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ACTIVE TOUCH SENSING

Active touch can be described as the control 
of the position and movement of tactile 
sensing systems to facilitate information 
gain. In other words, it is finding out about 
the world by reaching out and exploring—
sensing by ‘touching’ as opposed to ‘being 
touched’. In this Research Topic (with cross-
posting in both Behavioral Neuroscience 
and Neurorobotics) we welcomed articles 
from junior researchers on any aspect of 
active touch. We were especially interested 

in articles on the behavioral, physiological and neuronal underpinnings of active touch in a 
range of species (including humans) for submission to Frontiers in Behavioral Neuroscience. 
We also welcomed articles describing robotic systems with biomimetic or bio-inspired tactile 
sensing systems for publication in Frontiers in Neurorobotics. 

Left: finger tips exploring a textured surface using 
active touch strategies; middle: rats use their 
whiskers for active touch; right: tactile robot 
hoover using its robot whiskers to discriminate 
between different floor textures.
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Active touch can be described as the control of the position
and movement of tactile sensing systems by reaching out and
exploring—sensing by “touching” as opposed to being touched.
The active nature of these movements entails precise control of
the sensory apparatus, which is task-specific and maximizes sen-
sory information from the environment. This collection brings
together a group of articles from progressive, early career sci-
entists who are researching active touch sensing from a variety
of different perspectives including behavioral, physiological, neu-
ronal, computational, and robotic. There are a host of different
model systems that are used to investigate active touch sens-
ing and this collection sees the three main systems represented;
that of the human hand, mammalian whiskers, and insect anten-
nae. In this collection we have grouped the studies together into
sections by their system and each section contains a collection
of articles from both Frontiers in Behavioral Neuroscience and
Frontiers in Neurorobotics. We feel that this indicates the truly
multidisciplinary nature of studying active touch.

The first section of articles covers various aspects of human
touch. As with all active touch systems, humans move their fin-
gertips through a sequence of exploratory movements that yields
the most information from the task. These movements depend
on both the task in hand and prior experience. Ackerley et al.
(2012), demonstrated using fMRI that different brain areas are
functional in active touch tasks compared to passive touch ones.
Articles within this section of the collection demonstrate that
biomimetic robots can exploit the information generated by dif-
ferent movements to select the most “useful” movements that
maximize information to successfully discriminate between dif-
ferent textures (Fishel and Loeb, 2012; Pape et al., 2012) and are
able to judge surface compliance (Su et al., 2012). Texture tasks
can be achieved by processing sensor information from fingertips,
but also the movements of the wrists and fingertips in relation
to the surface, which can code for surface properties (Delhaye
et al., 2012). Klöcker et al. (2012) show that as well as movement,
force and vibration data, touch can also be related to feelings of
pleasantness, with fingertip moisture levels as a good correlate of
unpleasantness.

The whisker, or vibrissal, system of small mammals is an
important model of active touch sensing. The majority of the
work in this area is aimed at understanding the neural sub-
strates that are involved in this complex sensorimotor system.
In order to obtain reliable tactile information about their envi-
ronment most of the whiskered mammals move their vibrissae

rhythmically, a motion known as whisking. Unlike in human
touch, the whiskers are ultimately made up of dead cells, with
sensory information obtained at the base of the whisker, in the
follicle. Boubenec et al. (2012) propose that the contact and
detachment of a whisker with a surface is likely to give rise
to the most significant neural responses. Changes in the bend-
ing moment of the whisker can then be used to calculate the
position of contact with an object along the whisker, and used
to predict the object curvature and translation (Schroeder and
Hartmann, 2012). However, predicting the position of object
contact from bending moments is complex, and changes with
whisker velocity (Evans et al., 2013). As with humans, move-
ments of the sensory apparatus, the whiskers, are dependent
on prior experience. Small mammals have functional whiskers
from birth. Grant et al. (2012) show that rats orient to whisker
contacts from conspecifics from a young age to maintain aggre-
gations, indicating the crucial role the whiskers play in devel-
opment. Anjum and Brecht (2012) show that young shrews
can use their whiskers to locate and hunt crickets in an adult
manner, and can moderate their attack strategy to novel prey
items. This demonstrates that hunting behavior is both innate,
subject to modification from experience and reliant on active
touch.

In our final section we look for inspiration in the insect
antennal system. Insects have a pair of antennae on their head
that are involved in a range of sensory-guided behaviors. Just
like with the mammalian whiskers, these antennae can be used
to locate the position of an object contact along the antennae,
discriminate between surfaces and their sensory information is
also affected by velocity (Pape et al., 2012). However, as well as
object discrimination and orienting to prey and conspecifics, tac-
tile information can also be used to guide locomotion. Krause
and Dürr (2012) show that antennal touches guide the posi-
tions and speeds of joint movements as stick insects step over
objects.

We believe that this collection of papers on humans, small
mammals, and insects represents the current state of research
in active touch sensing. As biologists, neuroscientists, roboticists,
and computational modelers continue to work together, we pre-
dict that this field will continue to expand and hope to see more
active touch behaviors defined and characterized in the future;
with an emphasis on their function in the behaving animals. We
hope that you enjoy reading this collection of papers as much as
we have enjoyed putting them together.
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Active, self-touch and the passive touch from an external source engage comparable
afferent mechanoreceptors on the touched skin site. However, touch directed to glabrous
skin compared to hairy skin will activate different types of afferent mechanoreceptors.
Despite perceptual similarities between touch to different body sites, it is likely that
the touch information is processed differently. In the present study, we used functional
magnetic resonance imaging (fMRI) to elucidate the cortical differences in the neural
signal of touch representations during active, self-touch and passive touch from another,
to both glabrous (palm) and hairy (arm) skin, where a soft brush was used as the stimulus.
There were two active touch conditions, where the participant used the brush in their
right hand to stroke either their left palm or arm. There were two similar passive, touch
conditions where the experimenter used an identical brush to stroke the same palm
and arm areas on the participant. Touch on the left palm elicited a large, significant,
positive blood-oxygenation level dependence (BOLD) signal in right sensorimotor areas.
Less extensive activity was found for touch to the arm. Separate somatotopical palm
and arm representations were found in Brodmann area (BA) 3 of the right primary
somatosensory cortex (SI) and in both these areas, active stroking gave significantly
higher signals than passive stroking. Active, self-touch elicited a positive BOLD signal in
a network of sensorimotor cortical areas in the left hemisphere, compared to the resting
baseline. In contrast, during passive touch, a significant negative BOLD signal was found
in the left SI. Thus, each of the four conditions had a unique cortical signature despite
similarities in afferent signaling or evoked perception. It is hypothesized that attentional
mechanisms play a role in the modulation of the touch signal in the right SI, accounting for
the differences found between active and passive touch.

Keywords: glabrous, hairy, motor, sensorimotor, skin, somatosensory, stroking

INTRODUCTION
The brain receives afferent information from the activation of
mechanoreceptors in the skin during interactions with the envi-
ronment. The present study focuses on the cortical representa-
tions from active, self-touch and passive (other) touch to the
palm and arm. There are differences in the types of low-threshold
mechanoreceptors found in the glabrous skin of the palm com-
pared to the hairy skin on the arm (for an overview, see Macefield,
2005). The mechanoreceptors on the glabrous skin allow high
discriminatory abilities for touch, whereas the input from hairy
skin does not give such discrimination. Despite these differences,
glabrous and hairy skin are both sensitive to touch; a recent study
has shown that psychophysical ratings of the intensity and the
pleasantness of touch were not different between the skin of the
palm and the arm (McGlone et al., 2012). However, the study
also found that using a Touch Perception Task (from Guest et al.,
2011), subjects used more sensory descriptors when evaluating
touch to the palm, whereas they used more emotional descriptors

for touch to the arm, indicating that touch is processed over many
cognitive levels.

The high discriminatory ability from human glabrous skin
(e.g., the ventral surfaces of the hands and feet) is based on
inputs from four main classes of low-threshold mechanorecep-
tors, namely: rapidly-adapting types I (RAI; Meissner’s corpus-
cles) and II (RAII; Pacinian corpuscles), and slowly-adapting
types I (SAI; Merkel’s disks) and II (SAII; Ruffini’s endings).
These afferents are in the Aβ conduction range of myelinated
mechanoreceptors and send information to the brain very quickly
(conducting at 36–73 m/s; Kakuda, 1992) at a high temporal res-
olution (Perge et al., 2012). This type of mechanoreceptive input
provides an excellent source of information during discrimina-
tive touch; the incoming, high-quality tactile information can
be compared in areas of the brain such as SI. This capacity can
be demonstrated in ways such as using two-point discrimina-
tion tests, where the fingertip skin has high discriminatory ability
(2–4 mm; Bickley and Szilagyi, 2007).
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Hairy skin is defined as the non-glabrous and non-
mucocutaneous skin that covers the majority of the body surface.
Hairy skin does not contain RAI mechanoafferents but instead,
includes hair, field and C-tactile (CT) afferents. These afferents
have myelinated axons (e.g., Aβ terminal hair and field units;
Vallbo et al., 1995), or are unmyelinated (CT; Vallbo et al., 1993).
The density of myelinated afferents in hairy skin is much less
than in glabrous skin (Provitera et al., 2007). In contrast to
glabrous skin, hairy skin has a much lower discriminatory ability
(e.g., 30–40 mm in the two-point discrimination test; Bickley and
Szilagyi, 2007), but is nevertheless sensitive to touch; in fact, CT
afferents respond to <250 mg force (Vallbo et al., 1993; Wessberg
et al., 2003; Cole et al., 2006). The touch information relayed to
the brain from CT afferents is comparatively lower in temporal
resolution due to the slower conduction velocity and more vari-
able firing discharge (Vallbo et al., 1993, 1999; Wessberg et al.,
2003).

Touch information is described classically as having a soma-
totopical representation in the contralateral SI (Penfield and
Rasmussen, 1950), where discriminative and integrative aspects of
touch are processed, such as form, texture, shape, and size (Hsiao,
2008). Tactile input is also processed in other cortical areas and
the information flow can be split into dorsal and ventral streams
(Romo et al., 2002). The dorsal stream sends information to
Brodmann areas (BA) 5 and 7 and has been associated with pro-
cessing during active touch, such as during voluntary movements
(Shanks et al., 1985; Cavada and Goldman-Rakic, 1989; Romo
et al., 2002). The ventral stream has been more associated with
discrimination, feature and pattern recognition, and flows though
lateral somatosensory areas, such as the secondary somatosensory
cortex (SII), but also includes activation of premotor and pre-
frontal areas (Pons et al., 1987; Carmichael and Price, 1995; Romo
et al., 2002). Both of these streams include reciprocal connections
with motor areas and there are within- and between-hemispheric
somatosensory connections (Goldring et al., 1970; Fabri et al.,
1999; Tommerdahl et al., 2006; Eickhoff et al., 2008; Ragert et al.,
2011; Schäfer et al., 2012). In active touch, the motor system must
communicate with the somatosensory system during behavior,
such as in the fine-detail exploration of a surface. Here, there must
be an exchange of sensory and motor information and the pri-
mary motor cortex (MI) also receives direct input from SI (Huerta
and Pons, 1990). It is likely that combinations of these areas work
together to integrate and process touch information and shape
how we act on it.

The present study aims to investigate the differences between
the cortical representations from active and passive forms of
touch. The mode of touch relates to the skin site: active touch
is typically carried out by the hands whereas the rest of the body
is more involved in passive touch, for example, from another per-
son. Active, self-touch and the passive touch from another will
engage similar afferent mechanoreceptors on the same skin site
but may be processed differently. Active touch is self-governed,
where there is a motivation and an expectation of upcoming
sensory input. A feed-forward efference copy signal predicting
the expected outcome of movements is sent to somatosensory
areas, such as SI and the cerebellum, for movement-related gat-
ing of the incoming sensory input (Chapin and Woodward, 1981;

Blakemore et al., 1998). This has been hypothesized to be for
sensory cancellation e.g., how you cannot tickle yourself because
an internal forward model captures the relationship between the
motor efference copy and the predicted sensory consequences of
the action (Weiskrantz et al., 1971; Blakemore et al., 1998, 2000).
Sensory cancellation allows you to attend to any unexpected
parts of the input, while ignoring the expected sensory feedback.
Conversely, during passive touch, an expectation of touch may be
present, but there is no motor efference copy to nullify or cancel
the subsequent, sensory input.

Previous neuroimaging studies have found that active touch
produces sensations that are less intense, compared to that from
passive touch, in part due to sensory cancellation (Blakemore
et al., 1998, 1999). In these studies, the BOLD signal in SI con-
tralateral to the touched surface was found to be significantly
lower for active touch. It is reasoned that incoming signals are
attended to less if they match the expected parameters, so can
be ignored, thus a decrease in the signal is observed. The find-
ing of decreased activity in SI for active compared to passive
touch is controversial. Some studies have found a decreased
SI signal, for example, in animal in vivo recordings (Chapin
and Woodward, 1981; Jiang et al., 1991), electroencephalography
(EEG; Abbruzzese et al., 1981; Tapia et al., 1987), magnetoen-
cephalography (Hesse et al., 2010), and fMRI (Blakemore et al.,
1998). However, other animal in vivo electrophysiological exper-
iments (Chapman and Ageranioti-Bélanger, 1991; Ageranioti-
Bélanger and Chapman, 1992) and a recent fMRI experiment
(Simões-Franklin et al., 2011) have found different results: an
increased contralateral SI signal during active touch.

Information gained from active touch and dynamic passive
touch has been shown to be perceptually similar (Lederman,
1981; Verrillo et al., 1999). It is therefore likely that the motor
component in active touch can be countermanded to the extent
that movement-related gating has virtually no effect. Similar
effects have been seen in other sensory-motor tasks, such as the
interaction of vision with head movement, where a cancellation
signal occurs but has little effect on the response (Ackerley and
Barnes, 2011). It is to be expected that all available sensory and
motor information is used together in processing the informa-
tion from touch. The present study uses fMRI to detect significant
modulations in the BOLD signal to active (self-touch) and pas-
sive stroking (touch via the experimenter) of the glabrous skin
(palm) and hairy skin (arm), using a soft, cosmetic brush for
stimulation. This was specifically used to activate low-threshold
mechanoreceptors and investigate the cortical differences within
and between the touch conditions. Therefore, despite similarities
in perception, we hypothesize that each condition (active, passive,
hairy, or glabrous) has a unique cortical representation.

MATERIALS AND METHODS
The study was carried out using a Siemens 3T MRI scanner with
an eight channel head coil, at the University of Liverpool, UK.
All participants were screened prior to taking part for safety
and were supplied with information about the study, which con-
formed to local ethical approval and was performed in accordance
with the Declaration of Helsinki. Written, informed consent was
obtained for a total of 12 healthy, male volunteers (aged 18–35).
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The study compared intra-personal touch where the person
actively stroked themselves (self-touch) using a soft cosmetic
brush (width = 4 cm), with inter-personal touch where the par-
ticipant was stroked using an identical brush, by the experimenter
(other-touch). The body sites stroked were the palm (glabrous
skin in the middle of the left palm) and the arm (dorsal hairy sur-
face of the left mid-arm). Each stroked area was approximately
10 cm long and the stroking velocity was between 6 and 8 cm/s.
The participant could not see the experimenter during the ses-
sion, although, they were instructed about the type of stroking
via a viewing screen.

The paradigm consisted of four different randomized touch
conditions that were repeated eight times each. Each block con-
sisted of 9 s of stroking, then 6 s of rest. During the stroking,
the participant saw a continuous visual instruction (e.g., “Stroke
your palm” and “Your arm will be stroked”), which was projected
onto a screen in front of the participant, viewed via a mirror on
the head coil. The participants were made aware of the timings
and task beforehand, and they practiced the conditions before
going into the scanner, and also in the scanner before the experi-
ment started. This aided in gaining consistency in stroking within
and between participants and also allowed for similar forces to
be applied (∼0.8 N). To minimize motion artifacts that would
produce head movement in the scanner, the participants were
instructed to make only small arm movements during brushing.

The parameters used for the functional gradient echo-planar
imaging sequence were: in-plane resolution = 64× 64 matrix,
field of view = 192 mm, flip angle = 90◦, TR = 3000 ms, TE =
30 ms, and inter-slice interval= 71 ms over 160 volumes (42 slices
for whole-brain coverage at a resolution of 3× 3× 2.5 mm with
slice gap = 0.5 mm). A T1-weighted, high resolution anatomi-
cal scan (176 slices at 224× 256 mm coverage, 1 mm isotropic
voxels) was conducted either before or after the paradigm. Brain
Voyager (v2.4, Brain Innovation, Maastricht, Netherlands) was
used for the analysis of the fMRI data and Statistical Package
for the Social Sciences (SPSS) (IBM, Armonk, NY) was used for
further statistical investigations in region-of-interest (ROI) anal-
yses. The raw fMRI data were imported and preprocessed with
the following standard parameters: slice scan time correction, 3D
motion correction, spatial smoothing (with a Gaussian filter of
full width half maximum = 3 mm in the space domain), and
temporal filtering. All of the subjects had <3 mm motion and
<3◦ translation. Anatomical data were imported and corrected
for image intensity inhomogeneity (a step that included brain
extraction from surrounding skull and tissue, and the segrega-
tion of gray and white matter), before conversion to Talairach
space. The preprocessed functional data were coregistered with
the original anatomical data to make a volume time course file.
Data were saved in neurological convention (where left-is-left and
vice versa) at a resolution of 3× 3× 3 mm.

The processed functional data were linked to the Talairach
brain (Talairach and Tournoux, 1988) and a single-subject gen-
eral linear model (GLM) was carried out with four predictors
(the stroking conditions) using Z-scores as a change from the
signal baseline (rest), with a hemodynamic response function
applied. Each participant’s data was inspected for significant
BOLD activity changes from the resting baseline between the

conditions. A multi-subject group-level GLM was then carried
out, for random effects significant differences in the BOLD sig-
nal. The different stroking conditions were contrasted against the
baseline rest period and significantly activated voxels were sought
at a false discovery rate (FDR) of q < 0.05, which corrected for
multiple comparisons (see Genovese et al. (2002), Goebel et al.
(2006), and Gordon et al. (2011) for use of FDR correction to
increase statistical power over Bonferroni correction). ROIs were
identified based on the results of the contrasts, although, the main
targets for analysis were sensory and motor cortical areas in the
brain (e.g., SI, SII and MI). The Talairach co-ordinates for regions
showing significant changes in the BOLD signal were entered into
Talairach Client (Talairach.org; Lancaster et al., 1997, 2000) to
determine the exact brain area modulated. Beta-weights (relating
to the BOLD z-score amplitude) were computed for each partic-
ipant in each condition in ROIs. SPSS (IBM, Armonk, NY) was
used to calculate significant differences between touch conditions
using analysis of variance [ANOVA; 2× 2 design: mode of stim-
ulation (active or passive) and the body site touched (palm or
arm)], with post-hoc multiple comparisons where the factors were
contrasted separately (sought at p < 0.05).

RESULTS
The results from comparing the different touch conditions
showed striking differences in sensorimotor areas. From inspec-
tion of each participant’s data, and as found previously (Olausson
et al., 2002; Björnsdotter et al., 2009), the data from some par-
ticipants (n = 4) showed less BOLD activation, due to increased
head movement and also drowsiness may have played a factor.
Although, these participants’ data followed similar trends, they
were not used in calculations. Overall in the data, there were
more extensive areas showing positive BOLD signal changes for
palm compared to arm stroking in the right sensorimotor cor-
tex, irrespective of whether the stroking was active or passive
(Figure 1). A somatotopical representation was found in the right
SI (BA03): the palm representation was in the middle of the post-
central gyrus and covered a large area (see Figure 1), whereas the
arm representation was further lateral (not shown in Figure 1
due to the slice orientation; see Table 1 for details). In both of
these specific body site regions in BA03, active touch gave signif-
icantly higher beta values than passive touch to the same area,
respectively (p < 0.05; Figure 2). Other areas in the left senso-
rimotor cortex showed significant positive BOLD modulations
compared to the resting baseline for touch to the palm and arm
(see Table 1), however, none of these regions showed significant
differences between the active and passive touch beta values.

Comparing touch to the palm and arm, there were other
region-specific differences. For touch to the arm, there were sig-
nificant BOLD signals found bilaterally in SII during both active
and passive touch, compared to the resting baseline. For touch
to the palm, there was a bilateral activation of SII during passive
touch compared to rest, however, during active stroking of the
palm there was only significant BOLD signal changes in the right
SII (see Figure 1 and Table 1). During touch to the palm, the right
MI showed significant positive BOLD signals compared to the
resting baseline. There were also significant positive BOLD signals
in the right premotor cortex during active touch to the palm and
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FIGURE 1 | Overview of the main regions where positive BOLD signal

changes were found for active and passive stroking on the palm and

arm, compared to the resting baseline. There were clear differences
between active and passive touch, as can be seen in the BOLD signal in
the left SI and MI (compare the top two panels). There were also body site
differences: the right SI had large regions of activity from palm stroking,
whereas much less activity was found to arm stroking (see also Table 1).
There was also bilateral SII activation to arm stroking, whereas bilateral
activity for palm stroking was only found for passive touch (in active touch
to the palm, there was only right SII activity). The maps are to neurological
convention (left is left).

arm; however, there were no right-sided motor area activations
for passive stroking of the arm (see Table 1).

Differences between active and passive touch were mainly seen
in the left sensorimotor cortex, as would be expected for the right,
contralateral, and limb movement. During active stroking of the
palm and arm, a network of left cortical areas showed significant
positive BOLD signals including: SI, MI, premotor cortex, and
somatosensory association areas (BA05 and BA07; see Table 1).
These activations likely reflect the interaction of motor and sen-
sory components during active, self-touch including movement
planning, co-ordination and sensory feedback from the skin of
the right palm. Furthermore, in contrast to the positive BOLD
signals during active touch compared to the resting baseline (see
Figure 1, top left panel and Figure 3 top panel), a significant neg-
ative BOLD signal was found in the left SI during passive touch to
both the palm and arm (Figure 3). This covered an extensive part
of SI and also spread into the left MI. A further difference was
seen in the insula cortices: there were significant bilateral pos-
itive BOLD signals during passive touch to both the palm and
arm, compared to the resting baseline. In contrast, during active
touch, only the right insula showed a significant BOLD signal in
self-palm stroking, compared to the resting baseline.

DISCUSSION
The present study used light brush stroking to elicit cortical
responses from glabrous and hairy skin. The BOLD signal was
modulated by the skin site (palm or arm) and by the type of
stroking (active or passive), and an interaction was seen in the
right SI (contralateral to the touch) in BA03 between active and
passive stroking of the palm and the arm. Here, a clear soma-
totopical difference was observed between the representations
of each body site, the palm being a much larger representa-
tion and the arm was represented more laterally, and in both
respective areas, active stroking gave an increased BOLD sig-
nal over passive stroking. Previous studies have also found that
the arm is represented more laterally than from the Penfield
and Rasmussen (1950) cortical homunculus, e.g., Olausson et al.
(2002) and Gordon et al. (2011). The larger representation of
the glabrous skin of the hand would be expected in SI, due to
both the increased peripheral receptor density and differences
in the type of receptors present (i.e., the glabrous skin also
sends RAI afferents to the cortex), however, the finding of active
touch, in general, producing significantly higher BOLD signals
was more controversial. The present study adds to the evidence
that the signal in contralateral SI is indeed modulated, for both
glabrous and hairy skin sites, although it is likely that the affer-
ent signal to SI touch may be modulated in a context-dependent
manner (Chapman and Ageranioti-Bélanger, 1991; Ageranioti-
Bélanger and Chapman, 1992; Chapman, 1994; Jackson et al.,
2011). If there is behavioral relevance for the tactile informa-
tion gained from active touch, the cancellation effect from the
sensory prediction of the consequences of the motor efference
may be countermanded by an internal mechanism to attend to
the touch afference. This attentional or cognitive internal drive
may determine whether the signal to contralateral SI is atten-
uated or amplified. It is therefore likely that the input to SI is
nevertheless subject to movement-related gating, which would
decrease the incoming signal during active touch; however, the
efference copy of the movement and/or the prediction of its sen-
sory consequence may be countermanded by the demands of
the task.

The extent to which the signal is attenuated or amplified may
be modulated by factors such as attention and motor strategy,
depending on the situation (Chapman, 1994). Previous stud-
ies have shown that there is not necessarily a direct relation-
ship between activity in afferent touch systems and changes in
the BOLD signal and the relationship can vary with attention
(Johansen-Berg and Lloyd, 2000; Arthurs et al., 2004). During
active touch, interactions between motor and sensory cortices
may also regulate context-dependent information processing in
SI (Lee et al., 2008). Evidence from humans for the modula-
tion of this movement-related gating comes from Master and
Tremblay (2009, 2010), who found that active tactile exploration
increases corticomotor excitability when tactile information is
sought, rather than ignored. In present study, the participants
may have paid more attention to the active stroking as they did
not have visual feedback from their touch, thus giving the higher
signal in SI. Furthermore, the current study provides evidence
that this signal was only modulated in BA03; no significant modu-
lations in the level of the positive BOLD signal were seen between
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Table 1 | Overview of all the cortical regions showing significant differences from the resting baseline for each touch conditions.

Brodmann area Peak Talairach co-ordinates Maximum t-score Number of voxels

x y z

ACTIVE PALM VS. REST

Left premotor cortex 6 −4 −15 53 8.96 203

6 −58 2 39 9.56 710

Left precentral gyrus (MI) 4 −29 −23 67 11.93 912

Left postcentral gyrus (SI) 3 −35 −30 57 12.66 956

2 −54 −28 50 11.49 491

2 −60 −22 35 9.70 918

40 −40 −44 53 12.80 497

Left somatosensory association cortex 5 −34 −40 59 12.46 964

7 −21 −54 61 4.81 483

7 −35 −54 54 7.02 650

Right premotor cortex 6 7 −19 72 5.42 586

6 57 1 39 7.16 601

Right precentral gyrus (MI) 4 31 −20 63 13.28 792

Right postcentral gyrus (SI) 3 37 −31 58 13.15 955

40 35 −44 52 14.31 845

2 56 −22 41 10.04 900

Right operculum (SII) 40 58 −18 24 7.61 523

Right insula 13 49 −18 17 3.30 151

Right inferior frontal gyrus 44 54 7 14 3.67 87

ACTIVE ARM VS. REST

Left premotor cortex 6 −4 −12 54 7.11 708

6 −58 0 39 6.57 324

Left precentral gyrus (MI) 4 −30 −21 66 11.66 992

Left postcentral gyrus (SI) 3 −35 −29 59 11.66 1000

2 −52 −26 50 9.41 939

2 −59 −22 36 11.09 989

40 −36 −42 53 9.67 998

Left somatosensory association cortex 5 −34 −38 59 10.75 945

7 −26 −65 53 3.14 148

7 −35 −54 54 6.57 380

Left operculum (SII) 40 −59 −23 23 6.11 452

Right premotor cortex 6 7 −10 62 5.47 47

6 58 0 37 8.72 503

Right postcentral gyrus (SI) 3 57 −21 41 9.63 755

40 36 −42 54 7.83 438

Right operculum (SII) 40 53 −22 27 5.28 127

Right inferior frontal gyrus 44 54 4 14 6.70 191

PASSIVE PALM VS. REST

Left premotor cortex 6 60 0 35 6.42 394

Left postcentral gyrus (SI) 2 −60 −23 34 8.93 939

Left postcentral gyrus (SI) 3 −36 −31 59 −11.87 632

Left operculum (SII) 40 −59 −23 24 6.24 616

Left insula 13 −49 −38 23 3.41 142

13 −40 −5 11 4.10 150

Right precentral gyrus (MI) 4 40 −18 58 9.57 900

Right postcentral gyrus (SI) 3 40 −31 59 8.66 984

2 56 −22 35 7.98 772

40 36 −40 56 8.72 991

Right operculum (SII) 40 52 −22 21 6.03 784

40 57 −31 24 4.91 553

Continued
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Table 1 | Continued

Brodmann area Peak Talairach co-ordinates Maximum t-score Number of voxels

x y z

Right insula 13 43 −19 20 5.07 450

13 40 −14 11 4.75 217

Right inferior frontal gyrus 44 54 3 17 3.37 71

PASSIVE ARM VS. REST

Left postcentral gyrus (SI) 3 −35 −31 59 −12.98 570

Left operculum (SII) 40 −61 −24 32 5.78 485

Left insula 13 −50 −37 23 3.87 73

Right postcentral gyrus (SI) 3 58 −21 37 5.91 346

40 27 −43 56 3.64 17

Right operculum (SII) 40 52 −22 21 4.73 637

40 58 −34 26 6.59 840

Right insula 13 42 −31 21 5.54 557

13 39 −15 12 3.64 89

Right inferior frontal gyrus 44 54 1 17 4.18 211

Right superior temporal gyrus 22 67 −37 16 4.04 217

Right angular gyrus 39 47 −55 8 3.88 189

The table details the Brodmann area, Talairach co-ordinates (x, y, z) of the peak of the BOLD signal, the maximum t-score and the number of voxels in each region.

The italicized numbers denote a significant negative BOLD signal; all other regions show significant positive BOLD signals compared to the baseline.

FIGURE 2 | Beta weights from the right SI palm and arm respective

areas. There were significant differences for the palm SI BA03 region and
arm SI BA03 region (see Table 1 for area details), where active stroking
gave significantly higher beta values than passive stroking. Error bars show
±1 standard error.

active and passive touch for other areas during stroking of the
palm or arm. There was an interaction between the touch condi-
tions in SII: all the conditions apart from active touch to the palm
elicited significant positive BOLD signals bilaterally in SII. Active
touch to the palm, however, only showed significant positive
BOLD signal changes in the right SII. The present results suggest
that somatosensory signals arriving in SII from both palms may
culminate in a gating effect to focus on the most relevant input

for the current task. Different patterns of activity in SII may aid
in attention to a certain body area, especially during bilateral body
interactions with input from the same body area on both sides.

We investigated self-touch with an instrument, rather than the
direct skin-to-skin contact. It was deemed that a brush was a
better, more controlled stimulus for factors such as temperature
and social interactions. Furthermore, the participants were able
to train in stroking with the brush, which also allowed a constant
force to be applied between the conditions. A potential confound
of the finding of the active/passive touch modulation in BA03 may
have been small differences in the applied force of the brushing.
An increased signal in SI for both the palm and arm active brush-
ing may have been due to the participant stroking themselves with
more force. However, the force from the brush would not have
been too different as the hairs on the brush provided only light
forces (typically <1 N) and it was difficult to achieve a heavy force
with the brush, unless it was pushed into the skin. As the partici-
pant was able to practice stroking with the brush beforehand, the
experimenter was able to make sure that the brushing was con-
sistent within and between participants. Although, the task was
repetitive, the participants were required to pay attention to the
task at hand and no overall decrease in the modulation of the
BOLD signal was seen over the experiments. Also, as the effect was
only found in BA03, this points to an attentional mechanism for
gating of the initial processing of incoming touch information. It
is likely that self-touch using skin-to-skin contact would produce
a somewhat different signal. With this reasoning, the left senso-
rimotor touch network found during active touch in the present
study may be different when touch is directed to another object
that is not the self.

During active touch, a network of sensorimotor areas was
recruited in the left cortex, contralateral to the moving limb.
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FIGURE 3 | Overview of the left SI area that showed significant

negative BOLD during passive stroking. The top graph shows the time
courses of all the conditions in the left SI BA03 area (see Table 1 for more
details); in active touch, there was a significant positive BOLD signal
changes, whereas in passive touch, there was a significant negative BOLD
signal. The bottom panel shows the negative BOLD signal areas for passive
touch to the palm and arm; these regions overlapped greatly. The brain map
in the bottom panel is to neurological convention (left is left).

Strong, positive BOLD signals were observed particularly in left
SI and MI, with other sensory (somatosensory association cor-
tex) and motor (premotor cortex) areas also following the same
pattern of modulation during active touch. A similar network of
connectivity between motor, premotor, sensory, and sensory asso-
ciation areas has been demonstrated in the monkey (Morecraft
et al., 2004, 2012). In the present study, a negative BOLD signal
was found in the left sensorimotor cortex during passive touch.
There are a number of potential explanations for this including
“vascular blood stealing” from surrounding areas. This entails
that an area showing a positive BOLD signal can produce a nearby
negative BOLD signal due to blood being diverted from a nearby
inactive area. In the present study, this is unlikely as there was no
positive BOLD signal in close proximity to the negative BOLD
signal during the passive stroking. Another potential explana-
tion may be that the negative BOLD signal may have been due
to a “memory” of previous active touch modulations, such as,

residual neuronal inhibition or a compensatory decrease in blood
flow after the large BOLD signal from active touch. However,
the BOLD signals returned to the resting baseline level after
each touch stimulus had ceased and the stimuli were random-
ized, making this explanation less likely. Negative BOLD signals
have been shown to correlate with decreases in neuronal activity
(Shmuel et al., 2006), which could manifest as a change in ongo-
ing brain rhythms. We believe that the negative BOLD signal in
the ipsilateral, left SI during passive touch was due to a change
in the neuronal activity as a result of unilateral touch to the
left side of the body. Recent papers have shown that somatosen-
sory stimulation of one hand elicits positive BOLD signals in
the contralateral cortex with accompanying negative BOLD sig-
nal modulations in the ipsilateral cortex (Hlushchuk and Hari,
2006; Kastrup et al., 2008; Klingner et al., 2010, 2011; Schäfer
et al., 2012).

EEG studies have shown that a unilateral somatosensory stim-
ulus to one hand will elicit an event-related potential in the
contralateral SI, which is accompanied by a concurrent event-
related desynchronization of the ongoing mu rhythm over both
somatosensory cortices, although, more strongly on the con-
tralateral side to the somatosensory event (Korvenoja et al., 1995;
Nikouline et al., 2000). The evidence shows, that a somatosen-
sory event to one side of the body only, will elicit a response
in the contralateral SI, which has an effect on the ipsilateral SI,
via transcallosal connections between the sensorimotor cortices
(Fabri et al., 1999; Ragert et al., 2011). We postulate that cross-
talk between sensorimotor cortices will facilitate attention and
differentiation of somatosensory information from each side of
the body. Specifically, the inhibitory signal that is sent from the
activated SI to the opposite SI may aid in bimanual process-
ing and the interpretation of tactile localizations and interactions
(Kastrup et al., 2008). The differences in the BOLD signals may
play a role in distinguishing between active, self-touch (with the
internally-generated efferent copy feedback) from passive, exter-
nal touch (with no predictions of the consequences). It is possible
that the shift between significant positive and negative BOLD sig-
nals to active and passive stroking, respectively, do also reflect the
timing and expectancy of previous and subsequent touch stimuli
during the paradigm. Also, only during passive touch was bilat-
eral insula activity seen. This again may be part of a network of
sensory areas that help distinguish both between self- and other
touch.

In conclusion, the present study found a distinct cortical pat-
tern associated with each of the four touch conditions. Differences
between touch to the palm and arm were found: the glabrous skin
of the palm showed a significant representation in the contralat-
eral, right SI, whereas this signal was less extensive for touch to
the arm, which relates to the mechanoreceptive input and usage
for discriminative touch. The significant, positive BOLD signal
was modulated in the respective body site areas in BA03, where
active touch gave an increased signal over passive touch. Active
touch using the right hand/arm elicited a network of positive
BOLD signal changes in left sensorimotor areas; conversely, a neg-
ative BOLD signal for passive touch in the left SI. The present
study has implications for understanding how touch information
is processed and gated according to the behavioral situation and
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could be used to refine touch interactions with everyday objects
in rehabilitation studies. Furthermore, touch processing appears
to be heavily influenced by the reasons and attentional demand
of the task at hand, where both motor and sensory information

is relevant. Future studies will explore factors, such as, atten-
tional modulations to touch, including bilateral touch and touch
at other body sites, and how active movement influences touch
both to the self and other objects.

REFERENCES
Abbruzzese, G., Ratto, S., Favale,

E., and Abbruzzese, M. (1981).
Proprioceptive modulation of
somatosensory evoked potentials
during active or passive finger
movements in man. J. Neurol.
Neurosurg. Psychiatry 44, 942–949.

Ackerley, R., and Barnes, G. R. (2011).
The interaction of visual, vestibu-
lar and extra-retinal mechanisms in
the control of head and gaze dur-
ing head-free pursuit. J. Physiol. 589,
1627–1642.

Ageranioti-Bélanger, S. A., and
Chapman, C. E. (1992). Discharge
properties of neurones in the hand
area of primary somatosensory
cortex in monkeys in relation to
the performance of an active tactile
discrimination task. II. Area 2 as
compared to areas 3b and 1. Exp.
Brain Res. 91, 207–228.

Arthurs, O. J., Johansen-Berg, H.,
Matthews, P. M., and Boniface,
S. J. (2004). Attention differen-
tially modulates the coupling of
fMRI BOLD and evoked poten-
tial signal amplitudes in the human
somatosensory cortex. Exp. Brain
Res. 157, 269–274.

Bickley, L., and Szilagyi, P. (2007).
Bates’ Guide to Physical Examination
and History Taking, 9th Edn.
Philadelphia, PA: Lippincott
Williams and Wilkins.

Björnsdotter, M., Löken, L., Olausson,
H., Vallbo, A., and Wessberg, J.
(2009). Somatotopic organization
of gentle touch processing in the
posterior insular cortex. J. Neurosci.
29, 9314–9320.

Blakemore, S. J., Wolpert, D., and Frith,
C. (2000). Why can’t you tickle
yourself? Neuroreport 11, R11–R16.

Blakemore, S. J., Wolpert, D. M., and
Frith, C. D. (1998). Central cancel-
lation of self-produced tickle sensa-
tion. Nat. Neurosci. 1, 635–640.

Blakemore, S. J., Wolpert, D. M., and
Frith, C. D. (1999). The cerebellum
contributes to somatosensory cor-
tical activity during self-produced
tactile stimulation. Neuroimage 10,
448–459.

Carmichael, S. T., and Price, J. L.
(1995). Sensory and premotor con-
nections of orbital and medial pre-
frontal cortex of macaque monkeys.
J. Comp. Neurol. 363, 642–664.

Cavada, C., and Goldman-Rakic, P.
S. (1989). Posterior parietal cortex

in rhesus monkey: I. Parcellation
of areas based on distinctive lim-
bic and sensory corticocortical con-
nections. J. Comp. Neurol. 287,
393–421.

Chapin, J. K., and Woodward, D.
J. (1981). Modulation of sensory
responsiveness of single somatosen-
sory cortical cells during movement
and arousal behaviors. Exp. Neurol.
72, 164–178.

Chapman, C. E. (1994). Active versus
passive touch: factors influencing
the transmission of somatosensory
signals to primary somatosensory
cortex. Can. J. Physiol. Pharmacol.
72, 558–570.

Chapman, C. E., and Ageranioti-
Bélanger, S. A. (1991). Discharge
properties of neurones in the hand
area of primary somatosensory
cortex in monkeys in relation to
the performance of an active tactile
discrimination task. I. Areas 3b and
1. Exp. Brain Res. 87, 319–339.

Cole, J., Bushnell, M. C., McGlone,
F., Elam, M., Lamarre, Y., Vallbo,
A., and Olausson, H. (2006).
Unmyelinated tactile afferents
underpin detection of low-force
monofilaments. Muscle Nerve 34,
105–107.

Eickhoff, S. B., Grefkes, C., Fink, G.
R., and Zilles, K. (2008). Functional
lateralization of face, hand, and
trunk representation in anatomi-
cally defined human somatosensory
areas. Cereb. Cortex 18, 2820–2830.

Fabri, M., Polonara, G., Quattrini, A.,
Salvolini, U., Del Pesce, M., and
Manzoni, T. (1999). Role of the cor-
pus callosum in the somatosensory
activation of the ipsilateral cerebral
cortex: an fMRI study of calloso-
tomized patients. Eur. J. Neurosci.
11, 3983–3994.

Genovese, C. R., Lazar, N. A., and
Nichols, T. (2002). Thresholding of
statistical maps in functional neu-
roimaging using the false discovery
rate. Neuroimage 15, 870–878.

Goebel, R., Esposito, F., and Formisano,
E. (2006). Analysis of functional
image analysis contest (FIAC) data
with brainvoyager QX: from single-
subject to cortically aligned group
general linear model analysis and
self-organizing group independent
component analysis. Hum. Brain
Mapp. 27, 392–401.

Goldring, S., Aras, E., and Weber,
P. C. (1970). Comparative

study of sensory input to
motor cortex in animals and
man. Electroencephalogr. Clin.
Neurophysiol. 29, 537–550.

Gordon, I., Voos, A. C., Bennett, R.
H., Bolling, D. Z., Pelphrey, K. A.,
and Kaiser, M. D. (2011). Brain
mechanisms for processing affec-
tive touch. Hum. Brain Mapp. doi:
10.1002/hbm.21480. [Epub ahead
of print].

Guest, S., Dessirier, J., Mehrabyan, A.,
McGlone, F., Essick, G., Gescheider,
G., Fontana, A., Xiong, R., Ackerley,
R., and Blot, K. (2011). The devel-
opment and validation of sensory
and emotional scales of touch per-
ception. Atten. Percept. Psychophys.
73, 531–550.

Hesse, M. D., Nishitani, N., Fink,
G. R., Jousmäki, V., and Hari, R.
(2010). Attenuation of somatosen-
sory responses to self-produced tac-
tile stimulation. Cereb. Cortex 20,
425–432.

Hlushchuk, Y., and Hari, R. (2006).
Transient suppression of ipsilateral
primary somatosensory cortex dur-
ing tactile finger stimulation. J.
Neurosci. 26, 5819–5824.

Hsiao, S. (2008). Central mechanisms
of tactile shape perception. Curr.
Opin. Neurobiol. 18, 418–424.

Huerta, M. F., and Pons, T. P. (1990).
Primary motor cortex receives input
from area 3a in macaques. Brain Res.
537, 367–371.

Jackson, S. R., Parkinson, A., Pears,
S. L., and Nam, S. H. (2011).
Effects of motor intention on
the perception of somatosen-
sory events: a behavioural and
functional magnetic resonance
imaging study. Q. J. Exp. Psychol. 64,
839–854.

Jiang, W., Chapman, C. E., and
Lamarre, Y. (1991). Modulation
of the cutaneous responsive-
ness of neurones in the primary
somatosensory cortex during
conditioned arm movements in
the monkey. Exp. Brain Res. 84,
342–354.

Johansen-Berg, H., and Lloyd, D. M.
(2000). The physiology and psy-
chology of selective attention to
touch. Front. Biosci. 5:D894–D904.

Kakuda, N. (1992). Conduction
velocity of low-threshold
mechanoreceptive afferent fibers
in the glabrous and hairy skin
of human hands measured with

microneurography and spike-
triggered averaging. Neurosci. Res.
15, 179–188.

Kastrup, A., Baudewig, J., Schnaudigel,
S., Huonker, R., Becker, L., Sohns,
J. M., Dechent, P., Klingner, C., and
Witte, O. W. (2008). Behavioral
correlates of negative BOLD
signal changes in the primary
somatosensory cortex. Neuroimage
41, 1364–1371.

Klingner, C. M., Hasler, C., Brodoehl,
S., and Witte, O. W. (2010).
Dependence of the negative BOLD
response on somatosensory stim-
ulus intensity. Neuroimage 53,
189–195.

Klingner, C. M., Huonker, R.,
Flemming, S., Hasler, C., Brodoehl,
S., Preul, C., Burmeister, H.,
Kastrup, A., and Witte, O. W.
(2011). Functional deactivations:
multiple ipsilateral brain areas
engaged in the processing of
somatosensory information. Hum.
Brain Mapp. 32, 127–140.

Korvenoja, A., Wikstrom, H.,
Huttunen, J., Virtanan, J., Laine, P.,
Aronen, H. J., Seppalainen, A. M.,
and Ilmoniemi, R. J. (1995). Source
activation of ipsilateral primary
sensorimotor cortex by median
nerve stimulation. Neuroreport 6,
2589–2593.

Lancaster, J. L., Rainey, L. H.,
Summerlin, J. L., Freitas, C. S.,
Fox, P. T., Evans, A. C., Toga, A.
W., and Mazziotta, J. C. (1997).
Automated labeling of the human
brain: a preliminary report on the
development and evaluation of a
forward-transform method. Hum.
Brain Mapp. 5, 238–242.

Lancaster, J. L., Woldorff, M. G.,
Parsons, L. M., Liotti, M., Freitas,
C. S., Rainey, L., Kochunov, P.
V., Nickerson, D., Mikiten, S. A.,
and Fox, P. T. (2000). Automated
Talairach atlas labels for functional
brain mapping. Hum. Brain Mapp.
10, 120–131.

Lederman, S. J. (1981). The perception
of surface roughness by active and
passive touch. Bull. Psychon. Soc. 18,
253–255.

Lee, S., Carvell, G. E., and Simons,
D. J. (2008). Motor modulation
of afferent somatosensory circuits.
Nat. Neurosci. 11, 1430–1438.

Macefield, V. G. (2005). Physiological
characteristics of low-threshold
mechanoreceptors in joints, muscle

Frontiers in Behavioral Neuroscience www.frontiersin.org August 2012 | Volume 6 | Article 51 | 13

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Ackerley et al. Cortical processing of touch

and skin in human subjects.
Clin. Exp. Pharmacol. Physiol. 32,
135–144.

Master, S., and Tremblay, F. (2009).
Task-specific increase in corticomo-
tor excitability during tactile dis-
crimination. Exp. Brain Res. 194,
163–172.

Master, S., and Tremblay, F. (2010).
Selective increase in motor excitabil-
ity with intraactive (self) versus
interactive touch. Neuroreport 21,
206–209.

McGlone, F., Olausson, H., Boyle, J.,
Jonesgotman, M., Dancer, C., Guest,
S., and Essick, G. (2012). Touching
and feeling: differences in pleasant
touch processing between glabrous
and hairy skin in humans. Eur. J.
Neurosci. 35, 1782–1788.

Morecraft, R. J., Cipolloni, P. B.,
Stilwell-Morecraft, K. S., Gedney,
M. T., and Pandya, D. N. (2004).
Cytoarchitecture and cortical con-
nections of the posterior cingulate
and adjacent somatosensory fields
in the rhesus monkey. J. Comp.
Neurol. 469, 37–69.

Morecraft, R. J., Stilwell-Morecraft, K.
S., Cipolloni, P. B., Ge, J., McNeal,
D. W., and Pandya, D. N. (2012).
Cytoarchitecture and cortical con-
nections of the anterior cingulate
and adjacent somatomotor fields in
the rhesus monkey. Brain Res. Bull.
87, 457–497.

Nikouline, V. V., Linkenkaer-Hansen,
K., Wikström, H., Kesäniemi, M.,
Antonova, E. V., Ilmoniemi, R. J.,
and Huttunen, J. (2000). Dynamics
of mu-rhythm suppression caused
by median nerve stimulation: a
magnetoencephalographic study in
human subjects. Neurosci. Lett. 294,
163–166.

Olausson, H., Lamarre, Y., Backlund,
H., Morin, C., Wallin, B. G., Starck,
G., Ekholm, S., Strigo, I., Worsley,

K., Vallbo, A. B., and Bushnell,
M. C. (2002). Unmyelinated tactile
afferents signal touch and project
to insular cortex. Nat. Neurosci. 5,
900–904.

Penfield, W., and Rasmussen, T.
(1950). The Cerebral Cortex of Man:
A Clinical Study of Localization
and Function. New York, NY:
Macmillan.

Perge, J. A., Niven, J. E., Mugnaini, E.,
Balasubramanian, V., and Sterling,
P. (2012). Why do axons differ in
caliber? J. Neurosci. 32, 626–638.

Pons, T. P., Garraghty, P. E., Friedman,
D. P., and Mishkin, M. (1987).
Physiological evidence for serial
processing in somatosensory cortex.
Science 237, 417–420.

Provitera, V., Nolano, M., Pagano,
A., Caporaso, G., Stancanelli, A.,
and Santoro, L. (2007). Myelinated
nerve endings in human skin.
Muscle Nerve 35, 767–775.

Ragert, P., Nierhaus, T., Cohen, L.
G., and Villringer, A. (2011).
Interhemispheric interactions
between the human primary
somatosensory cortices. PLoS ONE
6:e16150. doi: 10.1371/journal.
pone.0016150

Romo, R., Hernandez, A., Salinas, E.,
Brody, C. D., Zainos, A., Lemus,
L., de Lafuente, V., and Luna, R.
(2002). From sensation to action.
Behav. Brain Res. 135, 105–118.

Schäfer, K., Blankenburg, F., Kupers, R.,
Grüner, J. M., Law, I., Lauritzen, M.,
and Larsson, H. B. (2012). Negative
BOLD signal changes in ipsilateral
primary somatosensory cortex are
associated with perfusion decreases
and behavioral evidence for func-
tional inhibition. Neuroimage 59,
3119–3127.

Shanks, M. F., Pearson, R. C., and
Powell, T. P. (1985). The ipsi-
lateral cortico-cortical connexions

between the cytoarchitectonic sub-
divisions of the primary somatic
sensory cortex in the monkey. Brain
Res. 356, 67–88.

Shmuel, A., Augath, M., Oeltermann,
A., and Logothetis, N. K. (2006).
Negative functional MRI response
correlates with decreases in neu-
ronal activity in monkey visual area
V1. Nat. Neurosci. 9, 569–577.

Simões-Franklin, C., Whitaker, T. A.,
and Newell, F. N. (2011). Active
and passive touch differentially acti-
vate somatosensory cortex in tex-
ture perception. Hum. Brain Mapp.
32, 1067–1080.

Talairach, J., and Tournoux, P. (1988).
Co-planar Stereotaxic Atlas of the
Human Brain. New York, NY:
Thieme.

Tapia, M. C., Cohen, L. G., and Starr,
A. (1987). Selectivity of attenua-
tion (i.e., gating) of somatosensory
potentials during voluntary move-
ment in humans. Electroencephalogr.
Clin. Neurophysiol. 68, 226–230.

Tommerdahl, M., Simons, S. B., Chiu,
J. S., Favorov, O., and Whitsel,
B. (2006). Ipsilateral input mod-
ifies the primary somatosensory
cortex response to contralat-
eral skin flutter. J. Neurosci. 26,
5970–5977.

Vallbo, A., Olausson, H., Wessberg,
J., and Norrsell, U. (1993). A
system of unmyelinated afferents
for innocuous mechanoreception in
the human skin. Brain Res. 628,
301–304.

Vallbo, A. B., Olausson, H., and
Wessberg, J. (1999). Unmyelinated
afferents constitute a second system
coding tactile stimuli of the human
hairy skin. J. Neurophysiol. 81,
2753–2763.

Vallbo, A. B., Olausson, H., Wessberg,
J., and Kakuda, N. (1995). Receptive
field characteristics of tactile units

with myelinated afferents in hairy
skin of human subjects. J. Physiol.
483, 783–795.

Verrillo, R. T., Bolanowski, S. J., and
McGlone, F. P. (1999). Subjective
magnitude of tactile roughness.
Somatosens. Mot. Res. 16, 352–360.

Weiskrantz, L., Elliott, J., and
Darlington, C. (1971). Preliminary
observations on tickling oneself.
Nature 230, 598–599.

Wessberg, J., Olausson, H., Fernström,
K. W., and Vallbo, A. B. (2003).
Receptive field properties of
unmyelinated tactile afferents in the
human skin. J. Neurophysiol. 89,
1567–1575.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 19 March 2012; paper pend-
ing published: 19 April 2012; accepted:
20 July 2012; published online: 07 August
2012.
Citation: Ackerley R, Hassan E, Curran
A, Wessberg J, Olausson H and McGlone
F (2012) An fMRI study on corti-
cal responses during active self-touch
and passive touch from others. Front.
Behav. Neurosci. 6:51. doi: 10.3389/
fnbeh.2012.00051
Copyright © 2012 Ackerley, Hassan,
Curran, Wessberg, Olausson and
McGlone. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License,
which permits use, distribution and
reproduction in other forums, provided
the original authors and source are
credited and subject to any copyright
notices concerning any third-party
graphics etc.

Frontiers in Behavioral Neuroscience www.frontiersin.org August 2012 | Volume 6 | Article 51 | 14

http://dx.doi.org/10.3389/fnbeh.2012.00051
http://dx.doi.org/10.3389/fnbeh.2012.00051
http://dx.doi.org/10.3389/fnbeh.2012.00051
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


NEUROROBOTICS
ORIGINAL RESEARCH ARTICLE

published: 18 June 2012
doi: 10.3389/fnbot.2012.00004

Bayesian exploration for intelligent identification of
textures
Jeremy A. Fishel 1,2* and Gerald E. Loeb1,2

1 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
2 SynTouch LLC, Los Angeles, CA, USA

Edited by:
Blythe Towal, California Institute of
Technology, USA

Reviewed by:
Juan Pablo Carbajal, University of
Zürich, Switzerland
Michael Wiertlewski, Université Pierre
et Marie Curie, France
Jivko Sinapov, Iowa State University,
USA

*Correspondence:
Jeremy A. Fishel , Department of
Biomedical Engineering, University of
Southern California, 1042 Downey
Way, Denny Research Center (DRB
140), Los Angeles, CA 90089-1111,
USA.
e-mail: jeremy.fishel@syntouchllc.com

In order to endow robots with human-like abilities to characterize and identify objects, they
must be provided with tactile sensors and intelligent algorithms to select, control, and
interpret data from useful exploratory movements. Humans make informed decisions on
the sequence of exploratory movements that would yield the most information for the
task, depending on what the object may be and prior knowledge of what to expect from
possible exploratory movements. This study is focused on texture discrimination, a sub-
set of a much larger group of exploratory movements and percepts that humans use to
discriminate, characterize, and identify objects. Using a testbed equipped with a biologi-
cally inspired tactile sensor (the BioTac), we produced sliding movements similar to those
that humans make when exploring textures. Measurement of tactile vibrations and reac-
tion forces when exploring textures were used to extract measures of textural properties
inspired from psychophysical literature (traction, roughness, and fineness). Different com-
binations of normal force and velocity were identified to be useful for each of these three
properties. A total of 117 textures were explored with these three movements to create a
database of prior experience to use for identifying these same textures in future encoun-
ters. When exploring a texture, the discrimination algorithm adaptively selects the optimal
movement to make and property to measure based on previous experience to differenti-
ate the texture from a set of plausible candidates, a process we call Bayesian exploration.
Performance of 99.6% in correctly discriminating pairs of similar textures was found to
exceed human capabilities. Absolute classification from the entire set of 117 textures gen-
erally required a small number of well-chosen exploratory movements (median= 5) and
yielded a 95.4% success rate. The method of Bayesian exploration developed and tested
in this paper may generalize well to other cognitive problems.

Keywords: texture discrimination, tactile sensor, vibration, fingerprints, exploratory movements, roughness,

classification, Bayesian exploration

INTRODUCTION
The tactual properties of our surroundings do not chatter at us
like their colors; they remain mute until we make them speak. . .
Eye movements do not create color the way finger movements
create touch. Katz (1925)

Touch, by necessity, is an interactive sense, unique from the senses
of vision and hearing. While we are able to observe the sights
and sounds of our environment without any physical interac-
tion, the tactual properties of an object can only be sensed by
physical contact. When interacting with an object, humans not
only need to interpret the tactile information they sense, they also
need to decide which types of movements to make in order to
produce these tactual percepts. Artificial systems will require sim-
ilar strategies (Loeb et al., 2011). Experimental psychologists have
identified six general types of exploratory movements that humans
make when tactually exploring objects to determine their proper-
ties: enclosure to determine global shape and volume, hefting to
determine weight, pressure to determine hardness, static contact
to determine thermal properties, contour following to determine

exact shape, and lateral sliding movements to determine surface
texture (Lederman and Klatzky, 1987). Performing all of these
movements and their many variants when identifying objects by
touch may not be practical or useful. Instead, prior knowledge can
be used to intelligently guide the selection of which exploratory
movements to make. In this work we present a novel method-
ology for selecting these optimal exploratory movements called
Bayesian exploration. The process works by using prior experience
to determine which of the many possible exploratory movements
is expected to produce the greatest distinction between the most
plausible candidate objects. To simplify the analysis, we reduced
the scope of the discrimination task to only texture discrimina-
tion, a modality for which human strategies and capabilities have
been well-described in the literature.

Early work from David Katz provided some of the first insights
into the psychophysics of texture discrimination. In his studies he
observed that while coarse textures could be discriminated based
on their static contours by simply pressing down on an object, fine
textures instead required sliding motion in order to generate vibra-
tions for their discrimination (Katz, 1925). More recent studies
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have supported that lateral movements and vibrations do, in fact,
play a critical role in the perception of fine textures (Hollins and
Risner, 2000), for which discrimination is impaired after vibro-
tactile adaptation (Hollins et al., 2001). The human hand has a
wealth of sensory receptors responding to mechanical and ther-
mal stimuli (Jones and Lederman, 2006). Pacinian corpuscles with
frequency responses of 60–700 Hz (Mountcastle et al., 1972) are
capable of sensing vibrations associated with slip and texture that
can be less than a micrometer in amplitude at their characteristic
frequency of 200 Hz (Johansson et al., 1982; Brisben et al., 1999),
suggesting that highly sensitive transducers will be required if this
capability is to be reproduced artificially.

A great body of research has focused on the physical stimuli
and perceptual properties that permit the identification and dis-
crimination of textures. The perception of roughness has been
one of the most studied of these properties. Early psychophysi-
cal experiments attributed this to the friction coefficient between
the skin and object for fine textures (Katz, 1925). Other stud-
ies using coarser textures (spatial periods greater than 0.5 mm)
have proposed that spatial period and contact force, and not fric-
tion, are correlated with perceived roughness (Lederman et al.,
1982). Smith et al. (2002a) contested these findings, providing
additional support for the role of friction and shear force in
the perception of these coarse textures. Further studies involv-
ing fine textures have indicated that the power of vibrations as
sensed by the Pacinian corpuscles could play an integral role in
the perception of roughness (Bensmaïa and Hollins, 2005). Early
studies into the perceptive dimensionality of surfaces have sug-
gested that sticky/slippery, hard/soft, and rough/smooth represent
three independent dimensions of a surface (Hollins et al., 1993).
However, these studies only used 17 surfaces and the relevance
of these results have been contested by Bergmann Tiest and Kap-
pers (2006) who have explored dimensionality with a total of 125
surfaces. Findings from this expanded database have suggested
that there are at least four perceptual dimensions of surfaces (and
likely more), although not all could be correlated specifically with
named properties. We propose that some of this dimensionality
could be attributed to non-textural properties such as compliance
and thermal properties that might be obtained without the need
for sliding movements. With specific regards to texture and slid-
ing movements, the dimensions of sticky/slippery, rough/smooth,
and coarse/fine seem to be the most salient descriptions of prop-
erties that make textures distinct, based on both the descriptive
words that people use to describe textures and their utility as
demonstrated by the experimental literature.

In Katz’s (1925) original work he proposed a duplex theory
for texture perception, hypothesizing that coarse textures can
be discriminated spatially while fine textures are discriminated
dynamically through sensed vibrations. This was prescient, as the
structure and function of cutaneous mechanoreceptors was then
unknown. We now know that vibrations and static pressure are
sensed by separate populations of cutaneous mechanoreceptors
(Knibestöl and Vallbo, 1970; Jones and Lederman, 2006). Artificial
tactile sensors have developed along similar lines, offering either
high spatial resolution or high temporal bandwidth. Reviews of
the various tactile sensing technologies over the last 30 years can
be found in (Nicholls and Lee, 1989; Howe, 1994; Lee and Nicholls,

1999; Dahiya et al., 2010). For dynamic tactile sensing and texture
discrimination, a number of technologies have been introduced
implementing accelerometers (Howe and Cutkosky, 1989, 1993),
piezoelectric film (Tada et al., 2003) microphones (Edwards et al.,
2008), and tri-axial MEMS force sensors (de Boissieu et al., 2009).
More recently, many tactile sensors have introduced fingerprint-
like ridges (Mukaibo et al., 2005; Oddo et al., 2009; Scheibert et al.,
2009), which have been proposed to enhance the correlation of
spatial frequency of explored textures with temporal patterns in
the sensed vibrations.

The use of tactile sensors for artificial texture discrimina-
tion has received a great deal of attention in recent years. Tada
et al. (2004) were able to demonstrate that signal variance of two
differentpolyvinylidenedifluoride (PVDF) films embedded at dif-
ferent depths in a complaint sensor could be used to distinguish
among five different textures. Further development by this group
expanded this analysis to an additional sensory dimension using
an embedded strain gage (Hosoda et al., 2006). Mukaibo et al.
(2005) developed a tactile sensor with fingerprints and embed-
ded strain gages to discriminate surfaces based on roughness
and friction. A force sensor with an elastic covering developed
by de Boissieu et al. (2009) was used with sliding movements to
identify 10 different kinds of paper using two different analytical
approaches: the first utilized differences in Fourier coefficients in
the recorded vibrations while the second used more direct signal
features such as the mean, variance, and kurtosis of the signals
as well as spectral properties in a neural network classifier. A
similar approach was taken by Giguere and Dudek (2011) using
accelerometers on a rigid tactile probe to classify driving surfaces
based on their means, variance, and higher-order moments in a
neural network. Oddo et al. (2011) used a robotic finger pro-
ducing a stereotyped sliding movement to discriminate between
three fine textured gratings ranging from 400 to 480 μm based
on their spectral properties. Jamali and Sammut (2011) analyzed
Fourier components of vibrations measured from eight different
textures using a novel method of majority voting to classify these
textures with a high accuracy of 95%. This study took advantage
of multiple exploratory movements, starting with three move-
ments initially and adding movements until 80% or more of these
movements indicated a particular texture. With exception to the
last study that explored three different sliding velocities, all of
these cases considered only a single exploratory movement. It has
been demonstrated that multiple exploratory movements as well
as multiple features can boost the performance of such a classifier
for texture discrimination (Sinapov and Stoytchev, 2010). In a sub-
sequent study by the same group 20 textures were explored with
a fingernail-like tactile sensor measuring accelerations at five dif-
ferent exploratory movements. The frequency components from
these different movements were used to obtain a classification per-
formance increase from 65% using the best single exploratory
movement to 80% for all five exploratory movements (Sinapov
et al., 2011).

In all of these cases, the discrimination of textures with these
artificial systems is for the most part a “passive” exploratory pro-
cedure. Force and speed are preset to some standard values and
a fixed movement (or sequence of movements) is executed. Fur-
thermore, the selection of signal processing measures is seemingly
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arbitrary in many of these studies. Various methods are attempted
and those that appear to yield the best performance are used as clas-
sifier input. Instead, we propose that findings from psychophysical
literature can guide the development of more intuitive and useful
signal measures.

As reviewed above, multiple signals, multiple exploratory
movements, as well as repeated trials can boost classification per-
formance. However, as the complexity of discrimination tasks
increase beyond simply texture discrimination and more move-
ments and signals are added to the repertoire, the feasibility
of doing everything (especially for multiple trials) can become
highly impractical if not completely infeasible. Instead, the task
of discrimination can take advantage of a hypothesis-testing
approach that we have proposed humans likely use when exploring
objects (Loeb et al., 2011). Each successive exploratory move-
ment can be used to reduce the set of possible candidates;
this information can be used to determine the optimal next
exploratory movement that would yield the best discrimina-
tion among these most likely candidates rather than the entire
population. Such an approach would have advantages in reduc-
ing the number of exploratory movements needed to classify
a texture or in the general case, any object. Here we intro-
duce a novel algorithm where the selection of the exploratory
movement becomes a critical process of the identification task.
Using a database of prior experience, optimal exploratory move-
ments are selected and executed to aid in the discrimination
task.

MATERIALS AND METHODS
An overview of Bayesian exploration is presented first (see Clas-
sification Theory and Strategy) in the context of a texture dis-
crimination task, followed by a description of the BioTac mul-
timodal tactile sensor (see Biomimetic Tactile Sensor) and the
experimental apparatus used to control sliding movements when
exploring textures (see Experimental Apparatus). The descrip-
tive words humans use when discriminating textures are used
to define quantifiable properties of textures (see Analytical Mea-
sures of Descriptive Texture Properties), followed by a method for
determining the most useful exploratory movements to estimate
those properties (see Selection of Set of Exploratory Movements).
The final three Sections describe the classifier training over this
refined set of movements (see Classifier Training and Data Collec-
tion), the methods employed for comparing performance of this
classifier to human performance in discriminating pairs of sim-
ilar textures (see Texture Discrimination and Comparison with
Human Performance) and methods for absolute texture discrim-
ination from a broad set of 117 textures (see Absolute Texture
Identification).

CLASSIFICATION THEORY AND STRATEGY
Classification is a topic of wide interest in artificial intelligence and
is a subset of the larger fields of pattern recognition and machine
learning. The goal of a classification task is to identify which class
or classes best explains a set of observations. Many tools exist
involving both supervised and unsupervised training (Jain et al.,
2000). In the majority of classification problems, inputs are given
and the class with the maximal posterior likelihood determines

the classification1. This introduces a fundamental deficiency in
the typical approach to classification problems: the decision must
be made with the currently available information. To compensate
for this deficiency, it is common to collect as much information
as possible before the classification is made. The time and effort
required to produce each exploratory movement to collect tac-
tile data suggests that this would be highly inefficient. Decisions
are first required to determine which exploratory movements to
make before any tactile information can be obtained. The selec-
tion of these movements would benefit greatly from iterative
decision making, in which the observations of previous move-
ments are used to identify the most likely candidates to select the
next movement that is most likely to disambiguate them. Here we
introduce a novel method of texture discrimination implement-
ing these strategies. This method of Bayesian exploration should be
generalizable to any identification task requiring such intelligence.

Bayesian inference for discrimination of textures
Bayesian inference is a widely implemented statistical classification
method used to estimate the likely causes of an observation after
it has occurred. Considering a set of textures (T ) and the observ-
able measurements that they generate (X) when performing an
exploratory movement (M ), we can estimate the likelihood that a
given texture had caused these observations with Bayes’ rule:

P (Ti |X , Mm) = P (X |Ti , Mm) P (Ti)

P (X , Mm)
(1)

Where Ti belongs to a set of textures T, X is a set of observable
properties (which are introduced in the later sections), Mm is a
particular exploratory movement that gives rise to these sensed
properties, and P(Ti) represents the prior probability of texture
Ti. P(X, Mm) is the probability of observation X occurring given
all known causes from the set T at exploratory movement Mm and
can be found by the law of total probability:

P (X , Mm) =
∑

j

P
(
X |Tj , Mm

)
P
(
Tj
)

(2)

Substituting (2) into (1) yields a common formulation of Bayes’
rule:

P (Ti |X , Mm) = P (X |Ti , Mm) P (Ti)∑
j

P
(
X , Tj , Mm

)
P
(
Tj
) (3)

The probability of a measurement occurring given a known texture
and exploratory movement can be estimated from its probability
density function. In the absence of other evidence, the central
limit theorem suggests that these values should fall within a nor-
mally distributed probability density function that can be defined
according to a mean (μ) and standard deviation (σ):

P (X |Ti , Mm) ∝ p (X |Ti , Mm) = 1√
2π σ2

i,m

e
− (x−μi,m)

2

2σ2
i,m (4)

1Other methods may use cost functions to reduce the occurrence of Type-I or
Type-II errors for particular classes where such errors are detrimental.
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It is important to note that the probability density function is not
a true probability, but rather a density, and can take on a value
greater than unity. However, this measure is proportional to the
actual probability; the unknown scaling can be ignored as it is can-
celed out by the denominator of (3), which has the same scaling
factor. The formulas (3) and (4) can be used to update the poste-
rior probability of a texture given observation X from a normally
distributed set of expected observations. In practice, as evidenced
by human performance, multiple observations, and exploratory
movements need to be made to refine this to an acceptable level of
confidence before determining the most likely texture.

Adaptive selection of optimal exploratory movements
We have proposed that humans use a careful selection of
exploratory movements to test hypotheses when exploring objects
by touch (Loeb et al., 2011). Consider a simple example of iden-
tifying a brick by touch. Absent prior information about the
object, a reasonable first exploratory movement might be an enclo-
sure movement, yielding information about the object’s size and
indicating that it is a large rectangular prism. Based on this infor-
mation, the examiner may then conclude that it is either a brick
or a block of wood. Useful subsequent movements to extract the
most information between these two objects would probably focus
on its mass, such as pushing or hefting the object.

The process of determining which exploratory movement is
optimal requires a prediction of the perceived benefit based on
prior experiences. A similar methodology has been presented by
Rebguns et al. (2011), where movements and sensing actions are
selected to reduce Shannon entropy. In that study exploratory
movements cease when there is no perceived reduction of this
entropy, a feature the authors refer to as “burying its head in the
sand” to avoid getting additional information that might increase
uncertainty. While the performance of this study was quite impres-
sive, the concept of additional information being undesirable is
peculiar. By contrast, our approach is not to infer the reduction
of entropy; instead we simply select the movement that would
best discriminate between likely objects. The decision to make this
next movement or not depends on whether the information and
a higher level of confidence is worth the time and energy required
to make the exploratory movement.

To estimate which movement would best discriminate among
likely objects, we can use prior experience to infer the expected
similarity between signals from pairs of objects at each of these
movements. Movements that produce the greatest difference in
measured signals from different objects would be optimal for the
discrimination task, while the movements that produce similar
signals would not be useful. One suitable measure of this degree
of confusion is the amount of overlap between two probabil-
ity density functions. An estimation of this is provided by the
Bhattacharyya coefficient, defined as:

BC =
∫ √

p1 (x) p2 (x) dx (5)

The Bhattacharyya coefficient varies between 0 and 1 depending
on the overlapping region of the two probability density functions.
For a given movement, observation, and pair of textures, a low

value would indicate no confusion (so this would be a very useful
movement to make in order to disambiguate these objects), while a
high value would indicate an undesirable movement because sub-
stantial ambiguity would remain. For all possible pairs of textures
(i and j) we can define an expected confusion probability matrix
for each possible exploratory movement (m) as:

Cij ,m =
∫ √

p (x|Ti , Mm) p
(
x|Tj , Mm

)
dx (6)

For normally distributed populations this reduces to:

Cij ,m =
√

2σi,mσj ,m

σ2
i,m + σ2

j ,m

e
−
(
μi,m−μj ,m

)2

4
(
σ2

i,m+σ2
j ,m

)
(7)

We can estimate the expected uncertainty for a particular tex-
ture and movement (ui, m) that would remain after making an
exploratory movement from this confusion probability matrix:

ui,m =

∑
j ,j �=i

Cij ,mP
(
Tj
)

∑
j

Cij ,mP
(
Tj
) (8)

Equation 8 measures the degree of confusion between a specific
texture and all other likely textures, weighted by their priors,
divided by the total amount of weighted confusion including
between that texture and itself. If no other textures produce over-
lapping probability distribution curves with this texture, the value
then becomes zero, as there would be no expected uncertainty for
this texture and movement combination.

The total expected uncertainty for all textures for a given
exploratory movement (Um) can be estimated as:

Um =
∑

i

ui,mP (Ti) (9)

Substituting (8) into (9) yields:

Um =
∑

i

⎛
⎜⎝
∑

j ,j �=i
Cij ,mP

(
Tj
)

∑
j

Cij ,mP
(
Tj
) P (Ti)

⎞
⎟⎠ (10)

which, given the coefficient Cij,m is equal to 1 when i is equal to j,
can be shown to reduce to:

Um = 1−
∑

i

⎛
⎜⎝ (P (Ti))

2∑
j

Cij ,mP
(
Tj
)
⎞
⎟⎠ (11)

The value from (11) can be used to determine which movement
would produce the lowest expected uncertainty. We define the
perceived benefit of making an exploratory movement as:

Bm = 1− U α
m (12)
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Which depends on parameter α, which we define as inversely pro-
portional to the number of times an exploratory movement has
been made previously (n) for the current discrimination task:

α = 1

n
(13)

To promote diversity in exploratory movements and collect a
richer database of information, we need to reduce the benefit of
repeated movements that did not yield satisfactory discrimination
performance in prior explorations. Because the uncertainty is a
value that ranges from 0 to 1, a larger value of n reduces the benefit
of a repeated movement. By calculating this benefit for all possible
exploratory movements, the movement that produces the maxi-
mal benefit can be identified. The iterative selection and execution
of these optimal exploratory movements when investigating an
object is the process that we call Bayesian exploration.

