclusive nocturnal light source, 
thereby causing more stable sleep–wake patterns, and dissolving 
any apparent lunar periodicity in mental illnesses. In line with 
this, modern studies do not find a connection between epileptic 
seizures and the full moon (78).

While this explanation emphasizes the secondary nature of 
sleep deprivation (as a consequence of a cultural habit to work 
on moonlit nights), other authors suggest that the lunar cycle 
itself has a relevant effect on sleep, thereby reflecting a more direct 
impact of the moon on human physiology. Whereas this issue 
still remains controversial, two concepts need to be distinguished. 
On the one hand, the lunar cycle—for instance, the difference in 
light intensity—might directly impact on sleep parameters. This 
is, for instance, consistent with a large study on children in 12 
different countries whose activity patterns were monitored by 
accelerometers. This study reported a significant shortening of 
sleep around full moon by about 5 min (79). The children in this 
study were monitored remotely in their home environments, and 
thereby could have been exposed to moonlight in their bedrooms.

Most studies on that subject, however, result from sleep labo-
ratories, in which external light sources like moonlight were sys-
tematically excluded. Surprisingly, even under such conditions, 
effects of the lunar cycle on human sleep have been reported: 
Cajochen et al. reported a correlation between human sleep quality 
and the state of the moon in a dataset comprising sleep recordings 
from 33 subjects, with deep sleep patterns (−30%) and total sleep 
time (−20  min) being significantly reduced around full moon 
(80). As the authors emphasized, the analysis was performed only 
post hoc, such that neither the subjects nor the scientists involved 
in the original experiments could have been biased. Independent 
studies also arrived at the conclusion that the lunar phase affected 
sleep, while differing in the detail: consistent with the study by 
Cajochen et al., Smith et al. reported a reduction of total sleep 
time during full moon in a study focusing on 47 volunteers, but 
reported that this overall effect was driven by the sleep patterns of 
men (−50 min), pointing at possible differences in sex, at least for 
young subjects (see below). By contrast, Turányi and colleagues, 
focusing on patients with sleep disorders, reported a stronger 
effect on women (81). Likewise, a study by Della Monica et al. on 
205 healthy subjects, arrived at the conclusion that women had a 
significantly reduced total sleep time during full moon, whereas 
men in this study showed even an increase, such that the net effect 
(irrespective of sex) was not significant (82). The interpretation 
of differences in these studies varies: some take them as evidence 
that effects of the lunar phase on sleep exist, but may vary depend-
ing on sex or age. For instance, women in the Della Monica study 
were primarily postmenopausal, whereas in the study by Smith 
et al., the individuals were on average 23 years old (82, 83). Such 
differences could also explain why significant net effects were not 
observed in a re-analysis of three large sleep datasets (covering 
together more than 2,000 individuals, not separated by sex) by 
Cordi and colleagues (84). Conversely, as for the discussion of 
human birth rates, the argument has been made that smaller 
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datasets might produce significant correlations merely by chance, 
and that non-significant results are unlikely to be published, 
generating a confirmation bias in the published—and publishable 
record—on that matter (82, 84).

Adding to this discussion, the third possibility also exists: if 
one accepts the idea that endogenous circalunar clocks could 
also exist in humans (see below), and that they impacted on 
sleep structure, it would currently be completely unclear if the 
subjects in either of the mentioned studies were likely to have 
synchronized oscillations or if these oscillations were offset 
between individuals. For instance, if nocturnal light played a 
role in adjusting an individual’s circalunar clock—as evident for 
several of the marine species discussed earlier—changes in the 
availability and spectrum of nocturnal light could easily impact 
on the phase of such a clock. Remarkably, artificial light sources 
have begun to dramatically change the natural fluctuations of 
light conditions that organisms have experienced during their 
evolution (52) and are changing both the spectrum and intensity 
of nocturnal light, with local increases in intensities of up to 20% 
per year (85). A comparison of illuminance levels shows that 
recommended levels for room lights, as well as the illuminance 
from traffic or mobile phones, far exceed the illuminance even of 
a bright full moon (Figure 2). Moreover, the spectral composition 
of artificial light sources can strongly deviate from sun or moon 
light, and blue components in artificial lighting are already known 
to affect melatonin production and animal circadian clocks, even 
though the natural entrainment stimulus for these is orders of 
magnitude more intense (Figure 2). Given these considerations, 
it is clear that the impact of artificial lights on biological clocks 
or rhythms responsive to moonlight levels could be even more 
dramatic. In turn, this makes the identification of physiological 
effects of moonlight on human subjects inherently difficult at 
modern times.

Whereas the majority of the discussed arguments consid-
ers moonlight as the most likely cue that impacts on animal 
physiology—either directly or via circalunar clocks—a recent 
publication by Wehr (86) argues in favor of another possibil-
ity. By analyzing a set of longitudinal studies (up to 7  years) 
in patients with bipolar disorder, the author found evidence 
that episodes of rapid switches between mental states (mania 
to depression or vice  versa) did not occur randomly. Rather, 
these episodes—as well as some pronounced switches in their  
frequency—were coupled to gravitational cycles of the moon. 
For example, when the author compared the mood cycles 
of patients with the 14.8-day cycle that characterizes the re-
occurrence of the axis of moon, sun, and earth (spring-neap 
tidal cycle), these cycles had particular phase relationships. 
In some patients, a complete mood cycle (e.g., depression—
mania—depression) occurred every two biweekly lunar cycles 
(i.e., every lunar month, 29.5 days). In other cases, there seemed 
to be a resonance between one mood cycle and three biweekly 
lunar cycles (44.3  days), or other integer relationships (86). 
Moreover, when the author assessed when switches in these 
periodic relationships occurred (for instance, major shifts in 
frequency from shorter mood cycles to longer mood cycles), 
these repeatedly coincided with the 206-day recurrence of the 
perigee-syzygy constellation of the Earth–Moon–Sun system 

(“supermoon”) which is marked by the coincidence of a full 
moon with the closest proximity of the moon on its elliptical 
orbit around the earth. While these constellations also represent 
an increase in full moon illuminance by about 30%—a factor 
that ought to be taken into account by studies on moon light 
effects as well (87)—the favored interpretation by the author 
is that the coincidence with mood switches in the patients is 
caused by some gravitational influence, even though the nature 
of this effect would currently remain unclear (86).

Circalunar Clocks in Mammals
In summary, the above examples illustrate that there are various 
indications for an influence of the moon on the physiology of 
humans and other mammals, and point toward aspects that 
require more detailed analyses. As to humans, several authors 
have emphasized the need for more extensive longitudinal stud-
ies that could better resolve inter-individual differences [see, e.g., 
Ref. (82)]. Likewise, light pollution will need to be taken into con-
sideration for both human and animal studies, especially as this 
phenomenon is increasing on a global scale (85), not only affect-
ing terrestrial but also marine environments (88). As pointed out, 
light pollution is at least a potential caveat when scientists dismiss 
early studies on circalunar rhythms or clock phenomena based 
on more recent studies—which is not to say that older analyses 
could not have failed.

Controversies about the extent of lunar influence, however, 
should not distract from another physiological phenomenon 
that is worth emphasizing at the end of this review: primates 
including humans clearly possess hormonal cycles with monthly 
periodicity, indicating that there must be timekeeping mecha-
nisms in humans as well as other mammals that are able to run 
with a roughly monthly period. The most prominent cycle is the 
menstrual cycle of women who has been determined to cycle 
almost precisely with a lunar monthly period (29.5  days) (68). 
Recent data from human males who were kept isolated in a highly 
controlled environment indicates that such hormonal cycles are 
not limited to females, but can occur in males as well (89), argu-
ing that the respective timing mechanisms are general properties 
of human biology. Also outside primates, estrous cycles with a 
period length of around a month exist. For instance, the estrous 
cycle of badgers—mentioned above for the role of the lunar phase 
on the animals’ conception dates—has been reported to take 
approximately one lunar month (90).

Of course, any of these correlations might be coincidence. 
But one alternative speculation is that such cycles could also 
be the remnants of an ancient situation where clocks with a 
monthly period were indeed synchronized by external factors 
(such as gravity or nocturnal light). A likely scenario then was 
that the relevance of that synchronization was secondarily  
diminished—for instance, by a shift in selective pressure that 
reduced the advantage of a synchronized reproductive window. As 
a consequence, the endogenous clocks might subsequently have 
been uncoupled from their respective entrainment mechanisms, 
while still persisting as oscillators that structure the timing of 
mammalian physiology. This scenario does not exclude that there 
could be a remnant capacity of hormonal cycles to be entrained 
by nocturnal light, as has been suggested by some experiments for 
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the human estrous cycle [reviewed in Ref. (20)]. But rather than 
putting emphasis on such remnant capacities, this hypothesis 
would make the prediction that the actual timing mechanisms 
between mammals and non-mammalian animals with circalunar 
clocks share ancient commonalities.
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Annual cycles of physiology and behavior are highly prevalent in organisms inhabiting 
temperate and polar regions. Examples in mammals include changes in appetite and 
body fat composition, hibernation and torpor, growth of antlers, pelage and horns, and 
seasonal reproduction. The timing of these seasonal cycles reflects an interaction of 
changing environmental signals, such as daylength, and intrinsic rhythmic processes: 
circannual clocks. As neuroendocrine signals underlie these rhythmic processes, the 
focus of most mechanistic studies has been on neuronal systems in the hypothalamus. 
Recent studies also implicate the pituitary stalk (pars tuberalis) and hypothalamic tany-
cytes as key pathways in seasonal timing. The pars tuberalis expresses a high density 
of melatonin receptors, so is highly responsive to changes in the nocturnal secretion 
of melatonin from the pineal gland as photoperiod changes across the year. The pars 
tuberalis in turn regulates tanycyte function in the adjacent hypothalamus via paracrine 
signals. Tanycytes are radial glial cells that persist into adulthood and function as a stem 
cell niche. Their cell soma are embedded in the ependymal lining of the third ventricle, 
and they also send elaborate projections through the arcuate nucleus, many of which 
terminate on capillaries in the median eminence. This anatomy underlies their function 
as sensors of nutrients in the circulation, and as regulators of transport of hormones and 
metabolites into the hypothalamus. In situ hybridization studies reveal robust seasonal 
changes in gene expression in tanycytes, for example, those controlling transport and 
metabolism of thyroid hormone and retinoic acid. These hormonal signals play a key role 
in the initial development of the brain, and experimental manipulation of thyroid hormone 
availability in the adult hypothalamus can accelerate or block seasonal cyclicity in sheep 
and Siberian hamsters. We hypothesize that seasonal rhythms depends upon reuse 
of developmental mechanisms in the adult hypothalamus and that tanycytes are key 
orchestrators of these processes.

Keywords: tanycyte, season, photoperiod, neuroendocrinology, stem cells

inTRODUCTiOn

Investigation of the central mechanisms underlying seasonal cycles in energy balance has provided 
new insights into the fundamental control systems of appetite and energy expenditure in the brain. 
Homeostatic mechanisms governing the short-term control of energy balance, for example, the tim-
ing of meals and the response to acute fasting, have been extensively studied in laboratory animal 
models. This body of work has given us great insight into the autonomic and endocrine signals 
emanating from the gastrointestinal tract and white adipose tissue that communicate to integrative 
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FigURe 1 | immunohistochemical identification of tanycytes in 
coronal sections through the mediobasal hypothalamus of a Siberian 
hamster. Polyclonal rabbit antisera detect glial fibrillary acidic protein, or the 
intermediate filaments nestin or vimentin. Sections are also stained with a 
goat polyclonal directed against the melatonin-related receptor GPR50. Scale 
bars = 75 μm. Image from Fowler and Ebling, University of Nottingham.

FigURe 2 | Schematic summary of photoperiod-induced changes in 
gene expression in tanycytes in Siberian hamsters exposed to long 
summer photoperiods (LD) or short winter photoperiods (SD). dio2, 
deiodinase 2; nmu-2, neuromedin 2; gpr50, G-protein-coupled receptor 50 
(=melatonin-related receptor); oatp1c1, organic anion transporter 1C1; 
rarres2, chemerin; glast, glutamate transporter; gs, glutamine synthetase; 
raldh1, retinaldehyde dehydrogenase; stra6, retinol transport protein 
stimulated by retinoic acid gene 6 homolog; ttr, transthyretin; crbp-1, cellular 
retinol binding protein; crabp-2, cellular retinoic acid binding protein-2; rar/rxr, 
retinoic acid and rexinoid receptors; nestin, type VI intermediate filament 
nestin; dio3, deiodinase 3; mct8, monocarboxylate transporter 8; vimentin, 
type III intermediate filament vimentin; gp, glycogen phosphorylase; pfk-c, 
phophofructokinase C.
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centers of the hypothalamus and brainstem (1). However, the 
evidence that changes in homeostatic gene expression underlie 
long-term season cycles in energy balance is very limited (2, 3). 
In seasonal mammals, rheostatic mechanisms that govern the 
long-term control of energy balance reflect a higher order set of 
processes controlling the neuroendocrine system (4). A key ele-
ment of this rheostatic system comprises hypothalamic tanycytes 
(Figure 1). These are radial glial cells whose cell soma in embed-
ded in the ependymal lining of the third ventricle (Figure  1). 
They possess elaborate projections that communicate with 
hypothalamic nuclei implicated in energy balance (5). Subtypes 
of tanycyte have been identified on the basis of their location 
and their proximity to hypothalamic nuclei: α1 and α2 tanycytes 
appose the dorsomedial and ventromedial nuclei, whereas β1 and 
β2 tanycytes border the arcuate nucleus and median eminence. 
Interestingly, β2 tanycytes differ from the other subtypes as they 
have direct access to circulating plasma (6). These tanycytes in 
the ventral region of the third ventricle are uniquely fenestrated 
and selectively permeable, allowing passive and active transport 
of molecules from the circulating blood supply in the median 
eminence into the cerebroventricular fluid in the third ventricle 
(7). While there is conflicting evidence for homeostatic-induced 

gene expression changes in tanycytes, there is consistent evidence 
between studies and species for seasonal/photoperiodic-induced 
changes in gene expression (Figure  2). In particular, tanycytes 
have been identified as key determinants of long-term seasonal 
changes in ingestive behavior and energy metabolism through 
their role in transport and regulation of thyroid hormone avail-
ability in the hypothalamus (8). The aim of this review is to sum-
marize our current understanding of tanycyte biology and outline 
their key roles in nutrient and hormone sensing, and in directing 
neuroplasticity, and thereby regulating hypothalamic control of 
energy metabolism.

HYPOTHALAMiC TAnYCYTeS AS 
MeDiATORS OF eneRgY HOMeOSTASiS

The blood–brain barrier (BBB) is a feature of the cerebral vascu-
lature that restricts and regulates access of molecules to the brain, 
and therefore acts as a gatekeeper to the hypothalamic nuclei and 
beyond (9–11). However, despite the prominence of tanycytes 
within the ependymal layer of the third ventricle and their 
expression of a wide range of hormone receptors and nutrient 
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sensors, their role in energy homeostasis is hotly debated. Early 
studies on tanycytes focused upon their barrier function (6). In 
response to food deprivation and a resulting fall in blood glucose, 
tanycytes undergo morphological changes and increase vascular 
permeability via enhanced secretion of VEGF-A (10). These 
reversible morphological alterations at the BBB suggest that 
nutritional state modulates the access of metabolic signals via 
tanycytes from the periphery to hypothalamic nuclei critical for 
energy homeostasis. However, the role of tanycytes as mediators 
of energy homeostasis extends beyond the morphological to the 
adaptive homeostatic and neuroendocrine.

In response to a fast, the hypothalamus–pituitary–thyroid 
(HPT) axis is downregulated through a reduction of thyrotropin-
releasing hormone (TRH) synthesis in the paraventricular nucleus 
(PVN). The neurons of the PVN project to the median eminence 
and the terminals are in close proximity to the projections of β2 
tanycytes. These cells express pyroglutamyl peptidase II (PPII), 
an ectopeptidase that hydrolyzes TRH, and thus controls the 
amount of TRH available to cause thyroid-stimulating hormone 
(TSH) synthesis and secretion in the anterior pituitary. In situ 
hybridization studies demonstrated that PPII and deiodinase 2 
(DIO2) were increased in tanycytes following a fast (12). DIO2 
removes an outer ring iodine atom, so converts the inactive form 
of thyroid hormone (thyroxine; T4) into the biologically active 
form triiodothyronine (T3). This is a common theme in tany-
cyte biology. Interestingly, increased DIO2 activity in tanycytes 
suppresses TRH secretion from the PVN via the local increase 
in T3 availability in the hypothalamus, and subsequent studies 
demonstrated that DIO2 in tanycytes is essential for regulation 
of the HPT axis (13–15).

An intriguing feature of tanycyte biology is that these cells are 
also activated by signals emanating from the adjacent pars tuber-
alis in the pituitary stalk. For example, TSH receptors located in 
tanycytes are activated by TSHβ produced in the pars tuberalis. 
This signal is transduced via both activation of adenylate cyclase 
and phosphorylation of extracellular signal-regulated kinases 
(ERK1/2), resulting in increases in DIO2 mRNA expression (16). 
In addition to fasting, overnutrition results in changes in tany-
cyte biology; ghrelin uptake/transport is attenuated following 
neonatal overfeeding (by reducing litter size) in the mouse (17). 
The lipopolysaccharide-induced cytokine upregulation of DIO2 
expression in tanycytes and the stimulatory actions of pituitary 
adenylate cyclase-activating polypeptide both occur via increased 
intracellular cAMP and the NF-κB pathway (18, 19).

Interestingly, tanycytes express the insulin-independent 
glucose transporters GLUT1 and GLUT2, and also glucokinase. 
Indeed, in hypothalamic slice cultures, tanycytes respond to 
exogenously administered glucose, which stimulates Ca2+ ion 
fluxes and ATP release; effects that are then propagated across 
neighboring cells (20). This is further evidence that they func-
tion as nutrient sensors (21, 22). Furthermore, tanycytes express 
a number of enzymes involved in lipid metabolism, and mono-
carboxylate transporters, a family of transporters that mediate 
the facilitated diffusion of lactate, pyruvate, and ketone bodies. 
This suggests further possible mechanisms, whereby tanycytes 
mediate neuronal responses in the hypothalamus to changes in 
peripheral carbohydrate and fat metabolism (23, 24). Recently, a 

metabolic link between tanycytes and astrocytes, likely to impact 
hypothalamic lipid sensing, has been suggested (25). In addition, 
in leptin receptor deficient mice (db/db) and in mice treated with 
a leptin antagonist, leptin accumulates in the median eminence 
but fails to appear in the mediobasal hypothalamus, providing 
evidence that leptin’s signaling cascade begins in tanycytes in the 
median eminence, and then transitions to hypothalamic nuclei 
and neurons (26).

Further evidence supporting the neuroendocrine roles of 
tanycytes is provided by a series of experiments that targeted the 
fibroblast growth factor receptor 1 c isoform (FGFR1c). It was pre-
viously shown that antibody-mediated targeting of the FGFR1c 
receptor reduced body weight, adiposity, and insulin resistance in 
animal models of obesity and type II diabetes (27–29). Subsequent 
in situ hybridization studies in the Siberian hamster revealed a 
high level expression of the FGFR1c in tanycytes, consistent with 
previous qPCR studies in the mouse (30, 31). Targeting of the 
FGFR1c in the long day (LD) obese Siberian hamster peripherally 
and centrally via intracerebroventicular infusion of a monoclonal 
FGFR1c antibody reduced food intake and body weight, which 
was associated with a decrease in expression of DIO2 in the 
ependymal cell layer containing tanycytes (31). This further sup-
ports the hypothesis that tanycytes are an important component 
of the mechanism by which the hypothalamus integrates central 
and peripheral signals to regulate energy homeostasis. It also 
highlights a potential role in seasonal metabolic cycles, as the 
response to tanycyte manipulation was attenuated in short-day 
(SD) lean animals.

HYPOTHALAMiC TAnYCYTeS AS 
MeDiATORS OF SeASOnAL CYCLeS

In response to seasonal changes in daylength, mammals such as 
the Siberian hamster and the F344 strain of photoperiodic rat 
undergo substantive behavioral and physiological adaptations, for 
example, in body composition, growth, and reproductive activity 
(32, 33). The retina is crucial to such adaptations; for example, optic 
nerve transection or bilateral enucleation prevents the synchro-
nicity of seasonal reproduction (34, 35). Photoneuroendocrine 
pathways, where retinal information is conveyed to the suprachi-
asmatic nucleus, are well characterized, as is the neurochemical 
index provided by the secretion of melatonin by the pineal gland 
in response to changes in daylength (36). More recently, we have 
begun to appreciate the role and importance of the pars tuberalis, 
part of the pituitary stalk that contains a high density of mela-
tonin receptors in all seasonal mammals and communicates to 
adjacent tanycytes in the hypothalamus (37). Emerging evidence 
suggests that tanycytes are an integral part of the mechanism that 
facilitates seasonal physiology and behavior in seasonal mam-
mals. In addition to melatonin-regulated changes in secretion of 
paracrine factors including TSHβ and neuromedin U (NMU), 
this region undergoes structural changes in response to chang-
ing photoperiod, particularly in the thyrotrophs, which produce 
TSH (38–40). One consequence of this is that a significantly lower 
percentage of cells display exocytotic activity in SD, supporting 
the hypothesis that the pars tuberalis functions as an interface 
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between photoperiodic stimuli and the endocrine system (41). 
Furthermore, the regulation of thyrotrophs is a melatonin-
dependent process; pinealectomy blocks the SD-induced down-
regulation of TSHβ production, and treatment with melatonin 
can mimic the actions of SD (42, 43). As noted above, the TSHβ 
subunit has been shown to signal to tanycytes, and studies on the 
Syrian hamster, photoperiodic rat, and sheep have revealed that 
tanycytes express the TSH receptor, while local infusion of TSHβ 
into the third ventricle upregulates DIO2 in these glial cells (44, 
45). It is of note that in juvenile photoperiodic rats, TSHβ also 
downregulates deiodinase 3 (DIO3) expression in the ependymal 
cell layer (44).

DIO3 is an enzyme in the tanycyte cell layer that opposes the 
action of DIO2, as it removes an inner ring iodine, and therefore 
deiodinates T4 into reverse T3, which is biologically inactive. 
Furthermore, it deiodinates T3 into the inactive metabolite di-
iodothyronine (T2). In the adult Siberian hamster, rather than a 
LD-induced upregulation of DIO2 (Figure 2) that increases the 
local availability of T3, DIO3 is upregulated in response to SD 
(Figure 2), inactivating T3 or converting the precursor to T2 (32). 
This phenomenon is not limited to the Siberian hamster, it is also 
seen in male sheep exposed to SD for 14 weeks (46). It is predicted 
that the enhanced expression of DIO3 would have the same effect 
on local thyroid hormone availability in the hypothalamus as the 
downregulation of DIO2 observed in most other photoperiodic 
species (32). The biological significance of this predicted change 
in hypothalamic T3 concentrations was directly tested in the 
Siberian hamster by surgically inserting micro T3 implants into 
the hypothalamus, and exposing hamsters to changes in photo-
period. Such implants blocked the SD-induced weight loss and 
catabolism of fat depots and prevented SD-induced testicular 
regression (8). Correspondingly, T3-releasing implants stimu-
lated appetite and induced body weight gain and reproductive 
recrudescence when placed in hamsters previously exposed to 
SD (47). The T3 microimplants blocked the SD-induced increase 
in VGF expression in the dorsomedial posterior arcuate nucleus, 
a potential regulator of seasonal changes in appetite and energy 
expenditure (8).

In addition to the clear effects of TSHβ derived from the 
pars tuberalis on deiodinase gene expression in tanycytes, other 
paracrine mechanisms may also be important in the regulation 
of deiodinases and tanycyte function. For example, ICV infu-
sion of NMU decreases food intake and in obese mouse models 
increases physical activity, energy expenditure, and thermogen-
esis. Furthermore, NMU−/− mice exhibit hyperphagia, increased 
body weight, and reduced energy expenditure. The actions of 
NMU are conferred by the NMU-2 receptor (48). Interestingly in 
photoperiodic rats in LD, NMU gene expression is upregulated 
in the pars tuberalis, while its receptor is upregulated in tanycytes 
(44, 49). It was subsequently shown that local infusion of NMU 
into the third ventricle of photoperiodic rats held in SD upregu-
lated DIO2, thus mimicking the LD state (44). Similarly, the 
GPR50 receptor, which is homologous to the melatonin receptor 
MT1 but does not bind melatonin, is expressed in tanycytes 
(Figure  1) and has been implicated in adaptive thermogenesis 
and torpor (50). GPR50-null mice are resistant to diet-induced 
obesity; however, when fasted, they more readily enter a state 

of torpor. These effects appear to be mediated through TRH, as 
entry into torpor is reversed by treatment with TRH receptor 
agonists (51, 52). In the Siberian hamster exposed to SD, GPR50 
expression is significantly reduced in tanycytes (Figure 2); this 
may contribute to bouts of adaptative thermogenesis, torpor, and 
more broadly energy balance (53). In response to SD, the thyroid 
hormone transporter monocarboxylate 8 (MCT8) is increased 
in tanycytes in the Siberian hamster, while fasting reversed this 
effect, further evidence supporting the role of thyroid hormone 
and tanycytes in the photoperiodic regulation of seasonal biol-
ogy (54). Additionally, the thyroid hormone transporter organic 
anion transporter family member 1C1 (Oatp1c1) is photo-
periodically regulated in tanycytes so potentially contributes to 
seasonal alterations in thyroid hormone transport [Figure  2; 
(55)]. Interestingly, the lactate (MCT2) and glutamate (GLAST) 
transporters, as well as glutamine synthetase, are reduced in 
tanycytes during SD (Figure 2), suggesting glutamate uptake and 
production of glutamine are diminished. Furthermore, glycogen 
phosphorylase and phosphofructokinase-C, rate-limiting steps in 
the metabolism of glycogen to glucose, are increased in tanycytes 
during SD [Figure 2; (56)].