BIOMIMETIC TACTILE SENSOR
The BioTac® (SynTouch, Los Angeles, CA, USA; Figure 1) was
designed to provide both robustness and sensitivity for multi-
modal tactile sensing. It consists of a rigid core that contains all
sensory transducers, covered by an elastomeric skin. The space
between the skin and the core is inflated with an incompressible
liquid to give it a compliance that mimics human fingerpads. No
transducers or electrical components are contained in the skin,
making the design robust to grit, moisture, or other damage that
typically plagues tactile sensors. The BioTac consists of three com-
plimentary sensory modalities (force, vibration, and temperature)
that have been integrated into a single package. Contact forces
distort the elastic skin and underlying conductive liquid, chang-
ing impedances of electrodes distributed over the surface of the
rigid core (Wettels et al., 2008; Wettels and Loeb, 2011). Vibra-
tions in the skin propagate through the fluid and are detected
by the pressure sensor (Fishel et al., 2008). These vibrations can
be amplified and filtered to obtain a dynamic (AC) pressure sig-
nal with even greater sensitivity than the human fingertip (Fishel
and Loeb, 2012). Temperature and heat flow are transduced by a
thermistor near the surface of the rigid core (Lin et al., 2009).

The BioTac exhibits high sensitivity to induced vibrations
when sliding over textured surfaces (Fishel et al., 2008). More
recent quantitative tests with controlled small impacts and applied
vibrations demonstrated higher sensitivity than human fingertips
(Fishel and Loeb, 2012). In this study it was demonstrated that the
BioTac is capable of detecting small vibrations only a few nanome-
ters in amplitude around its peak frequency sensitivity of 330 Hz,
nearly two orders of magnitude better than human subjects. To
achieve this sensitivity, the BioTac takes advantage of carefully
designed signal processing electronics that allow a sensitivity near
the theoretical noise floor of the pressure sensor. First the output
from the piezoresistive pressure transducer (24PC15SMT, Hon-
eywell) is amplified by a gain of 10 with a low-pass anti-aliasing
filter (1040 Hz) obtain a measurement of fluid (DC) pressure (sen-
sitivity: 21.8 mV/kPa). This is then passed through a band-pass
filter (10–1040 Hz) and amplified with an additional gain of 99.1
to obtain a sensitivity of 2.16 mV/Pa for dynamic (AC) pressure.
The background noise at this stage was found to be only 1.2 mV

FIGURE 1 |The BioTac. (A) Cross-sectional schematic of the BioTac, the
multimodal tactile sensor used for these studies. Vibrations of the skin are
induced when sliding over textured surfaces and propagate efficiently
through the liquid-filled sensor where they can be sensed by the pressure
sensor. (B) Photograph of an assembled BioTac and fingerprint-like ridges
(inset). These fingerprint-like ridges that have a biomimetic size (0.4 mm
spacing) and have been observed to greatly enhance the vibrations that are
detected with the BioTac (Loeb and Fishel, 2009).

(0.52 Pa of dynamic pressure). Dynamic (AC) pressure as well as
static (DC) pressure were sampled at 2200 Hz and digitized with
a resolution of 12 bits in the range of 0–3.3 V (AC Pressure is
biased to 1.65 V) through onboard electronics inside the BioTac.
Sampling and data transmission are controlled through a serial
peripheral interface (SPI) protocol provided with the BioTac.

The compliance, shape and material properties of the liquid-
inflated elastomeric skin (Silastic S, Dow Corning) give rise to a
natural resonant frequency around 200–350 Hz, which happens to
be similar to the peak sensitivity of the Pacinian corpuscles. The
surface of the BioTac has a fingerprint-like pattern (cylindrical
shaped ridges with a height of 0.2 mm and spacing of 0.4 mm)
that has been observed to enhance the amplitude of these vibra-
tions in the BioTac (Loeb and Fishel, 2009). Given its similarities to
the mechanical properties and sensitivity of the human fingertip,
the BioTac provides an opportunity to test theories of human tex-
ture discrimination (Loeb et al., 2011) and to explore if they can be
used by artificial systems seeking to achieve similar performance
in tactile object identification.

EXPERIMENTAL APPARATUS
We hypothesize that humans utilize a variety of lateral sliding
movements when exploring textures. The magnitude of contact

Frontiers in Neurorobotics www.frontiersin.org June 2012 | Volume 6 | Article 4 | 19

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Fishel and Loeb Bayesian exploration for texture identification

force and velocity of the sliding movement are the two most obvi-
ous parameters that define these movements. Compelling artificial
texture percepts can be recreated based on only these two para-
meters of an exploratory movement (Romano and Kuchenbecker,
2011). The apparatus developed for these experiments is capable
of precision control of contact force and sliding velocity while col-
lecting sensory data from the BioTac as it explores a texture. The
apparatus makes use of a stepper motor to set contact force and a
precision linear stage to control the sliding velocity relative to the
textured surface (Figure 2).

Force Control with Stepper Motor
Normal force of the BioTac onto the explored texture is adjusted
with a stepper motor (L4118 and SMCI33, Nanotec) that posi-
tions a lever with a BioTac on the end (Figure 2). Observations
indicated that the change in fluid pressure of the BioTac was lin-
early correlated with contact force (slope 11.5 mN/bit, R2= 0.995)
at forces less than 2 N (Figure 3). This was verified by pressing
down on a force plate (Nano17, ATI) positioned to be at the
same height as the textures. At forces greater than 2 N the skin
of the BioTac comes into contact with the core and the relation-
ship between contact force and fluid pressure is no longer linear.
This relationship in the linear range was used to control the step-
per motor in order to achieve the desired contact force prior to an
exploratory movement. The BioTac was lowered slowly onto a tex-
ture (0.5 mm/s) while monitoring the actual DC pressure. When
this value reached the target change in DC pressure, the stepper
motor was stopped. The sliding movements and associated shear
forces tended to produce modest changes in the DC pressure, but
no adjustments were made to the stepper motor position while
sliding and collecting vibration data to avoid introducing spurious
vibrations.

FIGURE 2 |Texture exploration apparatus with the BioTac and texture.

A stepper motor (left) is attached to a lever (blue) that can raise or lower the
BioTac on textures. Adjusting the vertical position of the stepper motor
provides control of contact force. To produce lateral motion, a special
vibration-free linear stage is used to slide textures past the BioTac. Textures
are adhered to flat, square magnets that can be mounted and dismounted
rapidly on a steel plate attached to the linear stage.

Velocity control with linear stage
Sliding velocity of the textures under the BioTac was controlled
with a precision, low-vibration linear stage (ANT130, Aerotech).
The high-quality cross-roller bearings of the motor produced
extremely smooth sliding motions and no mechanical vibrations
could be detected even with human touch while the stage was
moving. A motion controller (Soloist, Aerotech) controlled sliding
velocity and distance based on preset commands. Motor current
and sliding velocity were sampled by the motion controller, which
could be queried in LabVIEW using built-in software libraries
provided by the manufacturer.

Textures
A total of 117 textures were used in these experiments (Table 1).
These were selected from a large library of everyday materials
found in art supply, fabric, and hardware stores. Using a variety
of commonly occurring textures provides a more realistic data-
base of surfaces than have been previously used in other studies
of psychophysical and artificial texture discrimination, which tend
to use surfaces made from the same material varying along a sin-
gle parameter such as spatial period. These textures were cut into
75 mm× 75 mm squares and attached to square magnets of the
same size with adhesive backing. The magnetically backed tex-
tures could be rapidly mounted and dismounted to a steel plate
attached to the linear stage.

Software
The sampling of the BioTac, control of stepper motor and lin-
ear stage were done using LabVIEW (National Instruments).
Sampling of the BioTacs was achieved using a USB/SPI adapter
(Cheetah SPI, Total Phase) and software libraries developed by
and available from SynTouch (Los Angeles, CA, USA). Both DC
and AC pressure were sampled at 2200 Hz each. Data was sampled
continuously and transmitted back to the computer in batches
every 100 ms. The digital controls for the stepper motor were
also updated every 100 ms through a DAQ card (NI USB-6218,
National Instruments). Control of the linear stage was maintained
continuously by the motion controller; the motor current and

FIGURE 3 | Relationship between normal force and change in DC

pressure. A single trial is shown in both loading and unloading (blue) as
normal force increases and decreases on the tip of the BioTac. The best
fitting line is shown in green and a correlation value of R2 = 0.995 is
observed.
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Table 1 | List of 117 textures used in this study.

# Texture # Texture # Texture # Texture

1 Computer paper 31 Very soft foam 61 Lacquered vinyl 91 Corduroy

2 Linen paper 32 Marble 62 Smooth vinyl 92 Silk velvet

3 Smooth cardstock 33 Smooth tile 63 Canvas vinyl 93 Short-hair fur

4 Marble cardstock 34 Rough tile 64 Madrid vinyl 94 Velboa

5 Canvas cardstock 35 Natural stone laminate 65 Corinthian vinyl 95 Terry cloth

6 Double mulberry paper 36 Oak wood 66 PVC snakeskin 96 Velour

7 Vellum 37 Polished hickory 67 Coarse leather 97 Velvet

8 Cardboard 38 Balsa wood 68 Medium-coarse leather 98 Viscose challis

9 Foam board 39 Nylon plastic 69 Smooth leather 99 Cotton sateen

10 Velcro hooks 40 PVC plastic 70 Coarse suede 100 Burlap

11 Velcro eyes 41 Acrylic 71 Smooth suede 101 Hand-woven cotton

12 Acrylic felt 42 Graphite 72 Very soft suede 102 Cotton duck

13 Polyester felt 43 Alumina graphite 73 Crepe de chine 103 Bull denim

14 Stiffened felt 44 Milled aluminum 74 Silk satin 104 Jean denim

15 Velvet paper 45 Ground aluminum 75 Pimatex cotton 105 Denim twill

16 Canvas 46 Polished aluminum 76 Cotton jersey 106 Flannel

17 Foam sheet 47 Polyurethane rubber 77 Cotton crush 107 Pineapple fiber weave

18 Plastic paper 48 Neoprene rubber 78 Cotton interlock 108 Scenery canvas

19 Template plastic 49 Nitrile rubber 79 Cotton lycra 109 Silk noil

20 Plastic mesh (5 mm) 50 Buna-N rubber 80 Cotton velveteen 110 Scenery muslin

21 Tarp 51 Santoprene rubber 81 Coarse cotton 111 Linen cloth

22 Corkboard 52 Viton rubber 82 Soft cotton 112 Cotton gauze

23 Carpet 53 Haplon rubber 83 Upholstry vinyl 113 Bamboo rayon

24 Frosted glass 54 Silicone rubber 84 Charmeuse satin 114 Nylon fabric

25 Flemish glass 55 Plastic sheet 85 Cotton/silk blend 115 Hemp silk

26 Satin glass 56 Car vinyl 86 Lens-cleaning fabric 116 Rabbit fur

27 Frosty vue glass 57 Textured vinyl #1 87 Rayon 117 Leopard shag

28 Textured glass 58 Textured vinyl #2 88 Crushed satin

29 Styrofoam 59 PVC vinyl 89 Raw silk

30 Soft foam 60 Snakeskin vinvl 90 Crushed velvet

Textures can be grouped into the following categories: 1–9: paper-like materials; 10–23: art supplies and miscellaneous materials; 24–28: types of glass; 29–31: types

of foam; 32–35: tiles and laminates; 36–38: types of wood; 39–46: engineering materials; 47–54: types of rubber; 55–66: types of vinyl; 67–72: leathers and suedes;

73–83: cottons and silks; 84–99: other fabrics and textiles; 100–115: coarse weaves; 116–117: furs.

stage position and velocity were queried every 100 ms through
software libraries developed by Aerotech. For each texture, the
exploratory process was automated to produce multiple trials at
each exploratory movement before proceeding to the next texture.
Data were analyzed offline in MATLAB.

ANALYTICAL MEASURES OF DESCRIPTIVE TEXTURE PROPERTIES
A system that uses orthogonal measurements as inputs is ideal
for a machine classifier problem. Several machine learning algo-
rithms exist to reduce unnecessary dimensionality of inputs, such
as principle component analysis and other multidimensional scal-
ing techniques (Jain et al., 2000). Moderate success discriminating
a small numbers of textures has been achieved using various statis-
tical measures and signal processing approaches as input to these
classifiers. We hypothesized that reasonably orthogonal measures
could be obtained by studying the language people use to describe
textures. The human brain is a very effective classifier and lan-
guage has evolved as a tool to describe the percepts associated
with texture discrimination. For this study, we selected simple and

intuitive measures of descriptive properties frequently used in psy-
chophysical literature exploring texture discrimination, bypassing
many of the artificial and convoluted statistical techniques com-
monly used in classifier methods. Three distinct properties have
been identified in literature: traction (sticky/slippery), roughness
(rough/smooth), and fineness (coarse/fine).

Traction of texture
Descriptive words such as slippery and sticky2 are commonly used
to describe the resistance to movement when sliding over a texture.
This dimension has been suggested to be relatively orthogonal to
the perceptual dimension of roughness (Hollins et al., 1993). To
measure this percept, we chose to use traction or resistance to
motion, although other literature has reported that this force is
correlated with the perception of roughness (Smith et al., 2002a).

2The descriptive word sticky is also used to describe adhesive properties. However,
even in this context it still refers to resistance to movement, albeit away from the
surface.
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In physics, the kinetic coefficient of friction between two objects is
typically used to quantify this property. It is important to note that
when measuring traction, we are measuring the force required to
slide the BioTac skin (Silastic S, Dow Corning) over the texture;
the measured traction is a property of these two surface interac-
tions. Amontons’ first and second laws, as well as Coulomb’s law
of friction, state that the coefficient of friction multiplied by the
normal force is equal to the maximal shear force that two objects
will exert on one another when sliding. While this is an idealization
that does not address some of the more complex properties of fric-
tion (i.e., viscosity), we propose that the measurement of average
frictional force between the skin of the BioTac and explored tex-
ture while sliding can provide a useful measure in discriminating
textures.

In our experimental testbed, the linear stage that produces slid-
ing movement scan be queried for instantaneous motor current.
This was found to vary linearly with shear force by placing the
stage at a 45˚ angle and attaching various weights to it. In dynamic
sliding it was observed that initially a high amount of current was
required to accelerate the stage from rest but only a low amount of
current was required to overcome the dynamic friction within the
stage in the unloaded state once the stage had reached its target
velocity. When the BioTac was pushed against a texture sample on
the stage, the motor current required to sustain constant veloc-
ity sliding increased linearly with the applied normal force. Given
the linearity of this response, the average motor current from the
stage while sliding was used to estimate the traction between the
BioTac and textures being explored. This was simpler and more
accurate than using the force-sensing modality of the BioTac itself,
which can extract tangential force from the distributed change in
impedance of its impedance sensing electrodes (Wettels and Loeb,
2011).

Traction ∝ Motor Current (14)

Examples of this signal and calculations are provided in Figure 4,
frame B.

Roughness of texture
When sliding over surfaces with different roughness properties
with the BioTac, we observed that the amplitude of vibration as
measured by the dynamic pressure sensor in the BioTac (PAC)
was correlated with the perceived roughness of the texture, sim-
ilar to the observations of (Bensmaïa and Hollins, 2005). In our
own findings, smooth surfaces were found to produce virtually no
vibrations, while rougher surfaces produced vibrations of much
greater amplitudes. To quantify this, we computed the logarithm
of signal power after subtracting the background noise with the
equation:

Power = 1

N

N∑
n=1

(filt (PAC (n)))2 (15)

Roughness ∝ log
(
Power− background noise

)
(16)

AC pressure was filtered with a 20–700 Hz digital band-pass filter
(66th order FIR filter) to simulate the frequency response of the

FIGURE 4 |Typical signals that occur during an exploratory movement.

In (A) the change in DC pressure (top) and sliding velocity (bottom) are
shown over the course of the trial. The loading of DC pressure by the
stepper motor occurs between t =−1.5 and −1 s, in this example it is equal
to roughly 17 bits or 0.2 N. Once the desired contact force is reached, the
position of the stepper motor is held for about 0.5 s before the linear stage
is actuated to the controlled sliding velocity (6.31 cm/s in this example). The
measurement region of signals indicated as vertical black lines occurs
shortly after the sliding and stops before the sliding is completed. In (B) the
time axis is zoomed with respect to (A) and motor current and filtered PAC

signals are displayed. In the top trace, the motor current of the linear stage
before the measurement of signals indicated by the vertical black lines is
initially high due to the acceleration of the linear stage. The horizontal
dashed line represents the average motor current over the measurement
region and is used to estimate the traction between the texture and the
BioTac while sliding. In the lower trace filtered PAC signals are presented.
The root mean squared (RMS) power is indicated by the dashed lines as
upper and lower bounds; the logarithm of the actual power is used as the
roughness signal. In (C) the fast Fourier Transform is presented of the
unfiltered PAC signal. The spectral centroid is calculated as the weighted
average of spectral power components and is presented as the vertical
dashed line. This measurement is used to estimate the fineness of the
texture.

Pacinian corpuscles that are thought to mediate texture perception
and eliminate low frequency oscillations from contributing to this
estimate. An example of the filtered signal is shown in Figure 4,
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frame B. It was also observed that even when locked in a fixed
position, the stepper motor produced some background noise that
was not consistent from trial to trial. By measuring this back-
ground noise power prior to sliding and subtracting it from the
power while sliding we were able to obtain more consistent mea-
surements of the signal power contributed from sliding alone. The
logarithm of this signal was found to better reflect a more evenly
distributed set of roughness properties with similar variances (as
presented later in Figure 5). A similar justification for using the
logarithm of surface amplitude in psychophysical discrimination
of textures has been proposed by Bergmann Tiest and Kappers
(2006).

Fineness of texture
The role of spatial periodicity in the perception of textures has
been explored in a number of studies. It has been observed that the

FIGURE 5 | Measures of descriptive texture properties at their optimal

exploratory movements. Texture IDs: T2= Linen Paper, T10=Velcro
Hooks, T30= Foam, T43=Graphite, T45=Milled Aluminum, T46=Polished
Aluminum, T47=Rubber, T84=Satin, T87=Rayon, T100=Burlap. Top
frame: Traction as measured from motor current to overcome sliding friction
between the skin of the BioTac and the texture. Middle frame: roughness
as measured from vibration power as recorded by the PAC signal from the
BioTac. Bottom frame: spectral centroid as measured by weighted spectral
power of PAC signal from the BioTac. Six trials are shown for each
movement to demonstrate clustering of each signal.

coarser textures produce lower-frequency vibrations when slid-
ing over an object, while finer textures produce higher-frequency
vibrations, suggesting the simple relationship:

f = v

λ
(17)

with λ equal to the spatial wavelength of the texture or finger-
prints and v equal to the velocity of lateral motion. This is the
operating principle of many algorithms for texture discrimina-
tion in artificial sensors (Mukaibo et al., 2005; Oddo et al., 2009,
2011; Scheibert et al., 2009). Our own findings have indicated
that this relationship breaks down for finer textures and higher
velocities (as presented later in Figure 6). Although not directly
reported, this can be observed in the results from Mukaibo et al. for
higher spatial frequencies and from Oddo et al. for higher veloci-
ties, in which the estimation of spatial wavelength becomes much
more prone to errors when approaching these limits. The experi-
ments of Scheibert et al. were conducted at very low exploratory
speeds (0.02 cm/s), two to three orders of magnitude slower than
common exploratory movements employed by humans (Dahiya
and Gori, 2010), which is clearly not fast enough to observe this
dynamic behavior. Furthermore, smoother surfaces have been
demonstrated to be free of spectral harmonics, instead gener-
ating signals that represent 1/f noise in the frequency domain
(Wiertlewski et al., 2011). Measured frequencies do not always
relate linearly to the spatial wavelength of the texture, particularly
for fine or smooth textures, but the estimation of this frequency
can still yield useful information about the relative fineness or
coarseness of the texture.

We propose a measure of spectral centroid to determine the
weighted frequency power of the vibrations recorded by the Bio-
Tac. The dynamic pressure is transformed into the frequency
domain using the single-sided fast Fourier transform and the
spectral centroid is calculated using the weighted average of the

FIGURE 6 | Spectral centroid as a function of sliding velocity at the

lightest contact force (0.2 N). Results indicate that only the spectral
centroid of coarser textures (T10=Velcro Hooks, T30= Foam, T87=Rayon,
and T100=Burlap) consistently increased as a function of velocity. Finer
textures produced idiosyncratic functions of velocity, while the spectral
centroid of graphite (T43) decreased as a function of velocity.

Frontiers in Neurorobotics www.frontiersin.org June 2012 | Volume 6 | Article 4 | 23

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Fishel and Loeb Bayesian exploration for texture identification

frequency power from the following equation:

SC =
∑(

fft (PAC )2 × f
)

∑
fft (PAC )2 (18)

To smooth the frequency domain response, a sliding window was
used to collect the Fourier transform at different sections of the
signal, which were averaged and used for the spectral centroid esti-
mation. Examples of this measurement are shown in Figure 4. A
logarithmic scale of this measure is used as an input to the texture
discrimination model. Note that this method does not attempt
to compensate for the rather complex frequency response of the
BioTac itself (Fishel and Loeb, 2012).

Fineness ∝ log (SC) (19)

Normality of Signals
The classifier discussed in Section “Classification Theory and
Strategy” makes the assumption that signals arise from a nor-
mally distributed population. Due to the large number of textures
explored, only a small number of trials could be collected for each
of the exploratory movements. Therefore, a thorough analysis of
the exact probability density function for these signals could not
be conducted. We make the assumption that signals are normally
distributed for the purposes of this study, however as more samples
are collected a clearer understanding of the true probability density
function would serve to improve the performance of this classifier.
This will be even more important when classifying surfaces that
have some heterogeneity in their textures.

The curse of dimensionality
Additional input dimensions will typically improve performance
of a classifier if they are well defined. In practice, however, it has
been observed that additional dimensions will actually degrade
performance of a classifier for a constant sample size, a property
that has become known as the curse of dimensionality (Jain et al.,
2000). To overcome this, an exponential increase in training data
is required for each new dimension. To avoid the need for such a
vast amount of training data, our model considers only univariate

distributions of a single property at each exploratory movement.
Indeed, we have found that our classifier performance was severely
degraded when considering all three properties at once for each
exploratory movement using multidimensional probability den-
sity functions. The result was an algorithm that quickly converged
in one or two exploratory movements but frequently to the wrong
texture. As additional training is obtained, such a multidimen-
sional approach would be optimal, but this is infeasible for the
large number of textures used in this study. To avoid this short-
coming we only considered a single signal during an exploration
movement. While this may not appear to take full advantage
of all available information, it is actually preferable for a classi-
fier with such limited experience, allowing it to focus solely on
the property that it determines to be most relevant for a given
exploration.

SELECTION OF SET OF EXPLORATORY MOVEMENTS
While there exist infinite combinations of contact force and sliding
velocities that can be used when exploring textures, experimen-
tal studies have demonstrated that individual subjects are quite
consistent in reproducing exploratory movements in these tasks,
although there is a high degree of variability among subjects
(Smith et al., 2002b). This suggests that certain combinations of
exploratory movement tend to be more efficient and that an indi-
vidual person discovers and uses such combinations consistently.
The internal representation of the objects in the external world
could then be based on predictable sensations obtained when
well-learned and, hence, dependable exploratory movements are
made.

To identify these useful movements, 10 textures were chosen
for the pilot study based on their perceived dissimilarity in the
multidimensional space of identified texture properties (low/high
traction, rough/smooth, coarse/fine; Table 2). Given the diversity
of this sample, this was believed to represent most of the perceptual
range of the complete set of 117 textures.

A total of 36 exploratory movements were chosen based on
all combinations of six speeds and six forces. The ranges of these
parameters were chosen to mimic the ranges humans typically
use when exploring textures (1–10 cm/s, 0.2–2 N). Force (F) and

Table 2 |Textures used in exploratory movement pilot study and their perceived properties of traction, roughness, and fineness when explored

by the human finger.

ID Name Traction Roughness Fineness

T2 Linen paper Med Rough Fine

T10 Velcro hooks Low Rough Coarse

T30 Foam High Very rough Coarse

T43 Graphite Very low Med Fine

T45 Milled aluminum Med Smooth Very fine

T46 Polished aluminum Very high Very smooth No features

T47 Rubber Very high Smooth No features

T84 Satin Med Med Very fine

T87 Rayon Med Very rough Med

T100 Burlap Med Very rough Very coarse

These samples were selected to represent the range of material properties to be expected over the larger population of textures.
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velocity (v) at these six steps were calculated as a geometric series:

vi = 10
i−1

5 × 1
cm
s (20)

Fi = 10
i−1

5 × 0.2N (21)

Using such a scale permits for comparisons to be made between
exploratory movements that had equivalent frictional sliding
power. For a given texture interacting with the BioTac skin, sliding
power is proportional to the tangential force times sliding veloc-
ity. Given the assumptions of Amoltons’ first law of friction, the
tangential force would be proportional to the normal force for a
given pair of surfaces with a constant coefficient of friction. With
this set of parameters, pairs of force and velocity with equal sliding
power could be found from the following equation:

Pa = Fi × va−i × μ = 10
a−2

5 × μ× 20mW (22)

Six repetitions of the 36 movements were collected for each of the
10 textures. At each trial the starting location on the texture was
randomized to ensure collected signals were properties of the tex-
ture itself and not necessarily an isolated feature on a given portion
of the texture. Exploratory movements were automated by soft-
ware and the data were saved to file for post processing. Data were
collected for each of the exploratory movements for a particular
texture before moving on to the next. The degree of uncertainty
for each movement was analyzed for each signal property inde-
pendently rather than as a multivariate system. This method was
chosen to avoid the curse of dimensionality, as discussed in the
previous section.

It was observed that high frictional sliding power exploratory
movements (combinations of high force and velocity) led to an
increase in skin wear and removal of fingerprints, resulting in sub-
stantial changes in the vibration signals recorded by the BioTac;
these pairs of exploratory movement parameters were avoided.
Of the remaining options, we selected three combinations, each of
which provided the lowest uncertainty for one of the three proper-
ties (see Figure 7). These three most useful movements were used
to explore the entire set of 117 texture samples.

CLASSIFIER TRAINING AND DATA COLLECTION
Five trials were completed at each of the three selected exploratory
movements for the entire set of 117 textures. All trials were com-
pleted on a single texture before moving to the next. During these
trials, the skin was checked regularly to identify if the finger-
prints were still intact. It was observed that fingerprint wear had a
detrimental effect on the repeatability of data, particularly in the
measurement of roughness from vibration power. To compensate
for this, the skin of the BioTac was replaced if there were any visible
signs of wear. With this approach we were able to avoid any signal
drift resulting from wear, which was verified by comparing signals
before and after the skin replacement. The skin of the BioTac was
replaced two times under these conditions. Data collection for all
117 textures took roughly 20 h and spanned 4 days.

The data from these trials served to build a prior experience
database that could be used to identify presented textures and to
compute expected benefit of a given exploratory movement. Dur-
ing the course of these tests, three textures were damaged during

FIGURE 7 | Selection of optimal exploratory movements for pilot study

of 10 textures. Tables present the uncertainty calculated for each
measurement property for combinations of contact force and sliding
velocity. Gray boxes with white numbers in the lower-right half plane
represent exploratory movements that were excluded due to the high wear
rate high force and velocity combinations had on the skin. Values in the
upper left half plane are coded from blue to white to represent decreasing
uncertainty with lower values being ideal for discrimination of the 10
textures. From this the three of the most useful movements were selected
as 1.26 N and 1 cm/s for discrimination based on traction, 0.2 N and
6.31 cm/s for discrimination based on roughness, and 0.5 N and 2.5 cm/s for
discrimination based on fineness. Movements at 0.2 N and 2.5 cm/s were
not selected for the roughness or fineness measures because they
appeared to be outliers and did not fit the general trend of performance
from neighboring movements.

the higher force exploratory movements. Data for these textures
were not used in the sample. Outputs of the various properties at
their optimal movements are presented (Figure 8) along with the
confusion probability matrices for all combinations of signals and
movements (Figure 9). Signal correlation is presented to show the
independence of each dimension (Table 3).
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FIGURE 8 | Summary of all texture properties at their most useful

movements for entire set of 117 textures. Similar types of materials are
grouped by color as shown in the top panel. Five trials are shown for each

property and texture to demonstrate the clustering of the measurements. In
many cases the clustering is so tight that all five trials appear as a single
marker.

TEXTURE DISCRIMINATION AND COMPARISON WITH HUMAN
PERFORMANCE
Analyzing the resulting confusion probability matrices of the
large texture dataset yielded surprising findings in the confusion
between textures. Many pairs of textures that were perceived as dif-
ficult to discriminate by touch were readily distinguishable based
on at least one dimension of the three calculated texture properties,
while some pairs of textures that appeared simple to discrimi-
nate by human touch were determined to be more challenging
to the artificial system based on the observed confusion matrices
(Figure 9). Eight pairs of textures (16 textures total) were selected
for a study of discriminability, including pairs that were perceived
to be similar to human observers but not the artificial system, the
reverse, or similar to both. Care was taken to select texture pairs
that did not have other properties that were readily discriminable
by other non-textural mechanisms such as compliance or ther-
mal properties, for which human subjects would have an obvious

advantage (the BioTac does provide signals that can be used to
estimate both properties (Lin et al., 2009; Su et al., 2012; but these
were not used in this study).

Five human subjects consented to participate in a study to
explore biological abilities to discriminate between similar tex-
tures. Prior to these experiments, subjects were informed that they
would be presented with one of the eight pairs of textures at a
time, which they could see and explore by sliding their fingers
over them for as long as they desired in order to feel comfort-
able discriminating between the two textures in the pair. They
were informed that after they were finished exploring, they would
begin the testing phase and would not be allowed to explore both
textures again. No additional guidance was provided on which
properties or exploratory movements would be optimal for per-
forming the discrimination task. They were also informed that
when ready, they would have their vision occluded and be pre-
sented with a random selection of one of the two textures for four
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FIGURE 9 | Confusion probability matrices for each combination of

exploratory movement and texture property and geometric mean of all

signals and only the most useful combinations of signals and

movements. Spots are scaled from white to black to represent low to high
confusion. Axes in each inset represent the texture indexes. The solid black
line on each diagonal indicates the value of unity, as each texture has a 100%
chance of being confused with itself at all movements. Blue outlines indicate
the optimal movement for each signal. The geometric mean of all confusion

probability matrices have very few off-diagonal dark spots, whereas
geometric mean of only the most useful exploratory movements for each
signal have substantially more dark spots indicating potential confusion
between similar textures and the value of multiple movements for each
signal. By taking advantage of all combinations of exploratory movements and
properties, rather than just the properties at their “optimal” movements, we
see an improvement of 60% in the geometric average of the confusion
probability matrices and overall uncertainty.

trials. Subjects were aware that the selection of the presented tex-
ture was predetermined from a random number generator (i.e.,
it would not always be each texture twice for the four trials, by
chance it could even be the same texture four times). The exper-
imenter suggested that the subjects could call these textures A or
B, however all subjects preferred to refer to the textures based on
their visual properties (i.e., “the blue one”). For the testing phase,
which started immediately after the exploratory phase, a small
platform was placed in front of the subject where textures were
to be placed. The platform was short and unobtrusive, allowing
subjects to assume the same posture used in the exploratory phase.
The experimenter placed the randomized texture on this platform
and the subject held his finger over the texture until an auditory
command was given to start exploration. After making exploratory
movements (which ranged from two or three to dozens of move-
ments depending on the difficulty the subject was experiencing),
subjects notified the experimenter which of the two textures they
thought they were touching. This was repeated for four trials for

each of the eight pairs of textures. While subjects were eager to
know their performance, this was not disclosed to them until the
completion of the experiment. Average performance across all five
subjects for the eight texture pairs in terms of percentage of correct
classifications (chance= 50%) is presented in Table 4.

Comparison in performance of humans with the artificial
system in this discrimination task requires two separate popu-
lations of data, one to represent the information obtained in the
exploratory phase and the other to represent novel information
being encountered in the identification phase. This is commonly
referred to in machine classifier problems as a training set and a
validation set. The training set consists of data to be used as the
previous experience that the Bayesian exploration algorithm refers
to when encountering an unknown texture in order to determine
optimal exploratory movements and to compute posterior proba-
bilities after these movements. The original set of data obtained in
the previous section was used to create this training set. A second
set of novel data was collected and used as a validation set for the
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Table 3 | Correlation matrix between each texture property at each of

the three movements.

Traction Roughness Fineness

MOVEMENT 1 (1.00 cm/s, 1. 26 N)

Traction 1.0000 −0.5564 −0.3560

Roughness −0.5564 1.0000 0.2183

Fineness −0.3560 0.2183 1.0000

MOVEMENT 2 (2.51 cm/s, 0.50 N)

Traction 1.0000 −0.4916 −0.5100

Roughness −0.4916 1.0000 0.3981

Fineness −0.5100 0.3981 1.0000

MOVEMENT 3 (6.31 cm/s, 0.20 N)

Traction 1.0000 −0.4019 −0.5472

Roughness −0.4019 1.0000 0.5581

Fineness −0.5472 0.5581 1.0000

same textures that were used in the human texture discrimination
studies. Similar to the training set, five trials for each of the three
exploratory movements were collected for these 16 textures.

The computational speed of computer processors made it
attractive to analyze the performance of this artificial discrimina-
tion task offline in a virtual texture exploration. When performing
a virtual exploratory movement, a randomly selected trial from the
unseen validation set of the texture being explored was given to
the classifier. Due to the high degree of randomness of these sim-
ulations, a total of 1000 simulations as described below for each
of the eight pairs of textures were conducted to establish a more
accurate measure of performance.

During a texture discrimination task for the artificial system,
a pair of textures was selected and their prior probabilities were
set equally to 50%. The probability for all other textures in the
database was set to zero, effectively eliminating them from the
classifier’s decision process. One of the two textures was selected
at random as the unknown texture to be identified by the system.
The Bayesian exploration algorithm used data in its previous expe-
rience (from the training set) to decide which exploratory move-
ment and signal would discriminate optimally between them. The
signal from this movement in the validation set was delivered to
the classifier and the posterior probabilities of the two textures
were updated using Bayesian inference. The process of performing
optimal combinations of exploratory movements and properties
to measure through Bayesian exploration was repeated until one
of the two textures converged to a probability of greater than
99.9%3. Data from these discrimination tasks was not added to the
database. Results comparing the performance of human subjects

3The 99.9% convergence criterion for texture pairs was higher than the 99% used
in the absolute classification task as discussed in the following section. It was found
that when discriminating between a smaller number of textures (i.e., two as used in
this experiment) the algorithm would quickly converge in only one or two move-
ments and frequently to a wrong decision if the required probability threshold was
not set to a high enough value. By increasing the required probability to a higher
level, additional exploratory movements would be required, resulting in better over-
all classification performance. At this level most solutions converged to the correct
values with a median of three exploratory movements with satisfactory results.

Table 4 | Comparison of AB discrimination of similar texture pairs

between human subjects and the Bayesian exploration classifier.

Texture pairs Percentage of correct

classifications

Human

subjects

Bayesian

exploration

Computer paper (Tl)

vs. smooth cardstock (T3)

60% 99.3%

Buna-N rubber (T50)

vs. silicone rubber (T54)

80% 100.0%

Acrylic felt (T12)

vs. velour (T96)

90% 100.0%

Textured vinyl #1 (T57)

vs. textured vinyl #2 (T58)

70% 100.0%

Pineapple fiber weave (T107)

vs. linen cloth (T111)

100% 100.0%

Plastic paper (T18)

vs. template plastic (T19)

85% 97.7%

Cotton duck (T102)

vs. jean denim (T104)

90% 100.0%

Santoprene rubber (T51)

vs. haplon rubber (T53)

75% 100.0%

In all cases Bayesian exploration outperformed human subjects with many pairs

of textures yielding 100% classification over the 1000 simulations for each pair

(the best performance for each pair of textures is highlighted in bold).

and the Bayesian exploration are presented as the percentage of
correct identifications in Table 4.

ABSOLUTE TEXTURE IDENTIFICATION
The new validation data from the 16 textures obtained in the pre-
vious section were also used against the entire set of 117 textures
to evaluate the performance of absolute texture identification. The
classifier was not aware of the 16 textures it was being presented
and initially set the probabilities for all textures to the same value
(1 divided by 117). The same process of Bayesian decision making
to determine optimal pairs of exploratory movements and sig-
nals for virtual exploratory movements was followed as discussed
in the previous section. The performance of this Bayesian explo-
ration approach was compared with two alternative exploratory
strategies. In the first, the most useful movements for each of these
signals as determined in Section “Selection of Set of Exploratory
Movements” were cycled; in the second, exploratory movement
and signal combinations were randomly selected. A maximum of
10 exploratory movements were allowed and the classifier was run
until any texture converged to greater than 99% probability or until
the 10 exploratory movements were conducted. If not converged,
the texture with the greatest probability after the 10 exploratory
movements was determined to be the most likely candidate. A
total of 8000 Monte Carlo simulations over the 16 textures were
conducted and performance is presented as percentage of correct
classifications (Table 5). Examples of the evolving probabilities
of possible textures and the selected exploratory movements for
some of these trials are shown in Figure 10.
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Table 5 | Summary of performance for absolute classification task for

uninformed cycling, random selection, and Bayesian Exploration.

Summary of performance Uninformed

cycling

Random

selection

Bayesian

exploration

Correct identifications 49.9% 84.1% 95.4%

And converged 36.4% 68.3% 89.3%

Median # of movements 10* 8 5

PERFORMANCE DETAIL

Computer paper (T1) 0.0% 57.8% 82.0%

Smooth cardstock (T3) 0.0% 81.2% 99.6%

Buna-N rubber (T50) 58.0% 84.4% 100.0%

Silicone rubber (T54) 88.6% 86.6% 99.6%

Acrylic felt (T12) 100.0% 94.2% 96.4%

Velour (T96) 33.4% 83.4% 100.0%

Textured vinyl #1 (TS7) 100.0% 99.6% 100.0%

Textured vinyl #2 (T58) 0.0% 51.4% 67.2%

Pineapple fiber weave (T107) 99.2% 94.0% 99.8%

Linen cloth (T111) 14.2% 90.6% 99.6%

Plastic paper (T18) 27.6% 86.4% 100.0%

Template plastic (T19) 86.2% 88.0% 94.4%

Cotton duck (T102) 100.0% 99.2% 100.0%

Jean denim (T104) 26.6% 91.8% 96.8%

Santoprene rubber (T51) 3.0% 75.4% 93.6%

Haplon rubber (T53) 61.2% 80.8% 97.6%

A total of 8000 Monte Carlo simulations for 16 textures from unique validation

data were compared against the training data from all 117 textures to determine

which of the 117 textures best fit the observed data when performing virtual

explorations. Results of Bayesian exploration are compared to uninformed cycling

through exploratory movements between the three signals at their most useful

movements and random selection of exploratory movements from all combina-

tions of movements and signals. The percentage of correct identifications are

shown for each. The algorithm that produced the best performance for each tex-

ture is displayed in bold.*For the case of uninformed cycling the median number of

movements to convergence could not be obtained as the simulation was stopped

at 10 movements before half of the simulations could converge.

RESULTS
ANALYSIS OF DESCRIPTIVE TEXTURE PROPERTIES
In the pilot study of 10 textures, descriptive properties were found
to reflect expected values. For instance, graphite produced the
lowest measure for traction between the surface and the skin of
the BioTac while polished aluminum and rubber had the highest.
Foam, satin, rayon, and burlap produced the highest measures of
roughness, while polished aluminum produced the lowest mea-
sure of roughness. In calculating the spectral centroid, the finer
textures such as graphite and satin produced higher values while
the coarser textures such as burlap and velcro produced lower val-
ues. Featureless textures such as polished aluminum and rubber
tended to produce low spectral centroids as well due to their 1/f
noise as discussed in (Wiertlewski et al., 2011). The exploratory
movements that produced the most discriminability within the
10-texture dataset as calculated by the minimal uncertainty are
presented in Figure 5.

A notable finding of these trials was that the spectral centroid
did not scale with sliding velocity for all textures (Figure 6). Such

scaling was observed only for certain coarse textures that were
also rough (Velcro hooks, foam, rayon, burlap). This constitutes
additional evidence that fingerprints do not simply convert sliding
velocity and spatial frequency into temporal signals as concluded
by (Scheibert et al., 2009).

IDENTIFYING THE MOST USEFUL EXPLORATORY MOVEMENTS
The most useful movement for each property was selected from
the set of 36 movements (Figure 7). It was observed that combina-
tions of high-power exploratory movements (high force and high
velocity) resulted in a high rate of fingerprint wear on the BioTac’s
skin. These high wear movements (gray boxes with white text in
Figure 7) were eliminated, although some appeared to be useful
for discrimination (e.g., 6.31 cm/s and 1.26 N for discriminating
roughness). As a general trend, it was observed that the ability
to discriminate traction improved at lower velocities and higher
forces, while the ability to discriminate roughness improved at
higher velocities and lower forces. These findings supported our
own intuition on the exploratory movements humans make to
extract these properties. We propose that when humans make a
movement to determine surface traction, they tend to use a high
amount of force while slowly moving their finger. Presumably this
is to maximize the amount of shear force sensed in the finger; it
is easier to control these forces by moving slowly. Similarly in our
experimental testbed, sliding at slower velocities produced more
stable sliding forces as measured by the motor current; this resulted
in more consistent measurements between multiple trials. To dis-
criminate roughness, we have observed that humans tend to use
very light forces while sliding over the surfaces of textures to feel
their vibrations. Our observations with the BioTac have demon-
strated a possible utility of this strategy. In general, faster velocities
tend to produce higher amplitude vibration signals, while greater
forces tend to dampen vibrations sensed by the BioTac. The find-
ings of these two exploratory movements as the most useful for
these properties in our artificial system provide additional support
to these hypotheses about biological exploratory movements for
perception of traction and roughness.

While a certain movement may be classified as generally “use-
ful” for a given property, other movements may actually be more
useful for discriminating a given pair of materials along this prop-
erty. Because all properties are collected with each movement, the
classification algorithm takes advantage of all nine combinations
of available movements and material properties during its deci-
sion process of determining the optimal movement and signal to
sense.

TRAINING DATASET
The measured properties of the 117 textures were individually
tightly clustered for repeated measures but spanned most of the
three dimensional property space, an ideal situation for an effi-
cient classifier. The complete set of measured properties for each
signal at the most useful movement for that property is shown
in Figure 8. In many cases, textures that had similar values for
one property tended to be dissimilar along other dimensions,
suggesting the utility of well-chosen next exploratory movements.

A graphical representation of confusion probability matrices
was generated for each combination of movements and properties
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FIGURE 10 | Evolution of estimated probabilities as virtual exploratory

movements are made to identify textures from the entire training set of

117 textures. In each of these plots the steps along the x -axis represent
discrete exploratory movements, and the y -axis represents the estimated
probabilities of likely texture candidates. The movement and signal taken at
each step are indicated below the tick marks [Movements (M): 1= 1.26 N,
1 cm/s; 2= 0.5 N, 2.5 cm/s; 3= 0.2 N, 6.31 cm/s. Signals (S): 1=Traction,
2=Roughness, 3= Fineness]. The color-coded key for probability traces
shows the numbers of the textures being classified in the validation trial.

Dashed line represents the 99% confidence required to end the simulation
before all 10 movements are made. In (A) texture 54 (Silicone) was rapidly
identified, as was the case for many of the simulations. In (B) texture 58
(Textured Vinyl #2) was eventually identified after a few initially more probable
candidates were ruled out. In (C) texture three (smooth cardstock) is shown
being misidentified as balsa wood (T38) and in (D) correctly identified,
although with only 60% confidence at the end of the simulation. In both
cases no texture reached a confidence of above 99% to stop the simulation
so it ran for the complete 10 trials.
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(Figure 9). The geometric mean (calculated by multiplying confu-
sion probability matrices and taking the nth root of the result) for
all of these movements and properties provides additional insight
into which pairs of textures have the most confusion across all
exploratory movements and properties. Results indicate that most
textures are readily distinguishable with a few exceptions. When
the confusion probability matrices are combined for only the opti-
mal movements, there are considerably more off-diagonal dark
spots representing textures that are likely to be confused. The
identification algorithm chooses the combination of movement
and signal type that will be most likely to discriminate among the
most probable alternatives at any given point in the identification
process.

Correlation between calculated texture properties were ana-
lyzed for all 117 textures for each movement and the average values
for each movement are provided (Table 3).

An interesting finding was a strong negative correlation
between roughness and traction. This can be observed in mate-
rials such as rubber and glass, which generally have smooth sur-
faces, yet produce a high amount of friction against the silicone
skin of the BioTac. This contradicts (Smith et al., 2002a), who
reported a strong positive correlation between friction and rough-
ness for human fingertips, but did not include such a diverse set
of materials.

TEXTURE DISCRIMINATION AND COMPARISON WITH HUMAN
PERFORMANCE
Results of the performance for discriminating between two tex-
tures for both humans and our artificial algorithm are provided
in Table 4. The performance of the classifier exceeded human
performance for all pairs. The average performance of human
subjects across all of the texture pairs was found to be 81.3%
while the average performance of our classifier was found to
be 99.6%. This result was quite unexpected, as human capabili-
ties have previously been thought of as the “gold standard.” Our
results in this study demonstrate that our artificial exploratory
algorithm can surpass this capability even when the methods were
designed to mimic the strategies that humans employ (but see
Discussion).

ABSOLUTE TEXTURE CLASSIFICATION
The texture classification algorithm was validated by using it to
identify the best match from the 117 textures in the database by
selecting the most efficient sequence of exploratory movements
from a novel set of data. Figure 10 shows a few examples of
these simulations, which exhibit a wide range of sequences of
exploratory movements and properties, depending on the actual
texture being classified and those in the data set with which it
might be most easily confused. In all cases the first movement is
0.2 N and 6.31 cm/s to determine texture roughness. This is due to
all textures starting with equal probability (1 divided by 117). In
this scenario, data from the training set has indicated that this first
movement will produce the largest benefit. After information from
this first movement is collected, each simulation went through a
set of exploratory movements that was optimal for discriminating
among the most likely candidates for the particular simulation.

This was found to be unique for each texture and even differ-
ent between simulations of the same texture due to the random
presentation of various trials from the validation dataset.

In this study we compared the Bayesian exploration algorithm
with alternative algorithms such as cycling through the most useful
movements for each signal and randomly selecting combinations
of exploratory movements and signals to measure. A summary
of performance for the 8000 Monte Carlo simulations of the 16
textures tested is provided (Table 5). Our Bayesian exploration
algorithm was found to be superior in both classification accuracy
and number of exploratory movements required to converge to
99% confidence. Furthermore the Bayesian exploration strategy
was more likely to converge on the correct texture before reaching
the maximum of 10 movements. Of the 16 textures explored for
global classification among the set of 117 textures in these sim-
ulations, Bayesian exploration outperformed uninformed cycling
and random selection for all but one of these textures.

DISCUSSION
SUMMARY OF FINDINGS
Previous investigations into the psychophysics of textures and their
classification from sensory data have looked at a fairly narrow
range of coarse textures and exploratory movements. This has
resulted in simplistic classifiers based on one or two dimensions
of the sensory information that tend to break down when extrapo-
lated beyond their original data. Such circumscription makes study
design more tractable but it may foreclose opportunities inher-
ent in considering the larger problem. The large set of textures
and large range of movements explored in this study forced us to
develop systematic and scalable methods for dealing with a prob-
lem whose scale is more similar to that faced by the human nervous
system. These methods extend conventional Bayesian decision
making to encompass optimal strategies for acquiring the data
for such optimal decision making, suggesting the term Bayesian
exploration.

For this study we have found the method of Bayesian explo-
ration to be far superior to other methods previously used for
discriminating textures: de Boissieu et al. (2009) were able to
demonstrate discrimination among 10 different textures with 62%
performance classification; Giguere and Dudek (2011) were able
to obtain a classification performance of 89.9–94.6% with 10
surfaces; Oddo et al. (2011) demonstrated a classification per-
formance of 97.6% classification across three fine gratings; Jamali
and Sammut (2011) demonstrated 95% classification across eight
textures; Sinapov et al. (2011) demonstrated a classification per-
formance of 95% across 20 different textures when using multiple
exploratory movements. Bayesian exploration yielded a perfor-
mance of 99.7% when choosing between two difficult textures,
surpassing even human capabilities, and 95.4% when choosing
from a database of 117 textures. Normally classification accuracy
would be expected to decline as the number of possible textures
increased.

A guiding principle throughout this study was biomimicry. We
used a tactile sensor that shares many mechanical features with
the human fingertip and we slid it over textured surfaces with
exploratory movements similar to those that humans make when
exploring textures. The exploratory movements and properties to
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measure were also inspired by observations of human behavior
and descriptive language humans use to describe textures. The
Bayesian exploration algorithm intelligently selects the optimal
exploratory movements to make based on current knowledge of
what the texture may be and prior experience of which move-
ment would best discriminate the likely possibilities, a method
also inspired by theories of biological behavior (Loeb et al., 2011).
Gratifyingly, we were able to obtain performance in discriminating
texture that surpassed human capabilities for both accuracy and
speed of classification.

The use of descriptive properties inspired by human language
was probably important. The human brain is an outstanding clas-
sifier, so naturally one would expect it understands what makes
textures different. Therefore, the language that humans use to
describe textures are inherently low-hanging fruit for inspir-
ing analytical measures of texture properties. In this study we
implemented relatively simple algorithms for estimating these
signal properties (motor current to estimate sliding force, vibra-
tion power to estimate roughness, vibration frequency to esti-
mate coarseness). The performance of our classifier, even using
this simplified set of inputs, far exceeded our expectations for
such a large database of textures. This approach of language-
guided signals may be useful for other artificial discrimination
tasks.

There are, of course, substantial differences between our
machine and a human hand or even other robotic systems. On
the plus side, the human fingertip has a much richer set of sen-
sors than the BioTac, which has a similar dynamic range but lacks
the spatial resolution of the dynamic Meissner’s receptors in the
individual fingerprint ridges (Jones and Lederman, 2006). On the
minus side, the movements of the human hand are subject to con-
siderably more motor noise than our electrical motors (Jones et al.,
2002; Jones and Lederman, 2006). Apparently these two differences
tended to cancel each other in terms of overall performance. This
may be a general property of the Bayesian strategy for selection of
exploratory movements and interpretation of the resulting sensory
data. Noise affecting either the movements or the sensory trans-
duction is represented automatically in the database and biases the
process away from choices that provide less useful information for
any reason. Extending this algorithm to a complete robotic system
working in unstructured environments is expected to degrade the
quality of measured signals, which was enhanced by the careful
design of a custom-built experimental apparatus. In particular,
the actuators in humanoid robots are likely to be considerably
noisier than our apparatus, introducing both variability into the
exploratory movements and noise into the sensor signals. Addi-
tional training to better understand the characteristics of noise
and variability is one way to compensate for this. We expect the
Bayesian exploration method to be robust to this and evolve to
make the most of available information.

CONSIDERATIONS FOR IMPROVING THE CLASSIFIER
The results presented in this study implement what is known in
machine learning as supervised learning. A set of textures and
their properties to measure were given to the classifier and it
was told that the textures were unique and therefore belonged
to separate classes. In the real world, the existence of discrete

entities must be inferred in the first place from the clustering of
data points that may arise from the existence of multiple dis-
crete entities, continuous gradations of material properties, or
simply noise in the measurement system. Any novel sensory expe-
rience might be taken to be a distorted sampling of a previously
known entity or a first example of a new entity. Such situations
can be accommodated by extending the classification algorithm
to continuously refine its experience for known textures as well
as to identify when new textures are encountered and a new
entity needs to be added to the database. One method to do
this would be to calculate the Bhattacharya coefficient between
the object currently being explored and the existing database
of objects. If the newly observed data are not similar enough
to known textures, a new class could be created. In addition to
the distributions of the tactile data themselves, the classifier may
be able to use other information such as the visual appearance
(used by our subjects when first comparing the two similar tex-
tures in the discrimination task) or the probability that an entity
could have changed or been replaced from one exploration to the
next.

In our system, the internal representation of a texture’s proper-
ties consists only of a mean value and a standard deviation for each
property and each movement that can be made. After successfully
identifying a texture, the system would benefit from adding these
new data to its library so future encounters with the same texture
will be identified more efficiently. Furthermore, as more explo-
rations are made, the true probability density function could be
identified, which may in fact deviate from the initially assumed
normal distributions. This would serve to improve classifier per-
formance. Adding these results to the system would also increase
the amount of training data it has available, eventually enabling
multivariate analysis as opposed to the univariate methods used in
this study to avoid the curse of dimensionality (Jain et al., 2000).
Updating the mean and standard deviation with the new data can
accomplish this, but it is not trivial. If all observations are assumed
to be equally valid regardless of when they occurred, then updat-
ing requires knowledge also of the previous number of experiences
with that entity. If a new entity is created, it is possible, even likely,
that a substantial number of the previous observations have been
misclassified. Creating two new means and standard deviations
from one previously learned distribution may not be feasible, in
which case the algorithm will need to“forget”much of the old data
and explore the two new entities intensively to create new internal
representations.

Collecting data sufficient for multivariate analysis was imprac-
tical for the large number of textures employed in these experi-
ments, but something like it may be feasible over the life of an
organism or robotic system learning progressively about its world.
We propose that a strategy of initially focusing only on salient
properties for novice systems with little experience is preferable. As
more experience is obtained, however, such systems could benefit
from the efficiency of multivariate analysis.

CONSIDERATIONS FOR IDENTIFYING OBJECTS BY ALL AVAILABLE
SENSORY MODALITIES
The strategies used in this study could be generally applied to
a more diverse class of problems involving object identification.
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As discussed in the introduction, texture discrimination is only
a small subset of tools that humans employ when discrimi-
nating objects by touch, others include: compliance, thermal
properties, shape, volume, and weight. The development of
biologically inspired exploratory movements and signal mea-
sures for these properties would enhance the capabilities and
performance of the system. Furthermore, these must be inte-
grated with other exteroceptive modalities such as vision,
sound, and smell. Iterative decisions must be made about other
exploratory movements of the fingers, the eyes (e.g., saccadic
gaze shifts), and other attentive mechanisms. Anthropomorphic
robots provide both the need and the ability to implement
biomimetic strategies for coping with such high dimensional
data. In doing so, they may provide insights into those strate-
gies that are difficult to obtain from studying biological systems
alone.

ACKNOWLEDGMENTS
The authors would like to thank Raymond Peck for fabrication of
the BioTac sensors and apparatus used in these tests and Michelle
Willie and Lee Ann Lumilan for preparation of the texture samples.
The authors would also like to thank the entire team at the Medical
Device Development Facility at the University of Southern Califor-
nia and at SynTouch LLC, particularly Gary Lin, Matthew Borzage,
Nicholas Wettels,David Groves, and TomonoriYamamoto for their
advice and assistance on this project. This research was supported
by the Department of Defense Advanced Research Projects Agency
contract D11PC20121.

SUPPLEMENTARY MATERIAL
The Movies S1 and S2 for this article can be found online
at http://www.frontiersin.org/Neurorobotics/10.3389/fnbot.2012.
00004/abstract

REFERENCES
Bensmaïa, S., and Hollins, M. (2005).

Pacinian representations of fine sur-
face texture. Percept. Psychophys. 67,
842–854.

Bergmann Tiest, W. M., and Kappers, A.
M. L. (2006). Analysis of haptic per-
ception of materials by multidimen-
sional scaling and physical measure-
ments of roughness and compress-
ibility. Acta Psychol. (Amst.) 121,
1–20.

Brisben, A. J., Hsiao, S. S., and Johnson,
K. O. (1999). Detection of vibra-
tion transmitted through an object
grasped in the hand. J. Neurophysiol.
81, 1548–1558.

Dahiya,R. S., and Gori,M. (2010). Prob-
ing with and into fingerprints. J.
Neurophysiol. 104, 1–3.

Dahiya, R. S., Metta, G., Valle, M., and
Sandini, G. (2010). Tactile sensing –
from humans to humanoids. IEEE
Trans. Robot. 26, 1–20.

de Boissieu, F., Godin, C., Guilhamat, B.,
David, D., Serviere, C., and Baudois,
D. (2009). “Tactile texture recogni-
tion with a 3-axial force MEMS inte-
grated artificial finger,” in Proceed-
ings of Robotics: Science and Systems,
Seattle, 49–56.

Edwards, J., Lawry, J., Rossiter, J., and
Melhuish, C. (2008). Extracting tex-
tural features from tactile sensors.
Bioinspir. Biomim. 3, 1–12.

Fishel, J. A., and Loeb, G. E. (2012).
“Sensing tactile microvibrations
with the BioTac – compari-
son with human sensitivity,” in
IEEE/RAS-EMBS International
Conference on Biomedical Robotics
and Biomechatronics, Rome.

Fishel, J. A., Santos, V. J., and Loeb, G.
E. (2008). “A robust micro-vibration
sensor for biomimetic fingertips,”
in IEEE/RAS-EMBS International

Conference on Biomedical Robot-
ics and Biomechatronics, Scottsdale,
659–663.

Giguere, P., and Dudek, G. (2011).
A simple tactile probe for surface
identification by mobile robots.
IEEE Trans. Robot. 27, 534–544.

Hollins, M., Bensmaïa, S., and Wash-
burn, S. (2001). Vibrotactile adapta-
tion impairs discrimination of fine,
but not coarse, textures. Somatosens.
Mot. Res. 18, 253–262.

Hollins, M., Faldowski, R., Rao, S., and
Young, F. (1993). Perceptual dimen-
sions of tactile surface texture: a
multidimensional scaling analysis.
Percept. Psychophys. 54, 697–705.

Hollins, M., and Risner, S. R. (2000).
Evidence for the duplex theory of
tactile texture perception. Percept.
Psychophys. 62, 695–705.

Hosoda, K., Tada, Y., and Asada, M.
(2006). Anthropomorphic robotic
soft fingertip with randomly distrib-
uted receptors. Robot. Auton. Syst.
52, 104–109.

Howe, R. D. (1994). Tactile sensing
and control of robotic manipula-
tion. Adv. Robot. 8, 245–261.

Howe, R. D., and Cutkosky, M. R.
(1989). “Sensing skin acceleration
for slip and texture perception,”
in IEEE International Conference on
Robotics and Automation, Scottsdale,
145–150.

Howe, R. D., and Cutkosky, M. R.
(1993). Dynamic tactile sensing: per-
ception of fine surface features with
stress rate sensing. IEEE Trans. Rob.
Autom. 9, 140–151.

Jain, A. K., Duin, R. P. W., and Mao,
J. (2000). Statistical pattern recog-
nition: a review. IEEE Trans. Pattern
Anal. Mach. Intell. 22, 4–37.

Jamali, N., and Sammut, C. (2011).
Majority voting: material

classification by tactile sensing
using surface texture. IEEE Trans.
Robot. 27, 508–521.

Johansson, R. S., Landström, U., and
Lundström, R. (1982). Responses of
mechanoreceptive afferent units in
the glabrous skin of the human hand
to sinusoidal skin displacements.
Brain Res. 244, 17–25.

Jones, K. E., Hamilton, A. F., and
Wolpert, D. M. (2002). Sources of
signal-dependent noise during iso-
metric force production. J. Neuro-
physiol. 88, 1533–1544.

Jones, L. A., and Lederman, S. J. (2006).
Human Hand Function. New York:
Oxford University Press.

Katz, D. (1925). The World of Touch,
trans. L. E. Krueger, 1989. Hillsdale,
NJ: Lawrence Erlbaum.

Knibestöl, M., and Vallbo, A. B. (1970).
Single unit analysis of mechanore-
ceptor activity from the human
glabrous skin. Acta Physiol. Scand.
80, 178–195.

Lederman, S. J., and Klatzky, R. L.
(1987). Hand movements: a window
into haptic object recognition. Cogn.
Psychol. 19, 342–368.

Lederman, S. J., Loomis, J. M., and
Williams, D. A. (1982). The role of
vibration in the tactual perception of
roughness. Percept. Psychophys. 32,
109–116.

Lee, M. H., and Nicholls, H. R. (1999).
Tactile sensing for mechatronics – a
state of the art survey. Mechatronics
9, 1–31.

Lin, C. H., Erickson, T. W., Fishel, J. A.,
Wettels, N., and Loeb, G. E. (2009).
“Signal processing and fabrication
of a biomimetic tactile sensor array
with thermal, force and microvibra-
tion modalities,” in IEEE Interna-
tional Conference on Robotics and
Biomimetics, Guilin, 129–134.

Loeb, G. E., and Fishel, J. A. (2009).
The Role of Fingerprints in Vibrotac-
tile Discrimination. Whitepaper for
DoD Physics of Biology, University
of Southern California.

Loeb, G. E., Tsianos, G. A., Fishel, J. A.,
Wettels, N., and Schaal, S. (2011).
Understanding haptics by evolving
mechatronic systems. Prog. Brain
Res. 192, 129–144.

Mountcastle, V. B., LaMotte, R. H., and
Carli, G. (1972). Detection thresh-
olds for stimuli in humans and mon-
keys: comparison with threshold
events in mechanoreceptive affer-
ent nerve fibers innervating the
monkey hand. J. Neurophysiol. 35,
122–136.

Mukaibo,Y.,Shirado,H.,Konyo,M.,and
Maeno, T. (2005). “Development of
a texture sensor emulating the tissue
structure and perceptual mechanism
of human fingers,” in IEEE Inter-
national Conference on Robotics and
Automation, Barcelona, 2565–2570.

Nicholls, H. R., and Lee, M. H. (1989).
A survey of robot tactile sensing
technology. Int. J. Rob. Res. 8, 3–30.

Oddo, C. M., Beccai, L., Felder, M., Gio-
vacchini, F., and Carrozza, M. C.
(2009). Artificial roughness encod-
ing with a bio-inspired MEMS-
based tactile sensor array. Sensors 9,
3161–3183.

Oddo, C. M., Controzzi, M., Beccai, L.,
Cipriani, C., and Carrozza, M. C.
(2011). Roughness encoding for dis-
crimination of surfaces in artificial
active-touch. IEEE Trans. Robot. 27,
522–533.

Rebguns, A., Ford, D., and Fasel,
I. (2011). “InfoMax control for
acoustic exploration of objects by
a mobile robot,” in AAAI Confer-
ence on Artificial Intelligence, San
Francisco, 22–28.

Frontiers in Neurorobotics www.frontiersin.org June 2012 | Volume 6 | Article 4 | 33

http://www.frontiersin.org/Neurorobotics/10.3389/fnbot.2012.00004/abstract
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive
http://www.frontiersin.org/Neurorobotics/10.3389/fnbot.2012.00004/abstract


Fishel and Loeb Bayesian exploration for texture identification

Romano, J. M., and Kuchenbecker, K. J.
(2011). Creating realistic virtual tex-
tures from contact acceleration data.
IEEE Trans. Haptics.

Scheibert, J., Leurent, S., Prevost, A.,
and Debregeas, G. (2009). The
role of fingerprints in the coding
of tactile information probed with
a biomimetic sensor. Science 323,
1503–1506.

Sinapov, J., and Stoytchev, A. (2010).
“The boosting effect of exploratory
behaviors,” in AAAI Conference
on Artificial Intelligence, Atlanta,
1613–1618.

Sinapov, J., Sukhoy, V., Sahai, R., and
Stoytchev, A. (2011). Vibrotactile
recognition and categorization of
surfaces by a humanoid robot. IEEE
Trans. Robot. 27, 488–497.

Smith, A. M., Chapman, C. E., Deslan-
des, M., Langlais, J., and Thibodeau,

M. (2002a). Role of friction and tan-
gential force variation in the subjec-
tive scaling of tactile roughness. Exp.
Brain Res. 114, 211–223.

Smith, A. M., Gosselin, G., and Houde,
B. (2002b). Deployment of finger-
tip forces in tactile exploration. Exp.
Brain Res. 147, 209–218.

Su, Z., Fishel, J. A., Yamamoto, T., and
Loeb, G. E. (2012). Use of tac-
tile feedback to control exploratory
movements to characterize object
compliance. Front. Neurorobotics.

Tada, Y., Hosoda, K., and Asada, M.
(2004).“Sensing ability of anthropo-
morphic fingertip with multi-modal
sensors,” in IEEE International Con-
ference on Intelligent Robots and Sys-
tems, Seattle, 1005–1012.

Tada, Y., Hosoda, K., Yamasaki, Y., and
Asada, M. (2003). “Sensing the tex-
ture of surfaces by anthropomorphic

soft fingertips with multi-modal
sensors,” in IEEE International Con-
ference on Intelligent Robots and Sys-
tems, Las Vegas, 31–35.

Wettels, N., and Loeb, G. E. (2011).
“Haptic feature extraction from a
biomimetic tactile sensor: force,
contact location and curvature,”
in IEEE International Conference
on Robotics and Biomimetics,
Phuket.

Wettels,N.,Santos,V. J., Johansson,R. S.,
and Loeb, G. E. (2008). Biomimetic
tactile sensor array. Adv. Robot. 22,
829–849.

Wiertlewski, M., Hudin, C., and Hay-
ward, V. (2011). “On the 1/f noise
and non-integer harmonic decay of
the interaction of a finger sliding on
flat and sinusoidal surfaces,” in IEEE
World Haptics Conference, Istanbul,
25–30.

Conflict of Interest Statement: Both
authors are equity partners in Syn-
Touch, LLC, which manufactures and
sells the BioTac sensors described in this
article.

Received: 20 March 2012; paper pend-
ing published: 10 April 2012; accepted:
23 May 2012; published online: 18 June
2012.
Citation: Fishel JA and Loeb GE (2012)
Bayesian exploration for intelligent iden-
tification of textures. Front. Neurorobot.
6:4. doi: 10.3389/fnbot.2012.00004
Copyright © 2012 Fishel and Loeb. This
is an open-access article distributed under
the terms of the Creative Commons Attri-
bution Non Commercial License, which
permits non-commercial use, distribu-
tion, and reproduction in other forums,
provided the original authors and source
are credited.

Frontiers in Neurorobotics www.frontiersin.org June 2012 | Volume 6 | Article 4 | 34

http://dx.doi.org/10.3389/fnbot.2012.00004
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive
http://creativecommons.org/licenses/by-nc/3.0/


ORIGINAL RESEARCH ARTICLE
published: 23 July 2012

doi: 10.3389/fnbot.2012.00006

Learning tactile skills through curious exploration
Leo Pape1*, Calogero M. Oddo2, Marco Controzzi2, Christian Cipriani2, Alexander Förster1,
Maria C. Carrozza2 and Jürgen Schmidhuber1

1 Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, Università della Svizzera Italiana, Lugano, Switzerland
2 The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy

Edited by:
Robyn Grant, University of Sheffield,
UK

Reviewed by:
Nathan F. Lepora, University of
Sheffield, UK
Benjamin Kuipers, University of
Michigan, USA

*Correspondence:
Leo Pape, Istituto Dalle Molle di
Studi sull’Intelligenza Artificiale,
Università della Svizzera Italiana,
Lugano, Switzerland.
e-mail: pape@idsia.ch

We present curiosity-driven, autonomous acquisition of tactile exploratory skills on a
biomimetic robot finger equipped with an array of microelectromechanical touch sensors.
Instead of building tailored algorithms for solving a specific tactile task, we employ
a more general curiosity-driven reinforcement learning approach that autonomously
learns a set of motor skills in absence of an explicit teacher signal. In this approach,
the acquisition of skills is driven by the information content of the sensory input
signals relative to a learner that aims at representing sensory inputs using fewer and
fewer computational resources. We show that, from initially random exploration of its
environment, the robotic system autonomously develops a small set of basic motor
skills that lead to different kinds of tactile input. Next, the system learns how to exploit
the learned motor skills to solve supervised texture classification tasks. Our approach
demonstrates the feasibility of autonomous acquisition of tactile skills on physical robotic
platforms through curiosity-driven reinforcement learning, overcomes typical difficulties of
engineered solutions for active tactile exploration and underactuated control, and provides
a basis for studying developmental learning through intrinsic motivation in robots.

Keywords: active learning, biomimetic robotics, curiosity, intrinsic motivation, reinforcement learning, skill

learning, tactile sensing

1. INTRODUCTION
Complex robots typically require dedicated teams of control
engineers that program the robot to execute specific tasks in
restricted laboratory settings or other controlled environments.
Slight changes in the task requirements or the robot’s environ-
ment often require extensive re-programming, calibration, and
testing to adjust the robot to the changed conditions. The imple-
mentation of these tasks could be sped up significantly if the robot
autonomously develops and maintains some knowledge about its
own capabilities and the structure of the environment in which
it lives. Instead of placing the task of supplying the robot with
such knowledge in the hands of the robot’s creator, curious robots
actively explore their own capabilities and the structure of their
environment even without an externally specified goal. The struc-
ture found in the environment and its relation to the robot’s own
actions during curious exploration could be stored and used later
to rapidly solve externally-specified tasks.

A formalization of the idea of curious exploratory behav-
ior is found in the work of Schmidhuber (2010) and references
therein. The theory of intrinsically-motivated learning developed
in these works considers active machine learning agents that try
to become more efficient in storing and predicting the obser-
vations that follow from their actions. A major realization of
Schmidhuber (2010), is that curious behavior should not direct
the agent toward just any unknown or unexplored part of its envi-
ronment, but to those parts where it expects to learn additional
patterns or regularities. To this end, the learning agent should
keep track of its past learning progress, and find the relation
between this progress and its own behavior. Learned behaviors

that lead to certain regular or predictable sensory outcomes, can
be stored in the form of skills. Bootstrapping the skills learned in
this fashion, the agent can discover novel parts of the environ-
ment, learn composite complex skills, and quickly find solutions
to externally-specified tasks.

This work presents curiosity-driven, autonomous acquisition
of tactile exploratory skills on a biomimetic robot finger equipped
with an array of microelectromechanical touch sensors. We show
that from active, curiosity-driven exploration of its environ-
ment, the robotic system autonomously develops a small set of
basic motor skills that lead to different kinds of tactile input.
Next, the system learns how to exploit the learned motor skills
to solve supervised texture classification tasks. Our approach
demonstrates the feasibility of autonomous acquisition of tactile
skills on physical robotic platforms through curiosity-driven rein-
forcement learning, overcomes typical difficulties of engineered
solutions for tactile exploration and underactuated control, and
provides a basis for studying curiosity-driven developmental
learning in robots.

Since both theory and practically-feasible algorithms for
curiosity-driven machine learning have been developed only
recently, few robotic applications of the curiosity-driven approach
have been described in the literature thus far. Initial robotic
implementations involving vision-based object-interaction tasks
are presented in Kompella et al. (2011). A similar approach has
been described by Gordon and Ahissar (2011) for a simulated
whisking robot. Examples of alternative approaches to curiosity-
driven learning on simple robots or simulators can be found in
the work of Oudeyer et al. (2007); Vigorito and Barto (2010);
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Konidaris et al. (2011); Mugan and Kuipers (2012). None of these
works consider curiosity-driven development of tactile skills from
active tactile exploration.

The rest of this work is organized as follows: section 2 presents
the curiosity-driven learning algorithm and the tactile robotic
platform used in the experiments. Section 3.1 illustrates the oper-
ation of the curiosity-driven reinforcement learning algorithm on
a simple toy-problem. The machine learning approach for tactile
skill learning presented here has not been published before, and
will be described and compared to other approaches where rele-
vant for tactile skill learning. Section 3.2 then shows the learning
of basic tactile skills on the robotic platform and how these can
be exploited in an externally-specified surface classification task.
Section 4 discusses the results and the relevance of active learning
in active tactile sensing.

2. MATERIALS AND METHODS
2.1. CURIOSITY-DRIVEN MODULAR REINFORCEMENT LEARNING
2.1.1. Skill learning
The learning of tactile skills is done here within the framework of
reinforcement learning (e.g., Kaelbling et al., 1996). A reinforce-
ment learner (RL) addresses the problem which actions to take in
which states in order to maximize its cumulative expected reward.
The RL is not explicitly taught which actions to take, as in super-
vised machine learning, but must instead explore the environ-
ment to discover which actions yield the most cumulative reward.
This might involve taking actions that yield less immediate reward
than other actions, but lead to higher reward in the long-term.
When using RLs for robot control, states are typically abstract
representations of the robot’s sensory inputs, actions drive the
robot’s actuators, and the rewards represent the desirability of the
robot’s behavior in particular situations. Learning different skills
here is done with a modular reinforcement learning architecture
in which each module has its own reward mechanism, and when
executed, produces its own behavior.

Most modular reinforcement learning approaches address the
question how to split up a particular learning task into subtasks
each of which can be learned more easily by a separate mod-
ule. In the curiosity-driven learning framework presented here,
there is no externally-specified task that needs to be solved or
divided. Instead, the modules should learn different behaviors
based on the structure they discover in the agent’s sensory inputs.
This is done by reinforcement learning modules that learn behav-
iors that lead to particular kinds of sensory inputs or events, and
then terminate. The different kinds of sensory events are distin-
guished by another module, which we here call an abstractor. An
abstractor can be any learning algorithm that learns to represent
the structure underlying its inputs into a few relevant compo-
nents. This could for example be an adaptive clustering method,
an autoencoder (e.g., Bourlard and Kamp, 1988), qualitative state
representation (Mugan and Kuipers, 2012) or (including the time
domain) a slow-feature analysis (Kompella et al., 2011). Each
component of the abstractor is coupled to a RL module that tries
to generate stable behaviors that lead to sensory inputs with the
coupled abstractor state, and then terminates. The resulting mod-
ules learn the relation between the part of their sensory inputs
that can be directly affected through their own actions, and the

abstract structure of their sensory inputs. In other words, the
system learns different skills that specify what sensory events can
occur, and how to achieve those events. As the behaviors learned
by these modules depend on the ability of the system to extract
the structure in its sensory input, and not on some externally-
provided feedback, we call these modules intrinsically-rewarded
skills (inSkills).

Apart from inSkills, we also use externally-rewarded skills
(exSkills) that are learned through external reward from the envi-
ronment, and a small number of other modules whose operation
will be detailed below. Modules can take two kinds of actions
(1) execute a primitive that translates directly into an actuator
command and (2) execute another module. When the executed
module collects sensory inputs with its corresponding abstractor
state, it terminates and returns control to the calling module. The
possibility of executing another module as part of a skill allows for
cumulative learning of more complex, composite skills. In the ini-
tial learning stages, there is not much benefit in selecting another
module as an action, as most modules have not yet developed
behaviors that reliably lead to different sensory events. However,
once the modules become specialized, they may become part of
the policy of another module. To prevent modules from calling
themselves directly, or indirectly via another module, the RL con-
troller keeps track of the selected modules on a calling stack, and
removes the currently executing module and its caller modules
from the available action set. In this fashion, only modules that
are not already on the calling stack can be selected for execution.

It is not uncommon for modular architectures to instantiate
additional modules during the learning process. This comes at a
disadvantage of specifying and tuning ad-hoc criteria for module
addition and pruning. Instead, we use a learning system with a
fixed number of modules, which has to figure out how to assign
those modules to the task at hand. Although this system is by
definition limited (but so is any physical system), flexibility, and
cumulative learning are achieved through the hierarchical combi-
nation of modules; once the system acquires a new skill, it could
use that skill as part of another skill to perform more complex
behaviors.

During curious exploration of its environment, the learning
agent is driven by a module that tries to improve the relia-
bility of the inSkill behaviors. The idea of using the learning
progress of the agent as reward is closely following the work of
Schmidhuber (2010). However, the focus here is not so much
on the ability of the abstractor predict or compress any observa-
tions, but on finding stable divisions of sensory inputs produced
by the agent’s behavior into a few components. The intrinsic
reward is not just the learning progress of the abstractor, but
also includes the improvement in the RL’s ability to produce
the different sensory events distinguished by the abstractor. In
essence, the role of learning progress is taken over here by stabil-
ity progress, which involves the distribution of the agent’s limited
computational and physical resources such that the most relevant
(relative to the system’s learning capabilities) sensory events can
be reliably produced. This strong relation between distinct sen-
sor abstractions and the ability to learn behaviors that lead to
those abstractions has also been argued for by Mugan and Kuipers
(2012).

Frontiers in Neurorobotics www.frontiersin.org July 2012 | Volume 6 | Article 6 |36

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Pape et al. Learning tactile skills through curious exploration

2.1.2. Adaptive model-based reinforcement learning
Although the abstractors and RLs could in principle be instan-
tiated with a range of different machine learning methods, in
practice, especially in robotic practice, few algorithms can be suc-
cessfully used. The main challenges for curiosity-driven learning
on actual hardware are: (1) the algorithms have to learn from
much smaller amounts of samples (in the order of 102–103) than
are typically assumed to be available in the machine learning lit-
erature (often more than 104 to solve even the simplest tasks);
(2) typical machine learning approaches assume that training
samples are generated from a stationary distribution, while the
whole purpose of curiosity-driven learning is to make novel parts
of the environment and action space available to the robot dur-
ing and as a result of learning; (3) typical reinforcement learning
algorithms assume a stationary distribution of the reward, while
the intrinsic reward signal in curiosity-driven learning actually
decreases as a result of learning the behavior that leads to this
reward. None of these challenges is considered solved in the area
of practical machine learning; mathematically optimal univer-
sal ways of solving them (Schmidhuber, 2006) are not practical.
In the present work, we employ various machine learning tech-
niques that have been proposed before in the literature, and
introduce some new approaches we are not aware of having been
described before. The main criterion for choosing the techniques
described below was not their theoretical elegance, efficiency, or
even optimality, but their robustness to the challenges addressed
above.

To learn effectively from the small amount of samples that can
be collected from the robotic platform, the learning system trains
a Markov model from the collected data, and generates training
data for the reinforcement learning algorithm from this model.
A Markov model represents the possible states S of its environ-
ment as a set of numbers s ∈ S. In each state, a number of actions
a ∈ A are available that lead to (other) states s′ ∈ S with proba-
bility p(s′|s, a). While a primitive action takes one timestep, skills
taking several timesteps might also be selected as actions. The
model therefore also stores the duration d(s, a, s′) of an action
in terms of the number of primitive actions.

The Markov model is further augmented to facilitate learning
during the dynamic expansion of the agent’s skills and exploration
of the environment. For each module Mj and each transition
(s, a, s′), the model keeps track of: (1) the short-term reward
rj(s, a, s′) provided by the module’s reward system; (2) the prob-
ability zj(s, a, s′) of terminating the module’s policy; (3) the
long-term reward qj(s, a, s′) that changes on a slower timescale
than the short-term reward. Instead of accumulating the Markov
model’s learned values over the whole learning history, all model
values are updated with a rule that gives more weight to recently-
observed values and slowly forgets observations that happened a
long time ago:

m(s, a, s′)← (1− w∗)m(s, a, s′)+ w∗v(s, a, s′), (1)

with model values m = {d, q, r, z}, update weights w∗ =
{wd, wq, wr, wz}, and observed values v = {d, q, r, z}. The short-
term rewards, termination probabilities, and transition durations
are updated according to Equation 1 for every observation, while

the long-term reward is updated for all q(s, a, s′) after process-
ing of a number of samples equal to the reinforcement learning
episode length. Transition probabilities are updated by adding
a small constant wp to p(s′|s, a), and then rescaled such that∑

s′∈S p(s′|s, a) = 1. As the model values adjust to the chang-
ing skills, previously learned transitions become less likely. For
efficiency reasons we prune model values d, p, r, z for which the
transition probabilities have become very small (p(s′|s, a) < wo)
after each model update. Together, these update rules ensure that
the agent keeps adapting to newly acquired skills and changing
dynamics of its expanding environment. Increasing (decreasing)
the model parameters {wd, wo, wq, wr, wz} leads to the develop-
ment of more flexible (more stable) behaviors.

The values stored in the Markov model for each module are
used by reinforcement learners to learn policies that maximize
the cumulative module rewards. The RLs keep track of how much
each state-action pair (s, a) contributes to the cumulative reward
r when following the current action-selection policy. In reinforce-
ment learning these state-action values are known as a Q-values:

Q(s, a) =
∞∑

t=0

γt r(t), (2)

where γ is a discount factor that weights the importance of imme-
diate versus future rewards, and t is time. The RL selects actions a
in state s according its current policy π(s):

π(s) = argmax
a∈A Qπ(s, a). (3)

An efficient algorithm for learning those Q-values is least-squares
policy iteration (LSPI; Lagoudakis and Parr (2003)). LSPI repre-
sents the estimated Q-values as an ω-weighted linear combination
of κ features of state-action pairs φ(s, a):

Q̂(s, a) =
κ∑

j=1

φj(s, a)ωj, (4)

where ωj are the parameters learned by the algorithm. The fea-
ture function φ(s, a) used here represents state-action pairs as
binary feature vectors of length κ = |S||A|, with a 1 at the
index of the corresponding state-action pair, and a 0 at all
other indices. LSPI sweeps through a set of n samples D =
{(si, ai, s′i, ri, p(s′i | si, ai)) | i = 1, . . . , n} generated from the
model, and updates its estimates of parameter vector ω as:

ω = A−1b (5)

A =
n∑

i=1

⎡
⎣φ(si, ai)

(
φ(si, ai)−

∑
s′∈D

γp(s′|si, ai)φ
(
s′,π(s′)

))T
⎤
⎦
(6)

b =
n∑

i=1

[φ(si, ai)ri] . (7)

Because actions with different durations are possible in our
implementation, we slightly alter Equations 6 and 7 to take into
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account the duration di of a transition, both in the discount factor
γ and the module reward ri:

A =
n∑

i=1

⎡
⎣φ(si, ai)

(
φ(si, ai)−

∑
s′∈D

γdi p(s′|si, ai)φ
(
s′,π(s′)

))T
⎤
⎦

(8)

b =
n∑

i=1

[
φ(si, ai)γ

di−1ri

]
. (9)

2.1.3. Skill types
The curiosity-driven learning agent uses four different types of
reinforcement learning modules:

An explorer module is a naive curiosity module that tries to find
novel observations around previous novel observations, but
does not exploit any further structure of the environment. The
reward mechanism of an explorer uses the Markov model to
keep track of the number of times a certain state was visited,
and rewards transitions (s, a, s′) inverse-proportionally to the
number of times s′ was visited: rj(s, a, s′) = e−c(·,·,s′), where e is
the natural logarithm base, and c(·, ·, s′) the number of times
a transition led to s′. This leads to a policy that drives the agent
toward yet unexplored parts of the environment, thus speeding
up initial exploration.

InSkill modules exploit regularities in the environment to learn
behaviors that lead to particular kinds of sensory events.
Sensory inputs are grouped in an unsupervised manner by the
abstractor into separate abstractor states yj. The behavior that
leads to each abstractor state yj is learned by an individual rein-
forcement learning module Mj. The reward mechanism of
these RLs reflects the reliability with which a transition leads
to a particular abstractor state. A reward of 1 is given when
transition (s, a, s′) leads to yj, and a reward of 0 otherwise. In
combination with the update rule in Equation 1, this yields
high model reward values rj(s, a, s′) for transitions that reliably
lead to the corresponding abstractor state yj, and low model
reward values otherwise. An inSkill terminates when a tran-
sition produces its coupled abstractor state. When a module
terminates because of other reasons (e.g., reaching the max-
imum number of allowed timesteps), a failure reward −wf

(i.e., penalty) is added to rj(s, a, ·). The reason this penalty
is given to all s′ ∈ S, is that it is unknown to which state
the transition would have led if the module had terminated
successfully.
Note that no direct feedback exists between the ability of the
abstractor to separate sensory events, and the ability of the RLs
to learn behaviors that leads to those events (as is done in some
RL approaches). However, there is a behavioral feedback in the
sense that the total learning system favors behaviors that lead
to those sensory events that can reliably be distinguished by the
abstractor.

The skill progressor drives the overall behavior of the agent when
running in curious exploration mode. The progressor exe-
cutes those skills that are (re)adapting their expertise. Both
increase and decrease in the long-term reward collected by

a skill implies it is adjusting to a more stable policy, so the
progressor is rewarded for the absolute change in long-term
reward of the inSkills:

ri(·, ai, ·) =
∑

(s,a,s′)∈(S×A×S)

abs
(
p(s′|s, a) �qi(s, a, s′)

)
.

(10)
and uses a fixed reward rx for explorer modules.

An exSkill module learns to maximize externally-provided
reward. Just as the other skills, exSkills can choose to exe-
cute other skills, thus exploiting skills that have been learned
through the intrinsic reward system. Reward is given for reach-
ing a designer-specified goal, which then also terminates the
module.

Apart from the termination condition mentioned in the above
description, all modules also terminate after a fixed maximum
number of actions τz.

All RL modules simultaneously learn from all samples (off-
policy). However, modules that execute other modules as part of
their own policy, learn about the actual behavior (on-policy) of
the executed modules. While off-policy learning facilitates rapid
learning of all modules in parallel, it also changes a module’s
behavior without its explicit execution, leading to potentially
incorrect policies in modules that select the changed modules as
part of their own policy. This issue is resolved as a side-effect
of using a progressor, which is rewarded for, and executes the
changing modules, leading to additional sampling of the changed
modules until they stabilize.

Apart from the exploration done by the explorer module, a
fixed amount of exploration is performed in each module by
selecting an untried action from the available action set with
probability ε instead of the action with the maximum Q-value.
In case no untried actions are available for exploration, an action
is selected with uniform probability from the available action set.
Such a policy is called ε-greedy.

2.2. ROBOTIC PLATFORM FOR TACTILE SKILL LEARNING
We use the curiosity-driven machine learning framework to
investigate curiosity-driven learning of tactile skills on a robotic
platform specifically designed for active tactile exploration. The
platform (Figure 1A) consists of a robotic finger with a tactile
sensor in its fingertip, actuation and processing units, and a hous-
ing for replaceable blocks with different surfaces. The details of
each of those components are given in the remainder of this
section.

2.2.1. Biomimetic robotic finger
The human-sized (Buchholz et al., 1992) biomimetic robotic
finger used in the active learning experiments is composed
of three phalanxes and three flexion joints: a metacarpopha-
langeal (MCP) joint, a proximal interphalangeal (PIP) joint,
and a distal interphalangeal (DIP) joint (see Figure 2). Unlike
the natural finger, no abduction of the MCP joint is pos-
sible, since the task under investigation (i.e., an exploratory
trajectory) requires the fingertip to move in two dimensions
only. Like the natural finger, the robotic finger is driven by
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A B C

D

FIGURE 1 | Pictures of the experimental setup. (A) Tactile platform
with (1) the robotic finger, (2) actuator modules, (3) sensor processing
facilities, and (4) housing for replaceable surface blocks. (B) Surfaces
used in tactile skill learning experiments. From top to bottom: two
regular-grated plastic surfaces with 320 and 480 μm spacings, paper,

and two denim textiles. The highlighted areas show enlargements
of 2× 2 mm areas. (C) Fingertip with a 2× 2 tactile sensor array
in the highlighted area, covered with finger-printed packaging
material. The ruler shows the scale in cm. (D) Closeup of 2 MEMS tactile
sensor units.

FIGURE 2 | Robotic finger actuation; MCP and combined PIP and DIP (PDIP) are shown separately.
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tendons and underactuated; the three joints are actuated by
just two motors. Underactuation reduces design complexity and
allows self-adaptation and anthropomorphic movements similar
to human exploratory tasks.

The finger is driven by two direct-current (DC) motors (model
1727, Faulhaber Minimotor; gear head ratio 14:1). One motor
actively actuates the flexion and extension of the MCP joint by
means of two lead screw pairs with opposite screw handedness
(agonist-antagonist action, Figure 2). The second motor actuates
the flexion of the PIP and DIP underactuated pair (PDIP here-
after) by pulling the tendon. Extension of the PDIP joints during
tendon release is achieved passively through torsional springs
housed inside the joints. The DC-motors are integrated with opti-
cal encoders that monitor the released tendon-length, enabling
position control in motor space. Additionally, tension sensors are
integrated in the tendons. Each motor is controlled by a low-level
motion controller implementing position, tendon tension, torque
(motor current) control, and monitoring. The low-level motion
controllers are directly controllable by a host PC through a RS232
serial communication bus.

Due to the underactuated architecture and absence of joint-
angle sensors, the kinematics of the finger are not unique and
can only be solved by considering the dynamics of the robot and
its interaction with the environment. Control and monitoring in
motor space does not allow for unique control and monitoring in
fingertip space, unless the full dynamic model of the finger and
its interaction with the touched surface is computed. This makes
it difficult to control the finger by means of conventional control
strategies (Arai and Tachi, 1991).

2.2.2. Fingertip with MEMS tactile sensor array
The tip of the robotic finger holds a 2× 2 array of 3D micro-
electromechanical system (MEMS) tactile sensors (see also Oddo
et al., 2011b) created with silicon microstructuring technologies.
Each 1.4 mm3 sensor consists of four piezoresistors implanted at
the roots of a cross-shaped structure measuring the displacement
of the elevated pin (Figure 1D). The MEMS sensors are placed
on a rigid-flex printed circuit board lodged in the fingertip (see
Figure 1C). The resulting array has a density of 72 units/cm2 (i.e.,
16 channels/22.3 mm2), similar to the 70 units/cm2 of human
Merkel mechanoreceptors (Johansson and Vallbo, 1979).

The piezoresistor output signals are directly (without pream-
plification) acquired at a frequency of 380 Hz by a 16-channel
24-bit analog-to-digital converter (ADS1258, Texas Instruments)
lodged in the distal phalanx. The digital signals acquired from
the sensor array via the analog-to-digital converter are encoded
as ethernet packets by C/C++ software routines running on
a soft-core processor (Nios II, Altera) instantiated onboard a
FPGA (Cyclone II, Altera), and broadcasted over an ethernet
connection.

The outer packaging layer of the fingertip (Figure 1C) is made
of synthetic compliant material (DragonSkin, Smooth-On) and
has a surface with fingerprints mimicking the human fingerpad
(i.e., 400 μm between-ridge distance; fingerprint curvature radius
of 4.8 mm in the center of the sensor array; artificial epider-
mal ridge-height of 170 μm; total packaging thickness of 770 μm;
Oddo et al., 2011a).

2.2.3. Platform
The robotic finger, control modules, and processing hardware are
mounted on a platform together with a housing for replaceable
surface samples (see Figure 1A). Five different surfaces are used in
the tactile skill learning experiments (see Figure 1B): two regular-
grated plastic blocks with grating-spacings of 320 and 480 μm
(labeled ‘grating 320’ and ‘grating 480’, respectively), a paper sur-
face (labeled ‘paper’), and two different denim textiles (labeled
‘fine textile’ and ‘coarse textile’).

The robotic finger and MEMS sensor are handled by sepa-
rate control and readout modules. To achieve synchronization
between finger movements and tactile sensory readouts, we
implemented a real-time, combined sensory-motor driver in Java
and .NET, which can be easily interfaced from other program-
ming languages.

3. RESULTS
3.1. EXAMPLE: RESTRICTED CHAIN WALK
3.1.1. Setup
We illustrate the relevant aspects of the curiosity-driven learning
algorithm with a chain walk problem, an often-used toy-problem
in reinforcement learning (e.g., Sutton and Barto, 1998). In the
chain walk problem considered here, the learning agent is placed
in a simulated environment in which it can move left or right
between 20 adjacent states. Going left (right) at the left (right)
end of the chain leaves the agent in the same state. The struc-
ture of the environment is rather obvious when presented in the
manner of Figure 3; however, note that the agent does not know
beforehand which actions lead to which states. Instead, it has
to learn the effects of its actions by trying the actions one at a
time.

Learning is done over a number of episodes in which the agent
always starts in state 1 (left of each column in Figure 3), and
interacts with the environment for a maximum of 25 timesteps.
Limiting the chain walk task in this fashion forces the learning
agent to address the three machine learning challenges discussed
in section 2.1.2: (1) the agent can collect only a limited number
of samples before it is sent back to state 1; (2) states cannot be
equally sampled, as the agent needs to pass through states closer
to state 1 to reach more distant states; (3) larger parts of the input
space become available to both the RL and the abstractor as a
result of learning, requiring the adjustment of the modules to the
increasing input space.

In externally-rewarded chain walk tasks, reaching a particular
state or states usually yields a reward. Here, however, we let the
agent first explore the chain walk environment without provid-
ing any external reward. During this curiosity-driven exploration
phase, the sensory input to both the RL and the abstractor is the
current state. The abstractor divides the states seen thus far into a
number of regions, and the RL modules have to learn policies for
reaching each of those regions. In curious-exploration mode the
agent thus learns skills for reaching different parts of the environ-
ment. These skills can later be used in externally-rewarded tasks
where the agent is rewarded for reaching particular states. Instead
of retrying all primitive actions starting from state 1 each episode,
the agent can then use the learned skills to quickly reach different
regions in the environment.
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FIGURE 3 | Intrinsic rewards and module policies after 200 learning

episodes in the restricted chain walk environment. Top row: normalized
intrinsic reward for each module as a function of the reinforcement learning
state s′. Middle row: Q-tables for modules that can select only primitive
actions, with Q-values (grayscale) maximum values (boxes) and the

abstractor’s cluster boundaries (vertical lines). Bottom row: Q-tables for
modules that can select both primitive actions and inSkills. Black areas
in the Q-tables indicate state-action pairs that were never sampled
during learning. Each column of plots shows the results for an individual
module.

In real-world experiments many processes are going on that
affect the learning agent to a certain extent, but cannot all
be explicitly represented. The effect of these processes is often
referred to as noise. To test the robustness of the learning agent
against such noise, we incorporate some random processes in
both the environment and the abstractor. To simulate noise in
the environment, there is a 10% chance that a primitive action
has the reverse effect (going right instead of left, and v.v.), and
an additional 10% chance that a primitive has no effect at all
(the agent stays in the same state). Abstractor noise is intro-
duced by feeding a randomly selected state (instead of the cur-
rent state) as input to the abstractor with a 10% chance every
timestep.

The abstractor used for skill learning is a simple clustering
algorithm that equally divides the states seen thus far into k parts
y1, . . . , yk. The k corresponding inSkill modules Mj, . . . ,Mk

learn policies for reaching each of those parts. Rapid exploration
of the environment is facilitated by an explorer module. The over-
all behavior of the agent is driven by a progressor module, which
receives reward for the long-term inSkill change and a reward
of rx = 0.1 for selecting the explorer module. In this fashion,
the progressor switches to the explorer module once the stability
progress of the inSkills becomes smaller than 0.1. Each episode
starts with the execution of the progressor in state 1. The pro-
gressor selects to execute a module, which runs until it terminates
by itself, or for a maximum of τz steps in the environment. This
is repeated until τe environment steps (episode length) are exe-
cuted. At the end of an episode, the samples collected during that
episode are used to update the Markov model and the abstractor.
Next, the new reinforcement learning policies are generated for
each module from the model. A list of all parameter values used
for this experiment is given in Table 1.

3.1.2. Skill learning
Figure 4 shows an example of the intrinsic reward, the fastest
learning modules, and the changing cluster boundaries of the
abstractor during curious exploration with four inSkills. As
becomes clear from this figure, the agent starts by learning poli-
cies for reaching the first few abstractor states (episodes 1–10,
until marker (a)). Once it reaches state 15 at marker (a), the
agent spends several episodes (11–30, marker (a)–(b)) adjust-
ing modules 3 and 4, which are the modules that take the agent
to the rightmost part of the known environment. At episode 30
(marker (b)), the inSkill modules have stabilized (i.e., all inSkills’
intrinsic rewards < 0.1), and the agent executes the exploration
module. Using the learned skills for further exploration of the
environment, the exploration module quickly manages to reach
state 17 (episode 31, marker (b)). The abstractor adjusts its clus-
ter distribution to the new observations, and the inSkills have
to change their policies for reaching those clusters accordingly.
This process is repeated at episode 57 (marker (c)), where the
exploration policy is selected, and promptly takes the agent to the
rightmost state (state 20). Due to the change in the abstractor’s
distribution, the inSkills change their policies again until their
learning progress becomes less than 0.1 (episode 75, marker (d)),
and the exploring module takes over. This switching between
learning stable behaviors, and exploiting the stabilized behaviors
to explore all transitions in the environment goes on until the
environment is fully explored. After that, the agent continues to
explore while the inSkills remain stable, indicating that the limit
of the agent’s learning capabilities in the environment is reached.

An example of the final RL policies for the four-inSkill chain
walk task is plotted in Figure 3. The top row of this figure
shows an equal distribution of the inSkill reward regions over
the state space. The second row with the module’s policies in
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Table 1 | Experimental parameters and their values.

Symbol Description Chain walk Tactile platform

S state set {1, . . . , 20} {1, . . . , 36}, see Figure 8

A action set {left, right} see Figure 8

k number of clusters/inSkill modules {4, 7, 10} 5

ε reinforcement learning exploration rate 0.1 0.1

γ reinforcement learning discount 0.95 0.95

κ LSPI feature vector length 20 36

rx fixed exploration reward 0.1 0.2

τe episode length 25 25

τz maximum module timesteps 25 20

Markov model update weights

wd duration update weight 0.2 0.2

wf action failure penalty 0.1 0

wo pruning threshold 0.01 0.01

wp transition probability update weight 0.33 0.33

wq long-term reward update weight 0.2 0.2

wr short-term reward update weight 0.2 0.2

wz termination probability update weight 0.2 0.2

case only primitive actions are allowed, makes clear that the
inSkills correctly learn to go left (right) when they are to the
right (left) of the reward regions. The bottom row of Figure 3
shows the module’s policies in case both primitives and inSkills
could be selected as actions. Note that an inSkill cannot exe-
cute itself, the explorer or the progressor as part of its policy, as
indicated by the absence of Q-values in Figure 3. During initial
exploration, the selection of other modules happens quite often,
because the transition probabilities of primitive actions are not
yet sampled reliably. Once the transition probabilities are esti-
mated more accurately during subsequent exploration, primitive
actions become preferred over executing other modules, because
the on-policy ε-greedy behavior of the executed modules is less
efficient than the optimal policy. After the whole environment is
explored, some modules still select other inSkills in certain states.
For example, inSkill 1 selects inSkill 2 for going left in states 8–9
and 11–12, and inSkills 1 and 2 select inSkill 3 for going left in
states 17 and 18. Again, this is due to the low number of times
those state-action (state-module) pairs are sampled during the
200 learning episodes.

The explorer module (right column in Figure 3) learns poli-
cies for reaching the least-visited parts of the environment. This is
still reflected in the exploring module’s Q-values and reward after
learning. More reward is obtained in states further away from the
starting state 1, and Q-values are increasing with increasing dis-
tance from the starting state, because states further away from the
starting state are visited less frequently.

3.1.3. Skill exploitation
To demonstrate the usefulness of the learned skills in an
externally-rewarded chain walk task, we compare an agent with
trained inSkills against two other learning agents that have no
skill-learning capabilities (1) an agent with no additional mod-
ules and (2) an agent with a naive explorer module only. Note that

all agents still use an ε-greedy policy as additional means of
exploration. The externally-rewarded task for the agents is to
reach any of the states in the furthest region (states 16–20),
while starting from state 1. The main challenge is getting to this
region by fast and efficient exploration. Once the reward region is
reached for the first time, the RLs can usually extract the right pol-
icy instantly from the model. Each episode lasts only 25 timesteps,
and each module can also run for a maximum of 25 timesteps
(see Table 1). Together with the 20% chance of primitive failure
(10% in the opposite direction and 10% no change) this makes
the task particularly challenging. Even when the right policy is
learned, the RL might not always reach any of the goal states
during an episode due to action noise.

All experiments are repeated 500 times, and the results are
averaged. Figure 5 shows the average proportion of the total pos-
sible reward achieved as a function of the number of primitive
actions taken during learning over 40 episodes. As becomes clear
from this figure, the agent with no additional modules takes a
long time to reach the target region. Eventually, the ε-greedy
policy will take this agent to the rewarding states, but on aver-
age it takes much longer than the 40 training episodes displayed
here. The agent with the explorer module learns to reach the
rightmost region much faster, because its explorer module drives
it to previously unexplored regions. The agents with previously
learned inSkills quickly reach the target region by simply select-
ing one of the previously learned skills that leads there. Agents
with more inSkills collect the reward with less training exam-
ples because several modules lead to the rewarding region. Due
to the difficulty of the task (20% action failure, 10% abstractor
noise), it still takes these agents some episodes to reach the tar-
get region for the first time (e.g., less than half of the time for the
four-inSkill agent during the first episode). However, the agents
with previously-learned skills are still much faster in solving the
externally-rewarded task than the other agents.
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FIGURE 4 | Modular intrinsic reward (top), fastest learning modules

(middle) and the abstractor’s cluster boundaries (bottom) during

200 learning episodes in the chain walk environment. The vertical
dotted lines at markers (a–d) indicate distinctive learning events as
explained in section 3.1.2.

3.2. CURIOSITY-DRIVEN SKILL LEARNING ON THE ROBOTIC PLATFORM
3.2.1. Setup
The curiosity-driven learning algorithm is applied on the robotic
tactile platform to learn the movements that lead to different
kinds of tactile events. Here, tactile events are encoded as the
frequency spectra of MEMS sensor-readouts during 0.33 s fin-
ger movements. We filter the MEMS signals with a high-pass
filter with lower limit of 0.5 Hz because frequencies below this
threshold do not reflect any information about the type (or pres-
ence) of sensor-surface contact. Additionally, we filter the signals
with a 50 Hz notch filter to suppress power line noise. For vari-
ous reasons (e.g., location relative to the fingerprints, DragonSkin
becoming stuck inside the sensor after intensive use, general wear,
50 Hz distortions), some channels of the MEMS sensor gave less
consistent readings than others. The spectra of the three best per-
forming channels selected from visual inspection of the signals
are used in the following.

We expect that at least three different tactile events can be
distinguished with the robotic platform: (1) movement without
sensor-surface contact, which we call free movement, (2) tapping
on a surface, and (3) sliding over a surface. To check our expecta-
tions, we programmed the finger to perform 50 repetitions of each
of these movements in setups with five different surfaces. Figure 6

FIGURE 5 | Normalized external reward obtained by different learning

agents during training over 40 episodes (1000 primitive actions) in the

chain walk task.

shows the frequency spectra of the MEMS signals averaged over
50 scripted free, tapping and sliding movements over the surfaces.
Sliding movements generate spectra with a low-frequency peak
caused by changes in pressure during sliding, and some additional
spectral features at higher frequencies: grating 320 has a slight
increase in energy around 55 Hz, grating 480 has a peak around
30 Hz, paper has no additional spectral features, fine textile has a
peak around 25 Hz, and coarse textile has a peak around 12 Hz.
Movements without sensor surface contact (free) yield an almost
flat frequency spectrum, while tapping movements lead to spec-
tra with a low-frequency peak and no other significant spectral
features.

The frequency spectra are fed to an abstractor, whose task is
to cluster similar sensory events and represent them as discrete
tactile states. The abstractor used for distinguishing tactile events
is a k-means clustering algorithm (Lloyd, 1982) that partitions
the spectra into k clusters y1, . . . , yk, with k ∈ {3, 4, 5}. Although
k-means clustering is an unsupervised method, it is still possible
to calculate its classification accuracy on free, tapping and slid-
ing events by assigning each cluster to the tactile event with the
largest number of samples in that cluster. Figure 7 shows the clas-
sification accuracies on free, tapping and sliding events for each
surface individually. As becomes clear from this figure, the sig-
nals generated during free, tapping and sliding movements can
be distinguished from each other by the k-means clusterers with
reasonable accuracy (>90%). Using more than three (i.e., the
number of different finger movements) clusters helps to better
separate the different tactile events, usually because the difference
between data generated during different types of sliding move-
ments is larger than the difference between data collected from
free and tapping movements.

The goal of the inSkill modules is to learn behaviors that pro-
duce MEMS signals belonging to the corresponding abstractor
cluster. To learn finger behaviors, the RLs need some propri-
oceptive information from the finger, and needs to be able to
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FIGURE 6 | Average frequency spectra of MEMS recordings during 0.33 s free, tap and slide finger movements for five different surfaces.

execute finger movements. We use a representation that might
not be optimal for the learning algorithms, but greatly simplifies
the graphical presentation of the tactile skill learning. The RLs
are fed with the MCP and combined PDIP motor locations, dis-
cretized into six positions for each motor, yielding 36 states in
total as depicted in Figure 8. The RLs can select from a total of
eight primitive actions that set the torque of the MCP and the
tension of the PDIP as presented in Figure 8. Each motor prim-
itive lasts a fixed 0.33 s. Unlike the chain walk task, the adjacent
states might not be directly reachable from each other, for exam-
ple, closing the PDIP motor when it is half closed (third or fourth
state column in Figure 8) might fully close it at the end of the
transition (left state column in Figure 8). Note that many aspects
of the robot’s dynamics, such as the angles of the underactuated
PIP and DIP joints, the precise encoder values, finger movement
direction and velocity, cable tension in case of sensor-surface con-
tact, etc., are not captured in this representation, and instead need
to be absorbed by Markov model’s transition probabilities. More
complex representations using more state and action dimensions
might facilitate faster learning, but do not lend themselves for an
easily understandable presentation of tactile-skill learning.

The episodic learning scheme in the chain walk task is also
applied for the robotic platform. At the episode start the finger is
put in randomly selected encoder positions in the range (0.1–0.9)
(MCP) and (0.1–0.5) (PDIP), which approximately covers the
finger’s movement range (see Figure 8). We use slightly shorter
episode and module runtime lengths (20) than in the chain walk
task to speed up the experiments. A list of all parameter values
used for the robotic platform experiment is given in Table 1.

We run the curiosity-driven learning agent on the robotic
platform using five inSkill modules, a naive explorer and a skill
progressor. No external reward is provided to the agent yet. To
allow for adaptation of the k-means clusterer during exploration
and skill-learning, it is retrained every reinforcement learning
episode on a buffer of the last 500 observations. Consistency of the
cluster-means between each episode is enforced by initializing the
k-means training algorithm with the most recent cluster-means.

3.2.2. Skill learning
Figure 9 shows an example of the intrinsic reward of the inSkills
during curious exploration of the robotic platform with the
coarse textile. The intrinsic reward generated by the progress of
the inSkills decreases over time as the agent learns separate behav-
iors for generating different tactile events. Unlike in the chainwalk

FIGURE 7 | Clustering accuracies on MEMS frequency spectra during

0.33 s free, tap and slide finger movements for five different surfaces.

task, little switching back and forth between skill learning and
exploration occurs. Instead, the agent learns the inSkills without
calling the explorer for explicit exploration, because it can eas-
ily reach all parts of the environment. After about 65 episodes,
the inSkills stabilize, and the exploring modules takes over, with
a few short exceptions around episodes 75, 85, and 90. The
learning progress in the inSkills around these episodes is due to
the finger getting stuck (caused by faulty encoder readouts) in
a pose where the sensors generated many samples for a single
cluster. The curiosity-driven learning algorithm picks this up as
a potentially interesting event, and tries to learn behaviors that
reliably lead to such an event. However, after resetting the finger
at the end of the episode, the encoders return the correct values
again, and the learning agent gradually forgets about the deviating
event.

Figure 10 shows an example of the abstractor clusters and
corresponding RL policies after 100 episodes of curiosity-driven
learning in a setup with the coarse textile. Comparing the cluster-
means of the inSkills learned during curious exploration to the
frequency spectra of the scripted free, tapping and sliding move-
ment in Figure 6, it becomes clear that the abstractor has learned
a similar division of the MEMS frequency spectra. The almost flat
frequency spectrum for inSkill 2 is very similar to the frequency
spectrum of the scripted free movements, and the spectrum for
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FIGURE 8 | States and actions of the robotic finger during the

reinforcement learning tasks. Left: 6× 6 areas in normalized
encoder-position space represent the discrete reinforcement learning states.

One thousand continuous encoder values (gray dots) obtained from a random
policy indicate the finger’s movement range in the state space. Right: eight
motor actions set the PDIP tension and MCP torque.

FIGURE 9 | Intrinsic reward (top) and fastest learning modules

(bottom) during 100 learning episodes on the robotic platform with

the coarse textile.

inSkill 1 has a similar low-frequency peak as the spectrum of the
scripted tapping movement. The spectrum of inSkill 5 is most
similar to the sliding spectrum of the coarse textile in Figure 6,
but misses the characteristic peak around 12 Hz. The absence

of a clear peak for this inSkill is probably due to the combina-
tion of several sliding movements at different sensor angles and
hence, different sensor-surface speeds, smearing out the spec-
tral peaks over a larger range. The actual behaviors generated
by these inSkills and the Q-tables in Figure 10 indicate that the
corresponding finger movements are also learned; the Q-values
of inSkill 2 (free) have almost the same value throughout the
state space, with slightly higher values with the finger away from
the surface; inSkill 1 (tap) has two distinctive high Q-values
for opening and closing the PDIP joints with the MCP joint
halfway closed (middle-left in its Q-table); inSkill 5 (slide) obtains
high Q-values with the MCP joint almost closed and opening
and closing actions close to the surface (bottom-center in its
Q-table).

The specialization of inSkills 3 and 4 is less obvious from
Figure 10. However, the actual behavior of the inSkills indicated
that inSkill 3 developed into a module for learning slight elastic
deformations of the sensor packaging material while opening the
finger close to the surface (while not actually touching anything),
while inSkill 4 developed behavior that led to similar changes
during closing movements.

In setups with the other four surfaces, the skill repertoire
learned by the agent also contains distinct behaviors for free,
tapping and sliding movements. Apart from these skills, a range
of other consistent behaviors were learned, such as behaviors
for breaking sensor-surface contact, behaviors that generate
elastic deformation of the packaging material after sensor-surface
contact, separate skills for sliding forward and sliding backward,
hard and soft tapping, and tapping from different angles.

While the specialization of the skills changes during explo-
ration of the environment, the exploration phase often involves
the learning of skills in a particular order; first the agent learns
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FIGURE 10 | InSkill sensory clusters and policies after 100 learning

episodes in a setup with the coarse textile. Top row: frequency-spectra
cluster means of each inSkill. Bottom row: normalized maximum Q-values for

each module (grayscale) and best actions (arrows). States and actions are the
same as in Figure 8. Black areas without arrows indicate states that were
never sampled during learning.

to distinguish between free and tapping movements, and as a
result of improving its tapping skills, learns a sliding skill as well.
During the learning of reliable tapping, the finger makes many
movements with the sensor close to the surface. This leads to the
discovery of sliding movements, and the learning of the associated
sliding skill. The result of this sequence is visible in Figure 9,
where the sliding skill (inSkill 5) is the last module that is learned
(note that the final specialization happens for the inSkill with the
highest number (5) is a coincidence; the order of the clusters is
determined randomly).

3.2.3. Skill exploitation
After autonomous learning of skills on the robotic platform, we
test the usefulness of the learned skills in an externally-rewarded
surface-classification task. The task for the robotic finger is to fig-
ure out which surface sample is placed on the platform. Instead
of programming the finger to slide over the surface, the agent
has to learn which of its movements generate the most dis-
tinguishing information about the surface sample. We compare
the learning agent with previously learned tapping and sliding
skills against a learning agent without such previously-learned
skills.

To determine the different surface types in the externally-
rewarded task, we compare the frequency spectra recorded
during each finger movement with previously recorded fre-
quency spectra during sliding movements over the different
surfaces, tapping movements, and movements without sensor-
surface contact. An external reward of 1 is provided when the
recorded spectrum closely matched the frequency spectra of the
surface placed on the platform and an external reward of 0

otherwise. After each correct classification, the module ends,
and the finger is reset as in an episode start. Although the
reward function does not directly represent misclassifications
(i.e., the finger can continuously provide misclassification with-
out penalty) due to the limited amount of time in each trial, more
reward can be obtained if the finger makes correct classifications
sooner.

To give an indication of how difficult it is to distinguish the
different surfaces during scripted sliding movements, we pro-
vide the frequency spectra recorded during sliding movements as
well as during free and tapping movements to a 10-means clus-
terer, and compute the clustering accuracy as described before.
As shown in Figure 11, the overall accuracy of 92% for distin-
guishing the different surfaces from each other, is not as high
as the accuracy of distinguishing between free, tap and slide
movements for each surface individually (Figure 7), but still is
well above guess chance (14%). Figure 11 further indicates that
sliding movements over different surfaces can be accurately dis-
tinguished from each other, as well as from tapping and free
movements. However, it is more difficult to distinguish slid-
ing movements over paper from tapping movements, probably
because the smooth paper surface produces almost no distinctive
spectral features (compare also the frequency spectra for sliding
over paper and tapping in Figure 7). Using slightly different num-
bers of clusters (between 7 and 15) changed the accuracies with
only a few percentages.

During the externally-rewarded task, we keep training the
skills learned during the curious exploration phase for two rea-
sons: (1) skills used during autonomous exploration might be
useful in quickly solving an externally-specified task, but might
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FIGURE 11 | Confusion matrix for surface-type classification using a

10-means clusterer on frequency spectra recorded during pre-scripted

free, tapping and sliding movements. Background colors indicate the
number of samples assigned to each class. The number and percentage
of correctly (incorrectly) classified samples are indicated in black
(white) text.

not solve it directly. For example, a sliding skill might lead to sen-
sor data that distinguishes a sliding movement from a tapping
movement in a particular setup, but might not necessarily be good
for distinguishing between different surface types. Still, some kind
of sliding movement is probably required to distinguish between
different surface types. An existing sliding skill could be easily
adjusted to make slightly different movements that are better for
distinguishing between surface types. We therefore add the exter-
nal reward to inSkill modules that were active when the external
reward was received, and adjust the modules’ models and poli-
cies accordingly. (2) The dynamics of the robotic platform change
during operation for various reasons (e.g., cable stretch, changes
in ambient temperature and battery levels, general wear). While
this might require repeated calibration in traditional approaches,
the learning system used here is flexible enough to cope with those
changes.

Learning in the externally-rewarded tasks is done over
30 episodes and repeated three times for each of the five surfaces
described in section 2.2.3. Figure 12 shows the average reward
during training. As shown in this figure, agents that have previ-
ously learned inSkills learn to solve the externally-rewarded task
much faster than the agent without such previously learned skills.
The skills learned during the curious exploration phase are useful
for the externally-rewarded task, but often do not solve it directly.
Instead, the skills need to be (slightly) adjusted from skills that
distinguish free, tap and slide movements for individual surfaces,
into sliding movements that distinguish different surfaces. This
skill adjustment is reflected in the increasing reward of the agent
with previously-learned inSkills while it is learning to solve the
externally-rewarded task.

FIGURE 12 | External reward obtained by different learning agents

during training over 30 episodes in the surface-classification task.

4. DISCUSSION
We presented a curiosity-driven modular reinforcement learning
framework for autonomous learning of tactile skills on a tactile
robotic platform. The learning algorithm was able to differenti-
ate distinct tactile events, while simultaneously learning behaviors
for generating those tactile events. The tactile skills learned in
this fashion allowed for rapid learning of an externally-specified
surface classification task. Our results highlight two important
aspects of active tactile sensing: (1) exploratory tactile skills can
be learned through intrinsic motivation (2) using previously-
acquired tactile skills, an agent can learn which exploratory poli-
cies yield the most relevant tactile information about a presented
surface.

A key aspect of the developmental learning system presented
here is the ability to use previously-learned skills for reaching
novel parts of the environment, and to combine skills into more
complex composed skills. This bootstrapping of skills became
apparent in the chain walk task, where modules used other mod-
ules to reach parts of the environment in case the transition
probabilities of primitive actions were not accurately known.
Also, during curious exploration of the tactile platform, the agent
first learned to move the finger without sensor-surface contact,
then learned to tap the finger on the surface, and finally learned
the more difficult skill of sliding the finger over the surface while
maintaining sensor-surface contact. After learning these skills, the
agents kept exploring the environment in search for further things
to learn, while maintaining a stable division of skills learned
thus far.

The notion of active tactile sensing has recently been discussed
in Prescott et al. (2011), who considered different interpreta-
tions: (1) the energetic interpretation, in which the information-
relevant energy flow is from the sensor to the outer world
being sensed; (2) the kinetic interpretation, in which the sen-
sor touches rather than is being touched; and (3) the pre-
ferred interpretation by Prescott et al. (2011), which considers
active sensing systems as purposive and information-seeking,
involving control of the sensor apparatus in whatever manner
suits the task. Our work fits best with the third interpretation,
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because tactile information drives both the learning of tactile
exploratory skills and the categorization of tactile stimuli. Note,
however, that the exploratory dynamics are not directly used as
kinaesthetic information provided to the texture classifier, but
rather enter in the categorization chain as affecting sensor out-
puts. In future work, it would be interesting to study if and how
tactile and kinaesthetic information could be fused for motor
control and perceptual purposes during learning of exploratory
skills.

A potentially interesting comparison could be made between
the usage of sensory information during tactile exploration in
humans and in the biomimetic robotic setup. In our experiments
the algorithms were able to distinguish between different tex-
tures using the key spectral features of the sensor output. The
human neuronal mechanisms and contributions of the differ-
ent types of mechanoreceptors for distinguishing textural details
(Yoshioka et al., 2007) are still highly debated. No agreement
has been reached about the most informative mechanoreceptors
(i.e., among Merkel, Meissner, Ruffini, and Pacini corpuscles)
or about the coding strategy (e.g., temporal, spatial, spatiotem-
poral, intensity) used by humans to represent textural informa-
tion. Various studies aimed at demonstrating that the Pacinian
system encodes fine textures (Hollins et al., 2001; Bensmaïa
and Hollins, 2003; Bensmaia and Hollins, 2005). In particular,
Hollins and Risner (2000) supported the Katz’s duplex theory,
according to which fine textures are supposed to be mediated
by different classes of mechanoreceptors via vibrational cues for
fine forms and via spatial cues for coarse forms. Conversely,
Johnson and colleagues presented human psychophysical stud-
ies and complementary electrophysiological results with monkeys
supporting a unified peripheral neural mechanism for rough-
ness encoding of both coarse and fine stimuli, based on the
spatial variation in the firing rate of Slowly Adapting type I affer-
ents (SAI; Merkel) (Connor et al., 1990; Connor and Johnson,
1992; Blake et al., 1997; Yoshioka et al., 2001). Johansson and
Flanagan (2009) introduced a hypothetical model of tactile cod-
ing based on coincidence detection of neural events, which may
describe the neuronal mechanism along the human somatosen-
sory chain from tactile receptors, passing through cuneate neu-
rons up to the somatosensory cortex. What has been agreed
on is that humans can detect up to microtextures (LaMotte
and Srinivasan, 1991), and that the human perception of tex-
tures is severely degraded in case of lack of tangential motion
between the fingertip and the tactile stimuli (Morley et al.,
1983; Gardner and Palmer, 1989; Radwin et al., 1993; Jones
and Lederman, 2006). This consolidated finding fits well the
results presented in the current work: like human beings, the
robotic finger also developed skills for sliding motions tangential
to the tactile stimuli while seeking for information-rich experi-
ences.

Recently, Fishel and Loeb (2012) obtained impressive tex-
ture classification accuracies on a large range of different tex-
tures, using an algorithm that selects the most discriminative
exploratory motions from a set of tangential sliding move-
ments with different forces and velocities. That variations in

high-level motion parameters like force and velocity are impor-
tant for obtaining the most distinctive information is, how-
ever, not inferred by their learning algorithm. Our approach
first learns how to make exploratory movements without any
teacher feedback and without any knowledge of high-level param-
eters such as sensor-surface force and velocity. As in Fishel and
Loeb (2012), our algorithm then learns to select exploratory
movements that yield the most distinctive information about
the presented textures. Whereas Fishel and Loeb (2012) learn
to select pre-scripted exploratory movements, our algorithm
can still refine the previously-learned exploratory movements
during the learning of the supervised texture classification
task.

A further comparison could be made between the exploratory
behaviors learned by the biomimetic platform, and the learning of
tactile exploratory procedures by human beings. There is a large
body of literature about the exploratory procedures employed by
humans when investigating an objects, including texture (e.g.,
Lederman and Klatzky, 2009, and references therein). Tapping
and sliding tangentially over a surface are both used by human
beings and learned by the robotic platform when gathering tactile
information. Apart from using or selecting existing exploratory
procedures it could also be interesting to study similarities in how
these exploratory procedures are learned in human beings in the
first place. The constraints of the biomimetic robotic finger make
tapping easier to learn than sliding. Consequently, sliding is often
learned after and as a result of tapping. Similar constraints in
human beings might lead the same developmental trend (from
tapping to sliding).

Although the robotic finger has just two controllable degrees of
freedom, learning skills in an autonomous fashion already proved
to be beneficial during learning of an additional externally-
specified task. Moreover, the learning approach allowed for
overcoming challenges in traditional engineered solutions to
robotic control, such as the need of constant recalibration of the
robotic platform to changing circumstances, and the absence of
joint-angle sensors in the underactuated joints. We expect that
autonomous acquisition of skills in robots will become increas-
ingly important for autonomous learning in robots with more
degrees of freedom and sensory capabilities.
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Glossary of symbols.

A action set

A LSPI update matrix

a action

b LSPI update vector

c transition count in Markov model

D set of samples

d transition duration

e base of natural logarithm

i index

j module index

k number of clusters / inSkill modules

M reinforcement learning module

m Markov model value

n number of samples

o Markov model pruning threshold

Q reinforcement learning state-action value

p transition probability

q long-term reward

r short-term reward

s, s′ state

S state set

t time

v observed value

w Markov model update weight

y abstractor output

z termination probability

� difference operator

ε reinforcement learning exploration rate

γ reinforcement learning discount

κ LSPI feature vector length

π reinforcement learning policy

φ LSPI feature vector

ω LSPI weight

τe episode length

τz maximum module timesteps

Glossary of acronyms.

DC direct current

DIP distal interphalangeal

exSkill externally-rewarded skill

inSkill intrinsically-motivated skill

MCP metacarpophalangeal

MEMS microelectromechanical system

PDIP combined PIP and DIP joints

PIP proximal interphalangeal

RL reinforcement learner
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Humans have been shown to be good at using active touch to perceive subtle differences
in compliance. They tend to use highly stereotypical exploratory strategies, such as
applying normal force to a surface. We developed similar exploratory and perceptual
algorithms for a mechatronic robotic system (Barrett arm/hand system) equipped with
liquid-filled, biomimetic tactile sensors (BioTac® from SynTouch LLC). The distribution
of force on the fingertip was measured by the electrical resistance of the conductive
liquid trapped between the elastomeric skin and a cluster of four electrodes on the
flat fingertip surface of the rigid core of the BioTac. These signals provided closed-loop
control of exploratory movements, while the distribution of skin deformations, measured
by more lateral electrodes and by the hydraulic pressure, were used to estimate material
properties of objects. With this control algorithm, the robot plus tactile sensor was able to
discriminate the relative compliance of various rubber samples.

Keywords: compliance discrimination, exploratory movements, haptic perception, Barrett robot, biomimetic

tactile sensor (BioTac®), haptic robotics

INTRODUCTION
Humans interact with compliant objects to judge ripeness of
fruits, the air pressure in bicycle tires or the quality of a mattress.
Expert bakers judge the quality of flour by evaluating physical
firmness or toughness of dough (Katz, 1937). During breast or
prostate examinations, healthcare practitioners use their hands
to locate and characterize a hard lump in soft tissue. Unlike
visual features such as size and shape, compliance can only be
appreciated via active or passive touch.

It is essential for social and personal assistive robots and pros-
thetic hands (a form of telerobot) to be able to perceive material
properties such as compliance to handle household objects. The
ability to interact with fragile objects is necessary particularly if
such systems are designed to interact physically with humans.
Compliance perception could also be beneficial to robot-assisted,
minimally invasive surgeries by detecting a hidden tumor in
an organ or a calcified artery in heart tissue (Yamamoto et al.,
2009). A variety of tactile sensors have been designed to solve the
tactile sensing problems in robotic manipulation and medicine
(Webster, 1988), but their practical use is limited by the hos-
tile environments to which robotic and prosthetic hands are
typically exposed. The BioTac® is a robust and easy to repair
tactile sensor that is capable of detecting point of contact, nor-
mal/tangential contact forces, and object spatial properties with
impedance sensing electrodes (Wettels et al., 2008a; Wettels and
Loeb, 2011), micro-vibrations associated with slip and textures
through a hydro-acoustic pressure sensor (Fishel et al., 2008), and
thermal fluxes with a thermistor (Lin et al., 2009).

Previous studies of compliance discrimination by robots used
a combination of tactile and force sensors. (Takamuku et al.,
2007) built a tendon-driven robot hand covered with strain
gauges and a piezoelectric polyvinylidene fluoride (PVDF) skin.

By performing squeezing and tapping over objects with different
material properties, the strain gauges in this tactile sensor enabled
the discrimination of hardness of different materials. Campos
and Bajcsy (1991) proposed a robotic haptic system architec-
ture that performed haptic exploratory procedures based on
Lederman and Klatzky (1987) psychophysical studies of human
performance. Hardness of objects were determined by measuring
the force required to produce a given displacement. Both studies
focused on measuring contact force and indentation displace-
ment to discriminate object hardness or compliance. An adaptive
force/position control algorithm was tested on an industrial robot
to maintain force along the normal direction to the surface while
moving in tangential directions on a rubber ball with 10 cm radius
and 5000 N/m stiffness (Villani et al., 2000). In this paper, we
present the results of using information about distributed defor-
mation of the elastic skin of our tactile senor to discriminate
compliance, a strategy that appears to be similar to that used by
humans. This is made possible by using sensory feedback from
a cluster of impedance sensing electrodes in the BioTac that are
responsive to distributed forces. With these electrodes we were
able to maintain a consistent orientation while applying normal
forces to the surface of the object.

Subjective hardness/softness discrimination has been studied
in psychophysical studies. Srinivasan and LaMotte (1995) showed
that humans are efficient at discriminating subtle differences in
softness under both active touch and passive touch with only
cutaneous sensation but they are unable to discriminate even
large differences during local cutaneous anesthesia. This suggests
that tactile sensory information independent of proprioceptive
information is necessary for discriminating softness of objects
with deformable surface. Their studies also show that random-
izing maximum force levels and indentation velocity in passive
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touch does not seem to affect sensitivity. This indicates that com-
pliance discrimination can be done without fine control of these
movements. Instead, we propose that spatial distribution of skin
could be the cue for compliance discrimination. Peine (1999)
developed a taxonomy that classifies the surgeons’ finger motion
during palpation procedures. They found that surgeons apply
various normal force with no lateral motion to sense the stiff-
ness of body tissues. Lateral motion after applying heavy pressure
was found to enhance the ability to detect hard lumps in soft
tissue.

To acquire information about object properties, humans tend
to perform stereotyped exploratory movements Lederman and
Klatzky, 1987. The exploratory movements to detect hardness are
pressing and squeezing (Lederman and Klatzky, 1990). We have
developed a haptic robot platform with a Barrett hand-wrist-
arm system whose three fingers have been equipped with novel
BioTac® multimodal tactile sensors. In this paper, we present
algorithms for the control of human-like exploratory movements
for pressing on and characterizing objects with various hardnesses
(durometer values). When robot gradually presses its fingertip
into rubber samples with compliant surfaces, it uses the sen-
sory feedback from the tactile sensor (BioTac) to control both
normal and tangential contact forces and to adjust the orien-
tation of its fingertip to account for the potentially unknown
orientation of contact surfaces and internal discontinuities such
as buried lumps. The distributed deformation sensed by the
BioTac can be used to estimate the compliance of the contact
surface.

MATERIALS AND METHODS
We present data from initial experiments with flat objects made
from materials with varying hardness to demonstrate the simulta-
neous use of multimodal tactile sensor data to control exploratory
movements and to interpret their results.

EXPERIMENT SETUP
Overview of the biomimetic tactile sensor (BioTac)
The BioTac (Figure 1A) consists of a rigid core housing all elec-
tronics and sensory components surrounded by an elastic skin
that is inflated with an incompressible and conductive fluid.
When the skin contacts an object, this fluid is displaced, resulting
in distributed impedance changes in the electrode array on the
surface of the rigid core. The impedance of each electrode tends
to be dominated by the thickness of the fluid layer between the
electrode and the immediately overlying skin. The skin has a pat-
tern of asperities on its inner layer that gradually compress with
increasing normal force, preventing object saturation (Wettels
et al., 2008b). A MEMS pressure transducer measures hydro-
static pressure, which increases depending on the distribution of
deformation in the elastic skin.

Similar to the human fingertip, the BioTac sensors are sen-
sitive to tangential as well as normal forces. When performing
a compliance movement it is desirable to apply forces normally
and symmetrically to the object. For the haptic robot, this means
servoing its end-effectors in the pitch and roll directions to ori-
ent a flat portion of the core of the BioTac that defines a local
coordinate frame (Figure 1B). The sensory feedback is provided
by four adjacent electrodes on this flat region whose impedance
depends on compression of the skin against the electrode surface.
These four adjacent electrodes are labeled electrode 7, 8, 9, and
10 on the electrode array map (Figure 1C). The pair of electrodes
along the x-direction (8 and 9) and the pair of electrodes along the
y-direction (7 and 10) are used for servocontrol of the pitch and
roll, respectively, of the robotic fingertip. When the tactile sen-
sor detects differences between these pairs of electrodes the error
is corrected by adjusting the pitch or roll of the fingertip with
the robot. The total contact force during indentation is estimated
from the sum of impedance changes on all four electrodes. When
pressing into a compliant object, the object has a tendency to wrap

FIGURE 1 | (A) Schematic diagram of the BioTac biomimetic tactile sensor.
Sensing modalities include measurement of normal and shear forces
detected by changes in impedance between electrodes as the conductive
fluid pathways deform, slip-related microvibrations that propagate through
the skin and fluid and are detected by the hydro-acoustic pressure sensor,

and thermal properties as detected by a thermistor capable of detecting heat
flow between the preheated core and contacted objects; (B) Orientations on
BioTAC: the finger local coordinate frame has its origin in the center of the
two electrode pairs and is coplanar with the flat surface of the core;
(C) Electrode array map.
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around the finger and the resulting forces can be measured by
lateral electrodes not on the flat surface (such as 17). Comparing
this change with the relative magnitude of impedance changes
in the central four electrodes can yield substantial information
about the compliance of the object. Additional information from
the fluid pressure can also be used to characterize these changes.
The sensor signals that provide information about compliance
depend also on the curvature of the surface of the object, which
must be estimated simultaneously from the complete temporal
profiles of all sensor signals (Wettels and Loeb, 2011).

Testing materials
The levels of compliance for objects used in this experiment are
classified by their durometers. The durometer is measured by the
indentation depth into a material created by a given force on a
standardized indenter with specific diameter. There are several
scales of durometer depending on the diameter and configuration
of the indenter, the spring forces applied on the tested materials.
The samples in this experiment were all one inch thick and made
from Neoprene rubber (50 Shore A) and polyurethane rubber
(30 Shore A, 50 Shore 00, and 30 Shore OO), going from hard to
soft.

Experimental procedure
The experiments were conducted on the seven DOF Barrett WAM
robot arm and four DOF Barrett Hand BH-280 equipped with the
BioTac. In each trial, the robot pressed one digit against a rub-
ber sample in an unknown orientation and position. The robot
controller had no prior knowledge of the orientation of the sur-
face; instead it used tactile sensory feedback to identify a contact
surface and adjust its finger orientation while pressing onto the
compliant surface (Figure 2A).

ROBOT EXPLORATORY MOVEMENTS
The exploratory movement can be divided into three phases:
(1) Reach to an object surface by controlling position in Cartesian
coordinate system with smooth path movement. The desired
position is either provided a priori or estimated by machine
vision. (2) Maintain normal contact and orientation with the
center of the fingertip by maintaining a symmetrical distribu-
tion of force on a cluster of tactile sensors. (3) Controlling the
exploratory movement, which consists of pressing the finger-
tip gradually into the contact surface while maintaining normal
orientation of the fingertip in the pitch and roll directions.

Online orientation control using tactile sensor feedback
In order to maintain the orientation of the flat portion of the
sensor while gradually pressing into a compliant surface, the
desired orientation trajectory is generated by feedback signals
on the two pairs of electrodes. These differential signals are
used to incrementally increase or decrease current pitch and
roll angles (βc , γc) with very small increments (�β, �γ) in the
finger local coordinates, respectively. From the new local roll-
pitch angles (β, γ) in the finger local coordinate frame (shown
in Figure 1B), the corresponding finger local rotation matrix
Rlocal can be derived and translated into rotation matrix in the
robot base coordinates B

F Rfinger by premultiplying local rotation

matrix with matrix B
F R which is the forward kinematic from fin-

gertip to robot base. Instead of using roll-pitch-yaw angles for
orientation control directly, a unit quaternion representation of
orientation [η, ε1, ε2, ε3] is derived from the new rotation matrix,
because of its singularities-free property (Yuan, 1988). This online
orientation generation algorithm is shown in a pseudo-code,
(Table 1).

FIGURE 2 | (A) Barrett with BioTac pressing a compliant surface; (B) Force/position control diagram.
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Table 1 | Algorithm for online orientation generation using tactile

sensor feedback.

Algorithm online orientation generation using tactile sensor feedback(
E8, E9, E7, E10

)
IF E8 > E9 THEN

β = βc +�β

ELSEIF E8 < E9 THEN

β = βc −�β

ENDIF

IF E7 > E10 THEN

γ = γc +�γ

ELSEIF E7 < E10 THEN

γ = γc −�γ

ENDIF

Rlocal = RotationMatrix (β, γ)

B
F Rfinger = B

F R ∗ Rlocal

[η, ε1, ε2, ε3] = Quaternions(B
F Rfinger)

The scalar η part and the vector part (ε1, ε2, ε3) in a unit
quaternion representation fulfill η2 + ε2

1 + ε2
2 + ε2

3 = 1.
A velocity-based orientation control with quaternion feedback

is written below:
ωr = ωd − Koeo (1)

where ωd is the desired angular velocities, Ko is diagonal gain
matrix and eo is the orientation error which is formulated using
the unit quaternion (Yuan, 1988) as:

eo = δε = ηdε− ηεd + [εd × ε] (2)

where [εd×] =
⎡
⎣ 0 −ε3d ε2d

ε3d 0 −ε1d

−ε2d ε1d 0

⎤
⎦ and [η, ε1, ε2, ε3] is

the current orientation and [η, ε1d, ε2d, ε3d] is the desired
orientation.

Robot position control
The desired positions and orientation generated by the online
trajectory generation using tactile sensory feedback is achieved
by a velocity-based operational space controller together with an
inverse dynamic law and PD feedback error compensation in joint
space (Nakanishi et al., 2008). Inverse dynamics control enables
low PD feedback gains for compliant control while ensuring high
tracking performances. The control law is written as:

τarm, p = Mq̈d + h+ Kp
(

qd − q
)+ Kd

(
q̇d − q̇

)
(3)

where τarm, p is computed vector of torques to track desired joint
angles qd with measured current joint angles q, M is rigid-body
inertia matrix of the arm, q̇d is the vector of desired joint velocity
shown as:

q̇d = J+ (ẋd + Kx (xd − x))+ Kpost(I− J+J)(qpost − q) (4)

where x and xd are the measured and desired finger position
and orientation, h is the vector of Coriolis, centrifugal, and

gravitational forces, Kp, Kd, Kx, and Kpost are diagonal gain
matrices. J is the end-effector Jacobian, J+ denotes the pseudo-
inverse of Jacobian and qpost is the vector of default posture opti-
mized in the nullspace of the end-effector motion. The desired
joint acceleration q̈d and desired joint position qd are obtained
by numerical differentiation and integration of the desired
velocity q̇d.

Robot force control
Because the robot will press its end-effector onto compliant sur-
faces, external contact forces need to be taken into account. The
external contact forces are obtained from the three force vectors
on the BioTac extracted from impedance changes. They are used
to compute torques in the joint space to account for the external
contact forces by premultiplying them with Jacobian transpose,
shown in Equation 5. The tracking of desired contact forces is
achieved with a PI controller (Pastor et al., 2011)

τarm, f = −JT(Farm_des − Farm) + KI

t∫
t−�t

(Farm_des − Farm)dt

(5)

where Farm_des is desired forces at the end-effector, Farm is the
measured forces interpreted from BioTac, KI is a diagonal posi-
tive definite gain matrix and �t is the time-window during which
the force error is integrated. The integral controller will compen-
sate for steady-state errors during contact. An overview of the
presented control architecture is shown in Figure 2B.

NORMAL AND TANGENTIAL FORCE EXTRACTION
During contact with an object, external forces deform the skin
and fluid path around the impedance sensing electrodes. This
deformation results in a distributed pattern of impedance changes
on the electrodes. Previous studies have shown that both normal
and tangential forces can be characterized from the impedance
changes on the electrodes using machine learning techniques
(Wettels et al., 2009; Wettels and Loeb, 2011). Here we present a
simpler and more robust analytical algorithm to estimate normal
and tangential forces.

The BioTac contains an array of 19 impedance sensing elec-
trodes distributed over the surface of the core, which has a coordi-
nate frame aligned with its long axis (Figure 3). Each impedance
sensing electrode was determined to have the highest sensitivity to
forces applied normally to its surface. The normal vectors to each
of these electrodes in 3-axis coordinate space can be weighted
with the change in impedance of these electrodes to determine an
estimate of tri-axial force. We calculate the x, y and z force vectors
from these electrodes with the following equation:

⎡
⎣ Fx

Fy

Fz

⎤
⎦ =

⎡
⎣ Sx 0 0

0 Sy 0
0 0 Sz

⎤
⎦×

⎡
⎣N1, x · · · N19, x

N1, y · · · N19, y

N1, z · · · N19, z

⎤
⎦

×
⎛
⎝
⎡
⎣ E1

· · ·
E19

⎤
⎦−

⎡
⎣ E1, rest

· · ·
E19, rest

⎤
⎦
⎞
⎠
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FIGURE 3 | Coordinate frame of BioTAC: each impedance sensing electrode has a specific orientation in the BioTac coordinate frame.

where [Fx, Fy, Fz] is the three dimensional force vectors on the
BioTac, [E1 · · · E19] and [E1, rest · · · E19, rest] are the measured
impedance changes and resting impedance values on the BioTac,⎡
⎣N1, x · · · N19, x

N1, y · · · N19, y

N1, z · · · N19, z

⎤
⎦ is a matrix in which each column is calcu-

lated normal vector for each impedance sensing electrode surface
from the geometry of the rigid core, the Sx, Sy and Sz are scal-
ing values for x-y-z three dimensional vectors to transform these
arbitrary units into engineering units (N).

RESULTS
FORCE EXTRACTION
The scaling factor for each of the three dimensional estimated
force vectors from the BioTac were calibrated on a 6-axis
force plate (HE6x6-16, ATMI). We found that using the above-
mentioned normal/tangential force calibration method was com-
putationally efficient and achieved a low root-mean-squared
(rms) error that exceeded performance of the neural network
and machine learning techniques described in (Wettels et al.,
2009; Wettels and Loeb, 2011). Figure 4 shows the actual forces
(blue) measured from force plate and the predicted force vectors
(red) extracted from BioTac by manually pressing and sliding the
BioTac on the force plate. While pressing and sliding the BioTac,
the flat portion of the BioTac was kept parallel with the surface
of the force plate, similar to the orientation goal of the servocon-
troller for the exploratory poking movements. The rms errors for
these sample movements were less than 10% of the applied forces
in each axis.

PRESSING WITH ORIENTATION UNCERTAINTY
Typical behavior of the system poking a surface with unknown
orientation is illustrated in Figure 5. The top two plots show the
impedances of the pairs of electrodes along x and y direction (E8
vs. E9, E7 vs. E10) on the flat portion of the core of the BioTac,
which is the desired center of contact. The differential signals
between those two pairs of electrodes are also displayed in the two
middle plots in Figure 5. After the initial contact (around 0.5–1 s),

FIGURE 4 | Force measured on force plate (blue) and measured from

the BioTac (red) for pokes with various tangential components.

the robot gradually pressed the BioTac into the compliant sur-
face. A small asymmetry in the x-direction pair triggered the small
correction to the roll angle that occurred at about 2–2.5 s and a
larger correction at 4.5–5 s, shown in the bottom left plot. A larger
asymmetry in the y-direction pair triggered a large pitch angle
correction at 4–6 s, shown in the bottom right plot. The correc-
tion to pitch angle was relatively slow because it involved most of
the proximal joints of the Barrett arm and it actually resulted in
the second correction to the roll angle.

While the robot performed a pressing behavior, its contact
force on the compliant surface was controlled by using tangential
and normal force feedback extracted from the impedance elec-
trode array on the BioTac. Figure 6 shows that the robot pressed
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FIGURE 5 | Typical BioTac impedance sensor feedback on the point of contact and robot orientation behavior obtained from pressing on a compliant

surface.

FIGURE 6 | Typical BioTac tangential force (X force) and normal force

(Z force) feedback obtained from pushing on a compliant surface.

10 N on the compliant surface and kept its lateral tangential force
(X Force) close to zero. The axial tangential force of 4 N is what
would be expected given the 30◦ tilt of the flat portion of the fin-
gertip with respect to the long axis of the BioTac. Stretch between
the BioTac elastic skin and the compliant rubber sample caused by
two rolling movements (around 2–2.5 s and 4.5–5 s in Figure 5)
created a positive tangential force on the sensor, but the force con-
troller gradually decreased the tangential force to close to zero by
the end of the movements shown in Figure 6.

COMPLIANCE DISCRIMINATION
Force and displacement
Previous experiments showed that force and indentation dis-
placement can be used in compliance discrimination when

actively palpating with a tool (LaMotte, 2000). Thus, the ratio
between force and indentation displacement can also provide
information for the perception of compliance, especially for com-
pliant objects covered with non-deformable surfaces, such as
piano keys. During our experiment, the robot is controlled to
apply 10 N in the normal direction onto five objects, consist-
ing of an aluminum plate and four progressively softer rubber
samples with durometer Shore 50A, Shore 30A, Shore 50OO,
and Shore 30OO. Shore 50A is as hard as a pencil eraser and
shore 30OO is a little bit softer than a racquet ball. When the
robot was actively pressing the BioTac onto five objects with
various hardnesses, normal forces and indentation displacement
were measured from BioTac and robot joint encoders, respec-
tively, as shown in Figures 7 and 8. The initial rates of rise of
force were similar for all materials, but it took the robot longer
to reach 10 N on soft materials 50OO and 30OO because it
needed to constantly adjust its fingertip orientation to keep its
fingertip orthogonal to the surface of soft materials. In Figure 8,
we observe that the softer materials have more indentation
displacement than the harder materials. The indentation dis-
placement was measured by the position sensors in the robot
actuators. It reflects the sum of indentation of the skin of the
BioTac plus indentation of the object being probed plus stretch-
ing of the fine stainless-steel cables that link the motors to the
joints. Figure 9 shows that indentation displacement trajecto-
ries were similar for all materials up to about 6 mm and 1 N,
which were due to displacement of the elastic skin on the BioTac
and the initial stretching on the finger joints, which explain a
nearly linear relationship between force and displacement. From
6 mm to 12 mm, indentation displacement trajectories diverged
as a result of the deformation of rubber samples with differ-
ent compliance properties and stretching of cables in the robot.
At about 15 mm and 10 N, they reconverged because they were
then dominated by the stretching of the cables in the robot

Frontiers in Neurorobotics www.frontiersin.org July 2012 | Volume 6 | Article 7 | 56

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Su et al. Compliance discrimination with tactile feedback

FIGURE 7 | Measured normal force from BioTac: five objects with five

different hardness are tested with Barrett robot equipped with BioTac.

FIGURE 8 | Measured indentation displacement from Barrett joint

encoder.

wrist subjected to large external forces from the compressed
samples.

Deformation
In light of the complex combination of factors that contributes
to apparent indentation displacement of the fingertip, it would
be desirable to use temporal variations of average pressure and
spatio-temporal variations of distributed skin deformation, as
proposed for human discrimination of hardness by Srinivasan
and LaMotte (1995). Both types of tactile information are avail-
able from the BioTac. The MEMS pressure transducer measures
the average pressure of the fluid inside the space between the
elastic skin and rigid core. The spatio-temporal variations of dis-
tributed deformation are provided by the impedance electrode
array, especially from lateral electrodes adjacent to the central four
electrodes used for controlling the applied force.

When the BioTac was pressed against hard materials (e.g., the
aluminum plate and shore A 50 and shore A 30 rubber samples),

FIGURE 9 | Force vs. indentation displacement.

FIGURE 10 | Measured average pressure from MEMS pressure

transducer on BioTac: the rate of average pressure and saturation

pressure are used to discriminate object compliance.

fluid pressure plateaued or actually declined after normal force
reached 2.87 N (around 2 s in Figure 10). This saturation is
caused by the rigid object pushing the elastic skin against the
rigid core on BioTac. The first part of the increasing fluid pres-
sure reflects the compliance of the BioTac skin and fluid pressure,
which grows nonlinearly after the skin contacts the core. The
curves diverge before that occurs if and when the object compli-
ance exceeds the BioTac compliance. As shown in Figure 9 (1–2 s),
harder objects created a higher rate of average pressure changes
in the BioTac. When BioTac pressed objects with softer surface,
the soft surface not only pushed the elastic skin against the rigid
core more gradually, but also progressively enveloped the side of
the BioTac fingertip. This created higher saturation pressures for
softer surfaces (around 2–3 s in Figure 10).

Frontiers in Neurorobotics www.frontiersin.org July 2012 | Volume 6 | Article 7 | 57

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Su et al. Compliance discrimination with tactile feedback

FIGURE 11 | Typical BioTac lateral impedance electrode feedback

from pressing on different compliant surfaces.