Interestingly, T3 rapidly induces the RA-synthesizing enzyme 
retinaldehyde dehydrogenase 1 (RALDH1) in tanycytes (57). 
In photoperiodic rats, RALDH1 and -2 expression is reduced 
in SD, while the retinol transport protein stimulated by reti-
noic acid gene 6 homolog (STRA6) is reduced by SD (58, 59). 
Furthermore, expression of transthyretin (TTR), a common 
transporter for vitamin A and its metabolite retinoic acid, is 
downregulated under SD in the tanycytes of photoperiodic rats, 
while cellular retinoic acid binding protein (CRBP1), a retinoic 
acid transport protein, is downregulated in SD photoperiods in 
tanycytes in Siberian hamsters. The latter effects are reversed by 
pinealectomy, which suggests that the mechanism is dependent 
upon melatonin (53). Furthermore, cellular retinoic acid binding 
protein-2 (CRABP-2) and members of the nuclear retinoic acid 
receptor and retinoid X receptor families are reduced in response 
to SD in the Siberian hamster (53, 60). Interestingly, retinoic acid 
regulates the ability of tanycytes to proliferate and generate new 
cells in the hypothalamus highlighting another possible role for 
tanycytes (5).

HYPOTHALAMiC TAnYCYTeS AS A STeM 
CeLL niCHe

A number of studies support the existence of hypothalamic stem 
cells capable of generating new neurons in a variety of species. 
However, the location and identity are hotly disputed. Recent 
in vitro and in vivo studies have suggested that they are located 
within the mediobasal hypothalamus parenchyma and could 
represente NG2-expressing oligodendrocyte progenitor cells (61, 
62). Contrasting studies have suggested that subpopulations of 
tanycytes constitute the source (63–66). This in itself, however, 
is controversial as both α- and β-tanycytes have been identified 
as the possible neurogenic niche, as well as a possible role for 
insulin-like growth factor (63, 65, 67). Interestingly, in one study, 
exposure of mice to a high fat diet depleted numbers of putative 
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hypothalamic stem cells, which was associated with impaired 
glucose tolerance and subsequent obesity (68). However, rather 
contradictory results were reported in the study that demonstrated 
increased numbers of cells labeled with the thymidine analog 
BrdU in the hypothalamic ventricular zone in mice maintained 
on a high fat diet (64). Furthermore, in the latter study, focused 
irradiation of the hypothalamus inhibited cell division that was 
associated with reduced body weight gain on a high fat diet, 
suggesting that new cells produced in the hypothalamus might 
have an anabolic function (64). More recently, increased ciliary 
neurotrophic factor signaling was detected in tanycytes close to 
the median eminence in obese mice on high fat diet, further sup-
porting the hypothesis that positive energy balance is associated 
with enhanced hypothalamic neurogenesis (69).

In addition to high fat diet, photoperiodic stimuli regulates 
cell division in the adult hypothalamus. Exposure to SD increased 
vimentin labeling in hypothalamic tanycytes of sheep and 
increased numbers of BrdU-positive cells in the sheep hypo-
thalamus, though a substantive proportion of these expressed 
a microglia marker so were not destined to become neuronal 
(70, 71). Following the transition from LD to SD, an increase in 
cellular proliferation is apparent in the hypothalamus of Syrian 
hamsters; in the Siberian hamster, the intermediate filament 
protein, and neural stem cell marker nestin is downregulated 
during SD (53, 72). Further studies are clearly required to deter-
mine whether the reported seasonal changes in BrdU uptake or 
expression of cell cycle markers such as Ki67 truly reflect altered 
neurogenesis, or whether new cells integrate into functional 
circuits in the hypothalamus. However, given the evidence above 
regarding photoperiod-induced changes in thyroid hormone 
availability in the hypothalamus, and the extensive evidence that 
the thyroid hormone system is implicated in neural division and 
differentiation, it seems very likely that plasticity of cell division 
and connectivity in the hypothalamus will be identified as a core 
feature of seasonal cycles (73, 74). Finally, it has been observed 
that the ability of tanycytes to proliferate postnatally declines with 
age: incorporation of the S-phase marker BrdU in β-tanycytes 

deteriorates between P7 and P45, while no incorporation is 
seen by 12 months of age (63). Furthermore, tanycyte numbers 
declines by almost 30% with increasing age as well as inducing 
significant morphological and anatomical changes; processes 
become thicker and disorganized in the pericapillary zone, with a 
loss of perpendicular orientation (75). This poses further tantaliz-
ing questions regards their metabolic role in relation to aging, and 
whether seasonal cycles might be considered as arrested or even 
reversible aging.

COnCLUSiOn

Identifying the mechanisms by which mammals naturally 
regulate appetite and body composition across the year should 
provide insights into how long-term improvements in metabolic 
health could be promoted in man. Tanycytes are the only cell 
type in the hypothalamus that shows major changes in gene 
expression across a seasonal cycle, so are a likely regulator of 
long-term changes in energy balance. Tanycytes have a privileged 
position as a nutrient and hormone sensor with projections to the 
metabolic brain, and potentially function as a neural stem cell 
niche, highlighting a number of mechanisms that could influence 
energy intake and expenditure in the long term. Experimental 
studies in the hamster have already confirmed that changes in 
thyroid hormone processing by tanycytes are part of this seasonal 
programming of the hypothalamus.
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There is long-standing evidence for rhythms in locomotor activity, as well as various 
other aspects of physiology, with periods substantially shorter than 24 h in organisms 
ranging from fruit flies to humans. These ultradian oscillations, whose periods frequently 
fall between 2 and 6 h, are normally well integrated with circadian rhythms; however, 
they often lack the period stability and expression robustness of the latter. An adap-
tive advantage of ultradian rhythms has been clearly demonstrated for the common 
vole, suggesting that they may have evolved to confer social synchrony. The cellular 
substrate and mechanism of ultradian rhythm generation have remained elusive so 
far, however recent findings—the subject of this review—now indicate that ultradian 
locomotor rhythms rely on an oscillator based on dopamine, dubbed the dopaminergic 
ultradian oscillator (DUO). These findings also reveal that the DUO period can be length-
ened from <4 to >48 h by methamphetamine treatment, suggesting that the previously 
described methamphetamine-sensitive (circadian) oscillator represents a long-period 
manifestation of the DUO.

Keywords: dopaminergic ultradian oscillator, biological rhythms, circadian clock, dopamine transporter, 
rest:activity

inTRODUCTiOn

Many species on earth have evolved a self-sustaining timing system, likely to facilitate robust 
24-h rhythms in physiology and behavior despite non-24-h variations in the environment. This 
timing system, the circadian clock, has been studied in detail over the past decades, uncovering 
its cellular and molecular basis (1, 2). In addition to 24-h variations, there are also numerous 
accounts of cyclic changes in physiology and behavior with periods much shorter than 24 h, i.e., in 
the ultradian range. Ultradian rhythms with periods of 2–6 h have been reported in the context of 
locomotion, sleep, feeding, body temperature, and serum hormones levels, in species from the fruit 
fly to humans (3–13). However, in sharp contrast to circadian rhythms, the biological substrate  
and mechanistic basis of ultradian rhythm generation has remained elusive.

Ultradian Behavior in voles and Mice: Hourglass vs. Oscillator
While ultradian range rhythms are often found to be labile when compared to circadian/diurnal 
rhythms (14, 15), a particular overt and robust expression of ultradian behavior is exhibited by the 
common vole (Microtus arvalis) (Figure 1A) (5). This is thought to be due to evolutionary pres-
sures resulting in the emergence of synchronous ultradian day time foraging as a strategy to reduce 
predation risk: by emerging from the burrows during the daytime every 2–3 h in synchrony, the  
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voles are less likely to fall prey to a kestrel (5). Ultradian rhythm 
expression does not require the circadian timer as rhythms persist 
in the vole after lesioning of the suprachiasmatic nucleus (SCN), 
the central circadian pacemaker site (16). While such ultradian 
behavior could be the output of a discrete rhythm generator, it 
may as well be driven by physiological demand, such as energy 
depletion or sleep debt. However, food, water, or sleep depriva-
tion does not affect ultradian locomotor activity (LA) of the vole 
in substantial ways (5, 17). For instance, if—in the laboratory 

cage setting—food access is blocked, the voles still engage the 
food access bar at the same ultradian period as under conditions 
of ad libitum food access (17). Equally, forced lengthening of the 
active phase by rest deprivation does not lead to a proportional 
increase in subsequent rest time, which consequentially would 
result in ultradian period lengthening (17). It appears instead 
that sleep rebound is facilitated by an increased rest:activity 
ratio within a given ultradian cycle, instead of changing the 
cycle length per  se. Taken together, these data argue against a 
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role of behavioral output to define or regulate ultradian period 
but favor an endogenously generated, self-sustained oscillatory 
process that does not require a “driver,” as would be the case if 
the ultradian rhythmicity is based on an hourglass mechanism 
(18, 19).

In contrast to voles, ultradian components in LA are less overt 
but still detectable in circadian intact laboratory mice, exhibiting 
periods of 3–5 h (7, 20) (Figure 1C). Elimination of the master 
circadian pacemaker by SCN lesion or genetic manipulation 
renders them readily observable, however, murine ultradian 
locomotor rhythms are typically less robust compared to the 
vole, exhibiting a wider frequency range with substantial inter- 
but also intra-animal variation (20–22).

Ultradian Activity in Humans
Overt ultradian behavior has been also reported for human 
infants (8, 23–25). Activity recordings based on ankle-actigraphy 
revealed clear ultradian rhythmicity in preterm infants regard-
less of whether they were exposed to constant dim light or a 
24 h light:dark (LD) cycle (Figure 1B) (23). While the periodic 
activity bouts could potentially result from rhythmic interfer-
ence by nursing staff, sleep diary recordings of term infants by 
mothers who breastfed at the infant’s will also revealed ultradian 
patterns in feeding and sleep (25). Of note, these ultradian pat-
terns within the first few months of postnatal life were observed 
in the majority of the infants tested. These reports also suggest 
that—in humans—the circadian and/or diurnal control of 
sleep:wake rhythmicity only establishes over the course of weeks 
to months postnatally, thereby permitting an “unobstructed” 
view on ultradian rhythms in the 2–6 h range during this early 
postnatal period. The actigraphy and sleep diary data suggest 
that once the circadian and/or diurnal control of sleep:wake is 
established, both the ultradian and 24-h rhythmic components 
integrate in a harmonic fashion (see, e.g., Figure  1B, bottom 
half of the record) (8). The resulting compound pattern that is 
distinctly observable in some cases supports the idea that an 
ultradian rhythm generator has perhaps evolved or has been 
evolutionary adopted to promote social synchrony in gregari-
ous species, precipitating for instance a frequency of three major 
meals per day, which seems to dominate the temporal structure 
of human food intake.

A CASe FOR A DOPAMineRgiC 
OSCiLLATOR DRiving ULTRADiAn 
BeHAviOR

Monoamines and the Ascending  
Arousal Pathway
The monoamines histamine, norepinephrine, serotonine, and 
dopamine have all been associated with the ascending arousal 
pathway and are considered to be key elements of wakefulness 
promotion (26, 27). Interestingly however, genetic manipulation 
of monoamine levels by disrupting their biosynthesis or reuptake 
systems has only relatively mild effects on LA (28–32) except in 
the case of dopamine (33, 34). DA reuptake blockade (35) leads 
to a profound hyperlocomotor (33) phenotype and abolishing 

dopamine synthesis by tyrosine hydroxylase gene disruption 
selectively in DA neurons leads to an almost complete loss of 
spontaneous LA (34, 36). Thus, among the monoamines asso-
ciated with the ascending arousal pathway, dopamine has the 
strongest link to LA, which is highly associated with the wake 
state (37).

DAT Removal Lengthens Ultradian Period
When running wheel activity is monitored long-term, mice 
deficient of the dopamine transporter (DAT; official gene name, 
Slc6a3) exhibit less consolidated, rather erratic activity that 
nevertheless remained largely confined to the dark period of the 
LD cycle when compared to wild-type littermates (Figure 1D) 
(20). However, upon switching to constant darkness (DD), 
periodogram analysis revealed the emergence of a second com-
ponent of rhythmic activity that persisted over several cycles 
with a period longer than 24 h, while the primary or circadian 
component exhibited periods below 24 h as expected for endog-
enous circadian pacemaking of the C57BL/6J laboratory mouse 
strain that served as genetic background for the DAT−/− mouse 
line (Figure 1D). Further examination revealed that this second 
component does not result from a phase dissociation within the 
SCN clock cell ensemble, which has been shown to account for 
the split locomotor rhythm observed in hamsters exposed to 
constant light (38), or for the two component pattern in rats 
exposed to a 22 h LD cycle (39). If the second, >24 h component 
observed in DAT−/− animals indeed results from the very oscil-
lator that normally accounts for ultradian activity, then upon 
elimination of the circadian pacemaker, these mice would be 
expected to show lengthened ultradian activity cycles. Indeed, 
when running wheel activity of DAT−/− mice is monitored in 
constant darkness following SCN-lesion or genetic disruption 
of the circadian clock, a profound lengthening of the ultradian 
locomotor period is observed, from the typical 2- to 4-h period 
to ~12 h (20).

Striatal Dopamine Fluctuates in Step  
with Ultradian Activity
It was further found that extracellular dopamine levels in the 
striatum of Bmal1−/− mice kept in DD fluctuate in synchrony with 
ultradian LA (Figure 1F), and that extracellular levels of striatal 
DA strongly correlate with ultradian period (20). Together, 
these findings are in support of dopamine acting as an ultradian 
oscillator output and at the same time as a period determinant, 
arguing for a central role of dopamine in the ultradian rhythm 
generation process. Hence, the name dopaminergic ultradian 
oscillator (DUO) was coined (20).

DA neUROnS, SiTe OF ULTRADiAn 
RHYTHM geneRATiOn?

As DAT is only found in DA neurons and given that selective 
chemogenetic stimulation of DAT-expressing midbrain neurons 
leads to ultradian locomotor period lengthening (20), and because 
of the observation of striatal, extracellular dopamine fluctuating 
at ultradian periods, midbrain DA neurons could plausibly act as 
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the site of ultradian locomotor rhythm generation. However, the 
current data are also consistent with an ultradian rhythm gen-
erator located elsewhere, which regulates extracellular dopamine 
levels by, for instance, rhythmic metabolic conversion, and whose 
period depends on dopamine tone. However, the DA degrading 
enzyme catechol-O-methyltransferase (COMT), which converts 
DA into 3-methoxytyramine and which is found in various brain 
regions including the striatum, seems not to have a significant 
role in clearing striatal extracellular DA upon evoked dopamine 
overflow based on the study of COMT deficient mice (40). As the 
striatum has been the site of detection of ultradian DA fluctua-
tions (20), this finding argues against extracellular DA enzymatic 
conversion as a means to convey ultradian oscillator output. 
Interestingly, lesions to the retrochiasmatic, paraventricular, 
and/or arcuate nucleus regions greatly perturbs or even abolishes 
ultradian rhythm generation in the common voles, indicating that 
these brain areas either participate in rhythm generation or affect 
oscillator output (16, 41). Because DAT-expressing dopamine 
neurons are also found in the arcuate nucleus region (42, 43) and 
along the walls of the hypothalamic third ventricle (44), it is pos-
sible that these hypothalamic DA neurons contribute to rhythm 
generation as part of a network of DA neuronal populations that 
together make up the DUO oscillator (Figure  2A). However, 
selective and chronic in vivo activation of midbrain DA neurons 
using a chemogenetic strategy (20) led to a sustained lengthen-
ing of the ultradian period, suggesting that extra-midbrain DA 
neurons are not critical for ultradian rhythm generation/period 
determination.

Of note, gonadotropin-releasing hormone (GnRH) is 
released in a pulsatile fashion by GnRH neuron terminals at the 
portal vessels of the median eminence, a structure located at 
the base of the arcuate nucleus (45). Interestingly, serum levels 
of luteinizing hormone, whose release is controlled by GnRH, 
have been shown to fluctuate with an ultradian period of 2–3 h 
in male rhesus monkeys (12, 46) and luteinizing hormone lev-
els were shown to rise about every 6 h in the mid luteal phase 
of the menstrual cycle in women (47). Given that the GnRH 
projections originating from the preoptic area traverse the 
retrochiasmatic area and arcuate nucleus to reach the median 
eminence, it is conceivable that the hypothalamic lesions affect 
ultradian rhythmicity in the vole by severing GnRH neuronal 
processes, and thus their ability to contribute to the ultradian 
locomotor rhythm generation by means of their role in pulse 
generation. However, the LH pulse frequency has been shown 
to differ substantially between female [1 pulse per 1  h (48)] 
and male [1 pulse per 2–3 h (49, 50)] mice. Because no such 
sexual dimorphism is reported for the ultradian locomotor 
periodicity, these findings argue against a key role of the GnRH 
pulse generator in ultradian locomotor rhythm generation. 
Pulsatory secretion is also a key characteristic of the hypo-
thalamic–pituitary–adrenal axis (HPA) (51). Corticotrophin-
releasing hormone (52, 53), adrenocorticotropic hormone 
(54, 55), as well as the glucocorticoids (CORT) (56, 57) are 
all rhythmically secreted into the circulation with pulse fre-
quencies typically in the hourly range in rat (56–58) and man 
(59–61). Thus, as in case of GnRH/LH, also HPA axis pulse 
generation may not be involved in the production of ultradian 

locomotor rhythm which are characterized by multi-hour  
periodicities.

THe MeTHAMPHeTAMine-SenSiTive 
(CiRCADiAn) OSCiLLATOR (MASCO) 
RHYTHM ReFLeCTS A SPeCiFiC  
STATe OF THe DUO

Several decades ago, it was found that treatment with the psy-
chostimulant methamphetamine via the drinking water leads 
to the expression of a second rhythmic component in addition 
to the daily circadian component. Because this component 
exhibited periods in the circadian range (62) it was dubbed 
the MASCO (63). As SCN lesion (62) or genetic disruption of 
clock function (64) does not prevent the expression of meth-
amphetamine-dependent rhythmicity, it was concluded that 
the MASCO rhythm expression does not require the known 
circadian clock machinery (64, 65). When methamphetamine-
treated SCN-lesioned rats were given timed intraperitoneal 
injections with the antipsychotic haloperidol, which binds to 
the dopamine receptor 2 found on midbrain dopamine neu-
rons, it shifted the rhythm phase, with the directionality of the 
shift depending upon the relative time point (with regard to 
activity onset) of haloperidol injection (66). Notably, this early 
finding already pointed to a critical role of dopamine in the 
oscillator process driving these methamphetamine-induced 
rhythms.

The observation that methamphetamine is not only capable 
of gradually lengthening the ultradian locomotor period of 
Bmal1−/− mice from ~4 to ≥48 h (Figure 1E) (20), but to similarly 
affect the ultradian oscillator in circadian intact mice, causing 
the 3 night-time activity peaks to transition into 2 and then 1 
single peak (20) now argues that the methamphetamine-induced 
rhythmicity described earlier in fact represents a long period 
manifestation of a highly tunable ultradian oscillator, the DUO.

inTeRACTiOn OF THe DUO AnD  
SCn CiRCADiAn TiMeR

Studies on the SCN-intact common vole specifically in constant 
darkness showed that the ultradian rhythms in LA and feeding 
are phase-locked with the circadian clock, indicating coupling 
of the two oscillator systems (67). It was suggested that the 
ultradian rhythm is reset daily by the circadian clock and that 
it is not directly sensitive to light cues, and that phase resetting 
by light is instead mediated through the circadian timer. Further 
support for interaction between the SCN and ultradian timer 
comes from the observation of a phase-dependent change in 
oscillator speed, which is also known as relative coordination if 
the speed change does not lead to stable entrainment between 
two oscillatory processes (68, 69). For instance, under conditions 
of methamphetamine treatment: the second (>24 h) locomotor 
component frequently seems to “slow down” when overlapping 
with the “primary,” SCN-driven bout in methamphetamine-
treated animals (63, 70) (see Figure  2C,c for illustration).  
In addition to an influence of the circadian clock on the ultradian 
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oscillator, there is also evidence for the inverse: the emergence of 
the second long period (>24 h), likely DUO-driven component, 
in DAT−/− mice is associated with a simultaneous period length-
ening of the SCN-driven (~24  h) component (Figure  1D, DD 
portion of the graph). Similar observations have been made in 
methamphetamine-treated animals where the SCN-component 
delays its phase in the presence of the second (methamphetamine 
dependent) component (63). Thus, it seems as if both the DUO 
and SCN clock produce signals for their reciprocal entrainment 
which may or may not lead to full entrainment between both 
oscillators. Of note, mice with reduced expression of DAT have 
been reported to exhibit a lengthened circadian LA period (71). 
While ultradian rhythmicity has not been explicitly probed, the 
authors did not rule out the possibility that the observed period 
lengthening could be due to the action of a dysregulated DUO as 
proposed by Blum et al. (20).

Genetic ablation of the orexins have been reported to 
attenuate the ultradian amplitude in daily locomotor behavior, 
heart rate, and body temperature (72), suggesting a modulating 
role of these peptides on DUO function. As with the mono-
aminergic systems, orexins and the orexin-expressing neurons 
are part of the ascending arousal pathway (26), receiving input 
from the SCN via the dorsomedial hypothalamic nucleus, and 
projecting to the midbrain area where the DA neurons reside 
(73). Orexins could thus serve as mediators of circadian clock 
control onto the DUO.

ULTRADiAn AnD CiRCADiAn 
OSCiLLATOR LOCOMOTOR  
OUTPUT inTegRATiOn

The data presented in Blum et  al. (20) suggest that a second 
oscillator is operative in the mammalian brain (Figure  2B) 
which fundamentally differs from the circadian timer due to 
its high, frequency tunability. Figure  2C illustrates how this 
feature can explain the profoundly deviating patterns in daily 
LA that are observable upon manipulation of the dopamine 
system.

When unchallenged, the DUO cycles at an ultradian period 
of, e.g., 2–4 h alongside the circadian timer, producing activity 
bouts throughout the 24-h cycle in voles or infants, but accounts 
only for the three night-time activity peaks in mice, likely due 
to strong daytime inhibition of DUO locomotor output by the 
SCN timer (Figure  2C,a). Methamphetamine treatment or 
DAT disruption lengthens the DUO period. This lengthening 
may reach 24 h, a period at which the DUO can cycle harmoni-
ously with the SCN timer/LD cycle (Figure 2C,b). The rela-
tive phasing between the SCN timer/LD cycle and the DUO 
will depend on the entrainment capacity of the SCN timer/
LD cycle and the free-running period of the DUO, i.e., the 

period the DUO would adopt in the absence of the SCN timer,  
e.g., the longer the DUO free-running period, the more delayed 
the phase of entrainment with the SCN timer/LD cycle will be 
(Figure 2C,b). If the SCN/LD cycle is incapable to fully entrain 
a long-period (>24 h) DUO, the DUO will free-run in the pres-
ence of the SCN/LD cycle; however, as a consequence of partial 
entrainment, its speed will be altered in a phase-dependent 
manner, resulting in relative coordination (Figure  2C,c). 
Further DUO period lengthening may lead to entrainment at 
48 h likely because this frequency is again harmonious with 
the SCN timer/LD cycle and thus 24-h entrainment cues cause 
a sufficient phase shift to stably entrain the DUO at the 48-h 
frequency (Figure 2C,d).

OUTLOOK

The finding that DAT removal has a profound period lengthen-
ing effect on ultradian LA rhythms together with the discovery 
of synchronous fluctuations in extracellular dopamine pro-
vides a first framework for the molecular underpinnings of 
the oscillatory process that underlies ultradian rhythmicity. 
The current data indicate a central role for DA neurons in the 
rhythm generating process; however, it remains to be seen if 
rhythm generation is cell autonomous, as in case of the circa-
dian oscillator or instead requires one or more interconnected 
cell ensembles (Figure  2A). Intriguingly, at least some of the 
LA patterns observed in rodents upon dysregulation of the 
dopamine system show striking similarities to the aberrant 
sleep:wake behavior associated with psychopathologies such as 
bipolar disorder (74, 75) or schizophrenia (76, 77). Given the 
strong concordance of LA and wakefulness for both rodents and 
humans (37, 78) the pattern similarities between rodent models 
and these human subjects indicate that the study of the DUO 
may have important implications in understanding the etiology 
of these sleep abnormalities and perhaps the psychopathologies 
themselves.
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Disrupted Ultradian activity rhythms 
and Differential expression of several 
clock genes in interleukin-6-
Deficient Mice
Francisco J. Monje1, Ana Cicvaric1, Juan Pablo Acevedo Aguilar1, Immanuel Elbau1,2, 
Orsolya Horvath1, Weifei Diao1, Micaela Glat1 and Daniela D. Pollak1*

1 Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of 
Vienna, Vienna, Austria, 2 Max Planck Institute of Psychiatry, Munich, Germany

The characteristics of the cycles of activity and rest stand out among the most inten-
sively investigated aspects of circadian rhythmicity in humans and experimental animals. 
Alterations in the circadian patterns of activity and rest are strongly linked to cognitive 
and emotional dysfunctions in severe mental illnesses such as Alzheimer’s disease (AD) 
and major depression (MDD). The proinflammatory cytokine interleukin 6 (IL-6) has been 
prominently associated with the pathogenesis of AD and MDD. However, the potential 
involvement of IL-6 in the modulation of the diurnal rhythms of activity and rest has not 
been investigated. Here, we set out to study the role of IL-6 in circadian rhythmicity 
through the characterization of patterns of behavioral locomotor activity in IL-6 knockout 
(IL-6 KO) mice and wild-type littermate controls. Deletion of IL-6 did not alter the length 
of the circadian period or the amount of locomotor activity under either light-entrained or 
free-running conditions. IL-6 KO mice also presented a normal phase shift in response 
to light exposure at night. However, the temporal architecture of the behavioral rhyth-
micity throughout the day, as characterized by the quantity of ultradian activity bouts, 
was significantly impaired under light-entrained and free-running conditions in IL-6 KO. 
Moreover, the assessment of clock gene expression in the hippocampus, a brain region 
involved in AD and depression, revealed altered levels of cry1, dec2, and rev-erb-beta 
in IL-6 KO mice. These data propose that IL-6 participates in the regulation of ultradian 
activity/rest rhythmicity and clock gene expression in the mammalian brain. Furthermore, 
we propose IL-6-dependent circadian misalignment as a common pathogenetic princi-
ple in some neurodegenerative and neuropsychiatric disorders.

Keywords: interleukin 6, circadian activity, mouse, behavior, clock gene, hippocampus

inTrODUcTiOn

Changes in the diurnal oscillations of the periods of activity and rest are in the spotlight of basic and 
applied biomedical research on circadian rhythms in humans and other animals (1). The interest 
in analyzing these changes in active wakefulness and quiescent rest rhythmicity relates to the fact 
that alterations of these rhythmic fluctuations are associated with a wide spectrum of pathologies, 
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ranging from metabolic and cardiovascular dysfunctions to tum-
origenesis and cancer. In the neurosciences, the consequences of 
circadian disruptions and chronic misalignments have been most 
prominently studied with regards to their effects on cognitive and 
emotional functions within the framework of some of the most 
severe neurological and psychiatric illnesses. Specifically, strong 
clinical and experimental evidence supports a link between dis-
turbances of the sleep–wake cycle and other physiological func-
tions regulated by the circadian system in the pathophysiology of 
Alzheimer’s disease (AD) and major depression (MDD). These 
dysfunctions include interruptions of the wakefulness during the 
day and bursts of activity during the night in individuals suffering 
from AD (2–6).

In addition, it has been described that part of the clinical 
symptomatology in AD patients is exacerbated at particular peri-
ods of the day, most commonly in the early evening (2, 7–10). In 
addition, a derangement in the circadian rhythmicity of several 
physiological functions (including the regulation of body tem-
perature and hormone release) is frequently observed (11–15).

Similarly, MDD patients often report disrupted sleep–wake 
cycles and impairments in the diurnal patterns of other physi-
ological processes [as reviewed in Ref. (16)]. In parallel to the 
reported “sun downing” in AD, MDD patients often also show 
significant diurnal mood swings with depressive symptoms usu-
ally being strongest in the morning (1).

At the molecular level, polymorphisms and expressional 
changes in several clock genes, the genetic elements constitut-
ing the molecular machinery organizing endogenous circadian 
rhythmicity, have been identified in postmortem samples of 
AD and MDD patients and animal models thereof (15, 17–29). 
Together with the shared involvement of circadian disruptions, 
both MDD and AD have been associated with altered inflam-
matory states (30, 31). The pro-inflammatory cytokine inter-
leukin 6 (IL-6) (32), which is linked to circadian clock-related 
inflammation (33), is considered to play a central role in the 
pathophysiology of MDD and AD (30, 31, 34–39). Indeed, IL-6 
has been proposed as a molecular bridge between circadian and 
inflammatory processes in a chronobiological animal model of 
depression (40) and is implicated in circadian rhythmicity (41) 
and in the circadian regulation of sleep drive (42, 43). Moreover, 
its secretion is determined by a marked diurnal pattern (44–46), 
and several clock genes are known as regulator of its production 
(47, 48).

However, the specific relationship between IL-6 and the diur-
nal rhythms of activity and rest remain poorly understood as 
varying observations regarding IL-6 levels under physiological 
and pathology conditions emerge from literature. These appar-
ent discrepancies may be a consequence of species-specific 
effects and/or depend on the sample type or methodological 
approaches employed (31, 44–46, 49). Hence, further investiga-
tions using specific, genetically engineered animals are war-
ranted. We here, therefore, set out to examine the involvement 
of IL-6 in the regulation of behavioral circadian rhythms by 
studying the changes in the diurnal patterns of locomotor activ-
ity in constitutive IL-6 knockout mice (IL-6 KO) in comparison 
with their wild-type (WT) littermate controls. To determine 
the impact of IL-6 deletion on the orchestration of circadian 

rhythmicity at the molecular level, the expression of 19 clock 
and clock-controlled genes was analyzed in the hippocampus, a 
brain region importantly implicated in the pathophysiology of 
MDD and AD.

MaTerials anD MeThODs

animals
Experiments were carried out in male adult IL-6 KO (B6.129S2-
Il6tm1Kopf/J) and WT littermate control mice (Jackson 
Laboratories, Bar Harbor, ME, USA) (n = 9–11 per group). All 
mice were 8- to 10-week old at the time of experiments. Mice 
were housed individually in Nalgene cages equipped with run-
ning wheels (15  cm in diameter; Actrimetrics, Evanston, IL, 
USA) in a sound-attenuated room with constant temperature of 
22 ± 2°C. Before experimental assessment of the circadian activ-
ity all animals were kept on a light/dark (LD) cycle of 12:12 h with 
lights on at 6 a.m. and off at 6 p.m. During the light phase, mice 
were exposed to a light intensity of ~200 lux. During conditions of 
constant darkness [dark/dark (DD)] defined as LD cycle of 0:24 h, 
the cage cleaning and animal care taking was carried out under 
dim red light (15 W). Mice were supplied with food and tap water 
ad libitum throughout the experimental period. All experiments 
were designed to minimize animal suffering and the number of 
animals used. Animal procedures were approved by the Austrian 
ethical committee (BMWF-66.009/0069-II/36/2011) on animal 
care and use conducted in accordance with international laws 
and policies.

assessment of circadian Wheel-running 
activity
Acquisition
Wheel revolutions were recorded using the ClockLab com-
puter software, with sampling epochs of 1  min (Actimetrics, 
Evanston, IL, USA). After 1 week of habituation to the vivarium, 
the light-entrained daily activity was assessed for 14 days during 
LD followed by the evaluation of the free-running circadian 
activity during DD. On day 29, DD was briefly interrupted by 
a light pulse (30 min, 300 lux) at circadian time (CT) 16 (4 h 
after activity onset) for the induction of a phase-shift response 
to evaluate the response of the endogenous circadian pacemak-
ers to external zeitgebers. After 7 additional days of DD, all 
mice were exposed to LD for 7 days before sacrifice on day 46 
(Figure 1).

Analysis
Wheel-running activity was analyzed using the ClockLab soft-
ware package (Actimetrics, Evanston, IL, USA) as previously 
described (27, 50). The default software settings were used to 
determine the activity onsets, which were manually edited when 
appropriate. Measures of the entrainment period (T) in LD and 
circadian period (tau) in DD and the total activity were derived 
from regression lines fit to the activity onsets. Activity bouts were 
defined as periods during which activity never reached less than 1 
count per minute (bout threshold) for longer than 18 min (maxi-
mum gap length) at a time. All parameters were determined for 
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FigUre 1 | experimental paradigm for the evaluation of light-
entrained and free-running circadian rhythms in interleukin (il)-6 
knockout (il-6 KO) and wild-type (WT) mice. Illustration of the temporal 
course (in days) for the analysis of circadian behavioral locomotor activity in 
IL-6 KO and WT mice under light-entrainment [light/dark (LD): 12 h light and 
12 h dark phase; white boxes] and during settings of free-running rhythms 
[dark/dark (DD): 24 h constant darkness, black boxes].
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each animal under LD and DD conditions. Phase-shift responses 
were evaluated by comparing the predicted activity onset for 
the day after light pulse treatment from extrapolated lines of the 
activity onsets of the days preceding the light pulse and 7 days 
after the pulse.

gene expression analysis
Brain Dissection
All brain dissections were carried out during the light phase of the 
circadian cycle (between 9 a.m. and 11 a.m.). Mice were sacrificed 
by neck dislocation, and brains were rapidly dissected over ice 
and total hippocampi were bilaterally collected and stored in 
RNA later® (Ambion, Austria, Austin, TX, USA) at −20°C until 
used for RNA isolation or kept at −80°C for protein expression 
studies.

RNA Isolation, cDNA Synthesis, and Quantitative 
Real-time Polymerase Chain Reaction (qRT-PCR)
RNA was isolated from hippocampal tissues using the 
miRNeasy kit (Qiagen®, USA, Hilden, Germany) following 
the instructions of the manufacturer. Briefly, 900  ng of total 
RNA was used for cDNA synthesis using the MMLV reverse 
transcriptase first-strand cDNA synthesis kit G1 (Biozym®, 
Hessisch Oldendorf, Germany) following the manufacturer’s 
instructions. The resulting cDNA reaction mix (1:10 dilution) 
was used for PCR amplification using the Fast SYBR Green 
Mastermix (Applied Biosystems, Foster City, CA, USA) on 
a StepOnePlus real-time PCR system (serial no. 271000455; 
Applied Biosystems, Foster City, CA, USA). All reactions were 
carried out in duplicates. Primer sequences for all clock were 
analyzed: brain and muscle aryl hydrocarbon receptor nuclear 
translocator-like 1 (bmal1), circadian locomotor output cycles 
kaput (clock), cryptochrome 1/2 (cry1/2), deleted in esophageal 
cancer 1/2 (dec1/2), neuroD1, neuronal PAS domain-containing 
protein 2 (npas2), period 1–3 (per1–3), reverse erythroblastosis 
virus α/β (rev-erbα/β) and RAR (retinoic acid receptor)-related 
orphan receptor α-γ (rorα-γ) and clock-controlled genes D 
site of albumin promoter (albumin D-box) binding protein 
(dbp), E4 promoter-binding protein 4 (e4bp4), inhibitor of DNA 
binding 2 (id2), and neuronal differentiation 1 are listed in the 
Supplementary Table 1 of Ref. (27).

The C(t) values of β-actin were used for calculation of ΔC(t), 
representing the relative quantification of mRNA amounts in 
each sample. This further allowed the calculation of ΔΔC(t), 
subtracting mean ΔC(t) value of the WT from the mean ΔC(t) 
value for the KO. ΔΔC(t) was then used to express the fold change 
of mRNA levels observed between WT and KO mice, using the 
formula 2−ΔΔC(t).

statistical analysis
BioStat software (AnalystSoft Inc., Alexandria, VA, USA) was 
used for statistical analysis. Comparisons between two groups 
were determined using unpaired two-tailed Student’s t-test. In 
addition, two-way analysis of variance (ANOVA) (light condi-
tion  ×  genotype) was employed for statistical evaluation of 
locomotor activity (alpha, rho, and total) and for bout analysis 
(number of bouts/day, bout length and counts/bout). The level of 
significance was set at p < 0.05 in all instances.

resUlTs

il-6 KO Mice Present with Fragmented 
Daily activity Patterns under lD and DD 
conditions
To characterize the effects of genetic IL-6 deficiency on behavioral 
rhythms of rest and activity, wheel-running activity was moni-
tored in IL-6 KO and WT littermate control mice. The investiga-
tion of light-entrained rhythms under LD conditions indicated 
unaltered length of the entrainment period (T) (Figure 2A) in 
IL-6 KO mice. Similarly, the amount of wheel-running activity 
was comparable between IL-6 KO and WT mice during periods 
of inactivity (rho) and activity (alpha) within the circadian cycle 
(Figures 2B–D). IL-6 deletion, however, was associated with an 
increased quantity of activity bouts (p < 0.05) with unchanged 
duration and amount of activity/bout (Figures  2E–G). 
Calculations of activity onsets and offsets revealed no differences 
between genotypes, and the duration of the active period was 
not statistically different between groups under LD conditions 
(Figure S1 in Supplementary Material).

To determine circadian locomotor patterns during free-
running rhythms, daily behavioral activity was further analyzed 
under DD conditions. In the same way as for the light-entrained 
rhythms, the circadian period, as well as the amount of wheel-
running activity, was undistinguishable between IL-6 KO and 
WT mice (Figures 3A–D). Consistent with the results from the 
LD paradigm, the number of activity bouts was enhanced in IL-6 
KO mice under DD conditions (p <  0.05), whereas no differ-
ences were seen in the duration and quantity of activity/bout 
or in the phase shift response in comparison with WT controls 
(Figures 3E–H). In addition, the duration of the active period 
was shorter in IL-6 KO mice under DD conditions (p < 0.05) 
(Figure S1 in Supplementary Material).

Hence, the temporal architecture of the ultradian rhythms is 
disrupted in IL-6 KO mice under both LD and DD conditions 
as illustrated in the respective actograms of the two genotypes 
(Figures  4A,B). Further examples of representative actograms 
are provided in Figure S2 in Supplementary Material.
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FigUre 2 | entrainment period (T), wheel-running activity, and bout analysis in under light-entrained [light/dark] conditions in interleukin (il)-6 
knockout (il-6 KO) and wild-type (WT) mice. Analysis of the light-entrained circadian behavioral locomotor activity in IL-6 KO and WT mice (n = 9–11 per group) 
demonstrating comparable (a) T and wheel-running activity during the (B) alpha and (c) rho phase and in (D) total amounts. (e) Significantly increased quantity of 
activity bouts in IL-6 KO compared with WT mice with unaltered (F) bout length and (g) activity counts/bout. All data are displayed as mean ± SEM; *p < 0.05.
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In addition, two-way ANOVA analysis (light condition × geno-
type) has been carried out to examine the possible effect of the light 
condition and its interaction with the genotype. The following 

main effects have been observed: for overall activity significant 
main effects of light condition for alpha: F(3,43) = 88.54, p < 0.001 
and rho: F(3,43) = 178.17, p < 0.001. The characterization of the 
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FigUre 3 | circadian period (tau), wheel-running activity, bout analysis, and phase shift response under free-running (dark/dark) conditions in 
interleukin (il)-6 knockout (il-6 KO) and wild-type (WT) mice. Analysis of the free-running circadian behavioral locomotor activity in IL-6 KO and WT mice 
(n = 9–11 per group) demonstrating comparable (a) tau and wheel-running activity during the (B) alpha and (c) rho phase and in (D) total amounts. (e) Significantly 
increased quantity of activity bouts in IL-6 KO compared with WT mice with unaltered (F) bout length and (g) activity counts/bout. (h) Unaltered phase shift 
response to a brief light pulse at CT14 is in IL-6 KO mice. All data are displayed as mean ± SEM; *p < 0.05.
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bouts revealed a significant main effect of genotype [F(3,43) = 10.47, 
p < 0.01] for bouts per day and significant main effects of light con-
dition for bout length: F(3,43) = 29.98, p < 0.001 and counts/bout: 

F(3,43) = 8.57, p < 0.01. The duration of the active periods revealed 
a significant main effect of genotype [F(3,43) = 7.17, p < 0.05]. No 
other significant main effects or interactions were found.
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FigUre 4 | Behavioral actograms exemplifying circadian locomotor activity patterns in interleukin (il)-6 knockout (il-6 KO) and wild-type (WT) mice. 
Sample actograms illustrating wheel-running activity in (a) WT and (B) IL-6 KO mice.
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aberrant mrna expression of cry1, Dec2, 
and rev-erb-Beta in the il-6 KO Mouse 
hippocampus
With regard to the molecular mediators of the observed altera-
tions in the rhythmic oscillation of rest and activity patterns, 

mRNA levels of 19 clock (clock, cry1/2, npas2, per1–3, rev-erbα/β, 
and rorα-γ) and clock-controlled genes (dbp, e4bp4, id2, and 
neuroD1) were assessed in the hippocampus of IL-6 KO and WT 
mice. qRT-PCR analysis revealed a significant increase in levels 
of cry1 (p < 0.05) and dec2 (p < 0.01), whereas expression of rev-
erb-beta (p < 0.01) was reduced in IL-6 KO compared with WT 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


FigUre 5 | mrna levels of clock genes with significantly different expression in hippocampal tissue of interleukin (il)-6 knockout (il-6 KO) 
compared with wild-type (WT) mice. Relative expression of (a) cry1, (B) dec2, and (c) rev-erb beta in hippocampal tissue of IL-6 KO compared with WT mice 
(n = 6–9 per group). All data are data displayed as mean ± SEM. *p < 0.05, **p < 0.01.

TaBle 1 | clock and clock-controlled genes with comparable mrna 
levels in hippocampal tissue of knockout (KO) and wild-type (WT) mice.

gene name WT (rel. expression) KO (rel. expression) p Value

clock 1.000 ± 0.1293 1.0197 ± 0.0038 0.6

cry2 1.000 ± 0.1332 0.9949 ± 0.0168 0.9

dbp 1.000 ± 0.0916 1.0272 ± 0.0140 0.4

dec1 1.000 ± 0.1414 0.9893 ± 0.0406 0.8

e4bp4 1.000 ± 0.1375 0.9952 ± 0.0084 0.8

id2 1.000 ± 0.0902 1.0385 ± 0.0371 0.4

neuroD1 1.000 ± 0.0673 1.0045 ± 0.0038 0.7

npas2 1.000 ± 0.0759 0.9993 ± 0.0192 0.9

per1 1.000 ± 0.0841 1.0516 ± 0.0468 0.3

per2 1.000 ± 0.1055 1.0291 ± 0.0105 0.2

per3 1.000 ± 0.2047 1.0170 ± 0.0206 0.7

rev-erbα/β 1.000 ± 0.0740 1.0367 ± 0.0181 0.2

ror-α 1.000 ± 0.1685 0.9714 ± 0.0344 0.5

ror-β 1.000 ± 0.0731 0.9714 ± 0.0191 0.2

ror-γ 1.000 ± 0.1034 0.9829 ± 0.0092 0.2

bmal1 1.000 ± 0.1180 1.0225 ± 0.0131 0.3

Fold change values in KO mice (normalized to WT means for each transcript) of clock 
and clock-controlled (gray) genes are displayed as mean ± SEM (n = 6–9 per group).  
p Values represent results of statistical analyses using two-tailed Student’s t-tests.
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controls (Figure 5). No differences in the mRNA of any of the 
other clock genes investigated were found (Table 1).

DiscUssiOn

Most species living on the surface of earth have evolved under 
conditions of rhythmically changing daily variations in funda-
mental environmental constituents, such as light. To anticipate 
and respond to these oscillating physical properties, organisms 
have developed systems to accordingly fit their physiology. Hence, 
the most essential functions of the body, including those of the 
nervous and the immune systems, are determined by these intrin-
sic timing regulations. Thus, the association between disruption 
in “biological clocks” and pathologies of the brain (31, 51–53) 
and the immune response is unsurprising [see for review Ref. 
(54)]. Indeed, the circadian regulation of the behavioral states 
of activity/rest (as fundamental output of brain function) is well 
described. Similarly, evidence for the impact of the endogenous 
clockwork on the most pivotal elements of the body’s defense 
mechanisms, such as the release of immune modulatory sub-
stances, is augmenting (55–58) [see for review Ref. (59)].

The current report is, to the best of our knowledge, the first 
comprehensive, long-term assessment of the impact of a genetic 
deficiency in a central element of the immune response (the pro-
inflammatory cytokine IL-6) on circadian wheel-running activ-
ity rhythms in the mouse. This interrelationship is particularly 
noteworthy within the framework of diseases and disorders in 
which all these functions are of pathophysiological relevance, as is 
the case for the neurodegenerative AD and the neuropsychiatric 
MDD, where the involvement of the circadian and the immune 
systems have been extensively demonstrated (31). In the case of 
both these mental illnesses, frequent presentations of aberrant 
diurnal oscillations of behavioral activity have been reported in 

patients and in subjects of the respective experimental animal 
models (15–29, 31, 60–62).

In the herein studied IL-6 KO mice, traditional parameters 
of diurnal behavioral rhythmicity were unaltered under light-
entrained and free-running conditions, as tau and the amount of 
activity during active and inactive phase were comparable with 
those of WT controls but were determined by the light conditions 
(LD versus DD) for both genotypes. Interestingly, the duration of 
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the active period was shortened in IL-6 KO mice. In a previous 
short-term evaluation of home cage behavior, higher activity 
of IL-6 KO compared with WT mice has been reported (63). 
However, the analysis of home cage activity does characterize a 
behavioral output distinct from circadian wheel-running activity 
(64). Although home cage activity reflects the baseline activity, 
wheel running is an elective action, which is driven by additional 
endogenous factors, such as motivation (64). However, it is the only 
system to reliably address some distinct features of the internal 
timekeeping system, such as the modulation of the endogenous 
circadian machinery by environmental stimuli. Indeed, an unal-
tered phase-shift response in IL-6 KO mice indicated an intact 
responsivity of the endogenous CT keeping system to an external 
zeitgeber. Hence, the 24-h structure of the behavioral locomotor 
rhythm seemed largely preserved IL-6 KO mice. However, a 
close examination of the activity bouts as indicators of units of 
ultradian activity revealed a significant difference in the number 
of bouts between genotypes, independent of the external light-
ing conditions: IL-6 KO mice presented with an augmentation 
in the number of bouts/circadian day, while the bout length and 
activity/bout remained unchanged. This result is also reflected in 
the two-way ANOVA analysis, which revealed a significant main 
effect of genotype for the number of bouts, whereas interestingly 
the bout length and activity/bout were significantly dependent on 
the light conditions for both WT and KO mice.

The nature and regulation of ultradian rhythms and activ-
ity bouts is less well described than is the case for the classical 
indicators of diurnal rhythms, e.g., length of the circadian period 
tau and activity onsets and offsets, which are largely dependent 
on the suprachiasmatic nucleus (SCN) of the hypothalamus as a 
central circadian pacemaker (65–70). The SCN also orchestrates 
rhythmic activities in other regions of the brain and peripheral 
parts of the body with synchronization of clock gene expression 
as a pivotal molecular event.

To examine potential neurobiological mechanisms contrib-
uting to the observed phenotype of IL-6 KO mice, we decided 
to focus on the hippocampus, a brain region involved in the 
pathophysiology of AD (71–73) and MDD (74, 75). Examination 
of the expression of major clock genes as molecular mediators of 
circadian rhythmicity revealed a selective effect of genetic IL-6 
deficiency on the hippocampal mRNA levels of cry1, dec2, and 
rev-erb-beta.

Although the statistically significant expressional differ-
ences between IL-6 KO and WT mice were modest in magni-
tude, they may be well of biological relevance considering the 
role of these genes in the tightly controlled feedback loops of 
transcription–translation from which circadian rhythms are 
generated at the molecular level (20, 24, 28, 76). The increased 
levels of cry1 in IL-6 KO are paralleling observations in plasma 
levels of sepsis patients were an increase in IL-6 was associated 
with a decrease in cry1 mRNA (77). A modulatory influence of 
several immune mediators on the expression of dec2, which is 
here to be reported significantly reduced in the hippocampal 
tissue of IL-6 KO mice, has been described. Interestingly, IL-6 is 
a direct activator of AMP-activated protein kinase (78), which 
has been found to mediate the regulatory effects of dec2 in 
several tissues (79).

Previous work reports that rev-erb expression in peripheral 
blood leukocytes of human subjects, together with several 
other clock genes (including cry1), is dampened by endotoxin 
treatment, which leads to a concomitant increase in circulating 
levels of IL-6. This description is in line with our observation on 
augmented rev-erb-beta and cry1 levels in IL-6 KO.

Alternatively or additionally to a mechanistic involvement of 
clock gene expression, the alteration in the ultradian architecture 
of behavioral activity in IL-6 KO mice may relate to the direct 
regulatory effect of IL-6 on the serotonin transporter (SERT) (80). 
Indeed, multifaceted interactions between the circadian and the 
serotonergic systems have been demonstrated with a proposed 
role of these interrelationships for several mental illnesses, 
including MDD [see for review Ref. (81, 82)]. However, although 
a defined role for dopamine and the dopamine transporter in the 
regulation of ultradian rhythms of locomotor behavior have been 
proposed (83), a potential involvement of SERT in the control of 
ultradian activity architecture remains to be examined in future 
studies.

Some conceptual restrictions, which were imposed by the 
study design, such as the determination of clock gene expression 
at a single time of the day in a  priori selected brain region of 
interest have to be considered for the interpretation of the results 
obtained. Hence, the observed differences in clock gene expres-
sion between IL-6 KO and WT mice do not allow for conclusions 
regarding the diurnal oscillation in the expression of these genes 
in the two genotypes, an important mechanistic insight that will 
be addressed in follow-up investigations. Within this framework, 
however, this study allows for the deduction of three major 
conclusions: first, IL-6 is not required for diurnal time keeping of 
the circadian period under either light-entrained or free-running 
conditions; second, genetic IL-6 deficiency is associated with 
aberrant ultradian activity patterns as reflected in an increased 
number of activity bouts with unaltered length and activity counts 
per bout, independent of the external light conditions; and third, 
a selective modulation of hippocampal clock gene expression 
proposes an involvement of disrupted mRNA levels of cry1, dec2, 
and rev-erb-beta in the circadian phenotype of IL-6 KO mice.

Collectively these data suggest a potential pathophysiologi-
cal involvement of the pro-inflammatory cytokine IL-6 in the 
circadian alterations associated with severe neurological and 
psychiatric disorders and invite further investigations on the 
underlying molecular mechanisms.
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of the active period in IL-6 and WT mice (n = 9–11 per group) under (a) light/
dark and (B) dark/dark conditions. (c) Activity onsets and (D) offsets in circadian 
hours in IL-6 compared with WT mice. All data are displayed as mean ± SEM; 
*p < 0.05.