The tendency of soft surfaces to envelop the fingertip as they
are deformed can be seen also in the impedances of more lateral
electrodes such as #17 (Figure 11). The BioTac actually measures
the current admitted into the electrode from a test pulse applied
to various reference electrodes distributed in the fingertip, so a
decrease in measured voltage from an initial value reflects an
increase in electrode impedance. For the lateral electrode #17, the
impedance initially increased similarly for all materials as increas-
ing force was applied at the fingertip and the skin deformed, but
the curves diverged as the more compliant materials deformed
and enveloped the skin further from the centroid of contact. The
reorientation movement that the robot made to correct pitch to
maintain normal force (4.5–5 s in Figure 5) resulted in the tran-
sients in lateral electrode impedance at that time (Figure 11),
which were particularly pronounced for the hard materials. After
the robot corrected its orientation and reached its maximum
contact force, the resting voltage on the lateral electrode reflected
the compliance of the object.

DISCUSSION
The tactile sensors available in the BioTac have properties sim-
ilar to those in human fingertips and can be used to measure
compliance of objects, but only if there is accurate control of the
exploratory movement. Those same sensors can be used to con-
trol the exploratory movements, using tactile feedback control
that may also be similar to what humans use when deciding how
to palpate an unknown object. The preliminary results presented
here are a first step in designing algorithms that can enable robots
to produce the range of exploratory movements and the percepts
that humans achieve thereby.

In this paper, the BioTac was controlled to explore flat com-
pliant objects. Compliant objects that have curved surfaces
or inhomogeneities in material properties will generate differ-
ent responses in the sensors, whose interpretation may require
additional exploratory movements. The tactile-based control of
exploratory movements presented here should enable systematic
exploration of such unknown objects regardless of their location
or orientation with respect to the robot hand.

Systematic datasets need to be generated by poking the BioTac
into objects with various curvatures and various compliances
to develop a more complete perceptual algorithm. In previous
studies, the impedance sensing electrodes of the BioTac could
be used to make coarse determinations of radius of curva-
ture of rigid objects (Wettels and Loeb, 2011). Humans tend
to follow the contour of objects to perceive their precise shapes
(Lederman and Klatzky, 1990). Palpation of hard objects buried
in soft tissues probably reflects a combination of tactile-driven
movements to determine the orientation of hard surfaces and
kinesthesia to keep track of the location and size of those sur-
faces (Peine, 1999). In the future, we will combine pressing and
contour-following exploratory movements to facilitate the per-
ception of both compliance and shape of objects. Eventually,
tactile information from exploratory movements must be
fused with machine vision to permit location, characterization,
identification, and dexterous manipulation of objects in the
environment.
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Humans can detect and discriminate between fine variations of surface roughness using
active touch. It is hitherto believed that roughness perception is mediated mostly by
cutaneous and subcutaneous afferents located in the fingertips. However, recent findings
have shown that following abolishment of cutaneous afferences resulting from trauma
or pharmacological intervention, the ability of subjects to discriminate between textures
roughness was not significantly altered. These findings suggest that the somatosensory
system is able to collect textural information from other sources than fingertip afference.
It follows that signals resulting of the interaction of a finger with a rough surface must
be transmitted to stimulate receptor populations in regions far away from the contact.
This transmission was characterized by measuring in the wrist vibrations originating at the
fingertip and thus propagating through the finger, the hand and the wrist during active
exploration of textured surfaces. The spectral analysis of the vibrations taking place in the
forearm tissues revealed regularities that were correlated with the scanned surface and
the speed of exploration. In the case of periodic textures, the vibration signal contained
a fundamental frequency component corresponding to the finger velocity divided by the
spatial period of the stimulus. This regularity was found for a wide range of textural length
scales and scanning velocities. For non-periodic textures, the spectrum of the vibration
did not contain obvious features that would enable discrimination between the different
stimuli. However, for both periodic and non-periodic stimuli, the intensity of the vibrations
could be related to the microgeometry of the scanned surfaces.

Keywords: texture, roughness, vibration, touch

INTRODUCTION
Humans have the ability to detect fine features of textured sur-
faces and to discriminate between them using direct, active finger
touch (Katz, 1925/1989; Sathian et al., 1989; Connor et al., 1990;
Libouton et al., 2010). During this exploration mode, the tactile
roughness discrimination is believed to be mediated through two
combined mechanisms. Firstly, a spatial code represents texture
information spatially, through the distributed activation of popu-
lations of adjacent mechanoreceptors. This channel is thought to
rely on slowly adapting (SA1) mechanoreceptors (Connor et al.,
1990 and Connor and Johnson, 1992) and the density of the
mechanoreceptors naturally limits its resolution. Secondly, a tem-
poral code represents the time-dependent variations of the finger-
surface interaction due to their relative movement. Depending on
the temporal frequency of the stimulation, either rapidly adapt-
ing (RA) or Pacinian (PC) systems are thought to encode these
vibrations (Muniak et al., 2007). Textured surfaces can also be felt
indirectly, namely by actively exploring a surface through a probe
being held in the hand (indirect touch) (Klatzky and Lederman,
1999; Yoshioka et al., 2007). During this second scanning mode,
roughness is necessarily encoded through vibrations transmitted
through the probe to receptors in the hand.

Yoshioka et al. (2007) compared the roughness discrimina-
tion during direct and indirect touch exploration of various
textured surfaces encountered in daily life (e.g., corduroy, paper,
and rubber). The authors found that (1) the roughness dis-
crimination was similar in both scanning modes and (2) the
perceived roughness was correlated with the vibratory power
measured on the probe. In a more recent study the same
group reported that the roughness constancy was preserved in
both direct and indirect touch. However, this constancy was
not preserved during passive scanning, indicating the impor-
tance of hand movement and proprioception (Yoshioka et al.,
2011).

Recent findings in direct active finger touch (Libouton et al.,
2012) have shown that the tactile roughness discrimination per-
formance was unaffected by entrapment or traumatic section of
the median nerve at the wrist. They confirmed this finding in
healthy subjects who were given an anesthetic ring bloc and were
still capable to perform a tactile roughness discrimination task.
The authors concluded that if the innervation of the finger pad
was compromised, information about textures could be captured
and encoded by remote mechanoreceptors located in more prox-
imal tissues, where the innervation was intact. In this case, they
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suggested that the finger might act like a probe, transmitting the
vibrations to remote receptors.

The Pacinian afferents are the primary receptors encod-
ing these cutaneous vibrations (Hollins and Bensmaïa, 2007;
Johansson and Flanagan, 2009). They are present in the subcuta-
neous layer of the skin but are also found near tendons, periartic-
ular and interosseus ligaments and muscles (Mountcastle, 2005).
The discovery of Hunt (1961) highlighted the existence of very
sensitive RA vibration receptors being situated in the interosseus
nerve of the hind limb of cats. These receptors that respond to
vibrations transmitted through the footpad act “almost like a
seismograph.” Hunt (1961) characterized them as Pacinian cor-
puscles having a very high sensitivity. As a consequence, very
small vibrations transmitted through the skin and soft tissues,
even applied at a considerable distance, readily evoked vigorous
discharges of these Pacinian corpuscles.

The findings of Libouton et al. (2012) may be viewed as
an instance of perceptual constancy, that is, subjects with de-
afferented extremities tended to maintain a stable perception of
roughness in spite of profound changes in the conditions under
which it was acquired. Roughness constancy is a remarkably
robust phenomenon, it is therefore more informative to iden-
tify when constancy breaks down rather than when it occurs.
The invariant quantity that is perceived can be represented by a
function s(x, y) that represents the profile of surface. The per-
ceptual task faced by the brain is to acquire specific attributes
of s though a complex transduction process involving tribology,
contact mechanics and other physics. For simplicity, and with-
out loss of generality to the foregoing argument, let us consider
one dimension only. A contact, then, is represented by an inter-
val, x̄, that represents the region of contact (which can vary from
1 cm for a bare finger to a few µm for a sharp probe). During
scanning the felt signal is driven by s(x̄(t)) through the physics
of the probe-surface interaction. From the chain rule, s(x̄(t))
has a temporal gradient of the form, s′(x̄) dx̄/dt = s′(x̄) v̄(t),
that is, the product of the surface gradient filtered through the
surface contact with the relative velocity of the contact region.
This expression, ceteris paribus, makes the ambiguous charac-
ter of the stimulation evident; shifting the spatial spectrum of
a surface has the same effect as changing the scanning veloc-
ity. The surface spatial gradient per se, s′(x)—available through
direct finger contact but not through a probe—varies through
time when there is relative movement. It may or it may not
participate in the perception of specific attributes of the sur-
face. It is known, however, that the brain can estimate v̄ from
this quantity (Essick et al., 1988). To further clarify the quanti-
ties involve, let us call v the surface scanning velocity optained
through limb movement to distinguish it from v̄ acquired though
skin afference. Using these definitions, Table 1 summarizes qual-
itatively previous behavioral results regarding roughness con-
stancy. All these results are uniformly explained by the brain’s
ability to learn and maintain time-free representations of sur-
faces of the form s(x), termed spatiotopic, accessed through the
temporal gradients, s′(x̄) v(t) or s′(x̄) v̄(t), if and only if the
scanning velocity is available (cases 6 and 8 in Table 1). This
observation, when related to the findings of Libouton et al.
(2012), motivates the present study aimed at determining how

subjects with de-afferented extremities could have access to
s′(x̄) v(t).

Taken together these findings suggest that the somatosensory
system, provided that sufficient information is available, is able
to collect textural information from other sources than fingertip
afferences. Vibrations generated during the scanning of textured
surfaces were hypothesized to propagate through the finger and
the hand, and stimulate receptors populations in regions far away
from the contact region. If present in regions that are not affected
by the subject trauma or by pharmacological intervention, these
vibrations may explain the ability to perceive the main features
of textures scanned with a finger, that is, without the benefits of
the skin in contact with the surface. Moreover, there is nothing
against the possibility of healthy subject to take advantage of this
information too.

This hypothesis was tested in the present study by record-
ing the vibrations propagating in the finger, hand, and wrist of
subjects during active exploration of textured surfaces with the
fingertip. In addition, the spectrum and the magnitude of the
measured vibrations taking place in the forearm tissues were
analyzed in order to test whether they were correlated to the
characteristics of the explored texture surfaces.

MATERIALS AND METHODS
SUBJECTS
Six healthy volunteers participated in the study (four males and
two females, ranging in age from 25 to 30 years, five over the
six subjects were right-handed). They were asked to carefully
wash their right hand 10 min before the experiment. All the sub-
jects gave their informed consent and the local ethical committee
approved the experimental protocol.

STIMULI
Periodic and non-periodic rough surfaces were used in the
present study for a total of eight different textures. Five periodic
stimuli with known spectral characteristics and three sandpapers
with ISO scaling of the different roughness levels were compared.

The five different grooved surfaces were made of polyurethane
resin. The grating was of periodic square waveform. The spatial
period of the waves was chosen between 0.16 mm and 1.6 mm. It
is assumed that textures with spatial period under 200 µm need
relative movement to be felt (“duplex theory,” Hollins and Risner,
2000 and Hollins and Bensmaïa, 2007). With the chosen range
of spatial period, we covered thus the two side of this theory. The
profile of the wave form is shown on Figure 1. All five samples had
the same dimension ratio. Following the classical studies (Taylor
and Lederman, 1975), the groove width was three times the ridge
width, and was equal to the groove depth. Table 2 summarizes the
geometrical dimensions of the five periodic stimuli.

Three different sandpaper grit sizes (P80, P240, P800)
were used with P80 being the coarser and P800 the thinner
(see Table 3).

APPARATUS
A force platform was designed in order to securely fix the differ-
ent stimuli and measure the contact forces (normal and tangential
to the surface). A schematic view of the apparatus is shown on
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Table 1 | Tabulation of previous results relating to texture constancy which are all explained by the brain’s ability to access specific attributes

of the invariant surface descriptor s(x) through the temporal gradient s′(x̄) v(t).

Study and main condition Task Movement Quantities available Constancy

generation
s’(x (t)) s(x̄(t)) v (t) v̄ (t) Case

Katz (1925/1989), natural
surfaces. Lederman (1981)
gratings of constant periodicity;
bare finger.

Roughness estimation Self
External

yes
yes

yes
yes

yes
no

yes
yes

yes (1)

Lamb (1983), Meftah et al.
(2000), raised dots constant
periodicity, bare finger.

Spatial period discrimination
Roughness estimation

Self
External

yes
yes

yes
yes

yes
no

yes
yes

yes (2)

Hughes et al. (2007), raised
dots with spatial period
gradient, bare finger.

Spatial period gradient
discrimination

Self yes yes yes yes yes (3)

Lawrence et al. (2007), gratings
of constant periodicity; bare
finger, rigid probe.

Roughness estimation Self Finger
Probe

yes
yes

yes
no

yes
yes

yes
no

yes (4)

Wiertlewski et al. (2011a),
natural surfaces, bare finger
via causality inversion.

Identification and spatial
period discrimination

Self
External

yes
yes

no
no

yes
no

no
no

yes
no

(5)
(6)

Yoshioka et al. (2011) natural
surfaces; bare finger, rigid
probe

Roughness estimation Self Finger
Probe

yes
yes

yes
no

yes
yes

yes
no yes (7)

External Finger yes yes no yes

Probe yes no no no no (8)

Libouton et al. (2012) natural
surfaces; de-afferented
extremities

Roughness estimation Self yes no yes no yes (9)

If v(t) is inaccessible, constancy breaks down (cases 6, 8).

GW GD

SP RW

FIGURE 1 | Profile of periodic square wave gratings. Values of SP, RW,
GW, and GD are shown in Table 2.

Table 2 | Set of periodic stimuli used for the experiment: geometrical

dimensions of the grooved surfaces made of polyurethane resin.

Spatial period

(SP = λ) (μm)

Ridge Width

(RW) (μm)

Groove Width

(GW) (μm)

Groove Depth

(GD) (μm)

P1 160 40 120 120

P2 240 60 180 180

P3 400 100 300 300

P4 800 200 600 600

P5 1600 400 1200 1200

Figure 2. A forces and torques transducer (Mini40 F/T trans-
ducer, ATI Industrial Automation, NC, USA) was placed between
the table and the support in order to measure the normal and
tangential force (NF and TF, respectively) applied by the finger

Table 3 | Set of sandpapers used for the experiment: geometrical

properties.

ISO/FEPA grit designation

(μm)

Average particle diameter Roughness

P800 22 Very fine

P240 58 Medium

P80 201 Coarse

during scanning. The stimuli were fixed in the center of the appa-
ratus (see Figure 2A). The position of the subject’s finger was
measured by means of an optical tracking system with LED mark-
ers bonded to the nail (Optotrak, Northern Digital Inc., Waterloo,
Ontario, Canada). The vibrations created by the scanning of the
rough surfaces were recorded using a stethoscope (Classic II S.E.,
3 M Littmann, Neuss, Germany) with the bell side fastened under
the flexor tendons of the wrist, where the best signal could be
recorded (see Figure 2B). The pressure variations caused by the
normal displacement of the skin under the stethoscope bell was
sensed by a high sensitivity microphone (4060 Omnidirectional
Hi-Sens, DPA Microphones, Alleroed, Denmark) inserted in the
manifold of the stethoscope (see Figure 2B). A computer dis-
play was placed in front of the subject in order to give him/her
a feedback of the NF applied on the rough surface and of the
velocity of the finger during the scanning.
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FIGURE 2 | Schematic view of the experimental setup. (A) The stimulus
(blue) is fixed on the upper part of the apparatus. A force/torque sensor
(gray) measures normal and tangential forces. A LED (thick black) is glued to
the subject’s finger to measure its position. (B) A stethoscope (red) is

securely fastened to the wrist of the subject. A microphone (green)
is inserted in the manifold of the stethoscope and records
pressure variations in it. The scanning direction was always from left
to right.

EXPERIMENTAL PROCEDURE
The subject was sitting comfortably in front of the apparatus.
He/she was first instructed to perform several scans, from left to
right on the textured surface using the right index finger. During
these strokes, he/she was asked to maintain the NF and the scan-
ning velocity constant and as close as possible to an instructed
value.

Three different NF (1, 2, and 4 N) and three different explo-
ration velocities (50, 100, and 150 mm/s) were instructed (nine
different conditions). The forces and velocities were chosen in
order to correspond to values adopted naturally during tactile
exploration (see Gamzu and Ahissar, 2001; Smith et al., 2002;
Libouton et al., 2010; Skedung et al., 2011). Given these scanning
velocities, we expected to find the fundamental frequencies for
periodic stimuli ranging from 30 Hz to 1 kHz (f = v/λ). For the
sandpapers, the NF was restricted to 1 N because higher forces
caused skin irritation. In each condition, a block of acquisition
was triggered for 15 sec once the subject was trained thereby
capturing from 3 to 10 scanning movements depending on the
scanning velocity.

DATA ACQUISITION
The acquisition was realized using a custom made Labview soft-
ware. The forces and sound signals were acquired with a digital-
to-analog, analog-to-digital data acquisition system (DAQ 6071E,
National Instruments, Austin, TX, USA). The sound signal was
first amplified (K1803, universal mono preamplifier, Velleman)
before being acquired at 20 kHz. The forces and the position of
the finger were acquired at a sample frequency of, respectively,
1 kHz and 500 Hz. A trigger signal allowed synchronization of the
finger position with the force and sound signals.

DATA PROCESSING
The processing was done using a custom made Matlab soft-
ware. The forces and positions were first low-pass filtered with

a fourth-order, zero phase-lag Butterworth filter with a cutoff
frequency at 30 Hz. This frequency was chosen to remove high
frequency noise but permitted to keep a high temporal resolu-
tion. The sound was high-pass filtered (fourth order, zero-lag
Butterworth) with a cutoff frequency of 25 Hz in order to remove
DC component and low-frequency physiological artifacts (heart-
beat, muscles contractions). The speed and acceleration along
the scanning direction were derived from the position of the
finger.

From each block of trials, we retained the three strokes that
best complied with the following three conditions. The NF
applied had to be in the range of the targeted force ±30%. There
was no stick and slip during the movement (a stick and slip was
detected by the presence of high peaks in the acceleration pro-
file). The speed had to be maintained approximately constant for
a range of 12 mm. The mean NF and TF, the mean coefficient
of dynamic friction, µ = TF/NF, and the mean scanning veloc-
ity were then computed for each stroke. Due to the variability
of the velocity adopted by each subject, we then separated all
strokes into two velocity categories. The first category was rang-
ing from 30 to 120 mm/s and the second was ranging from 120 to
250 mm/s. An estimate of the vibrations power was obtained by
computing the root mean square (RMS) of the sound magnitude
for each stroke.

The analysis of the vibrations frequency content recorded at
the wrist was conducted as follows. First, the short time Fourier
transform (i.e., the spectrogram, �) of the sound was computed
for each stroke. The width of the short-time window was 50 ms
and the overlap was 45 ms (thus, a spectrum vector was com-
puted every 5 ms). The frequency range was defined from 30 Hz
to 1200 Hz. Using the same short-time windows, we computed
the spectrogram of the sound during static and no contact peri-
ods for each block. This spectrum was averaged over time, and
then subtracted from each stroke spectrogram in order to extract
the signal due to the stroke itself for each trial (see Figure 3).
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FIGURE 3 | Typical spectrum of the sound recorded. Black line
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line is the ratio, which appears as a shift in log coordinates.

Second, we estimated the peak of intensity in each window of
the spectrogram and extracted its corresponding frequency.

For periodic stimuli, the energy was expected to be precisely
located at the mechanical fundamental frequency, f0 = v/λ0. The
frequency of the peak in the spectrum was simply computed at
each instant (ti) from,

fp(ti) = arg max
f

(�(ti, f )). (1)

The spatial period of the surface explored was estimated by
computing the ratio between the scanning velocity and the fre-
quency of the peak in the spectrum,

λ̂ = v

fp
. (2)

For non-periodic stimuli, no precise peak of intensity was
expected. In order to get an estimation of the centroïd of energy
in the spectrogram, we computed the median frequency of the
spectrum,

such that

fp(ti)∑
f=30

�(ti, f )2 =
1200∑

f=fp(ti)

�(ti, f )2, (3)

and the estimate of the spatial periodicity of the surface was
computed in the same way as for the periodic stimuli.

RESULTS
TYPICAL TRIALS
Two typical traces are shown in Figure 4. They illustrate the tem-
poral evolution of the measured variables during the scanning
of periodic grating (A) and sandpaper (B). The target NF was
2 N for the periodic grating and 1 N for the sandpaper. The tar-
get scanning velocity was 150 mm/s for both. The upper panel
shows the evolution of the NF (black line) and the TF (gray line).
The central panel reports the finger scanning velocity. The lower
panel shows the spectrogram of the sound recorded at the subject
wrist. The subject touched the surface and adjusted the NF while
progressively increasing the TF. Once the ratio TF/NF reached
the static coefficient of friction, the finger started to slip at a
nearly constant velocity. During the slip phase (gray box), vibra-
tions propagated through the finger and hand tissues up to the
wrist. For the periodic stimuli (see Figure 4A), the energy of the
spectrum was concentrated around the fundamental frequency
f0 = v/λ0 and there was energy in the harmonics also. For sand-
paper (Figure 4B), the energy of the spectrum is spread over a
very wide range during the whole slip. One can notice that at the
beginning of the slip, there is a high peak of sound intensity, which
is spread over a wide range of frequencies in both conditions.

SPECTRAL ANALYSIS
The peak intensity frequencies (fp) are plotted as a function of
velocity for subject S3 (Figure 5). Each color corresponds to a
different periodic stimulus. The thick line represents theoretical
fundamental, λ0 = v/f0, and data points are fp values computed
for each window in the short time Fourier transform. Most of the
points are found around the fundamental frequency and fp was
found correlated with the spatial periodicity of the stimuli up to
1.2 kHz. These results confirm the presence of vibrations corre-
lated with the spatial periodicity of the stimuli and the scanning
velocity.

The histograms of spatial period estimates are plotted on
Figure 6 for all trials (six subjects, three NF and two veloci-
ties) performed with the five different stimuli (0.16 mm < λ <

1.60 mm). The dashed lines are aligned on the actual spatial
period of each stimulus. It can be clearly seen that the princi-
pal mode of the estimate of the spatial period for each surface is
aligned on the actual spatial period. For some trials, λ̂ was also
found on the second, third or next harmonics (see Figures 6C
and D). The principal modes observed for each stimulus and the
numbers of observations are summarized in Table 4.

Spectral information related to sandpapers is summarized in
Table 4. In contrast with the periodic stimuli, the identified spa-
tial period varied much more within the same sandpaper grit size.
Furthermore, there was no significant difference in the principal
mode observed between the different grit sizes.

From the spectrum analysis, we could thus extract relevant
information for the discrimination of periodic stimuli but not for
sandpaper.

VIBRATION MAGNITUDE
The RMS intensity of the sound was computed for each stroke.
This parameter was computed as an indicator of the vibration
magnitude transmitted up to the wrist. Assuming that the cavity
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pressure is uniform (the wave length of the vibrations is more
than 30 cm at 1 kHz), the skin average displacement over the sur-
face of the belt aperture was of the order of 0.3 µm (see Table 5).
For periodic stimuli, a two ways ANOVA (no interaction term)
revealed a significant effect of NF (p < 0.001) but not of veloc-
ity on the vibrations magnitude. The larger the force, the more
intense was the vibration. A linear regression revealed a signifi-
cant slope of 0.13 of the logarithm of intensity as a function of
the NF. For sandpapers, we found no effect of velocity.

The logarithm of the intensity is plotted on Figure 7 as a
function of the five stimuli’s spatial period (A–C) and the three
sandpaper’s grit size (B–D). The range of RMS values varied
a lot across subjects. Before pooling the data of all subjects,
the data of each individual were normalized with respect to a
specific condition: λ = 0.4, NF = 2 N and v = 100 mm/s for
periodic stimuli and P240, NF = 1 N and v = 100 mm/s for
sandpapers. Normalization factors are shown in Table 5 for each
subject.

Figure 7 presents data for all speeds and forces pooled together
in black lines. The effect of NF (Figures 7A,B) and finger velocity
(Figures 7C,D) is shown in colored lines. For periodic stimuli, the
logarithm of the RMS magnitude increased linearly with the log-
arithm of the spatial period (slope = 0.24, p < 0.001, all forces
pooled). The slope was significant for each level of force sepa-
rately (p = 0.029, p < 0.001, and p = 0.003 for NF equal to 1, 2,
and 4 N, respectively). There was a significant pair wise difference
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between each of P1-P2-P3 and P5 (p < 0.05, Tukey’s test) and
between P1 and P4 (p < 0.05, Tukey’s test).

For sandpapers (Figure 7B), the grit size induced a significant
increase of the vibration RMS (p < 0.05).

COEFFICIENT OF FRICTION
The coefficient of dynamic friction is plotted on Figure 8 as a
function of the five stimuli’s spatial period (A) and the three sand-
paper’s grit size (B). For the periodic stimuli the coefficient of
friction was small (around 0.5) and constant across the different
stimuli (p = 0.86).

The dynamic friction was much higher for the sandpapers,
ranging from 0.9 for P800 to 1.3 for P80. We found a signifi-
cant pair wise difference between P80 and P800 (p = 0.04, Tukey’s
test).

DISCUSSION
Libouton et al. (2012) suggested that the somatosensory system
was able to collect roughness from other sources of informa-
tion than fingertip afferences. The authors highlighted that the
tactile roughness discrimination performance was unaffected by
entrapment or traumatic section of the median nerve at the wrist.
As a consequence, they concluded that, if the innervation of the
finger pad was compromised, information about textures could
be captured and encoded by remote mechanoreceptors located
in more proximal tissues where the innervation was intact. We
attempted to explain the mechanism through which humans can
detect textured surfaces and discriminate between them when the
innervation of the finger pad is radically compromised.

To this end, we recorded vibrations in the range from 30 Hz
upto 1.2 kHz taking place in subjects’ wrist tissues while they
explored textured surfaces. Our results demonstrate the propa-
gation of vibratory waves produced by the finger pad interaction

Table 4 | Principal modes for the estimate of spatial period λ̂ for periodic and non-periodic stimuli.

Periodic gratings Sandpapers

P1 P2 P3 P4 P5 P800 P240 P80

Principal mode (mm) 0.163 0.237 0.394 0.804 1.64 0.269 0.288 0.279

Percentage of observations (%) 57.49 59.78 68.02 49.42 59.73

The percentage of observations corresponds to the fraction of the observations that have a spatial period within ±20% of the spatial period of the stimuli.

Table 5 | Normalization factors for pressure variation and skin displacement for each subject (corresponding to 0 in the log scale of Figure 7).

S1 S2 S3 S4 S5 S6

GRATTINGS

Pressure variation (Pa) 2.52 2.78 0.47 2.00 1.63 1.12

Skin displacement (µm) 0.35 0.39 0.06 0.28 0.23 0.16

SANDPAPER

Pressure variation (Pa) 3.18 2.37 3.08 1.99 2.06 2.38

Skin displacement (µm) 0.44 0.33 0.43 0.28 0.29 0.33

The skin displacement was computed according to ∂V = −βV ∂p, with β being the air compressibility, V the belt volume and p the pressure. We considered the

stethoscope belt as a cylinder, and the skin acting like a piston.
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with a textured surface to at least the wrist regions. We found
that the vibration spectral energy was located on the fundamen-
tal frequency plus harmonics for periodic stimuli. This frequency,
together with the fingertip velocity, corresponded to the spatial
period of the stimulus. We did not find any obvious features that
could reflect the grit size in the spectra for sandpapers. We also
found that the coefficient of dynamic friction varied according to
the sandpapers’ grit sizes but remained constant across the differ-
ent polyurethane gratings. These results corroborate the findings
of Wiertlewski et al. (2011b) who measured the vibrations taking
place at the finger-surface interface and found that the trans-
formation of the surface geometry into vibrations was strongly
non-linear, causing both frequency spread and background noise.

The present results show that the biomechanics of hand tis-
sues can transmit surface interaction signals far away from the
contact, up to the forearm, and probably much beyond. The
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FIGURE 8 | Comparison of coefficient of dynamic friction on the

different explored surfaces. (A) Periodic gratings: λ is the spatial period of
the periodic stimulus. The x-axis has a logarithmic scale. (B) Sandpapers:
from smooth (P800) on the left to rough (P80) on the right. Error bars
indicate the standard error of the mean.

likely mechanical paths are bone conduction (Corso, 1963), ten-
don conduction (Pourcelot et al., 2005), surface Rayleigh waves
(Liang and Boppart, 2010), shear waves in the bulk (von Gierke
et al., 1951); or a combination thereof. Our results establish the
possibility for the somatosensory system to combine information
from multiple modalities and from distributed locations in order
to assess properties of the characteristics of an unknown texture,
using the fingertips as a distant probe and through a variety of
different mechanisms yet to be described.

When rubbing a finger against sand paper, the spatial period-
icity of the vibration signal in the wrist was in the range of the
fingerprint periodicity, i.e., near 0.3 mm (see Table 4), suggest-
ing that the fingerprints could make a spectral selection due to
their intrinsic periodicity (Martinot, 2006; Prevost et al., 2009;
Scheibert et al., 2009). For the periodic stimuli, some estimates
of the spatial period were around 0.4 mm, especially for 0.8 mm
gratings (see Figure 4D), which could also be linked to the finger-
print periodicity although a more likely explanation is simply a
frequency doubling effect in a preferred range due to the presence
of two edges per period of the stimulus.

It was hypothesized that the Pacinian channel could encode
vibratory intensity (Hollins and Bensmaïa, 2007). This popula-
tion of receptors is indeed a good candidate to encode scanned
textures through remotely transmitted signals. Moreover, the
exquisite sensitivity of the Pacinian corpuscule makes them good
candidates for picking up signals having travelled over consid-
erable distances (Hunt, 1961), see Hamann (1995) for a review.
Significant vibrations in the wrist imply that, in healthy subjects,
very large populations of receptors can be stimulated throughout
the hand and the arm.

In the present study we have demonstrated that vibrations
generated during the scanning of textured surfaces propagate
through the finger and hand and stimulate receptor populations
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in regions far away from the contact region at least up to the
wrist. The spectrum and the magnitude of the measured vibra-
tions have to be considered as the best predictors of roughness
discrimination. These findings have important implications in
providing realistic sensory feedback for prosthetic-hand users.
Indeed, it suggests that advanced prosthetic arms, equipped with
sensory feedback, could partially restore the tactile sensation of
amputees, through the activation of the remote mechanoreceptive
system. Therefore, the transmission and reception of vibratory
stimuli related to texture to the remaining stump becomes a major
priority in the conception of future prosthetic hands.

CONCLUSION
We showed the presence of high frequency vibrations in the
wrist of subjects exploring rough surfaces. The vibratory power
is the best predictor of the texture roughness sensed remotely. It
accounts for both periodic and non-periodic surfaces, with very
different frictional properties. This result is consistent with per-
ceptual studies carried on either with fingertip touch or with

probe scanning. Moreover, we showed that the frequency con-
tent of periodic stimuli contained also potential information to
encode roughness. Thus, many questions remain unclear about
the contribution of the spectral content of the vibrations in the
perceived roughness. Finally, friction may contribute to refine
perception of roughness.
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Background: Evidence suggests that somatic sensation has a modality for pleasant touch.
Objective: To investigate pleasant touch at the fingertip level (i.e., glabrous skin site)
through the elaboration of a linear unidimensional scale that measures (i) various mate-
rials according to the level of pleasantness they elicit through active fingertip explorations
and (ii) subjects according to their pleasantness leniency levels. Subjects:We enrolled 198
healthy subjects without any neurological disease. Methods: Blindfolded subjects actively
explored 48 materials with their index fingertips and reported the perceived pleasantness
of each on a 4-level scale. The fingertip moisture levels on each subject were measured
before the experimental session. Data were analyzed using the Rasch model. Results:
We elaborated unidimensional linear scale that included 37 materials according to their
pleasantness of touch. The pleasantness level of 21 materials was perceived differently,
depending on the fingertip moisture levels of the subjects. Conclusion: Based on our find-
ings, we formulated a Pleasant Touch Scale. Fingertip moisture levels appeared to be a
major factor for (un)pleasant feelings during active exploration.

Keywords: active touch, pleasantness, Rasch model, latent variable measurement, friction, moisture

INTRODUCTION
The hand is the key organ of the sense of touch (Lundborg,
2005), making sensation fundamental to hand function. Four
major modalities of somatic sensation have been described: (i)
discriminative touch, (ii) proprioception, (iii) nociception, and
(iv) temperature sense (Lundborg, 2005), although studies over
the last decade have suggested the existence of a supplementary
modality, namely pleasant touch (Johansson et al., 1988; Nordin,
1990; McGlone et al., 2007; McGlone and Reilly, 2010).

Studies investigating pleasant touch at hairy skin sites have sug-
gested that C-tactile nerve fibers (CT-fibers) play a fundamental
role in the detection and transmission of pleasant stimuli applied
to the skin (Olausson et al., 2002, 2010; McGlone et al., 2007; Essick
et al., 2010; Morrison et al., 2011). These CT-fibers were identified
during microneurography recordings from infra- and supraorbital
nerves (Johansson et al., 1988; Nordin, 1990). CT-fibers were later
observed in other hairy skin areas, such as the arm (Vallbo et al.,
1999). However, they seem to be missing from glabrous skin sites,
such as the fingertips (McGlone and Reilly, 2010; Olausson et al.,
2010). Studies investigating pleasant touch at glabrous skin sites
frequently used either magnitude estimation (ME) or categorical
rating procedures. The results of such studies suggested that soft
and smooth materials were perceived as more pleasant than rough
materials (Major, 1895; Ripin and Lazarsfeld, 1937; Ekman et al.,
1965; Verrillo et al., 1999).

Pleasant touch may be described as a positive sensation induced
by cutaneous stimulation. Hence,pleasant touch cannot be directly
observed or measured and may be regarded as a latent variable
rather than an observable variable. Observable variables can be
directly quantified and typically generate linear measures (e.g.,

the grain size of sandpapers can be measured in micrometers).
Latent variables can only be measured indirectly (e.g., pain, intel-
ligence, or pleasant touch), generally by using a questionnaire or a
set of stimuli (Thurstone, 1928; Rasch, 1960; Tesio et al., 2007).
Questionnaires usually provide ordinal scores, rather than lin-
ear scores, with no constant unit. For example, pleasant touch
could be assessed by presenting various stimuli to a subject and
asking the subject to rate these stimuli on the basis of a 4-level
response scale, e.g., “very unpleasant” (scored 0), “unpleasant”
(scored 1), “pleasant” (scored 2), and “very pleasant” (scored 3).
Two major issues would, however, prevent the widespread uni-
form use of numbers resulting from such a response scale. First, the
scores would be ordinal, meaning that equal differences (e.g., from
scores of 0–1 and 2–3) would not necessarily represent the same
change/quantity of pleasant touch. Second, the scores attributed to
the stimuli would not necessarily be unidimensional; thus, adding
these individual scores may result in a total score that conceals
numerous unrelated dimensions (e.g., color, hardness, roughness,
temperature, mental representation). As a consequence, quantita-
tive comparisons of these ordinal scores are not possible (Merbitz
et al., 1989; Wright and Linacre, 1989). Nevertheless, probabilis-
tic measurement models can be used to determine linear and
unidimensional measures from ordinal scores, the most promis-
ing being the Rasch model (Rasch, 1960). The Rasch model is a
prescriptive model, rather than a descriptive one, requiring that
solely the location of the item (e.g., the amount of pleasantness
elicited by a stimulus) and the ability of a subject (e.g., the “sat-
isfaction level” induced by perception of a stimulus) determine
the probabilities of category choices on the response scale. When
applied to pleasant touch, this measurement framework can be
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used to construct a linear and unidimensional Pleasant Touch
Scale assessing (i) each stimulus according to its level of pleas-
antness and (ii) each subject according to his/her leniency level,
defined as a subject’s “satisfaction level” induced by perception of
the stimulus.

The aim of this study was to investigate pleasant touch at a
glabrous skin site through the elaboration of a gradual hierar-
chy of stimuli eliciting pleasant touch (i.e., the Pleasant Touch
Scale). This unidimensional linear scale was designed (i) to quan-
tify the pleasantness level elicited by various materials during
direct active fingertip explorations and to grade these materials
by pleasantness level and (ii) to quantify the pleasantness leniency
level of subjects and to grade them by pleasantness leniency level.
The elaboration of such a Pleasant Touch Scale may contribute
to knowledge of pleasant touch at glabrous skin sites. Indeed,
the quantitative information obtained by this scale may pro-
vide objective insight of the characteristics (of subjects and/or
materials) that influence pleasant touch. Consequently, future
research on pleasant touch may refer to such scale and specif-
ically examine the characteristics that influence pleasantness or
unpleasantness.

MATERIALS AND METHODS
The present study was approved by the Biomedical Ethical Com-
mission of the Faculty of Medicine of the Université catholique de
Louvain.

SUBJECTS
We enrolled 198 healthy subjects, 74 males and 124 females, aged
between 20 and 70 (mean age, 39.5± 13.4 years).

INSTRUMENT
To elaborate the Pleasant Touch Scale, we selected 48 materials,
encountered in everyday life, based on three perceptual tactile
dimensions (i.e., hard vs. soft, rough vs. smooth, and sticky vs.
slippery; Hollins et al., 1993, 2000; Yoshioka et al., 2007). Of these
48 stimuli, 26 had been used in studies dealing with the discrim-
inative aspect of touch (Major, 1895; Hollins et al., 1993, 2000;
Bergmann Tiest and Kappers, 2006; Yoshioka et al., 2007; Yoshioka
and Zhou, 2009). The remaining 22 materials included everyday
life materials such as baking paper, cast, cling film, and tights. Each
selected material was glued onto an aluminum plate, 77 mm long
and 32 mm wide.

PROCEDURE
Before each experiment, the index fingertip moisture level of each
subject was measured using the Corneometer®CM 825. The sub-
jects were blindfolded, and each of the 48 materials was placed
in random order in front of the subjects. The subjects were
instructed to place the pulp of their dominant index finger on the
selected material and to explore its surface through slow lateral
sliding movements. No specific instructions on the normal force
to apply to each material or on the speed of sliding were provided.
Exploration of each material could be repeated as many times as
required, after which each subject was asked to rate the material’s
pleasantness level on a 4-level scale: (0) very pleasant, (1) pleasant,
(2) unpleasant, or (3) very unpleasant (Figure 1). Subjects hes-
itating between categories (1) pleasant and (2) unpleasant were

FIGURE 1 | Illustration of the experimental procedure. The subject was
seated in front of the material fixation device, and 48 materials were
successively explored with the pulp of the index finger.

instructed to choose “unpleasant” as soon as the material was not
perceived as being pleasant or “pleasant” as soon as the material
was not perceived as unpleasant. Each subject’s total score could
range from 0 (i.e., all materials rated as very pleasant, 48× 0) to
144 (i.e., all materials rated as very unpleasant, 48× 3). Similarly,
the total score of each material could range from 0 (i.e., all subjects
rated it as very pleasant, 198× 0) to 594 (i.e., all subjects rated it
as very unpleasant, 198× 3).

DATA ANALYSIS
Data were analyzed using the Rasch Unidimensional Measurement
Models software (RUMM2020). The rating scale model was pre-
ferred to the partial credit model, since it yields better fit of the
data to the model (Wright, 1999).

The Rasch model is a probabilistic model elaborated by the
Danish mathematician Rasch (1960). The Rasch model allows the
elaboration of unidimensional and linear scales for latent variables
(e.g., pain, intelligence, or pleasant touch) by locating subjects and
items along a single underlying linear scale (Rasch, 1960; Wright
and Stone, 1979; Tennant et al., 2004; Tennant and Conaghan,
2007). This model was originally elaborated to analyze dichoto-
mous data (i.e., two response categories per item such as “yes/no”
or “pass/fail”). The model formulates the probability of success
of a subject with a given ability on an item with a given diffi-
culty. No other parameter besides the subject’s ability (i.e., his/her
location) and the item’s difficulty (i.e., its location) is needed to
determine the expected response. In this sense the model is unidi-
mensional as it involves only one latent dimension of the subjects.
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Later on, the model was expanded to accommodate polytomous
response formats (i.e., more than two response categories per item
such as“very low/low/moderate/high/very high”; Wright and Mas-
ters, 1982; Andrich, 1988). For polytomous response formats, the
model prescribes that the probability of endorsing any response to
an item depends solely on the subject’s ability, the item’s difficulty,
and the threshold difficulties, where thresholds (i.e., “boundaries”
between successive categories) are the locations on the underly-
ing scale at which successive responses become the most probable
if subjects of increasing ability answer a given item (Andrich,
1978a,b; Wright and Masters, 1982; Tennant et al., 2004; Tennant
and Conaghan, 2007).

When applied to touch related pleasantness perception, the
Rasch model prescribes that the probability that a subject selects
a given response category (i.e., pleasantness category) for a given
item (i.e., material) depends solely on (i) the subject’s pleasant-
ness leniency level, (ii) the material’s pleasantness level, and (iii)
the threshold locations. Based on the estimated subject leniency
and the material pleasantness, the expected response of a subject
to an item can be computed by the model. The similarity between
the observed and expected responses to any item is reported by the
software, through a χ2 fit statistic (Andrich et al., 2004). Materials
with a significant χ2 value indicate that the difference between
the observed and expected responses was too high to be random;
they do not fit the unidimensional scale defined by the other
materials and can be eliminated. In addition, the hypothesized
order of the response categories (i.e., “very pleasant,” “pleasant,”
“unpleasant,” and “very unpleasant”) must be empirically veri-
fied. Items presenting disordered thresholds between successive
response categories indicate that the subjects were unable to dis-
criminate the four response categories, allowing these items to
be eliminated (Andrich, 1996). The resulting scale is defined in
logits (log-odds-units), a unit defined as the natural logarithm
of the odds of success (i.e., the pass/fail probability ratio) of a
subject to an item and which is constant throughout the mea-
surement scale. Consequently, at any level of the measurement
scale, a 1-logit difference in an item’s pleasantness level indi-
cates a constant ratio of its odds of being pleasant (e1

= 2.71)
for any subject, whereas a 2-logit difference indicates the odds
of being pleasant at a ratio of e2

= 7.39, etc. The origin of the
scale is conventionally set at the average material pleasantness
level.

MATERIAL SELECTION
Based on the 48 original materials, successive analyses were
performed to select materials (i) presenting ordered response
categories and (ii) fitting a unidimensional scale.

Ordered response scale
The subjects were asked to report their pleasantness perception on
a 4-level scale: (0) very pleasant, (1) pleasant, (2) unpleasant, or
(3) very unpleasant. To control the order of response categories,
whether successive categories represent decreasing pleasantness
levels was verified for each material. If the response categories
were ordered, the thresholds were located in the anticipated order.
Provided that the anticipated order of response categories was ver-
ified, less lenient subjects should have selected a higher response

for any given material, whereas subjects selecting a higher response
to a given material should be less lenient. However, a reversed order
of the thresholds between successive response categories indicated
that the response scale was not used as expected (Tennant, 2004).
If the categories were not distinguished by the sample, the con-
cerned categories were collapsed into a single category (Tennant
and Conaghan, 2007).

Unidimensional scale
Different statistic methods are available to test the fit of the data
to the model requirements. This study used item χ2 fit statistics.
In this statistical method, the squared standardized residuals (i.e.,
the difference between the response expected by the model and
the observed response by the subject) of all subjects are summed,
leading to a χ2 value for each material. Subsequently, a signif-
icance test was used to evaluate whether the χ2 was too high
to be attributed to random variation. A p-value of the item fit
statistics of <0.05 indicated a misfitting item that may threaten
the concept of unidimensional (Tennant and Conaghan, 2007).
There are two types of misfits, underfit and overfit. Underfit-
ted items violate the unidimensionality concept as the subjects’
answers to these items are influenced by variables other than the
measured one (Penta et al., 2005). An overfitted item does not
necessarily represent a threat to the unidmensionality concept
(Penta et al., 2005). Indeed, the response patterns of overfitted
items are more deterministic than those predicted by the Rasch
model. However, in contrast to underfitted items, the pleasant-
ness levels of overfitted items can be predicted from each subject’s
pleasantness leniency level (Penta et al., 2005). As a consequence,
only underfitted items (i.e., materials) were eliminated from this
study.

DIFFERENTIAL ITEM FUNCTIONING
Once satisfactory metric properties were achieved for the whole
sample, the invariance of the pleasantness hierarchy of items
within the sample was tested through a differential item function-
ing (DIF) analysis. DIF occurs if subjects of distinct subgroups
(e.g., males vs. females) with the same leniency level perceive any
given material differently (Tennant et al., 2004). In this study,
DIF was investigated according to (i) gender, (ii) age (≤37 vs.
>37 years, the median age of the subjects), and (iii) fingertip
moisture level (≤70 vs. >70 arbitrary units, or “a.u.,” the median
moisture level). To investigate DIF, each subgroup was divided
into five class intervals (CI) of decreasing pleasantness leniency
levels, and two-way analysis of variance (ANOVA) was computed
on the standardized residuals of the different CIs (Andrich et al.,
2004). Factors analyzed in two-way ANOVA included (i) subject
subgroups (e.g., males vs. females) and (ii) CIs of decreasing pleas-
antness leniency. A significant subgroup’s main effect indicated a
uniform DIF, occurring if the standardized residuals change sig-
nificantly from one subgroup to another and evolve in parallel. In
such a case, the relative difficulty of the item would differ between
these subgroups (Smith, 1992). An item displaying a uniform DIF
may be deleted or split into as many specific items as there are sub-
ject subgroups; each specific item would therefore have a difficulty
peculiar to the corresponding subject’s subgroup (Tennant et al.,
2004).
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RELIABILITY OF THE PLEASANT TOUCH SCALE
To assess the reliability of the Pleasant Touch Scale, a separation reli-
ability index was computed for the items and subjects (Wright and
Masters, 1982). The Item Separation Index enables the number of
material pleasantness levels that may statistically be distinguished
within the sample to be calculated. The Person Separation Index
enables the number of statistically distinguished subject pleasant-
ness leniency levels using the selected materials to be calculated.
A higher item/person separation index indicates better separation
of the measures (Wright and Masters, 1982).

RESULTS
Successive Rasch analyses were performed to construct the final
Pleasant Touch Scale. Of the 48 original materials (hereafter items),
11 showed disordered thresholds, indicating that our 198 subjects
were unable to discriminate among the four levels of pleasant-
ness for these items. As the subjects were unable to discriminate
between “unpleasant” and “very unpleasant,” these categories were
merged into one category, “unpleasant,” and the entire data set
was reanalyzed using a 3-level scale: (0) very pleasant, (1) pleas-
ant, and (2) unpleasant. Two items, however, adhesive UHU®

Patafix and microfiber dust cloth, still presented disordered thresh-
olds and were deleted from further consideration. Rasch analysis
showed that six items (i.e., tissue carpet, thermal isolation, sponge,
antislide carpet, velcro, and plastic door mat) did not fit a unidi-
mensional scale and were therefore also eliminated, which resulted
in a 40-item scale. No significant DIF based on age and gender was
observed for any item, but invariance investigation of the items
according to the subjects’ levels of fingertip moisture showed that
17 items shared a common location for low and high moisture level
subgroups, whereas the other 23 items presented a DIF. These 23
items elicited different levels of pleasantness when touched by sub-
jects with dry (i.e.,≤70 a.u.) and wet (i.e., >70 a.u.) skin. Each of
these 23 items was therefore split into two different items with
locations specific to fingertip moisture level, one each for subjects
with dry and wet skin. After the splitting procedure, four split
items and one common item showed underfitting (i.e., teflon high
moisture, teflon low moisture, crepe paper high moisture, crepe
paper low moisture, and corduroy), and were therefore removed.
Consequently, the final Pleasant Touch Scale includes 58 items, of
which (i) 16 items share a common location in low and high mois-
ture level subgroups and (ii) 42 items have locations specific to the
fingertip moisture level.

METRIC PROPERTIES OF THE PLEASANT TOUCH SCALE
The calibration of the 58 items of the Pleasant Touch Scale is pre-
sented in Table 1, in which the items were ordered from the most
unpleasant at the top (“sandpaper_LM”) to the most pleasant at
the bottom (“paper_160 g/m2”). Items followed by “_LM” and
“_HM” are split items with pleasantness locations specific to sub-
jects with low and high fingertip moisture levels, respectively. The
pleasantness levels of the 58 materials covered a range of 6.91 logits
(range: −4.47 to 2.44 logits), indicating that the odds of pleasing
any particular subject was in a ratio higher than 1000:1 (i.e., e6.91:1)
between the most and least pleasant items. This pleasantness range
was arbitrarily centered at 0 logits. Table 1 also shows the pleasant-
ness level of each material expressed in percent, with 0 and 100%

indicating the least and most pleasant materials, respectively. Fur-
thermore, the table presents the standard errors (SE) associated
with the estimations of the pleasant levels of the different items
(mean: 0.18 logits; range: 0.36 logits). The item fit statistics (χ2

with associated p-values) indicate that all 58 items contribute to
the definition of a unidimensional scale. Finally, Table 1 also shows
the perceptual tactile dimension of each material.

DESCRIPTION OF THE PLEASANT TOUCH SCALE
Figure 2 illustrates the structure of the final Pleasant Touch Scale.
The lower part shows the relationship between the total ordinal
raw score and the subjects’ linear pleasantness leniency levels. As
the data were analyzed using a 3-level scale, the subjects’ ordinal
raw scores ranged from 0 (i.e., subjects finding all 58 materials
very pleasant, 0× 58) to 116 (i.e., subjects finding all 58 materi-
als unpleasant, 2× 58). The relationship between total score and
pleasantness leniency levels was roughly linear for total scores
between 25 and 90. In this area, an increase of 1 point in total
raw score represents always the same progression in pleasantness
measures. For example, increases from 40 to 41 and from 60 to
61 correspond to increases in pleasantness leniency of 0.05 logits.
Outside this central range, a 1 point increase in total ordinal raw
score did not correspond to the same progression in linear pleas-
antness measures. Indeed, an increase in total raw score from 114
to 115 corresponded to 0.55 logits, whereas an increase from 5 to
6 corresponded to 0.28 logits. This large difference in the progres-
sion of the pleasantness leniency levels for a same increase in total
ordinal raw score illustrates the non-linearity of the raw scores
(Wright and Stone, 1979; Arnould et al., 2004).

The upper part of Figure 2 shows that the distribution of pleas-
antness leniency levels in subjects ranged from−2.62 to 3.42 logits,
indicating that their odds of leniency levels are in a ratio over 400:1
(i.e., e6.04:1) between the most and the least lenient subject. Sub-
jects on the left represent the most lenient (i.e., “the most easy to
please”) and those on the right represent the least lenient (i.e.,“the
least easy to please”). The average subject location was 0.68 logits
(SD: 0.88 logits), indicating that overall, the subjects found the
materials more unpleasant than pleasant. In addition, the distri-
bution shows that the pleasantness leniency of subjects with wet
fingers (blank bars in Figure 2) and dry fingers (black bars in
Figure 2) alternate on the Pleasant Touch Scale. This indicates a
lack of relationship between fingertip moisture and pleasantness
leniency [t -test, t =−0.849; p (two-tailed)= 0.397].

The middle part of Figure 2 shows items of the Pleasant Touch
Scale, representing the most unpleasant at the top to the most
pleasant at the bottom. Each line presents the most probable
response of the subjects to the different items of the Pleasant Touch
Scale as a function of their pleasantness leniency levels. For exam-
ple, to find the material “tights” very pleasant, a subject would
have to have a leniency level of ≤−0.378 logits. A subject with a
leniency level ≥2.516 logits would be expected to find this same
material unpleasant. Subjects with leniency levels between−0.378
and 2.516 logits would be expected to find “tights” pleasant.

The expected responses of the subjects to each item are obtained
by comparing the pleasantness leniency levels of the subjects
to the pleasantness level of each item. For example, a subject
with a total raw score of 58, corresponding to a pleasantness
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Table 1 | Description of materials of the pleasant touch scale.

Code Material description Pleasantness

(logits)

Pleasantness

(%)

SE (logits) Residual (z) Fit (χ2) df p-Value Perceptual

dimension

1. Sandpaper LM −4.47 0.00 0.48 −0.12 4.32 4.00 0.36 Rough

2. Rough sponge_LM −4.19 4.05 0.40 0.50 3.58 4.00 0.47 Rough

3. Sandpaper_HM −2.45 29.23 0.30 0.03 5.28 4.00 0.26 Rough

4. Silicon_LM −2.44 29.38 0.27 −0.37 4.55 4.00 0.34 Sticky

5. Silicon_HM −2.23 32.42 0.24 1.32 3.38 4.00 0.50 Sticky

6. Latex −1.88 37.48 0.17 −0.67 2.00 4.00 0.74 Sticky

7. Wax −1.73 39.65 0.17 1.22 3.98 4.00 0.41 Sticky

8. Cling film −1.49 43.13 0.15 −0.36 3.34 4.00 0.50 Sticky

9. Rough sponge_HM −1.43 43.99 0.23 0.26 3.14 4.00 0.53 Sticky

10. Carbon paper_HM −1.19 47.47 0.20 −0.51 2.30 4.00 0.68 Slippery

11. Linen −1.12 48.48 0.14 1.48 4.80 4.00 0.31 Rough

12. Leather chamois_LM −0.84 52.53 0.19 2.02 6.03 4.00 0.20 Sticky

13. Tesa tape_HM −0.75 53.83 0.19 −0.36 2.05 4.00 0.73 Smooth

14. Carbon paper_LM −0.71 54.41 0.19 −0.14 1.78 4.00 0.78 Slippery

15. Wood_LM −0.64 55.43 0.18 0.51 5.79 4.00 0.22 Hard

16. Leather chamois_HM −0.60 56.01 0.19 0.79 0.86 4.00 0.93 Sticky

17. Plastic_HM −0.59 56.15 0.19 −0.17 2.28 4.00 0.69 Smooth

18. Argil_LM −0.57 56.44 0.18 1.23 4.63 4.00 0.33 Hard

19. Plexiglass_HM −0.51 57.31 0.17 0.25 3.19 4.00 0.53 Hard

20. Glass_HM −0.26 60.93 0.16 2.57 3.49 4.00 0.48 Hard

21. Aluminium_HM −0.19 61.94 0.18 −0.35 1.25 4.00 0.87 Hard

22. Tile_HM −0.18 62.08 0.16 0.37 6.95 4.00 0.14 Hard

23. Argil_HM −0.15 62.52 0.17 0.46 3.98 4.00 0.41 Hard

24. Wood_HM −0.13 62.81 0.19 0.39 4.60 4.00 0.33 Hard

25. Chipboard_LM −0.10 63.24 0.19 0.19 4.34 4.00 0.36 Hard

26. Cork 0.06 65.56 0.13 −0.29 1.74 4.00 0.78 Hard

27. Table cloth_HM 0.20 67.58 0.17 −0.81 4.05 4.00 0.40 Slippery

28. Plexiglass_LM 0.26 68.45 0.15 0.88 3.29 4.00 0.51 Hard

29. Marble_HM 0.28 68.74 0.15 1.88 4.54 4.00 0.34 Hard

30. Plastic_LM 0.39 70.33 0.15 0.15 4.40 4.00 0.35 Smooth

31. Tesa tape_LM 0.40 70.48 0.15 0.24 4.20 4.00 0.38 Smooth

32. Glass_LM 0.43 70.91 0.15 1.50 2.87 4.00 0.58 Hard

33. Cast_LM 0.46 71.35 0.18 −0.09 7.46 4.00 0.11 Hard

34. Silk 0.52 72.21 0.13 −0.69 3.32 4.00 0.51 Smooth

35. Transparent paper_HM 0.57 72.94 0.15 0.50 2.75 4.00 0.60 Slippery

36. Viscose tissue 0.60 73.37 0.12 0.99 7.78 4.00 0.10 Rough

37. Paper_250 (g/m2_HM) 0.62 73.66 0.16 −0.32 2.97 4.00 0.56 Smooth

38. Chipboard_HM 0.63 73.81 0.17 0.25 5.80 4.00 0.21 Hard

39. Foam 0.63 73.81 0.12 1.14 4.87 4.00 0.30 Soft

40. Cotton tissue_LM 0.66 74.24 0.18 0.06 0.52 4.00 0.97 Rough

41. Table cloth_LM 0.68 74.53 0.16 0.08 3.27 4.00 0.51 Slippery

42. Aluminum_LM 0.70 74.82 0.17 −0.10 1.27 4.00 0.87 Hard

43. Tile_LM 0.81 76.41 0.17 0.79 2.30 4.00 0.68 Hard

44. Cast_HM 0.87 77.28 0.19 1.14 4.03 4.00 0.40 Hard

45. Tights 1.07 80.17 0.13 −0.87 3.10 4.00 0.54 Slippery

46. Paper_250 (g/m2_LM) 1.08 80.32 0.17 0.24 0.83 4.00 0.93 Smooth

47. Marble_LM 1.12 80.90 0.16 0.07 0.64 4.00 0.96 Hard

48. Cotton tissue_HM 1.17 81.62 0.19 −0.17 3.50 4.00 0.48 Rough

49. Paper 70 (g/m2) 1.22 82.34 0.14 −1.10 6.36 4.00 0.17 Smooth

50. Paper 120 (g/m2_LM) 1.23 82.49 0.19 −0.50 2.50 4.00 0.64 Smooth

(Continued)
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Table 1 | Continued

Code Material description Pleasantness

(logits)

Pleasantness

(%)

SE (logits) Residual (z) Fit (χ2) df p-Value Perceptual

dimension

51. Transparent paper_LM 1.40 84.95 0.18 −0.76 5.40 4.00 0.25 Slippery

52. Baking paper 1.49 86.25 0.13 −0.83 9.86 4.00 0.04 Smooth

53. Synthetic tissue 1.50 86.40 0.13 −1.77 11.19 4.00 0.02 Smooth

54. Velvet 1.74 89.87 0.12 0.51 4.43 4.00 0.35 Soft

55. Cellular rubber 1.83 91.17 0.13 −0.30 8.26 4.00 0.08 Soft

56. Paper_120 (g/m2_HM) 1.86 91.61 0.20 −0.18 2.60 4.00 0.63 Smooth

57. Paper_80 (g/m2) 1.89 92.04 0.14 −0.60 5.19 4.00 0.27 Smooth

58. Paper 160 (g/m2) 2.44 100.00 0.14 −0.27 1.58 4.00 0.81 Smooth

Items are ordered from least to most pleasant.

SE, standard error; df, degree of freedom; LM, low fingertip moisture; HM, high fingertip moisture.

leniency level of 0 logit, has the highest probability of finding
(i) items 1 (“sandpaper_LM”) through 9 (“rough sponge_HM”)
and 12 (“leather chamois”) unpleasant, (ii) items 10 (“carbon
paper_HM”) through 11 (“linen”), 13 (“tesa tape_HM”) through
46 (“paper 250 g/m2_LM”), and 48 (“cotton tissue_HM”) through
53 (“synthetic tissue”) pleasant, and (iii)items 47 (“marble_LM”)
and 54 (“velvet”) through 58 (“paper_160 g/m2”) very pleasant
(see middle part of Figure 2).

RELIABILITY OF THE PLEASANT TOUCH SCALE
The material separation coefficient was equal to 0.98, indicat-
ing that 10.14 material pleasantness levels could be statistically
distinguished by the sample. The reliability subject separation
coefficient was equal to 0.88, indicating that 3.97 subject pleas-
antness leniency levels could be statistically distinguished using
the selected materials (Wright and Masters, 1982).

DISCUSSION
We have described here the construction of a linear, unidimen-
sional Pleasant Touch Scale, which quantifies (i) the level of pleas-
antness elicited in subjects by various materials during direct active
fingertip explorations and (ii) the pleasantness leniency level of
subjects. To construct this scale, 198 healthy subjects successively
explored 48 different materials and reported their perception of
pleasantness using a 4-level pleasantness scale. The collected data
were analyzed using Rasch model. The initial analysis indicated
that subjects did not discriminate between “unpleasant” and “very
unpleasant.” Consequently, these two categories were merged, and
the data were analyzed using three response levels. In addition,
several materials had to be eliminated because they did not fit the
unidimensional scale defined by the other items. This indicates
that the pleasantness levels of these materials were influenced by
dimensions other than pleasantness, suggesting that subjects asso-
ciated the sensation of these materials with, for example, positive
or negative events in their lives. The investigation of the invariance
of the scale showed that the levels of pleasantness of more than
half of the items differed according to the moisture levels on the
subjects’ fingertips. Indeed, each of these DIF items was perceived
differently, depending on whether subjects had dry or wet skin,
and could therefore be split into two items with different loca-
tions specific to fingertip moisture level. The final Pleasant Touch

Scale orders 58 items – 16 with a common location in subjects
with low and high moisture levels and 42 with locations specific
to the fingertip moisture level – arranged according to their levels
of pleasantness and 198 subjects arranged according to their levels
of pleasantness leniency.

In this study, the data were collected using a category rating
(CR) scale. Indeed, each stimulus was initially rated on a 3-level
scale, yielding ordinal scores. An alternative data collection proce-
dure would be ME. In contrast to CR, ME is an unlimited rating
scale method, allowing subjects to freely choose a number reflect-
ing their perception of a (set of) stimulus (stimuli), without pre-
setting rating categories (Stevens, 1975). ME was initially designed,
i.a. to yield ratio level scales, although this remains unclear (Wills
and Moore, 1994). Indeed, both ME and CR have been found to
yield ordinal scores (Wills and Moore, 1994), with both methods
generating data/scores lacking essential psychometric properties
(i.e., linearity and unidimensionality), precluding the objective
and quantitative comparison of the measured variable. Therefore,
in order to allow objective comparisons of the measured vari-
able (e.g., pleasantness leniency level), the data/scores obtained
through both scaling methods must be transformed into linear and
unidimensional measures. Furthermore, compared with CR scale
procedures, it has been suggested that the ME methods increase
response variability, lowering the power of a test (Mellers, 1983).
We therefore collected data using a CR scale, followed by transfor-
mation into linear unidimensional measures through Rasch model
analysis.

The hierarchy of items sharing the same pleasantness level
regardless of the fingertip moisture levels of the subjects indicates
that rough and sticky items are more unpleasant to explore than
smooth, slippery, or soft items. Indeed, the most unpleasant mate-
rials were “latex,” “wax,” “cling film,” and “linen,” while the most
pleasant ones are “silk,” “viscose tissue,” “foam,” “tights,” “paper
(70 g/m2),” “baking paper,” “synthetic tissue,” “velvet,” “cellular
rubber,” “paper (80 g/m2),” and “paper (1690 g/m2).” Similarly,
other studies have found that soft and smooth materials were rated
as most pleasant to touch, whereas rough materials were perceived
as unpleasant (Major, 1895; Ekman et al., 1965; Essick et al., 1999,
2010; Verrillo et al., 1999).

Subjects with high fingertip moisture levels perceived rough and
sticky materials as more pleasant than subjects with low fingertip
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FIGURE 2 | (A) Subject distribution according to pleasantness leniency levels
(expressed in logits). The blank bars correspond to subjects with high fingertip
moisture and the black bars to subjects with “low fingertip moisture. (B)
Classification of materials by pleasantness, increasing from top to bottom.

Items followed by “_LM” and “_HM” are split items with pleasantness
locations specific to subjects with low and high fingertip moisture levels,
respectively. (C) Relationship between the total ordinal raw score and linear
pleasantness measures.
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moisture levels. Increased fingertip moisture was found to increase
the dynamic coefficient of friction (i.e., the ratio between fric-
tion and normal force during slippage; André et al., 2011) until
a certain moisture threshold (Nacht et al., 1981; Tomlinson et al.,
2007; Gerhardt et al., 2008). Similarly, skin hydration can increase
finger’s adhesion to a contacting surface, decreasing the proba-
bility of occurrence of slippage (André et al., 2011). Above the
before mentioned moisture threshold, however, a further increase
of skin hydration decreases the coefficient of friction (Tomlinson
et al., 2007), due to the accumulation of a thin layer of mois-
ture between the explored surface and the skin. Consequently, it
may be hypothesized that rough and sticky materials, perceived as
more pleasant if fingertip moisture was high, were materials that
allowed fingertip moisture to accumulate to a very high level on
their surfaces, resulting in the formation of a thin layer of moisture
between the explored material and the skin of the fingertip. This
may decrease the dynamic coefficient of friction of sticky mate-
rials and the roughness perception of rough materials, increasing
the perceived pleasantness. This last assumption is strengthened
by studies highlighting that the rough nature of rough materials
are less perceived with higher skin hydration (Verrillo et al., 1998,
1999).

Conversely, subjects with high fingertip moisture levels per-
ceived smooth materials as less pleasant than subjects with low
fingertip moisture levels. It may be hypothesized that these smooth
materials assimilated lower levels of moisture on their surfaces and
failed to reach the moisture threshold above which the coefficient
of friction decreases. The accumulated moisture may increase the

dynamic coefficient of friction, leading to a less pleasant perception
of the explored materials, which are perceived as stickier.

Finally, hardness was found to be unrelated to the perception
of pleasantness, with some (e.g., tile_LM, cast_HM, marble_LM)
perceived as pleasant and others (e.g., wood_LM, argil_LM,
plexiglass_HM) as unpleasant. Rather, pleasantness was more
dependent on roughness and stickiness than on hardness.

The aim of this study was to investigate pleasant touch of
glabrous skin. Results suggest that a subject’s pleasantness leniency
level, elicited by active touch, may be defined as a latent trait com-
mon among subjects. The Pleasant Touch Scale is a unidimensional
and linear scale,ordering materials according to their level of pleas-
antness and healthy subjects according to their level of pleasantness
leniency. Consequently, our findings provide objective insights into
the characteristics of materials and subjects that influence pleas-
ant touch. Indeed, we found that (i) smooth and soft materials
are perceived as more pleasant than rough and sticky materials
and (ii) the level of fingertip moisture influences the perception
of pleasantness. Furthermore, this scale may be useful in future
studies, aimed, for example, at determining correlations between
the pleasantness levels of materials and the dynamics of active
touch.
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Rats use their whiskers to extract a wealth of information about their immediate
environment, such as the shape, position or texture of an object. The information is
conveyed to mechanoreceptors located within the whisker follicle in the form of a
sequence of whisker deflections induced by the whisker/object contact interaction. How
the whiskers filter and shape the mechanical information and effectively participate in
the coding of tactile features remains an open question to date. In the present article, a
biomechanical model was developed that provides predictions of the whisker dynamics
during active tactile exploration, amenable to quantitative experimental comparison. This
model is based on a decomposition of the whisker profile into a slow, quasi-static
sequence and rapid resonant small-scale vibrations. It was applied to the typical situation
of a rat actively whisking across a solid object. Having derived the quasi-static sequence
of whisker deformation, the resonant properties of the whisker were analyzed, taking
into account the boundary conditions imposed by the whisker/surface contact. We then
focused on two elementary mechanical events that are expected to trigger significant
neural responses, namely (1) the whisker/object first contact and (2) the whisker
detachment from the object. Both events were found to trigger a deflection wave
propagating upward to the mystacial pad at constant velocity of ≈3–5 m/s. This yielded
a characteristic mechanical signature at the whisker base, in the form of a large peak of
negative curvature occurring ≈4 ms after the event has been triggered. The dependence
in amplitude and lag of this mechanical signal with the main contextual parameters (such
as radial or angular distance) was investigated. The model was validated experimentally
by comparing its predictions to high-speed video recordings of shock-induced whisker
deflections performed on anesthetized rats. The consequences of these results on
possible tactile encoding schemes are briefly discussed.

Keywords: exploration, rat, resonance, tactile, vibration, vibrissae, whiskers, whisking

INTRODUCTION
The vibrissal system of the rat is one of the prominent model
systems for investigating the mechanisms of sensory informa-
tion processing in the tactile modality. Rats use their whiskers
to sense their close environment and gather information about
object features such as location (Krupa and Nicolelis, 2001;
O’Connor et al., 2010a), shape (Brecht and Merzenich, 1997;
Polley et al., 2005), texture (Carvell and Simons, 1990; Morita
et al., 2011), and size (Anjum et al., 2006). Active movements of
body, head (Milani et al., 1989; Carvell and Simons, 1990; Towal
and Hartmann, 2006; Mitchinson et al., 2007) or whiskers them-
selves during whisking (Welker, 1964; Carvell and Simons, 1990;
Berg and Kleinfeld, 2003) induce contact between the whisker
and the probed environment. This mechanical interaction elic-
its sequences of whisker deflection. Each whisker is embedded
in a follicle in the skin (Ebara et al., 2002), where mechanore-
ceptors transduce whisker base deflections into neural signals
(Lichtenstein et al., 1990; Szwed et al., 2006). Neurons along the

trigeminal pathway respond to various aspects of the whisker base
movements, such as high acceleration events (Jadhav et al., 2009;
Lottem and Azouz, 2009; Jadhav and Feldman, 2010), whisker
speed (Arabzadeh et al., 2004), average noise level (Arabzadeh
et al., 2005), or characteristic features of the whisker motion spec-
tra (Hipp et al., 2006). These different properties of the whisker
base dynamics are then processed by the central nervous sys-
tems to extract relevant features of the environment. In order
to decipher the underlying neural code, one needs to relate the
dynamics of the whisker to the physical and geometrical charac-
teristics of the contacting surface. This amounts to understanding
the way the whisker carries and shapes information from the
contact point to the follicle.

Consider a typical exploration task during which a rat whisks
across an object (Figure 1). This sequence can be broken up into
three consecutive phases. First, the whisker rotates freely in air;
second, it slides over the object and is submitted to a frictional
contact at the whisker tip; the whisker then detaches and pursues

Frontiers in Behavioral Neuroscience www.frontiersin.org November 2012 | Volume 6 | Article 74 |

BEHAVIORAL NEUROSCIENCE

79

http://www.frontiersin.org/Behavioral_Neuroscience/editorialboard
http://www.frontiersin.org/Behavioral_Neuroscience/editorialboard
http://www.frontiersin.org/Behavioral_Neuroscience/editorialboard
http://www.frontiersin.org/Behavioral_Neuroscience/about
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/Behavioral_Neuroscience/10.3389/fnbeh.2012.00074/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=YvesBoubenec&UID=43984
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DanielShulz&UID=5643
http://community.frontiersin.org/people/GeorgesDebregeas/51305
mailto:georges.debregeas@lps.ens.fr
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Boubenec et al. Whisker encoding of mechanical events

FIGURE 1 | Schematic view of a tactile exploration task.

its motion in air (no contact). Recently, several groups have stud-
ied how the rat could extract the contour of an object from the
time evolution of the torque at the base of each of its whiskers
(Kaneko et al., 1998; Scholz and Rahn, 2004; Clements and Rahn,
2006; Kim and Möller, 2007; Solomon and Hartmann, 2010). The
encoding mechanism requires proprioceptive information (the
angular position of the whisker with respect to the snout) and
the knowledge of the relationship between the radial distance and
the resulting torque in the follicle. This relationship was derived
by computing the successive equilibrium profiles of the whiskers
for a non-frictional contact. Due to the slender geometry of the
whisker, any change in the contact configuration (during the first
contact or following the whisker detachment from the object) is
expected to trigger a burst of whisker oscillations ignored in these
quasi-static descriptions. During the sliding phase itself, stick-
slip instabilities are bound to occur, which should also result in
brief vibrating episodes. Several studies have suggested that these
mechanical events are encoded by specific mechanoreceptors. In
particular, Szwed et al. (2003) established that distinct popula-
tions of trigeminal ganglion neurons specifically respond to first
contact and/or detachment. Other works (Ritt et al., 2008; Wolfe
et al., 2008; Jadhav et al., 2009; Lottem and Azouz, 2009) have
further suggested that surface roughness may in large part be
encoded by the rate of discrete high acceleration events elicited
by stick-slip instabilities at the whisker/object contact. Notice that
analogous mechanical events, separating different action phases,
have been shown to play a central role in the planning and con-
trol of manipulation tasks in the context of active human touch
(Johansson and Flanagan, 2009).

In the present article, we focused on the encoding of the first
contact and detachment events by the whisker. A biomechani-
cal model is developed to quantitatively predict the sequence of
whisker deformation that these events elicit in realistic condi-
tions of tactile exploration. Specific predictions of the model were
validated through high-speed video recordings of shock-induced
whisker deflections. By investigating how various contextual
parameters (such as radial and angular distance or friction

coefficients) control the mechanical signature at the whisker base,
we aimed to understand what information can be extracted by
the neural system. The consequence of these results on possible
tactile encoding schemes are discussed, which we believe may be
of interest to the fields of whisker tactile perception as well as
neurorobotics.