FigUre s2 | Behavioral actograms exemplifying circadian locomotor 
activity patterns in interleukin-6 (il-6) and wild-type (WT) mice.  
Sample actograms illustrating wheel-running activity in (a) WT and (B)  
IL-6 mice.
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FigUre s1 | Duration of the active period (alpha) and activity onsets and 
offsets in interleukin-6 (il-6) and wild-type (WT) mice. Analysis of the length 
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An approximately 24-h biological timekeeping mechanism called the circadian clock 
is present in virtually all light-sensitive organisms from cyanobacteria to humans. The 
clock system regulates our sleep–wake cycle, feeding–fasting, hormonal secretion, body 
temperature, and many other physiological functions. Signals from the master circadian 
oscillator entrain peripheral clocks using a variety of neural and hormonal signals. Even 
centrally controlled internal temperature fluctuations can entrain the peripheral circadian 
clocks. But, unlike other chemical reactions, the output of the clock system remains 
nearly constant with fluctuations in ambient temperature, a phenomenon known as tem-
perature compensation. In this brief review, we focus on recent advances in our under-
standing of the posttranslational modifications, especially a phosphoswitch mechanism 
controlling the stability of PER2 and its implications for the regulation of temperature 
compensation.

Keywords: circadian clock, temperature compensation, phosphorylation, phosphoswitch, period2

The main advantage of having an intact circadian clock system is to anticipate and alert our physi-
ological mechanisms to prepare for daily changes in the environment imposed by light–dark cycle 
of the earth. At the organism level, the circadian clock is a hierarchical multioscillator network, 
where in mammals, the suprachiasmatic nuclei (SCN) is the master oscillator. The SCN in the 
hypothalamus of brain is entrained by the light–dark cycle through the eye and neuronal retinal 
ganglion cells. Synchronized highly interconnected neurons in the SCN oscillate and transmit their 
rhythm to peripheral oscillators such as liver, lung, and kidney via systemic cues including neuronal, 
neuroendocrine, and behavioral pathways. This clock network entrains physiological processes 
including the sleep–wake cycle, liver metabolism, and body temperature (1–3). At the molecular 
level, the circadian clock is composed of transcriptional and translational feedback loops that oscil-
late in cycles of approximately 24-h to create the circadian rhythms we see at the organism level. 
In the core loop, the positive transcriptional activators Clock and Bmal1 bind to E-box motifs and 
activate the expression of many targets, including their own negative regulators, Period (Per1, 2, and 
3) and Cryptochromes (Cry1 and Cry2). As the negative feedback proteins Per and Cry increase in 
abundance, they multimerize, enter into the nucleus, and bind to the heterodimeric Clock and Bmal1 
complex to inhibit their transcriptional activity. This generates a 24-h cycle that is cell autonomous. 
This clock machinery is broadly functional in all mammalian tissues (1–3).

The three major hallmarks of circadian clocks are their ~24-h oscillation in the absence of any 
external stimuli, entrainment by external stimuli, and temperature compensation. Entrainment 
allows the master clock to synchronize with seasonally and geographically changing light–dark 
cycles. In mammals, light entrains the central clock via retinal ganglion cells that communicate 
with the SCN via the retinal–hypothalamic tract. Homeothermic animals such as mammals 
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maintain a nearly constant body temperature with a narrow 
range of fluctuations in most part of the body, whereas poikilo-
therms such as frogs have body temperature, which can vary in 
wide range (4, 5). However, even in mammals, peripheral clocks 
can be entrained by small daily oscillations in internal body 
temperature (1, 3, 6).

Although the circadian clock system can be entrained by 
fluctuations in temperature, it remains fairly resistant to ambi-
ent temperature-induced changes in circadian period (5, 7). 
According to the Arrhenius equation of temperature depend-
ence on reaction rate, in any (bio)chemical reaction, a rise in 
temperature increases the rate of the reaction (8), which eventu-
ally reduces the reaction time. But in the case of the circadian 
biochemical system, in spite of changes in ambient temperature, 
the period length remains essentially constant at approximately 
24-h. Thus, Pittendrigh demonstrated that the Drosophila rhythm 
of eclosion (emergence of the adult fly from the pupa) retained 
a 24-h rhythmicity in total darkness over a temperature range 
of 16–26°C (5). This phenomenon is referred to as temperature 
compensation (5, 9). The temperature compensation of circadian 
period is evolutionarily conserved from light-sensitive cyano-
bacteria to homeothermic mammals, and surprisingly, even an 
in  vitro circadian clock reconstituted with KaiABC proteins of 
cyanobacteria shows temperature compensation between 25 and 
35°C, suggesting that it is a core design feature of the molecular 
clock (5, 10–13). More recently, using tissue explants and cell cul-
ture, it has been demonstrated that temperature compensation is 
a tissue and cell autonomous property. For example, the circadian 
oscillators controlling melatonin synthesis in the retina of golden 
hamsters are temperature compensated between 27 and 33°C 
(14), and Per1Luc fibroblasts maintain ~24-h period length despite 
changes in temperature over the range of 28.5–36.5°C (12). These 
findings also confirm peripheral cells as bona fide model systems 
to study the temperature compensation mechanism of the circa-
dian clock (12).

MODeLS OF TeMPeRATURe 
COMPenSATiOn

How the active process of temperature compensation is 
achieved by organisms is an area of intense research interest to 
both chronobiologists and mathematical modelers. Hastings 
and Sweeney almost 60  years ago proposed that temperature 
compensation could be achieved if two temperature-dependent 
reactions oppose each other, although at the time there was no 
inkling of what those reactions might be (9). This conceptual 
model was extended by Ruoff with the notion that positive 
and negative feedback loops of the oscillators might act as the 
opposing reactions and lead to temperature compensation in any 
kinetic oscillator model (15). As specific molecular members of 
the clock were identified, Hong et  al. first proposed that PER 
protein dimerization might regulate temperature compensation 
(16). Ten years later, as the complexity of the clock mechanism 
became clearer, many of the newly described regulatory steps 
have been tested in mathematical models of the clock to assess 
their potential contribution to temperature compensation. For 
example, Hong et  al. suggested that switch-like mechanisms 

acting on sensitive parameters such as phosphorylation, ubiq-
uitination, or complex formation controlling PER protein might 
regulate temperature compensation (17). Others have suggested 
using modeling that the concentration of a rate-limiting enzyme 
involved in processes like phosphorylation can determine tem-
perature compensation (18).

In Neurospora, the core clock gene frequency (frq) undergoes 
alternative splicing that is temperature sensitive. The resulting 
two isoforms have opposing effects on clock speed and was 
once proposed to underlie temperature compensation (19–21). 
More recently, casein kinase 2 in Neurospora was implicated in 
temperature compensation. Decreased CK2 activity, or muta-
tion of a specific CK2 phosphorylation site, leads to altered 
temperature compensation, probably due to an altered balance 
of phosphorylation at distinct sites. Interestingly, CK2 itself 
had a normal Q10, i.e., its activity changed twofold with a 10°C 
increase in temperature (22). In this system, casein kinase 1 
(CK1) was important for clock speed but not temperature com-
pensation. Although these studies have provided some insights 
for understanding the mechanisms of temperature compensa-
tion, either they lack good experimental evidence to support 
their mathematical model or these models are not tested in 
mammalian system.

PHOSPHORYLATiOn OF PeR2 
COnTROLS CLOCK SPeeD

Many of the mathematical models suggested that temperature 
compensation could be due to two opposing reactions acting 
on a rate-limiting step of the circadian clock machinery (9, 18). 
The reversible multisite phosphorylation of PER2 is a potential 
target in this regard due to its rate-limiting role in regulating 
clock speed (Figure 1) (23, 24). The importance of phosphoryla-
tion in the control of circadian rhythms was demonstrated first 
by the finding of short- and long-period mutations in Drosophila 
that both mapped to the Dbt kinase gene, the ortholog of mam-
malian CK1δ and CK1ε (25, 26). CK1 is a family of serine/
threonine kinases with seven different isoforms in mammals 
that are encoded by distinct genes (α, β, γ1, γ2, γ3, δ, and ε), 
which are involved in diverse biological functions including 
circadian rhythms, Wnt signaling, membrane trafficking, 
cytoskeleton maintenance, DNA replication, DNA damage 
response, RNA metabolism, and parasitic infections (23, 27–30). 
The first circadian clock phenotype in mammals was found in 
tau hamsters with 20-h short period (31). Later, it was identified 
that a missense mutation in hamster CK1εtau(Arg178Cys) is to 
underlie the short-period phenotype of the tau hamster (32). 
Subsequently, point mutation of a CK1δ/ε-regulated motif in 
human PER2 [S662G, familial advanced sleep phase (FASP) 
site] (33) and a point mutation of CK1δ were found in families 
with FASP syndrome (34). A body of evidence suggests that 
CK1δ is the major driver of clock timing, but that CK1ε plays 
an important role as well.

The mechanism by which CK1 regulates phosphorylation of 
PER2 is complex and is slowly being teased apart. Phosphorylation 
of PER2 by CK1ε leads to recruitment of the ubiquitin ligase, 
β-TrCP, and proteasomal-mediated degradation of PER2 (35). But 
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FigURe 1 | Regulation of PeR2 phosphorylation, degradation, and its role in temperature compensation by the phosphoswitch mechanism. Lower 
temperature increases relative phosphorylation at the β-TrCP site of PER2, leading to faster degradation and shorter period. Higher temperature increases relative 
familial advanced sleep phase (FASP) site phosphorylation, enhancing PER2 stability and lengthening the period. The degradation pattern of PER2 at 30°C is largely 
exponential, while at 37°C, three-phase degradation is seen. This has important implications for temperature compensation (see text for details). Domain 
architectures are shown in colors. PAS1, PAS domain 1 (orange); PAS 2, PAS domain 2 (grey); CK1, Casein kinase 1-binding domain (green); CRY, Cry binding site 
(blue).
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the impact of CK1ε activity on the clock speed has been puzzling, 
due to opposing observations that reduced CK1 activity shorten 
(32, 34) and lengthen the circadian period (35). To solve this puz-
zle, mathematical modeling was applied and then experimentally 
confirmed the non-intuitive prediction that the short-period 
tau mutation of CK1ε is in fact functionally a gain of function, 
not a loss of function mutation. It was further reported that the 
CK1εtau is a highly specific gain of function for its substrate PER2, 
which gets phosphorylated and degraded much faster, resulting 
in a faster clock and shorter circadian period (36). These studies 
emphasized the value of combining experimental studies with 
predictive mathematical models to advance our understanding 
of the clock and how changes in kinase activity can alter the clock.

A PHOSPHOSwiTCH RegULATeS PeR2 
DegRADATiOn

We and others have shown that there are two phosphorylation 
sites, the FASP and the β-TrCP site, regulating stability of mam-
malian PER2 (Figure  1) (35, 37). The FASP site is a missense 
mutation at S662G (S659 in mouse) associated with FASPS, which 
prevents priming phosphorylation by an unknown priming 
kinase. Priming phosphorylation of S659 (FASP site) is required 
for the phosphorylation of four immediate downstream serines of 
PER2 (659-SVVSLTSQCSYSS-671) by CK1ε/δ (33, 37). The sec-
ond functional phosphorylation site is β-TrCP site that is also a 
CK1ε-dependent phosphorylation site (S478 in mPER2), but that 
seems to be independent of priming phosphorylation (35). It has 
been identified that surprisingly PER2 undergoes three distinct 

stages of degradation upon addition of the protein synthesis 
inhibitor cycloheximide during the PER2 accumulation phase 
(CT 14–26) of the circadian cycle. Mathematical modeling pre-
dicts that a phosphoswitch generates the three-stage degradation 
of PER2 (38). Accordingly, the first rapid decay phase is β-TrCP 
site phosphorylation dependent, the second slow plateau phase 
is dependent on FASP site phosphorylation, and in the third and 
falling phase, PER2 protein is degraded in a CK1δ/ε-independent 
manner that is not well understood. Importantly, the model was 
experimentally confirmed (38). Further experiments showed 
that CK1εtau has decreased activity on the FASP site, leading to 
an increased activity on the β-TrCP (S478) site. This explains 
how CK1εtau is a gain of function on phosphorylation at S478 and 
further supports the phosphoswitch between the two sites (the 
FASP and the β-TrCP site) (38).

PeRiOD2 PHOSPHOSwiTCH UnRAveLS 
THe MeCHAniSM OF TeMPeRATURe 
COMPenSATiOn

Before CK1ε was even identified as a clock component, its role 
in temperature compensation was suggested by the observation 
that retinas from tau mutant hamsters have significantly impaired 
temperature compensation (14). Isojima et  al. subsequently 
reported that unlike virtually all other kinases, CK1ε/δ are tem-
perature insensitive (39). Therefore, they proposed that CK1ε/δ-
dependent phosphorylation process might play a central role in 
temperature compensation of the circadian clock (39). Indeed, in 
further study, the CK1ε/δ phosphorylation of a β-TrCP peptide 
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was temperature insensitive (39). The mathematical model of Kim 
and Forger, building on the pioneering work of Forger and Peskin 
in understanding the mammalian clock system using mathemati-
cal tools (40–42), predicted a potential role for the phosphoswitch 
mechanism in temperature compensation. A key feature of the 
model requires that there are two sites involved in the phosphos-
witch, the FASP and the β-TrCP sites (Figure 1) (38). Since CK1 
is relatively temperature insensitive (39), the model assume that 
priming of the FASP site has normal temperature sensitivity, i.e., 
its activity increases with increasing temperature, while CK1ε/δ 
phosphorylation of the β-TrCP site is temperature insensitive, i.e., 
the rate of phosphorylation is constant regardless of temperature. 
Incorporating this differential kinase temperature sensitivity into 
the mathematical model indeed predicted that this could underlie 
temperature compensation. This model was then experimentally 
tested in immortalized Per2Luc mouse embryonic fibroblasts 
(MEFs). It was found that at higher temperatures, increased FASP 
site phosphorylation by the priming kinase leads to slow second-
phase degradation and more accumulation of PER2, eventually 
lengthening and compensating period length. Similarly, Per2Luc 
MEFs at 30°C showed a marked decrease in second-phase 
degradation, whereas first-stage degradation remained intact. 
These findings underscore the importance of the relative rates of 
phosphorylation of the two phosphoswitch sites in temperature 
compensation (38). Additional experiments indirectly tested if 
an intact phosphoswitch mechanism is necessary for temperature 
overcompensation. An abnormal temperature compensation 
was observed in CK1εtau; Per2Luc MEFs, and also in Per2Luc MEFs 
treated with a CK1ε/δ inhibitor, further supporting a role for 
CK1ε/δ and an intact phosphoswitch mechanism as a prerequisite 
for temperature compensation. The studies also support the value 
of a robust mathematical model that makes testable predictions 
about complex systems when biological intuition has reached its 
limits (38).

Recently, it has been reported that cells with knockouts 
of specific circadian clock components retain temperature 
compensation (43). The authors concluded that temperature 
compensation is likely determined by a rate-limiting process(es) 
that are temperature sensitive, consistent with the phosphoswitch 
mechanism (43). Another mathematical model for temperature 
compensation has recently proposed a temperature insulation 
mechanism where oscillation period is determined by very 
few temperature-independent or only slightly temperature-
dependent parameters, but where other parameters remain 

strongly temperature dependent (44). This model is analogous 
to the proposed phosphoswitch mechanism in which the CK1ε/δ 
is temperature independent or slightly dependent, whereas the 
priming kinase is temperature dependent (38).

There are a number of unresolved issues. The priming kinase 
has not been identified yet. It also remains unclear what happens 
to PER2 phosphorylation over the full 24-h day, in part because 
the methods to study this in mammalian systems are not suitably 
sensitive. This is relevant to another unsolved question: how PER2 
is degraded in the third phase of three phase decay, when neither 
CK1 nor proteasome inhibitors impact PER2 loss? Moreover, 
further study is necessary to understand whether fluctuations in 
body temperature, which can entrain the clock, do so in part via 
the phosphoswitch mechanism in addition to the proposed heat 
shock factor 1 (HSF1) mechanism (7, 45). Finally, it is also impor-
tant to address whether the mechanisms regulating temperature 
compensation in peripheral cells and the central pacemaker 
(SCN) cells are the same and whether temperature-induced 
changes in peripheral clocks can feed back to the central clock.

THe OUTLOOK

It is remarkable that the complex yet robust phenomenon of 
temperature compensation is regulated by subtle differences in 
phosphorylation of the same protein at different sites. Notably, 
this finding is in general agreement with predictions of earlier 
mathematical models that suggested that opposing outputs with 
switch-like mechanisms might control temperature compensation 
(9, 17). In the future, it will be important to identify the priming 
kinase that plays a central role in the phosphoswitch model. This 
phosphoswitch mechanism of temperature compensation may be 
a core feature of clocks in many species, as a similar interaction of 
phosphorylation sites is operative in Drosophila and Neurospora 
as well (46–48).
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A systems approach to studying biology uses a variety of mathematical, computational, 
and engineering tools to holistically understand and model properties of cells, tissues, 
and organisms. Building from early biochemical, genetic, and physiological studies, 
systems biology became established through the development of genome-wide 
methods, high-throughput procedures, modern computational processing power, and 
bioinformatics. Here, we highlight a variety of systems approaches to the study of 
biological rhythms that occur with a 24-h period—circadian rhythms. We review how 
systems methods have helped to elucidate complex behaviors of the circadian clock 
including temperature compensation, rhythmicity, and robustness. Finally, we explain 
the contribution of systems biology to the transcription–translation feedback loop and 
posttranslational oscillator models of circadian rhythms and describe new technologies 
and “–omics” approaches to understand circadian timekeeping and neurophysiology.

Keywords: systems biology, models, theory, RNA sequencing, neurophysiology, circadian rhythm, ribosome 
profiling

SYSTeMS BiOLOGY—A BRieF HiSTORY

In contrast to a reductionist approach, systems biology emphasizes the interaction of components 
rather than the components themselves: to see the forest for the trees. This holistic approach is 
not a modern idea, but can be traced as far back as the Greek Aristotle “…the totality is not, as 
it were, a mere heap, but the whole is something besides the parts…” In the modern era, Karl 
Ludwig von Bertalanffy is generally credited as one of the founders of general systems theory 
with his model of individual cell growth in the early 20th century (1). Later, the Dutch physicist 
Balthasar van der Pol working with electric circuits developed his eponymous equation to describe 
relaxation oscillations (2), which was used for theoretical models of neuronal systems (3, 4). In the 
1950s, Alan Hodgkin and Andrew Huxley described the first mathematical model of an action 
potential propagating along a neuron, which famously predicted the existence of ion channels 
before their experimental discovery (5), and Alan Turing proposed a reaction–diffusion system 
in “The Chemical Basis of Morphogenesis” to explain how an initially homogenous system—the 
embryo—forms patterns through the action of morphogens (6).

These early systems models of cellular behavior were overshadowed by the excitement of the 
molecular biology revolution. Geneticists and biochemists learned to devise assays to measure the 
impact of single genes and single enzymes. In the 1970s, Ronald Konopka in Seymour Benzer’s lab 
used chemical mutagenesis to screen fruit flies for defects in their rhythmic emergence from the 
pupae state. He discovered three alleles of the Period gene, which is one of the earliest examples 
of a gene determining behavior in an organism (7). For the next 30  years, circadian biologists 
mostly pursued reductionist approaches similar to Konopka’s strategy to examine circadian 
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behaviors in different organisms by knocking out single genes 
or isolating individual tissues.

The era of functional genomics and next-generation sequenc-
ing has begun to shift the balance back toward systems biol-
ogy. In the following sections, we review the contributions of 
mathematical models, microarray technology, RNA sequencing, 
proteomics, and neurophysiological approaches to systematically 
dissect circadian behavior and uncover new modes of regulation 
(for an overview, see Figure 1).

MODeLiNG THe SYSTeMS PROPeRTieS 
OF CiRCADiAN RHYTHMS

The circadian clock is an interconnected network—a network 
of small molecules and metabolites, a network of genes and 
proteins, and a network of cells, neurons, and tissues. At each 
level, the interacting network of components can create complex 
behaviors. These systems-level properties include three defining 
characteristics of circadian rhythms: (1) periodicity—rhythms 
are autonomous with a period that matches the daily 24-h rota-
tion of the Earth, (2) entrainment—rhythms can be reset by 
environmental cues such as light, temperature, or food intake, 
and (3) temperature compensation—periodicity of rhythms 
persistent despite fluctuations over physiologically relevant 
temperature ranges.

Before genetics led to the identification of molecular compo-
nents governing a transcription and translation feedback loop 
that underlies the mechanism of circadian oscillation in many 
organisms, theoretical studies sought to model how oscillation, 
periodicity, entrainment, and temperature compensation could 
arise. The first was Goodwin’s model of a molecular oscillator 
using negative feedback (8–10). Understanding the different 
types of behavior in networks have enabled mathematical biolo-
gists to make predictions about which biological processes affect 
circadian rhythm behavior such as period length and tempera-
ture compensation. For example, in a hypothetical biochemical 
network with negative feedback, there are necessary constraints 
on reaction rates for the generation of instability at steady state 
(11). Using this constraint and other ideas from signal process-
ing in the Goodwin model for circadian oscillation, it could be 
shown that transcription and translation rate are not important 
for setting period length, but instead a critical feature is the 
degradation rate of the repressor (12). These studies highlight the 
fundamental contributions of systems modelers even without 
knowledge of the molecular network underpinning circadian 
rhythms.

Identification of the molecular components of circadian 
rhythms led to an explosion of models incorporating these 
proteins and functions. Goldbeter’s model used non-linearity 
of Hill-type equations in the Goodwin model when he reported 
the first model of circadian rhythms based on observations of 
PERIOD phosphorylation and degradation in Drosophila (13). 
Non-linearity in feedback repression could occur through 
cooperative binding of multiple repressors to a promoter or via 
repressive multisite phosphorylation of a transcriptional activa-
tor. Derivations of this type of model have been used to examine 
Drosophila (13–19), Neurospora (14, 16, 20, 21), and mammalian 

circadian rhythms (22–30). In the next subsections, we discuss 
how these and other models contributed to our understanding of 
the systems properties of circadian rhythms.

Periodicity and Design of the 
Transcription–Translation Feedback Loop
The period of a biological rhythm is tied to the 24-h rotational 
movement of the Earth. Organisms across different domains of 
life evolved timing mechanisms called biological clocks to coor-
dinate function and behavior to specific times of the day (31). 
Each day environmental cues such as light and temperature reset 
your biological clock in a process called entrainment (32). Food 
can also entrain biological rhythms by affecting clock machinery 
in the liver (33, 34). Entrainment allows us to recover from the 
jet lag inducing effects of airplane travel by either advancing or 
delaying the phase of the circadian clock. Response to external 
cues is not instantaneous—timekeeping of the circadian clock 
persists, which is why we feel jet lagged in the first place.

Flexibility in period length was apparent from the earliest 
studies of mutant organisms (7, 35, 36). Systematic screening 
of chemical libraries also revealed chemical compounds that 
could alter period length by targeting specific clock proteins 
(24, 37–44). Pharmacological and/or genetic perturbation 
could extend the range of periods in the fibroblast from 27 to 
54 h (41) and suprachiasmatic nucleus (SCN) from 17 to 42 h 
(45). Investigating why some mutant organisms have short or 
long periods revealed the molecular mechanisms of circadian 
rhythms and researchers could begin to test models by designing 
and manipulating components in the circuit. They were perhaps 
inspired by synthetic bacteria genetic circuits that recapitulate 
transcriptional oscillations (46) and bistable switches (47). For 
circadian rhythms, mathematical modeling guided construction 
of a synthetic 26-h oscillator based on siRNA-based silencing of 
a tetracycline-dependent transactivator (48). Construction of a 
mammalian promoter/enhancer database allowed researchers to 
identify high-scoring or low-scoring cis-elements and validate 
high- or low-amplitude expression, respectively, in cells (49), 
which enabled synthetic reconstruction of different circadian 
phases in cells by mixing combinations of promoter elements 
(50, 51). Researchers have also implemented artificial photic 
input pathways to clock cells to investigate singularity behavior, 
in which the circadian clock is reset after perturbations of differ-
ent strengths and timing (52). More recently, researchers have 
succeeded in replacing the endogenous repressor in mice with 
a tunable one (53) and artificially manipulating the molecular 
circuitry of pacemaker cells in the brain (54, 55) to alter period 
length. These synthetic biology reconstruction experiments probe 
the sufficiency of circadian networks to generate oscillations and 
oscillations of different periods as well as test ideas about how 
network components interact and function within cells.

Periodicity and the Rise of the 
Posttranslation Circadian Oscillator
Scientists originally thought that a transcription–translation 
feedback network was required for 24-h rhythms. But then, a 
remarkable study was published. Working in cyanobacteria, 
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FiGuRe 1 | Systems approaches to studying circadian rhythms. On an organism level, researchers are using CRISPR/Cas9 and TALEN coupled with new 
sleep staging techniques to uncover mutations in genes that increase or decrease sleep. On a tissue level, new tissue clearing techniques such as CLARITY and 
CUBIC are enabling researchers to investigate the neuroanatomical basis of behavior (see Systems Neurophysiology). On a cell level, systems transcriptomics 
experiments have revealed not only rhythmic mRNA levels through microarrays and RNA sequencing but also other molecular details such as chromatin state, 
mRNA structure and modification, ribosome binding, and rhythmic protein abundance (see Systems Transcriptomics, Systems Proteomics and Metabolomics, and 
Systems Approaches to Study Translation Regulation in Circadian Rhythms). On a molecular level, reconstitution of a cyanobacteria posttranslational oscillator and 
the discovery of transcription/translation independent peroxiredoxin rhythms have expanded our understanding of circadian oscillations (see Periodicity and the Rise 
of the Posttranslation Circadian Oscillator). Systems modelers have discovered insights into constraints and parameters necessary for unique features of the 
circadian clock such as entrainment, periodicity, robustness, and temperature compensation (see Modeling the Systems Properties of Circadian Rhythms).
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Kondo and colleagues mixed a small number of cyanobacterial 
proteins KaiA, KaiB, and KaiC, and ATP in a test tube to produce 
rhythmic 24-h oscillations in KaiC protein phosphorylation 
(56). In a manner similar to simple chemical reaction–diffusion 
systems creating Turing patterns, 24-h periodicity could be 
established in the absence of a transcription–translation negative 
feedback loop architecture.

A few years later, it was discovered that an antioxidant 
enzyme called peroxiredoxin in cultured human red blood 
cells undergoes temperature-independent circadian cycles 
of hyperoxidation. Because red blood cells lack a nucleus and 
peroxiredoxin rhythms persist in the presence of transcription 
and translation inhibitors, these rhythms prove the existence of a 
non-transcriptional-based circadian oscillator in mammals (57) 
and was later found to be conserved in a wide range of species 
(58). In mice, rhythmic peroxiredoxin oxidation is thought to 
occur through hemoglobin-dependent H2O2 generation and 
proteasome degradation (59), but it remains unclear how rhyth-
mic oxygen delivery occurs in isolated cells and how the rhythms 
of peroxiredoxin oxidation are temperature compensated. In 
the future, a more detailed understanding of the relationship 
between rhythmic peroxiredoxin oxidation and canonical circa-
dian clocks is needed.

The reconstitution of a phosphorylation oscillator in cyano-
bacteria (56) prompted modelers and synthetic biologists to 
question what the minimal components are for a circadian 
oscillator. In cyanobacteria, biochemical studies have driven 
our understanding of the mechanism of the oscillator. KaiC was 
discovered to be both a kinase and a phosphatase (60–62). KaiC 
autophosphorylation is triggered by allosteric activation by KaiA 
(63, 64) and regulated through feedback inhibition by KaiB (60, 
65). Importantly, a sequential ordering of phosphorylation at two 
sites on KaiC is necessary for oscillation (66, 67) and remarkably, 
when Kai protein complexes from different starting phases are 
mixed, the phosphorylation state of the population remains in 
synchrony (68).

Several models have been proposed to explain the mechanism 
of oscillation (69–71) and synchrony of the cyanobacteria oscil-
lator on a population level (67, 72, 73). A central idea is that 
there is monomer shuffling between KaiC hexamers, which was 
proposed in mathematical models (72, 74) and by experiments 
from the Kondo laboratory (65, 68), and confirmed elsewhere by 
FRET experiments (75). Other models do not explicitly rely on 
monomer exchange for synchrony (67, 73), but rather synchrony 
arises as an emergent property of the system based on KaiA’s 
affinity for different phosphorylated forms of KaiC. Of course, 
concepts such as differential affinity and monomer exchange have 
been incorporated together into more sophisticated models of 
cyanobacteria rhythms (76, 77).

Studies in cyanobacteria provide a foundation to under-
stand the requirements (ordered phosphorylation, synchrony, 
etc.) for a generic phosphorylation oscillator. Most models of 
non-circadian phosphorylation oscillators require additional 
mechanisms for rhythmicity such as protein synthesis and 
degradation (78) or allosteric feedback from substrate (79, 80). 
However, a theoretical study demonstrated that autonomous 
circadian oscillations are possible with a single substrate 

reversibly phosphorylated at only two sites (81) and suggested 
that a well-defined ordering of phosphorylation states and 
sequestering checkpoints for enzyme activity could be design 
principles for single-molecule oscillators for the circadian clock 
and potentially other cellular oscillators. The Jolley model (81) 
results in a substrate with four possible modification states 
similar to MAPK (82) and cyanobacteria models (67). While a 
general phosphorylation oscillator has not yet been built based 
on these models, the reconstruction of temporal (56) and spatial 
(83) oscillators from purified components provide inspiration 
for future work. Furthermore, the recently reported success in 
transplanting the circadian clock from cyanobacteria into the 
non-circadian bacterium Escherichia coli (84) implies some 
amount generality for the network and design principles upon 
which circadian rhythms lie.

Temperature Compensation
Insensitivity to temperature was originally identified as an essen-
tial characteristic of biological time-measuring systems in bees, 
flies, and marine organisms (85–88) and references therein. In 
particular, it was postulated that temperature independence was 
the result of a temperature compensation mechanism involving 
the opposing effects of enzyme activities in response to changes in 
temperature (87). Researchers began to identify genetic mutants 
with defects in temperature compensation in Neurospora (89, 
90) and Drosophila (91, 92). In flies, repressor dimerization was 
thought to be involved in temperature compensation because 
loss of the repressor’s dimerization domain caused the period to 
strongly depend on temperature (91). Researchers incorporated 
these ideas into models of circadian rhythms by suggesting that 
nuclear import of the repressor decreases with temperature and 
repressor dimerization increases with temperature (93, 94). 
Other models emphasized the importance of degradation of the 
repressor (95, 96) and other parameters needed for temperature 
compensation (97). The conceptual point of these models is that 
for circadian rhythms to be temperature compensated, some 
biochemical reactions accelerate circadian oscillations, while 
other biochemical reactions decelerate circadian oscillations. 
The balance model supposes that the former acceleration reac-
tions are less sensitive to temperature, whereas the latter decel-
eration reactions are more sensitive to temperature. A molecular 
basis for this type of temperature compensation was proposed 
in plants (98) and also formulated mathematically as a balance 
equation (99) to explain how Neurospora repressor stability 
decreases with an increase in temperature (95, 100), which is 
ultimately caused by phosphorylation-dependent degradation 
from a kinase (101).

In 1968, Pittendrigh and colleagues argued against a balancing 
model in which temperature shortens a reaction in the first half of 
a circadian cycle while simultaneously lengthening a reaction in 
the second half of the cycle in their experiments with Drosophila 
(102). They used short light pulses to shift the phase of Drosophila 
pupae at different temperatures and showed that the period and 
wave form of the phase response curve changes only a little bit 
with temperature. They proposed a model where circadian output 
from a temperature-dependent oscillation is subjected to feed-
back inhibition from another temperature-dependent reaction 
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(102, 103). These early studies suggested a model in which the 
enzymatic reactions that comprise the clock are temperature 
compensated. However, the idea of a temperature-compensated 
enzyme is counterintuitive because most chemical processes are 
temperature dependent. In cyanobacteria, the kinetic profile of 
the phosphorylation to dephosphorylation ratio is temperature 
compensated in vitro (56, 104). This was the first indication that 
temperature compensation could occur through the enzymes 
themselves as opposed to compensation that occurs through 
competing biochemical reactions.

The canonical transcription–translation feedback loop 
underlying circadian rhythms in eukaryotes may also be affected 
by temperature-insensitive enzymatic reactions. In eukaryotes, 
it was first discovered in mammals that the phosphorylation-
dependent degradation rate of the repressor is temperature 
insensitive in cells, and temperature-insensitive phosphoryla-
tion is preserved in vitro (41). This suggests that temperature-
insensitive enzymatic reactions can influence the circadian 
transcription–translation network. In addition to component-
level temperature compensation (41), detailed examination of 
the degradation of the repressor revealed three distinct stages 
of degradation that depend on when during the circadian cycle 
protein translation is arrested (105). The authors in this study 
suggested that temperature-insensitive and -sensitive phospho-
rylation at different sites of the repressor are responsible for 
temperature compensation. In the future, it will be particularly 
interesting to uncover the mechanisms and structural basis of 
temperature compensation in these individual reactions and to 
synthetically engineer temperature compensation in circadian 
clocks similar to synthetically temperature-compensated genetic 
networks in bacteria (106).

Robustness to Gene Dosage
Circadian rhythms are surprisingly robust to changes in gene 
dosage—there has been much discussion about why knockout 
of core clock genes only results in subtle period lengthening 
or shortening (107). There have been efforts to understand 
networks effects by systematically altering individual gene lev-
els (108) or by globally altering transcription levels with drugs 
(109). Resistance to internal noise from the stochastic nature 
of biochemical networks in the cell is an essential property for 
a robust circadian clock network (110). Theoretical models 
suggested that intercellular coupling between individual oscil-
lator cells is necessary for synchrony and noise resistance (111). 
Indeed, dissociated SCN neurons and isolated cells from tissues 
such as lung and liver are arrhythmic compared to intact tis-
sues with altered rhythmicity (112, 113). Robustness is also 
ensured by interlocking-feedback loops at the genetic circuit 
level, for review, see Ref. (114), and has been featured in models 
of circadian rhythms from different organisms (17, 115–118). 
In mammals, genetic (119–122) and pharmacological (38, 44) 
perturbation of the secondary feedback loop showed that it 
primarily served as a stabilizing mechanism.

Modeling approaches have revealed that activator and repres-
sor complex formation are necessary for noise resistance (123) 
and that a 1:1 stoichiometric balance of repressors binding 

activators rather than binding DNA is important for robust 
circadian timekeeping (124). Experiments in mammals seem 
to support these models because rhythm generation in mouse 
embryonic fibroblasts can be abolished by constitutive expression 
of the mammalian repressor (125) or by artificially altering the 
stoichiometry between activators and repressors (126). Indeed, 
the natural stoichiometry between activators and repressors in a 
mouse liver is close to 1:1 as measured by western blotting (127) 
and mass spectrometry (128).

The difference in repression mechanisms—Hill-type non-
linearity from models based on the Goodwin oscillator or 
protein-based sequestration leads to subtle differences in the 
activity of the activator in circadian models as the concentra-
tion of the repressor increases. For Hill-type models, there is an 
all-or-none switch that occurs when multisite phosphorylation 
or cooperative binding reaches some critical level. The activator 
is like a light bulb that is on until it suddenly gets switched off. 
For protein-sequestration models, the activity of the activa-
tor linearly decreases as a function of the molar ratio between 
activator and repressor, which is like a light bulb slowly turned 
down by a dimmer. These differences can affect the synchronized 
period between coupled heterogeneous oscillators compared to 
the mean period of uncoupled oscillators (129). Importantly, 
understanding the differences in repression mechanisms for 
coupled oscillators can lead to testable predictions on how clock 
components interact with other proteins, such as regulation of 
the tumor antigen p53 (130).

SYSTeMS TRANSCRiPTOMiCS

identification of the Components of the 
Circadian Clock
On a tissue level, the central clock in mammals is located in 
a structure of the brain called the SCN. Ganglion cells in the 
retina detect light signals through a photopigment called mel-
anopsin and relay this information to the SCN. SCN neurons 
project to different regions of the brain and synchronize bio-
logical clocks in peripheral tissues by secretion of hormones 
as previously reviewed (131, 132). However, most tissues in 
an organism have the core transcriptional architecture for 
circadian rhythmicity including liver, lung, and muscles (133) 
as well as cultured cells (134–136).

The genetic network for circadian rhythms is based on 
delayed feedback repression of transcription. Briefly, a 
CLOCK:BMAL1 heterodimer activates transcription at pro-
moter elements called E-boxes. A protein called PERIOD (PER) 
heterodimerizes with another protein CRYPTOCHROME 
(CRY) and translocates to the nucleus where it represses 
transcription of the Period gene and other genes that acti-
vate Period transcription, reviewed elsewhere extensively 
(137–140). Several components of the core transcriptional 
network were identified in forward-genetics screens (i.e., 
random mutation of an organism’s genome and searching for 
mutants with abnormal rhythms) including Period (7) and 
Timeless (141) in Drosophila, Frequency (35) in Neurospora, 
and Clock (142, 143) in mice.
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Systems approaches have been successful in identifying other 
core clock components such as Bmal, which was identified 
using an iterative search for other bHLH proteins (144, 145). 
Genomics-based strategies helped to identify activators of Bmal 
such as Rora (122) and Nr1d1 (121), and functional genomics 
strategies in Drosophila revealed Clockwork Orange (146–148) as 
a homolog of the mammalian Dec1 and Dec2 (149).

Systems experiments to Study the 
Transcriptome
Some of the earliest systems approaches to study circadian rhythms 
were to simply analyze all the mRNA in a tissue or organism to 
determine which mRNAs had cyclic expression. These studies 
used microarrays to identify cycling mRNAs in Drosophila (150, 
151), in the mouse liver, heart, and SCN (152–155), rat pineal 
gland (156), isolated fibroblasts (157, 158), and in plants (159). 
There was considerable tissue specificity in rhythmic genes 
because only approximately 10% of cycling genes were common 
to at least one other tissue (160). Additionally, there are approxi-
mately 100-fold fewer cycling transcripts in NIH3T3 and U2OS 
cell culture models compared to mice tissue (161). This study also 
revealed 12-h oscillatory transcripts in liver, heart, lungs, and 
other tissues, but not in cultured cells (161). These “harmonic” 
rhythms are perturbed by a disrupted circadian clock in the SCN 
(162). Rhythmicity of the core clock component PER2 in these 
tissues could be confirmed with luminescent reporter mice (163).

Recent studies have begun to use RNA sequencing to measure 
steady-state mRNA expression in tissues such as the mouse liver 
(164–166) or to identify transcription factor-binding sites using 
chromatin-immunoprecipitation coupled with RNA-sequencing 
(CHIP-seq) (164–170). Comparative genomic approaches 
revealed the importance of E-boxes, D-boxes (171), and RREs 
(155, 171) in timing circadian mRNA expression, which have 
allowed ensemble-based predictions of phase response from 
combinations of these elements (25).

Systems experiments Analyzing 
Chromatin State
Next-generation sequencing experiments revealed both circadian 
initiation and recruitment of RNA polymerase II (RNAPII) to cir-
cadian promoters (164, 168) and concomitant circadian changes 
in chromatin state (164, 166, 168). In particular, H3K4me3 
histone methylation have circadian oscillations that slightly lag 
RNAPII occupancy (168). Circadian regulation of chromatin 
state was first observed in an increase in phosphorylation of 
histone H3S10 in the SCN in response to light (172). Additionally, 
rhythmic acetylation of histone 3 was observed in the promoters 
of Per1, Per2, and Cry1 in mouse liver (173, 174). CLOCK itself 
has intrinsic histone acetylase activity (175) and is rhythmically 
recruited to circadian promoters (174, 176). CLOCK can acetylate 
other non-histone proteins including BMAL1, which promotes 
recruitment of CRY1 and thus BMAL1–CLOCK inactivation 
(177). SIRT1, a sirtuin histone deacetylase whose activity depends 
on the coenzyme nicotinamide adenine dinucleotide (NAD+), 
interacts with CLOCK and can deacetylate BMAL1 (174) and 
PER2 (178). SIRT1 also controls H3K4me3 methylation through 

circadian deadenylation of the histone methyltransferase mixed-
lineage leukemia 1 (179). Circadian regulation results in cycles of 
NAD + biosynthesis (180), NAD + recycling (181), alters Clock 
and Bmal1 binding (182), and NAD redox rhythms have been 
observed directly in cells (183). Together, these studies suggest 
a direct link between metabolism and epigenetic regulation of 
circadian rhythms.

MicroRNAs (miRNAs) in Circadian 
Rhythms
In addition to discovering cycling transcripts, systems tran-
scriptomics experiments have uncovered other cycling RNAs 
such as long non-coding RNAs (lncRNAs) and miRNAs. For 
example, CHIP-seq experiments revealed clock proteins such as 
Clock, Bmal1, and Nr1d1 binding at sites outside of canonical 
gene promoters (166, 167, 169, 170, 184, 185), which suggested 
circadian regulation of non-protein-coding transcripts. MiRNAs 
bind target mRNAs typically in 3′ untranslated regions (3′ UTRs) 
to inhibit translation and destabilize the mRNA, for review see 
Ref. (186–189). Microarray studies uncovered miRNA expression 
inversely correlated with circadian activators Clock and Bmal1 
and positively correlated with circadian suppressors Per, Cry1, 
and Nr1d1 (190), and other miRNAs that have diurnal expression 
patterns (191). MiRNAs are regulated by circadian proteins such 
as CLOCK (170, 192, 193) and NR1D1 (194) and modulate the 
expression of circadian genes such as Bmal1 (195–198), Clock 
(193, 199, 200), the circadian polyA deadenylase Nocturnin (201), 
Per1 and Per2 (202–204), Clockwork Orange (205), Timeless in 
Drosophila (206), and Cry1 (207). Knockout of the core miRNA-
processing machinery in mouse liver revealed that ~30% of the 
rhythmic transcriptome is posttranscriptionally modulated by 
miRNAs (208).

lncRNAs in Circadian Rhythms
In addition to miRNAs, next-generation sequencing experiments 
have revealed extensive transcription of lncRNAs (209, 210) and 
circadian expression of lncRNAs (166, 211, 212). An in depth 
study revealed differential expression of 112 lncRNAs in the rat 
pineal gland, and light expression at night could modulate the 
level of some of these lncRNAs (213). A study of mouse liver 
revealed 19 out of 123 lncRNAs detected with robust oscillations 
and detected antisense transcripts associated with Per2 (166). 
Antisense transcription of Per2 in mice liver has been reported 
by others (164, 165) and originally in the silk moth (214), but 
it remains unclear what the function of antisense Per2 is for 
circadian rhythms. In Neurospora, the antisense transcript of 
frequency (called Qrf—Frq, spelled backward) is important for 
entrainment to light, oscillates in a reciprocal pattern to Frq, 
and promotes Frq gene silencing via heterochromatin formation 
(215–217). Deletion of a lncRNA associated with Prader–Willi 
syndrome in mice results in increased energy expenditure and 
altered expression of circadian genes such as Clock, Cry, and 
Per (218). Additionally, a lncRNA highly upregulated in liver 
perturbs the expression levels of Clock, Cry, and Per in hepatoma 
cells (219). Together, these studies suggest a role for non-protein-
coding transcripts in the regulation of circadian rhythms.
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Posttranscriptional Regulation of 
Circadian Rhythms
Next-generation sequencing studies have also examined to 
what extent rhythmic steady-state mRNA transcripts result 
from de novo rhythmic transcription versus rhythms via post-
transcriptional regulation. By analyzing expression of introns 
as an indicator of pre-mRNA levels, a study by Koike et  al. 
determined that the majority circadian mRNAs do not undergo 
rhythmic transcription (164). Another method to directly assess 
de novo transcription called Nascent-seq confirmed this result 
and further showed that many mRNAs with de novo rhythmic 
transcription do not have rhythms in steady levels of mRNA 
(165). A similar nascent-seq study in Drosophila also revealed a 
considerable posttranscriptional contribution to cycling mRNA 
amplitudes (220).

There are a variety of mechanisms for posttranscriptional 
regulation of circadian rhythms including splicing, mRNA 
export, polyadenylation, mRNA stability, methylation, and regu-
lated translation—for review, see Ref. (221). The first indication 
of posttranscriptional regulation of circadian rhythms was that 
stability of Drosophila Per mRNA oscillates (222), which was also 
later observed in mammals (223). Posttranscriptional regulators 
such as LARK bind to the 3′ UTR of Per1 mRNA to enhance PER1 
translation (224, 225). LARK also promotes alternative transla-
tion of the casein kinase homolog Doubletime in Drosophila 
(226). Researchers have uncovered other proteins that regulate 
translation of clock components. For example, the heterogenous 
nuclear ribonucleoprotein Q (hnRNP Q) modulates translation 
of Nr1d1, Per1, Per3, Cry1, and the rate-limiting enzyme in 
melatonin synthesis AANAT (227–232). Cry1 mRNA stability is 
also regulated by AU-rich element RNA-binding protein (AUF1) 
also known as hnRNP D (233, 234), and Per2 mRNA stability was 
found to be modulated by polypyrimidine tract-binding protein 
also known as hnRNP I (235).

mRNA PolyA Tail Length and Circadian 
Rhythms
Other mRNA processing mechanims may also posttranscription-
ally regulate circadian rhythms. The 3′ end of newly transcribed 
pre-mRNA in the nucleus is cleaved and a polyA tail is added 
at one of the several possible sites (236). Deadenylation of this 
polyA tail in the cytoplasm by enzymes such as the poly(A)-
specific ribonuclease and the Ccr4-Not complex can shorten 
tail length and accelerate mRNA degradation (237, 238). Daily 
variation in polyA tail length was first observed for vasopressin 
mRNA in the SCN (239). In Xenopus, another deadenylase called 
Nocturnin was discovered in a screen to detect rhythmically 
expressed mRNAs in retinal photoreceptors (240, 241) and was 
later shown to be expressed in multiple mouse tissues (242). 
Nocturnin is one of the few mRNAs that remain rhythmic after the 
liver clock is conditionally inactivated by drug-mediated Bmal1 
expression (243) and can be posttranscriptionally regulated by 
miR-122 (201). Mice lacking Nocturnin do not have any obvious 
circadian behavior deficiencies, but are resistant to diet-induced 
obesity (244). However, in Drosophila, loss of Nocturnin results in 
abnormal behavior rhythms in constant light (245). A microarray 

method to measure polyA tail length suggested that rhythmic 
nuclear adenylation is coupled to rhythmic transcription and that 
rhythmicity in polyA tail length is related to rhythmic protein 
expression (246). These studies suggest that posttranscriptional 
regulation by deadenylation may be important for proper circa-
dian rhythms and that next-generation sequencing techniques 
such as polyA tail profiling (247, 248) will be critical for fully 
understanding the contribution of polyA tail length to circadian 
rhythms.

Systems experiments to Measure mRNA 
Modification, Structure, and RNA-Binding 
Proteins
Besides polyadenylation, mRNA processing by other mechanisms 
may contribute to circadian rhythms. A recent study showed that 
reduction of Mettl3, an m6A mRNA methylase involved in mRNA 
processing and nuclear export, reduces m6A methylation of 
circadian transcripts and extends period (249). Next-generation 
sequencing studies of m6A methylation may reveal other contexts 
in which methylation of mRNA is important for circadian rhythms 
(250). In addition, other RNA-sequencing techniques to probe 
RNA secondary structure such as dimethyl sulfate sequencing—
DMS-seq and parallel analysis of RNA structure—PARS-seq 
(251, 252), BRIC-seq for mRNA stability (253, 254), and various 
methods to analyze RNA-binding sites of specific RNA-binding 
proteins such as CLIP, CLIP-seq, HITS-CLIP, iCLIP, and PAR-
CLIP (255–260) will be critical for understanding how mRNA 
processing is involved in circadian rhythms. For example, CLIP-
seq of mRNAs bound to cold-inducible binding protein, which is 
required for high-amplitude circadian gene expression, revealed 
binding to Clock and other circadian transcripts (261).

SYSTeMS PROTeOMiCS AND 
MeTABOLOMiCS

Circadian Proteomics
Researchers are beginning to use systems approaches to study 
the circadian proteome and metabolome. Using two-dimensional 
difference gel electrophoresis (2D-DIGE), Reddy and colleagues 
revealed that approximately 20% of the soluble proteins in the 
mouse liver oscillate. Surprisingly, for many rhythmic proteins, 
the corresponding mRNA was not rhythmic, which suggests 
translational and posttranslational control of protein rhythms 
(262). 2D-DIGE has also been used to investigate circadian dif-
ferences in the mouse retina (263) and day and night differences 
in the mouse heart (264). In addition to mice, 2D gel-based mass 
spectrometry has been used to investigate chronological changes 
in eukaryotic algae (265, 266) and in plants (267, 268).

Other groups have employed stable isotope labeling by amino 
acids in cell culture (SILAC) to compare two groups of sam-
ples—one mixed with “heavy” amino acids and one mixed with 
“light” amino acids based on the composition of different element 
isotopes (269). SILAC-based quantitative mass spectrometry has 
been used to uncover cycling proteins in the mouse liver (270, 
271) and SCN (272). Traditional SILAC approaches use chemical 
synthesis of peptides with isotopically labeled amino acids (269, 
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273) or gene expression systems in E. coli (274, 275). However, 
cell-free protein synthesis systems are potentially a more cost-
effect tool to express isotope-labeled peptides because the volume 
of the reaction is much lower and purification is easier because 
there is no need for culturing, harvesting, and disrupting cells 
(275–278). Recently, a cell-free protein synthesis system called 
the PURE system (279) coupled with high-resolution mass spec-
trometry in a workflow called MS-QBiC was used to quantify 20 
selected circadian clock proteins over a 24-h time series (128). 
This study estimated the absolute number of protein molecules 
for core clock components per cell and the delay between steady-
state levels of mRNA (measured by qPCR) and protein copy 
number (128).

In addition to SILAC, label-free approaches such as MaxLFQ 
(280) have been used to quantify proteins in mouse skeletal mus-
cle (281). Mass spectrometry has been used to examine the global 
proteome in cyanobacteria (282). Mass spectrometry has also 
been used to analyze the global phosphoproteome and revealed 
~5,000 phosphosites that significantly oscillate in the mouse 
liver (283) and ~3,000 phosphosites in Arabidopsis (284). Given 
the widespread discrepancies between transcript and protein 
rhythmicity in a number of organisms, in the future, it will be 
useful to understand the role of translation and posttranslational 
regulation as well as cycling protein modification states (e.g., 
phosphorylation) to circadian networks.

Circadian Metabolomics
Researchers have looked at rhythmic metabolites in humans 
(285–288) and in mice (289–292) and have shown that circadian 
proteins directly regulate metabolism (44, 184). Researchers have 
also used comprehensive metabolite profiling to analyze diet 
effects in mice (293–295) and the effects of sleep loss in humans 
(296–299). Computational databases have been developed to 
compare published transcriptomes, proteomes, and metabolomes 
(292). Metabolic profiling is still quite noisy compared to tran-
scriptome data at least for identifying tissue-specific signatures 
(300), and many challenges remain including identification of 
unknown metabolites, standardization of data repositories and 
reporting methods, and integration with other types of data. 
Researchers are beginning to use metabolic profiling over larger 
time courses and with higher resolution in cell culture lines 
(301). In the future, coupling these methods with gene knockout 
or knockdown of core clock components will enable researchers 
to identify connections between circadian rhythms and metabo-
lism. For example, are there harmonics in metabolite rhythms 
(i.e., multiples of a 24-h rhythm like 8- and 12-h rhythms) similar 
to the harmonics of mRNA rhythms (161, 162), and would these 
rhythms be influenced by circadian genes?