RESULTS
Our biomechanical approach is based on a decomposition of the
whisker dynamics into rapid small amplitude resonant oscilla-
tions superimposed onto a slow (quasi-static) sequence of defor-
mation. The oscillating term is further decomposed along a series
of resonant modes whose spatial and temporal properties are
computed numerically.

In a first section, we describe the quasi-static evolution of the
whisker as it is swept across a rectangular obstacle. In the second
section, the mode decomposition scheme used to describe the
rapid dynamics of the whisker is presented. Two distinct mechan-
ical events are then successively examined: (1) the initial contact
(shock) between the whisker and the object; (2) the detachment
of the whisker from the object. In both cases, the precise time-
sequence of the whisker dynamics can be accurately predicted.
A particular focus is put on the time-evolution of the moment
at the whisker base (in the follicle) as it constitutes the relevant
peripheral input for the mechanoreceptors.

QUASI-STATIC EVOLUTION OF A WHISKER SCANNED ACROSS A
RECTANGULAR OBJECT
In this first section, the quasi-static evolution of the whisker,
i.e., the series of equilibrium configurations, is calculated as it
is swept across a rectangular object. Several robotics studies ana-
lyzed the shape of a whisker submitted to a contact force. Most of
those works used numerical solutions to determine whisker pro-
files (Scholz and Rahn, 2004; Clements and Rahn, 2006; Solomon
and Hartmann, 2010). In the limit of small deflections, a small
angle approximation can be used which yields an analytical solu-
tion to this mechanical problem (Birdwell et al., 2007). A large
majority of those works, however, ignored any frictional interac-
tion between the whisker and the substrate in their theoretical
derivations. Nevertheless a few studies performed with artifi-
cial whiskers investigated the influence of frictional interactions
for predicting radial distance (Solomon and Hartmann, 2008)
and local object shape (Schroeder and Hartmann, 2012) dur-
ing whisker touch. Here, we numerically derive the quasi-static
sequence of whisker deflection as it is swept across an obstacle,
taking into account the frictional force. In line with physiological
observations made in rats (Voges et al., 2012) and other whisker-
bearing animals (Williams and Kramer, 2010), the whisker is
modeled as a truncated tapered rod. We denote L the length
of the non-truncated cone, b the maximum (base) radius and
α = b/L the cone angle (Figure 2A). In order to simplify the
equations governing the whisker mechanics, the whisker pro-
files are described using a curvilinear coordinate s defined as
the normalized arc length such that the cone tip (the end of the
non-truncated whisker) position defines the origin s = 0 and the
whisker base is located at s = 1. The radius of the whisker at
position s thus reads r(s) = αsL. In this coordinate, the whisker
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FIGURE 2 | Geometry of the whisker in contact. (A) Whisker as a
truncated cone. (B) The whisker is submitted to a localized frictional contact
imposed at s = ε and oriented at a friction angle φ with respect to the
direction normal to the surface. Notice that the whisker is locally tangent to
the surface. The whisker rotates at constant rate around a fixed point that
corresponds to the whisker base (s = 1).

physical tip is located at stip = 1− Lwhisker/L. Note that, owing to
the truncation of the whiskers, L can be significantly larger than
the actual whisker length Lwhisker.

The whisker profile is described in curvilinear angular coor-
dinates as θ = θ(s) (Figure 2B). The whisker is embedded in
the pad tissue down to 4–5 mm (Ebara et al., 2002), which
strongly constrains the angular position of the whisker base.
Although the pad does exhibit some level of elastic compli-
ance, as established by Jenks et al. (2010) in awake rats (Jenks
et al., 2010), here we assume the anchorage to be strictly rigid
and thus impose θ(1) = θb. The whisking process is modeled by
imposing a rotation of the whisker around its base at constant
rate γ. The base angle θb = θ(s = 1) thus grows linearly with time
such that θb(t) = γt. The whisker is considered linearly elastic
with a uniform Young’s modulus E and density ρ. Any intrinsic
(spontaneous) curvature and out-of-plane deformations are also
ignored. When in contact with the object, the whisker is submit-
ted to a frictional force F which is assumed to apply at a single
point located at s = ε along the whisker. The present analysis is
restricted to configurations where ε > stip, which constrains the
whisker to be locally tangent to the object surface. The orienta-
tion of the force F with respect to the direction normal to the
whisker at s = ε is set by the friction angle φ = tan(μ) where μ is
the friction coefficient (Persson, 2000). Within these hypothesis,
the equation governing the whisker bending moment equilibrium
reads (see “Methods” for the detailed derivation):

(s4θ′)′ − F̃ cos(φ− θ+ θ(ε)) = 0 (1)

where F̃ = 4F/
(
πα4EL2

)
is an adimensional force. The single

contact point hypothesis further imposes that the moment is null
at the contact point such that θ′(ε) = 0. For given values of θb

(imposed by the rotation of the whisker base), the friction angle
φ and the contact point ε, one can numerically compute a series
of equilibrium whisker profiles by imposing different values of
the contact angle θ(ε) < θb. This method is first used to derive
the quasi-static evolution of the whisker as it rolls over the edge
of the rectangular obstacle. In this regime, the position of the con-
tact point on the object is fixed. This condition yields, for each
whisking angle θb, a unique solution associated with a contact
location ε along the whisker. As θb increases, the contact angle
θ(ε) decreases and eventually vanishes. This time marks the onset
of a second phase during which the whisker slides along the sur-
face of the object. In this second regime, the contact angle θ(ε)

is null while the radial distance D (the distance from the whisker
base to the free surface) remains constant. Again, a unique solu-
tion, associated with a contact location ε, is obtained for each
whisking angle θb. When the contact point reaches the edge of
the object, the whisker snaps off and then continues to rotate in
air at a constant rotation rate.

Figure 3A shows the quasi-static evolution of the whisker
profile for a friction coefficient μ = 0.4, a radial distance D =
0.83 L, and a rotation rate γ = 400◦/s. During this sequence,
the contact point position along the whisker varies within a
small range 0.08 < ε < 0.15 (Figure 3A2). The graphs A3 and
A4 display the evolution of the base moment κ(t) = θ′(s = 1)

and its time-derivative κ̇(t). In all graphs, and throughout the
article, double scales are used in order to show the data both
in reduced (all lengths being normalized by L) and physical
units. For the latter, a typical whisker length L = 3 cm is used.
Figure 3B displays similar traces for various friction coefficients
μ = {0.2, 0.4, 0.6, 0.8}. This range should encompass most phys-
ical situations (Persson, 2000). Although the associated profiles
appear quite similar, increasing the friction coefficient yields a sig-
nificant amplification of the base moment signal κ(t) as shown
in Figure 3B4. One may notice that the effect becomes signifi-
cant when the whisker is sufficiently deformed while the different
graphs collapse in the early moments following the initial con-
tact, i.e., when the whisker is essentially straight. The friction
coefficient also controls the time (or base angle) at which the
whisker detaches from the object. Although these frictional effects
are significant, the base moment κ(t) appears to be mostly con-
trolled by the radial distance D as shown in Figure 3C. Reducing
this distance by 10% yields a five-fold increase of the maximum
base moment experienced during the exploratory sequence. It
thus seems unlikely that this quantity provides significant cue
for the discrimination of surfaces exhibiting different frictional
properties.

WHISKER RESONANT DYNAMICS
The preceding section addressed the quasi-static evolution of the
whisker as it is swept across a rectangular object. This sequence
is expected to be valid for a massless whisker or at infinitely slow
scanning speed (Quist and Hartmann, 2012). For a real whisker,
however, inertia effects will induce significant deviations. In par-
ticular, the contact and detachment processes, which mark the
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FIGURE 3 | Quasi-static evolution of a whisker rotating across a

rectangular object. (A1) Quasi-static sequence of whisker deformation for a
friction coefficient μ = 0.4 and a radial distance D = 0.83 L. Different colors
correspond to distinct phases: the whisker rotates in air (black), rolls over the
obstacle edge (red), slides over the flat surface (blue) and, after detachment,
rotates in air (green). The color code is conserved throughout the graphs.

(A2) Evolution of the contact point location ε as a function of the base angle
θb (θb step = 1.7◦ ). (A3) Evolution of the whisker base moment κ(t) and (A4)

its time derivative κ̇(t). (B1–B3) Same data shown for four different values of
the friction coefficient μ. (B4) Maximum base moment as a function of μ.
(C1–C3) Same data for different values of the radial distance D. (C4)

Maximum base moment as a function of D.

transition between distinct mechanical conditions at the whisker
tip, will trigger brief episodes of oscillations.

These dynamic modulations are treated perturbatively in the
form of a small displacement u(s, t) normal to the quasi-static
profile sequence (see Figure 4A). We assume that both the quasi-
static deformation and dynamic oscillations amplitude remain
sufficiently moderate such that a small angle approximation
(θ(s)� 1) can be implemented. The validity of this hypothesis,
for both mechanical events, will be discussed a posteriori. In this
limit, the classical Euler–Bernoulli equation that governs the force
equilibrium normal to the whisker can be expanded around the
quasi-static profile, yielding for u(s, t) (see Weaver et al., 1990):

∂2

∂s2

(
EI

∂2u

∂s2

)
+ ρA

∂2u

∂t2
= 0 (2)

where A = πr2 is the whisker section area. This equation is re-
written in reduced coordinates (all distances being expressed in
unit of the ideal non-truncated whisker length L) in the form:

∂2

∂s2

(
s4 ∂2u

∂s2

)
+ k2s2 ∂2u

∂t2
= 0 (3)

where k = 2
√

ρ/E L/α is a time-scale characterizing the mechan-
ical resonance of the isolated whisker: the fundamental reso-
nance frequency of the freely vibrating whisker reads fFRF =
1.39/k. In this expression, all lengths are expressed in units of
L. Equation (3) is classically solved by separation of time and
space variables: u(s, t) = V(s)q(t). The spatial term V(s) obeys
the following equation:

(s4V ′′)′′ − k2ω2s2V = 0 (4)
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FIGURE 4 | Resonant properties of the whisker. (A) The whisker
deformation is decomposed into a quasi-static profile Uqs(s, t) and a small
amplitude deformation u(s, t) normal to the quasi-static profile. (B) First
spatial modes for a whisker in contact at s = ε = 0.1 with boundary
conditions V (ε) = V ′′(ε) = 0. (C) Resonant reduced angular frequency and
resonant frequency (double scale) for the first two modes as a function of
the contact location ε. (D) First spatial modes for a freely oscillating whisker
(V ′′(ε) = (s4V ′)′′(ε) = 0).

The choice of boundary conditions (discussed below) sets the
series of admissible angular frequencies ωi(i= 1, 2, . . .) = κi/k
and corresponding resonant spatial modes Vi(s)(i= 1, 2, . . .).
Each mode is associated with a harmonic equation

of motion that reads:
q̈+ ω2

i q = 0 (5)

In the absence of any knowledge on the underlying mecha-
nism, dissipative processes are accounted for by introducing a
linear damping term in the time-dependent Equation (5) with
a mode-independent damping ratio ζ. The dynamic equation is
thus rewritten as:

q̈+ 2ζωiq̇+ ω2
i q = 0 (6)

Within this hypothesis, the general solution for the freely
oscillating whisker finally reads:

u(s, t)=
∑

i

Vi(s)
(
αi cos(

√
1−ζ2ωit)+ βi sin(

√
1−ζ2ωit)

)
e−ζωi t

(7)

DEPENDENCE OF THE WHISKER RESONANCE FREQUENCY ON THE
CONTACT POINT LOCATION
The resonant spatial modes Vi(s) and associated angular fre-
quencies ωi depend on the boundary conditions. As already
mentioned, the whisker is assumed to be rigidly anchored at its
base, which imposes V(1) = V ′(1) = 0. The different phases of
the exploration correspond to distinct boundary conditions at the
whisker tip.

(a) As the whisker rolls over the object’s edge, the main-
tained contact imposes a constant position of the whisker
at s = ε. Ignoring the inertia of the whisker tip (the region
stip < s < ε), the moment at contact is null. The boundary
conditions thus read V(ε) = V ′′(ε) = 0.

(b) As the whisker slides onto the object’s flat surface, the main-
tained frictional contact imposes both a constant position
and orientation of the whisker at s = ε, so that V(ε) =
V ′(ε) = 0.

(c) After detachment of the whisker from the object, the whisker
oscillates freely in air. This yields a null moment and
null force condition at the whisker tip, such that V ′′(ε) =
(s4V ′′)′(ε) = 0.

For each value of the contact location ε in the range 0.01 <

ε < 0.2, the first five modes V1−5(s) and associated adimen-
sional angular frequencies κ1−5 are numerically computed using
Mathematica v8.0 (Wolfram Research). Figures 4B,D display the
spatial resonant modes obtained for ε = 0.1 and boundary con-
ditions (a) and (c), respectively. Their strong asymmetry results
from the tapered geometry of the whiskers. The resonant nor-
malized angular frequencies κ1 and κ2 are shown in Figure 4C
as a function of ε for boundary conditions (a). Both angular fre-
quencies are found to increase as the contact point moves toward
the base. The arrows indicate the corresponding angular frequen-
cies for an isolated (freely vibrating) whisker. In order to express
the resonant frequencies fi = κi/(2πk) in physical units (right
axis scale), a typical time-scale k is computed using data from
the literature (Hartmann et al., 2003). This value k = 30.4 ms is
conserved throughout the article.
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The slender geometry of the whisker confers it the prop-
erty of a resonant oscillator, which thus acts as a mechani-
cal band-pass filter. Neimark et al. observed resonance when
shaking the whisker near its tip with a piezoelectric actua-
tor (fixed–fixed boundary conditions) (Neimark et al., 2003).
Although the boundary conditions were different between those
data (fixed–fixed) and our model (fixed-pinned), the frequen-
cies they reported for β and C1 fell within our predicted range
(Figure 4C). Owing to their various lengths, the resonant fre-
quencies of the freely vibrating whiskers span a wide range across
the pad. This observation led Neimark et al. to propose a tono-
topic scheme for texture encoding in which each whisker would
transduce one particular spatial wavelength (Neimark et al.,
2003). The present model may in part explain why this encod-
ing scheme hypothesis failed to receive experimental validation so
far. The effective resonant frequencies varies with the location of
the contact point along the whisker and the way that the whisker
is pinned and/or fixed at the contact point (see Figure 4C). The
optimal transduction frequencies in real sensing situations, rather
than being whisker specific, are thus expected to vary by a fac-
tor of up to 3 over the course of a single sensing task. It is
tempting to suggest in reverse that the instantaneous resonant
frequency may used by the rat to extract information about the
distance from the pad to the touched object. However, the depen-
dence being relatively weak (owing to the tapered geometry of
the whisker), the spectral characteristic of the whisker dynamic
is unlikely to play a significant role in the precise determination
of radial distance.

SHOCK AGAINST THE OBJECT’S EDGE
The resonant modes are now used to investigate the dynamics
induced by the shock of the whisker against the object’s edge.
The whisker initially rotates in air at constant angular velocity γ

around the whisker base. At time t = 0, the whisker makes con-
tact with the object’s edge at a position s = ε along the whisker. In
line with previous observations (Hartmann et al., 2003), the col-
lision is assumed to be inelastic such that the whisker tip remains
in constant contact with the object at t > 0 (no rebound). The
duration of the shock-induced oscillation is expected to damp out
over a time period of order τ/ζ, where τ is the period of the fun-
damental mode. During this time, the contact point location ε,
deduced from the quasi-static sequence, varies by less than 0.02
(0.002 after one resonant period). We ignore this minute change
and assume ε to be constant, which allows one to describe the
oscillating dynamics on a well-defined series of resonant modes.

The whisker profile U(s, t) at time t > 0 is decomposed as
U(s, t) = Uqs(s, t)+ u(s, t) where Uqs(s, t) is the quasi-static
profile evolution and u(s, t) characterizes the shock-induced
dynamics. By introducing this decomposition in Equation (3),
u(s, t) is found to obey the dynamic equation (see “Methods”):

∂

∂s2

(
s4 ∂2u

∂s2

)
+ k2s2 ∂2u

∂t2
= −k2s2Üqs(s, t) (8)

One thus needs to compute the second time-derivative
of the quasi-static profile Üqs(s, t). Prior to the shock, the
whisker experiences a solid rotation at constant rotation rate γ.

Immediately after the shock, within the small deflection approx-
imation, the quasi-static profile also evolves linearly in time (see
“Methods”). The expression of Üqs(s, t) can thus be written as:

Üqs(s, t) = δ(t)γŪ(s) (9)

where δ(t) is the Dirac function and Ū(s) is a normalized
profile that depends on ε and γ (see “Methods” for analyti-
cal derivation). The dynamic term u(s, t) is decomposed onto
the resonant modes Vi(s) corresponding to boundary conditions
V(ε) = V ′′(ε) = 0, in the form u(s, t) =∑i qi(t)Vi(s). Projecting
expression (Equation 8) onto each mode Vi(s), and using the
orthogonality of the resonant modes, the mode amplitudes qi(t)
are found to obey the dynamic equation [see Equations (36–41)
in “Methods”]:

q̈i + 2ζωiq̇i + ω2
i qi = −

∫ 1

ε

s2Üqs(s, t)Vi(s)ds

= −δ(t)γ

∫ 1

ε

s2Ū(s)Vi(s)ds (10)

Notice that, as indicated before, a damping term is added to
account for dissipative processes. After integration, the complete
shock-induced dynamics reads:

U(s, t > 0) = γtŪ(s)− γ
∑

i

Vi(s)

(∫ 1

ε

s2Ū(s)Vi(s)ds

)

×
e−ζωt sin

(√
1− ζ2ωit

)
√

1− ζ2ωi

(11)

Figure 5A shows the successive whisker profiles for a contact
located at ε = 0.2. The damping factor is set at ζ = 0.1, consis-
tent with values reported in the literature for the fundamental
mode (Hartmann et al., 2003; Neimark et al., 2003). Figure 5B
displays the same sequence in the reference frame of the whisker
base (the imposed rotation of the whisker base has been sub-
tracted). This graph illustrates how the shock at the tip of the
whisker triggers a wave of deflection that travels up to the whisker
base. Notice that the first maximum (indicated by an arrow in
Figure 5B) is negative, i.e., opposite to the long time scale whisker
deflection induced by the object. The position of the first mini-
mum displays a linear dependence with the time elapsed since the
shock (Figure 5C). This constant wave velocity results from the
tapered geometry, since a

√
t dependence is expected in the case

of a cylindrical rod (Audoly and Neukirch, 2005). From dimen-
sional analysis of Equation (3), the wave velocity is expected to
be of order cwave = αc where α is the cone angle and c = √E/ρ is
the sound velocity in the bulk material. The apparent wave veloc-
ity obtained by linear fitting on graph C is consistently found
to be 2.54cwave (5.02 m/s in physical units). Figure 5D shows
the evolution of the moment κ(t) = ∂2U/∂s2(s = 1, t) at the
base of the whisker (black solid line). The graph also displays
both the dynamic (κdyn(t) = ∂2u/∂s2(s = 1, t), gray solid line)
and quasi-static (κqs(t) = ∂U2

qs/∂s2(s = 1, t), dotted line) com-
ponents for comparison. Although the maximum amplitude of
the deflection wave is of the order of 15 μm, i.e., a small fraction
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FIGURE 5 | Shock-induced whisker dynamics. (A) Successive whisker
profiles (from dark to light red) plotted at regular time interval
(δt = 1.06 ms) following the first whisker/object contact at ε = 0.2. The
shock-induced oscillations are visible through the varying density of the
profiles. (B) Whisker profiles in the reference frame of the whisker base
(δt = 0.2 ms). The distance indicated on each graph corresponds to the

displacement of the contact point in μm. (C) Position of the maximal
deformation as a function of the time elapsed since the shock (see arrow
in B). The dotted line is the best linear fit and corresponds to a velocity
2.54cwave . (D) Time-evolution of the quasi-static κqs(t) (dotted line) and
dynamic κdyn(t) (solid line) base moment. (E) Evolution of the
time-derivative of the base moment κ̇(t).

of the whisker base diameter, it yields a significant negative dip
in the whisker base curvature dynamics. The time-derivative
κ̇(t) signal (Figure 5E) in turn exhibits a clear signature of the
whisker/object contact in the form of large amplitude oscillation
with a peaked maximum occurring at a time τpeak ≈ 4 ms after
the shock.

Equation (11) indicates that the peak amplitude �κ̇max should
be linearly proportional to the rotation rate γ. It also increases as
the contact point moves toward the whisker base i.e., for shorter
radial distances (Figures 6A–C). Notice that the peak amplitude
remains larger than the quasi-static value κ̇qs(τpeak) (Inset). The
last graph of Figure 6 shows the delay τpeak between the shock
event and the arrival of the mechanical signal at the whisker
base as a function of the contact location. The dependence is
quasi-linear within the range of ε explored, which allows us to
extract an approximate velocity 0.69cwave (1.36 m/s in physical
units) of the same order as the wave velocity determined in
Figure 5.

In the range of parameters explored, the maximum angular
deflection of the whisker during the process is 0.06. This value val-
idates the small angle hypothesis underlying the present analysis
(Birdwell et al., 2007).

EXPERIMENTAL MEASUREMENTS OF SHOCK-INDUCED OSCILLATION
These predictions are tested experimentally on an anesthetized
rat using high-speed videography (see “Methods”). The rat, and
thus the whisker base, are maintained fixed while a thin bar is
moved at constant speed Vbar = 60 mm/s against the whisker tip
(Figure 7A). We used a constant speed and not a tap since in
that case a sudden acceleration would happen, which is a dif-
ferent condition and ethologically more unlike to happen. The
bar is vertical and fixed by its edge to a rectilinear motor. During
the early instants following the shock, which are analyzed here,
the whisker did not slip onto the bar such that the contact point
along the whisker can be considered invariant. Whisker move-
ments are captured using a bird’s-eye view high-speed camera
operating at 2.5 kHz (Figure 7A). Whisker centerline profiles are
tracked within each frame between the fur and the bar with
a custom-designed semi-automatic script. The shock-induced
whisker deflection profile U(s, t) is obtained by subtracting, for
each frame, the whisker intrinsic profile as determined from
images recorded before the shock.

The resulting sequence of shock-induced whisker deflections
is shown in Figure 7B for a β whisker (length 46 mm) during
the first 3 ms from the instant of collision. Consistent with the
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FIGURE 6 | Shock-induced mechanical signal at the whisker base.

(A) Time-evolution of the quasi-static κqs(t) (dotted line) and dynamic κdyn(t)
(solid line) base moment for different contact location (color code).
(B) Evolution of the time-derivative of the base moment κ̇(t). (C) Peak

amplitude �κ̇max as a function of the contact location. The inset shows the
same data normalized by the quasi-static component κ̇qs(τpeak). (D) Delay
τpeak (see arrows on panel B) as a function of the contact location. The dotted
line corresponds to the best linear fit, yielding an effective velocity 0.69cwave .

model, a deflection wave is observed characterized by a negative
maximum deflection propagating upward. As expected, the wave
appears to propagate at constant speed as indicated by the lin-
ear dependence of the location of the maximum deflection with
time (Figure 7C). This allows us to extract an effective wave veloc-
ity equal to 5.6 m/s, in close agreement with the typical value
predicted before.

In order to more quantitatively compare these results with
the biomechanical model, we decomposed the whisker dynamics
into rapid resonant oscillations superimposed onto a slow quasi-
static sequence of deformation imposed by the moving bar. The
quasi-static evolution Uqs(s, t) is first evaluated using the profiles
measured at long time scale, i.e., when the relative contribution of
the dynamic oscillation is expected to be negligible (t > 8 ms). As
expected, in this regime, Uqs(s, t) can be linearized as Uqs(s, t) =
VbartŪ(s). The normalized profile Ū(s) is well fitted by the static
theoretical profile in the limit of small deflection (see “Methods”).
The best fit yields a value of ε = 0.25. Using the long time-scale
normalized profile Ū(s), the complete sequence of whisker deflec-
tion U(s, t) is computed using the same scheme as described

earlier [adapted to the linear displacement configuration (see
“Methods”)]. The comparison, for each parameter, is shown in
Figures 7B–D. The model quantitatively captures not only the
wave propagation dynamics (r2 = 0.96, p < 2.10−9) (Figure 7C),
but also the amplitude of the maximum deflection (r2 = 0.94,
p < 2.10−8) (inset in Figure 7C) and, most importantly, the base
curvature signal (r2 = 0.94, p < 2.10−8) (Figure 7D).

Identical measurements were performed for a C1 whisker
(length 36 mm; ε = 0.15). The wave dynamics was found con-
sistent with the model prediction (r2 = 0.95, p < 10−5) with a
wave velocity of 5.8 m/s, close to the value obtained for the β

whisker. The measured wave amplitude appeared significantly
lower than predicted during the first ms following the shock,
resulting in low values of correlation for this parameter (r2 =
0.41, p = 0.06). After this initial period, however, a very consis-
tent match was recovered (r2 = 0.97, p < 5.10−5). The measured
curvature signal at the whisker base being rather unaffected by
the early deflections of the whisker tip, it was found to agree
with the prediction for all the duration of the process (r2 = 0.65,
p = 0.0027).
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FIGURE 7 | Experimental shock-induced whisker dynamics. (A) Snapshot
of the whisker/object initial contact (sampling rate 2.5 kHz) between the
vertical bar and the β whisker. The result of the whisker tracking is
superimposed (white line) on the frame. The direction of movement of the
bar is indicated by an arrow. (B) Whisker profiles in the reference frame of
the whisker base (δt = 0.8 ms). The bottom panel is a magnified view of the

low amplitude deformation in the top panel. Solid and dotted lines correspond
to experimental and theoretical profiles, respectively. (C) Position of the
maximal deformation as a function of the time elapsed since the shock (see
arrow in B). The gray line is the best linear fit and corresponds to a wave
velocity 5.6 m/s. (D) Time-evolution of the experimental (solid line) and
predicted (gray line) κ(t) base curvature signal.

CONSEQUENCE FOR EVENT-BASED OBJECT POSITION ENCODING
As the rat repetitively whisks onto an object, it produces a series of
shocks. The present work demonstrates that each of them triggers,
a few ms after contact, a characteristic signature in the base cur-
vature signal which can be quantitatively predicted using a first
order mechanical model of the whisker. The resulting mechani-
cal stimulation at the whisker pad should be sufficiently intense
to trigger a clear neural response. As displayed in Figure 7, the
whisker peak base curvature is of the order of 10−3 mm−1 and
its maximum time-derivative varies up to 1 mm−1. s−1. Stimuli
of comparable intensity have been shown to elicit reliable cortical
discharges (O’Connor et al., 2010b; Huber et al., 2012).

Notice that the peak in the base curvature time derivative has
an opposite sign and a larger amplitude compared to the long-
time component, which may explain how so-called touch cells
may specifically respond to first contact (Szwed et al., 2003). It has
been recently proposed that these cells may mediate the coding of
object angular position with respect to the pad through the pre-
cise timing of the shock event within the whisking cycle (Knutsen
and Ahissar, 2009). The present biomechanical analysis allows us
to estimate how the pre-neural whisker transduction contributes
to the horizontal resolution of such an encoding scheme.

If one assumes that the neural response is triggered by the
maximum of κ̇(t), the jitter �T in the mechanoreceptor response

(the dispersion in spike timing) should be a fraction of the funda-
mental resonant period, i.e., a few ms. With a characteristic rota-
tion rate during whisking of order γ = 400◦, this yields an angular
resolution of γ�T ≈ 1◦ consistent with available behavioral data
(Knutsen et al., 2006). This crude evaluation implicitly ignores
the lag between the shock and the arrival of the deflection wave
at the whisker base that elicits the mechanoreceptors’ response.
This delay was shown to be of the order of cwaveLcontact-base where
Lcontact-base is the arc length between the contact point and the
whisker base. This lag effect induces an additional error of up to
a few degrees on the angular position of the object if its radial
distance is unknown.

One may therefore suggest that the radial distance is evaluated
using a parallel coding channel. One possible scenario, as origi-
nally proposed by Szwed et al. (2003), relies on the intensity of the
mechanical signal which appears to decay rapidly with the radial
distance, as shown in Figure 6C. By combining both information
(timing and intensity of the shock-induced whisker base mechan-
ical signal), a precise localization of the object can be recovered
(Knutsen and Ahissar, 2009).

DETACHMENT
We now turn to the detachment process that occurs when the
whisker tip reaches the second edge of the object. We note t = 0
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the time at which the whisker snaps off. At t > 0, the whisker
detaches from the object then oscillates freely in air. The profile is
decomposed as U(s, t) = Uqs(s, t)+ u(s, t) where Uqs(s, t) is the
quasi-static evolution. The continuity of the position and velocity
profiles at time t = 0 imposes:

u(s, t = 0) = �Uqs(s) (12)

u̇(s, t = 0) = �U̇qs(s) (13)

where �Uqs(s) = Uqs(s, 0−)− Uqs(s, 0+) and �U̇qs(s) =
U̇qs(s, 0−)− U̇qs(s, 0+). The term u(s, t) is decomposed
along the resonant modes with boundary conditions
V ′′(ε) = (s4V ′′)′(ε) = 0 as in Equation (7):

u(s, t) =
∑

i

Vi(s)(αi cos(
√

1−ζ2ωit)

+ βi sin(
√

1−ζ2ωit))e−ζωit (14)

Projecting Equations (12) and (13) on each spatial mode, the
coefficients αi and βi can be written, in the limit ζ� 1:

αi =
∫ 1

ε

s2�Uqs(s)Vi(s)ds (15)

βi = 1

ωi

∫ 1

ε

s2�U̇qs(s)Vi(s)ds (16)

In order to obtain an expression of �Uqs and �U̇qs, the quasi-
static profiles are computed at time {−δt, 0−, 0+, δt} with δt <<

1/γ. This allows us to obtain linearized expressions of the quasi-
static profile sequences around t = 0, before and after the shock,
in the form:

Uqs(s, t < 0) = Uqs(s, 0−)+ Uqs(s, 0−)− Uqs(s,−δt)

δt
t (17)

Uqs(s, t > 0) = Uqs(s, 0+)+ Uqs(s, δt)− Uqs(s, 0+)

δt
t (18)

This yields:

�Uqs(s) = Uqs(s, 0−)− Uqs(s, 0+) (19)

�U̇qs(s) = 1

δt

(
Uqs(s, 0−)− Uqs(s,−δt)− Uqs(s, δt)

+Uqs(s, 0+)
)

(20)

Figure 8A shows the evolution of the whisker profile just after
the detachment, for different base angle θb at detachment. When
the quasi-static evolution is subtracted (graph B), one recov-
ers a wave propagation mechanism qualitatively similar to that
observed after the shock (wave speed of order 3.5 m/s). This
event produces a characteristic signature at the whisker base
shown in Figures 8B,C. Notice that the mechanical signal is rather
insensitive to the whisker base angle prior to the detachment.

As indicated earlier, the present analysis is based on the
assumption that the whisker remains weakly deformed during the

whole process. As shown in Figure 8A, this hypothesis becomes
valid only a few hundreds of microseconds after the event is trig-
gered. At very early time, and for large angular and small radial
distances to the object, the tip of the whisker exhibits large deflec-
tion angle. However, owing to the conical shape of the whisker,
the large deformation appears to be confined to the very end of
the whisker: in the range of configurations explored, 80% of the
whisker, i.e., 99% of the mass, displays a deflection angle smaller
than 0.5. The small angle approximation should therefore pro-
vides a reasonable first order approximation of the detachment
dynamics for all situations explored.

The whisker detachment from the object also triggers a deflec-
tion wave that propagates upward at a speed comparable to that
observed for the shock event. The resulting signal at the whisker
base appears to be ≈10 times more intense than for the shock.
It should thus trigger significant neural response, as confirmed
by the existence of so-called detachment cells whose response is
specifically triggered by such events (Szwed et al., 2003). Our
study shows that an increase in the friction coefficient delays
the detachment process (Figure 3B). The precise timing of the
detachment-induced signal may thus provide an indication on
the surface frictional properties. Such a scenario would however,
require the independent knowledge of the angular position of the
object edge.

VIBRISSAE CAN BE ASSUMED TO BE UNIFORMLY DAMPED OVER ALL
SPATIAL MODES
A key assumption in the development of the present model is that
the damping coefficient of the vibrissa is constant over all spa-
tial modes. Previous experimental studies, however, have shown
that magnification ratio increases with mode number (Hartmann
et al., 2003; Neimark et al., 2003). Specifically, the bottom plot
of Figure 4 of Hartmann et al. (2003), and Figure 4 of Neimark
et al. (2003) (e.g., the β whisker) both show an increase in
peak magnitude with mode number. Note that Neimark et al.
chose to plot the curve assuming constant amplitude (instead
of constant acceleration), so each peak must be scaled by the
frequency squared to demonstrate the increase with mode num-
ber. This experimental finding has until now been unexplained,
although Hartmann et al. (2003) suggested that it was likely
in part due “to nonlinear effects of viscous and/or hysteretic
damping.”

Here we show that, at odds with the authors’ proposed inter-
pretation, a linearly damped model of whisker with a mode-
independent damping ratio, as assumed in the present work,
allows one to correctly capture this measurement. It also illus-
trates how the mode-decomposition approach introduced in the
present study, may allow to quantitatively re-analyze earlier data
on whisker dynamics.

Throughout the calculation, we use the same notation as
in the present article. The text indicates that the whisker has
a length Lwhisker = 53 mm, a base radius b = 105 μm and a
tip radius rtip = 5.5 μm. Assuming a conical shape, this yields
ε = rtip/b = 0.05. Using the Young modulus E = 3.02 GPa and
ρ = 1.14 mg/mm3 indicated in the article, the values for the
(undamped) resonant frequencies can be computed and read:
Fi = {37.9, 93.4, 175.4 Hz}. The whisker base is forced with a
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FIGURE 8 | Detachment-induced whisker dynamics. (A) Consecutive whisker profiles (δt = 0.6 ms) for different base angle θb at detachment. (B) Dynamic
profiles [the quasi-static evolution has been subtracted (δt = 0.2 ms)]. (C) Base moment κ(t) and its time-derivative signals for different base angle at detachment.

sinusoidal motion [Figure 9A reproduced from Hartmann et al.
(2003)], starting at t = 0:

Abase(t) = Abase sin(ωt) (21)

The whisker response is derived using the same scheme as
detailed in the present article. The displacement sequence is
broken into U(s, t) = Uqs(s, t)+ u(s, t) where the first term rep-
resents the massless whisker response: Uqs(s, t) = Abase sin(ωt).
The dynamic term can thus be written as:

u(s, t) =
∑

i

Vi(s)

∫ 1

ε

s2Vi(s)ds

∫ t

0
G(t − t′)Üqs(s, t′)dt′ (22)

= −Abase

∑
i

Vi(s)

∫ 1

ε

s2Vi(s)ds

∫ t

0
G(t − t′)ω2

× sin(ωt′)dt′ (23)

where G(t) is the Green’s function of the resonant system
(Equation 49).

The time-dependent term in Equation (23) can be analytically
integrated. It oscillates at the driving frequency with an abso-
lute peak-to-peak amplitude that can be written as 2F(ω/ωi, ζ).

Due to the resonant nature of the system, the spectrum is
dominated by the closest resonant mode. We thus approximate
the maximal amplitude of the response signal with the sum of the
maximal amplitude of each mode signal. The ratio between the
whisker tip oscillation amplitude (the peak-to-peak amplitude of
signal U(s, t) measured at s = ε) and the driving base amplitude
2Abase thus reads:

R(ω) ≈ 1+
∑

i

[
Vi(ε)

∫ 1

ε

s2Vi(s)ds

]
F(ω/ωi, ζ) (24)

The dependence of the maxima of the response signal with
mode number thus depends primarily on the series of prefactors

Vi(ε)
∫ 1
ε

s2Vi(s)ds, such that no conclusion can be drawn with-
out prior knowledge of the resonant spatial modes. In the present
case, this prefactor reads, for the first three modes: {3.7, 6.5, 7.6}
and thus does increase with the mode number. Notice that the
evolution of the peak amplitude results from the conical shape of
the whisker—it would decrease for a cylindrical rod. Figure 9B
compares the prediction obtained for a damping ratio of 0.15 (a
characteristic value given by the authors) identical for all three
modes. Although no adjustable parameter has been used to pro-
duce this plot, it does captures the evolution of the whisker tip
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FIGURE 9 | Comparison with Hartmann et al. (2003). (A) Figure 1 from Hartmann et al. (2003), showing the whisker vibration driven by the base imposed
sinusoidal motion. (B) Resonance curves: the black line is the experimental measurements of the tip to base amplitude ratio reported by Hartmann et al. The
blue line is the result of the present calculation.

response. The slight over-estimation of the two first modes can be
due to the fact that the whisker displays significant spontaneous
curvature, such that the small angle limit is not strictly valid.

It thus appears that the data reported in previous experimen-
tal studies (Hartmann et al., 2003; Neimark et al., 2003) are, to
first order, consistent with a linear damping model with a unique
damping ratio for all modes.

DISCUSSION
The biomechanical model presented here provides a generic
method to describe the mechanical transduction operated by the
whisker in realistic conditions of exploration. The theoretical
approach consists of successively computing the slow (quasi-
static) evolution of the whisker and the rapid resonant dynamics.
It provides prediction of the complete whisker deflection, and in
particular of the mechanical signal elicited in the follicle which
conveys the relevant peripheral input for the mechanoreceptors.
It is therefore directly amenable to experimental comparison as
illustrated in the present article in the case of first contact. In
this configuration, we were able to characterize the dynamic of
the deflection wave with micron-scale resolution by subtract-
ing the static configuration of the whisker prior to the event.
For the detachment case, the deflection wave proved to be difficult
to observe with such precision owing to the continuous evolution
of the whisker quasi-static profile prior to the event.

Beyond the specific context in which it is implemented in the
present study, this biomechanical model may constitute a useful
tool for understanding the neural encoding of tactile information.
It may in particular guide the type of stimuli that needs to be
played at the whisker base during electrophysiological recordings
in the somatosensory cortex. It should also find direct appli-
cations in robotic rats by easing the development of decoding
algorithms allowing one to extract relevant physical information
from the whisker inputs (Kim and Möller, 2007). This approach,
unlike finite-element models, allows one to clearly identify the
consequences of whiskers’ resonant properties.

The model is based on several simplifying assumptions and
should therefore be considered as a first order description of
the whisker dynamics. First, the whisker spontaneous curvature
and out-of-plane deflections are ignored. For moderately curved
whisker, the spontaneous curvature can be accounted for when

deriving the quasi-static sequence by modifying Equation (1)
as explained in the “Methods” section. The prediction of the
dynamic model itself does not depend on the resting state.
However, for largely deformed whisker, the paradigmatic scenario
envisioned here might be changed. In particular, the hypothesis
of a shock normal to the whisker axis might be unrealistic for
strongly concave-forward whiskers (Quist and Hartmann, 2012).
For such vibrissae, the out-of-plane deflections are bound to be
also significant.

Second, the whisker is assumed to exhibit a conical shape and
to be linearly elastic, with uniform density and elastic modulus.
It has been recently reported that the Young’s modulus E may
vary significantly along the whisker, owing to its internal structure
(Quist et al., 2011), although conflicting results exist (Carl et al.,
2012). However, one should notice that the modulus appears in
the equation through the bending stiffness which scales as r4E (r
whisker radius), so that the most critical hypothesis should actu-
ally lie in the conical shape assumption. Indeed, a 10% deviation
to the conical shape is expected to induce a larger deviation than
a 40% variation of E along the whisker.

Third, the model assumes linear damping, characterized by a
unique parameter ζ in the dynamic equation. This ad-hoc intro-
duction of a damping term is not based on any sort of physical
modeling and reflects the absence of prior knowledge on the
nature of dissipative processes. At least five different mecha-
nisms may contribute to damping: visco-elastic dissipation in
the whisker itself, mechanical radiation in the tissue, air friction,
interfacial dissipation at the whisker/substrate contact, visco-
elastic dissipation in the follicle. In the absence of well-established
mechanical descriptions of the dissipative mechanism, it is com-
mon for lightly damped systems (i.e., effective damping ratio
<0.2) to assume proportional damping (Weaver et al., 1990), as
done in the present work. One should notice that typical damp-
ing ratios reported in the literature for the fundamental mode lies
in the range 0.1 < ζ < 0.2 such that the resonant system is well
within the underdamped limit. As a result, the resonant frequency
is not strongly affected by the precise choice of the damping
ratio. During the review process, one of the referees pointed to us
that the linear damping hypothesis with a unique damping ratio
appears at odds with resonance curves experimentally obtained
by Hartmann et al. on isolated whiskers (Hartmann et al., 2003).
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When re-analyzed using the resonant modes description, these
data are in fact consistent with this hypothesis as demonstrated
in the “Methods” section.

Within this set of hypothesis, it appears that the whisker trans-
duction mechanism depends on the whisker intrinsic properties
through only three independent parameters: (1) the length of the
equivalent non-truncated whisker L (2) the wave velocity cwave =
α
√

E/ρ that characterizes the speed at which information is con-
veyed from the whisker tip to the follicle, and (3) the damping
factor ζ that reflects the dissipative processes (the intrinsic time-
scale k is the product 2cwaveL). Notice that the Young’s modulus E,
the density ρ, and the cone angle α vary in a small range across the
whisker pad (Hartmann et al., 2003; Carl et al., 2012; Voges et al.,
2012) so that cwave should weakly depend on the whisker identity.
Similarly, the values reported for the damping factor appear to
lie within a rather small range (Hartmann et al., 2003; Neimark
et al., 2003). When displayed in reduced coordinates (all lengths
being expressed in units of L), the present results should therefore
provide a reasonable description of the rapid whisker dynamics,
regardless of the whisker identity.

The last and most limiting hypothesis of the proposed dynamic
model is that its validity requires the whisker deflection to remain
small. For large deflections, the dynamic equation should include
additional terms that reflect the coupling between the quasi-
static (deformed) state and the oscillating dynamic. This correc-
tion might become significant when one attempts to describe
situations in which the whisker vibrates around strongly pre-
deformed configurations, such as encountered during exploration
of textured surfaces for instance. At the expense of signifi-
cant mathematical developments, it should be possible to derive
the resonant spatial modes in this regime and then implement
the same theoretical scheme. However, as illustrated with the
detachment process, the whisker tapered shape tends to con-
fine the large deflection to the very end of the whisker even
for large angular distances. One may thus hope that this first
order description provides a good approximation in most real-
istic exploratory conditions. We postpone the discussion of this
regime of whisker oscillations during sliding to a forthcoming
publication.

METHODS
EQUILIBRIUM PROFILE OF A FRICTIONAL WHISKER
The whisker is modeled as a slender tapered rod of length L and
maximum base radius b. The cone angle b/L is noted α. The
whisker base is rigidly clamped with a fixed angle θ(s = 1) = θb

and submitted to a frictional force F assumed to be applied at a
single point located at s = ε along the whisker. The present analy-
sis is restricted to configurations where ε > stip which constrains
the whisker to be locally tangent to the object surface. The orien-
tation of the friction force F with respect to the direction normal
to the whisker at s = ε is set by the friction angle φ = tan(μ)

where μ is the friction coefficient (see Figure 2B). Forces balance
along the whisker yields an expression for the normal N(s) and
tangential force T(s) at location s > ε:

N(s) = F cos (φ− θ+ θ(ε)) (25)

T(s) = F sin (φ− θ+ θ(ε)) (26)

The momentum equilibrium further imposes:

∂M

∂s
− N(s) = 0 (27)

where the bending moment can be expressed as M(s) = EIθ′, I =
πα4s4

4 is the area moment of inertia and E is the Young’s modu-
lus. From Equations (25) and (27), one obtains the dimensionless
static equilibrium equation:

(s4θ′)′ − F̃ cos (φ− θ+ θ(ε)) = 0 (28)

where all distances are scaled by the length of the non-truncated
cone L and the reduced force F̃ = 4F/

(
πα4EL2

)
. Notice that the

intrinsic in-plane whisker curvature θ′int(s) could be taken into
account by substituting the first (derivative) term by (s4(θ′ −
θ′int))

′. In the present study, the intrinsic whisker curvature is
supposed to be null. Equation (28) is solved numerically using
Mathematica v8.0 (Wolfram Research) through integration of the
following equation:

∂

∂s

(
(s4θ′)′

cos (φ− θ+ θ(ε))

)
= 0 (29)

We assume the whisker to be rigidly clamped in the pad such that
θ(1) = θb. The friction force is assumed to apply at a single loca-
tion so that the bending momentum is null at the contact point:
θ′(ε) = 0. For any values of the friction coefficient μ, maximum
angle θb, and contact point location ε, one finds a unique solution
when further imposing the contact angle θ(ε) < θb.

For weakly deformed whiskers, a small angle approximation of
Equation (29) can be used which reads, in Cartesian coordinates:

(s4U ′′)′′ = 0 (30)

ORTHOGONALITY OF THE RESONANT MODES
Multiplying Equation (4) for mode i by sVj and integrating
between ε and 1 gives the equality:

∫ 1

ε

(
s4V ′′i

)′′
Vjds = k2ωi

∫ 1

ε

s2ViVjds (31)

Integrating the left member by parts (twice) yields:

[(s4V ′′i )′Vj]1ε − [s4V ′′i V ′j ]1ε +
∫ 1

ε

s4V ′′i V ′′j ds = k2ωi

∫ 1

ε

s2ViVjds

(32)

The boundary conditions involve that the bracket terms are null.
One can rewrite the same expression by swapping i and j. If we
now subtract both equations, we obtain:

(ω2
i − ω2

j )

∫ 1

ε

s2ViVjds = 0 (33)
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The spatial mode Vi(s) are normalized such that
∫ 1
ε

s2V2
i = 1.

This yields the orthogonality property of the resonant modes:

∫ 1

ε

s2ViVjds = 0 for i �= j

∫ 1

ε

s2ViVjds = 1 for i = j (34)

This relationship has practical consequences. First, let’s con-
sider a dynamic evolution of the whisker in the form: u(s, t) =∑

i qi(t)Vi(s)ds. The amplitude of mode i can be directly com-
puted as:

qi(t) =
∫ 1

ε

s2Vi(s)u(s, t)ds (35)

Second, if we now consider a situation where the whisker oscil-
lates through the application of a distributed normal force gradi-
ent f (s, t), Equation (3) reads:

∂

∂s2

(
s4 ∂2u

∂s2

)
+ k2s2 ∂2u

∂t2
= f (s, t) (36)

Introducing the mode decomposition in this equation, we write:

∑
i

[
(s4V ′′i )′′qi + k2s2Viq̈i

] = f (s, t) (37)

The modes Vi being solutions of Equation (4), the equation
can be written as:

∑
i

s2Vi
[
q̈i + ω2

i qi
] = 1

k2
f (s, t) (38)

Projecting this equation on the spatial mode Vi(s) and using
the orthogonality property, one obtains the dynamic equation for
the mode amplitude qi(t):

q̈i + ω2
i qi = 1

k2

∫ 1

ε

f (s, t)Vi(s)ds (39)

COUPLING THE WHISKER’S RAPID DYNAMICS TO ITS QUASI-STATIC
EVOLUTION
The whisker displacement U(s, t) is decomposed in the
form U(s, t) = Uqs(s, t)+ u(s, t) where Uqs(s, t) describes the
quasi-static evolution. By introducing this decomposition in
Equation (3), one obtains the dynamic equation for u(s, t):

∂2

∂s2

(
s4 ∂2u

∂s2
+ s4 ∂2Uqs

∂s2

)
+ k2s2

(
∂2u

∂t2
+ ∂2Uqs

∂t2

)
= 0 (40)

We assume Uqs(s, t) to obey the small deflection equilibrium
Equation (30): (s4U ′′qs)

′′ = 0. The resonant component of the
whisker deflection thus obeys the dynamic equation:

∂2

∂s2

(
s4 ∂2u

∂s2

)
+ k2s2 ∂2u

∂t2
= −k2s2Üqs(s, t) (41)

Using the mode-decomposition u(s, t) =∑i qi(t)Vi(s) and the
orthogonality of the resonant modes [see Equations (36) and
(39)], the amplitude of each mode qi(t) is found to obey the
dynamic equation:

q̈i + 2ζωiq̇i + ω2
i q = −

∫ 1

ε

s2Üqs(s, t)Vi(s)ds (42)

This approach is implemented in the case of a shock.
Prior to the shock, the whisker experiences a solid rotation
at constant rotation rate γ which simply reads: Uqs(s, t <

0) = γ(1− s)t. Integrating Equation (30) with boundary con-
ditions U(1) = 0, U ′(1) = γt, U(ε) = U ′′(ε) = 0, one obtains
the evolution of the quasi-static profile immediately after the
shock:

Uqs(s, t > 0) = γt
(1− s)

(
2s2 + ε2(1+ s)− εs(3+ s)

)
2(1− ε)2s2

(43)

Based on these two expressions, one can compute the second
time-derivative of the quasi-static profile Üqs(s, t):

Üqs(s, t) = δ(t)γŪ(s) (44)

where δ(t) is the Dirac function and Ū(s) is a normalized profile
that reads:

Ū(s) = U̇qs(s, 0+)− U̇qs(s, 0−) = ε(1− s)2(ε− 3s+ 2sε)

2(1− ε)2s2

(45)

In order to integrate Equation (42), one needs to compute the
Green’s function G(t), i.e., the response of the dynamic system,
initially at rest, to a Dirac of unit force:

(
d2

dt2
+ 2ζωi

d

dt
+ ω2

i

)
G(t) = δ(t) (46)

with boundary conditions G(t < 0) = G′(t < 0) = 0. For t > 0,
the general solution reads:

G(t > 0) =
(
α cos(

√
1− ζ2ωit)+ β sin(

√
1− ζ2ωit)

)
e−ζωi t

(47)

In order to determine α and β, we integrate Equation (46)
between 0− and 0+, once and twice:(

G′(0+)− G′(0−)
)+ 2ζωi

(
G(0+)− G(0−)

) = 1(
G(0+)− G(0−)

) = 0 (48)

These two equations and the boundary conditions impose
G(0+) = 0 and G′(0+) = 1. The solution thus finally reads:

For t > 0:G(t) = 1

ωi

√
1− ζ2

e−ζωi t sin
(
ωi

√
1− ζ2t

)

For t < 0:G(t) = 0 (49)
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The mode amplitude qi(t) of the dynamic component associ-
ated with the event occurring at time t = 0 simply follows, for
t > 0:

qi(t) = −
(∫ 1

ε

s2Ū(s)Vi(s)ds

)
G(t) (50)

SURGICAL PREPARATION AND WHISKER STIMULATION FOR In vivo
EXPERIMENTS
Experiments were conducted in conformity with French (JO
2001-464) and European legislation (86/609/CEE) on animal
experimentation. An adult male Wistar albino rat (318 g) was
anesthetized with urethane (1.5 g/kg, i.p.). Body temperature was
maintained at 37°C. The scalp was retracted after a subcutaneous
injection of a local anesthetic (Lidocaine 1%). The skull was then
cemented to a metal bar. A 1 mm thick metal bar was moved by
a linear stepper motor (Linear Motor MLL302, Systro Gmbh) at
a speed Vbar = 60 mm/s. The bar contacted the whisker near its
tip. The whiskers were trimmed at the end of the experiment,
and their diameters were measured at different positions, from
base to tip. This allowed us to determine the length L of the ideal
(non-truncated) cone.

HIGH-SPEED VIDEOGRAPHY OF WHISKER DEFLECTIONS
Whisker movements were recorded at a frame rate of 2.5 kHz
with a high-speed camera (Photron Fastcam SA3/105 mm f-2.8
DG Macro Sigma; pixel resolution 55 μm) mounted vertically
above the animal. Whiskers were illuminated from below using a
backlight (SSLUB, Phlox and PP520, Gardasoft). The camera pro-
duces bird’s-eye view movies of the whiskers. We choose to study
whiskers β and C1 whose curvature plane are essentially hori-
zontal and can thus be entirely imaged with the present optical
configuration (Figure 7A).

WHISKER TRACKING
Detecting the shock-induced deflection wave, whose typical
amplitude is of the order of a few tens of microns, required
subpixel determination of the whisker centerline profile in each
frame. The whisker deflected by the object was tracked using
a semi-automated algorithm written in Python. We subtracted
the average background image from each frame in the movie.
Whisker centerline profiles were then extracted: we scanned all
columns of each movie frame in order to extract the pixel of max-
imal intensity defining the approximate position of the whisker.
The precise position of the whisker centerline in each column
of the frame was then defined as the barycenter (each pixel is

weighted by its intensity) of the pixels surrounding the pixel of
maximal intensity (center position ±2 pixel) . In order to extract
the shock-induced deflection sequence (Figure 7B), the whisker
profile determined before the shock was subtracted to each post-
shock profile. The deflection sequence was then smoothed using
a five pixel wide sliding window. This procedure yields a spatial
resolution of ≈1 μ on the shock-induced whisker deflection.

ANALYSIS OF EXPERIMENTAL DATA
Our experimental configuration slightly differed from that con-
sidered in the model. In the latter, the whisker rotated at constant
speed across a fixed obstacle. In the experiment, the whisker was
fixed, and the obstacle was moved linearly at constant speed Vbar.
For this shock configuration, it is easy to show that Equation (11)
becomes:

U(s, t > 0) = VbartŪ(s)− Vbar

∑
i

Vi(s)

(∫ 1

ε

s2Ū(s)Vi(s)ds

)

×
e−ζωi t sin

(√
1− ζ2ωit

)
√

1− ζ2ωi

(51)

The back-illumination geometry combined with the bird’s-eye
optics results in a shadow region in the vicinity of the object that
prevented the tracking of the whisker down to the whisker/object
contact point. Similarly, the fur hampered a proper observation of
the whisker near the skin. As a consequence, the positions s = ε

and s = 1 could not be determined from the images, and were
thus left as free parameters. The wave speed was determined by
linear fitting the position of the first deflection minimum as a
function of the time elapsed since the first contact (Figure 7C).
The four first resonant modes were used to fit the data. Fitting
was performed with Matlab’s fminsearch function. Correlation
between experimental and theoretical data was assessed with
Pearson’s correlation test on the first 3 and 5 ms for C1 and β

whiskers, respectively.
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When an animal moves an array of sensors (e.g., the hand, the eye) through the
environment, spatial and temporal gradients of sensory data are related by the velocity
of the moving sensory array. In vision, the relationship between spatial and temporal
brightness gradients is quantified in the “optical flow” equation. In the present work, we
suggest an analog to optical flow for the rodent vibrissal (whisker) array, in which the
perceptual intensity that “flows” over the array is bending moment. Changes in bending
moment are directly related to radial object distance, defined as the distance between
the base of a whisker and the point of contact with the object. Using both simulations
and a 1×5 array (row) of artificial whiskers, we demonstrate that local object curvature
can be estimated based on differences in radial distance across the array. We then
develop two algorithms, both based on tactile flow, to predict the future contact points
that will be obtained as the whisker array translates along the object. The translation of
the robotic whisker array represents the rat’s head velocity. The first algorithm uses a
calculation of the local object slope, while the second uses a calculation of the local object
curvature. Both algorithms successfully predict future contact points for simple surfaces.
The algorithm based on curvature was found to more accurately predict future contact
points as surfaces became more irregular. We quantify the inter-related effects of whisker
spacing and the object’s spatial frequencies, and examine the issues that arise in the
presence of real-world noise, friction, and slip.

Keywords: rat, vibrissae, prediction, tactile flow

INTRODUCTION
As an animal moves through the environment, the spatial and
temporal gradients of sensory data it acquires are related through
the velocity of its moving sensory surfaces. This relationship is
represented by the “complete derivative” (Munson et al., 2009),
and represents a mathematically inviolate description of informa-
tion flow over moving sensory surfaces.

In the field of visual neuroscience, the complete derivative has
been termed the “optical flow” equation. The optical flow equa-
tion relates spatial and temporal intensity (brightness) gradients
to the velocity of the animal (Barron et al., 1994; Beauchemin and
Barron, 1995; Horn and Schunck, 2003). Recent papers have for-
malized the idea of “tactile flow” to describe the flow of strain
energy density across the hand (Bicchi et al., 2008; Scilingo et al.,
2008), and bending moment (torque) at the whisker base across
the rodent vibrissal (whisker) array (Gopal and Hartmann, 2007;
Hartmann, 2009).

Notably, the optic and tactile flow equations are typically used
by assuming that the animal makes use of spatial and tempo-
ral gradients of brightness (vision) or strain energy (tactile) to
compute the velocity of its sensor array.

We recently proposed a complementary scheme: namely, if
the animal already knows its own velocity, then it can use the
complete derivative to predict future sensory data (Gopal and

Hartmann, 2007; Hartmann, 2009). Computing the complete
derivative at multiple spatial scales would allow the animal to pre-
dict the stimulus that it will measure in the next sensory instant
and provide a mechanism to distinguish between externally-
generated and self-generated motion.

In the present work, we used the rat vibrissal system as a model
to examine the plausibility of using the complete derivative to
predict upcoming sensory data. Rats actively brush and tap their
whiskers (vibrissae) against objects to tactually explore the envi-
ronment. During detailed exploration of objects, rats move their
vibrissae rhythmically, between 5 and 25 Hz (Welker, 1964; Berg
and Kleinfeld, 2003). During navigation behaviors, however, rats
often hold their whiskers out in a relatively static position as they
follow along a wall or tunnel.

The present work was designed to investigate tactile flow across
the vibrissal array in this type of translational navigation behav-
ior. We used both simulations and a 1 by 5 array of artificial vibris-
sae (hardware) to investigate the plausibility of using the complete
derivative to predict upcoming whisker-object contact points.

METHODS
Our initial investigations were performed in simulation, and we
then investigated the real-world issues that arise with implemen-
tation on a 1× 5 array of robotic whiskers.
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ALGORITHMS FOR THE DETERMINATION OF RADIAL DISTANCE,
SLOPE, AND CURVATURE
Radial distance determination using translations instead
of rotations
Radial object distance is defined as the Euclidean distance
between the base of a vibrissa and the point at which it makes
contact with an object. Previous work has shown that an object’s
contour can be extracted by continuous rotation of a vibrissa
against an object (Kaneko et al., 1998; Solomon and Hartmann,
2010). As the vibrissa “sweeps” against the object through a
rotation, measurement of the bending moment (torque) at the
vibrissa base permits the radial object distance to be continu-
ously computed, and the object contour thereby inferred. This
technique was empirically validated with sweeps of a vibrissa
past three differently shaped objects (Solomon and Hartmann,
2010). The rotational sweep models vibrissal motion during typ-
ical “whisking” behavior, in which the rat rotates its vibrissae at
their base.

During wall-following behavior, however, rats do not always
whisk, but sometimes keep their vibrissae protracted against the
wall. This behavior is better modeled as a relative translation
between vibrissa and object, rather than as a rotation. Although
Solomon and Hartmann (2010) developed equations to describe
the translational sweep of a vibrissa past an object, the equations
were not validated in hardware.

In the present study, we experimentally validate the transla-
tion equations developed in Solomon and Hartmann (2010) and
use them to extract object contours. Equations 1–3 below provide
only a brief overview of the differences between radial distance
extractions during rotation versus translation. A more complete
description of radial distance extraction based on rotation is
provided in Solomon and Hartmann (2010).

As shown in previous work (Kaneko et al., 1998; Solomon
and Hartmann, 2006, 2008, 2010, 2011; Birdwell et al., 2007) the
radial distance r0 to the initial contact point on an object can be
calculated using

r0 = k
φ0

M0
(1)

where k = 3EI, E is the elastic modulus of the vibrissa, I is the
area moment of inertia, φ0 is a small pushing angle beyond initial
contact (typically about 3◦), and M0 is the bending moment at
the vibrissa base.

Once the radial distance r0 to the initial contact point is cal-
culated, the whisker undergoes either a small rotation (dφ) or
translation (dL). Radial distance at the current time step (ri)
can then be calculated based on estimates of radial distance at
previous time steps.

The procedures for calculating ri after a translation or rotation
are quite similar, but they differ in the calculation of the magni-
tude of the vector δi−1, perpendicular to the longitudinal axis of
the vibrissa at the contact point. With the x-axis defined to be
parallel to the vibrissa at t = t0, Solomon and Hartmann (2010)
define δi−1 for rotation as:

δ̄i−1 = −ri−1 · dφ ·
[

sin φi−1

cos φi−1

]
. (2)

where ri−1 is the radial distance at the previous time step (before
rotation), dφ is the incremental rotation, and φi−1 is the angle
between the vibrissa base at time t0 and the base at time ti−1 (after
rotation).

In contrast, δi−1 for translation is defined by:

δi−1 =
[

0
dL

]
. (3)

where dL is the incremental linear movement between time steps.
It is important to note that the base of each vibrissa is fixed per-
pendicular to the direction of linear movement for this definition
of δi−1.

The value of δi−1 is then used to calculate the next radial
distance ri, regardless of whether the whisker was translated or
rotated. For a detailed explanation of this calculation, please refer
to Figure 4 of Solomon and Hartmann (2010) and Equations
6–11 also in Solomon and Hartmann (2010).

Computing object slope and curvature from radial distances
The local slope (μ) and the local curvature (κ) of an object can
be calculated based on radial distance measurements. To calcu-
late either μ or κ, we first define our coordinate system as shown
in Figure 1. The distance dsi is the distance the base-point of the
whisker has translated in timestep i, and the direction of ds is
always coincident with the rat’s velocity. Radial distance estimates
at multiple time points, the angle dθ, and the distance ds can then

FIGURE 1 | Coordinate system for the determination of slope and

curvature. At each time step, radial distance is calculated relative to the
object. The rat’s velocity is indicated by Vrat, and the arc s is always
parallel to Vrat. The distance dsi is the distance in the direction of s between
discrete time measurements ti and ti−1. dsi−1 is the distance in the
direction of s between discrete time measurements ti−1 and ti−2. Ri is the
radial distance measure at the i th time step, dθi is an angle measure of the
change in direction of Vrat, and μi represents the local slope of the object.
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be used to find the slope μi at each time step:

μi = Ri − Ri−1 + dsi(dθi−1 + dθi)

dsi − Ri(dθi−1 + dθi)+ Ri−1dθi−1
(4)

Slope μi is defined by the differences between radial distance
measures (Ri and Ri−1) divided by the distance traveled (dsi).
Each dθ term accounts for changes in the rat velocity vector
between radial distance measurements.

Calculation of curvature is similar, but requires us to first
calculate the slope μi−1 obtained in timestep i− 1:

μi−1 = Ri−1 − Ri−2 + dsi−1dθi−1

dsi−1 − Ri−1dθi−1
(5)

Curvature is then defined using both μi and μi−1:

κi =

∣∣∣∣μi − μi−1

dsi

∣∣∣∣[
1+ (μi)

2
] 3

2

(6)

This equation is simply the discretized version of the definition
of curvature measured in 2D Cartesian coordinates. Notably, the
commonly-used simplification of Equation 6 that assumes μi is
small compared to unity (and therefore reduces the equation to
just the numerator) was empirically found to be inaccurate. The
small slope assumption does not always hold in our calculations.

When the rat’s heading does not change significantly between
timesteps, dθi and dθi−1 are both zero and Equation 4 can be
simplified to:

μi = Ri − Ri−1

dsi
(7)

where R and s still represent differences between radial dis-
tance measures (Ri and Ri−1) over the distance traveled (dsi).
Equation 5 can be similarly simplified and Equation 6 remains
the same.

Calculating slope and curvature based on radial distances
measured with multiple whiskers
So far, we have described the sensory data obtained by a sin-
gle whisker over time. Equations 4–7 apply equally well, how-
ever, to multiple whiskers making simultaneous contact with
an object, at different locations on the object. In this case, the
subscript i in Equations 4–7 should be interpreted to mean
the ith whisker, instead of the ith timestep. Figure 2 illustrates
this idea. Figure 2A illustrates that calculation of slope and
curvature with a single vibrissa requires memory of the data
acquired on the previous timestep. In contrast, Figure 2B illus-
trates that calculation of slope and curvature with multiple
vibrissa can be achieved within a single time step. This sec-
ond method is equivalent to the rat integrating information
across vibrissae within the array. In practice, calculation of
slope and curvature can occur over both a single whisker (with
memory) and multiple whiskers (at different spatial locations)
simultaneously.

PREDICTION OF FUTURE POINTS OF CONTACT AND FUTURE
CURVATURE OVER TWO DIFFERENT SPATIAL SCALES
Equations 1–7 define the calculations used to find radial dis-
tance, local object slope, and local object curvature. Using
these calculated values, we now show that it is possible to
make predictions about the sensory data the animal will
receive.

FIGURE 2 | Computing slope and curvature over multiple vibrissae.

The inset in the middle of the figure emphasizes that radial distance R is
measured from the base of the whisker to the point at which the whisker
contacts the object. (A) In the single whisker method, we imagine that
the rat compares sensory data acquired from a whisker with the data it
remembers having acquired on the previous timesteps. The rat shaded

gray indicates the location of the rat at time 1, and the rat in black outline
indicates the location of the rat at time 2, having translated slightly forward.
(B) In the multiple whisker method, we imagine that the rat compares data
across whiskers in the array at a single point in time. Both methods (A) and
(B) can be used simultaneously to explore these different spatial scales in
parallel.
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“Tactile flow” permits prediction of sensory data
Because animals control the movements of their limbs, they
control the velocity with which sensory data flow over their
sensory surfaces (Gopal and Hartmann, 2007; Bicchi et al., 2008;
Nemenman et al., 2008; Scilingo et al., 2008; Hartmann, 2009).
The time evolution of the flow field in space and time can be
written via the complete derivative as shown in Equation 8.

dAsen

dt
= ∂Aenv

∂t
+ V • ∇Asen (8)

In this equation, A is any quantity that is being measured
(intensity, temperature, etc.), and the vector V is the relative
velocity between the sensory surface and the environment. The
first term on the right represents intrinsic fluctuations in A, that
is, changes in the environment. If environmental fluctuations are
slow on the time scale of the animal’s movements, that term
becomes zero and the progression of gradients is almost com-
pletely deterministic. New information flows over the edges of
the sensory surface, but thereafter, values may be computed by
calculating the spatial gradients of A across the sensor. Equation
8 provides an inviolate mathematical description of information
flow over moving sensory surfaces. The equation is not a model, it
is necessarily true, in the same way that distance is equal to veloc-
ity integrated over time. Computing the terms of the complete
derivative at multiple spatial and temporal scales would allow the
animal to predict the stimulus that it will measure in the next
sensory instant.

Interpreting “tactile flow” for an array of vibrissae
In this paper, we choose to represent “tactile flow” through radial
distance of contact along the rat whisker because radial distance
is directly related to changes in bending moment at the vib-
rissal base (Kaneko et al., 1998; Solomon and Hartmann, 2006).
Prediction of future radial distances is possible by choosing radial
distance (R) as the main parameter in the complete derivative
shown in Equation 8. If the object being explored is static on the
timescale of the animal’s movements, then the first term on the
right side of Equation 8 will be zero. In the context of the rat
vibrissal system, we can therefore rewrite Equation 8 as follows:

Ri+1 − Ri

(ti+1 − ti)
= 0+ V

Ri − Ri−1

dsi

def= Vμi (9)

where Ri+1 is the radial distance of the future point of contact, Ri

is the current radial distance, ti+1 and ti are the times at which
the radial distances are measured, V is the translational velocity
of the rat, dsi is the distance traveled in the last time step, and μi

is the current slope. Rearranging the equation and substituting μi

as in the last term above yields:

Ri+1 = Ri + Vμi(ti+1 − ti) (10)

Thus it is clear that future radial distance can be estimated
from the current slope.

If the slope of the object is changing, we expect the current
curvature of the object to be able to give a better estimate of future
radial distance. To use curvature, we first predict the future slope

of the object, and then use that predicted slope to predict future
radial distance. The future slope μi+1 is found by choosing μ as
the parameter in Equation 8, as shown in Equation 11:

μi+1 − μi

(ti+1 − ti)
= 0+ V

μi − μi−1

dsi
(11)

The simplification that κi = μi−μi−1
dsi

was empirically found to
generate significant error in our results. Therefore, in Equation
11 we replace μi−μi−1

dsi
with the full equation for κi as shown in

Equation 6, yielding:

μi+1 = μi + Vκi (ti+1 − ti) = μi + V

∣∣∣∣μi − μi−1

dsi

∣∣∣∣[
1+ (μi)

2
] 3

2

(ti+1 − ti)

(12)
where μi+1 is the local object slope at the future point of con-
tact, μi is the current local object slope, V is the translational
velocity of the rat, κi is the current local object curvature, and
ti+1 and ti are the times at which the radial distances used to cal-
culate slope and curvature are measured. When Equation 12 is
substituted into Equation 10 (with μi+1 replacing μi), we obtain
an equation that estimates future radial distance based on both
current slope and current curvature:

Ri+1 = Ri + V(μi + Vκi(ti+1 − ti))(ti+1 − ti) (13)

Finally, in the type of wall following behavior and environ-
mental exploration in which prediction would be most useful to
a rat, it is more likely that significant changes in calculated local
object slope and local object curvature are due to measurement
error than due to abrupt changes in the object. To decrease the
sensitivity of predicted radial distance to measurement error, we
average the local slope and curvature as follows:

μavg = 1

(N − 1)

N−1∑
i

μi (14)

κavg = 1

(N − 2)

N−2∑
i

κi (15)

where μavg is the average slope, κavg is the average curvature, N is
either the number of past time steps (c.f., Figure 2A) or the num-
ber of vibrissae being used (Figure 2B), μi is the local object slope
between each radial distance measurement, and κi is the local
object curvature between each calculated slope value. Substituting
Equations 14 and 15 into Equations 10 and 13 yields:

Ri+1 = Ri + Vμavg(ti+1 − ti) (16)

and

Ri+1 = Ri + V(μi + Vκavg(ti+1 − ti))(ti+1 − ti) (17)

Simultaneous prediction with single and multiple vibrissae
As illustrated in Figure 2, local object slopes and curvatures can
be computed either using a single whisker (with memory) or
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using multiple whiskers (distributed in space). For each of these
two spatial scales, we can use either Equation 16 or Equation 17
to predict future contact points. We note that the use of multiple
vibrissa permits the calculation of slope and curvature within a
single timestep. In contrast, two or three timesteps are required
to calculate slope and curvature using a single vibrissa. In addi-
tion, multiple vibrissae can be used to rapidly compute surface
gradients on a larger spatial scale than would be possible with
a single whisker. Using a single whisker would require memory
of a duration equal to the inter-whisker-spacing divided by the
velocity of the array, in order to obtain slope and curvature esti-
mates at a spatial scale comparable to those obtained by multiple
whiskers. Thus, there is a tradeoff between spatial scale and mem-
ory. Of course, computations can be done at both spatial scales
(single and multiple whiskers) simultaneously.

HARDWARE METHODS
Radial object distance is defined as the Euclidean distance
between the base of a vibrissa and the point of object contact
(Szwed et al., 2003; Birdwell et al., 2007). Previous work has
shown that an object’s contour can be extracted by continuous
rotation of a vibrissa against an object (Solomon and Hartmann,
2010). As the vibrissa “sweeps” against the object through a
rotation, measurement of the bending moment at the vibrissa
base permits the radial object distance to be continuously com-
puted, and the object contour thereby inferred. This technique
was empirically validated with sweeps of a vibrissa past three
differently shaped objects (Solomon and Hartmann, 2010). This
same study demonstrated that a similar algorithm would work for
translation of the vibrissa instead of rotation, but the translation
technique was not empirically validated.

Vibrissa and vibrissa array design
The present work used a single horizontal row of a five by five
array of vibrissae (Figure 3A). Vibrissae were constructed from
Nitinol wire 4 cm in length and 500 μm in diameter. Nitinol wire
was chosen because it is highly elastic and tends not to kink. Each
wire was mounted in a 4 mm x 4 mm rectangular aluminum block
with a strain gauge (Omega Engineering) attached to each block
face (Figure 3B). This vibrissa design allows for a 2-D measure of
strain, but in the present study the measured strain in the vertical
plane was negligible compared to the strain in the plane of object
translation (the horizontal plane).

Linear actuation
A linear actuation system was built to model the forward (transla-
tional) movement of a rat as it explores its environment. Because
the vibrissa array was tethered with power and signal cables,
it was easier to translate an object past the stationary vibrissa
array than it was to translate the array past the object. In the
present work, these two paradigms are equivalent because we
are concerned only with relative velocity between the array and
object. This study did not explore methods to distinguish between
self-generated versus external movements.