One benefit of systems studies is the development of a molecu-
lar timetable to detect an individual’s body time based on a single 
time point assay. Molecular timetables have been developed with 
mice transcriptome data (212, 302) and applied to mice (291) and 
human (288) metabolite data, proteomic data (128), and even 
human breath (303). In theory, metabolite timetables could ena-
ble researchers to hone chronotherapeutic strategies for clinical 
conditions. However, despite the strong evidence that circadian 
timing effects xenobiotic metabolism, bioavailability, and drug 

efficacy and that many of the most successful drugs in the United 
States target proteins with circadian rhythm components (212), 
ongoing clinical trials rarely exploit time-of-day-dependent drug 
delivery (304).

SYSTeMS APPROACHeS TO STuDY 
TRANSLATiON ReGuLATiON iN 
CiRCADiAN RHYTHMS

Although 10% of genes are rhythmic in the liver (152), de novo 
transcription is only responsible for a small fraction of this rhyth-
micity (164). Thus, gene expression studies using microarrays 
and RNA-sequencing may not correlate with translation of the 
corresponding mRNA nor with protein abundance (305). In the 
mouse liver, systems studies of the proteome are unable to detect 
low-abundant components of the core circadian circuit (270, 
271), unless special care is taken to examine a particular protein 
on a case-by-case basis (128). Thus, researchers have begun to 
use next-generation sequencing techniques of mRNA attached to 
mRNA in monosomes and polysomes (306, 307) and with affinity 
purification (308–310) as a proxy for protein abundance and to 
understand how translation regulation affects protein abundance.

It has been known for more than 50 years that perturbation of 
translation disrupts circadian rhythms (311). Until recently, there 
has been a shortage of good tools to measure translation directly. 
In 2009, Nicholas Ingolia in Jonathan Weissman’s lab developed 
a technique called ribosomal profiling, which uses RNA sequenc-
ing of ribosome-bound mRNA protected from RNAse degrada-
tion, to determine the location and abundance of ribosomes in 
the yeast transcriptome (312). Researchers have begun to use this 
method to study circadian rhythms in ribosomal occupancy (313, 
314). These studies discovered a class of rhthmically translated 
mRNAs without corresponding steady-state mRNA rhythms 
(313, 314), which in the case of mouse liver may be a result of 
rhythmic ribosomal biogenesis (315). Researchers have previ-
ously observed that global translation is rhythmic in the mouse 
liver (316, 317), which is probably a result of activation of the 
TORC1 pathway (315, 318–320). Interestingly, diurnally regu-
lated translation in the mouse liver is only moderately affected 
by knockout of the core clock component Bmal1 and many genes 
that contained 5′-terminal oligo pyrimidine tract or translation 
initiator of short 5′ untranslated region (5′-UTR) sequence have 
rhythms in ribosomal occupancy independent of trancriptional 
rhythms (321). These studies in addition to previous research 
(322–326) suggest that feeding rhythms can synchronize the liver 
in the absence of cues from neuronal pacemaker cells in the SCN.

The Janich and Jang studies (313, 314) also revealed wide-
spread circadian translation of upstream open reading frames 
(uORFs) in 5′ UTRs. Translation of uORFs globally represses 
translation efficiency—a measure of the ratio of ribosomal occu-
pancy, determined by ribosomal profiling, to steady-state mRNA, 
measured by RNA-sequencing (314). Interesting, many circadian 
mRNAs also have uORFs in their 5′ UTRs (Table  1), which 
may disrupt translation of the downstream coding sequence 
by ribosomal pausing on the mRNA, alternative translation, or 
other mechanisms (327). Ribosome pausing on uORFs may be 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


TABLe 1 | Number of upstream open reading frames (uORFs) in common 
circadian clock genes.

Gene name Ref Seq iD Number of uORFs uORF length (nt)

Bhlhe40 NM_011498 1 18

Bmal1 NM_007489
NM_001243048

4
2

72; 42; 21; 33
201; 171

Clock NM_007715
NM_001289826

3
4

66; 48; 30
339; 66; 48; 30

Cry1 NM_007771 2 36; 24

Cry2 NM_009963 0 —

CK1d NM_139059 2 27; 21

CK1e NM_013767 0 —
NM_001289898 0 —

NM_001289899 2 126; 66

Dbp NM_016974 2 12; 42

Nfil3 NM_017373 3 15; 51; 12

Nr1d1 NM_145434 3 117; 192; 21

Nr1d2 NM_011584 3 120; 120; 117

Per1 NM_011065
NM_001159367

1
1

15
15

Per2 NM_011066 1 6

Per3 NM_011067
NM_001289877
NM_001289878

4
4
4

63; 30; 84; 48
63; 30; 84; 48
63; 30; 84; 48

Rorc NM_011281 0 —

Tef NM_017376 1 291
NM_153484 0 —

84
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alleviated by the action of the non-canonical initiation factors 
density regulated protein (DENR) and multiple copies in T-cell 
lymphoma (MCT-1), which act to promote translation reinitia-
tion downstream of uORFs (328, 329). Depletion of DENR by 
shRNAs in NIH3T3 cells shortens the period by 1.5  h, which 
suggests that uORFs may be relevant for circadian function 
(314). In other biological contexts, repression of translation by 
uORFs can be regulated by trans-acting factors. For example, in 
Drosphila, the master switch gene Sex-lethal (Sxl) is important 
for sex, for review see Ref. (330–332). SXL-binding downstream 
of a short uORF on male-specific lethal (msl)-2 enhances transla-
tion repression by the uORF on downstream reading frame 
translation (333). During mitosis, one of the most translationally 
repressed mRNAs is early mitotic inhibitor 1 (Emi1) that inhibits 
the activity of the anaphase-promoting complex (334). Emi1 has 
multiple transcript isoforms and the isoform with several uORFs 
in the 5′ UTR is severely crippled for translation initiation in 
single-molecule reporter experiments (335). These studies sug-
gest that uORF-mediated translational repression is important in 
a variety of biological functions and may have an unexplored role 
in circadian rhythms.

What is the consequence of disrupted translation for circadian 
rhythms? One clue came when researchers showed that codon 

usage affects circadian function in cyanobacteria (336),  Neurospora 
(337), and Drosophila (338). While cyanobacteria with codon-
optimized Kai genes have enhanced circadian rhythmicty at 
cooler temperatures, this modification impairs cell growth, which 
suggests that non-optimal translation could provide an adaptive 
response to changes in the environment (336). In Neurospora, 
codon optimization of Frq alters FRQ protein structure, which 
impairs circadian rhythms (337). Similarly, in Drosophila, codon 
optimization results in conformational changes of the Drosophila 
PER protein altering PER phosphorylation, stability, and impairs 
behavioral rhythms (338). Additionally, it is becoming clear that 
translation control is interlinked with both circadian rhythms 
and sleep disorders. For example, Ataxin2 functions as a critical 
translation activator of Per2 in flies (339, 340), and individuals 
with disease mutations in human Ataxin2 have disturbed rapid 
eye movement sleep (341, 342).

SYSTeMS NeuROPHYSiOLOGY

Systems neurophysiologists are beginning to connect the circa-
dian circuit to more complex outputs from the clock such as activ-
ity rhythms. Forward genetics in mice have already uncovered 
core components in the circadian network (142), and researchers 
have begun to use forward genetics for complex behavior such as 
sleep (343). On the other hand, the development of TALEN (344), 
Zinc-Finger Nucleases (345), and CRISPR/Cas9 (346, 347) gene 
knockout systems have accelerated the pace at which researchers 
can pursue reverse genetics in mice. In particular, CRISPR/Cas9 
systems have been extensively modified to improve targeting effi-
ciency and specificity (346–353). However, the need for invasive 
techniques such as electroencephalography and electromyogra-
phy to characterize sleep hampers high-throughput phenotyping. 
To facilitate rapid phenotyping, researchers have developed a 
respiration-based, sleep staging system in combination with 
redundant CRISPR targeting to reveal new genes important for 
sleep regulation (354, 355). In particular, researchers generated 
and analyzed more than 21 different KO mice and discovered dif-
ferent ion channels that could increase or decrease sleep duration 
(355). These studies have revealed the genetic bases for behaviors 
such as sleep, but do not show how neural networks and struc-
tures in the brain are wired to carry out such behavior. In the past, 
researchers have used conventional histology and immunohisto-
chemistry of sliced brain sections to reveal the when and where of 
gene function, but recent advances in tissue clearing have begun 
to enable direct imaging of intact organs (356).

Optical sectioning using light-sheet microscopy in combina-
tion with recently developed tissue-clearing techniques is a 
potent strategy to begin to explore the neuroanatomical basis of 
behavior (357–362). Image analysis algorithms, automated com-
parative analysis, and feature extraction will enable researchers 
to quickly test and analyze neural activity in different parts of the 
brain with different mutant mice and under a variety of experi-
mental conditions. These approaches will be useful to determine 
what areas of the brain are affected by sleep/wake pharmaceutical 
reagents such as methamphetamine and to develop a whole-brain 
anatomical atlas to catalog and characterize every individual cell 
in the brain.
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CONCLuSiON

Systems experiments from modeling to metabolomics have 
significantly increased our understanding of circadian rhythms, 
but many challenges remain. For modeling, we still do not have a 
comprehensive understanding of temperature compensation nor 
the role individual enzymes have in temperature-independent and 
-dependent reactions. We do not understand the contribution of 
temperature-compensating reactions at the molecular, cell, tissue 
or organism level and how these temperature-compensating sys-
tems interface with one another. At an enzymatic level, we could 
learn much by designing and building de novo temperature-
compensated reactions or by converting temperature-sensitive 
enzymes into temperature-compensating ones. There is also a 
need for understanding how recently discovered posttranslational 
oscillators such as the peroxiredoxin system interface with the 
genetic circadian circuit, and for an evolutionary investigation 
into how and why these distinct circadian timekeeping systems 
arose. Modeling is needed to make connections between different 
timekeeping systems, different organization levels of timekeep-
ing from molecule to tissue, and between circadian rhythms and 
other rhythms such as the cell cycle.

For systems “–omics” researchers, there is a large variation 
in the rhythmicity of transcripts, metabolites, and proteomes 
detected even with similarly defined experimental systems. This 
may be in part due to how different algorithms detect rhythmic-
ity (153, 363, 364), differences in sampling intervals (every 2, 3, 
4, or 6  h), sampling duration, environmental conditions, and 
biological variability (365). As surveys of the circadian pro-
teome increase, there has been an increasing realization of the 
widespread gap between transcript rhythms and protein levels. 
Posttranscriptional and posttranslational studies that examine 
mRNA structure and processing, translation, and protein modi-
fication will enhance our understanding of how transcriptional 
rhythms become protein rhythms, and how rhythms could evolve 
without genetic underpinnings.

For systems neurophysiologists, there is a pressing need to 
develop fast and reproducible assays that connect behavioral 

phenotypes to particular features and neurons in the brain and 
other tissues. Developments in computational processing power, 
data storage, and deep learning approaches will aid researchers 
in handling and analyzing the overwhelming amount of data 
generated by systems studies. Nevertheless, it will be important 
to validate findings with molecular techniques, case studies, and 
synthetic biology approaches to reconstitute behavior. Finally, 
can we translate this knowledge base to relevance in the clinic? 
It will be important to develop new assays and algorithms for 
body time estimation from samples at one or two time points. 
A combination of transcriptome, metabolome, and proteome 
timetables may further reduce the need for additional samples 
and increase accuracy of body time estimation. Integration of 
chronotherapeutics to clinical trial design and dosing protocols 
may enhance the success of drug candidates and perhaps lead to a 
reevaluation of the timing of drug delivery to achieve the greatest 
benefit to patients.
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The core circadian oscillator in mammals is composed of transcription/translation feed-
back loop, in which cryptochrome (CRY) proteins play critical roles as repressors of their 
own gene expression. Although post-translational modifications, such as phosphoryla-
tion of CRY1, are crucial for circadian rhythm, little is known about how phosphorylated 
CRY1 contributes to the molecular clockwork. To address this, we created a series of 
CRY1 mutants with single amino acid substitutions at potential phosphorylation sites 
and performed a cell-based, phenotype-rescuing screen to identify mutants with aber-
rant rhythmicity in CRY-deficient cells. We report 10 mutants with an abnormal circadian 
period length, including long period (S280D and S588D), short period (S158D, S247D, 
T249D, Y266D, Y273D, and Y432D), and arrhythmicity (S71D and S404D). When 
expressing mutated CRY1 in HEK293 cells, we show that most of the mutants (S71D, 
S247D, T249D, Y266D, Y273D, and Y432D) exhibited reduction in repression activity 
compared with wild-type (WT) CRY1, whereas other mutants had no obvious change. 
Correspondingly, these mutants also showed differences in protein stability and cellular 
localization. We show that most of mutants are more stable than WT, except S158D, 
T249D, and S280D. Although the characteristics of the 10 mutants are various, they 
all impair the ratio balance of intracellular CRY1 protein. Thus, we conclude that the 
mutations caused distinct phenotypes most likely through the ratio of functional CRY1 
protein in cells.

Keywords: period length, phosphorylation, cryptochrome, subcellular localization, protein stability

inTrODUcTiOn

To adapt to dramatic changes in environmental conditions, living organisms from fungi to humans 
have evolved an internal biological clock (1). In mammals, the circadian clock is an endogenously 
driven 24-h cycle affecting behavior, physiology, and metabolism (2). The core circadian oscillator is 
a transcription/translation feedback loop (TTFL) in which CLOCK and BMAL1 are activators that 
dimerize and promote the expression of cryptochrome (CRY) and period (PER) genes. After transla-
tion, CRY and PER form heterodimers and translocate to the nucleus where they act as repressors 
and inhibit their own expression. When nuclear localized CRY and PER proteins are degraded, the 
inhibition is relieved; the next circadian cycle is subsequently initiated (3).

Although the mechanism by which CRY and PER repress the transcriptional activation of 
CLOCK:BMAL1 is not well understood, post-translational modifications, such as the phospho-
rylation of CRY and PER proteins, are closely linked to the inhibition of transcription (4). The 
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phosphorylation of PER proteins regulates their stability and 
their subcellular localization. In addition, different phosphoryla-
tion events can lead to phenotypes of opposite periodicity, such 
as the mutation in patients suffering from familial advanced 
sleep phase syndrome (FASPS) (5). In mammals, the CRY 
proteins, CRY1 and CRY2, are essential for the maintenance of 
circadian rhythms, and their absence results in arrhythmicity in 
constant darkness. In addition, CRY1 and CRY2 play different 
roles in regulating the circadian clock because mice lacking 
CRY1 or CRY2 exhibit short or long periods, respectively (6, 
7). CRY1 and CRY2 are highly conserved proteins consisting 
of an N-terminal photolyase homology (PHR) domain, which 
binds to the flavin adenine dinucleotide (FAD) cofactor and 
divergent C-terminal tails (8). In CRY2, the phosphorylation 
of ser265 and ser553/ser557 may affect FAD positioning and 
electron transport, and proteasome degradation resulting in a 
shortened circadian period (9, 10). CRY1 phosphorylation in the 
PHR domain and C-terminal tail indicates that protein stability 
is linked to abnormal circadian rhythms (11, 12). Recent studies 
have shown that the stability of CRY proteins is regulated by 
two competing SCF E3 ligase complexes. The FBXL3 complex 
mediates degradation of CRY protein in the nucleus, while the 
FBXL21 complex protects CRY from FBXL3 degradation in 
the nucleus and promotes CRY degradation in the cytoplasm 
(13, 14). Although post-translational modifications of CRY1 
are crucial for circadian rhythms, little is known about which 
CRY1 phosphorylation sites have the most impact. Therefore, 
we conducted a cell-based screen to identify phosphorylation 
residues in mCRY1 that rescue rhythmicity in CRY1/CRY2 
double-deficient cells (DKO cells) to better understand the 
role of phosphorylated CRY1 in clock function. We identified 
phosphorylation sites that cause long periods, short periods, or 
even arrhythmicity.

MaTerials anD MeThODs

Dna Plasmids and cells
P(Cry1)-CRY1 was constructed by replacing the P(CMV) pro-
moter of pcDNA3.1-Cry1-Flag with the mCRY1 native promoter 
(1.5  kb) and the first intron (15). All of the mutations were 
generated using the KOD-plus-mutagenesis kit and confirmed 
by sequencing. HEK293 cells were purchased from the American 
Type Culture Collection (ATCC).

Kinetic Bioluminescence recording
Real-time circadian reporter assays were performed as 
 previously described (16, 17). One the day prior transfection, 
approximately 3–5  ×  104 DKO cells were plated onto 35-mm 
culture dishes. Cells were cotransfected using the X-treme 
GENE HP DNA transfection reagent (Roche) with 1  μg of 
pGL3-P(Per2)-dLuc reporter plasmid and 50  ng of a CRY 
expression plasmid. Three days after transfection, the cells were 
treated with 0.1-mM dexamethasone (Sigma) for 2 h and then 
placed in XM medium as previously described (18). The kinetic 
bioluminescence was recorded using a Lumicycle luminometer 
(Actimetrics, Inc.) at 36°C.

luciferase repression assay
HEK293 cells were grown and transfected in 96-well plates. For 
transfection, 10 ng of the reporter plasmid pGL3-P(Per2)-dLuc was 
combined with 5 ng of a CRY expression plasmid, 10 ng of BMAL1, 
and 15 ng of the CLOCK plasmid. Empty vector pcDNA3.1 was 
added as necessary to obtain total DNA concentration of 200 ng 
per well. Twenty-four hours after transfection, cells were prepared 
for the Dual-Luciferase Reporter Assay System (Promega).

luciferase complementation assay
Luciferase complementation assay is used to determine the inter-
action of proteins (19). The N-terminal luciferase fragment was 
fused to the N-terminus of mCRY1 [wild type (WT) or mutant] 
and the C-terminal luciferase fragment to the C-terminus of 
mFBXL3 (or mPER2). mCRY1 (WT or mutant) and mFBXL3 
(or mPER2) were co-expressed as fusion proteins with luciferase 
fragments in HEK293 cells. Twenty-four hours after transfec-
tion, cells were prepared for the Dual-Luciferase Reporter Assay 
System (Promega).

global Protein stability assay
Assays using the global protein stability (GPS) system were per-
formed as described, with minor modifications (20). The GPS sys-
tem was used to detect the stabilization of WT CRY1 and mutants. 
The lentiviral reporter construct contains a single promoter and 
an internal ribosome entry site (IRES) that permits the translation 
of two fluorescent proteins (DsRed and EGFP) from one mRNA 
transcript. DsRed served as an internal control, whereas EGFP was 
expressed as a fusion with our protein of interest. When integrated 
into the genome, the ratio of EGFP/DsRed can be quantified by 
fluorescence-activated cell sorting (FACS), producing a ratio 
that represents the stability of target proteins. The d1EGFP and 
d4EGFP represent half-life at 1 and 4 h, respectively.

subcellular localization assay
HEK293 cells were transfected with a plasmid encoding GFP-
mCRY1 (WT or mutant). Twenty-four hours after transfection, 
the cells were stained with Hoechst 33258 (Sigma) and fixed with 
4% paraformaldehyde in PBS. Samples were observed using Zeiss 
confocal LSM800 with a 63× water-immersion objective, and the 
data were analyzed using Image J software.

statistical analysis
In all experiments, unless noted, error bars represent SEM (n ≥ 3 
for each experiment). Statistical significance was determined 
using one-way ANOVA with Dunnett’s multiple comparisons 
test when comparing each mean to a control mean. All statistical 
analyses were performed using GraphPad Prism 6 (GraphPad 
Software, Inc., La Jolla, USA). *p < 0.05, **p < 0.01, ***p < 0.001, 
and ****p < 0.0001.

resUlTs

The Phosphorylation of crY1 regulates 
circadian rhythms
The importance of core clock protein phosphorylation in the 
mammalian circadian system is widely accepted (4). However, 
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little is known about the amount or location of  phosphorylated 
CRY1 protein residues or how phosphorylation affects the 
molecular clockwork. In this study, we performed a cell-based 
screen to identify the phosphorylated residues in mCRY1 critical 
for rescuing rhythmicity in DKO cells. CRY1-mediated rescue of 
clock oscillation in DKO cells has been observed after transfec-
tion with CRY1 DNA concentrations ranging from 3 to 800 ng 
(Figure 1A). Our data show that 3 ng of CRY1 DNA was insuffi-
cient to rescue circadian rhythmicity, while 800 ng of CRY1 DNA 
restored circadian rhythms with low amplitude that were quickly 
dampened. Using 50 ng of CRY1 DNA, we rescued a circadian 
rhythmicity of approximately 24.6 h (Figure 1G).

In our screen, phosphomimetics were created to identify 
potential phosphorylation sites in human, mouse, and rat 
(Table  1). We found 10 mutants with abnormal periodical 
phenotypes (Figures  1B–F). Our data demonstrate the follow-
ing: (1) substitution of serine (S) 71 and 404 with aspartic (D) 
prevented the rescue of circadian rhythmicity (Figure  1B); (2) 
the phosphomimetic mutants for S158D, S247D, and T249D 
restored circadian rhythms with short periods (S158D, −1.3 h; 
S247D, −3.5 h; S249D, −3.3 h) (Figure 1G); (3) the mutants with 
Y266D, Y273D, and Y432D rescued circadian rhythms with short 
periods (Y266D, −1.9  h; Y273D, −2.7  h; Y432D, −1.8  h), low 
amplitudes, and quick damping (Figure 1G); (4) the S280D and 
S588D mutants restored circadian rhythms with long periods, 
especially S588D (S588D, +3.2 h; S280D, +1.6 h) (Figure 1G), 
which is consistent with previous reports (12); and (5) the phos-
phorylation of serines 281, 575, 595, and 604 had no obvious 
effect on circadian rhythms (Figure  1G). Thus, we established 
that most of the phosphorylation sites on CRY1 play distinct roles 
in the mechanism of the molecular clockwork.

To determine whether non-phosphorylation of the phospho-
rylated sites alters CRY1’s function, we generated non-phosphom-
imetic mutants of CRY1 with Ser/Thr/Tyr changed to Ala or Phe. 
Our results showed that all of the non-phosphomimetic mutants 
(S71A, S247A, T249A, S280A, Y266F, Y273F, Y432F, S404A, and 
S588A) exhibited lack of effect on the circadian period (Figure 1).

effects of Mutant mcrY1 on BMal1: 
clOcK-induced Transcriptional activation
To determine how CRY1 phosphorylation affects the molecular 
clockwork, we used a transcriptional assay to analyze the functional 
significance of the phosphomimetic mutants. Co-expression of 
CLOCK and BMAL1 stimulated E-box element-dependent tran-
scription of a luciferase reporter gene in HEK293T cells, which 
was markedly suppressed by the expression of WT mCRY1 under 
the control of cytomegalovirus (CMV) promoter [P(CMV)] or 
the native mCRY1 promoter [P(Cry1)] (Figures 2A,B). We then 
constructed mutants by replacing phospho-acceptor Ser/Tyr/Trp 
residues with Asp, which mimics phosphorylation. The phos-
phomimetic mCRY1 mutants were used to determine the role 
of each residue in inhibiting transcription. Compared with WT 
mCRY1, the mCRY1 mutants fell into two phenotypic groups: 
strong repression (>60% of WT repression activity) that had 
similar repression activity to WT and weak repression (<20% of 
WT repression activity) with a significant reduction in repression 

activity (Figures  2A,B). The results showed that WT mCRY1 
had strong repression activity that repressed the transcriptional 
activation to 3% driven by CMV promoter and to 20% driven by 
mCRY1 promoter. In addition, six Asp mutants (S71D, S247D, 
T249D, Y266D, Y273D, and Y432D) repressed the transcrip-
tional activation to 16–50% and to 53–85%, respectively, under 
the control of CMV and mCRY1 promoter, exhibiting significant 
reductions in repression activity (p < 0.01, ANOVA). However, 
the other four Asp mutants (S158D, S280D, S404D, and S588D) 
exhibited no obvious change in repression activity (p  >  0.05, 
ANOVA), although the repression activity of S404D was slightly 
stronger than WT (Figures 2A,B).

effects of Phosphomimetic Mutation on 
mcrY1 Protein stability and interactions 
with FBXl3 and Per2
Previous reports have shown that phosphorylation of mCRY1 at 
S247 does not affect protein stability (9). Therefore, we investi-
gated whether phosphorylation of other residues that regulate 
mCRY1’s function (Figures  2A,B) alters protein stability. The 
GPS system utilizes an internally normalized fluorescent-based 
reporter system combined with FACS to detect real-time protein 
stability at the level of individual living cells (20, 22). GPS vectors 
expressed a single transcript encoding DsRed and EGFP target 
separated by an IRES (Figure  3A). The coding sequence for 
DsRed–IRES–EGFP–mCRY1 (WT or mutant) was cloned into 
a lentiviral vector. After infection by the lentivirus, HEK293 cells 
stably expressing DsRed and EGFP–mCRY1 (WT or mutant) 
were analyzed by flow cytometry. The EGFP/DsRed ratio acts as a 
reporter for stability of the expressed WT or mutant mCRY1. The 
d1EGFP (t1/2 = 1 h) and d4EGFP (t1/2 = 4 h) represent the half-
life markers. Our results show that the half-life of WT mCRY1 is 
similar to that of d1EGFP (Figure 3B, top). The S158D, T249D, 
and S280D mutations exhibited no obvious change compared to 
WT mCRY1 (Figure 3B, middle). Surprisingly, the S71D, S404D, 
Y266D, Y273D, Y432D, and S588D mutations displayed half-
lives longer than that of WT mCRY1 (Figure 3B, bottom), despite 
variations in the rescued period length (Figure 1G).

The crystal structure of mCRY1 reveals that binding sites 
for mPER2 and FBXL3, which partially overlap, are involved in 
transcriptional repression and protein stability (19, 23). To deter-
mine whether mCRY1 phosphorylation affects interactions with 
mFBXL3 and PER2, we used a luciferase complementation assay 
to determine how mFBXL3 or PER2 interact with phosphomi-
metic mCRY1 mutants (Figure 3C). WT or mCRY1 mutants and 
mFBXL3 (or PER2) were co-expressed as fusion proteins with 
N- and C-terminal luciferase fragments in HEK293 cells (19). 
Formation of mCRY1-FBXL3 (or PER2) complexes produces 
functional luciferase and that can be recorded in luciferin-
containing medium. Data showed that, to varying degrees, all 
of the mutations reduced mFBXL3 binding. In particular, the 
S71D, Y266D, Y273D, S404D, and Y432D mutations drastically 
reduced mFBXL3 binding to 4, 11, 23, 32, and 11%, respectively 
(Figure 3C, top). By contrast, mPER2 binding was unaffected by 
the S158D, T249D, S280D, S404D, and S588D mutations, while 
the S71D, Y266D, Y273D, and Y432D mutations weakened the 
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FigUre 1 | a cell-based screen to identify critical phosphorylation residues on mcrY1 through rescuing rhythmicity in Cry1−/−:Cry2−/− fibroblasts 
(DKO cells). (a) Dosage-dependent rescue of circadian rhythms in DKO cells by mCRY1. The mCRY1 expression vector was cotransfected into cells with the 
P(Per2)-dLuc reporter vector. Three days after transfection, the cells were synchronized by dexamethasone treatment and then moved to luciferin-containing 
medium for 5–6 days of bioluminescence recording. (B–F) The P(Per2)-dLuc reporter rhythms (baseline subtracted) from DKO cells transfected with WT or mutant 
mCRY1, as noted in the legend. Experiments were performed as in (a). (g) Quantitation of the period length from WT and mutant mCRY1 transfected cells that 
showed a distinct period phenotype as noted in the legend. Error bars represent SEM (n ≥ 5, **p < 0.01; ***p < 0.001; ****p < 0.0001, ANOVA).
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FigUre 2 | effects of mutant mcrY1 on BMal1: clOcK-induced transcriptional activation. (a) HEK293 cells were cotransfected with BMAL1  
(10 ng plasmid), CLOCK (15 ng) expression plasmid, and Per2-dluc (10 ng) reporter with WT or mutant mCRY1 (5 ng) as noted. Twenty-four hours after transfection, 
the cells were changed to luciferin-containing medium for end-point bioluminescence recording. The raw data were normalized such that the reporter control without 
mCRY1 (WT or mutant) transfection was equal to 100%. Compared with WT mCRY1, the mutants exhibited two profiles: strong repression with similar repression 
activity to WT and weak repression with a significant reduction in repression activity. Mean and error bars (SEM) of three independent transfections are shown 
(****p < 0.0001, ANOVA). Two additional experiments gave similar results. (B) DKO cells were cotransfected with Per2-dluc (10 ng) reporter and WT or mutant 
mCRY1 (50 ng) as noted. Experiments and data analysis were done as in (a). Compared with WT, the mutants exhibited two profiles: strong repression with similar 
repression activity as WT and weak repression with a significant difference. Mean and error bars (SEM) of three independent transfections are shown  
(**p < 0.01, ***p < 0.001, ****p < 0.0001, ANOVA). Two additional experiments gave similar results.

TaBle 1 | Phosphorylated residues of crY1 (mouse, human, and rat) are written in red.

Mouse human rat

S71-p ANLRKLNsRLFVIRG S71 ANLRKLNSRLFVIRG S71 ANLRKLNSRLFVIRG
S158-p KRFQTLVsKMEPLEM S158 KRFQTLISKMEPLEI S158 KRFQTLVSKMEPLEM
S247-p NANSLLAsPtGLSPY S247 NANSLLASPTGLSPY S247 NANSLLASPTGLSPY
T249-p NSLLAsPtGLSPYLR T249 NSLLASPTGLSPYLR T249 NSLLASPTGLSPYLR
Y266 CLSCRLFYFKLTDLY Y266 CLSCRLFYFKLTDLY Y266-p CLSCRLFyFKLTDLy
Y273 YFKLTDLYKKVKKNs Y273 YFKLTDLYKKVKKNS Y273-p yFKLTDLyKKVKKNS
S280-p YKKVKKNssPPLSLY S280 YKKVKKNSSPPLsLY S280 yKKVKKNSSPPLSLY
S281-p KKVKKNssPPLSLYG S281 KKVKKNSSPPLsLYG S281 KKVKKNSSPPLSLYG
S285 KNssPPLSLYGQLLW S285-p KNSSPPLsLYGQLLW S285 KNSSPPLSLYGQLLW
Y432 NGDYIRRYLPVLRGF Y432-p NGDYIRRyLPVLRGF Y432 NGDYIRRYLPVLRGF
S575-p HSLKQGRsSAGTGLS S555 HLLKQGRSSMGTGLS S557 NPLKQGRSSMGTGLS
S588-p LSSGKRPsQEEDAQs S568-p LSGGKRPsQEEDTQS S570 LSSGKRPSQEEDAQS
S595-p sQEEDAQsVGPKVQR S575 sQEEDTQSIGPKVQR S577 SQEEDAQSVGPKVQR
S604-p GPKVQRQsSN_____ S584 GPKVQRQSTN_____ S586 GPKVQRQSSN_____

The resource is from PhosphoSitePlus database (21).
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interactions with mPER2 to 4, 10, 43, and 18%, respectively 
(Figure 3C, bottom). We conclude that phosphomimetic muta-
tions affect the stability and transcriptional repression activity of 
mCRY1 by antagonizing with mFBXL3 and PER2.

effects of Phosphomimetic Mutation on 
mcrY1 Protein subcellular localization
The stability of CRY1 protein is regulated by two competing 
SCF E3 ligase complexes: FBXL3 mediates degradation in the 
nucleus, while FBXL21 protects CRY1 in the nucleus and facili-
tates degradation in the cytoplasm (13, 14). Therefore, we sought 
to determine whether phosphomimetic mutations alter the 
subcellular localization of mCRY1. To determine the subcellular 
distribution pattern of the mutants, we generated a GFP-tagged 
mCRY1 (WT or mutant) expression construct. Representative 
images of GFP-mCRY1 (WT or mutant), as detected by GFP 

fluorescence, are shown in Figure  4A. The ratio of cells with 
subcellular distribution and the colocalization of GFP-mCRY1 
(WT or mutant) proteins with nuclei are shown in Figures 4B,C. 
In transient transfection assays using HEK293 cells, the mutants 
were predominantly localized in the nucleus and cytoplasm. 
However, 5–65% of S158D, S249D, S280D, or S404D-GFP were 
localized exclusively in the nucleus, similarly to WT, with a 
colocalization efficiency of more than 75%. In contrast, 6–42% of 
S71D, Y266D, Y273D, Y432D, or S588D-GFP were only observed 
in the cytoplasm, with a nuclear colocalization efficiency of less 
than 63%, especially S71D (~29%) (Figures 4B,C). Based on these 
data, we conclude that the phosphorylation of mCRY1 at amino 
acid sites S71, Y266, Y273, Y432, and S588 alter the subcellular 
localization that is critical for the rhythmicity of circadian clock.

Although the mutants S158D, S247D, and T249D showed 
similar periodical phenotypes with Y266D, Y273D, and Y432D, 
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FigUre 3 | effects of phosphomimetic mutation on mcrY1 protein stability and interactions with FBXl3 and Per2. (a) Global protein stability (GPS) 
reporter system. The DsRed–IRES–EGFP target element was cloned into a lentiviral vector, and the fluorescent reporter proteins were co-expressed from a single mRNA 
via an internal ribosomal entry site (IRES). (B) HEK293 cells were infected with lentivirus of pLv–DsRed–IRES–EGFP–mCRY1 (WT or mutant) for 24 h, and then the 
fluorescent protein signals were analyzed by flow cytometry. The EGFP/DsRed ratio acts as a reporter for stability of the expressed WT or mutant mCRY1. The d1EGFP 
and d4EGFP are markers for 1- and 4-h half-lives, respectively. (c) Luciferase complementation assay. mCRY1 (WT or mutant) and FBXL3 (or PER2) were co-expressed 
as fusion proteins with luciferase fragments in HEK293 cells. Experiments were done as in Figure 2a and the data presented relative to mCRY1 (WT)-mFBXL3 (or 
mPER2). Mean and error bars (SEM) of three independent transfections are shown (****p < 0.0001, ANOVA). Two additional experiments gave similar results.
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the subcellular location of the proteins had no obvious change, 
suggesting that the mechanisms were different. Indeed, the iden-
tified phosphorylated sites were located in different functional 
regions of mCRY1 (Figure 4D), supporting our conclusion that 
the phosphorylation of these sites with different repression activ-
ity, protein stability, and subcellular location results in various 
periodical phenotypes by distinct mechanisms.

DiscUssiOn

In the basic TTFL model, both positive and negative regula-
tory elements are important for generating the autoregulatory 

feedback loop. Post-translational regulation of the activity, 
degradation, and localization of these regulators, most notably 
phosphorylation influences the circadian rhythms (4, 25). 
Although many CRY1phosphorylation sites have been identified, 
their contribution to clock function was unclear. We conducted 
a cell-based screen in CRY-deficient (DKO) cells and identified 
10 phosphomimetic mutants of mCRY1 that induce abnormal 
circadian periods, including long period (S280D and S588D), 
short period (S158D, S247D, T249D, Y266D, Y273D, and 
Y432D), and even arrhythmicity (S71D and S404D). The period 
length of the circadian clock in cells is complicated because many 
genes participate in regulating the circadian period (11, 26–28). 
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FigUre 4 | effects of phosphomimetic mutation on subcellular localization of mcrY1 protein. GFP-tagged mCRY1 (WT or mutant) proteins were 
transiently overexpressed in HEK293 cells, and the subcellular distribution pattern of mCRY1 protein was analyzed. (a) Representative images of GFP-mCRY1 (WT 
or mutant) were detected by GFP fluorescence (green), and the nuclei were stained with Hoechst (blue). (B) Percentage of cells showing nuclear (N), nuclear–
cytoplasmic (N + C), and cytoplasmic (C) staining as indicated in the plots. The ratio of cells with subcellular localization to the total transfected cells was analyzed 
by counting 100 cells three times in each experiment. (c) Percentage of colocalization of GFP-mCRY1 (WT or mutant) with nuclei. The 50 GFP-mCRY1 (WT or 
mutant)-expressing cells were analyzed by Image J software (Version 1.37c, NIH, USA). Mean and error bars (SEM) are shown (n = 3 for each experiment). Two 
additional experiments gave similar results (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001, ANOVA). (D) Location of the important phosphorylated sites on the 
liner protein functional regions of mCRY1. The FAD binding domain, which contains phosphate binding loop, protrusion loop, C-terminal lid (Lid), and nuclear 
localization signal (NLS), has been indicated in this schematic diagram. The diagram was constructed using Illustrator for Biological Sequences (IBS) software (24).
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TaBle 2 | Phosphorylation regulating the ratio of intracellular mcrY1 determines the circadian period length by different mechanisms.

Phosphomimetic 
mutants

Period 
phenotype

repression 
activity

Protein 
stability

nuclear  
colocalization

Potential mechanism

S71D
AR

↓ ↑ ↓ The mutant cannot enter the nucleus, as the binding to PER2 is too weak

S404D ↑ ↑ N The degradation is weak, as the binding to FBXL3 is weak

S158D  
 
 
 
S

N N N Introduction of negative charge to the surface region alters the interaction with 
other proteins

S247D ↓ — — The mutants enforce the phosphate-binding conformation to tune FAD, ultimately 
leading to change in mCRY1 protein functionT249D ↓ N N

Y266D ↓ ↑ ↓ Lower nuclear localization efficiency may be due to weak interaction with FBXL3 
and PER2

Y273D ↓ ↑ ↓

Y432D ↓ ↑ ↓

S280D

L

N N N The binding to FBXL3 is weak, as S280 is located in protrusion loop, which 
interacts with FBXL3 and constricts access to FAD

S588D N ↑ ↓ The ratio of nuclear protein is decreased. This may be due to S588 nearing the 
NLS sequence

AR, arrhythmicity; S, short period; L, long period; ↑, increase; ↓, decrease; N, no obvious change; —, no result.
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In this study, we identified mutations that alter repression activity, 
protein stability, and cellular localization, suggesting that distinct 
mechanisms regulate each phenotype.

Previously, we have demonstrated that the proper ratio of 
intercellular CRY proteins determines the normal clock period 
length (17). In this study, we further determined that the ratio 
of functional CRY1 protein is regulated by phosphorylation in 
cells and the ratio imbalance disrupts circadian rhythmicity, 
although the mechanisms are different (Table  2). The S280D 
mutation displayed a long period, similar to that of S588D [pre-
viously reported in Ref. (12)]. We found that phosphorylation 
at S588 decreased nuclear protein localization and weakened 
interactions with FBXL3, increasing the protein stability. This 
may be due to the position of the S588 residue, which is near 
the NLS sequence of the C-terminal tail of mCRY1. The crystal 
structure of mCRY1 (19) shows that FBXL3, but not PER2, 
binds across the protrusion loop (S280) and the phosphate-
binding loop (S247 and T249) (Figure 4D). Consistently, the 
S280D and T249D mutations reduced FBXL3 binding but 
did not affect PER2 binding (Figure  3C). In addition, the 
phosphate-binding and protrusion loops, with conformational 
flexibility, constrict the approach to FAD, which is critical to 
CRY1’s functions. Phospho-Ser-mimicking mutations at this 
region may enforce the phosphate-binding conformation to 
tune FAD, ultimately leading to a change in mCRY1 protein 
function (8). Introduction of negative charge (Asp) to site S158, 
located in the surface region (19), may restructure and/or disor-
der the structural conformation between the phosphorylation 
site and nearby amino acid residues, affecting mCRY1’s clock 
function. The Y266D, Y273D, and Y432D mutations displayed 
similar phenotype (short period, Figure 1D), weaker interac-
tions with FBXL3 and PER2, and lower nuclear colocalization 
efficiency compared with WT-mCRY1. Interestingly, although 
the S71D mutant and S404D mutant are arrhythmic, their 
molecular character is very different. The S71D mutant dis-
played almost no interactions with FBXL3 and PER2 and high 

colocalization efficiency with the cytoplasm. Regardless of a 
subtle difference with previous reports (11), in which the S71D 
mutation increased interaction with FBXL3, phosphorylation 
at S71 is crucial for regulating circadian period. In addition, 
phosphorylation at these sites weakens the binding with PER2, 
slowing the rate of nuclear translocation and decreasing the 
concentration of functional protein (3, 29). Nuclear transport 
of the PER/CRY complex is reported to be one of the most 
important mechanisms for period regulation, as shown in the 
recent report on nuclear importin KPNB1 (30). In contrast, the 
phosphomimetic mutation of S404, located in the C-terminal 
lid, did not rescue DKO cells with hyper-repression activity 
(Figures 2A,B) and hypo-interactions with FBXL3 increasing 
protein stability. Neither did it affect binding to PER2 nor 
nuclear colocalization. We hypothesized that the S404D mutant 
binding to FBXL3 was very weak, thus slowing degradation, 
prolonging interactions with the BMAL1/CLOCK complex, 
and ultimately preventing the relief of inhibition and initiation 
of the next circadian cycle (31).

In summary, we identified critical CRY1 sites where mutations 
disrupted circadian rhythmicity. Although some enzymes corre-
spond to specific modifications in mCRY1, such as MAPK at S247 
and AMPK at S71 and S280 (9, 11), the enzymes that modify the 
other sites are unknown. In addition, the effect of modifiers on 
rhythmicity varies after blocking (28), but how the enzymes work 
on the circadian clock components remains unclear. Our data 
indicate that key modifiers of CRY1 directly regulate the ratio of 
functional CRY1 protein by distinct mechanisms that determine 
the circadian rhythmicity, providing new insights on regulation 
of the circadian period.
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Normal physiological functions require a robust biological timer called the circadian clock. 
When clocks are dysregulated, misaligned, or dampened, pathological consequences 
ensue, leading to chronic diseases and accelerated aging. An emerging research area 
is the development of clock-targeting compounds that may serve as drug candidates 
to correct dysregulated rhythms and hence mitigate disease symptoms and age-related 
decline. In this review, we first present a concise view of the circadian oscillator, phys-
iological networks, and regulatory mechanisms of circadian amplitude. Given a close 
association of circadian amplitude dampening and disease progression, clock-enhanc-
ing small molecules (CEMs) are of particular interest as candidate chronotherapeutics. 
A recent proof-of-principle study illustrated that the natural polymethoxylated flavonoid 
nobiletin directly targets the circadian oscillator and elicits robust metabolic improve-
ments in mice. We describe mood disorders and aging as potential therapeutic targets 
of CEMs. Future studies of CEMs will shed important insight into the regulation and 
disease relevance of circadian clocks.

Keywords: circadian clock, small molecules, amplitude, metabolic disease, mood disorder, aging

iNTRODUCTiON

The circadian clock is an intrinsic biological timing device operative in evolutionarily divergent 
species, ranging from microorganisms to human (1, 2). The clock drives daily oscillations of 
important molecular and physiological processes to anticipate and respond to the changing 
environment imposed by the rotation of the Earth. Consistent with its adaptive function, normal 
clock functions are required for organisms to survive and thrive. Coculture of cyanobacteria with 
varying period lengths demonstrated competitive growth advantage when inherent periodicity 
aligned with external light/dark rhythms (3), in accordance with findings from plant experi-
ments (4). Likewise, circadian patterns of foraging and predator avoidance are well documented 
for animals in their natural habitats. For example, chipmunks whose central pacemaker, the 
hypothalamic suprachiasmatic nuclei (SCN), had been surgically removed suffered significantly 
higher mortality rate in the wild than those with fully functional clocks (5). The clock has also 
been postulated to protect early eukaryotes from irradiation during the day (6, 7). Despite the 
lack of acute lethality from genetic disruption of clock genes in laboratory animals, there exists 
a strong correlation, and in some cases causative relationship, between malfunctioning clocks 
and chronic diseases as well as aging (8, 9).
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FigURe 1 | The core circadian oscillator and regulatory molecules. The circadian clock oscillator is comprised of a network of transcriptional–translational 
feedback loops including the core loop (BMAL1/CLOCK/NPAS2 and PERs/CRYs), the stabilization loop (BMAL1/CLOCK, REV-ERBs, and RORs), and the auxiliary 
loop (DBP, E4BP4, REV-ERBs, and RORs). Various protein regulators (F-box-containing E3 ligases are shown as examples) and small-molecule modulators 
(nobiletin is shown) have been identified to target core clock components, regulating circadian periodicity and amplitude. See the main text for details.
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As we extend the list of clock-associated pathologies and 
probe for greater mechanistic understanding, the outstanding 
question remains whether and how to target the clock to combat 
disease and physiological decline (10–12). Except in the case of 
jet-lag, targeting the clock for health benefits will likely entail 
chronic intervention and gradual and systemic improvement of 
phenotypes and symptoms. Here, we highlight clock-associated 
metabolic disease, mood disorder, and aging as clock-associated 
processes characterized by dampened amplitude of circadian 
oscillation (13). Small-molecule enhancers of the circadian 
clock may strengthen the clock and clock-driven gene expres-
sion and physiology, retarding pathological deterioration. 
While this review will mainly focus on circadian amplitude 
enhancement, clock modulators capable of circadian phase 
and/or period modulation can show clinical utility in diseases 
states that are accompanied by circadian phase misalignment 
or abnormal periodicity (10, 14).

MAMMALiAN CiRCADiAN CLOCK

In the canonical mammalian clock, the molecular oscillator is 
the functional unit present in every cell of the body (15, 16). 
Comprised of interlocked feedback loops (Figure 1), molecular 
oscillators in individual tissues coordinate to govern highly 
tissue-specific expression programs of clock-controlled genes 
(CCGs). While 43% of genes have been shown to oscillate in 
at least one tissue in mice (17), indicating prevalent circadian 
gene regulation, the overlap of CCGs between tissues was found 
to be approximately 10% (18). At the system level, various 
tissue clocks are orchestrated by the SCN master pacemaker, 
a pair of neuron clusters bilaterally located in the anterior of 
the hypothalamus (19). The SCN displays tight coupling among 
its neurons (20) and functions to respond to photic signals to 
synchronize tissue and cellular clocks throughout the body via 
neural and hormonal signals.

The molecular oscillator is composed of intersecting negative 
feedback loops to drive ~24-h gene expression rhythms (1). 

In  the core loop, the positive arm consists of three bHLH-PAS 
transcription factors, including paralogous CLOCK/NPAS2 
and their heterodimeric partner BMAL1 (Figure 1). CLOCK or 
NPAS2 each interacts with BMAL1 through the PAS and bHLH 
domains. After dimerization, CLOCK/BMAL1 and NPAS2/
BMAL1 activate expression of Period (Per) and Cryptochrome 
(Cry) genes via E-box promoter elements. PER and CRY proteins 
themselves heterodimerize and translocate into the nucleus to 
inhibit transcriptional activities of CLOCK/BMAL1 and hence 
their own transcription. CRYs belong to the photosensing 
photolyase protein family that functions in DNA damage repair 
in bacteria and in circadian photic entrainment in flies (21). 
However, the mammalian CRY proteins appear to have lost the 
photosensing ability yet acquired function as the major tran-
scriptional repressor in the circadian core loop. Crystal structure 
studies showed that CLOCK and BMAL1 interact via bHLH 
and two PAS domains in an asymmetrical fashion, characterized 
by a β-sheet/α-helix interaction involving respective BMAL1 
and CLOCK PAS-B domains (22). On the β-sheet surface of 
CLOCK PAS-B, mutagenesis screen identified several residues 
whose mutations attenuated CRY inhibition of CLOCK/BMAL1 
transactivation, suggesting CLOCK/CRY interactions. Several 
crystal structures of CRY proteins have been reported. The FAD-
binding domain of CRY proteins appears to be a key nodal point 
recognized by both a CRY-stabilizing small molecule (23) or an 
CRY-degrading E3 ligase (24), and that PER binding to CRY 
precludes access for the E3 ligase FBXL3 (25), thus stabilizing 
CRY. Future structural studies of core clock complex formation 
on promoter DNA will advance our understanding of circadian 
oscillator function.

Several other feedback loops have been shown to stabilize 
and/or modulate the core feedback loop (Figure 1). In the prin-
cipal stabilization loop, CLOCK/BMAL1 and NPAS2/BMAL1 
activate highly cyclic expression of genes encoding the nuclear 
hormone receptors REV-ERBα/β (26). REV-ERBs and their 
antagonistic receptors RORα/β/γ compete for binding to shared 
consensus elements (RORE and RevDR2) on the promoter of 
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Bmal1/Npas2 and other target genes throughout the genome to 
promote robust oscillatory gene expression (27–29). In another 
auxiliary loop (30), CLOCK/BMAL1 activates expression of 
genes encoding the PAR-bZip transcription factor DBP (D-box 
binding protein), which in turn drives Ror gene expression 
via their D-box promoter elements. In addition to Bmal1, 
REV-ERBs and RORs also govern the expression of the Nfil3 
gene, which encodes a transcriptional suppressor (also known 
as E4BP4) that binds to the D-box to antagonize DBP tran-
scriptional activity. Apart from these transcriptional feedback 
loops, other feedback mechanisms are also important, includ-
ing a post-translational loop involving the NAD+-dependent 
sirtuin (SIRT) 1 deacetylase (31). CLOCK/BMAL1 activates the 
Nampt gene, which encodes the rate-limiting enzyme for NAD+ 
biosynthesis. The NAD+ level directly correlates with SIRT1 
activity, which directly target core clock proteins including 
BMAL1 and PER2 (32, 33).

Degradation of core clock components has emerged as a key 
regulatory mode for circadian functions. Casein kinase 1 has 
been shown to phosphorylate PERs, thereby facilitating their 
proteasomal degradation by the F-box proteins β–TRCP1/2 
(34). Likewise, the AMPK kinase phosphorylates CRYs to 
promote CRY degradation (35), mainly mediated by the F-box 
protein FBXL3 (36–38). FBXL21, a close homolog of FBXL3, 
was found to antagonize FBXL3 to decelerate CRY degradation 
in the nucleus, on the other hand, also accelerate CRY turnover 
in the cytoplasm (39, 40). Mice harboring hypomorphic muta-
tions in Fbxl3 and Fbxl21 showed opposite effects on circadian 
period length, highlighting an important circadian function 
for ubiquitin-mediated proteasomal degradation. Autophagy is 
another major protein degradation mechanism, involving lyso-
somal degradation of protein cargo delivered via autophagosome 
(41). It was recently found that BMAL1 undergoes dual degrada-
tion by proteasome- and autophagosome-dependent pathways, 
and attenuation of both in ClockΔ19/+ heterozygous mice 
improves glucose homeostasis (42). Overall, the circadian clock 
system is regulated by an exceedingly complex array of molecular 
mechanisms encompassing all levels of gene expression, together 
ensuring temporal precision (~24 h) and oscillatory robustness 
(see below).