As shown in Figure 4, a wheeled cart carried a test object along
a track a fixed distance from the vibrissa array. The motion of
the cart was controlled by an Animatics SmartMotor. The pro-
grammable motor controller and associated 4000 count/rev

FIGURE 3 | (A) 5 × 5 whisker array on individual rotating platforms and
(B) individual whisker composed of 4 350 ohm strain gauges measuring the
bending moment of a 0.020 diameter superelastic Nitinol wire.

FIGURE 4 | Linear actuation system with test objects and artificial

whiskers.

encoder allowed accurate position measurements within 10 μm.
In practice, however, we only found it necessary to calculate posi-
tion to within 0.1 mm. Similarly, velocity was calculated to within
0.1 mm/sec. These levels of accuracy were chosen because noise
dominated the measurement error below these thresholds, caus-
ing there to be no appreciable difference in position measurement
with increasing accuracy.
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Device calibration
The two strain gauges for each sensing dimension on each vib-
rissa were arranged in a half Wheatstone bridge so the bending
of the vibrissa created a change in voltage at the output of the
circuit. The resting output was zeroed with a potentiometer. The
actual value of the voltage output depended on circuit param-
eters such as gain, so it was necessary to calibrate the voltage
output to the curvature at the base of the vibrissa. To calibrate
the voltage to the curvature, the vibrissa was rotated against a peg
placed at a known distance from the vibrissa base. For cylindri-
cal homogenous vibrissae, curvature and moment differ only by a
scaling factor. Given the known angular deflection of the cylindri-
cal vibrissa and the distance between the base and peg, Solomon
and Hartmann have shown that the moment can be calculated
based on Euler-Bernoulli beam theory (Solomon and Hartmann,
2010).

Once a vibrissa has been calibrated, the voltage recorded from
that vibrissa is converted to moment at the base of the vibrissa.
The radial distance r0 to the initial contact point is calculated
using Equation 1.

Error calculations in simulation and hardware
To quantify the accuracy of radial distance prediction using each
method, prediction error was defined as:

Epred = 1

N

N∑
i=1

∣∣∣∣PRDi −MRDi

MRDi

∣∣∣∣ (18)

where Epred is the prediction error, N is the number of samples
in a trial, PRDi is the predicted radial distance for each sam-
ple, and MRDi is the measured radial distance for each sample.
Epred, which we define as prediction error, is the mean abso-
lute error of the prediction. It is mean absolute percent error
(MAPE) when multiplied by 100. For simulated results, MRDi is
chosen to be accurate to machine precision. This choice results
in a prediction error that solely measures the accuracy of the
prediction algorithm for a given set of parameters. In hardware,
MRDi is calculated using the measured bending moment M as
shown in Equation 1. In this case, prediction error Epred is affected
both by measurement error as well as the accuracy of the pre-
diction algorithm. In practice, however, errors in radial distance
extraction (measurement errors) were small compared to errors
in prediction.

RESULTS
As described in Methods, we use both Equation 16 (prediction
using slope) and Equation 17 (prediction using curvature) to pre-
dict upcoming radial distance, and we use the two equations at
different spatial scales.

PREDICTION: SIMULATION RESULTS
In all simulations in this section, we assume “perfect” radial dis-
tance extraction at time 1, and then calculate slope and curvature
to predict radial distance at time 2. In other words, we do not sim-
ulate whisker deflection. The goal of this section is to verify that
the use of either slope or curvature is sufficient for the prediction
of future radial distance. Simulation will also show whether the

increased mathematical complexity required by the use of local
curvature leads to significantly increased predictive accuracy over
the simpler equation for local slope.

In these simulations, the data collection method (i.e., single
vibrissa or multiple vibrissa) is irrelevant, as the main difference
between the two methods is spatiotemporal scale—the simulated
objects can be made to arbitrary size and the sampling rate can be
increased or decreased arbitrarily.

To quantify prediction error from the use of Equations 16 and
17, we simulated translation of the whiskers past several differ-
ently sized cylinders. We then quantified how well the predicted
values matched actual values. The results of this simulation are
shown in Figure 5. As expected, both local object curvature and
local object slope were good predictors of future radial distance,
with error less than 0.1 ± 0.07% for each method. In these sim-
ulations, the error results only from discretization of slope and
curvature.

Figure 6 shows the results of simulating vibrissa contact with
two different objects. Predictions about the future shape of the
object were made using both Equations 16 and 17. The accuracy
of these predictions for these simulated objects gives insight into
the accuracy of each prediction method and shows the advan-
tages and disadvantages of prediction using these two different
equations.

In Figure 6A, local object slope and local object curvature were
both used to make predictions about future contact points on
an object that contained several gradual changes in curvature.
Predictions using both slope and curvature were reasonably accu-
rate over the object surface, with prediction errors of 6.37 ±
6.81% for prediction using local object slope and 3.02 ± 1.52%
for prediction using local object curvature. In this first exam-
ple, there is a clear advantage to choosing prediction using local
object curvature. This simulation illustrates that prediction based
on local object curvature is more accurate than prediction based
on local object slope when curvature changes gradually.

The second test object (Figures 6B,C) had a location at
which curvature abruptly changed—that is, an edge. Figure 6B
shows that prediction using local object slope (Equation 16)
acts similarly to a low pass filter with respect to change in
curvature, resulting in a relatively accurate prediction. Figure 6C,

FIGURE 5 | (A) Relationship between predicted and actual radial distance
for prediction using local object slope (B) Relationship between predicted
and actual radial distance for prediction using local object curvature.
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FIGURE 6 | (A) Radial distance predictions using both local object slope

(red dots) and curvature (blue dots) for a shape with gradually changing

curvature. Prediction error is 6.37± 6.81% for local slope prediction and
3.02 ± 1.52% for local curvature prediction. It can be seen that local slope
prediction leads to a slight overshoot when object curvature increases.

(B) Equation 16 (prediction using slope) is used to predict radial distance for an
object with an abrupt change in curvature (i.e., an edge). Average prediction
error is 0.44± 0.12%. (C) Equation 17 (prediction using curvature) is used to
predict radial distance for the same object as in (B). Average prediction error is
1.05± 5.12%. In both (B) and (C), the inset enlarges the area around the edge.

in contrast, shows that prediction using local object curvature
(Equation 17) was accurate until the abrupt change was reached,
at which point there was a spike in the absolute percent error of
the prediction. The prediction error of 0.44 ± 0.12% for predic-
tion using local object slope was lower than the prediction error
of 1.05± 5.12% for prediction using local object curvature.

In summary, these simulation results demonstrate that local
object curvature more accurately predicts future contact points
on regions of objects with no distinct edges, but that when objects
have distinct edges, prediction using local object slope is more
accurate. Of course, this in turn raises the question of what it
means for an object to have a “distinct edge.” Mathematically, it
must be an edge in the sense that there is a discontinuity in the
curvature between measurements, which is clearly related to the
spatial scale of the object relative to the spacing of the whiskers.
We investigate this in the next section.

IMPORTANCE OF WHISKER SPACING
The spacing between the whiskers on the object surface places
limits on the maximum curvature that can be sensed. Equation 19
defines κmax, the maximum discriminable curvature:

κmax = 1

r
= 1

d +�
(19)

where r is the radius of the osculating circle defining κmax, d is the
vibrissa spacing, and � is an arbitrarily small distance.

In the present work, we assumed that the spacing between the
whiskers on the object surface was approximately equal to the
spacing between them at their base. This is a reasonable approxi-
mation for the present work, in which the whiskers are parallel to
each other, but is unlikely to be valid for the real rat.

Figure 7A illustrates the relationship expressed in Equation 19.
The distance � is added to the vibrissa spacing because a force
must be applied to the vibrissae to find a contact point. The lim-
iting case is finding the curvature of a cylinder with radius r and
� = 0. With vibrissae spaced at d = r, the object could only apply
a force to bend at most two of the vibrissae. In order to make

a discrete curvature approximation, a minimum of three con-
tact points are required to define curvature. Therefore, � must
be strictly greater than zero if the measurement of curvature is
desired.

To demonstrate the effect of relative vibrissa spacing on pre-
diction error, prediction was simulated over hyperbolic spirals of
various sizes. The hyperbolic spiral was chosen as the test object
because it can be translated past the vibrissa array in such a way
that curvature decreases approximately linearly. In these simu-
lations, the multiple-vibrissa prediction method was used, with
vibrissa spacing set to 1 cm. The size of the spiral test object was
decreased for each case to illustrate the effect of relative vibrissa
spacing.

Figure 7 shows the simulated test object on two different
length scales, as vibrissa spacing stays constant. The left side of
Figure 7B shows an object large on the scale of inter-vibrissa spac-
ing, while the right side of Figure 7B shows an object small on
the scale of inter-vibrissa spacing. Figure 7C illustrates that pre-
diction error increases as the test object decreases in size. This
increase in error is unsurprising, and occurs for two reasons. First,
the relative change in distance between the most forward mea-
surement and the predicted radial distance is more pronounced
as the object decreases in size. More importantly, the spacing
between vibrissae defines the resolution of the array, and it is
decreasing relative to the change in curvature that is occurring.
This simulation illustrates the importance of vibrissa spacing to
prediction—though gradual curvature changes can be accurately
predicted with good spatial resolution, prediction suffers when
resolution decreases.

HARDWARE RESULTS: VALIDATION OF THE TRANSLATIONAL
SWEEP ALGORITHM
We next aimed to validate these simulation results in hardware.
However, before we could do so, we needed to experimentally val-
idate the translational sweep algorithm proposed by Solomon and
Hartmann (2010). We implemented the translational sweep algo-
rithm on our hardware array of whiskers (see Methods) to extract
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FIGURE 7 | Effect of vibrissal spacing. (A) Maximum curvature
discriminable by a given whisker spacing. (B) Prediction of radial distance
on different curvature scales with 1 cm whisker spacing. The simulated
object is shown in black, the starting positions of the vibrissae in blue,
and the predicted contact points in red. The length of the spiral on the

left is five times longer than the length of the spiral on the right. (C)

Quantification of the increased prediction error as the scale of the object
decreases relative to inter-vibrissal spacing. Whisker spacing is normalized by
the length of the object. As relative vibrissal spacing increases, error
increases linearly.

FIGURE 8 | Radial distance estimation, in hardware, using a

translational sweeping algorithm to calculate radial distance. Contour
extraction was performed as a 2.5 cm diameter cylinder was translated past
a single whisker. The estimated data points (blue) are plotted over a solid
line (black) indicating the actual profile of the cylinder. The maximum
difference between actual object position and the estimated contact point
was 0.1 mm.

the contour of an object as it was translated past one or more vib-
rissae in the array. Figure 8 shows results from a trial in which a
2.5 cm diameter cylinder was translated past a single vibrissa at a
velocity of 2 cm/s. The maximum difference between the actual
object position and the estimated contact point at any given time
was 0.1 mm, within the limits of measurement error.

HARDWARE RESULTS: IMPLEMENTATION OF PREDICTION WITH
A SINGLE VIBRISSA: OBJECT OF CONSTANT CURVATURE
Having validated the translational sweep algorithm, we next
aimed to test the two prediction methods in hardware. Figure 9A
presents the same contour extraction data as in Figure 8,
but here we also apply the prediction algorithms. Specifically,
Figure 9A shows the contact points prediction using local object

FIGURE 9 | (A) Predicted radial distance plotted over a solid line indicating
the actual profile of the cylinder. Predicted radial distances use local object
curvature (blue) or local object slope (red). (B) Prediction error as the object
diameter increases. There is no statistical difference between errors
(p > 0.05).

slope (Equation 16) and prediction using local object curvature
(Equation 17). These predictions are plotted over a curve repre-
senting the actual surface of the cylinder. Using different numbers
of past time steps did not significantly affect the accuracy of
the prediction, which stayed fixed at an average level of 1.3 ±
1.25% for prediction using local object slope, and an average
level of 1.1 ± 0.96% for prediction using local object curva-
ture (Figure 9B). Prediction error was calculated according to
Equation 18. Because there was no difference between numbers
of past time steps used, five points were used for the rest of the
single-vibrissa experiments presented in this paper. In the sec-
ond part of this experiment, cylinders with diameters of 2.5 cm,
4.4 cm, 5.0 cm, 6.3 cm, and 10 cm were passed by the array at a
velocity of 2 cm/s. As expected, there is no significant effect of
object diameter on prediction error. The error across the trials
for prediction using local object curvature was 1.40± 1.43%.

HARDWARE IMPLEMENTATION OF PREDICTION WITH MULTIPLE
VIBRISSAE: OBJECT OF CONSTANT CURVATURE
Neurons in the trigeminal nuclei have receptive fields that include
multiple vibrissae, which may enable the rat to estimate the
surface gradient at a single time point. For this technique to
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FIGURE 10 | Predicted radial distance using multiple whiskers.

The predicted future contact points (red) line up very well with the actual
surface of the cylinder (black line). Prediction error is 1.13 ± 1.2%. Each
different color corresponds to contact points from separate whiskers.

be viable, the chosen vibrissae must all be touching the object
at once. The spacing between adjacent vibrissae in the final
design of the array (Figure 3) is 1.5 cm. To ensure there were
times when all five vibrissae touched the test object concur-
rently, only the 10 cm diameter cylinder was used for these
constant curvature trials. Figure 10 shows the predicted future
contact points for the vibrissa array as the array moves for-
ward. Each predicted point is 1.5 cm further along the object
than the lead vibrissa was at the time of the point’s prediction.
Since the five points of contact come from five different vib-
rissae, the predicted curvature gradient is implemented over a
much larger spatial scale. Small errors in distance estimation
result in larger deviations in the predicted future radial distance
estimate.

HARDWARE IMPLEMENTATION OF PREDICTION WITH A SINGLE
VIBRISSA: OBJECT WITH ABRUPT CURVATURE CHANGE
The results of the previous two sections show that prediction
using local object curvature can accurately predict future con-
tact points for an object with constant curvature. In the world,
however, such objects are rarely found. We did not implement
prediction using the multiple vibrissa method on this object
because the main difference between the spatial scales over which
we were making abrupt changes was better represented by the
single vibrissa method.

To show the effect of abrupt changes in object curvature on
prediction, a simple case was examined. Figure 11A shows the test
object. The object has three distinct constant curvatures with no
smoothing transition from one to the next. The radii of curvature
for the sections were 2.5 cm, 3.2 cm, and 2.2 cm. The object was
moved past the vibrissa array using linear actuation at a velocity of
2 cm/s. Prediction was performed using local object curvature for
each vibrissa, with predicted contact points shown in Figure 11B.

It can be seen from Figure 11C that the absolute percent error
of the prediction remains small during the first section of constant
curvature. At the transition to the second curvature, the absolute
percent error increases, with the maximum value more than qua-
drupling the prediction error during the first section. Once the
vibrissa has been able to sense the second curvature for a short
time, absolute percent error returns to baseline. The second tran-
sition is similar to the first. A closer examination of Figure 11B
shows fewer predicted points during the times when the algo-
rithm is least accurate. The reason for this is that the vibrissa
slips quickly over the concavity in the object, covering the distance
more quickly than during slip-free data collection. This longitu-
dinal slip causes a significant increase in error in the estimation of
distance.

HARDWARE IMPLEMENTATION OF PREDICTION WITH MULTIPLE
VIBRISSAE: OBJECT WITH GRADUAL CURVATURE CHANGE
We tested the hardware vibrissa array with a section of a hyper-
bolic spiral that had an approximately linear decrease in curvature
as the object was translated past the whiskers.

Figure 12 shows the estimate of predicted future radial dis-
tance when the vibrissa array was passed by an object with grad-
ually changing curvature. Figure 12A shows the actual object.
Figure 12B shows a trial using the single vibrissa method, which
corresponds to the situation where spacing between the data
points is small relative to the change in curvature. The prediction
error of 0.97± 1.4% is very similar to the error for an object with
constant curvature (1.1 ± 0.96%). In Figure 12C, the vibrissa
base points were evenly spaced at 1.5 cm intervals, and the multi-
ple vibrissa method was used. This increase in spacing mirrored
the decrease in size of the object in the simulations, and resulted in
an increase in prediction error. Since the gradual change in cur-
vature is from high curvature to lower curvature, the predicted
future contact points lie mostly inside the actual curve. Prediction
error for this trial was 12.7 ± 7.11%, though the error decreases
to 11.9± 6.97% when the largest outlier is removed.

DISCUSSION
This paper has demonstrated that simple algorithms can be used
to predict future contact points on an object. Prediction is accu-
rate for objects that have constant and/or gradually changing
curvature as long as the distance between vibrissae is small relative
to the change in curvature. Abrupt changes in object curvature
result in jumps in absolute percent error of the prediction.

PREDICTION ALGORITHM PERFORMANCE
Two different algorithms for prediction were described in the
results section. Prediction using local object slope is only accu-
rate when the curvature being measured does not change much
between estimated contact points, but it can accommodate for
abrupt changes in curvature (e.g., an edge). Prediction using
local object curvature was shown to be more accurate for both
objects with constant curvature and objects with gradual changes
in curvature.

In all cases, vibrissa spacing makes a difference in accuracy
of prediction. This result is hardly surprising, since the limit-
ing factor is essentially sensor resolution. The main advantage of
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FIGURE 11 | Prediction of future contact points demonstrated in

hardware using an object with abruptly changing curvatures. (A) Test
object, consisting of three circles placed in a row. The curvature of each circle
is indicated; the curvatures at which the circles join is very high and was not

quantified exactly. (B) Predicted contact points mapped onto the test object.
At the transition between curvatures, the absolute percent error of the
prediction increases substantially. (C) Absolute percent error of the prediction
for each of the predicted data points.

FIGURE 12 | Hardware prediction on an object with gradually changing

curvature. (A) Picture of the test object, designed to be a close
approximation to a hyperbolic spiral. The whiskers translated along
the bottom face of the object from left to right as shown by the

arrow. (B) Spacing of contact points is small relative to object size,
resulting in a prediction error of 0.97 ± 1.4%. (C) Spacing of contact
points is large relative to object size, yielding a prediction error of
12.7 ± 7.11%.

widely spaced vibrissae is the ability to predict further ahead in
space. Since information about the sensed object is spread over
a wider distance, it is more likely that the estimated curvature
will be a reflection of the overall curvature of the object rather
than a measurement of a local deviation from the actual object
curvature.

These observations lead to the hypothesis that vibrissa spac-
ing represents a trade-off between accuracy and predictive utility.
For wall following, we anticipate that the rat will protract its
vibrissae far forward and maximize spacing between the tips,
because predictive sensing over a large spatial scale is important.
For edge detection tasks, accuracy becomes more important so
we anticipate that the vibrissal tips will be spaced more closely
together.

A COMPUTATIONAL MECHANISM FOR THE INSTANT
DETECTION OF MOTION
Motion detection, as well as the ability to distinguish self-
movement from environmental movement, is critical to animal
survival. Behaviors such as escape or predation must link motion

detection to immediate motor action. For these behaviors, the
quality of the sensory data obtained is largely irrelevant, as long as
it is sufficient to trigger the appropriate motor action. We suggest
that a mismatch between predicted and actual sensory input may
serve to direct attention.

In this work, we have presented specific examples of how cal-
culating terms of the total derivative might be used by a moving
rat to track an object within its vibrissal sensory array. If an object
is moving in the vibrissal field, there will be a mismatch between
actual and predicted input that is exactly equal to how the world
is changing in time. In the next time step, the animal can use
this mismatch to compute the relative velocity between its own
movements and movements in the world. In other words, the ani-
mal can compare predicted and actual sensory data obtained to
estimate the quantity δAenv

δt . Of course, if the fluctuations in the
environment (i.e., movements of objects in the world) are unpre-
dictable, then the animal will never succeed in finding an accurate
estimate. Because objects on the scale of the rat are strongly dom-
inated by inertial forces, however, many changes in the world will
have predictable temporal trajectories (e.g., a rolling tin can).

Frontiers in Neurorobotics www.frontiersin.org October 2012 | Volume 6 | Article 9 | 104

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Schroeder and Hartmann Sensory prediction on whiskered robot

ADVANTAGES OF USING PREDICTION DURING WALL FOLLOWING
BEHAVIOR
During wall-following behavior, a rat maintains a small separa-
tion between itself and the wall while traveling at a relatively high
velocity. The rat can maintain this separation even when walls
curve, however, since the rat has mass, and it moves at a high
velocity, changing direction takes time and energy. Following a
curving wall would be easier if the rat could predict the future wall
profile using its vibrissae. More specifically, if a rat could use just
radial distance measures to predict the upcoming wall contour,
it could start to change direction sooner, reducing inertial delays
and saving energy. Encoding by its vibrissa array to determine
where the wall was likely to be in the future, it would save energy
and allow the rat to travel along the wall at a higher velocity.
With these prediction algorithms that prediction could be accom-
plished at a very low level of processing. The algorithms presented
here suggest that this type of prediction could be achieved with a
very low level of computation.

POSSIBLE IMPROVEMENTS IN VIBRISSA SENSING/PREDICTION
An examination of the results presented in Figure 11 shows pre-
dicted data points that are spaced much less densely in the
concave regions of the object. Data are less dense in these sec-
tions because the vibrissa slips, and because only the tip of the
vibrissa contacts during part of the movement. When the vibrissa
tip is the only part of the vibrissa that contacts the object, radial

distance cannot be accurately calculated with our algorithm. For
artificial whiskers like the ones presented in this work, these sorts
of tip contacts can occur at several radial distances near the full
whisker length. In order to calculate radial distance for tip con-
tacts, we need a measure of the axial force being applied to the
vibrissa tip, where axial force is defined along the axis of the vib-
rissa. Future versions of the vibrissa array presented in this paper
will be able to sense axial force along with bending moments at
the vibrissa base.

The artificial whiskers used in this work were cylindrical, but
real rat whiskers taper linearly. Tapering the whisker confers at
least two advantages. First, whisker taper increases sensitivity
to small contact forces (Williams and Kramer, 2010; Solomon
and Hartmann, 2011). Second, when used in conjunction with
an axial force sensor (not used in the present work), a tapered
whisker ensures that the mappings between bending moment
and axial force are one-to-one with radial distance and θpush, the
angle through which the whisker has rotated against the object
(Solomon and Hartmann, 2011).
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Whisker movement has been shown to be under active control in certain specialist
animals such as rats and mice. Though this whisker movement is well characterized,
the role and effect of this movement on subsequent sensing is poorly understood. One
method for investigating this phenomena is to generate artificial whisker deflections with
robotic hardware under different movement conditions. A limitation of this approach
is that assumptions must be made in the design of any artificial whisker actuators,
which will impose certain restrictions on the whisker-object interaction. In this paper
we present three robotic whisker platforms, each with different mechanical whisker
properties and actuation mechanisms. A feature-based classifier is used to simultaneously
discriminate radial distance to contact and contact speed for the first time. We show
that whisker-object contact speed predictably affects deflection magnitudes, invariant
of whisker material or whisker movement trajectory. We propose that rodent whisker
control allows the animal to improve sensing accuracy by regulating contact speed induced
touch-to-touch variability.

Keywords: active sensing, touch, whisker, robot, biomimetic, comparative, perception, classification

1. INTRODUCTION
Many robots have been developed for understanding whisker
sensing (Prescott et al., 2009; Evans et al., 2012). Though each
has expanded our understanding in certain ways, it is difficult to
apply the results in a general way to other paradigms or wider
applications. Choices made in the development of robotic hard-
ware specify the kind of questions that can be answered by that
platform. For example, robots with high degrees of freedom allow
research into the effects of whisker movement on sensing, but
this movement is not precise enough to expose the underlying
mechanisms of whisker sensing.

A complementary robotics approach, similar to approaches
used in the biological sciences (Kappers et al., 1936; Kardong,
2006), allows the development of robots where the results from
one platform can inform the experiments on another. Great
progress can be made, both by performing experiments on appro-
priate platforms and ensuring that results inform general con-
clusions. Results from robotics in turn may provide insights for
neuroscience. A key example where such an approach may be
fruitful is in understanding the effect whisker movement has on
sensing.

In this paper we will briefly introduce rodent whisker move-
ment control, and whiskered robots that model these systems
will be reviewed. A comparative robotics approach is described,
outlining a path for addressing some of the questions from
biology in a more explicit and effective manner. Specifically,
what is the effect of whisker movement on radial distance
estimation?

1.1. ACTIVE WHISKER TOUCH SENSING IN RODENTS
Whiskers are found in almost all terrestrial mammals, Homo
Sapiens excepted, and some marine mammals (Ahl, 1986).
Although whiskers are hairs, their structure is highly specialized,
with regards to their surface structure and mechanical properties,
in transferring contact information to the hair follicle for tac-
tile sensing (Chernova and Kulikov, 2011). For example, whiskers
vary in length, thickness, shape, and stiffness between species
depending on animal size or how the whiskers are used (Sarko
et al., 2011).

Rats typically have around 30 prominent whiskers on each
cheek (or mystacial pad), arranged in a regular grid of rows and
columns (Ahl, 1986). These large macro-vibrissae vary in length
and width across the whisker pad, from the largest [2–40 mm in
length (Diamond et al., 2008)] in the most caudal column down
to the smallest in the rostral column. A dense array of 40–70
smaller micro-vibrissae (a few mm in length) are located around
the lips (Brecht et al., 1997). Physical differences between the
whiskers affect their mechanical properties, such as their bend-
ing and damping characteristics (Hartmann et al., 2003), which
could have repercussions for sensing, a critical consideration
when building artificial whiskers.

Whiskers can only encode information about objects when
they make contact with them. To gather information about the
world, rodents sweep their whiskers through the air, and bring
them on to surfaces in the environment. This back and forth
sweeping movement of the whiskers [called “whisking” (Welker,
1964)] has been the subject of a great deal of research. A single
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“whisk” is defined as one cycle of whisker protraction (forward
movement) and retraction (backward movement), and without
perturbation rats typically whisk in short bouts of ≈10 cycles, at
around 5–8 Hz (Carvell and Simons, 1990).

Though initially thought to be very regular (Semba and
Komisaruk, 1984), recent studies using optoelectronic monitor-
ing techniques (Bermejo et al., 2002) and high speed videography
(Sachdev et al., 2002; Towal and Hartmann, 2006) has revealed
that rat whisking can be highly irregular and complex. It is full
of asynchronies, where different whiskers are protracted by dif-
ferent amounts (Sachdev et al., 2002) and asymmetries, where
the whiskers on either side of the head are moved out of phase
with one another (Towal and Hartmann, 2006). These irregular
movements are thought to be the result of active sensing strategies
(Hartmann, 2001; Berg and Kleinfeld, 2003; Mitchinson et al.,
2007).

Among other parameters (Towal and Hartmann, 2008), rats
control the spread and contact force of whiskers to ensure even,
light contacts across the whisker array. Specifically, rats seem to
use particular strategies for sensing, such as the rapid cessation
of protraction upon initial contact with a surface, and contact
induced asymmetry in the whisker movements, where a whisker
contact on one side of the rat’s head causes an increase in the pro-
traction of whiskers on the side contra-lateral to contact (Grant
et al., 2009). Together these efforts are grouped into a strat-
egy described as minimal impingement (hereafter MI), maximal
contact (Mitchinson et al., 2007).

In addition, head movement greatly effects the velocity of
whisker contacts (Grant et al., 2009), and whisker movement
is controlled to sweep space in anticipation of head movement
(Towal and Hartmann, 2006). Though some have been identi-
fied (Grant et al., 2009), it remains unclear which components
of whisker movement are actively controlled by the rat, which are
artefacts arising from limitations of biological systems, and which
if any are important for sensing. For example, do rats change
their whisking frequency to improve the discrimination of par-
ticular surfaces, or because their muscles cannot maintain high
frequencies of whisking for prolonged periods of time?

1.2. ACTIVE WHISKER TOUCH SENSING IN ROBOTS
A number of software and hardware models have been developed
to better understand whisker sensing. There are many reasons
why modeling a system is an important step toward under-
standing, and why synthetic models (models built in software or
hardware) in particular are so useful (Rosenblueth and Wiener,
1945; Mitchinson et al., 2010). For example, in a model whisker
movement can be precisely controlled to determine the effects any
changes have on whisker deflections and subsequent analysis.

Whiskers have been modeled simply as elastic beams
(Salisbury, 1984; Young et al., 2003). Though progress has been
made very recently in more precise computational modeling of
whiskers (Quist and Hartmann, 2012), their small size make accu-
rate simulation difficult. A more straightforward method is to
build artificial whiskers and mount them on robots. Whiskered
robots have been broadly reviewed recently in Prescott et al.
(2009). Specifically focusing on whisker actuation mechanisms,
and the effect these have on sensing, early models were static and

provided binary contact vs. no contact reports (Schiebel et al.,
1986; Jung and Zelinsky, 1996). Hinged whiskers were used to
infer the location of tip contact through potentiometer readings
(Russell, 1992). Emulating earlier modeling work, elastic beam
equations have been used by a number of researchers to infer
the location of contact along an artificial whisker, and in turn the
curvature of a surface with whiskers mounted on robots (Russell
and Wijaya, 2003, 2005), rotational DC motors (Kim and Moller,
2004, 2007), or a set screw (Solomon and Hartmann, 2006). In a
unique design Wilson and Chen (1995) used a pair of pressurized
tubes laid end to end as a whisking mechanism, and a closed loop
control system to infer whisker tip contact location in space.

In more biomimetic (Vincent et al., 2006) robots (such as in,
Seth et al., 2004; Fend et al., 2005; Meyer et al., 2005; Pearson
et al., 2007; Lepora et al., 2012b) multiple degrees of freedom are
included as whiskers are often actuated, as well as being mounted
on mobile robot platforms. This increased whisker movement
makes texture discrimination difficult (Fend et al., 2003), espe-
cially in conditions where whisker motion varies from trial to trial
(Fox et al., 2009). To address this point further more complex
whiskered robots, with individually actuated whiskers have been
developed in recent years for investigating biomimetic whisker
control strategies (such as MI discussed earlier, Pearson et al.,
2011), and how these strategies may improve texture discrimina-
tion (Lepora et al., 2010b; Sullivan et al., 2012).

1.3. WHISKER MATERIALS
The material a whisker is made from has a critical influence on the
way a whisker interacts with a surface, and as a result the nature
of the deflections created at the whisker base (Hartmann et al.,
2003). Whiskers are specialized sensory elements for aiding tac-
tile sensing in the hair follicle, differing in structure from other
mammalian hairs to ensure strength and stiffness (Chernova and
Kulikov, 2011; Sarko et al., 2011). Rat whiskers have evolved to
have excellent mechanical properties for transferring tactile infor-
mation to the follicle during sensory exploration (Chernova and
Kulikov, 2011). Specifically, rat whiskers are stiff when moved
in air but bend in contact and are highly damped with damp-
ing ratios ζ of 0.11:0.19 and Young’s modulus E of ≈3–4 GPa
(Hartmann et al., 2003). This ensures that the whiskers do not
oscillate when whisked in air, which can add noise to the deflec-
tion signal and make contacts difficult to detect. This damping
also increases when the whisker is in the animal, as observed in
that contact induced oscillations are smaller in whisking rats than
isolated whiskers (Hartmann et al., 2003). Whiskers are tapered,
which has certain advantages [some are described in detail by
Williams and Kramer (2010)], so it is important that artificial
whiskers taper if they are to appropriately mimic the biological
system. In artificial systems whisker material and morphology
have also been shown to be important for texture discrimination
(Lungarella et al., 2002; Fend et al., 2006).

1.4. RADIAL DISTANCE TO CONTACT ESTIMATION
Estimating the radial distance to contact (in this paper, from
the base of the whisker) allows an agent to determine whether
an object has made contact with a whisker at the tip or the
shaft, which is important for texture discrimination, and to
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discriminate between contacts with the surfaces or corners of
objects. Measuring the location in space of multiple contacts over
time allows an agent to reconstruct the contours of an object
or perimeters of the environment (Fox et al., 2012). Radial dis-
tance estimation has been demonstrated in rodents (Szwed et al.,
2006), and approached by many researchers. Theoretically, radial
distance to contact estimation along a beam is a solved problem
(Solomon and Hartmann, 2006, 2011), as long as whisker move-
ment is precisely controlled and the physical properties such as
size, taper, and elasticity are known. In an applied robotic setting
these parameters are not always known precisely, therefore a more
data-driven approach is appropriate (Evans et al., 2010a; Lepora
et al., 2010a). In this paper we use a feature-based radial distance
estimation method, essentially extracting analogous information
to the bending moment at peak protraction, but using regres-
sion to determine the relationship between this value and radial
distance to contact.

Feature-based classification involves finding invariant features
in the data that correspond to parameters in the real world.
For example, using scale invariant feature transformation (SIFT)
algorithms in vision (Lowe, 1999; Juan and Gwun, 2010). Feature
extraction has also been demonstrated in biological sensing sys-
tems. Frog prey capture is based on the principle of feature
detection, with responses elicited for any object matching the
size and angular velocity of a fly (Lettvin et al., 1959). In the rat
whisker system some researchers have reported cells that respond
to “kinetic features” in whisker deflections (Petersen et al., 2008).
An advantage of this approach is that it reveals how different
whisker movement patterns affect the extracted features, and may
allow the measurement of numerous features to classify a range of
whisker-object contact parameters simultaneously in future.

1.5. A COMPARATIVE ROBOTICS APPROACH
As robots become more complex, they become more difficult
to control. As this progression continues it may be difficult to
conduct experiments that address fundamental questions about
whisker-object interactions. In this paper we present a comple-
mentary robotics approach. Here, a group of different robots are
used to address the same problem of radial distance to contact
estimation, allowing a direct comparison of whisker materials and
actuation methods. This approach may help in understanding
radial distance to contact estimation more generally, invariant of
whisker material or actuation method.

Three robots were used for comparison. Firstly, an XY posi-
tioning robot moves objects onto an artificial whisker sensor in
an accurate and highly repeatable manner, allowing the collec-
tion of large amounts of whisker deflection data. This approach
provides the opportunity for a better understanding of the
nature of whisker-object contacts (expanding on previous pre-
liminary work in Evans et al., 2010a,b). Data collected on the
XY positioning robot is used to systematically train and test a
classifier under a range of contact conditions, and extract fea-
tures for radial distance to contact and contact speed estimation.
Secondly, SCRATCHbot (an acronym of Spatial Cognition and
Representation through Active TouCH, Pearson et al., 2010) is a
mobile whiskered robot which approximates the degrees of move-
ment of an exploring rat. Actuated whiskers are mounted on

an articulated “neck,” which is in turn fixed to a mobile base.
SCRATCHbot is used here in a “head-fixed” protocol to show
how the classifier and features developed on the XY position-
ing robot can be applied to data from a less restricted whisking
robot. Thirdly, CrunchBot is a mobile whiskered robot with sta-
tionary whiskers (Fox et al., 2011). This robot has fewer degrees
of freedom than SCRATCHbot, allowing more straightforward
robot control and data collection in a mobile setting. Testing
the feature-based classifier on CrunchBot evaluates whether this
approach can be robustly implemented on a mobile robot. In
addition to separate actuation methods, all three robot platforms
utilize different whisker materials. This change allows for the
comparison of whisker materials in the same radial distance esti-
mation task, and tests the classifier’s robustness to this change.
A great deal of effort was made to find materials for artificial
whiskers that would match the mechanical properties of real
whiskers at different scales, such as stiffness and bending char-
acteristics. Additional concerns are toughness and the ability to
appropriately shape the whisker.

2. MATERIALS AND METHODS
2.1. ROBOT PLATFORMS
2.1.1. XY positioning robot platform
A Cartesian robot (see Figure 1) was chosen as it is capable of
a wide range of movement, is very accurate and can move at
speeds which approximate scaled rat-whisk velocities. Deflections
for the whisker are streamed to a PC, and can be processed in
real time to control subsequent movement of the positioning
robot. The robot (Yamaha-PXYX, Yamaha Robotics) has a move-
ment range of 350 × 650 mm, and can move up to 720 mm/s.
Repeatability of the robot is ±0.01 mm, and the maximum load
it can carry is 1.5 kg. Objects are carried by the robot into an
artificial whisker fixed to the table, as this allows us to control
the contact as carefully as possible. Moving the whisker into an
object would subject the sensor to trajectory-dependent accel-
erations that would cause more complex effects such as whisker
oscillations. Subsequent robots described in this paper allow for
exploring these trial to trail variations and their effect on sens-
ing. A controller (Yamaha RCX 222, 2-axis robot controller) takes
instructions from a PC through an RS232 cable, and the con-
troller interprets the instructions, completes path integration, and
drives the motors. Instructions for the robot are generated inside
a MATLAB (mathworks.com) loop, and can be easily updated
during robot operation, depending on the whisker input.

2.1.2. SCRATCHbot robot platform
The SCRATCHbot robot platform (Figure 2A) consists of a
head-mounted whisker array, a mobile body housing comput-
ing means, motors and power supply, and an articulated neck
allowing free movement of the head independent from the body.
For this experiment we focus only on the head. Six indepen-
dent columns of three whiskers, arranged in two arrays of nine
whiskers either side of the head, are independently driven by
a DC motor and gearbox. Whiskers in a column are mechan-
ically coupled, but columns themselves are capable of inde-
pendent rotational (anterior–posterior) whisk-like movement.
Movements and data collection are coordinated by independent

Frontiers in Neurorobotics www.frontiersin.org January 2013 | Volume 6 | Article 12 | 108

http://www.mathworks.com/
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Evans et al. Whisker movement affects contact localization

FIGURE 1 | The XY positioning robot. (A) From above, to show the range of movement available. (B) From the side. A narrow, rigid aluminium bar was
moved into the whisker perpendicularly, from a clockwise or anticlockwise direction.

micro-controllers. A central PC-104+ reconfigurable computing
platform, including a closely coupled array of FPGAs and a single
board computer, handled all sensor and motor coordination.

2.1.3. CrunchBot robot platform
CrunchBot (Figure 2B) consists of an iRobot Create base
(irobot.com) with an extended cargo bay to accommodate
a netbook PC. This netbook is used for autonomous con-
trol of the robot, running Ubuntu 10.10 on a single-core
Intel Atom processor. The netbook hosts a Player server
(playerstage.sourceforge.net) providing high-level, networked
API interfacing to the Create’s serial port commands. Rapid pro-
totyped ball joint mountings fixed to an adjustable metal bar
individually hold six static artificial whiskers. The whiskers are
positioned at angles to fan out across the width of the robot while
covering any blind spots. Radial distance estimation and basic
motor control can run in real time on the netbook, reading the
raw data from the circular buffer.

2.2. ARTIFICIAL WHISKERS
Three different materials were used in the fabrication of
whiskers for the three robot platforms. Each whisker is
made on an Envisiontec Perfactory rapid prototyping machine
(envisiontec.de). The XY positioning robot whisker was made
from flexible Acrylonitrile butadiene styrene (ABS) plastic
(E ≈ 1.63 GPa, ζ ≈ 0.07), 185 mm long, 2 mm diameter at
the base, 0.5 mm at the tip. SCRATCHbot whiskers are iden-
tical in shape and size to those on the XY positioning
robot, but are made from the fiberglass material (E ≈ 25 GPa,
ζ ≈ 0.5). CrunchBot whiskers were made from Nanocure RC25
(E ≈ 4.89 GPa, ζ ≈ 0.2) and were smaller in size, 160 mm
in length, 1.45 mm diameter at the base tapering linearly to
0.3 mm at the tip. All whiskers are straight, but may curve
slightly due to gravity perpendicular to the plane of movement,
and are linearly tapered. Each whisker was mounted at the

base into a short, polyurethane rubber (Poly 74-20 RTV from
Polytec, synergyrm.co.il) filled, inflexible tube called a follicle case
(see Figure 3).

A magnet was bonded to the base of the whisker shaft in such a
way that when the follicle case/whisker shaft assembly was located
into the whisker mount (see Figure 3), the magnet was positioned
directly above a tri-axis Hall effect sensor integrated circuit (IC,
Melexis MLX90333 www.melexis.com). Hall effect sensors mea-
sure the change in voltage across a conductor in response to
changes in the strength of a nearby magnetic field. The tri-axis
Hall effect sensor used here can measure the voltage changes in
three orthogonal axes, i.e., x and y across the plane of the sen-
sor, and z upwards toward the whisker. As forces are applied to
the whisker shaft, the moment experienced at the base will rotate
the magnet around a pivot point, nominally in the center of the
polyurethane bearing. The sensor output voltage provides infor-
mation about the magnitude of whisker deflection whether the
whisker is moving or not, therefore the information is useful
for static as well as dynamic classification approaches. When the
whisker is deflected the movement of the magnet is proportional
to whisker bending.

2.3. DATA COLLECTION
2.3.1. XY positioning robot data collection
Deflections of the whisker were transmitted through the Hall
effect sensors to a LabJack UE9 USB data acquisition card
(labjack.com) at a rate of 1 kHz for each of the x and y directions.
Each trial lasted 4 s. This data was sent to a computer through
the BRAHMS middleware (brahms.sourceforge.net) for analysis
in MATLAB.

A MI control policy (observed in rats and discussed in
Section 1.1) was implemented. In contrast to passive deflections,
this policy keeps the amplitude and duration of whisker deflection
within a limited range, and also keeps whisker ringing after con-
tact to a minimum. An additional benefit is that the forces acting
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FIGURE 2 | (A) The SCRATCHbot whiskered mobile robot. To collect data for this experiment the robot platform was kept stationary while it whisked into a
pole at varying radial distances to contact, and whisk speed. (B) The CrunchBot mobile whiskered robot.

FIGURE 3 | Diagram of whisker follicle sensor construction. CrunchBot whisker follicles differ slightly in shape, but operate in exactly the same way.

on the whisker are much smaller, meaning whisker breakage is less
likely, even in high speed collisions.

MI was implemented by instructing the robot to move an
object (here a narrow, rigid, cylindrical bar) into the whisker at
a given speed until a deflection magnitude threshold (0.05 V) is
crossed, at which point the robot retracts the object as fast as pos-
sible (720 mm/s). Temporal latency for the loop is ≈300 ms from
initial contact due to the controller duty cycle.

Preliminary investigations showed that contacts could be made
over a radial distance range of 80–180 mm without saturating
the Hall effect sensor, or the bar slipping past the whisker tip
before a retraction. Object speed ranged from 36–216 mm/s.
Contacts were sampled at radial distance intervals of 1 mm,
and speed intervals of ≈7 mm/s over the previously described
ranges, respectively. In total 101 radial distances and 26 speeds
were sampled, giving 2626 different radial distance and speed
combinations. Contact combinations were randomly interleaved
during data collection to limit any order effects, such as changing

whisker properties across trials. For each contact combination,
the whisker was deflected by the robot in both a clockwise and
anticlockwise directions (−ve and +ve in x, see Figure 1), ensur-
ing that the whisker did not undergo plastic deformations. The
experiment was performed twice (two runs of clockwise and
anticlockwise, generating four separate sets in total) to generate
sufficient data for training the classifier. Data from each trial was
stored separately. Deflections from the clockwise robot movement
trials (−ve in x) were multiplied by −1, so data from all tri-
als were directly comparable. Trials were ordered into arrays by
speed and radial distance to contact. Each trial was aligned to
peak deflection, and cut down to only 325 ms either side of the
peak deflection.

2.3.2. SCRATCHbot data collection
A single column of whiskers from a SCRATCHbot head was
used for this experiment. The upper and lower whiskers were
removed, and the dorsal–ventral axis of the whisker was set
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to 90◦ (horizontal). A vertical aluminium bar (13 mm cross-
sectional diameter) was positioned at three different radial dis-
tances (70, 100, and 130 mm) at an azimuthal angle of 135◦ (180◦
= dead-ahead). The whisker was driven around the azimuthal axis
(anterior–posterior) using a sinusoidal whisking pattern, with
a retraction-protraction range of 60◦ (from 90◦ to 150◦). The
frequency of whisking was set at 2, 4, and 6 Hz, giving nine con-
ditions in total. Eight contacts were made in each condition,
four were used for training the classifier and four for testing
(36 contacts for both training and testing). Data was streamed
to the onboard computer through BRAHMS, and stored for
later analysis. The whisker drive controller received no sensory
feedback from the whisker sensor itself, only using the absolute
measurement of theta to close a PID controller.

2.3.3. CrunchBot data collection
Data from the six whiskers was collected using an FPGA con-
figured as a bridge to a USB 2.0 interface. Up to 28 whiskers
can be connected to this FPGA bridge at one time. Using
the vendor provided software driver and API (Cesys GmbH
http://www.cesys.com/en/home.html), a user can request the data
from all whiskers at minimum intervals of 500 μs (a sample rate
of 2 kHz).

A “body whisk” behavior was included in the robot program to
ensure consistent contact forces and speed. As the whiskers were
not actuated the whole robot must rotate in a systematic way to
simulate the whisking behavior of rats. Upon initial contact with
an object the robot first reverses away a short distance before
rotating at 15◦ per second toward the object for 1 s, then rotat-
ing at 15◦ per second away from the object for 1 s. This allows
this whiskers to move over the surface of the contact object, col-
lecting data about the radial distance (or in other experiments
the orientation and texture of the surface). After the whisk the
robot reverses again to clear the object, then rotates in a random
direction and moves forward again. The whisker sweep during the
contact phase is similar to a sinusoidal whisk.

For the verification of radial distance estimation a square cor-
nered object was used. The robot was set in motion on a trajectory
that would ensure the corner of the object would make contact
with a particular whisker at a specific radial distance. The robot
would then perform the body whisk movement, and the data
would be stored. A dataset was collected for each whisker, con-
sisting of five contacts at each of six points along the whisker
(10 mm intervals over a 50 mm range) from the tip of the whisker.
Though the whisker is 160 mm long, only 140 mm is external to
the “follicle.”

2.4. FEATURE-BASED RADIAL DISTANCE ESTIMATION WITH
UNCERTAIN CONTACT SPEEDS

To successfully implement a feature-based classifier, appropri-
ate features must first be found and extracted. Inspection of the
whisker data showed that Hall effect sensor output voltage at peak
deflection (proportional to bending moment M) could be used as
a feature for radial distance discrimination at a given speed.

Feature f1 can be defined as

f1 = maxt M(t), (1)

where M(t) is the deflection magnitude varying with time, mea-
sured by the Hall effect sensor in volts. Note that t(f1) is the time
at maxt M(t).

Similarly, contact speed could be discriminated using deflec-
tion duration. Deflection duration was taken as the width of
the deflection peak (prominent initial deflection in each trace of
Figure 4). Deflection duration was measured using a threshold
crossing on the sensor output. When Hall effect sensor out-
put exceeded γ = 0.05 V a timer was initiated (t1), and when
Hall output subsequently fell below this threshold the timer
was stopped (t2). Feature f2 (measured in ms) can thus be
defined as,

t1 = min{t : M(t) ≥ γ }, (2)

t2 = min{t : M(t) ≤ γ, t2 > t1}, (3)

f2 = t2 − t1, (4)

where γ is the threshold. Colored arrows in Figure 4 give exam-
ples of these measurements.

A model was generated of the relationship between each pair
of features and the corresponding contact properties with poly-
nomial regression (using polyfitn in MATLAB, bit.ly/polyfitN).
Using linear least squares a model is generated that can be used to
classify new data. Three arguments are required for the model, an
array of independent variable values, an array of dependent vari-
able values, and a model specification, namely the degree of the
polynomial. A fifth degree polynomial was chosen as preliminary
studies showed it provided good results. The independent vari-
ables in this instance were features f1 and f2. To find both radial
distance and speed, two models were developed, with dependent
variables of radial distance and speed, respectively.

FIGURE 4 | Example deflection signals from the artificial whisker.

Magnitude of deflection, or force, has been used previously as a
discriminator of radial distance to contact. Here the two traces are at
different radial distances (measured in mm), but create the same
magnitude of deflection. Speed measured in mm/s. Colored arrows indicate
how the extracted features for classification are measured. Peak deflection
magnitude f1 (blue arrow) and contact duration f2 (red arrow) are used to
discriminate radial distance to contact and contact speed, respectively.
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The same polynomial regression operation was repeated on
data from SCRATCHbot, though fewer summary statistics were
generated as the dataset was smaller than that generated on the
XY positioning robot.

On CrunchBot a linear regression was used. As robot motion
is controlled, whisker contact speed variability is low between tri-
als and a linear regression is sufficient for classification in this
instance. To find an estimate of radial distance r,

r = a1f1 + a0, (5)

was fitted to the data with a linear-in-the-parameters regression
on the line, giving a least-squares fit for (a0, a1) for each whisker.
Due to the small dataset size a “leave one out” protocol was
used for classifier testing of CrunchBot. Four out of five con-
tacts at each radial distance was used to train the classifier, with
the remaining contact used for testing. This process was repeated
using a different test contact each time. For each robot a mean
absolute error statistic is given, which is more informative than
mean error alone.

3. RESULTS
3.1. XY POSITIONING ROBOT
Figure 5 shows histograms of classification errors for both radial
distance (A) and speed (B), and a scatterplot of the errors for
each sample in the test set. Mean μ and standard deviation σ

for radial distance and speed estimation errors was 1.2, 7.9 mm
and 3.3, 25.8 mm/s, respectively. The mean absolute error was
6.2 mm and 20.4 mm/s for radial distance and speed, respectively.
Figure 6 shows mean classification error for radial distance error,
with respect to true radial distance (A), and for contact speed,
with respect to true contact speed (B).

Figure 7 shows a contour plot of the extracted features f1
and f2. While deflection magnitude is proportional to radial dis-
tance to contact for a given speed (Figure 7A), the precise degree
of deflection is ambiguous without a separate measure of con-
tact speed. On data generated on the XY positioning robot the

duration of contact can provide this additional measure. This
figure is examined further in Section 4.

3.2. SCRATCHbot
Results from SCRATCHbot show that the features and classi-
fier developed on the XY positioning robot also apply to data
collected from a whisking robot. As Figure 8 shows, classification
performance is almost perfect, with only one mis-classification
of speed in the 36 contact test-dataset. Figure 9 demonstrates
that a key difference between data from SCRATCHbot and the
XY positioning robot is the way whisker speed affects con-
tact duration. Contact duration on the XY positioning robot
increases as object speed increases, as object retraction is con-
trolled by a feedback loop of a fixed duration. The faster the
object moves, the further the whisker is deflected before a
retraction is initiated. This increases contact duration in pro-
portion to an increase in speed. Since SCRATCHbot is per-
forming active whisking onto a static object, increased whisk
speed results in a shorter contact duration. However, though the
direction of the relationship is reversed, whisk speed still pre-
dictably affects contact duration. As in the XY positioning robot
data, whisking at the same speed but different radial distances
affects peak deflection magnitude (as can be seen in Figure 9B).
Taking contact duration into account with a feature-based clas-
sifier allows accurate radial distance estimation at different
whisk speeds.

3.3. CRUNCHBOT
Typical whisker deflections from CrunchBot are shown in
Figure 10. Peak deflection magnitude for each contact is shown
in Figure 11. Mean absolute error for radial distance estimation
is shown in Table below.

Whisker 1 Whisker 2 Whisker 3 Whisker 4 Combined

(mm) (mm) (mm) (mm) (mm)

μ abs. Err 4.11 1.89 1.28 3.30 2.65

FIGURE 5 | (A,B) Histograms of radial distance and speed classification errors using the feature-based classifier. (C) Scatterplot of these errors for each point in
the dataset. μ = mean, σ = standard deviation, sample size = 2626.
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FIGURE 6 | Mean classification error for radial distance error, with respect to true radial distance (A), and for contact speed, with respect to true

contact speed (B). Errorbars show standard error.

FIGURE 7 | A contour plot of peak deflection magnitude and duration for

each contact showing how each feature varies with respect to contact

parameters. Each point in the image corresponds to a location in the
speed-radial distance space, which is equivalent in both plots. (A) Peak

deflection magnitude f1, brightness indicates higher deflection magnitude,
measured in volts. All 10 contours are evenly spaced across the voltage
range. (B) Deflection duration f2, brightness indicates greater duration
(measured in ms). All 6 contours are evenly spaced across the duration range.

Mean absolute error is very low, typically less than 5 mm over
the 50 mm range tested. For some whiskers classification error is
even lower, below 2 mm. These results compare favorably with
results from controlled conditions on the XY positioning robot
(Section 3.1) where speed was variable. This indicates that the
noise in the odometry is low enough to ensure a consistent
contact force and speed on this mobile robot.

4. DISCUSSION
Deflection magnitude is proportional to radial distance to con-
tact, a relationship that is preserved across robot platforms,
regardless of whisker material or actuation method. Whisker-
object contact speed also affects deflection magnitude in a pre-
dictable manner on both the XY positioning robot and whisking
SCRATCHbot. Controlling the whisker movement allows a very
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FIGURE 8 | Simultaneous classification of radial distance to contact (A), and whisk speed (B) on SCRATCHbot. Red crosses = true values, blue circles =
classifications. Only one contact is miss-classified in the 36 contact test-dataset.

FIGURE 9 | Raw data from SCRATCHbot. Properties of the
deflections match closely to those from the XY positioning robot
(compare with Figure 4). (A) three deflections at different radial
distances (R, in mm), but the same speed (S, in Hz). Peak

deflection height varies predictably with radial distance. (B) three
deflections at the same radial distance but at different speeds.
Contact duration varies predictably with speed. Contact latencies are
for clarity of presentation.

simple linear regression-based radial distance estimation method
to be successfully implemented on CrunchBot, a mobile robot.

4.1. COMPARISON AND SYNTHESIS ACROSS ROBOT PLATFORMS
It may have been assumed that the relationship between whisker
deflection, for a given radial distance to contact, and contact
speed would be linear. However, though the relationship may be
linear for a certain radial distance to contact, that linear relation-
ship does not hold for all contact locations along the whisker. This
can be seen on data from the XY positioning robot in Figure 7.

Inspection of Figure 5C reveals that classification errors on
XY positioning robot data are not completely random. There is
an interaction between the parameters, which can be seen as a

skewing in alignment of the errors: positive errors in radial dis-
tance estimation occur more often with negative errors in speed
estimation, and vice versa. A more detailed look at these effects
can be seen in Figure 6. This figure shows how classification
errors vary across each parameter range. The systematic trends
reflect the fact both speed and radial distance are classified simul-
taneously. Both contact speed and radial distance estimation is
best (error is lowest) in the middle of each range. Large radial
distances are over estimated (negative errors on the left side of
Figure 6A) and small radial distances are underestimated (posi-
tive errors on the right side of Figure 6A). The opposite effect is
seen for contact speed (Figure 6B), where large contact speeds are
underestimated and low contact speeds are overestimated.
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FIGURE 10 | Radial distance to contact affects deflection magnitude on

the mobile CrunchBot robot. Five deflections at different radial distances
(R, in mm), but the same speed. Peak deflection height varies predictably
with radial distance.

FIGURE 11 | Radial distance to contact for a given magnitude of

whisker deflection (dots), and estimates of the standard deviation of

the error in predicting future observations (errorbars) for each whisker.

Sample size = 30 contacts per whisker, 120 in total. Radius measured
in mm.

These effects can be explained by looking at how the extracted
features change across the parameter space in Figure 7. A positive
classification error of speed i.e., a jump from a dark to light area
in Figure 7B, would result in a corresponding negative classifica-
tion error of radial distance i.e., a jump from a dark to light area in
Figure 7A. More transparently an increase in contact speed results
in an increase in contact duration (f2), while an increase in radial
distance to contact results in a reduction in deflection magni-
tude. Misclassifications as the deflection “grows” in both height
and duration would result in an over-estimation of speed and
an underestimation of radial distance and vice versa. A predic-
tion of this work for biological whisker systems is that rats would

overestimate the radial distance to contact when contact speed is
lower that expected, for example, as an object moves away from
the rat.

All three robotic platforms presented here use different
whisker materials and control strategies. These differences affect
the temporal pattern of whisker deflections, which can be seen
in Figures 4, 9, and 10. Whisker mechanical properties affect the
initial rate of deflection change, and contact induced oscillations.
Stiff fiberglass SCRATCHbot whiskers (Figure 9) result in a sharp
initial increase in deflection and larger oscillations in between
contacts. On the XY positioning robot and CrunchBot (Figures 4
and 10, respectively) robot movement speed changes through-
out the contact, slowing down as peak deflection is approached,
resulting in differences in gross deflection shape. While previously
work has shown that whisker movement affects texture discrim-
ination (Evans et al., 2009; Lepora et al., 2012a; Sullivan et al.,
2012), our results show that such changes do not affect the key
features extracted for radial distance estimation with the feature-
based method presented here. Successful classification of radial
distance on a particular robot platform does require the classifier
to be trained on data from that robot, but the underlying prin-
ciples are invariant for whisker material and robot movement.
Specifically, that radial distance to contact affects the magnitude
of peak deflection, and this is modulated predictably by contact
speed.

4.2. RELATION TO OTHER STUDIES OF RADIAL DISTANCE ESTIMATION
These are the first published results of whisker-based contact
speed estimation. As rats carefully control whisker motion, and as
consequence contact speed, it may not be immediately apparent
why this discrimination is important. Objects in the environment
sometimes move and, for example, when a shrew is hunting crick-
ets it needs to determine both the location and movement of
that prey animal to execute an accurate fatal attack (Anjum et al.,
2006). Another consideration is that rats have no spindles in their
whisking muscles, and therefore do not have accurate proprio-
ception of their whiskers (Diamond et al., 2008; Mameli et al.,
2010). Since accurate radial distance estimation is dependent on
well characterized contact speed, a signal-based method, such as
the contact duration feature approach presented here, is of poten-
tially great importance. From a robotics perspective this kind of
tactile movement tracking may be useful for other tasks, such as
in tactile manipulation.

It is difficult to determine how much better or worse the
feature-based approach presented here is over previous whisker-
based radial distance estimation methods. These are the first
results where contact speed is both variable and unknown. On
data collected on the XY positioning robot we report a mean abso-
lute discrimination error of 6.17 mm with a 185 mm whisker. This
is a normalized accuracy of 3.4% of whisker length. In a real-time
application on board a mobile robot we report an average mean
absolute discrimination error of 2.65 mm with a 160 mm whisker.
This is a normalized accuracy of 1.65% of whisker length.

With fixed contact speed and a static beam equation-based
method (Solomon and Hartmann, 2010) report contact local-
ization accuracy between 0.3 and 0.88 mm on different surfaces
with a 50 mm whisker. This is a normalized accuracy of ≈1% of
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whisker length. This approach is more accurate than the results
presented in the present paper, but reported under very different
conditions (contact speed was very carefully controlled, slow, and
not variable across trials). Further research is required to deter-
mine whether a similar approach would be successful in a more
applied mobile robot setting, or under conditions of variable
contact speed.

Rats have demonstrated radial distance estimation up to an
accuracy of 2.5 mm (Krupa et al., 2001), which, with a 50–60 mm
whisker, is a normalized accuracy of ≈4–5% of whisker length.
These findings indicate that the feature-based approach presented
here compares favorably with the performance of rats, even in the
strict conditions of single whiskers making single object contacts
and variable contact speed.

The results compare less favorably with typical range finding
methods in robotics, such as laser range finders, or a Microsoft
Kinect camera, which are both capable of sub-millimeter accuracy
over short ranges (Khoshelham, 2011). Therefore the key contri-
bution of whisker sensors for robotics is unlikely to be contact
localization for its own sake, but in a wide range of other applied
settings. Firstly, whiskers are useful in environments where other
localization methods are impaired, for example, in smoky and
dusty environments or underwater. Secondly, whiskers are small,
low powered and can be manufactured cheaply, making them
ideal for implementation as arrays on mobile robots. Finally,
accurate characterization of contact properties such as localiza-
tion and speed are essential for subsequent surface discrimina-
tions, as previous results have shown that whisker-based texture
discrimination is improved when contact location and whisker
movement are taken into account (Fend, 2005; Evans et al.,
2009; Fox et al., 2009). A feature-based approach, as demon-
strated here, could in principle provide a texture classifier with
the necessary contact localization and speed information for
improved discrimination. The integration of multiple texture
reports over time into a local map of an object would also
be dependent on accurate contact localization. This would be
an extension of the tactile SLAM work published previously
(Fox et al., 2012), and an area we hope to pursue in the
future.

Hall effect sensors have some advantages over other sensing
methods. Hall effect sensors are robust to damage, especially
when housed in a rubber filled follicle, which is an important
consideration when measuring whisker deflections as they are
constantly striking objects in the environment. Hall effect sensors
are also relatively inexpensive, and can be made quite small which
makes them ideal for application to large arrays of whiskers. It
has been proposed that rats determine radial distance to contact
by encoding the bending of whiskers through moments at the
base (Szwed et al., 2006). The Hall effect sensor is not a direct
model of the rat follicle sinus, and does not report pure moments
or forces at the whisker base but a combination of these prop-
erties along with whisker rotation angle about a pivot. Using a
completely hard follicle rubber would remove the angular com-
ponent of the deflection, but the sensor would no longer be able
to measure bending. A whisker sensor could feasibly be designed
that more closely models the physical structure of the rat folli-
cle sinus, but it would remain an approximation. The artificial
whiskers presented here capture the important aspects of contact

induced deflections at both high and low frequencies, which is
sufficient for understanding the abstracted principles of whisker
sensing.

4.3. IMPLICATIONS FOR UNDERSTANDING BIOLOGICAL WHISKER
SYSTEMS

Exploring active whisker movement in artificial systems high-
lights that active whisker control may be similar to aspects of
eye movement control in active vision (Aloimonos et al., 1988).
The field of active vision explores how the eyes may be moved to
efficiently search an environment. The difference between active
vision and active touch is in the scale of the movements with
respect to the environment. In active vision the sensors can be
moved to search a whole environment, for tasks such as scene
identification of mapping (Davison and Murray, 2002). Active
whisker touch can only be used over a very local region of the
environment, therefore active whisker control may be thought of
as analogous to micro-saccades for gaze stabilization (Collewijn
and Kowler, 2008) or pupil diameter and lens focus, for lumi-
nance and depth of field control in the eye (Koss and Wang, 1972;
Takehiko and Haruo, 1991). In vision optic flow and retinal slip
can be used as an error signal for corrective eye movements for
smooth pursuit (De Brouwer et al., 2001). Similarly, a measure
of contact duration may be used by the rat as an error signal to
correct whisker movements.

5. CONCLUSION
In this paper we have shown that a similar complementary
approach can be successfully pursued in robotics. Certain experi-
ments are much easier to perform on robots with fewer degrees of
freedom, such as the XY positioning robot. The results from these
experiments can save a great deal of time when implementing
classifiers onboard mobile robots such as CrunchBot, or robots
with high degrees of freedom such as SCRATCHbot. Mobile robot
experiments can then generate predictions for biological systems,
or drive further XY positioning robot research. This approach,
and indeed these robots, could be used to answer a broad array of
questions about active touch in the future.

We have shown that in each of the robots presented here,
regardless of whisker material or actuation method, the radial
distance to contact can be determined from peak deflection mag-
nitude. In addition the speed of contact also predictably affects
the amplitude of whisker deflection in each of these robots. By
taking the speed of contact into account, radial distance estima-
tion can be accurately performed in a range of settings. We predict
that if whiskered mammals are using deflection amplitude (or
degree of bending) to determine the radial distance to contact,
the contact induced signal will change if the animal whisks at a
different speed or force, and that this must be taken into account
for accurate discriminations.
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Rodents, such as rats and mice, are strongly tactile animals who explore the environment
with their long mobile facial whiskers, or macrovibrissae, and orient to explore objects
further with their shorter, more densely packed, microvibrissae. Although whisker motion
(whisking) has been extensively studied, less is known about how rodents orient their
vibrissal system to investigate unexpected stimuli. We describe two studies that address
this question. In the first we seek to characterize how adult rats orient toward unexpected
macrovibrissal contacts with objects and examine the microvibrissal exploration behavior
following such contacts. We show that rats orient to the nearest macrovibrissal contact on
an unexpected object, progressively homing in on the nearest contact point on the object
in each subsequent whisk. Following contact, rats “dab” against the object with their
microvibrissae at an average rate of approximately 8 Hz, which suggests synchronization
of microvibrissal dabbing with macrovibrissal motion, and an amplitude of 5 mm. In
study two, we examine the role of orienting to tactile contacts in developing rat pups
for maintaining aggregations (huddles). We show that young pups are able to orient to
contacts with nearby conspecifics before their eyes open implying an important role for
the macrovibrissae, which are present from birth, in maintaining contact with conspecifics.
Overall, these data suggest that orienting to tactile cues, detected by the vibrissal system,
plays a crucial role throughout the life of a rat.

Keywords: orienting, whisking, huddling, tactile fovea, development, active sensing, superior colliculus

INTRODUCTION
Orienting behaviors are a generic aspect of animal sensing; for
example, in vision (Land et al., 1999), hearing (Heffner, 1997),
echolocation (Valentine et al., 2002), and touch (Catania and
Kaas, 1997). Orienting can be defined as bringing your sensory
apparatus to a point of interest. In describing orienting as an
investigatory reflex, Pavlov (1927) made the following comment:

As another example of a reflex which is very much neglected we
may refer to what may be called the investigatory reflex. I call
it the ‘What-is-it?’ reflex. It is this reflex which brings about the
immediate response in man and animals to the slightest changes
in the world around them, so that they immediately orientate
their appropriate receptor organ in accordance with the percep-
tible quality in the agent bringing about the change, making full
investigation of it.

(p. 140)

What is interesting here is that Pavlov proposes that it is not
just the orient that is important, but also the subsequent explo-
ration movements that contribute to the effective investigation of
a stimulus.

Rodents, such as rats and mice, are strongly tactile animals
who scan the environment with their long facial whiskers, or
macrovibrissae, and orient to explore objects further with their
shorter, and more densely packed, microvibrissae (Brecht et al.,
1997; Hartmann, 2001; Grant et al., 2009). Rats have been found
to modify their macrovibrissal movements in response to con-
tact, in a manner that appears to regulate the force, number and

durations of whisker-surface contacts (Carvell and Simons, 1990;
Mitchinson et al., 2007; Grant et al., 2009); vibrissal tactile sens-
ing is, therefore, often seen as a paradigmatic example of an active
sensing system (Prescott et al., 2011). Observations from as early
as Vincent (1912) and Welker (1964) have described rats “nos-
ing” an object, or directing their nose toward an object, but the
orienting movements have yet to be fully described; hence in this
article we will seek to better characterize both orienting move-
ment to vibrissal touch, and aspects of subsequent exploration
movements, in both adult and neonatal rats, in order to exam-
ine some hypotheses about the role of orienting in active vibrissal
touch.

ORIENTING IN VIBRISSAL TOUCH
Vibrissae, in rodents, are the prominent hairs positioned on the
upper lip, mystacial pad, lower lip, brow, cheeks, and forelegs
(Ahl, 1986). It is the mystacial vibrissae that have excited the
most interest, in particular, the tapered macrovibrissae, which
are independently moveable vibrissae via intrinsic musculature
(Figure 1A). The macrovibrissae are not to be confused with the
microvibrissae, which are much shorter (<7 mm) and not inde-
pendently mobile (Figure 1A). The microvibrissae are also much
more numerous—Brecht et al. (1997) counted 90–140 whiskers—
and are not solely found on the mystacial pad, but also on the
lower jaw and on the inside of the upper lip on the furry buc-
cal pad (Welker, 1964; Brecht et al., 1997). When freely exploring
animals contact an object with their macrovibrissae (Figure 1B),
they tend to position the microvibrissal region on the items
they are investigating (Figure 1C; see also Brecht et al., 1997;
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FIGURE 1 | Macro and microvibrissae. (A) Photograph of a rats head,
showing the micro and macrovibrissa of the mystacial pad; (B) overhead
view of the rat locating a coin with its acutely protracted rostral whiskers,
(C) highly zoomed side-on view of the rat “dabbing” its microvibrissae
upon the coin, once it has been located.

Hartmann, 2001). Indeed, the macro and microvibrissae are often
employed together in tasks to discriminate between different tex-
tures and shapes (Brecht et al., 1997; Hartmann, 2001), and it
has been suggested that the macrovibrissae sample spatially in
order to orient the microvibrissae. The average whisker density
in the microvibrissae array (87/cm2) is considerably higher than
that of the macrovibrissae (2/cm2; Brecht et al., 1997) consistent
with this notion that the microvibrissae provide a high resolution
sampling area and acting as a tactile “fovea.” The position and
small size of the microvibrissae have caused difficulties in study-
ing them, and their use is, therefore, poorly characterized relative
to that of the macrovibrissae. Methodological limitations may,
therefore, be leading to an underemphasize, in the experimen-
tal literature, on the importance of the microvibrissae in rodent
tactile sensing.

The orienting behavior that rats perform with their macrovib-
rissae has been proposed to conform to a “maximal contact”
active sensing strategy (Mitchinson et al., 2007; Grant et al., 2009),
such that following a contact, as many whiskers as possible are
positioned on to the surface, so as to extract more informa-
tion. Several aspects of whisker control contribute to promote
the number of whisker contacts such as the reduction in whisker
spread following an initial contact (Figure 2A). Mitchinson et al.
(2007), found that in addition to controlling the whiskers so as to
increase contact, the movements of the vibrissae may also be reg-
ulated so as to “minimize impingement”—the amount of bending
of the whiskers against the contacted surface. Hence, when a rat
contacts the corner of a perspex block, the macrovibrissae appear
to orient with respect to the surface, according to a combined
“minimal impingement/maximal contact” control strategy, such
that the whiskers ipsilateral to the corner gently touch the sur-
face, whilst those contralateral to the surface “reach round” so
as to make additional contacts (Figure 2B) (Mitchinson et al.,
2011). In this way the macrovibrissae almost take on the shape
of the object in order to better extract certain properties from it.
The macrovibrissae can also be oriented ahead of a head rotation,

FIGURE 2 | Contact-related macrovibrissal orienting. (A) Video still
showing and example of a reduction in whisker spread following a contact.
(B) Video still showing contact-related asymmetry on a corner of a perspex
cube. Both panels are based on Figure 1 in Grant et al. (2012).

which also gives rise to asymmetry of the whisker fields (Towal
and Hartmann, 2006).

In the remainder of this article we describe two studies
intended to improve our understanding of the role of orienting
in vibrissal touch sensing. In study one, we seek to characterize
how adult rats orient toward unexpected contacts on their long
vibrissae. We follow Brecht et al. (1997), in assuming that rats
will seek to explore a novel object with both their macro- and
micro-vibrissae, and that the microvibrissae on the chin and lips
can be considered to form a central foveal zone. Orienting, there-
fore, should consist of moving this fovea to locations of interest on
detected objects, then exploring at these locations using motions
that appropriately stimulate the microvibrissae. We look both at
how macrovibrissal contacts are used to select the initial loca-
tion for microvibrissal placement, and at how, having oriented,
the animals move their short vibrissae to explore across the tar-
get surface. In study two, we examine the role of orienting to
vibrissal contacts in developing rat pups for maintaining aggre-
gations (huddles). Close contact with conspecifics is critical for
the survival of young rat pups in order to maintain body tem-
perature and gain access to food. Orienting at this age, therefore,
requires successfully detecting the presence of nearby conspecifics
and effectively judging in which direction to move in order to
maintain or increase contact. Results of both studies provide new
evidence that orienting to tactile cues, detected by the vibrissal
system, plays a critical role throughout the life of a rat.

STUDY 1: ORIENTING AND DABBING IN ADULT RATS
In this study we seek to characterize how adult rats orient toward
unexpected macrovibrissal contacts with objects, we also examine
the microvibrissal exploration behavior following such contacts.
Data was recorded in two different settings, one to encourage
orienting to a vertical block, the other to encourage exploration
through palpation or “dabbing” of a horizontal surface with
the microvibrissae. Henceforth these will be referred to as the
“orienting” and “dabbing” data-sets.

MATERIALS AND METHODS
Animals
Data was collected using seven male Royal College of Surgeons
(RCS) rats, aged 9–13 months and weighing 334–377 g. All ani-
mals had genetic retinal degeneration (dystrophy). These animals
exhibit normal whisking behavior but also almost completely
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blind and rely solely on tactile stimuli from their whiskers dur-
ing testing (Hetherington et al., 2000). Hetherington et al. (2000)
found that there was a tactile deficit in an RCS rat’s ability to ori-
ent to a stimulus on their flank. However, they also tested their
ability to orient to a stimulus in the whisker field and found no
difference between RCS rats and other strains. In addition, quan-
tification of whisker movements in our laboratory of dystrophic
and non-dystrophic RCS animals and of sighted Hooded Lister
rats suggest that whisking control in dystrophic animals does not
deviate in any marked way from that of normally sighted rats.
Therefore, although rats usually use their whiskers in the context
of vision, there is no evidence that RCS rats have any deficit in
tactile acuity of the whisker system, or use their whiskers in a dif-
ferent way. The rats were kept at 22◦C in a 12-h light/dark cycle
and had unrestricted access to food and water. All procedures
were approved by the local Ethics Committee and UK Home
Office, under the terms of the UK Animals (Scientific Procedures)
Act of 1986.

Procedures
Data collection took place in a 40× 40 cm rectangular viewing
arena with a glass floor, ceiling and front wall. It was illumi-
nated from below by a custom-built high-power light box. Digital

high-speed video recordings were made with a Photron Fastcam
PCI at 500 frames per second with a shutter speed of 0.5 ms,
f-stop 22 and a resolution of 1024× 1024 pixels. The camera was
installed above the arena and thus produced an overhead view. To
provide the camera with a second viewpoint, a front-silvered mir-
ror was placed behind the glass front wall, suitably angled to offer
a side-on view (as per Grant et al., 2009). Before each session the
camera was positioned so that it looked straight down the front
wall in the overhead view and the mirror was set at an angle of
approximately 45◦ so that the camera looked along the floor in
the side-on view. After precisely positioning the camera, a cali-
bration tool with known dimensions was placed in the arena and
recorded to serve as a reference for converting pixels to mm. One
of two rectangular cuboids (blocks) made of transparent acrylic
glass was placed in the arena and affixed to the floor with blue
tack.

For recording of the orienting data-set a block with 2.0×
2.8× 7.65 cm edge length and a 50 mm lens were employed (as
in Figure 3). To observe “dabbing” the block had the dimen-
sions of 2.45× 3.0× 1.35 cm and a 120 mm lens was used (as
in Figure 4). While the taller block offered a bigger area for the
orienting behavior, the smaller block size provided a surface at a
suitable height to encourage microvibrissal exploration.

FIGURE 3 | An example of the tracked points measured during

orienting. Example video stills from pre-contact whisk to a microvibrissal
contact in whisk 3. Whisk 1: the rat has just contacted the block. Second
whisk: the rat orients toward the block. Third whisk and microvibrissal
contact: the nose is now touching the block. The red lines correspond to the

area of whiskers contacting the wall and perspex block. The rat moves away
from the wall and toward the novel perspex block. The snout position and the
positions of the whiskers on the block (right, left, near, and far), and the wall
(rostral and caudal) will be to construct our measures, which we describe
below.

FIGURE 4 | Example of the tracked nose during the dabbing clips, shown in three example video-stills.
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Recording
Data was collected in daily sessions in which each rat was indi-
vidually placed in the viewing arena and allowed to freely explore
its surroundings. During exploration, recordings of 1.6 s length
were taken opportunistically when the rat contacted one of the
perspex blocks. Only one perspex block was used in a recording
session, and we alternated between the orienting block and the
dabbing block on a daily basis. Generally, 12 clips were recorded
for each animal per session. When a rat showed no exploratory
behavior for more than 5 min, however, recording of that ani-
mal was discontinued for that session. A total of 129 clips were
recorded for the orienting behavior (15–25 per animal) and 172
for the dabbing behavior (13–35 per animal).

Data selection
Clips were selected for further analysis as follows. By manually
inspecting the videos, frame by frame, the times (frames) of max-
imum macrovibrissal protraction were identified separately for
the right and left whisker arrays this allowed each clip to be
decomposed as a series of whisk cycles (“whisks”). Microvibrissal
contact in both the orienting data-set and the dabbing data-set
was inferred when the snout tip touched the block, which could
generally be discerned in the side-on camera view.

For the orienting data-set the clips were required to have an
initial whisk cycle in which there was no whisker contact with
the block, termed a pre-contact whisk, to ensure that the first
macrovibrissal contact with the block was always recorded. Each
clip also had to provide a clear view of the rat making contact
with the object, first with the macrovibrissae and subsequently
with its microvibrissae. Eighty-four clips were discarded, most of
them because the pre-contact whisk was missing (28 clips). In 18
clips there was no orientation or microvibrissae contact and in 10
clips the animal’s snout was obscured by the block in the side-on
view. In total, 45 clips (2–11 per animal) in the orienting data-
set match the criteria for further analysis. In these clips the initial
microvibrissal contact occurred in either the 3rd or 4th whisk fol-
lowing the initial pre-contact whisk, therefore clips were analyzed
for either 3 (12 clips) or 4 (9 clips) consecutive whisk cycles.

For the dabbing data-set the clips were required to include
at least one complete episode in which the tip of the animal’s
snout approached the block, made microvibrissal contact, and
then withdrew—defined as a “dab.” The snout tip was required
to be visible at all times. One Hundred clips were rejected, due to
the snout being obscured (59 clips) or the rat showing no dabbing
behavior (18 clips), this left a total of 72 (4–15 per animal) clips
for further analysis in the dabbing data-set.

Data analysis
Selected clips were examined by eye on an LCD monitor
using uncompressed video and a purpose-built whisker track-
ing/analysis tool (as used by Mitchinson et al., 2007; Grant et al.,
2009). In each clip, for both the orienting and dabbing data-sets,
the corners of the block were identified in both the overhead
and the side-on view to provide accurate information about the
block’s position.

Analysis of the orienting data-set
Each clip can be decomposed into a sequence of whisks. We refer
to the ith whisk in the sequence where i ∈ {0, 1, 2, 3, 4} whisk 0 is

the pre-contact whisk and the snout contacts the block in either
whisk 3 or whisk 4. We focus on the frames in which the whiskers
are identified to be at maximum protraction, an example of which
is shown in Figure 3. The vector position of the snout tip (s) and
of the locations of key whisker-object contact locations are deter-
mined by visual inspection and marked as shown in the example
frames (Figure 3). For each sequence these locations are then used
to define the following measures:

sFinal: The position of the snout tip in the ith whisk and in
the final whisk, the latter defines the point of microvibrissal
contact.
pbk

i , pwk
i : A point k on the block (b) or wall (w) identified in an

image frame corresponding to the ith whisk.

p
bLeft
i , p

bRight
i , pbNear

i , pbFar
i , pwRost

i , pwCaud
i : Respectively, the

positions of the left-most and right-most macrovibrissal con-
tacts points on the block, the nearest and furthest macrovib-
rissal block contact points, and the most rostral and most
caudal contact points on the wall; all as determined by visual
inspection of the relevant frames for whisk i. Note that, since
the block is to the right of the wall, the leftmost and near-
est contacts points are often the same, and the rightmost and
furthest contact points are often the same.
pbMid

i , pwMid
i : The mid-point of contacts with the block (b) or

wall (w) calculated as the vector average of the left-most and
right-most contacts points on the block and of the most ros-
tral and most caudal contact points on the wall, i.e., pbMid

i =
1
2

∑
k

(
p

bLeft
i + p

bRight
i

)
, pwMid

i = 1
2

(
pwRost

i + pwCaud
i

)
.

dbk
i , dwk

i : The distance from the snout tip to a given point on

the block or wall, e.g., dbNear
i = ‖si − cbNear

i ‖, dwMid
i = ‖si −

cwMid
i ‖.

dbk
ij : We wish to be able to compare the snout position in whisk

i, with whisker contact position in a previous whisk cycle j,
we, therefore, define dbk

ij = ‖si − cbk
j ‖. For instance dbNear

32 =
‖s3 − cbNear

2 ‖ is the distance from the snout position in whisk
3 to the nearest macrovibissal contact position on the block in
the preceding whisk 2.

To examine whether animals orient away from the wall and
toward the block we perform repeated measures ANOVA for the
measures dbMid

i and dwMid
i for i = 1, . . . , 4. To examine whether

the rat orients toward the nearest, furthest, or intermediate point
of contact on the block, and to the position detected in the initial
contact (whisk 1) or in the most recent contact (whisk i− 1) we
looked at values of dbk

i1 for the positions near, far, and mid, and

dbk
i(i−l) for l = 1, . . . , 3. We also performed a regression of the y-

coordinate of the final microvibrissal contact position sFinal with
the y-coordinate of pbNear

1 , pbFar
1 , pbMid

1 , pbNear
(Final−1)

, pbNear
(Final−2)

. All
data was checked to ensure normal distributions (Kolmogorov–
Smirnov Test) and equal variances (Levene’s Test) before running
the ANOVA and regression analyses.

Analysis of the dabbing data-set
The tip of the snout was tracked in every fourth frame in both the
side-on view (Figure 4) and the side-on view, with intervening
values computed by interpolation. The change in y co-ordinate
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of the snout position over time was then used to detect the “dab-
bing” motion for which measures of dab amplitude and frequency
were calculated as follows.

Dab frequency was estimated using an autocorrelogram of
the tracked vertical position. Specifically, the time series was
smoothed using a zero-phase low-pass filter (boxcar) with a cut-
off frequency of 16 Hz, which is well above the highest expected
dab frequency from looking at the footage, this removes the
high-frequency information. The first peak (maximum) in the
autocorrelation of this smoothed time series was then identified
automatically to give a first estimate of signal period. This esti-
mate was then refined by gradient ascent on the unsmoothed
autocorrelation series to locate the nearest peak to that found
automatically in the smoothed.

To estimate the dab amplitude we first removed the mean value
from the vertical nose position time series then computed the root
mean square value to give the root-mean-square (RMS) dabbing
amplitude. These time series were approximately sinusoidal, so we
were able to estimate the “peak-to-peak dab amplitude” by multi-
plying the RMS dabbing amplitude by 2v2 (Chatfield, 2003). This
estimate of amplitude is reasonably robust to departures from a
purely sinusoidal pattern.

RESULTS
Rats orient toward unexpected object contacts
As show in Figure 5, when animals make an unexpected con-
tact with an object, they will orient toward that object over
successive whisk cycles (repeated measures ANOVA for dbMid

i
and i = 1, . . . , 4 : [F(3, 33) = 54.8, p = 0 < 0.001], post-hoc tests:
dbMid

1 > dbMid
2 > dbMid

3 > dbMid
4 ). At the same time they also

gradually move away from the wall that was previously being fol-
lowed (repeated measures ANOVA for dwMid

i and i = 1, . . . , 4 :
[F(2, 18) = 0.91, p = 0.010], post-hoc tests: dwMid

1 , dwMid
2 , dwMid

3 <

dwMid
4 ). This occurs even when the rat is contacting the wall and

the block with whiskers on the same side of the face.

FIGURE 5 | Position of the snout (S) relative to the mid-point of

contacts wall and with the block (as detected by the macrovibrissae)

over subsequent whisks. The graph shows that animals toward the block
over time indicating orienting toward the unexpected object, gradually
moving away from the wall as they do so.

Rats orient toward the closest whisker-object contact position
Figure 6 shows that animals tend to orient toward the nearest ini-
tial whisker-object contact position rather than the furthest initial
contact point or the mid-point of the initial contacts. An example
of orienting was given in Figure 3 which shows the whiskers posi-
tioned at maximum protraction for a sequence of four whisks,
with initial macrovibrissal contact shown in the second frame,
and microvibrissal (snout) contact in the final frame. Across the
series the animal can be seen to move away from the wall and
toward the nearest whisker contacts.

Figure 7 and regression analyses (see Table 1) indicate that
the animal may progressively home in on the position of the
nearest macrovibrissal contact in preceding whisks. This result
should be taken with some caution, however, since the most
recent contact could be a better predictor simply because it is
more proximal in time. Confirmation that the trajectory was been
updated/corrected on a per-whisk basis could be found if the head
position could be observed to fluctuate on the same time-scale as
the whisk cycles. Informal observations of the whisker and head
movements in all the 59 tracked orient examples did not iden-
tify any clear examples of such correctional movements. However,
even in the absence of such evidence, per-whisk corrections could
be taking place, these might either be too small to be apparent
or may be obscured by some smoothing process that affects the
orienting behavior.

Dabbing occurs at a behaviorally relevant frequency
If head movements during an orient are relatively smooth, once
the microvibrissae touch the block, head movements become
very different. In the case of contact with a horizontal surface,
the head moves up and down in a rhythmic movement referred
to as palpating or dabbing. As shown in Figure 8 the analysis
of our dabbing data-set found that these movements occur at
around 8 Hz (7.8± 3.3 Hz) and at amplitudes of around 5 mm

FIGURE 6 | Distance from the snout tip in each whisk cycle to the

nearest, furthest, and mid-point of block contacts in the initial contact

whisk. The graph shows histograms of the distances dbNear
i1 , dbFar

i1 and
dbMid

i1 for whisks i = 1, . . . , 4, averaged for X clips. The plot shows that as
the animal orients toward the block, in whisks 2, 3, and 4, it moves toward
the nearest initial point of contact rather than the furthest point or an
intermediate point.

Frontiers in Behavioral Neuroscience www.frontiersin.org July 2012 | Volume 6 | Article 39 | 123

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Grant et al. Orienting in whisker touch

FIGURE 7 | Distance from the snout tip (s) in each whisk cycle to the

nearest point of block contacts in preceding whisk cycles. The graph
shows histograms of the distances dbNear

i(i−l) from the snout tip to block
contacts for whisks i = 1, . . . , 4 and for l = 1, . . . , 3, averaged for X clips.
For whisk 2, dbNear

21 is shown as a reference (there are no earlier contacts to
compare to), for whisk 3 we can compare dbNear

31 and dbNear
32 , and for whisk

4 dbNear
41 , dbNear

42 , and dbNear
43 . The plot suggest that as the animal orients

toward the block it progressively adjust its trajectory to move toward the
nearest point of contact in the immediately preceding whisk.

Table 1 | Regression analyses for the y -coordinate of the

microvibrissal contact position (sFinal ) with the y -coordinate of

vibrissal contact positions in the first and subsequent contact

whisks.

pbNear
1

pbFar
1

pbMid
1

pbNear
(Final–2) pbNear

(Final–1)

R2 0.758 0.522 0.673 0.886 0.901

A linear regression model of the y-coordinate of the final microvibrissal contact

position sFinal with the y-coordinate of pbNear
1 , pbFar

1 , pbMid
1 , pbNear

(Final−1)
, pbNear

(Final−2)

shows that the microvibrissal contact may occur toward the closest whisker con-

tact of preceding whisks and the best predictors are the contact points nearest

to the snout tip.

(4.7± 3.1). Dabbing is thus on a behaviorally relevant timescale
compared to the movements of the macrovibrissae which likewise
occurs at a frequency of around 8 Hz (Mitchinson et al., 2011).

For example, Figure 8C shows the vertical position of the
snout tip throughout an example video clip; panels A–C show
example video stills corresponding to the arrows on the graph.
We can see here that the snout tip is moving in a rhythmic man-
ner. The video stills show that when the snout tip is away from
the block (panels A and C), the macrovibrissae are retracted and
lifted up, but when the head is brought down to palpate the block,
the macrovibrissae are protracted and moved downwards to also
touch the block. Between dabs the microvibrissae do not always
lose contact with the object but rather may be moved along the
surface (Figure 8C), suggesting that dabbing does not necessarily
create absolutely discrete tactile impressions.

Figure 9 shows three further example dabbing sequences.
When dabbing over a block the microvibrissae are moved across
the surface, and can sample block edges (Figure 9B) and surfaces
(Figures 9A,C). Informally we have observed that, following an

FIGURE 8 | Characteristics of vertical dabbing movements. (A,B)

Distribution of dabbing frequencies and amplitudes. The mean frequency is
at 7.83 Hz and mean amplitude at 43.27 mms. (C) Example dabbing motion.
The vertical distance, in mm, of the snout tip to the surface of the block in
the side-on view plotted against time. Pointers a–c refers to the
corresponding screenshots in Figure 4 which used video stills from the
same sequence.

orient, the rat may make just the one dab or, if it appears to be
interested in actively exploring the object, this is followed by a
variable number of others (we have seen up to eight dabs). The
number of dabs and the duration of this exploratory behavior is
likely to be dependent on both the alertness and motivation of
the rat, and the novelty of the stimuli, the effects of such variables
could be investigated in future research.

STUDY 2: ORIENTING IN DEVELOPMENT
In study two, we examine the role of orienting to vibrissal contacts
in developing rat pups for maintaining aggregations (huddles), a
behavior that is critical for effective thermoregulation in juvenile
animals. Behavior was recorded in two settings. First, we filmed
rat pups in their home-cage, using a normal speed camera, inter-
acting with and orienting to conspecifics. As is typical for this
type of study quantification of behavior was performed by trained
observers using standardized ordinal scales (Sullivan et al., 2003;
Grant et al., 2012). To further examine orienting movements
in relation to contacts, we also made some high-speed video
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FIGURE 9 | Dabbing trajectories and microvibrissae contacts. High-speed video frames from three different clips (A–C) overlaid with the trajectory of the
nose (blue lines) and the microvibrissae contacts (pink crosses) during a bout of dabbing.

recording of pup behavior in a setup that was intended to approx-
imate conditions in the home-cage whilst allowing appropriate
back-lighting for high-speed videography.

MATERIALS AND METHODS
Animals
Four litters were used in this study, two dystrophic RCS litters
and two Hooded Lister litters. The RCS animals have a specific
mutation that causes a gradual degeneration of the retina, with
the consequence of loss of vision in the mature animal at around
17 weeks of age (Hetherington et al., 2000; McGill et al., 2004),
but are normal at the ages tested here (i.e., the rats are able to
see as soon as their eyes open and throughout this study). In the
adult RCS rat there is no deficit in their ability to orient to a
stimulus in the whisker field (Hetherington et al., 2000). Using
these two strains gives us a wider distribution of litter sizes, from
6 to 11 animals, as the RCS animals tend to have smaller litters
(6 and 8 pups per litter in this study) than the Hooded Listers
(7 and 11 pups per litter in this study). Animals were kept in
their home cage with both their parents and all their litter-mates
present throughout experimentation. The pups were on a 12:12
light schedule and kept at 22◦C, with water and food ad libitum.
All procedures were approved by the local Ethics Committee and
UK Home Office, under the terms of the UK Animals (Scientific
Procedures) Act, 1986.

Procedures
This study employed a form of focal sampling, where an indi-
vidual is scored for a catalogue of behaviors over a limited time
period (Altmann, 1974; Martin and Bateson, 1993). Specifically,
two individual focal pups were selected at random, one male and
one female—eight in total, from each litter and identified from
their litter-mates with a marker pen bar on their tail. Animals
were filmed between P2 and P21, every day where possible (where
the animals are born on P0 and P1 is the subsequent day). The
pups were filmed at 25fps using a Casio Exilim camera in their
home cage in the lab for approximately 8 min per litter. This
took place at around 9.30 a.m. each day, with the lid of the cage
removed for clear viewing. Sixty-six clips were collected in this

way. 9.30 a.m. was selected as a good time of day as there were
minimum disturbances to the animal houses in the morning, in
addition, informal observations suggested that the animals were
more active in the mornings.

Two focal pups in each of the two RCS litters, one male and
one female, were also filmed using high-speed videography at P5
and P6. Previous studies have indicated how important realis-
tic temperatures and textures are in eliciting huddling behaviors
(Campbell and Raskin, 2004). In order for the focal pup to be
clearly visible in the camera view, we therefore put the rest of
the litter in a soft material net, with holes of around 4 mm.
This meant that the focal pup was in contact with its littermates
directly through the holes and would receive tactile cues similar
to those obtained in the nest. The netted huddle was placed into a
glass experimental arena and the focal pup was positioned to the
right of the huddle, approximately 50 mm away. The recording
setup and camera were otherwise similar to that used in the high-
speed videography element of study one. 1.6 s clips were recorded
manually using a trigger whenever the focal pup contacted the
netted huddle, an example clip can be seen in Figure 13. When
the focal pup moved out of the field of view, it was placed back
in to the starting position. Clips were collected in this way to
qualitatively illustrate huddling behaviors.

Data analysis
A 40 s sampling time (1000 frames) was selected to provide
high sample numbers at a relevant time-scale for the types of
behavior (orienting and huddling) we are interested as deter-
mined by reviewing pilot footage. At each 40 s interval, each of
two focal pups in each litter was given a score on the following
measures:

Huddle size (H1): the number of animals in the focal pup’s
huddle or “aggregon” (a group of pups that are in contact with
each other), scored between 1 and n (the total number of pups
in the litter).
Contact type (H2): Whereabouts on the body the focal pup it
is in contact with its conspecifics, scored either 1 or 0 for six
zones as shown in Figure 10.
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FIGURE 10 | Body zones for scoring contact type. The image shows a
typical overhead view of a rat pup overlaid with the zones in which the body
is segmented in order to assess contact type.

Movement direction (H3): The direction of movement of the
focal pup in the subsequent 1 s of footage, scored in one of six
possible directions (including no movement).
Huddling behavior (H4): The type of huddling behavior
engaged in for the next 15 s, scored in one of four categories
for the Hooded Lister litters only. Further details of each of the
ordinal scales are given in Table 2.

This analysis provided 10–20 data points for each scale, per
day, per focal animal.

The principle analysis was to look at the effect of Contact Type
on the subsequent movement direction of the pup; for instance,
which way would the pup move if there was a contact at head-left?
For this analysis, a mixed-model ANOVA was carried out with
Contact Type on the focal pup as a within variable (SN, HL, HR,
EN, TL, TR) and Movement Direction (none, left, right, forward)

and age (immature P2–09, transitory-adult P10–21) as between
factors. All the data was checked that it was normally distributed
(Kolmogorov–Smirnov Test) and had equal variances (Levene’s
Test).

RESULTS
Young rat pups turn toward contacts with conspecifics
As shown in Figure 11A, we found that younger rat pups (P2–10)
turn toward conspecifics in their huddle, more frequently than
would be expected by chance. Specifically, pups that are con-
tacted on the snout (sn) are more likely to move forward, those
contacted on the left of the head (hl) to orient toward the left,
and those on the right of the head (hr) toward the right. Older
animals (P11–21, Figure 11B) showed no consistent pattern in
their responses, possibly because their behavior is becoming too
complex to be adequately described by an analysis of the type
used here. One reason for the loss of consistency is the general
reduction in huddling in older animals. Specifically, and in line
with earlier studies (Schank and Alberts, 2000; Schank, 2008), we
found that older animals (P18+) spend less time in huddles and
were, therefore, less likely to be found in contact with conspecifics
(Figure 10C).

Rat pups dig in to the huddle, or move in and around it, from P2–10
In a subset of animals (Hooded Lister pups) we also looked at
the types of huddling behavior engaged in by animals that were
in contact with conspecifics. Specifically, we observed whether
the pup moved in-and-around the huddle, buried itself deeper
into the huddle, or moved away from the huddle. As shown in
Figure 12A, prior to P12, movement with respect to the huddle,
where present, tended to involve moving in and around the hud-
dle, or digging-in—burying under other animals in the huddle. At
later ages, beginning from P10 pups move away from the huddle
in some clips showing the beginnings of exploratory behav-
ior. Figure 12B, shows that the “digging-in” behavior is more

Table 2 | Ordinal scales for scoring orienting behavior during rat pup huddling.

Measure Scored Description

H1 Huddle size (1− n)/n How many pups are in the aggregon (huddle) of the focal pup, normalized
to litter size (n)

H2 Contact type Score = 0 or 1 for each of SN, HR,
HL, TR, TL, EN

Records where contacts are on a focal pup. Contacts could be trunk
left (TL), end (EN), trunk right (TR), head left (HL), head right (HR) and
snout (SN) for head contacts that were “straight on.” See Figure 9 for
an indication of how these zones are identified in the overhead camera
view

H3 Movement direction Score = 1 for one of None, Left,
Right, Forward, Other

The global direction of the focal pups’ movements, in the 1 s immediately
following the start of the observation period

H4 Subsequent behavior Score = 1 for one of None, Digging,
In-and-around, Away

Records the behavior that follows the contact and initial movement: no
movement with respect to huddle position, digging in to the huddle, mov-
ing in and around the huddle, moving away from the huddle. Scored for
the 15 s immediately following the start of the observation period for the
Hooded Lister pups only

Ordinal scales for coding locomotion and huddling, from home cage footage of neonatal rats. All measures except were developed specifically for the current study

other than H1 which is taken from Schank and Alberts (1997).
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FIGURE 11 | (A,B) The percentage of subsequent movements in
response to contacts by conspecifics in immature pup, P2–10 (panel A)
and transitory-adult pups (P11–21). In particular, we see that there are
significantly more snout contacts when the rat moves forward, in
immature animals, than in transitory-adult pups. [F(3, 79) = 9.121,

p < 0.001; Figure 7B]; more leftward movements following a left head
contact [F(3, 79) = 6.857, p < 0.001], and more rightward movements
following a right head contact [F(3, 79) = 8.018, p < 0.001]. (C) The size
of the huddle (normalized for litter size) decreases in the third postnatal
week (P18+).

frequent when there is a snout contact (Figure 11B), suggesting
a possible tactile trigger for this behavior.

Examples of huddling can be seen in the video stills in
Figure 13, taken from two different filming sessions. Panels A,B
shows P2 pups in a huddle. The focal pup (indicated by the aster-
isk) is being contacted by its conspecifics on its head left and head
right (Figure 13A). The pup then begins to dig into the hud-
dle, which can be seen by its extended rear legs (Figure 13B).
Figure 13C shows a P7 pup being contacted on head right, it
turns toward the contact (Figure 13D) and moves further into the
huddle.

The home cage study demonstrates that young pups will ori-
ent toward conspecifics at an age before they eyes have opened,
however, this does not confirm specifically that the trigger for
the orienting movement will have been a vibrissal contact. At
this age, the vibrissae are extremely fine hairs and impossible to
observe in home cage video footage of this type. To confirm a role
for whiskers in orienting we, therefore, examined pup orienting
behavior in our high-speed video footage where we filmed pups
interacting with a netted huddle of conspecifics. These recordings
indicated that vibrissal contacts can serve as a trigger for orient-
ing movements. For example, In Figure 14, a P6 rat pup can be
seen making whisker contacts with the netted huddle on the left
side of its head (0–0.19 s). It then “noses” around the huddle until
the snout is positioned into a gap, and then starts to “dig” into the
huddle.

DISCUSSION
In study one, we showed that rats orient to the nearest macrovib-
rissal contact on an unexpected object, progressively homing in
on the nearest contact point on the object in each subsequent
whisk. Although it is not surprising that rats choose to move
toward the nearest contact point it is at least logically possible that
they might target the average position of vibrissal contacts on the
object, therefore it is useful to confirm that the nearest contact
point is generally preferred. Targeting the nearest point has two
benefits. First the animal will be able to approach that point more
quickly than any other point, second, it will expend less energy
and be detoured less from its previous path in doing so, than if any
other point of contact is targeted. Therefore, the strategy adopted
by the animal is clearly an efficient one for rapidly approaching
and finding out about novel objects.

The midbrain superior colliculus is widely considered to play
a crucial role in orienting toward spatial targets (Benedetti, 1991;
Hemelt and Keller, 2007; Cohen et al., 2008). That we are sug-
gesting that the rat might be orienting to closest whisker contacts
appears consistent with Cohen et al.’s (2008) findings that the col-
liculus responds most strongly to early contacts. In our study the
closest contacts tended to occur on the more rostral whiskers,
which do tend to contact surfaces before the more the caudal
whiskers, which make contact with points more distal from the
snout tip as they are swept forward. Benedetti (1991) found that
whiskers more central to the visual field project to larger areas
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FIGURE 12 | (A) Subsequent behaviors following contact. Younger
animals (<P12) tend to move in and out of the huddle, or to engage in
digging in to the huddle. Older animals spend more time moving away
from the huddle (>P10), and no time digging against each other. (B) The
percentage of contact types for each behavior. Digging tends occur after

more snout contacts (indicated by a larger blue bar in the digging
category), moving away tends to occur after more trunk contacts
(indicated by smaller blue, red and green bars in the away
category). Black lines indicate the division between head and trunk
contacts.

in the colliculus, again this could potentially also lead to greater
preference for rostral whiskers in selecting the target for orienting
movements.

Following contact, rats “dab” against the object with their
microvibrissae at an average rate of ∼8 Hz which is consistent
with Hartmann (2001) who showed evidence of the synchroniza-
tion of microvibrissal dabbing with macrovibrissal motion. Here
we have provided additional evidence concerning the amplitude
of the dabbing motion which was found to be around 5 mm in our
data, though very variable. Further examination of microvibrissal
contact patterns would be useful to understand better how ani-
mals are using this high-resolution region of the vibrissal sensing
system.

In study two, we examined the role of orienting to tactile
contacts in developing rat pups for maintaining aggregations
(huddles). The successful maintenance of huddling is crucial for
the survival of young rat pups, so they can successfully feed and
stay warm. Sullivan et al. (2003) previously showed that the loss

of vibrissae could impair effective huddling behavior. That vib-
rissae are already present at birth and can solicit head turning in
very young animals (see also Grant et al., 2012) is further evidence
that the vibrissae play an important role in maintaining contact
with conspecifics. In the current study we have provided evidence
consistent with the hypothesis that young pups are able to ori-
ent to contacts with nearby littermates before their eyes open.
High-speed video footage confirms that contacts on the vibris-
sae are a likely candidate for the tactile triggers underlying this
behavior. Interestingly, the superior colliculus appears to mature
relatively slowly in young rat pups not reaching adult-like activity
levels until the third week. The mechanisms underlying orienting
in young rat pups, therefore, remain to be identified. It might be
that the low numbers of unorganized somatosensory units in the
colliculus are sufficient to drive these simple behaviors, alterna-
tively brainstem systems outside the colliculus may be adequate to
co-ordinate some forms of orienting. In addition, these behaviors
seem to be only elicited by realistic whisker contacts, for example
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FIGURE 13 | Video stills of P2 and P7 pups in their home cage.

(A) A P2 focal pup moves forward following contacts on its head left
and head right; (B) 3.2 seconds later, the pup starts to dig in to the
huddle, indicated by the extended rear limbs. (C) A P7 focal pup has

been contacted on its head right; (D) 4.3 seconds later the pup
has oriented right toward the contacts and starts to move in
and around the huddle. In each still the focal pup is indicated by
an asterisk (∗).

FIGURE 14 | High-speed frames showing a P6 rat interacting with a

netted huddle. The first whisker contact is at 0 s on head left. The pup
continues to move its head forward into the contact, which causes a

deeper snout contact (0.19 s). The pup “dabs” its head in to the
huddle (0.85 s), positions into a gap (1.28 s) and starts to dig further
into the huddle (1.57 s).

rat pups cannot orient toward whisker deflections with a wooden
rod until after eye-opening (around P12; Sullivan et al., 2003).
Indeed Campbell and Raskin (2004) showed that for a rat pup
to show normal huddling behaviors it has to make contact with
something warm, soft, and fluffy. These factors are all crucial for
a young pup to successfully turn toward conspecifics and their

whiskers may play a role in identifying the tactile characteristics
of conspecifics as well as locating them in nearby space.

Although the colliculus is the proposed primary candidate for
mediating macrovibrissal orienting (Benedetti, 1991; Hemelt and
Keller, 2007; Cohen et al., 2008), little is known about the path-
ways that convey information from the microvibrissae once they
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have been contacted (Deschênes et al., 2012). Both the micro
and macrovibrissae are represented extensively in the cortex, the
macrovibrissae by the barrels, and the microvibrissae by a group
of micro barrels, rostral to the barrel field (Benison et al., 2006;
Deschênes et al., 2012). The high density of the microvibrissae
and their large representation in the somatosensory cortex sug-
gests that they do function as a high-resolution tactile sensor and
supports Brecht et al.’s (1997) proposition that they function in
object recognition tasks and feature detection. The orienting of
the microvibrissae to objects, and their repeated touches, maxi-
mizes the number of whisker contacts with an object. In neonatal
rats, this might be key to identifying textures and soft surfaces,
so that they can huddle and thermoregulate effectively. In adults,
the microvibrissae could aid in discriminating tactile cues such as

texture and shape (Brecht et al., 1997), which may be important
for adult rats to identify food items, precisely locate objects such
as insect prey for biting, and to navigate effectively around their
environment.
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A crucial role of tactile experience for the maturation of neural response properties in the
somatosensory system is well established, but little is known about the role of tactile
experience in the development of tactile behaviors. Here we study how tactile experience
affects prey capture behavior in Etruscan shrews, Suncus etruscus. Prey capture in adult
shrews is a high-speed behavior that relies on precise attacks guided by tactile Gestalt
cues. We studied the role of tactile experience by three different approaches. First, we
analyzed the hunting skills of young shrews’ right after weaning. We found that prey
capture in young animals in most, but not all, aspects is similar to that of adults. Second,
we performed whisker trimming for 3–4 weeks after birth. Such deprivation resulted in
a lasting disruption of prey capture even after whisker re-growth: attacks lacked precise
targeting and had a lower success rate. Third, we presented adult shrews with an entirely
novel prey species, the giant cockroach. The shape of this roach is very different from the
shrew’s normal (cricket) prey and the thorax—the preferred point of attack in crickets—is
protected by a heavy cuticle. Initially shrews attacked giant roaches the same way they
attack crickets and targeted the thoracic region. With progressive experience, however,
shrews adopted a new attack strategy targeting legs and underside of the roaches while
avoiding other body parts. Speed and efficiency of attacks improved. These data suggest
that tactile experience shapes prey capture behavior.

Keywords: whisker, vibrissa, experience, shrew, Suncus etruscus, object recognition

INTRODUCTION
The somatosensory system of mammals is a classic system for
studying neural plasticity. Neurophysiological and anatomical
analysis demonstrated that somatosensory cortical maps are
highly plastic, both during development (Van der Loos and
Woolsey, 1973; Simons and Land, 1987) and in adult animals
(Buonomano and Merzenich, 1998). Neural plasticity can be
induced by peripheral lesions, passive sensory experience, and
training on sensory tasks. Much of the research on neural plas-
ticity of the somatosensory system has focused on the rodent
S1/barrel cortex (Woolsey and Van der Loos, 1970) and our
knowledge about the neural mechanisms underlying the devel-
opment of the somatosensory system is impressive (Feldman and
Brecht, 2005).

While our knowledge of the development of barrel cortex
physiology and anatomy is fairly detailed, we know less about
the development of behavioral capacities and natural whisker-
mediated behaviors (Brecht, 2007). A notable exception is the
work of Simons and colleagues (Carvell and Simons, 1995, 1996)
that analyzed the perceptual consequences of barrel cortex plas-
ticity. Specifically these authors demonstrated that whisker depri-
vation not only leads to alterations in neural responses but also
is associated with a loss in tactile acuity in a texture discrimi-
nation task. Other author demonstrated that unilateral whisker
trimming greatly impacts on behavioral lateralization (Meyer
and Meyer, 1992; Aggestam and Cahusac, 2007) and that partial

whisker removal can affect the bilateral synchrony of whisker
movements (Sellien et al., 2005).

In the present work, we sought to study the role of experience
in shaping biologically relevant tactile behaviors. To this end we
analyzed the role of tactile experience in the prey capture behav-
ior of the Etruscan shrews. Earlier work (Anjum et al., 2006)
has shown that adult shrews capture very large prey in complete
darkness. This behavior involves very fast and precise whisker-
guided attacks. Experiments with artificial prey replica with
Etruscan shrews and with the American water shrew, Sorex palus-
tris (Catania et al., 2008) have shown that shape cues are sufficient
triggers to initiate attacks.

In particular we posed the following questions: (1) how sim-
ilar or different is the behavior of young shrews, at the time of
weaning, in comparison to the adults? (2) How does whisker
deprivation in the first weeks of life affect prey capture in adult
shrews? (3) Are adult shrews capable of adapting to a novel
prey?

We find that tactile experience has a profound influence on
prey capture behavior and that even adult shrews can adopt
entirely novel prey capture strategies.

MATERIALS AND METHODS
ETRUSCAN SHREWS
Capture, handling, and maintenance of Etruscan shrews have
been described in detail before (Anjum et al., 2006). Data
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presented here refer to 18 animals (four females, 14 males; four
wild captures, 14 captive born in our colony). Etruscan shrews
were captured under a permit of the local government (per-
mit no. N 6085/T-A31, Firenze, Italy) in the provinces Firenze
and Livorno and all our procedures complied with German
regulations on animal welfare and were approved by an ethics
committee.

PREY
Crickets
Crickets were obtained from a local vendor (Gekonia, Berlin). We
fed mainly juvenile and adult specimen of two cricket species,
field crickets (Gryllus assimilis), and house crickets (Acheta domes-
ticus). They were maintained in our facility in a temperature reg-
ulated room and fed with fruit, salad leaves, and vitamin-fortified
dry fish food.

Giant cockroaches
The giant cockroach, Blaberus giganteus, is naturally found in the
rainforests of South America. Giant cockroaches were bred and
housed in glass terrariums with soft wood bedding and egg crates
for hiding. They were maintained on fruits, lettuce, dry fish, and
dog food, and supplied with water. We used the juveniles, about
fourth instar larval stage. The body lengths were between 1.5 and
3.0 cm and thus matched the size of crickets normally fed to the
shrews.

The giant roach larvae used in our experiments are burrow in
soil and are only found in humid rainforests of South America.
They are quite different in appearance from the common cock-
roach larvae to our knowledge quite different from insects found
in shrew habitat in Italy. Since we do not know the detailed prey
history of our wild-trapped shrews, we cannot exclude that they
encountered somewhat similar prey before. The data shown in the
result section argue against this idea, however. Both wild-trapped
shrews and captive-bred shrew improved in hunting efficiency
after experience with giant cockroaches.

The mass of crickets and giant cockroaches overlapped and
ranged from 0.5 to 2 g. In size (body-length) matched animals’
crickets were about 20% heavier. Besides crickets and roaches we
fed animals also on mealworms (larvae of the mealworm bee-
tle, Tenebrio molitor). Mealworms were occasionaly supplied as
an alternative to crickets and were given to breeding females as
a source of fat. Animals were fed between 1 and 2 h prior to
dimming of the lights every day and typically received slightly
more cricket/mealworms than they would consume. The only
exception from this ad libitum regime was made with animals
that were presented with giant cockroaches. These animals were
presented with giant cockroaches and after filming these encoun-
ters they received an additional five mealworms per day. This
regime was chosen to increase the motivation to hunt giant
cockroaches.

YOUNG SHREWS
Shrews were weaned at postnatal day 21–23. The whole litter
was moved into a new terrarium and animals were filmed from
the very first day of weaning. Crickets were offered in an arena
(measuring 12× 12 cm) and also in the terrarium.

WHISKER REMOVAL
After birth whiskers of the young animals were trimmed every
other day. All pups of a litter were briefly removed from the
parents’ terrarium. In half of the animals whisker trimming (all
whiskers) was done by restraining/holding the animals firmly by
the neck muscles and cutting the whiskers very close to the skin
with a sharp pair of small spring scissors using magnifying glasses
for a better view. The other half of the litter (the control ani-
mals) was handled and held the same way for similar lengths
of time, except that the whiskers were not cut. The weights of
the pups were noted on every occasion of whisker trimming and
their weight gain was comparable to that of the controls. Litters in
which we performed whisker removal, were weaned slightly later
than normal at postnatal day P25 and whiskers were trimmed
for the last time on the day of weaning. Whisker deprived ani-
mals and control animals were housed separately but received the
same number and similar sized crickets and mealworms (larvae
of the mealworm beetle, T. molitor) for the next 4 weeks. Animal
were filmed 4 weeks later; at this time whiskers were fully re-
grown. Whisker re-growth was assessed under the microscope
and documented by photographs (Figure 3A).

EXPERIENCE WITH NOVEL PREY
In the experiments relating to novel prey, we housed animals
individually and carefully monitored every single prey encounter.
To this end giant cockroaches were offered in an arena (7.5×
7.5 cm), one at a time and all encounters were videotaped under
infrared illumination. Five shrews (four wild captured, one cap-
tive born from our colony) were used for this experiment. Shrews
were regarded as “naïve” during their initial encounters with
roaches. Therefore, the data from the first 4–6 roaches that were
captured were termed “naïve.” Animals were considered to be
“experienced,” when they had captured over 50 roaches over a
period of at least 8 weeks. Because animals required several attacks
to capture/kill a giant cockroach, all “experienced” shrews had
placed several hundred attacks on giant cockroaches.

VIDEO RECORDINGS, ANALYSIS, AND CLASSIFICATION OF ATTACKS
Videotaping and frame-by-frame analysis have been described in
detail before (Anjum et al., 2006). In brief, encounters with prey
were staged in custom-made acrylic arenas and videotaped in
complete darkness using infrared illumination with an infrared
sensitive video camera. The Scion Image (version 1.63) software
was used for frame-by-frame analysis of attack clips. The shrew’s
approach toward the prey, which was followed by a rapid pro-
traction of its rostrum toward the cricket resulting in a putative
bite was counted as a completed attack. Aborted attacks started
off in the same way, the shrew approached the prey, got as close
as 0.5 cm or closer but did not make rapid protractions of the
rostrum, therefore not biting the insect. Aborted attacks occurred
either because the crickets were successful in escaping or because
the shrew did not strike.

RESULTS
PREY CAPTURE IN YOUNG SHREWS
Shrew pups weaned between P21 and P23 were capable of hunting
independently.
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Attack histograms
Prey captures in shrews are complex chains of events. To develop
a quantitative grip on prey capture behavior, we derived mea-
surements from a very large number of attacks. As described
previously (Anjum et al., 2006), we first determined in a frame-
by-frame-analysis of attack video, the endpoint of each attack
and noted to which of nine cricket body parts attacks were
directed. Accordingly, the cricket body was divided into nine
parts, legs, cerci, posterior-, medial-, and anterior abdomen,
posterior- and anterior thorax, head, and the antennae. The data
were displayed as attack histograms (Figure 1). The attack his-
togram of adults (Figure 1A) showed that almost three quarters
of attacks targeted the thorax (358 of a total of 456 attacks).
Young animals also showed a tendency to attack the thorax
(Figure 1B), but the preference was not as strong as adults.
The number of attacks on the thorax (144 attacks) was about
the same in number as the attacks on the remaining body
parts (155 attacks). The fraction of attacks placed on the tho-
rax (79%) in adults was significantly different from the fraction
of thorax attacks (48%) in young animal (Fisher’s exact test,

FIGURE 1 | Comparison of attack histograms in adult and young

shrews. (A) Histogram of adult shrew attacks over nine body parts. About
three quarters of (358 of a total of 456) attacks targeted the thorax.
(B) Histogram of young (directly after weaning) shrew attacks over nine
body parts. Young shrews also attack preferentially the thorax but the
preference is less strong than that in adults. The fraction of attacks placed
on the thorax (79% of 456 attacks) in adults was significantly different from
the fraction of thorax attacks (48% of 300 attacks) observed in young
animals (Fisher’s exact test, two-tailed, p < 0.0001).

two-tailed, p < 0.0001). Unlike adults young animals placed a
large number of attacks (18% of total attacks) on the anterior
abdomen.

Completed and aborted attacks
Young animals also have a similar success rate, i.e., similar and
statistically not different (Fisher’s exact test, two-tailed, p > 0.7)
fraction of aborted attacks and completed attacks (Figure 2A).

Repeated attacks
Adult shrews have the tendency to repeatedly attack the same
cricket and even on the same body part of the cricket, sup-
posedly using short-term memories of prior attack positions
to guide further attacks (Anjum et al., 2006). Apparently this
was a more efficient way of hunting as the prey that was
attacked more often and recurrently, without getting time to
recover from the trauma of the previous attack could be immo-
bilized faster. In Figure 2B we show the number of immedi-
ately successive attacks shrews would place on a specific cricket.
On average the adults would place 3.2 attacks on each cricket
they initiated a first attack on, significantly more than young

FIGURE 2 | Further attack characteristics in adult and young shrews.

(A) Comparison of aborted and completed attacks in adult and young
animals. The fraction of aborted and completed attacks in adult and young
animals was not significantly different (Fisher’s exact test, two-tailed,
p > 0.7). (B) Repeated attacks (attacks that immediately follow one-another
without intervening breaks or attacks on other prey animals). Adult animals
attacked the same cricket repeatedly more often than the young animals.
The number of repeated attacks in was significantly higher adult than young
animals [n = 209 first attacks (adults) vs. 202 first attacks (young animals),
unpaired t-test, two-tailed, p < 0.0005].
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shrews, who placed only 1.5 attacks on each cricket they initi-
ated a first attack on [n = 209 (adults) vs. 202 (young animals),
unpaired t-test, two-tailed, p < 0.0005]. The number of repeated
attacks increases with the persistence with which a shrew attacks
a specific prey animal; apparently young shrews more easily
lose track of their prey or get more easily distracted by other
prey.

Cricket size
The prey capture behavior of the young shrews also seems to dif-
fer from the adults in the size of the crickets that they prefer
to attack. Young animals preferentially attacked smaller crick-
ets (1.5–1.75 cm) and preferentially left larger crickets (≥2 cm)
behind (data not shown). Adults, in contrast, attacked crickets of
all sizes (data not shown).

WHISKER DEPRIVATION
Whisker trimming leads to severe deficits in prey capture in
adult shrews (Anjum et al., 2006). In the context of the present
study we wanted to determine how the lacks of whisker expe-
rience in early life affects prey capture capabilities. To this end
we trimmed whiskers for 3–4 weeks and then allowed them to
regrow. Figure 3A shows comparison between the whiskers of an
untrimmed control animal (left), a whisker-trimmed animal at
the end of the deprivation period (Figure 3A middle) and the
same animal after whisker-regrowth (Figure 3A right). There was
no visible difference in the vibrissae of the control animal or the
deprived animal with fully re-grown whiskers.

Attack histograms
In spite of the vibrissae of the deprived animals re-growing to
normal lengths and distribution, whisker-deprived animals per-
formed poorly in prey capture. Compared to controls (Figure 3B)
whisker-deprived animals lacked the precise targeting of attacks
to the thorax (Figure 3C). In whisker-deprived animals, attacks
were more or less evenly distributed over the entire cricket body
and only 22% (101 out of 459) of attacks targeted the thorax. The
fraction of attacks placed on the thorax (79% of 456 attacks) in
control adults was significantly higher in controls than the frac-
tion of thorax attacks (22% of 459 attacks) in deprived animals
(Fisher’s exact test, two-tailed, p < 0.0001).

Completed and aborted attacks
The success rate of attacks was markedly lowered by whisker-
deprivation. In controls only 32% of attacks were aborted and the
remainder was completed. In contrast in whisker-deprived ani-
mals 57% of attacks were aborted (Figure 4A) and this difference
was significant (Fisher’s exact test, two-tailed, p < 0.05).

Repeated attacks and cricket size
The controls attacked each cricket repeatedly, on an average
3.2 consequent attacks on the same cricket while the test ani-
mals did only two times (Figure 4B) (unpaired t-test, two-tailed
p = 0.0004). There was no significant difference in the size of the
crickets attacked between the controls and test animals (data not
shown).

FIGURE 3 | Whisker deprivation. (A) Comparison between the whiskers
of an untrimmed control animal (left), a whisker-trimmed animal at the end
of the deprivation (middle) and the same animal after whisker-regrowth
(right). (B) Attack histogram of control animals. (C) Attack histogram of
deprived animals (after whisker regrowth). The fraction of attacks placed on
the thorax (79% of 456 attacks) in control adults was significantly different
from the fraction of thorax attacks (22% of 459 attacks) observed in
deprived animals (Fisher’s exact test, two-tailed, p < 0.0001).

EXPERIENCE WITH NOVEL PREY
When shrews were first exposed to the novel prey specimen—
the giant cockroach—they did not attack giant roaches. Only
after exposing the shrews to giant roaches for 3–8 days at their
regular feeding times the shrews placed their first attack attempts
on roaches.

Attack histograms
The giant cockroach differs in important ways from the shrew’s
normal cricket prey (Figure 5A). It has a very tough cuticle all
over the dorsal surface of the body, but has a much softer/tender
ventral side. Its appendages, namely the cerci, legs, and anten-
nae and even the head are somewhat placed below this shield-like
cuticle. Only a part of the posterior legs and antennae can be
found to be sticking out of the body making it difficult for the
shrews to get a grip/be able to bite.
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FIGURE 4 | Further attack characteristics in whisker deprived animals.

(A) Counts of aborted and completed attacks/success rate. In controls only
32% of attacks were aborted. In whisker-deprived animals 57% of attacks
were aborted. (B) Repeated attacks. Control animals attacked the same
cricket repeatedly more often than the deprived animals.

When first exposed to a giant roach, shrews attacked it with
a similar pattern as they placed attacks on crickets. The attack
histogram in Figure 5B shows data pooled from five inexperi-
enced shrews. Of the 815 analyzed attacks, 521 were placed on
the body (64%) and 294 on the legs and underside. A large por-
tion of the attacks on the body were on the anterior body of
the roach, similar to the attack pattern that normal shrews show
for crickets. After experience with more than 50 roaches, the
attack pattern radically changed. Now the same shrews attacked
the body less and legs and under side more often (Figure 5C).
Of the 756 attacks analyzed, only 106 were on the body (14%),
and 650 on the legs and body. The change in distribution of
on body- vs. non-body directed attacks in naïve vs. experienced
animals was highly significant (Fisher’s exact test, two-tailed
p < 0.0001).

Completed and aborted attacks
Early after the exposure to the new insect, shrews were quite
unsuccessful in their attempts to attack the giant roaches and 62%
of the attacks were aborted (Figure 6A). With experience, shrews
became more efficient and only 33% of attacks were aborted.

Attack durations
The increase in efficiency of attacks with experience also reflected
in a decrease of the time required for immobilizing and picking
up the roach (Figure 6B). The time taken by each naive shrew

FIGURE 5 | Effect of experience with novel prey. (A) Cricket and giant
roach differ in shape strikingly. The bottom right scale bar equals 1 cm.
(B) Attack histogram of Naïve animals showing 67% of all attacks on the
body. (C) Attack histogram of experienced animals showing a change in
attack strategy with only 14% attacks on the body.

(in seconds) is shown to reduce with experience. All reductions
in time taken to pick up the roach were found to be significant.

Paw-use
In the initial attacks of shrews on the giant roaches, the shrews
displayed attack behaviors not commonly seen in attacks on crick-
ets. Specifically the shrews used one or both of their forepaws in
attacks on roaches. This behavior disappeared with progressive
experience. In Figure 6C, a comparison of frequency of paw-
usage before and after experience is shown. Before experience,
shrews used the paw in 40% of the attacks and after experience
only 7% of the attacks employed the paw.

DISCUSSION
Three lines of evidence presented here suggest that shrew tactile
behaviors are not hardwired, but are modified by tactile expe-
rience. First, the hunting behavior of young animals differs in
subtle but significant ways from the hunting behavior of adults.
Second, postnatal whisker deprivation has devastating effects on
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FIGURE 6 | Further characteristics of attacks on novel and familiar prey.

(A) Comparison of success rate between Naïve and experienced animals.
Naïve animals had 62% attacks aborted but after experience only 33%
attacks aborted. (B) Attack durations. After experience all animals show a
significant reduction in time taken to pick a roach (paired t-tests, two-tailed,
p < 0.05). (C) Paw use. Naïve animals used the fore paw in 40% of the
attacks. Experienced animals used the fore paw in only 7% of the attacks.

the shrews’ hunting capabilities. Third, we find that adult shrews
are able to radically alter their prey capture strategies in response
to novel prey.

YOUNG ANIMALS
The prey capture behavior of young shrews directly after wean-
ing was largely similar to the adults. The young animals attacked
the anterior abdomen more often than the adults thereby demon-
strating a slight lack of precision in targeting. Further experience
with attacking crickets might improve attack precision. Moreover
young shrews pursue individual crickets less persistently than
adult shrews do. Again this change in attack strategy might come
about by additional experience.

The similarity of prey capture behavior of young shrews
after weaning and adults may be viewed as evidence that tac-
tile experience is not required for prey capture behaviors. An
alternative interpretation, which seems more consistent with
our other findings (in particular the deprivation data), is that
shrews already may have acquired considerable tactile experi-
ence prior to weaning. There are other behaviors, like nest
building in female rats (Nováková, 1977), which are known to
be partially acquired. Females that were prematurely weaned,
there by deprived of early experience, nested, and handled
the young differently from those weaned normally. As early as
P14, the shrew pups have been seen moving about the cages
along with the parents. According to our informal observa-
tions pups have been spotted tugging at a cricket, more likely
hunted by the parents. Perhaps such experience acquired already
in the nest contributed to the advanced hunting abilities of
young animals directly after weaning. Young shrew may also
acquire tactile experience through social behaviors in the nest
such as play-fighting. It is not known if and to what extent
shrews’ play-fight, but in rats this behavior relies on tactile cues
(Siviy and Panksepp, 1987) and there is evidence pointing to a
role of somatosensory cortex in play-fighting (Panksepp et al.,
1994).

WHISKER DEPRIVATION IN EARLY LIFE
The strong effects that whisker deprivation in the early post
natal life has on the prey capture behavior indicates that shrews
could be actually acquiring/learning prey capture skills, that may
account for the pups accompanying parents on hunting expe-
ditions at nightfall (in shrew rooms). We analyzed prey capture
behavior soon after their vibrissae regained their normal lengths.
The effects were very similar to those in adult-vibrissae-deprived
shrews (Anjum et al., 2006) in diminished precision/attack tar-
geting, and reduced rates of successful attacks. There are known
to be critical periods in rats (Simons and Land, 1987; Fox,
1992) and mice (Van der Loos and Woolsey, 1973; Weller and
Johnson, 1975) during neonatal life when deprivation of tactile
experience/whiskers leads to lasting effects even after months of
experience with regrown whiskers. In shrews, the critical period
of learning from tactile experience could be in early post natal
life/through out the first 3 weeks after birth, which the pups spend
growing with their parents. Etruscan shrews are known to have a
life span between 1 and 1.5 years. One month long experience
with regrown whiskers was insufficient to gain normal hunting
skills of an adult.

NOVEL PREY
The shrews attacked roaches initially in the same way they attack
the crickets. Later, however, they adopted a new strategy: they
attacked the legs and flipped the roach onto it’s back and attack-
ing the soft underside immobilizing it/making it defenceless. This
change in strategy markedly increased the efficiency of attacks
on the new prey. Our results imply that adult shrews are able to
learn new behaviors through continued contact/interaction with
a novel prey. All five shrews displayed the same change in the
strategy; the most effective way of attacking a roach. The ability
of Etruscan shrews to adapt to a new prey and the ability to

Frontiers in Behavioral Neuroscience www.frontiersin.org June 2012 | Volume 6 | Article 28 | 136

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Anjum and Brecht Tactile experience in shrews

implement novel prey capture strategies could be highly adaptive
in environments with changing prey populations.

THE ROLE OF WHISKERS IN ATTACK BEHAVIORS
Our findings on the role of shrew whiskers in prey capture go
well with a large body of literature suggesting a more general role
of whiskers in attacks and aggressive behaviors. In rats whisker
are required in attacks on mice (Thor and Ghiselli, 1975), play a
significant role in controlling maternal aggression (Kolunie and
Stern, 1990) and both in aggressive and non-aggressive social
behaviors (Thor, 1976; Blanchard et al., 1977; Sarna et al., 2000;
Brecht and Freiwald, 2011; Wolfe et al., 2011).

THE ROLE OF EXPERIENCE IN THE SOMATOSENSORY SYSTEM
Our finding that shrew tactile behaviors are modified by tac-
tile experience is in line with a large body of work on the
ontogeny of the rodent somatosensory systems (Feldman and
Brecht, 2005). Specifically, we hypothesize that the large pri-
mary somatosensory cortices of nocturnal rodents like rats and
mice (Welker, 1971; Brecht and Freiwald, 2011), Etruscan shrews
(Roth-Alpermann et al., 2010) as well of other shrew species
(Catania et al., 1999) might serve as repositories for tactile learn-
ing. Numerous neurophysiological studies have demonstrated
that whisker deprivation both in young and adult rodents can
rapidly alter neuronal response properties. As far as available,
the behavioral evidence (Carvell and Simons, 1995) also indi-
cated performance on tactile tasks is compromised by disrupted
tactile experience. Brief periods of altered sensory experience in

adult rats have shown to bring about significant changes in the
functional properties of the S1 neurons (Diamond et al., 1993).
We have rich information about the neuronal consequences of
whisker deprivation. Specifically we know that whisker depriva-
tion leads to massive alterations in the primary somatosensory
cortex. At the same time we know little to nothing about the
neural mechanism that represent more subtle changes in expe-
rience like the knowledge of a novel prey specimen. It remains
to be seen if such knowledge is also reflected with changes of
response properties in primary somatosensory cortex, or if such
knowledge leads to alterations in higher-order processing stations
as suggested from studies in the visual system (Logothetis et al.,
1995).

CONCLUSION
Our results on the tactile behaviors in Etruscan shrews resemble
experience-dependence of visual behaviors in cats or monkeys.
Visual experience plays an important role in the maturation
of the visual system (Hubel and Wiesel, 1970; Hensch, 2004).
Similarly, auditory behaviors like song-learning in birds have been
shown to depend on experience (Brainard and Doupe, 2002). It
is important to note, however, that—even in vertebrates—not all
behaviors that require complex sensorimotor integration require
experience. For example, electrosensory system of some electric
fish seems to be largely hardwired (Viete and Heiligenberg, 1991).
Etruscan shrews display some of the most sophisticated tactile
behaviors known to date (Anjum et al., 2006) and our present
results suggest that these behaviors are shaped by experience.
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Insects carry a pair of antennae on their head: multimodal sensory organs that serve
a wide range of sensory-guided behaviors. During locomotion, antennae are involved
in near-range orientation, for example in detecting, localizing, probing, and negotiating
obstacles. Here we present a bionic, active tactile sensing system inspired by insect
antennae. It comprises an actuated elastic rod equipped with a terminal acceleration
sensor. The measurement principle is based on the analysis of damped harmonic
oscillations registered upon contact with an object. The dominant frequency of the
oscillation is extracted to determine the distance of the contact point along the probe
and basal angular encoders allow tactile localization in a polar coordinate system. Finally,
the damping behavior of the registered signal is exploited to determine the most likely
material. The tactile sensor is tested in four approaches with increasing neural plausibility:
first, we show that peak extraction from the Fourier spectrum is sufficient for tactile
localization with position errors below 1%. Also, the damping property of the extracted
frequency is used for material classification. Second, we show that the Fourier spectrum
can be analysed by an Artificial Neural Network (ANN) which can be trained to decode
contact distance and to classify contact materials. Thirdly, we show how efficiency can
be improved by band-pass filtering the Fourier spectrum by application of non-negative
matrix factorization. This reduces the input dimension by 95% while reducing classification
performance by 8% only. Finally, we replace the FFT by an array of spiking neurons with
gradually differing resonance properties, such that their spike rate is a function of the input
frequency. We show that this network can be applied to detect tactile contact events of
a wheeled robot, and how detrimental effects of robot velocity on antennal dynamics can
be suppressed by state-dependent modulation of the input signals.

Keywords: bionic sensor, forward model, insect antenna, material classification, spiking network, tactile

localization, tactile sense

INTRODUCTION
The sense of touch is a prime source of information about object
features within the near-range environment. Many animals carry
actively moveable tactile sensors with which they explore and
sample the ambient space (Prescott et al., 2011). Of these, the
whiskers of mammals (Diamond et al., 2008; Mitchinson et al.,
2011) and the antennae (or feelers) of insects and crustaceans
(Staudacher et al., 2005) are amongst the most elaborate sensory
structures for active tactile exploration. Thus, it is not surpris-
ing that a number of artificial tactile sensing systems have been
developed that capture important aspects of mammal whiskers or
insect antennae.

Pioneering studies on contact sensing with actuated passive
probes were loosely inspired by whiskers or antennae. They either
used torque or vibration sensors at the base of an otherwise non-
sensorized beam to infer contact location from bending (e.g.,
Tsujimura and Yabuta, 1992; Kaneko et al., 1998) or resonant
behavior of the beam (e.g., Ueno et al., 1998). More recently,

whisker-inspired sensor arrays have been developed for shape
recognition in a stationary system (Solomon and Hartmann,
2006), but also for active exploration of objects by mobile robot
platforms (e.g., Pearson et al., 2007, 2011). Insect-inspired appli-
cations with active feelers include tactually mediated decision-
making for climbing versus tunnelling in a cockroach-inspired
robot (Lewinger et al., 2005). All of these approaches have in
common that the probe itself is a non-sensorized beam, and
that tactile information is gathered by active exploration of the
environment.

Mammal whiskers are hairs and, as such, are well-modeled
by a non-sensorized beam held by a sensorized shaft. In con-
trast, insect antennae are multimodal and highly sensorized limbs
of the head. As limbs, they contain at least two joints actu-
ated by muscles, and may carry thousands of individual sen-
sors in modalities as different as smell, taste, hygroreception
(for humidity), thermoreception (for temperature), and touch
(reviewed by Staudacher et al., 2005). Bionic analogs of insect
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antennae therefore should be sensorized probes. To date, the most
elaborate insect-inspired sensorized antennae are passive, at least
in the sense that they do not actively sample the space around the
robot “body.” As yet, they have been applied successfully in a tac-
tile course-control paradigm inspired by wall-following behavior
of cockroaches (Lee et al., 2008). The underlying principle is to
infer the distance to the wall from a series of bending-sensitive ele-
ments (Cowan et al., 2003; Lamperski et al., 2005) that may even
be tuneable in order to account for different functional properties
along the probe (Demir et al., 2010).

Here, we propose an insect-inspired active tactile sensor that
complements the approaches mentioned above by considering
a sensorized and actively moveable probe suitable for tactile
exploration on a mobile robot platform. The present paper has
three objectives: (i) first it will review the measurement princi-
ple underlying vibration-based tactile localization (Lange et al.,
2005, patented by Lange and Reimann, 2005) and material clas-
sification (Dürr et al., 2007). (ii) Second, it will demonstrate
the implementation of this measurement principle by means
of Artificial Neural Networks, ANNs (Hellbach et al., 2010),
including considerations of the resource-performance trade-off
(Hellbach et al., 2011). (iii) Thirdly, it will demonstrate the appli-
cability of the system on a mobile robot, using a spiking neural
network (Arena and Patanè, 2012) allowing for state-dependent
modulation for separating self-induced stimulation from external
stimulation.

The latter concerns a general problem of sensory systems in
moving bodies, and also concerns technical applications in which
self-motion of a system interferes with and potentially confounds
the analysis of sensor readings. Whereas in animals and humans,
the mechanisms underlying the separation of self-induced and
external stimulation are often summarized by the terms corol-
lary discharge and/or efference copy (different variants of such
mechanisms are reviewed by Crapse and Sommer, 2008), in tech-
nical systems, they typically involve the definition of a forward
model (see Karniel, 2002, for distinction of three variants of

forward models). In more general terms, such mechanisms not
only concern dealing with self-induced sensory input, but also
predicting the behavior of a dynamical system in general, includ-
ing its motor output. Several studies have addressed the analogies
of predictive forward models in physiological and technical sys-
tems, (e.g., Miall and Wolpert, 1996; Mehta and Schaal, 2002;
Schröder-Schetelig et al., 2010), including the putative role of for-
ward models in insect neurobiology (Webb, 2004). In the context
of active tactile sensing in insects, Gebhardt and Honegger (2001)
described descending interneurons that are sensitive to antennal
movement and whose responsiveness changes in the presence of
antennal motor activity. Although the underlying mechanism has
not been identified in the antennal system, it is reminiscent of
a well-known mechanism in the auditory pathway of the same
insect species (Poulet and Hedwig, 2002, reviewed by Poulet and
Hedwig, 2007).

In analogy to the mechanism discovered by Poulet and
Hedwig, the present study implements a simple forward model
in the form of state-dependent modulation which, according to
the classification scheme of Crapse and Sommer (2008), belongs
to the lower-order corollary discharge mechanisms for “central
control of sensation.” The core of the model is a spiking neural
network consisting of a sensory array of resonate neurons. This
sensory array extracts the relevant information related to contact
events registered by the antenna. During self-motion of the robot,
the motor speed command, i.e., the motor activity, is used to pre-
dict the strength of modulation of the input to the sensory array,
thus adapting the sensory processing to the current “behavioral
state.” We show how such activity- or state-dependent modula-
tion allows separation of self-induced antennal stimulation from
stimulation related to active touch.

MATERIALS AND METHODS
BIONIC ANTENNA
The bionic feeler used throughout this study (Figure 1) cap-
tured three major characteristics of the stick insect antenna:

FIGURE 1 | Bionic antenna and robotic platform. (A) Stationary setup for
experiments on tactile localization and material classification. The probe
consisted of a polyacrylic beam with a distal acceleration sensor, AS. It was
actuated by a custom-built two-axis actuator platform, Act, using DC-motors

and linkages. During experiments, the probe was moved up-and-down and hit
a cylindrical metal rod, MR that was made of different materials and located
at varying distances. (B) For test experiments on state-dependent
modulation, the probe was mounted onto a pan-tilt unit on a wheeled robot.
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(i) it is a beam-like structure actuated by two rotary joints (Dürr
et al., 2001); (ii) it is compliant but also stiff enough to main-
tain its shape during self-motion (Dirks and Dürr, 2011); and
(iii) it is vibration-sensitive (Westmark and Dürr, 2009). The
probe consisted of a 33 cm polyacrylic tube that carried a dis-
tal two-axis acceleration sensor (Analog Devices ADXL210E). It
was mounted to the actuator platform via a threaded electric plug
connector, allowing simple exchange of probes without affecting
the actuator platform. For the experiments on tactile localiza-
tion and material classification, the actuator platform consisted
of two orthogonal axes, each one driven by a 6V DC motor
(Faulhaber 1331T 006SR). The linkage was designed to mimic
the action range of the stick insect antenna, amounting to 90◦
in the vertical range, centered 10◦ above the horizon, and to 80◦
horizontal range centered 40◦ to the side. Two rotary position
sensors (muRata SV01A potentiometers) monitored the orien-
tation of the probe, thus supplying the two angles required for
representing 3D contact location in a spherical coordinate sys-
tem. The third dimension required for this representation, i.e.,
distance along the probe, was to be inferred from the sensor
readings of the acceleration sensor (see below). For initial exper-
iments, antennal movement was controlled by manual switch-
ing of a voltage source, and sensor readings were registered
using an AD converter system (CED 1401 power, controlled
by Spike2, Cambridge Electronics Design). For acquisition of
larger data-sets, as necessary for ANN training, antennal move-
ment control as well as sensor read-out were implemented on
an embedded system (ATMEL AT90CAN128), with the raw sen-
sor signal being available via RS232C for further processing
in Matlab (The Mathworks). Angular positioning of the probe
was limited by slack in the motors and amounted to approxi-
mately 7◦ (5 mm at the distal end of the probe). Total length of
the feeler was 413 mm. Total weight was 175 g, including both
motors.

PRE-PROCESSING, DETECTION OF CONTACT EVENTS, AND
PARAMETER EXTRACTION
The distal acceleration sensor provided readings corresponding
to two orthogonal dimensions, such that the actual oscillation of
the antennal tip was projected onto the corresponding dimension
vectors of the sensor. Because of this, sensor readings depended
on the orientation of the sensor with respect to the antennal
movement direction at the time of a contact event. To align the
rotated oscillation with a single axis, principle component analy-
sis, PCA, was applied. PCA computes a set of eigenvectors which
are oriented with respect to the principal axes of the data dis-
tribution. The matrix of eigenvectors E can be used directly as
an affine transform matrix applied to the data: Xrotated = E · X.
Here, the first dimension of the rotated data Xrotated contained
the part of the data with the largest variance. For all experi-
ments reported in this paper, only this part was used for further
processing (Figure 2A).

As a first test for proof of principle in contact localization and
material classification, we constrained the movement to the ver-
tical axis and analysed sensor readings upon contact with one of
two horizontal test rods (Figure 1A) made of either aluminium
(Ø = 11.8 mm) or wood (Ø = 9.6 mm). For subsequent detailed

analysis of performance in classification of multiple materials,
test rods were made of the following eight materials: aluminium,
stainless steel, wood, copper, brass, polyoxymethylene (POM),
polyvinylchloride (PVC), and acrylic glass. In these experiments,
all test rods were 12 mm in diameter. Whenever an impact of
the antenna on an obstacle occurred (contact event), the accel-
eration sensor recorded the damped harmonic oscillation of
the antennal tip. Thus, for processing information relevant to
contact events it was necessary (i) to detect the corresponding
damped oscillation and (ii) to retrieve the relevant informa-
tion for describing the properties of the oscillation recorded.
In the stationary system, the contact could be detected easily
and reliably by means of a simple threshold for the accelera-
tion. For detecting the end of the oscillation, the local maxima
over time were considered. The end point was defined as the
time at which the amplitude of these maxima decreased below
10% of the maximum amplitude. Only the data within the win-
dow between the detected start and end points was processed
further. In a first step, the mean signal amplitude was sub-
tracted. Next, the frequency content of the damped oscillation
was determined by means of a Fast Fourier Transform (FFT,
using FFT algorithms of Matlab or MathCad, Adept Scientific).
The result of the FFT was used in two different variants for fur-
ther processing (see neural network section “Neural Network
for Localization and Material Classification”). In case of the
“parametric variant” the FFT result was used to extract six param-
eters that captured the most important signal properties. In the
“FFT variant,” the entire amplitude spectrum of the FFT was
used without further pre-processing. Whereas the parametric
variant was used for proof of principle and for sensitivity anal-
ysis of distinct parameters, the FFT variant was used to find
the best performance possible in case of maximum information
available.

As the typical frequency spectrum of a contact-related signal
contained two distinct peaks (Figure 2B), the purpose of param-
eter extraction was to describe the two corresponding frequency
components in terms of their amplitude, A; frequency, F; and
decay time constant, τ. For contact events along the proximal
three quarters of the probe, it was sufficient (i) to divide the
FFT spectrum in two parts (using 55 Hz as a fixed boundary
between low- and high-frequency components), (ii) to determine
the peak frequency, F, within each part of the spectrum, and
(iii) then reconstruct the signal corresponding to these frequency
components, only (using inverse FFT-algorithms of Matlab or
MathCad). The peak frequencies depended on the contact loca-
tion following a logarithmic function (Figure 2C).

Damping was quantified by estimating the decay time con-
stant from the local extreme points of the damped oscillation.
The most satisfying results were obtained with the following algo-
rithm: after decomposition of the recorded signal into a pair
of low- and high-frequency components as described above for
steps (i) to (iii), (iv) local extreme points were extracted with a
minimum interval (e.g., 3 ms) and minimum absolute amplitude
(e.g., 15 mV). Next, (v) the amplitudes of the extreme points were
rectified and log-transformed. Finally, (vi) a linear regression
yielded the amplitude, A, and time constant, τ, of a first-order
exponential decay function.
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FIGURE 2 | FFT-based parameter extraction. (A) The raw sensor signal (blue)
consisted of two channels, which measured the acceleration of the antenna in
two dimensions (x and y, plotted in arbitrary units). Since the antenna could hit
an obstacle in an arbitrary angle, the signal needed to be aligned for further
processing. This was done using principal component analysis (PCA)
(red curve). PCA determined a new coordinate-system, in which the first axis
contained the maximum variance of the data. The dimension with the higher
variance was selected and transferred into Fourier frequency space. Contact

distance was encoded by oscillation frequencies. (B) FFT amplitude spectra of
three single contacts with an aluminium rod, taken at 8, 16, and 24 cm distance.
As contact distance increased, the low-frequency peak decreased in amplitude
and shifted to higher frequencies. Multiple high-frequency modes could occur,
but only the largest mode beyond 55 Hz was analysed further. (C) Peak
frequencies of both frequency ranges increased exponentially with distance
(n = 10, means ± SD, note that error bars are within symbols); red: high
frequency component; black: low frequency component.

NEURAL NETWORK FOR LOCALIZATION AND MATERIAL
CLASSIFICATION
ANN were programmed and trained either by use of custom-
written software (for proof of principle) or by use of the Neural
Networks Toolbox of Matlab. For distance estimation and mate-
rial classification tasks, we used simple feed-forward ANNs,
either single- or multi-layered perceptrons. For proof of prin-
ciple using the parametric variant, a single ANN was used for
combined distance estimation and the distinction of two mate-
rials (wood versus aluminium). Several different combinations
of input parameters were tested, as will be elaborated in the
results section. In the FFT variant, separate networks were used
for localization and material classification, although in principle,
both could be combined into a single ANN. Input to the FFT
variants was either the entire Fourier spectrum (509 frequency
components) or the result of the dimension reduction algorithm
(see below). Best results for distance estimation were obtained
using a 3-layered ANN with 20 neurons for the first hidden layer
and 5 for the second layer. For material classification a two-layered

network with 51 neurons in the hidden layer was sufficient. All
networks were trained by use of a gradient descent method.