CiRCADiAN AMPLiTUDe RegULATiON

Amplitude denotes the robustness of circadian oscillation, 
measured by the difference between peak and trough of the 
circadian cycle. Whereas dampened circadian amplitude has 
been shown to closely correlate with chronic diseases and 
aging (10, 12, 43), the molecular and physiological mechanisms 
underlying circadian amplitude regulation are not well under-
stood. Within the core oscillator, multiple lines of evidence 
indicated the importance of balancing positive vs. negative 
activities. For example, in mouse MEF cells, CLOCK/BMAL1 
(positive factors) are in higher abundance than PER/CRY (the 
negative arm); as a result, overexpressing PER and CRY, but 
not CLOCK or BMAL1, strongly enhanced circadian ampli-
tude (44). Such functional balance is further illustrated by the 
antagonistic transcriptional function of REV-ERBs and RORs 

in the secondary loop. Whereas ROR levels cycle only weakly, 
REV-ERB mRNA and protein levels are highly oscillatory. By 
directly competing for binding to promoter elements, they 
together govern a significant fraction of genome-wide circadian 
gene expression (29, 45). The clock is inherently a self-limiting, 
rhythmic machinery, namely, a limit cycle. Maintaining the 
“Yin–Yang” balance may lead to sustained oscillation, whereas 
brute force beyond a homeostatic range will dampen the overall 
amplitude of the following cycles. In other studies, CLOCK 
overexpression was found to enhance amplitude (46, 47), yet 
it remains unclear whether the primary mechanism involved is 
simply the greater level and activity of the positive transcription 
factor or an optimized functional balance.

More recent studies have provided insight into the functional 
complexity and dexterity of core clock components in amplitude 
regulation. In one study, REV-ERBα was found to be phospho-
rylated by cyclin-dependent kinase 1 (CDK1) at T275, a site not 
conserved in REV-ERBβ (48). Phosphorylated REV-ERBα was 
subsequently recognized by the F-box protein FBXW7 for pro-
teasome degradation. Knockdown of CDK1 or FBXW7 reduced 
the amplitude of a circadian reporter in a dose-dependent man-
ner, suggesting this REV-ERBα degradation pathway plays an 
important role in circadian amplitude. Another study described 
a “facilitated recruitment” mechanism where REV-ERBs are 
recruited to open chromatin following a rate-limiting step medi-
ated by ROR/BMAL1 and transcription cofactors SRC-2/PBAF 
(49). It was posited that recruitment of the REV-ERB repressors 
by the activators ROR/BMAL1 ensures efficient and timely tran-
scriptional shutdown, resulting in robust amplitude in target gene 
expression.

At intercellular and physiological/behavioral levels, oscillator 
coupling is of paramount importance to maintaining robust 
oscillation (50). The SCN rhythm is known to be exceptionally 
refractory to genetic perturbation compared with peripheral cells 
due to the tight coupling between SCN neurons (20). For exam-
ple, several clock genes, including Per1 and Cry1, are required for 
sustained PER2:LUC reporter rhythms in dissociated fibroblast 
cells and SCN neurons. At the tissue level, whereas lung explants 
remained arrhythmic, SCN slices showed robust cycling of the 
PER2:LUC reporter. In accordance, Per1-null mice displayed 
clear rhythmic locomotor behavior, albeit with a short period 
length (51). These studies together indicate that intercellular syn-
chronization between SCN neurons, likely involving vasoactive 
intestinal polypeptide (VIP) (48), strengthens system amplitude. 
Such coupling-induced rhythm stabilization can also be observed 
in peripheral cells, where single-cell reporter rhythms were less 
robust or stable compared with those in tissue slices (16, 52). 
Besides genetic perturbation, intercellular coupling can also 
confer protection against pharmacological disturbance and 
stochastic noise (53). Reciprocally, intercellular coupling can 
also facilitate noise-generated stochastic rhythm. While dis-
persed SCN neurons from Bmal1−/− mice showed no circadian 
rhythmicity, Bmal1−/− SCN slices displayed shorter and highly 
variable circadian rhythms (54). Such unstable rhythms were 
shown to be abolished by tetrodotoxin-induced uncoupling in 
the SCN slices, further indicating that intercellular coupling 
augments rhythmic stability and robustness.
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CLOCK-eNHANCiNg SMALL MOLeCULeS 
(CeMs) AND eFFiCACieS iN MeTABOLiC 
DiSeASe MODeLS

More than half of top-selling drugs act on protein targets encoded 
by cyclically expressed genes (17), and xenobiotic metabolism is 
subjected to circadian regulation (55). These findings indicate 
a close circadian regulation of pharmacodynamics and phar-
macokinetics (56–58). On the other hand, rather than aligning 
the timing of chronotherapy with intrinsic rhythms, a distinct 
strategy is to manipulate the clock or clock components to allevi-
ate clock-regulated disease symptoms (10–12, 14). Behavioral or 
dietary manipulations have been shown to modulate circadian 
rhythms, such as light exposure (59–61), exercise (62) as well as 
feeding/fasting regimens (63). For example, a series of studies 
have shown that time-restricted feeding (TRF) can improve sleep 
and metabolic homeostasis and delay cardiac aging in Drosophila 
(13, 64) At the molecular level, TRF activates genes involved in 
circadian rhythms and mitochondrial electron transport chain 
complexes. Similarly, timed caloric restriction (CR) led to highly 
consolidated food intake, which enhanced the expression and 
amplitude of core clock genes and improved lipid homeostasis, 
eventually contributing to life span extension (63, 65). Finally, 
bright light and melatonin, both major circadian synchronizers 
that strengthen rhythms, have been shown to improve cognition 
and mood in the elderly (66). These studies exemplify the benefi-
cial effects of enhancing the molecular and physiological rhythms 
on physiology and behavior.

Various chemical compounds capable of manipulating clocks 
have been discovered via either unbiased phenotypic screens or 
targeted approaches focusing on particular clock components 
(67–72). As described above, the clock is a self-limiting machine 
with a myriad of check-and-balance mechanisms governing its 
periodicity and robustness. Excessive functional manipulation, 
either stimulatory or inhibitory, of a specific clock protein may 
compromise the inherent balance within the clock, eventually 
diminishing or even abrogating the intended effects. Therefore, 
when searching for small molecules capable of enhancing circa-
dian robustness, it is important to evaluate the sustained effects 
on reporter rhythms rather than assaying only the molecular 
function of individual clock components. Below, we describe our 
recent efforts to utilize phenotypic screening to identify chemical 
modifiers that enhance circadian amplitude.

In two separate screens using cell-based phenotypic assays, 
we reported a group of clock amplitude-enhancing small 
molecules dubbed CEMs. The first screen of 200,000, largely 
synthetic, compounds identified 4 CEMs that potentiated cel-
lular and tissue reporter rhythms in both WT and ClockΔ19/+ 
heterozygous mutant backgrounds (73). In contrast to 
ClockΔ19/+ heterozygous cells that displayed attenuated but 
sustained circadian rhythms, ClockΔ19/Δ19 homozygous or 
Bmal1-null cells where the oscillators are essentially broken were 
refractory to CEM (14). CEM3, a benzimidazole compound, was 
uniquely able to further potentiate the robust reporter rhythms 
of the SCN pacemaker. In a second, smaller screen, a natural 
flavonoid compound called nobiletin (NOB) was identified as 
a novel CEM, along with its close analog tangeretin (74). NOB 

showed strong enhancing activities in circadian reporter cells, 
with an EC50 in the low micromolar range. NOB is a major 
polymethoxylated flavone found in citrus peels and exhibits a 
favorable pharmacokinetic profile devoid of significant toxicity 
(75). Previous studies have reported diverse biological activities 
against metabolic syndrome, oxidative stress, inflammation, and 
cancer (76–80); however, its molecular mechanism of action and 
direct protein targets were unknown.

A potential metabolic efficacy of NOB is intriguing and 
provides a focal point of connecting circadian manipulation and 
metabolic fitness. Previous research has established a regulatory 
role of the circadian clock in metabolic homeostasis (31). For 
example, the ClockΔ19/Δ19 mutant mice showed a broad array 
of metabolic dysfunctions, including blunted feeding rhythms, 
hyperphagia, exaggerated obesity risk under high-fat diet (HFD) 
feeding or at older ages, elevated blood glucose levels and hypo-
insulinemia (81). Reciprocally, metabolism and/or nutrition 
also modulate our internal clocks (82, 83). For example, under 
ad  libitum HFD feeding, mice showed a slight increase in the 
free-running period length (~23.8  h) compared with regular 
chow-fed animals (~23.6 h), and importantly a marked decrease 
in amplitude of circadian rhythms, including both clock gene 
oscillation in the periphery and feeding rhythms (82, 84). Both 
examples showed a correlation of circadian amplitude reduction 
and metabolic dysfunction, consistent with human studies where 
blunted insulin secretion rhythm associates with increased risk 
for diabetes (85).

We therefore examined the efficacy of NOB in two mouse 
metabolic disease models, namely the HFD-induced obese mice 
and db/db diabetic mice. Metabolic characterization illustrated 
that NOB effectively mitigated body weight gain without altering 
food intake, stimulated energy expenditure (EE) and circadian 
activity, enhanced glucose and insulin tolerance, and diminished 
lipid content in circulation and in liver (74). The alleviated liver 
steatosis phenotype was accompanied by restored oscillation 
of core clock components in mouse liver. In addition to energy 
homeostasis, NOB was also found to reduce serum ammonia 
levels in different diets and appeared to enhance urea cycle gene 
expression and function under HFD feeding (86). ClockΔ19/Δ19 
homozygous mutant mice showed no or much diminished 
response to NOB, indicating clock requirement for NOB effects. 
Microarray analysis using mouse liver showed extensive remod-
eling of energy metabolic pathways including lipid metabolism 
and mitochondrial respiration. Together, these findings support 
the notion that clock enhancement by NOB contributes to meta-
bolic improvement (87).

Importantly, NOB was found to directly activate ROR recep-
tors via filter binding and functional studies including mam-
malian one-hybrid assays (74). This key finding highlights the 
role of RORs in circadian amplitude regulation and also sheds 
important insight on the functional complexity of NOB and 
ROR. First, despite the robust affinity of NOB–ROR interac-
tion, the activation of ROR target genes, including core clock 
genes (e.g., Bmal1) and downstream output genes, was gener-
ally moderate (74). This observation is consistent with the limit 
cycle nature of the clock where the balance between positive and 
negative limbs is paramount to the overall amplitude. Second, 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


108

Gloston et al. CEMs Promote Health and Health Span

Frontiers in Neurology | www.frontiersin.org March 2017 | Volume 8 | Article 100

a large number of ROR inverse agonists and REV-ERB agonists 
have been identified (71, 88). Despite opposite molecular 
functions relative to NOB as an ROR agonist, several of these 
compounds have been shown to improve energy metabolism 
in metabolic disease models (89, 90). This apparent paradox 
illustrates a potential functional dexterity of ROR (and also 
REV-ERB). It is possible that specific ligands, either agonists or 
antagonists, of ROR/REV-ERB can promote metabolic health, 
likely via distinct compound-specific mechanisms. A recent 
study (91) showed that three antagonists of RORγt employed 
divergent molecular mechanisms to affect its promoter binding 
and target gene expression and exhibited different degrees of 
mimicry with genetic RORγt disruption. These studies highlight 
the importance of in-depth mechanistic understanding of CEMs 
in circadian rhythms and downstream physiology.

MOOD DiSORDeRS AND AgiNg AS 
POTeNTiAL PATHOPHYSiOLOgiCAL 
TARgeTS OF CeMs

Below we highlight two potential targets of CEMs, namely mood 
disorders and aging, where accumulating evidence indicates a 
strong correlation between pathophysiology and clock amplitude 
decline.

Mood Disorders
Mood disorders and circadian dysfunction are closely associ-
ated. Various manifestations of major mood disorders such 
as major depressive disorder, bipolar disorder, and seasonal 
affective disorder (BPD and SAD, respectively) exhibit diurnal 
rhythms, with the most severe symptoms typically occurring 
in the morning or around sunset (92, 93). In an early study 
comparing depressed, recovered, and healthy subjects, the 
depressed group exhibited blunted circadian rhythms, with 
a significant correlation to scores on depression severity (94). 
Recovered participants following 3  weeks of antidepressant 
treatment showed restored circadian amplitude, suggesting that 
depression is closely linked to circadian rhythmicity. In SAD 
patients suffering from depression during winter months with 
shorter daytime (95), circadian rhythms in feeding, sleep, body 
temperature, cortisol, and melatonin release, neurotransmitter 
(serotonin, norepinephrine, and dopamine) have been shown to 
be disturbed or dampened (96, 97). Another mood disorder is 
Sundowning syndrome, also referred to as “nocturnal delirium” 
(93). Sundowning syndrome is characterized by a worsening of 
behavior (i.e., aggression, restlessness, delirium, and agitation) 
in the late afternoon or early evening, particularly in the elderly 
population suffering from dementia. Clinical and preclinical data 
suggest that disturbances in sleep, environmental entrainment 
cues, and the SCN pacemaker all contribute to Sundowning syn-
drome (93). Specifically, sleep disruptions including impaired 
NREM sleep consolidation, sleep fragmentation, daytime 
sleeping, and reduced sleep efficiency are common among 
both the elderly and demented (98), and circadian amplitude 
disturbances manifested as sleep disruptions listed above can 
contribute to mood imbalance (99).

Mouse studies have begun to supply evidence for a pos-
sible causal relationship between clock function and mood. 
For example, behavioral assays using the ClockΔ19/Δ19 mice 
revealed manic-like behaviors similar to human bipolar mania 
(100), including hyperactivity, decreased sleep, hyperhedonia, 
and an increased preference for cocaine use. Disrupted circa-
dian rhythms are also commonly found in human mania (94). 
More recently, the subcapsular cell hyperplasia associated with 
adrenal tissue remodeling was reported to enhance circadian 
amplitude of glucocorticoid rhythm, but not the total glucocor-
ticoid levels (101). Interestingly, the enhanced stress hormone 
rhythm promotes anxiolytic function. It was postulated that the 
high-amplitude oscillation of the anxiogenic glucocorticoid, 
the descending phase in particular, endows a robust anxiolytic 
response to regulate mood balance.

Consistent with a close relationship between clock disruption 
and mood disorders, various treatment options are known to 
manipulate or enhance circadian and/or sleep cycles. Among 
the environmental therapies are bright light therapy, social 
rhythm therapy (SRT), and sleep deprivation. Bright light 
therapy is the treatment of choice for SAD and has also 
been applied to depression, bipolar disorder, and sleep–wake 
cycle disturbances (102). Bright light in the morning serves 
to advance the circadian phase to correct the phase delays 
commonly seen in SAD patients and may also function as a 
strong photic zeitgeber to improve daily rhythms. Likewise, 
SRT (103) entails social zeitgebers such as routine daily 
tasks to restore stability of biological rhythms in depression 
patients. Finally, a total sleep deprivation paradigm has also 
been developed to temporarily alleviate SAD symptoms. Its 
biological basis is not well understood, although it has been 
shown to impact neurotransmitter function and rapidly reset 
behavioral and circadian rhythms (104). Therefore, behavioral 
and environmental cues employed in these therapies reset and 
potentiate circadian rhythms, mainly at the behavioral levels, 
to counter the debilitating depressive tendency.

Various pharmacological agents have been used in mood dis-
orders, including antidepressants, antimanic or mood-stabilizing 
drugs, and antipsychotics (Table 1). Lithium is a mood-stabilizing 
drug that has been used to treat bipolar disorder for more than 
50 years. In addition to its mood-stabilizing effects, lithium has 
been reported to lengthen the free-running circadian period in 
mammals including hamsters and mice (105, 106). A potentially 
important target of lithium is GSK-3β (107), a kinase broadly 
acting in various signaling pathways. GSK-3β was previously 
shown to phosphorylate and stabilize REV-ERBα, and lithium 
treatment accelerated proteasomal degradation of REV-ERBα 
(108). More recently, lithium was found to activate Per2 gene 
expression and enhance the circadian reporter amplitude in 
both SCN and periphery (106). Another pharmacological 
treatment that affects the circadian system is valproic acid or 
valproate. Valproate is traditionally an anti-epileptic drug but 
has been repurposed as a mood-stabilizing drug. Valproate has 
been shown to alter circadian period (109) and acute valproate 
treatment of PER2:LUC bioluminescence experiments in skin 
fibroblasts yielded amplitude enhancement and induced phase-
shifts, depending on the relative level of PER2:LUC protein 
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TABLe 2 | Antidepressive and neuroprotective roles of nobiletin.

Species Treatment 
duration

effect Cellular effects Reference

Mouse (despair model via FST 
and TST)

60 min prior 
to assay

Antidepressant Monoamine upregulation (112)

Mouse 11 days Antidepressant; improved 
memory impairment

Activated ERK/MAP kinase-dependent signaling and 
increased CREB phosphorylation

(111)

Mouse AD (APP-SL 7-5 Tg mice) 4 months Reduced Aβ plaque pathology; 
improved memory impairment

ERK phosphorylation; enhanced neprilysin activity (126)

Mouse AD (3XTg-AD) 3 months Improved cognitive impairment Reduced soluble Aβ levels, reduced ROS levels in the 
hippocampus of WT and 3XTg-AD mice

(127)

Mouse (senescence-accelerated 
mouse prone 8, SAMP8)

2 months Improved recognition and  
context-dependent fear  
memory

Restored decrease in GSH/GSSG ratio, increased antioxidant 
(GPx) enzyme activity, reversed tau phosphorylation at Ser202 
and Thr231

(128)

MPTP-treated model mice 14 days Improved motor and cognitive 
deficits

Increased levels of CaMKII autophosphorylation and 
phosphorylation of DARPP-32 in the striatum and 
hippocampus; restored CaMKII- and cAMP kinase-dependent 
TH phosphorylation; enhanced dopamine release in striatum 
and hippocampus

(129)

Future studies are required to delineate the role of circadian clock in these efficacies.
FST, forced swim test; TST, tail suspension test.

TABLe 1 | Pharmacological treatments for mood disorders targeting the circadian system.

Drug name Therapeutic effect Circadian target(s) Circadian-related effect(s) Reference

Lithium Mood stabilizer GSK-3β Lengthened circadian period; enhanced PER2 protein expression; 
and oscillatory amplitude

(105, 106)

Valproate Mood stabilizer Dopamine-mediated, 
possibly PER2

Shortened circadian period of behavioral rhythms in DAT-KD mice 
and rhythms in suprachiasmatic nuclei explants from PER2:LUC mice

(109)

Quetiapine Mood stabilizer; 
adjunctive antidepressant; 
antipsychotic

Per1/2, Bmal1 Enhanced Per1/2 mRNA at different ZTs in the mouse amygdala (113)

Carbamazepine Mood-stabilizer Undetermined Shortened length of locomotor activity; stabilized running activity (114)

Fluoxetine Antidepressant Per2/3, Cry2, GSK-3β Altered circadian period; enhanced hippocampal clock gene 
expression; altered phase re-entrainment

(115–117)

Agomelatine Antidepressant MT1/2 receptors Accelerated resynchronization of circadian rhythms; improved rest–
activity cycle more than common antidepressant; entrained circadian 
rhythms; induced phase-shifts

(118–123)

Ramelteon Antidepressant MT1/2 receptors Phase advance (124)

Tasimelteon Antidepressant MT1/2 receptors Phase advance/delay (125)
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expression (110). Previous mouse studies have also suggested 
antidepressive functions of NOB (111, 112) (Table  2). For 
example, NOB was found to improve mouse performance in 
forced swimming test and tail suspension tests, while pretreat-
ments with drugs targeting monoaminergic systems disrupted 
the NOB effects (112). It will be interesting for future studies 
to investigate a role of circadian clocks in these NOB efficacies.

Aging
Gradual decline in metabolic, physiological, and behavioral 
functions with age leads to increasing risk of chronic disease and 
mortality (130). One physiological basis for such system-wide 

deterioration is age-related circadian attenuation (13, 43). 
Various clock-regulated physiological and behavioral processes 
are known to display reduced amplitude with age (43, 61, 131). 
For example, aging correlates with impaired rhythms in SCN 
firing rate, hormone secretion (e.g., cortisol and melatonin), 
and body temperature (132). Sleep fragmentation, character-
ized by multiple short periods of sleep episodes throughout 
the normal sleep phase and also sleep during the normal active 
phase, indicates amplitude dampening of the sleep/wake cycle 
and constitutes a well-documented characteristic of aging and 
various age-related diseases including Alzheimer’s disease (133). 
At the molecular level, there is also broad dysregulation of 
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clock gene expression (61, 134, 135). Whereas peripheral clocks 
appear to suffer amplitude dampening (136, 137), the central 
clock neurons maintain robust molecular oscillation (135, 137). 
It is possible that cellular coupling and/or output pathways are 
compromised during aging, leading to systemic decline. In 
accordance, old age in both humans and mice is associated 
with delayed adaptation to phase shift cues (138, 139), sug-
gesting that aging compromises circadian synchronization and 
weakens entraining response. Genetic studies have also provided 
evidence linking the clock and aging. The Bmal1-null mutant 
mice, exhibiting arrhythmic clock gene expression and defective 
clock-controlled physiological processes such as metabolism 
and activity (140, 141), suffered premature aging phenotypes 
such as sarcopenia, cataracts, and early mortality (142, 143). On 
the other hand, the αMUPA transgenic mice, as a long-living 
mouse model, displayed 24-h circadian periodicity regardless 
of age (144). These mice maintained robust behavioral and 
physiological rhythms, and core clock gene expression showed 
enhanced amplitude. Collectively, the evidence indicates that 
circadian robustness, involving both clock gene oscillation and 
systemic synchronization (145), may confer beneficial effects 
on life span and health span.

An established circadian output marker is melatonin (146), a 
sleep-regulating hormone in humans whose synthesis pathway is 
governed by the clock (147). Aging dampens the circadian peak 
(and amplitude) and daily total secretion of melatonin (148–150), 
contributing to lower sleep quality including decreased rapid eye 
movement, slow wave sleep, and increased stage 2 non-REM 
sleep in the elderly (151, 152).

Aging is associated with prevalent metabolic deterioration 
(130). For example, total EE declines during aging, as the elderly 
display diminished EE and gross energy intake (EI) compared 
with young adults (153). Such age-related energy imbalance, with 
EI > EE in the elderly and EI < EE in young adults, causes exag-
gerated body mass index during aging (154). Body temperature is 
a circadian output that shows a diurnal pattern with a dip during 
sleep (146, 155, 156). Thermogenesis plays a significant role in 
energy homeostasis, and age-related deterioration in energy 
homeostasis impairs circadian body temperature rhythm. For 
example, despite largely comparable basal body temperature, 
phase and amplitude of body temperature rhythm have been 
shown to significantly differ between the elderly and young- or 
middle-aged subjects (155, 157, 158). Liver and muscle play 
important roles in body temperature regulation, and attenuated 
skeletal muscle mass and mitochondrial function significantly 
contribute to dampened energy homeostasis and thermogenesis 
during aging (62, 157).

Caloric restriction universally prolongs life span (159). CR 
depletes white adipose tissue, especially the pro-inflammatory 
and diabetogenic visceral fat that accumulates over age (160). 
Timed CR leads to highly consolidated food intake within a few 
hours, enhancing the amplitude of circadian metabolic rhythms 
(63, 161) and core clock gene oscillation (65). CR involves several 
nutrient-sensing pathways including AMPK, AKT, and mTORC1, 
all of which have been reported to functionally interact with the 
clock (31, 42, 160, 161). In particular, the NAD+-dependent 
deacetylase SIRT proteins play important roles at the interface 

of energy homeostasis, clock, and aging (161, 162). Mammals 
express seven SIRT proteins (SIRT1–7), several of which have 
been implicated in circadian regulation of metabolism (32, 33, 
163, 164). For example, SIRT1 directly deacetylates core clock 
components including BMAL1 and PER2, regulating their 
molecular function and CCG expression (32, 33). More recently, 
SIRT1 was found to interact with PGC-1α to control Clock and 
Bmal1 gene expression in the SCN, consequently regulating 
CLOCK/BMAL1 target genes (165). Various SIRT1-activating 
small molecules (e.g., resveratrol) have been shown to extend 
life span (166); resveratrol, in particular, has been shown to 
modulate physiological and behavioral rhythms and clock gene 
expression (167–169).

FUTURe DiReCTiONS AND CONCLUDiNg 
ReMARKS

Circadian amplitude regulation and pharmacological modifiers 
are exciting research topics with promising translational poten-
tial. The list of CEMs will likely continue to grow, either from 
phenotypic screening, as in the case of NOB, or from targeted 
ligand development (14). On the other hand, pharmacological 
agents shown to target or mimic clock-enhancing pathways such 
as CR, TRF, and exercise are a rich venue for discovery of addi-
tional clock-targeting agents (63, 130, 161, 170). For example, a 
growing number of small molecules or drugs have been shown 
to extend life span and health span, including those deliberately 
designed to mimic CR and other manipulations (170, 171). 
Future studies should characterize their circadian clock effects 
and delineate molecular mechanisms.

Besides metabolic diseases, mood disorders, and aging, other 
chronic diseases such as neurodegenerative diseases (172, 173) 
have also been shown to correlate with dampened circadian 
amplitude or clock dysregulation and may represent new venues 
for studies of clock modifiers. In addition to antidepressive effects, 
several studies have shown neurological efficacies of NOB using 
transgenic disease models (Table  2). For example, 11-day oral 
administration of NOB resulted in an overall memory improve-
ment in olfactory-bulbectomized (OBX) mice based on the step-
through passive-avoidance task and the Y-maze test (111). OBX 
mice share clinical features with both human neurodegenerative 
diseases and major depression (174). The depression-like phe-
notype is thought to derive from pathological or compensatory 
mechanisms within the cortical–hippocampal–amygdala circuit, 
which typically involve deterioration of spine density and/or 
synaptic strength changes (175). Future studies are required 
to determine the specific role of circadian clocks and RORs in 
disease models.

Significant gaps of knowledge remain regarding circadian 
amplitude regulation, especially the mechanisms employed by 
CEMs. At the intracellular level, questions of particular interest 
include gene expression regulation, such as cofactor recruitment, 
epigenetic mechanisms, and chromosome dynamics (1). At the 
intercellular and system levels, other coupling molecules in addi-
tion to VIP and the communication between peripheral and cen-
tral clocks are outstanding questions (50). It is conceivable that 
CEMs execute distinct mechanistic schemes to restore a robust 
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