For reducing the input dimension in a data-driven manner,
we used non-negative matrix factorization (NMF, Lee and Seung,
1999). Two other algorithms that, like NMF, also compute a vec-
tor basis transformation were tested too (PCA and Partial Least
Squares, Schwartz et al., 2009), but will not be presented here.
The main reason for using NMF was that it produces a set of
basis vectors that, when applied to the input, has similar compu-
tational properties as a set of band-pass filters. Most importantly,
it attenuates or amplifies each input component with positive
scaling factors only. This property makes the solution physiolog-
ically plausible, as it captures the frequency-selective attenuation
which is typical for sensory processing (e.g., Braddick et al., 1978).
It arises due to the constraint of the NMF algorithm, allowing
non-negative basis vector components only. In contrast, algo-
rithms such as PCA and PLS produce basis vectors with negative
components and, therefore, do not capture the computational
properties of band-pass filters.
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ROBOTIC PLATFORM
The robotic system used for the implementation of the feed-
forward strategies, consisted of a custom-built, dual-drive rov-
ing platform equipped with a pan-tilt actuated bionic-antenna,
as shown in Figure 1A. The pant-tilt unit consisted of two
Dynamixel motors (i.e., High-performance networked actua-
tors for robots RX-64, http://www.robotis.com/xe/) controlled
through an RS485 serial bus. The same motors were used also to
actuate the four robot wheels. The low-level distributed control
system was based on three main boards: (i) an 8-bit Atmega-based
board used to handle the ADXL321 sensor; the x and y signals
coming from the sensor were sampled with a 10-bit ADC at a
sampling rate of 1 kHz, before being transferred to a PC via a USB
connection; (ii) a 128-bit Atmega-based board was used to con-
trol the pan-tilt system of the antenna; in the simplest case, the
two motors followed a limit cycle with a period of two seconds;
(iii) the main board, based on a 128-bit Atmega microcontroller,

was used to control the movements of the roving platform and
received commands from or exchanged data with a remote PC
through a wireless connection.

SPIKING NEURAL MODEL
The sensory data acquired with the robotic platform was pro-
cessed by a spiking neural network model. The model combined
linear sensory arrays of spiking neurons and a central pattern
generator (CPG) model for driving the pan-tilt unit (Figure 3).
After a pre-processing stage, the sensory information was fed into
a one-dimensional array of spiking sensory neurons. Through
plastic synapses, their output was then conveyed to the motor
neurons that control the muscle/motor system. The scheme pro-
posed in Figure 3 refers to the general case in which the robot
is equipped with two antennae, even though in the experi-
ments described here, sensor data were acquired from a single
antenna only.

FIGURE 3 | Bock diagram of the control architecture, designed for the

integration of the bionic antennae in a roving platform. The neural
network was characterized by multiple layers: (i) A Sensory Layer used for
sensory pre-processing and extraction of the frequency spectrum of the
acquired signal, based on an array of resonate-and-fire neurons; (ii) a Control
Layer where a high-level navigation controller could be introduced together
with the material classification network, and (iii) a Motor Layer, used to

actuate both robot wheels and the pan-tilt unit of the antenna. Details of the
Motor Layer and the Navigation Control unit of the Control Layer are beyond
the scope of this paper. The presence of a forward model for self-motion
compensation has been considered by using a sensory gating strategy.
The commands for speed were used to modify the pre-processing of the
antennal acceleration sensor in oder to compensate for self-induced sensor
readings.
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As described above, the sensory information acquired with the
two-axis accelerometer was pre-processed using PCA and nor-
malized. The pre-processed signal was used as input current for
a series of resonate-and-fire neurons. Each neuron was tuned to
resonate at a specific frequency in the interval from 7 to 30 Hz.
The high-frequency band necessary for material classification was
not used in the robot experiments, as we concentrated on distance
estimation only The array of resonate neurons used to process
the sensory signals for each antenna represented a linear sensory
array encoding the contact location along the antenna. Whereas
neuron f1 provided information about the lowest frequency com-
ponent (dominated by self-stimulation), neurons f2–fn provided
information about increasingly higher frequency components
and were associated with contact detection of increasingly dis-
tal locations along the probe (with increasing n in fn). The array
of resonate-and-fire neurons provided input to the control layer,
of which only one part will be explained in this paper (Material
Classification). Whereas the Navigation Control unit determined
the appropriate movement direction upon tactile contact (e.g.,
away from the contacted obstacle), the Material Classification
unit provided information about the contacted obstacle.

On the wheeled robot, the antenna was actuated with a pan-tilt
system controlled by the Motor Layer that mediated the infor-
mation from the Control Layer. The current speed of the robot
could be used to modulate the cycle frequency of the antennae
in order to reduce possible shadow areas, thus avoiding collisions
with obstacles.

Within the spiking network within the Sensory Layer shown
in Figure 3, each unit is an Izhikevich-type spiking neuron
(Izhikevich, 2003). The neuron model is represented by the
following differential equations:

v̇ = k
(
0.04x2 + 5v + 140− u + I

)
u̇ = ak(bv − u)

with the spike-resetting

if v ≥ 0.03, then

{
v← c

u← u+ d

where v is the membrane potential of the neuron, u is a recovery
variable, and I is the synaptic current. By choosing the parameters
a, b, c, and d, different kinds of neural dynamics can be obtained.
To show a resonate-and-fire behavior the neuron parameters were
set to the following standard values: a = 0.1, b = 0.26, c = −60
and d = −1. The parameter k was used to select the resonate fre-
quency in each neuron. All other neurons behaved like class I
neurons, in which the output spike rate was proportional to the
input current (the adopted parameters were a = 0.02, b = −0.1,
c = −55 and d = 6).

RESULTS
TACTILE CONTACT LOCALIZATION
When the antenna hits an object, the acceleration sensor recorded
the impact in the form of an abrupt, steep signal followed by
a damped harmonic oscillation. The latter can be explained by

the vibration of the free end of the probe, i.e., the part between
the contact site and the tip. Accordingly, the fundamental fre-
quency of the oscillation increased with increasingly distal contact
events, i.e., with decreasing length of the vibrating free end of
the probe (Figures 2B and C). The FFT amplitude spectra of
the recorded oscillations always showed a salient low-frequency
peak, followed by one or more high-frequency modes. In order
to obtain good understanding of the main signal parameters and
their relevance for the sensing process, we first limited the anal-
ysis to the two largest modes only, using their peak frequency,
amplitude and decay time constant as parameters. Peak fre-
quencies, F, of both modes increased exponentially with contact
distance, d (Figure 2C, low frequency: log F = 0.0268 · d+ 0.69;
high frequency: log F = 0.0305 · d+ 1.52), and linear regres-
sion models of the log-transformed frequencies explained more
than 98% of the total variance of the data (low frequency: r2 =
0.995; high frequency: r2 = 0.987). Peak frequencies of the low-
frequency peaks had approximately three times lower standard
deviation than those of high-frequency peaks, indicating that the
low-frequency peaks were more reliable for estimation of con-
tact distance. Judged from the standard deviation of the low
frequency peaks, the linear regression model allowed an aver-
age precision of 6.2 mm for estimates based on a single contact
event.

A major problem of this parametric variant of sensory pro-
cessing was that the frequency of the first harmonics became
increasingly unreliable for distal contact sites due to an decrease
of the signal-to-noise-ratio. Nevertheless, we tested the perfor-
mance of tactile localization with an ANN receiving two fre-
quency peaks of the FFT spectrum as input, and producing a
distance estimate at its output. For comparison, we used the
entire amplitude spectrum of the FFT, thus increasing the input
dimension from 4 to 509. The results are shown in Figure 4. The
fact that vibration-based distance estimation of contact events
generally worked well is reflected by the disjunct clusters of
input vectors after multi-dimensional scaling (Figure 4A, note
that multi-dimensional scaling is used for visualization purposes
only, not for quantitative analysis). As yet, this graph reveals
that clusters corresponding to increasingly distal contact locations
overlapped more and more, suggesting that it should become
increasingly hard for an ANN to separate the corresponding
input vectors. In other words, since the network had to find a
mapping from frequency values to distance, performance was
expected to deteriorate for distal contact locations. The regres-
sion plots in Figure 4B confirm this. Compared to the precision
estimate based on the linear regression models mentioned above,
performance increased for both ANN variants. For the paramet-
ric peak search variant, the root mean squared error (rmse) of
2.93 mm, equivalent to 0.7% of the antenna length. For the FFT
variant, performance improved to an rmse of 1.71 mm, equiva-
lent to 0.4% of the antenna length. This improvement was not
due to altered network size (owing to more input dimensions),
because using the lower frequency band only (halving the input)
yielded similar results as those of the parametric variant, whereas
ten-fold sub-sampling the input spectrum (tenth input size) pro-
duced classification results that did not differ from those obtained
from the entire spectrum. In summary, this shows that (i) the
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FIGURE 4 | (A) Multi-dimensional scaling and tactile localization. The plot
illustrates the separability of different distances. The Fourier spectra of
eight materials with a contact distance from 80 mm to 375 mm were
processed using multi-dimensional scaling. This led to a two-dimensional
embedding with the pair-wise distances being conserved. Contact locations
closer to the base can be distinguished easily (blue clusters do not overlap),
while contact locations above about 320 mm are challenging to tell apart

(red clusters overlap). Note that the scales on the axes are meaningless, as
this visualization method uses a non-linear transformation with the sole
purpose of conserving distances in a planar projection. (B) Corresponding
confusion plots, showing the distance output of the artificial neural network
compared to the true distance of the object. The results of parametric variant
(left) are compared with those of the FFT-variant (right). The latter shows
better results, especially for distant contact sites.

upper frequency band is important for good performance in
vibration-based tactile localization, and (ii) that extraction of a
single high-frequency mode is either not sufficient or not reliable
enough for achieving the best performance in tactile localization.

TACTILE MATERIAL CLASSIFICATION
Apart from tactile localization of objects, we were interested in
exploiting information arising through physical interaction of
the contacting materials. For example we were hoping to dis-
tinguish different material-specific properties through differences
in energy dissipation. In a first approach, we used the para-
metric variant of signal analysis and tested its applicability for
tactile material classification. Figure 5 summarizes the proof of
principle: the materials wood and aluminium could be distin-
guished reliably by comparing the decay time constants of the
damped harmonic oscillations. This suggested that an ANN could
be used for tactile classification of several materials, even if the
signals recorded had identical peak frequencies (because of iden-
tical contact location on the probe), and very subtle differences
in signal time course only (e.g., see time courses in Figure 5A).
In our proof of principle experiment, extraction and rectifica-
tion of the local extreme points revealed robust differences in
decay time constants that could be measured reliably by fitting
a first-order exponential decay function (Figure 5B). Amplitudes
and time constants of the fit functions differed in a statistically
significant manner for both the low- and high-frequency signal
component (t-test; τlow: t = 3.140, p = 0.0057; τhigh: t = 7.736,
p < 0.001; Alow: t = −3.683, p = 0.0017; Ahigh: t = −5.934, p <

0.001; Figure 5C). A remarkable feature of the algorithm was the
low variability of the results. For example, the coefficient of varia-
tion of the decay time constant of the low-frequency component,
τlow, was less than 1%. Owing to the small variability, measure-
ments from different materials could be distinguished with great
reliability.

Potential problems of classification based on decay parame-
ters could occur as decay time constants changed with frequency

and, thus, contact distance. To test whether it was possible to
distinguish time constants at any contact location, we compared
signals recorded for contacts on wood and aluminium, varying
contact location from 80 to 375 mm. For both materials, decay
time constants decreased with contact distance. The dependence
was almost linear (Figure 5D). Time constants of the two materi-
als were statistically different at all but four contact sites. On the
background of having shown that tactile distance estimation by
an ANN could be very reliable, it was clear that the decrease of
time constant as a function of contact location was possible too.
This suggested that material classification independent of contact
site should be possible for an ANN, using either the parametric or
the FFT variant.

In a first step of ANN-based material classification, we tested
whether a two-layered perceptron could be trained to predict
both the contact distance and the correct one of two materi-
als (wood and aluminium). Figure 6A shows the network and
the dependence of its performance on the number of hidden
layer neurons. For identifying the most relevant input parame-
ter for material classification, the ANN was trained with different
sets of input parameters. If only the amplitude and frequency
of the low-frequency component were used as input parame-
ters, overall performance was bad (blue line in Figure 6A), mainly
because errors in material classification were many. Performance
improved if amplitude and frequency of the high-frequency com-
ponent were included as well, but best performance (particularly
for very small ANNs with few hidden neurons) was obtained if
the decay time constant of the low-frequency component was
included (red and black lines in Figure 6A, respectively). We did
not include the decay time constant of the high frequency com-
ponent because this was too unreliable to determine for distant
contact locations where oscillation frequencies were very high
(despite the fact that τHigh proved to be a reliable at proxi-
mal contact sites, as seen in Figure 5C). For the best ANN with
five input, eight hidden and two output neurons (equivalent to
56 synaptic weights, only), the precision in distance estimation
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FIGURE 5 | The principle of tactile material classification. Extracting
parameters of damping. (A) When touching different objects or materials, like
an aluminium rod (red) and a wooden rod (black), sensor readings hardly
differ in frequency content (top), and even after decomposition, both low
(mid panels) and high frequency components (bottom) look very much alike
for both materials. (B) Extraction and rectification of local extremata of sensor
reading reveals different time courses of the decay. (C) Fitting first order
exponential decay functions to single trial data results in significantly different

time constants, τ, and amplitudes, A, for both frequency components (n = 10,
means ± s.d.). Hence, analysis of decay time constants allows material
classification. Note that data in (C) correspond to a single contact distance.
(D) Dependence of decay time constants on contact site. Two materials were
compared, a soft wood rod (circles) and an aluminium rod (squares). Time
constants were calculated from slopes of linear fits to log-transformed peaks
of low-frequency components. Error bars depict the SD, asterisks label
statistically significant differences (n = 10; ∗∗p < 0.001; ∗p < 0.05).

was ± 4 mm, with 87% correct material assignments for single
contact events.

For testing the performance of material classification with
several materials, we used eight cylindrical test rods made of dif-
ferent materials, including four metals and three plastics. Thus,
the selection of materials included samples that were expected
to be discriminated easily, e.g., aluminium and PVC, as well as
samples that were expected to be much harder to distinguish,
e.g., the two kinds of plastic. The experiments were carried out
such that antennal contact occurred at 16 positions along the
probe, ranging from 80 to 360 mm in steps of 20 mm, and at
375 mm. For each pair of material and contact location, con-
tact events were recorded 100 times, yielding a total of 1600
sample measurements per material and 80 per contact distance.
Multidimensional scaling of the input vectors for the FFT variant
revealed that data points related to the same material clustered
well, but with varying degree of overlap for selected material pairs
(e.g., see brass and wood in Figure 6B). Moreover, overlap of clus-
ters depended on contact location, as revealed by the different

graphs for 80 mm and 320 mm in Figures 6B and C). When using
the entire amplitude spectrum of the FFT as input, overall per-
formance in material classification was very good, amounting to
94.2% of correct assignments for single contact events. As yet,
performance was not equally good for all materials, as reflected
by the confusion matrix in Figure 6D, where correct assignments
are shown in red, low error numbers are shown in dark green, and
increasingly larger error numbers are shown in light green and
yellow. For example, wood and aluminium were confused only
rarely, while brass and wood appeared to be more difficult to dis-
cern (brass was confused with another material in 9.4% of cases,
wood was confused in 8.4% of cases; both of these materials were
most likely confused with each other).

REDUCING NETWORK DIMENSIONALITY WHILE MAINTAINING
PERFORMANCE
As the results above showed that the FFT variant was clearly
superior to the parametric variant, the question remained which
parts of the FFT spectrum were needed and which ones were not.
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FIGURE 6 | ANNs for tactile material classification. (A) In the parametric
variant, a two-layered artificial neural network (ANN) was tested with different
sets of input parameters for the high- and low-frequency components:
extracted peak frequencies flow and fhigh, amplitudes Alow and Ahigh, and
decay time constant of the low-frequency component, τlow. The diagram
plots performance error over the number of hidden neurons for three
combinations of input parameters (test error only, i.e., for signals not used for
training). Lowest errors with smallest network size were obtained if τlow was

included as input. (B) and (C) illustrate the separability of different materials.
The Fourier spectra of eight materials with a contact distance of 80 mm
(B) and 320 mm (C) were graphed using multi-dimensional scaling, resulting
in a two-dimensional embedding with pair-wise distances being conserved.
(D) Confusion matrix, showing the output of the ANN compared to the true
material class. As expected from multi-dimensional scaling, some materials
could be distinguished easily, e.g., copper and aluminium, whereas others
were more challenging, e.g., brass and wood.
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As the FFT variant used 509 input dimensions, the result-
ing ANN was large, requiring considerably more computational
resources than the parametric variant. Thus, there was a clear
resource-performance trade-off, and we were interested to assess
how performance decreased with systematic reduction of input
dimension. As preliminary results had already suggested that
ten-fold sub-sampling of the FFT spectrum had little effect on
distance estimation (see above), we sought the most efficient
combination in inputs in a data-driven manner. For this, we
applied non-negative matrix factorization, NMF, with varying
numbers of output dimensions. A representative result of NMF
with nine dimensions is shown in Figure 7A. The number of nine
dimensions was chosen for a better visualization, only. However,
with a larger number of dimensions the shown band-pass fil-
ter like characteristics stays the same. The nine basis vectors are
drawn as frequency spectra, emphasizing the analogy to a set
of band-pass filters. The corresponding nine-dimensional input
to the ANN was then computed by the dot products of the
509-dimensional FFT spectrum of the measured signal with each
one of the basis vectors shown. Thus, the number of basis vec-
tors is equal to the number of input dimensions of the ANN.
Figure 7B shows how material classification improves with num-
ber of input dimensions, where several training sessions were
done for each number of input dimensions, in order to avoid ran-
dom effects. The performance when using the un-filtered, entire
FFT spectrum was used as reference. The results for reduced input
dimension asymptotically approached the results of the entire
spectrum. For more than 30 input dimensions, performance in
material classification was at least 86% correct assignments. From
30 onwards, the improvement of performance became smaller.
Compared to the reference performance of 94.2% correct assign-
ments with 509 inputs, the performance with 30 inputs was
reduced by 8% only, while the amount of data was reduced by
95%. Taken together, robust classification of eight materials can

be achieved by appropriately filtering the measured tactile contact
signal by 30 non-linear band-pass filters obtained through NMF.

SENSORY DATA PROCESSING IN SPIKING NEURAL NETWORK
Until this point, the sensor data was always pre-processed by
FFT. Although the sensory encoding of stimuli in the fre-
quency domain is common in various sensory systems, including
mechanoreceptive and visual systems, FFT is not a biologically
plausible algorithm, so we strived to replace FFT by a bionic
method of information processing. For this we used a frequency-
encoding sensory array based on resonate-and-fire neurons.
By appropriate parameter adjustment of a single resonate-and-
fire neuron, it is possible to tune selective band-pass filters
(Izhikevich, 2003). Here, we exploited this property to determine
the specific frequency selectivity for each neuron in a linear sen-
sory array, such that each neuron was responsive to a narrow band
of frequencies only. The frequency tuning of the neurons is shown
in Figure 8 where the responses of neurons with preferred fre-
quencies at 7 Hz and 23 Hz are shown for two different sinusoidal
input signals. Each neuron was responsive to the corresponding
frequency and was silent to other inputs. The frequency selectiv-
ity is shown in Figures 8 G,H where the role of the parameters
I and b was analysed for a neuron tuned to resonate at 7 Hz. By
changing the amplitude of the input current, I, the neuron could
either resonate in a wide range of frequencies or be exited in a nar-
row band around 7 Hz. Parameter b was responsible for the spike
rate of the neuron.

After pre-processing with PCA, the signal was low-pass filtered
to remove high-frequency disturbances (above 30 Hz). The data
was then centred on zero by subtracting the mean value. This was
done off-line but can be performed on-line too, e.g., by use of
sliding window operations. Finally, the signal was transformed
into a train of pulses of unit amplitude (Figure 8I), thus remov-
ing amplitude differences in the input to the resonate neurons

FIGURE 7 | NMF-based dimensionality reduction. (A) Application of
non-negative matrix factorization to the FFT spectra of contact signals lead
to a set of basis vectors that could be interpreted as different band-pass
filters. The nine frequency spectra correspond to the set of optimal
filter characteristics when setting the dimension of the NMF-derived vector

basis to nine. (B) Accuracy of material classification as a function of the
number of dimensions of the NMF vector basis. The blue line
delimits the maximum accuracy achieved for a given dimension. The red line
indicates the accuracy achieved when using the original FFT spectrum as the
input.
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FIGURE 8 | Behavior of two neurons tuned to stimulus frequencies of

7 Hz (A) and 23 Hz (B). Membrane potential of the 7 Hz neuron showed
excitation in response to the sinusoidal stimulus with frequency 7 Hz (C) but
no response to frequency 23 Hz (D). The opposite was true for the 23 Hz

(Continued)

Frontiers in Neurorobotics www.frontiersin.org August 2012 | Volume 6 | Article 8 |149

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Patanè et al. An insect-inspired bionic tactile sensor

FIGURE 8 | Continued

neuron (E),(F). Tuning of frequency selectivity depended on parameters k and
b, but also on the input amplitude I. This is illustrated for the 7 Hz neuron.
Parameter k was used to select the frequency of interest (for 7 Hz:
k = 0.3425). The input amplitude I modified the window in which the neuron
was active (G), and parameter b determined the spike rate (H). (I) The

pre-processed input signal was codified with a square-wave signal with an
amplitude range [−0.085 to 0.085]. This improved the detection performance
of the resonate neuron. (J) Block scheme of the signal elaboration from the
sensory data acquisition to the neuron input current generation. An
associative memory was considered to modulate the signal pre-processing
depending on the robot motor command.

that could affect frequency selectivity (which is a function of I,
see Figure 8G). Among the different methods tested, this square-
wave transformation proved most efficient, as the zero-crossings
became triggering events for spikes. The result was a codifica-
tion of input frequency only, supporting narrow-band frequency
selectivity in each neuron within the sensory array.

SPIKING-BASED PROCESSING AND FORWARD MODEL BY
SENSORY GATING
Experiments carried out with the bionic antenna being mounted
to the robotic platform generated a wide variety of sensor data
that was used to test state-dependent modulation of sensory pro-
cessing. During motion, frequency analysis of the pre-processed
sensor readings revealed an evident peak around 7.8 Hz (note
that high frequency signals with f > 30 Hz were not consid-
ered in this analysis). The presence of frequency components
in the band 7–8 Hz is evident even in absence of tactile con-
tacts. This activity represents the natural oscillation frequency
of the sensory probe due to the robot/antenna motion. Still,
antennal contact with an external object could be detected by a
marked, impulsive response in the sensor reading. Upon regis-
tering a contact event, the antenna was maintained in contact
with the obstacle for one second and a frequency analysis was
performed. For this, the FFT-based analysis used so far was
replaced by the spiking neural network architecture described
in Figure 3, with appropriate parameter tuning as explained in
Figure 8.

Analyzing the first results obtained using this pre-processing
strategy, it was evident that, in some cases, low-amplitude fluctu-
ations could create artifacts that erroneously caused a resonate
neuron to fire a spike. To avoid this problem, a threshold for
the signal amplitude was added, thus discarding sub-threshold
fluctuations. The value of the threshold was critical because an
inaccurate choice could lead to the presence of multiple false
positives, or, on the contrary, to missing of all contact events
(false negatives). Since most of the noise that made the thresh-
old necessary was introduced by self-motion of the robot, this
could be predicted from the motor commands assigned to the
robot drives. In a first attempt to adaptively select an appro-
priate threshold value, we determined its dependence on robot
speed. Indeed, if the robot drove on a plane surface, a simple
speed-dependent threshold improved contact detection perfor-
mance. Context-dependent setting of this threshold value allowed
for state-dependent modulation of the sensitivity to contact
events.

The effect of threshold modulation on the sensory array of
resonate neurons is shown in Figure 9. It summarizes two exper-
iments in which the robot antenna touched obstacles several
times. The rows in Figure 9 correspond to two different driving

speeds (Low speed v = 12 cm/s; High speed v = 27 cm/s). When
the signal codification through the square-wave was performed
without a threshold modulation (Th = 0), contact events were
detected erroneously, owing to the noise introduced by robot
motion. Increasing the threshold can filter out disturbances, but
too high thresholds can filter out contact signals, too. In the exam-
ple shown, the optimal value of Th was strongly dependent on the
speed of the robot, being more than five-fold as high for the fast
speed than for the low speed. As yet, doubling Th led to a loss of
true positives, irrespective of driving speed.

A more detailed example of a robot experiment is shown
in Figure 10, where the response properties of two resonate
neurons in the sensory array during a non-contact episode
(Figures 10 B,D,F) and a contact event (Figures 10 C,E,G) are
juxtaposed. In this experiment, the robot was moving at low
speed on flat terrain and a tactile contact occurred after 5.5 s.
During self-motion without tactile contacts, the 7 Hz neuron
fired spikes continuously, whereas neurons tuned to higher fre-
quencies remained silent. Upon tactile contact with the obstacle,
the pattern of activity within the sensory array shifted to higher
frequencies, and the 17 Hz neuron was most active. The frequency
map (Figure 10H) shows the time course of neural activity within
the entire sensory array: the initial frequency band of 7–8 Hz indi-
cates that the robot moved and, therefore, caused self-stimulation
at the resonance frequency of the probe. The contact event
was detected by an abrupt termination of the 7 Hz activity and
simultaneous occurrence of a new peak at much higher frequen-
cies. As soon as the robot was stopped in response to tactile
contact, neural activity ceased in both high and low frequency
neurons.

DISCUSSION
With this study, we present a bio-inspired tactile sensor for
active tactile localization and material classification, suitable for
application on a mobile robot platform. Two neural informa-
tion processing modules were proposed for these purposes: a
multi-layered perceptron for analysis of the frequency spectrum
of the vibration signal recorded, and a spiking neural net-
work that can provide the frequency spectrum and lends itself
for state-dependent modulation of sensory processing during
self-motion.

TACTILE LOCALIZATION AND MATERIAL CLASSIFICATION
The measurement technique is simple, accurate, and robust. It
is simple because the use of a single sensor per antenna, it is
accurate because contact localization can achieve as little as 0.4%
deviation from linearity over a measurement distance of some
40 cm, and it is robust because it allows for correct classification
of eight materials in up to 94% of cases with a single contact
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FIGURE 9 | Frequency maps obtained from data acquired during two

experiments where the robot touched an obstacle several times and at

different speeds: vhigh = 27 cm/s, vlow = 12 cm/s. In the principal
component (PC) of the acceleration data, the contact events could be
identified as high-amplitude impulsive responses. For the high-speed
experiment (A) the contact events occurred at t = 6 s (window 30), t = 14 s
(window 70), t = 21 s (window 105), t = 26s (window 130), t = 33 s (window
165). For the low-speed experiment the contact events occurred at t = 13 s
(window 65), t = 19 s (window 95), t = 27 s (window 135), and t = 34 s

(window 170). The maps show the responses of the sensory array of
resonate neurons (columns of the maps), by color-coding their spike rate, in
time. Rows correspond to time windows of 1 s duration, with a sliding time
of 200 ms used between two consecutive windows. With a threshold
Th = 0, some artifacts appeared as in (B) and (F) that do not correspond to
real contact events. For high values of Th, real contact events could disappear
from the map (D)–(H). Finally, for optimal values of Th, contact events were
detected correctly (C)–(G). Note that the optimal value of Th depended on
the speed of the robot.
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FIGURE 10 | Experiment performed with the robot exploring a flat terrain

at low speed. (A) Principal component extracted from the acceleration data
and filtered signal (after low-pass-filtering with a cut-off frequency of 30 Hz).
Behavior of the network in absence of contact events: (B) normalized signal in
the interval [2, 3] s (window 10); (D) spike rate of the sensory array of resonate
neurons: the 7 Hz neuron is active because the robot is in motion; (F) membrane
potential of the 7 Hz neuron. Behavior of the network in presence of a contact

event: (C) pre-processed input signal and corresponding input current in the
interval [5.8, 6.8] s (window 29): a damped oscillation is recorded after a tactile
contact; (E) spike rate of the sensory array of resonate neurons: the 17 Hz
neuron it is active because the antenna touched an obstacle, the contact
distance can be calculated using a non-linear mapping function (here d = 19 cm
from the base of the antenna); (G) membrane potential of the 17 Hz neuron in
window 29. (H) Frequency map obtained for the entire experiment.
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event. Compared to earlier work on artificial active tactile sen-
sors, our method differs with respect to the sensorization of
the beam. For example Kaneko et al. (1998), Lewinger et al.
(2005), Solomon and Hartmann (2006), and Pearson et al. (2011)
used sensors at the base of the beam, whereas we use a sen-
sor on the tip. Despite the difference in sensor placement, our
method bears some similarities with that proposed by Ueno et al.
(1998), who also inferred the contact location along the beam
by analysing its resonant behavior, though with a basal sensor.
Technically, a major difference between basal and distal sensor
placement is the number of oscillation cycles that can be mea-
sured during a single contact event. In the approach by Ueno et al.
(1998), the fundamental frequency during the contact period
needs to be inferred from half a cycle period, whereas in our
method, several cycle periods can be analysed. Analysis of signals
containing several complete cycles of oscillation arguably allows
for more reliable computation of the frequency composition.
Another advantage of our method might be its applicability for
material classification in addition to tactile localization. This was
not tested by Ueno et al. (1998). On the other hand, approaches
with basal bending- and/or torque-sensors have been shown to
be very efficient in tactile shape reconstruction (e.g., Solomon
and Hartmann, 2006). As our sensing method relies on the anal-
ysis of discrete events rather than of a continuous stream of
sensor readings, it may be more appropriate for local, discon-
tinuous analysis of object features rather than for complete and
continuous mapping tasks.

The present system uses PCA-based pre-processing of the sen-
sory input that reduces the number of input channels from two
to one. This reduction is not necessary as the signals could be
also processed separately, with the overhead of doubling the pro-
cessing structure. An advantage of parallel processing of both
channels might be that the direction of motion relative to the sur-
face contacted could be determined. Future experiments will need
to address this issue.

The major advantage of the feed-forward ANN module con-
cerns the robustness of accurate localization in the face of noise,
and the applicability of fast and simple learning rules for any par-
ticular tactile classification task of choice. Both of these aspects are
of relevance to the engineering of autonomous active tactile sens-
ing systems. Concerning the resource-performance trade-off, the
reduction of input dimensionality used in this study was based
on NMF, yielding a relatively small set of basis vectors for effi-
cient description of the sensor signal. Owing to its non-negativity
constraint, NMF results in a set of basis vectors that can be
interpreted as non-linear band-pass filters. In principle, similar
results might have been obtained by an even-spaced set of band-
pass filters with equal frequency bandwidth. In fact, the analysis
of distance estimation revealed that simple down-sampling of
the input by using every 10th value, still produced satisfying
results. Potential disadvantages of such “simpler” choices of sen-
sory filters could arise due to arbitrary heuristics, e.g., when
choosing the bandwidth of band-pass filters. In contrast, appli-
cation of NMF ensured purely data-driven optimization of filter
properties. The result suggests that some 30 band-pass filters pro-
vide sufficient information for reliable classification of the eight
materials tested, independent of contact location. Many sensory

systems are known to use a relatively small number of input
channels with band-pass filter properties (e.g., see Olshausen
and Field, 2004, on sparse coding in sensory systems). Thus,
reducing the number of input dimensions by use of a set of band-
pass filters is not only resource-efficient in technical terms, but
also follows a common principle in natural sensory information
processing.

Our active tactile sensor system is inspired by the stick insect
antenna, albeit with strong simplification of the biomechan-
ical features (Dirks and Dürr, 2011) and number of sensors
(Monteforti et al., 2002). Stick insects of the species Carausius
morosus continuously move their antennae during locomotion,
thus actively exploring the ambient space (Dürr et al., 2001).
They use mechanoreceptive information from their antennae for
tactually mediated re-targeting of leg movements in a reach-to-
grasp paradigm (Schütz and Dürr, 2011) though the source of
this mechanoreceptive information is not known yet. At least
two kinds of antennal mechanoreceptors could contribute to the
encoding of fast rhythmic deformation of the long and thin flagel-
lum: (i) campaniform sensilla, i.e., bending-sensitive sensilla that
are embedded within the cuticle of different parts of the antenna;
(ii) Johnston’s organ, a prominent chordotonal organ in the sec-
ond segment of the antenna, near the base. Johnston’s organ is
present in all higher insects. It is a proprioceptor known to mea-
sure antennal vibration in many insects, including mosquitoes,
flies, and honeybees (reviewed by Staudacher et al., 2005). In
stick insects, descending neurons of the antennal mechanosen-
sory system have been shown to be vibration-sensitive (Westmark
and Dürr, 2009), and the sensory structures that supply this
information must have been located on the proximal part of the
antenna, although their identity remains obscure. In a chordo-
tonal organ of the stick insect leg, the sense of vibration has been
analysed to considerable detail (Stein and Sauer, 1999), show-
ing that the sense of vibration is of importance in these animals.
In summary, the choice of a single distal acceleration sensor
on our bionic antenna does not model any particular antennal
mechanoreceptor. Rather it abstracts the property of antennal
vibration-sensitivity, highlighting both advantages and disadvan-
tages of vibration-sensitivity on an active sensor, and furthering
our understanding of what kind of behavioral tasks vibration-
sensitive proprioceptors potentially could contribute to.

In addition to their rich sensory infrastructure, real insect
antennae have very complex mechanical properties. In many
species, the antenna is sufficiently stiff for maintaining its
shape during self-motion, even in very long and thin structures
(e.g., 100:1 length-to-diameter ratio in the stick insect Carausius
morosus). At the same time, antennae are compliant and readily
bend when in contact with obstacles. Moreover, damping appears
to be functionally important, and is known to vary along the
length of the antenna (Dirks and Dürr, 2011). Near the base
of the stick insect antenna, damping is over-critical, preventing
long-lasting oscillation of the structure, while supporting fast
return to the natural shape after release of contact. Closer to
the tip of the antenna, damping is weaker and oscillation of the
flagellum has been shown (Dirks and Dürr, 2011). The bionic
tactile sensor used in this study does not model a proximal-
to-distal gradient of damping properties. Taken together, the
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sensing principle based on a distal vibration sensor monitoring
damped harmonic oscillations is a simplification based on the
observation that antennal contacts cause deflections of the flag-
ellum which lead to fast return movements inducing oscillation
of the tip.

STATE-DEPENDENT SENSORY GATING BY MEANS OF A
FORWARD MODEL
Mechanoreceptors are particularly susceptible to self-stimulation
during motion, mainly because movement may directly inter-
fere with their adequate stimuli, e.g., the deflection of a hair
or passive movement of a joint. As a consequence, active sens-
ing, i.e., involving self-motion into the sensing process, is likely
to generate self-stimulation that potentially could confound sen-
sory readout. On the other hand, active mechanoreception may
also have advantages in fidelity over passive mechanoreception,
as shown by Kim and Möller (2006). Here we use a bio-inspired
neural network approach for state-dependent modulation of
sensory input. It is inspired by central modulation of sensory
processing in insects (e.g., Poulet and Hedwig, 2007), and bears
many parallels to gating properties described in the central ner-
vous system of walking crickets (Staudacher and Schildberger,
1998).

Bio-inspired solutions can be applied in robots for finding
alternative ways to deal with classical problems of obstacle detec-
tion in roving platforms. With the proposed spiking-network
architecture we provide an alternative method for the frequency
analysis of the input data originally performed through the FFT.
The spiking-network is based on resonate-and-fire neurons for
processing sensory information coming from mechanoreceptors
on the antenna. Apart from resonance-based frequency decom-
position of the input signal, we modulate a key parameter of the
resonate-and-fire neurons for state-dependent modulation of
their sensitivity. This allows for state-dependent cancellation of
self-induced sensor readings.

Resonance in neural circuits is considered an essential ingredi-
ent for giving rise to self-sustained activity (i.e., in the absence of
external stimuli), suggesting a primary role in higher cognitive
processes such as working memory, decision-making, and goal
directed behavior (Wang, 2003). On the other hand, dynamical
system theory traditionally exploits resonance for detecting the
essential dynamical characteristics of the system under consider-
ation, emphasizing the role of enhancing specific input patterns
locked around the system’s resonance frequency. Joined together,
these two concepts led to the design of neural models which
were both able to exhibit self-sustained oscillations (Muresan and
Savin, 2007), and to show the emergence of oscillations only if
stimulated by input signals possessing specific frequency contents
(Izhikevich, 2001). Complex strategies of selective communi-
cations were hypothesized using networks endowed with such
models (Izhikevich et al., 2003). One of the first applications of
resonators was in the field of sound detection, localization and
clustering from sensory data (Arena et al., 2005). A similar princi-
ple has been applied by Webb et al. (2007), investigating the ability
of bushcrickets to respond to different song patterns. The imple-
mentation through spiking networks, as proposed here, can be
a first step toward a bio-inspired formalization of the structure,

allowing its transfer and application to modeling higher brain
functions of insects as well, for example functions that involve
the mushroom bodies or the central complex (Arena et al., 2010).
Future work will consider the introduction of local excitatory
and global inhibitory connections among the resonate neurons to
create a winner-takes-all topology to improve the filtering capa-
bilities and the detection performance. Moreover the proposed
architecture allows embedded solutions by using either networks
of microcontrollers or FPGA-based boards (Arena et al., 2007,
2008).

In nature, mechanisms for self-motion detection are fre-
quently met. For example, flies readily estimate their self-motion
from the acquired optic flow field (Krapp, 2009). Forward mod-
els are used for predicting and compensating specific effects of
own body motions, recorded from exteroceptive sensors: there
is a large body of literature suggesting that biological systems
use efference copy and internal models to filter out disturbances
in a fast, robust, and adaptive way (Franz et al., 2004; Webb,
2004). Applications in the area of biorobotics include prediction
and compensation of self-induced disturbances on sensor read-
ings in a biped robot (Manoonpong and Woergoetter, 2009),
using a recurrent neural network. The particular implementa-
tion of forward models through spiking neural networks is an
interesting topic as discussed by Russo et al. (2005). Their mod-
eling work on multimodal integration in crickets allowed them
to deal with conflicting effects of auditory and visual orienta-
tion reflexes (phonotaxis and optomotor turning response). For
this, they suppressed self-induced visual input activity during
voluntary turning movements and phonotaxis-induced turning.
In this case, a simple non-linear feed-forward compensator was
designed as part of a bio-inspired spiking neural network to
model sensorimotor integration and control on a roving robot.
The proposed architecture included a forward model for ego-
motion compensation that was based on a sensory gating strat-
egy for an efficient and robust solution, requiring neither time
prediction nor compensation mechanisms. The present model
could be extended to include a reward-based learning method,
allowing the robot to learn the appropriate threshold values.
A potential candidate structure for implementing such a learn-
ing method is a Motor Map (Ritter et al., 1992). In a Motor
Map, a lattice of neurons can be specialized to find the best
threshold value for different robot speed. Moreover, it could be
extended easily to include further inputs, including inputs that
classify different types of environments. The reward signal could
be generated by a teacher that indicated to the robot whether
a detected contact event was a true or false positive. Instead
of a teacher, other sensors, such as sonar or infrared distance
sensors, could provide the signals necessary validation of true
positives.

The control architecture used in the present robot system can
be improved further by introducing a behaviour association net-
work as proposed in Arena et al. (2009). The robot could then
try different basic behaviors on the detected objects, for instance
avoidance, climbing, or pushing, while monitoring the conse-
quences of its own actions. By using a simple associative learning
method, the robot could choose the most suitable action for each
object, depending on information about dimension and type of
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material that can be acquired from the bionic antennae. It is
important to underline that the spiking-network structure can
be considered as a functional module that can be integrated with
other modules for a more detailed control strategy.

In summary, out active tactile sensing system successfully
applies a simple feed-forward ANN module for robust and reli-
able tactile localization and material classification. Moreover, we
exploit the resonant behavior of a spiking-network for imple-
menting a mechanism of state-dependent modulation or gating.
This allows suppression of self-induced mechanorecptive inputs
from the antenna as it occurs during self-motion. Thus, it is
applicable to active tactile sensors mounted to mobile platforms.
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Many insects actively explore their near-range environment with their antennae. Stick
insects (Carausius morosus) rhythmically move their antennae during walking and respond
to antennal touch by repetitive tactile sampling of the object. Despite its relevance for
spatial orientation, neither the spatial sampling patterns nor the kinematics of antennation
behavior in insects are understood. Here we investigate unrestrained bilateral sampling
movements during climbing of steps. The main objectives are: (1) How does the antennal
contact pattern relate to particular object features? (2) How are the antennal joints
coordinated during bilateral tactile sampling? We conducted motion capture experiments
on freely climbing insects, using steps of different height. Tactile sampling was analyzed
at the level of antennal joint angles. Moreover, we analyzed contact patterns on the
surfaces of both the obstacle and the antenna itself. Before the first contact, both
antennae move in a broad, mostly elliptical exploratory pattern. After touching the
obstacle, the pattern switches to a narrower and faster movement, caused by higher
cycle frequencies and lower cycle amplitudes in all joints. Contact events were divided
into wall- and edge-contacts. Wall contacts occurred mostly with the distal third of the
flagellum, which is flexible, whereas edge contacts often occurred proximally, where the
flagellum is stiff. The movement of both antennae was found to be coordinated, exhibiting
bilateral coupling of functionally analogous joints [e.g., left head-scape (HS) joint with right
scape-pedicel (SP) joint] throughout tactile sampling. In comparison, bilateral coupling
between homologous joints (e.g., both HS joints) was significantly weaker. Moreover,
inter-joint coupling was significantly weaker during the contact episode than before.
In summary, stick insects show contact-induced changes in frequency, amplitude and
inter-joint coordination during tactile sampling of climbed obstacles.

Keywords: insect antenna, tactile sense, climbing, inter-joint coordination, active touch, stick insect, Carausius

INTRODUCTION
The tactile sense provides important sensory cues about the
near-range environment, with detailed information about shape,
location, and surface properties of touched objects, not all of
which is easily accessible to other senses, including surface tex-
ture and stiffness. Especially animals that operate under difficult
lighting conditions, for example nocturnal or aquatic animals,
use their tactile sense to acquire vital information about the
surrounding environment. Harbor seals use their whiskers to
detect subtle currents of water flow, collecting hydrodynamic
information about other aquatic animals (prey, predators, or con-
specifics; Dehnhardt et al., 1998; Miersch et al., 2011). Shrews
use their vibrissae to catch prey in demanding environments,
for example hunting insects in complete darkness or underwa-
ter. Their tactile sensors allow them to detect the “gestalt” of
objects in a scale- and motion-invariant manner (Anjum et al.,
2006; Brecht, 2007). Rats explore their environment by rapidly
sweeping their long facial whiskers back and forth. This behavior,
called “whisking,” is actively controlled relative to the environ-
ment and the movement of the animal (e.g., Mitchinson et al.,

2011). By means of whisking, rats can tactually localise objects
(Ahissar and Knutsen, 2008) and discriminate fine-scale surface
textures (Diamond et al., 2008; Morita et al., 2011).

Elaborate forms of active touch sensing are also found in
arthropods (Staudacher et al., 2005). Unlike the mammals men-
tioned above, arthropods do not sample their environment with
patches of specialized hairs, but with a pair of antennae (feel-
ers). Antennae are limbs of the head that, during evolution,
have become dedicated sensory organs involved in behavioral
functions as diverse as course control, pattern recognition, and
tactile localization. For example, lobsters use their antennae for
navigation and obstacle avoidance on the ocean floor. They are
able to discriminate antennal deflections due to water currents
from deflections caused by obstacle contacts (Barnes et al., 2001).
Flying insects, for example locusts, sense the airflow by mea-
suring the deflection of their antennae (Gewecke and Heinzel,
1980; Heinzel and Gewecke, 1987). Cockroaches use the passive
deflection of their long feelers for behaviors like fast wall tracking
(Camhi and Johnson, 1999). During tactile near-range explo-
ration, object localization and pattern recognition are frequently
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observed. Active antennal sensing increases the likelihood of
detecting obstacles (Krause and Dürr, 2004). Active sensing is
a common strategy among animals for improving information
gain (Prescott et al., 2011). Honeybees, for example, are able
to discriminate the microtexture of flower petals in the range
of few tens of microns (Kevan and Lane, 1985) or artificial
gratings (ca. 150 μm) (Erber et al., 1998) by tactile scanning
of surfaces with their antennal tip. Bees can also discriminate
patterns visually, but on considerably larger scale (Srinivasan,
2010). Cockroaches can distinguish between predators and con-
specifics by means of antennation, i.e., repetitive antennal touch-
ing (Comer et al., 2003) and show tactually induced turning
toward- and climbing of objects (Okada and Toh, 2000, 2006).
Stick insects continuously move their antennae during walking
and sample the space ahead of the walking direction. Because
stick insect antennae are approximately the same length as the
front legs, touched obstacles are within reach of the front legs.
A re-targeting of ongoing leg swing movements to antennal con-
tact position was described by Schütz and Dürr (2011) and shows
that the antennae provide short-latency information for adap-
tive locomotion. Removing the antennae lowers the animal’s
climbing performance on square obstacles (Dürr et al., 2003).
These examples show the relevance of antennal information for
pattern and shape recognition, but also for context-dependent
adaptation of motor behaviors. Despite its relevance, neither the
spatial sampling patterns nor the kinematics of antennal tac-
tile sampling movements of arthropods are well understood. In
particular, studies on shape-dependent differences and touch-
induced changes in the movement pattern of antennae are very
few. Whereas it is clear that insects use antennal tactile cues for
decisions about motor acts dependent on location and distance
of touched objects (Bläsing and Cruse, 2004a; Harley et al., 2009),
almost nothing is known about timing and coupling of antennal
joints during tactile sampling, nor about which part of the anten-
nal flagellum is used for sampling the obstacles in order to acquire
the information used for decision-making.

In several stick insect species, the location and orientation of
both antennal joint axes are known (Dürr et al., 2001; Mujagic
et al., 2007), allowing for inverse kinematic calculation of anten-
nal joint angles in walking and climbing insects (Krause and
Dürr, 2004). As in all higher insect orders, the antenna of the
stick insect Carausius morosus consists of three functional seg-
ments: two short, proximal segments called scape and pedicel,
and a long flagellum (Figure 1D). The antenna is articulated
by two revolute joints: the head-scape joint (HS joint) and the
scape-pedicel joint (SP joint) (Dürr et al., 2001; Staudacher
et al., 2005). The long flagellum is almost straight and suffi-
ciently stiff not to bend during self-motion. This simplifies the
computation of contact points with obstacles, e.g., by applica-
tion of intersection algorithms from computer graphics. So far,
detailed analysis of antennal inter-joint coordination exist for
active tactile exploration during locomotion (Krause et al., 2012)
and for antennal sampling of simple objects (Schütz and Dürr,
2011). The latter studies focussed on unilateral antennal move-
ments and on the sampling of a nearly one-dimensional object
(vertical rod). Here, we investigate unrestrained bilateral anten-
nal tactile sampling movements in a step-climbing paradigm,

involving repeated antennal contacts of both antennae. First, we
show the influence of object features on antennal contact patterns
and the distribution of contacts along antennal parts, revealing
a functional regionalization. Second, we show changes in bilat-
eral antennal coordination, antennal working-range, and cycle
frequency prior to and during tactile sampling of the climbed
obstacle.

MATERIALS AND METHODS
ANIMAL PREPARATION
All experiments were carried out on adult female stick insects
of the species Carausius morosus (de Sinéty, 1901) that were
bred in a laboratory culture at Bielefeld University. Five ani-
mals were prepared for kinematic analysis by means of marker-
based motion-capture. For this, animals were labelled with four
custom-made retro-reflective foil markers (Scotchlight M3SS-28
8850, 3M Corp., St. Paul/MN, USA). Markers were placed near
the caudal margin of the mesonotum, on the head between the
eyes, and on the left and right flagellum of the antenna. The
antennal markers were placed on the first third of the flagellum,
where the antenna is sufficiently stiff to avoid bending due to
the mass of the marker. Markers were fixed to the insect cuti-
cle with a drop of translucent nail polish, except for the antennal
markers. The latter were attached by a knot around the flagellum.
Markers were approximately 1 mm in diameter. The neck joint
and the joint between the pro- and mesothorax were fixed with
hot beeswax, keeping the body axis straight during locomotion
and, thus, increasing the accuracy of marker tracking. Fixation of
these joints did not impair climbing ability of the animals. It did,
however, reduce the turning tendency such that animals were less
likely to turn although they were still able to do so.

MOTION CAPTURE
Animals walked along a 40 mm wide footbridge while being
filmed from above, and via a slanted mirror from the side. Within
the field of view of the camera, the footbridge was blocked by
a step of 19, 32, 47, or 66 mm height (Figure 1). Step heights
were randomized. Walking trials of five animals were recorded,
with at least five trials per animal and step height. Videos were
recorded using an infrared-sensitive digital video camera (Basler
A602f, Ahrensburg, Germany) equipped with a 70 mm zoom lens,
operated at 100 frames per second. Camera exposure was syn-
chronized with a custom-built infrared flash light. The setup was
painted in black and surrounded by black drapery. The room was
darkened except for a red light, just bright enough for handling of
the insects. The camera was calibrated with the “Caltech Camera
Calibration Toolbox for Matlab” (Bouguet, 2005), using Matlab
(MathWorks Inc., Natick/MA, USA). Videos were captured via
fire-wire (IEEE 1394) by use of custom-written frame grabber
software (Christoph Schütz, Bielefeld University) and stored on
a standard personal computer. All videos were saved as avi-files
and cut using the software VirtualDub (www.VirtualDub.org).
Video analysis was implemented in Matlab (VideoTrack M, writ-
ten by Christoph Schütz, Bielefeld University), based on software
as described by Zakotnik et al. (2004). In a first step, poten-
tial marker coordinates were detected using a standard image
processing sequence (thresholding, dilating, and eroding with
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FIGURE 1 | Experimental setup and antennal structure. Stick insects
walked freely along a footbridge that was blocked by a step of variable height.
Animals were filmed from above, and via a mirror from the side, as they
touched and climbed the step. (A) Side view, indicating the four step heights
used. (B) Isometric schematic of the setup with steps of variable height, h.
(C) Front view. The mirror was slanted by 45◦ to obtain a side view of the
animal. All numbers indicate distances in mm. Coordinate systems indicate
the convention used for the coordinate frames. (D) Antennal morphology.
Side view of the insect head and right antenna. The first two segments,

scape and pedicel, are short and located close to the head, followed by the
long flagellum. For later analysis, the antenna was divided into a proximal,
medial, and distal section. (E) Antennal kinematics. Schematic front view of
the head. The head-scape joint (red arrow) and scape-pedicel joint (blue
arrow) are revolute joints. Arrows indicate joint axis orientations relative to
the head and are slanted and non-orthogonal. The left head-scape joint (HSl)
is almost parallel to the right scape-pedicel joint (SPr), hence these joints are
functionally analogous, with rotations in both joints resulting in parallel
movement of the left and right antenna.

subsequent clustering). Then the root marker of the body model
(see below) was marked manually in the first frame and tracked
by a nearest-neighbor algorithm.

KINEMATIC ANALYSIS
Body posture, i.e., segment orientations and antennal joint angles
were determined from marker coordinates frame by frame, using
a model-based optimization algorithm (Zakotnik et al., 2004)
implemented in Matlab (VideoTrack M). Time sequences of
coordinates and joint angles were calculated using a Hidden
Markov Chain algorithm based on 100 independent optimiza-
tion runs per frame (Zakotnik and Dürr, 2005). Body models for
kinematic analysis were established individually per animal. For
this, segment lengths and marker locations along the segments
were measured by use of a calliper, achieving an accuracy of at
least 0.1 mm. Body models consisted of a kinematic chain includ-
ing the “body axis” (mesothorax marker to head marker) and an
antenna, consisting of the segments scape and pedicel-flagellum.
Two such kinematic chains were used for each animal, one for
the left and another for the right antenna. As both body mod-
els contain the body axis, a discrepancy of the calculated body
axis orientation could arise due to independent optimization

procedures. A comparison of the pitch and yaw angles of the body
axis of each solution served as a measure for the robustness of
our motion capture algorithm. Ideally, the differences between
the solutions should be zero. Indeed, deviations were always small
and the median differences of pitch and yaw angles were well
below 1◦ (pitch: median−0.15◦, range−0.7 to 0.6◦; yaw: median:
0.65◦, range−1.4 to 2.3◦).

The body models contained 6 degree of freedom of rotation
per animal and frame: azimuth and elevation of body axis orienta-
tion and two joint angles per antenna. Movements of the antennal
joints were expressed such that positive angles denote levation
above the horizontal plane and negative angles denote depres-
sion. Note that the antennal joint axes of stick insects are slanted
(Mujagic et al., 2007), such that levation always has a sideward
component. Following the notation of Dürr et al. (2001), oblique
levation of the SP joint is caused by adductor muscles of the scape
and, thus, is a mediad adduction of the pedicel. Similarly, lev-
ation of the HS joint is accompanied by a lateral abduction of
the scape. Here, antennal joint axes were defined as described
in Krause and Dürr (2004). Owing to the mirror symmetry of
the head and the slanted antennal joint axes, homologous anten-
nal joints on both sides of the head do not move the antenna
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in the same direction. Rather, it turns out that the left HS joint
affects pointing-direction of the left antenna in almost the same
way as the right SP joint affects pointing-direction of the right
antenna. To emphasize their parallel action, we call bilateral pairs
of HS and SP joints “functionally analogous.”

Assuming that the flagellum remained almost straight between
the antennal joints and the marker, antennal contacts with the
obstacle were computed with a ray-box intersection algorithm
(Woo, 1990). Note that this procedure neglects curvature of the
flagellum in contact with the obstacle and may lead to the situa-
tion that an elongate contact zone between the flagellum and an
obstacle surface gets reduced to a single point (see Results section
on object contacts for further considerations). To compensate for
small motion tracking errors, the intersection box was expanded
by 1.5 mm. This guaranteed that almost all contacts were identi-
fied, as verified by inspection. Contacts with an obstacle, i.e., the
step, were distinguished into wall, edge and top contacts, where
wall and top contacts correspond to the two surfaces that could
be touched. Edge contacts were classified as such, if they were
inside a cylindrical bounding region with radius 3 mm around
the edge.

DATA ANALYSIS
Based on the distinction of antennal contact types, time courses
or measured variables were divided into four episodes: an episode
before antennal contacts, a wall contact episode beginning with
the first wall contact and ending with the first edge contact,
an edge contact episode beginning with the first and ending
with the last edge contact, and an after-episode beginning with
the end of the last edge contact. If both left and right antenna
made wall or edge contacts, the average of those contact times
was used to delimit the wall and edge episodes. Episodes with
less than 25 frames (250 ms) duration were excluded from fur-
ther analysis, because a minimum amount of data was required
to reliably measure cycle frequency and working-range per
episode.

Working-ranges of antennal joints in the four episodes were
measured as the 5–95% quantile ranges of the joint angle dis-
tribution. The baseline of a working-range was defined as the
50% quantile, equivalent to the median joint angle. Cycle fre-
quencies were estimated using FFT, by calculating the weighted
average over the amplitude spectrum in the range from 0 to 10 Hz.
Patterns of coordination between antennal joints were analyzed
in two ways: by cross-correlation of time courses or by a cycle-
to-cycle phase analysis. Antennal coordination was calculated for
six pairs of joints, divided into three groups: ipsilateral (e.g., left
HS joint with left SP joint), contralateral (e.g., left HS joint with
right HS joint), and functionally analogous joints (e.g., left HS
joint with right SP joint). For cycle-to-cycle analysis of phase
relationships between antennal joints, we used the Matlab toolkit
“Peakfinder” to extract local maxima in the time courses (by Nate
Yoder, http://www.mathworks.com/matlabcentral/fileexchange/
25500-peakfinder). Peakfinder extracts local peaks from noisy
data using a threshold, p, to determine whether a peak is signif-
icantly larger or smaller than the surrounding data. An optimal
parameter (p = 8) was obtained with the goal to minimize the
spread between peak distances. This was based on the assumption

of regular periodic antennal movements with almost constant
frequency per episode. Only local maxima were extracted, and
cycle periods thus concern intervals between two local peak joint
angles.

Statistics were calculated with the statistics toolbox of Matlab,
and a significance level of 5% was used throughout this study.
Data from n = 5 animals were used for statistical tests, by averag-
ing extracted parameters, for example antennal working-range,
over the five trials per animal. Throughout the text, the fol-
lowing episode pairs were compared for significant differences
between kinematic parameters: before vs. wall, wall vs. edge and
edge vs. after. In case of multiple comparisons of medians, e.g.,
in the form of multiple Wilcoxon tests, the significance thresh-
old was Bonferroni-corrected by dividing 0.05 by the number of
comparisons (e.g., 0.016 for three comparisons).

RESULTS
OVERALL OBSERVATIONS
Stick insects readily walked along the footbridge and climbed the
obstacles. As reported in earlier studies (Dürr et al., 2001), all ani-
mals showed active tactile exploration behavior by continuously
and rhythmically moving both of their antennae during loco-
motion. Climbing was always accompanied by repeated, bilateral
antennation of the obstacle, i.e., tactile sampling with both anten-
nae. Here we report how climbing insects sample the obstacle
climbed, and how the antennal movement pattern changes during
tactile sampling.

Video-recordings of climbing sequences lasted 2–6 s, mainly
depending on the height of the obstacle climbed. Four trial condi-
tions were compared, differing in the height of the obstacle, only.
The data-set reported in this study comprises a total of 100 trials,
with five trials from five animals per condition. All animals used
both antennae for tactile sampling with no evidence for a side
preference in any of them. Obstacles were sampled on the verti-
cal wall and at the upper edge of the step. Figure 2 shows three
representative trials, giving an overall impression of the anten-
nal contact patterns on the obstacle surface, spatial trajectories
of both antennal tips, and joint angle time courses of all four
antennal joints. In the three trials shown, climbing was accom-
panied by antennation involving 5, 13, and 20 antennal contacts
with the low, middle, and high obstacle, respectively. During tac-
tile contact sequences, the joint angle time courses often revealed
marked changes in amplitude and cycle frequency. In the trials
shown in Figure 2, these changes are very subtle in the case of the
lowest obstacle but obvious in the other two cases, where anten-
nal movement amplitude decreased and cycle frequency increased
during tactile sampling. Antennal contacts often occurred dur-
ing downward antennal movement, i.e., during depression of
both antennal joints. In the examples shown in Figure 2, this
can be seen by the dashed vertical lines that mark the onset of
contact events. In nearly all cases, the antennal joint angle was
decreasing when the contact occurred, indicating depression of
both scape and pedicel. Note that, in most of the contact events
shown, both antennal joint angles reach a local minimum soon
after onset of contact, indicating that all antennal joints tended
to switch to levation upon tactile contact. This is similar to the
situation in unilateral sampling of vertical objects as reported by
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FIGURE 2 | Example trials of stick insects sampling and climbing steps

of three different heights. Each column of panels shows data of the same
trial. From left to right, step heights were 19, 32, and 66 mm. Top row of
panels show schematic reconstructions of the trials as seen from an oblique
view. Each panel shows the obstacle (yellow), footbridge (green), and
trajectories of the two antennal tips (left: red; right: blue). Antennal contact
locations on the obstacle are shown as circles. A stick figure of the body
model is drawn for the last frame of the sequence. The six rows of panels
below the reconstructions are time courses of the HS joint angle (red lines),

SP joint angle (blue lines) and antennal contact (black rectangles) for the left
and right antenna. Vertical dashed lines mark the onset of a contact event of
the corresponding antenna. The number of contact events, of wall contacts in
particular, increased with increasing step height. During tactile sampling,
antennal movement amplitude decreased and the cycle frequency increased
compared to exploratory antennal movements before the first contact event.
Almost all antennal contact events occurred during depression of both
antennal joints. Soon after onset of a contact event, both antennal joints
tended to switch from depression to levation.

Schütz and Dürr (2011). In 67% of all trials, we found an intrigu-
ing similarity of joint angle time courses between the HS joint
on one side with that of the contralateral SP joint during the
wall contact episode (criterion: maximum cross-correlation coef-
ficient >0.5 within ±0.25 s time-lag; see Figure 9). An example
for this can be seen in the right trial shown in Figure 2, where the
overall structure of the SP joint angle time courses bear less sim-
ilarity with the joint angle time course of the ipsilateral HS joint
than with that of the contralateral HS joint. As the joint axes of

contralateral pairs of HS and SP joints are almost parallel, they
are essentially functionally analogous joints. Synchronous move-
ment of functionally analogous joints maintains parallel pointing
directions of both antennae.

In the following, we analyse these general observations in more
detail, beginning with the spatial pattern of contact locations,
followed by the changes in amplitude and cycle frequency and
by quantification of inter-joint coupling before, during and after
tactile sampling.
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CONTACT PATTERNS ON OBSTACLES
To understand how and where stick insects touched the obsta-
cle during climbing, we estimated antennal contact locations by
calculating the intersection point of the vector describing the
antennal pointing-direction with the obstacle. If the distance of
this intersection point from the antennal base was shorter than
the length of the antenna, we assumed that a contact event had
occurred. This procedure neglects bending of the antennal flagel-
lum and, as a result, introduces a bias of the estimated location
toward the direction of movement. This is because antennal

movement will always “drag” the true contact point behind the
tangent to the curvature at the antennal base.

Figure 3 shows the distribution of antennal contacts on the
surface of the four obstacles used. Individual antennal contact
events with a step lasted several frames of the video recording,
forming streak-like patterns on the vertical wall of the obstacle.
The prevalent direction of the streaks is upward and slightly lat-
eral, i.e., toward the margin of the obstacle. This indicates that
the antennae were levated during wall contacts. The lateral com-
ponent coincides with the movement direction caused by HS
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FIGURE 3 | Distribution of antennal contact locations on the obstacle.

The top four diagrams show unfolded obstacle surfaces along the
walking/climbing direction. Connected symbols show contact locations of
corresponding contact events (left antenna: green; right antenna: brown)
on the obstacles, i.e., on the wall (0 < x < h), edge and top surface
(x > h). Each diagram pools data from 25 trials from five animals. The
vertical black lines mark the lower corner (x = 0) and upper edge (x = h) of
the obstacles. Bottom panel: contact duration histograms for all four height

conditions (data from left and right antenna pooled), with bin width
2 mm. The total sum of contact duration per bin was normalized to the
number of trials. One frame was 10 ms. Along the wall, contacts
are almost equally likely, irrespective of the height above ground. Close
to the edge, contact duration increases, reaching similar values in all
conditions. Right column of panels: distributions of contact durations along
the width of the setup. Sampled regions of the two antennae show little
overlap.
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joint levation. In all four conditions, density of contacts increased
near the edge of the step, suggesting that the edge was an “inter-
esting feature” to the animal. This is mirrored by the contact
duration histograms in Figure 3. All four of these histograms have
a broad peak near the edge and a broad, shallow tail at lower con-
tact heights on the wall. The tails indicate that wall contacts are
almost equally likely irrespective of height above ground. Close
to the edge, contact duration increased to approximately 200 ms
per trial, equivalent to 20 video frames. The apparent lack of con-
tact events on the top surface is partly due to sampling bias, as
not all trials had a distinctly long post-contact episode. Contact
histograms along the width of the obstacles, i.e., the y-direction,
show that both antennae sample different regions with very lit-
tle overlap. In fact, the contact patterns reveal a region in the
middle of the wall that is almost devoid of antennal contacts.
This suggests that the overlap of the histograms is mainly caused
by edge contacts. Means and standard deviations of the distri-
butions are given in Table 1. Mean locations of left and right

Table 1 | Mean and standard deviation of contact locations along the

y-axis in mm.

Step Left antenna Right antenna

Mean SD Mean SD

19 44.1 8.0 24.3 7.1

32 45.1 6.9 24.6 7.5

47 46.1 6.8 24.2 7.9

66 46.4 8.3 24.2 8.9

antennal contacts were more than two standard deviations apart.
More overlap may be expected for animals without fixed neck and
prothorax-mesothorax joints.

CONTACT LOCATIONS ON THE ANTENNA REVEAL FUNCTIONAL
REGIONALIZATION
For determining which sensillae were potentially involved in
detecting contact events, we were interested to map the distribu-
tion of antennal contacts along the antenna. There was a clear
difference between the distributions of wall contacts and edge
contacts, but also among the wall contact distributions on the
four obstacles (Figure 4). Whereas for wall contacts, the distal
third of the flagellum spent much more time in contact with the
obstacle than the proximal two-thirds, contact durations of edge
contacts were nearly equal at all locations along the flagellum
(Figure 5B). More than 85% of wall contact duration involved
the distal third of the antenna.

The total duration of wall contacts per trial increased with
step height, while the total duration of edge contacts was nearly
the same for the three highest obstacles (Figure 5A). Edge con-
tact duration dominated wall contact duration for the two lowest
obstacle heights (19 mm and 32 mm). Considering that higher
obstacles take longer to be climbed than lower obstacles, we also
determined the fraction of the entire tactile sampling episode
spent in wall or edge contacts (numbers in Figure 5A). In case
of the three highest obstacles, this fraction was 19–23% for wall
contacts, suggesting that the increase in total contact duration was
proportional to the increase in duration of the sampling episode
(time from onset of first wall contact to end of last edge con-
tact). In case of edge contacts, the fraction decreased with the
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FIGURE 4 | Contact locations on the antenna. Histograms of contact
duration per trial for wall and edge contacts. Contact location was measured
from the HS joint (0 mm) to the tip of the flagellum (ca. 33 mm). Histograms
show pooled data from 25 trials per condition, from five animals.

Wall contacts are made predominantly by the distal third of the flagellum.
Edge contacts occur almost equally likely along the entire antenna. Green
bars: left antenna; brown bars: right antenna. Bin width = 2 mm. Thin vertical
lines indicate proximal, medial, and distal sections.
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the flagellum (proximal, medial, and distal). Data were separated for wall and
edge contacts but pooled across trials and conditions. More than 85% of wall
contacts occurred on the distal part of the flagellum. In contrast, edge
contacts were almost equally likely on all flagellum parts.

height of the obstacle, as expected if the edge contact episode
was equally long but the total sampling episode became longer
with obstacle height. Individual contact event durations did not
differ significantly between wall and edge episodes, although
wall contacts tended to be slightly longer (wall: 134± 82 ms;
edge: 115± 84 ms, Wilcoxon’s rank sum test on mean values per
animal, n = 5, p = 0.31).

ANTENNAL WORKING-RANGE AND CYCLE FREQUENCY
CHANGE DURING TACTILE SAMPLING
Next, we tested how the overall kinematics of the antennal move-
ment pattern changed during tactile sampling of the obstacle. To
account for potential differences between wall contacts and edge
contacts, we determined the antennal working-range and cycle
frequency of both antennal joints during four subsequent trial
episodes. These were: (1) before first antennal contact, (2) dur-
ing the wall contact episode, (3) during the edge contact episode,
and (4) after the edge contact episode (Figure 6). Note that anten-
nal wall contacts for the lowest 19 mm obstacle were rare. Only
two trials from two animals had wall contacts. While sampling
the obstacle wall, the working-range of the HS joint decreased
significantly for obstacle heights 32, 47, and 66 mm (Wilcoxon’s
rank sum test on mean values per animal, n = 5, Bonferroni-
corrected: p < 0.0167). A significantly reduced working-range
was also found in the SP joint for the 32 mm obstacle. After the
last edge contact, the working-range of the HS joint increased sig-
nificantly for climbing all but the highest obstacle. In the SP joint,
the same effect was statistically significant only for height 47 mm.
Additionally, the entire working-range of the antennal joints
shifted during climbing, revealing a significant dorsal shift during
the wall contact episode in both joints (Figure 8; Wilcoxon’s rank
sum test on mean values per animal, n = 5; HS: 10◦, p = 0.016;
SP: 12◦, p = 0.0079).

As antennal working-range decreased, cycle frequency tended
to increase in both joints, though this effect was statistically

significant only for obstacle heights 32 and 47 mm. Similarly,
cycle frequency tended to decrease after the last edge contact,
with median values close to those of the pre-contact episode. This
effect was statistically significant when climbing low obstacles (HS
joint: 19 and 32 mm; SP joint: 19 mm). When climbing the high-
est obstacle, animals on average did not increase cycle frequency,
although an increase was evident in some trials (see Figure 2).
A possible reason might be that, due to the strong inclination of
the body axis, the vertical obstacle wall essentially gets treated
like a horizontal surface relative to the animal’s body coordi-
nate system. In Figure 6, data from left and right antenna were
pooled because no systematic directional bias could be observed.
Differences between left and right antennal working-range, base
line, and frequency were tested and none of them were signifi-
cant (Wilcoxon’s rank sum test on mean values per animal, n = 5,
p > 0.33).

If animals climb obstacles, changes in heading and body axis
elevation must be expected. Indeed, apart from changes of the
antennal movement pattern, significant changes in body axis ori-
entation were observed (Figure 7). As the neck joint was immo-
bilized in these experiments, body axis orientation was equal to
the head orientation and, thus, affected the resting posture of the
antennae. The body axis orientation was expressed as yaw and
pitch angles, equivalent to polar coordinates (azimuth and eleva-
tion, respectively). As expected, the body pitch angle continuously
decreased during climbing, and the magnitude of this decrease
depended on the height of the obstacle. Significant changes in
body pitch angle were found for all obstacle heights but not
between all episode pairs (see Figure 7). As the body axis became
increasingly inclined, the body yaw angle became more variable:
Whereas low steps were climbed with little or no change in yaw
angle, its range of variation strongly increased for higher obstacles
(height 47 and 66 mm in Figure 7).

Taken together, the kinematic changes of antennae and body
axis are summarized in Figure 8, pooling across all animals
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FIGURE 6 | Antennal working-range and cycle frequency in different

sampling episodes. Rows correspond to the four trial conditions (obstacle
height). Left column: working-range of the HS joint (red) and SP joint (blue)
during four subsequent episodes of climbing trials. Right column: Antennal
cycle frequency of HS joint (red) and SP joint (blue). Box-and-whisker plots

show the median, the 25th and 75th percentiles, and the maximum and
minimum of 25 trials from five animals. Asterisks denote significant
differences between subsequent episodes (Wilcoxon’s rank sum test on
mean values per animal, n = 5, Bonferroni-corrected for three-fold testing,
p < 0.0167).

and obstacle heights. During tactile sampling, the joint angle
working-ranges significantly shifted upward and decreased in
width. At the same time, the cycle frequencies of both joints
increased.

ANTENNAL INTER-JOINT COUPLING CHANGES DURING TACTILE
SAMPLING
Finally, we wanted to know whether and how the coordination
between antennal joints changed during tactile sampling. For this,
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FIGURE 7 | Yaw and pitch angle of body axis orientation. Panels show
data from trials with different obstacle height, separated by the
sampling-episode. Yaw and pitch correspond to azimuth, and elevation in a
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the body axis continuously decreases during climbing and the maximum
pitch angle increases with obstacle height. The yaw angle becomes more
variable with obstacle height. Asterisks denote significant effects between
subsequent episodes (Wilcoxon’s rank sum test on mean values per animal,
n = 5, Bonferroni-corrected, p < 0.0167).

we considered both ipsilateral and contralateral inter-joint cou-
pling, and pairs of antennal joints were grouped into three types:
ipsilateral joints (HS-L:SP-L, HS-R:SP-R), contralateral homol-
ogous joints (HS-L:HS-R, SP-L:SP-R), and contralateral, func-
tionally analogous joints (HS-L:SP-R, HS-R:SP-L). Functionally
analogous joints are joints with nearly parallel joint axes, such that
rotation about their joint axis results in nearly the same anten-
nal movement. For example, the left HS joint in C. morosus is
almost parallel to the right SP joint (Dürr et al., 2001; Mujagic
et al., 2007).

Inter-joint coupling was measured in two ways. The first mea-
sure quantified the overall correlation of two joint angle time
courses during a certain trial episode. The other measure analysed
the cycle-to-cycle phase relationship between the two antennal
joints, quantifying the timing of local extrema of their joint
angle time courses. Figure 9 shows the distribution of correla-
tion coefficients for the four trial episodes, pooling across all

obstacle heights. During the before-contact episode, all types of
joint pairs showed correlation coefficients significantly different
from zero (Wilcoxon’s rank sum test on mean values per ani-
mal, n = 5, p = 0.0079). During the two sampling episodes with
wall and edge contacts, the coordination changed and the median
correlation coefficients were close to zero, except for those of
contralateral, functionally analogous joints (Wilcoxon’s rank sum
test on mean values per animal, n = 5, p = 0.0079). This sug-
gested that functionally analogous joints on both sides of the body
midline stay coordinated during tactile sampling.

Whether correlation coefficients close to zero were due to
the lack of a fixed coordination pattern or rather due to a
90◦ phase shift could not be distinguished without consider-
ing non-zero phase lag between the joints. Therefore, Figure 9B
shows sliding-window cross-correlograms of a representative
trial. For ipsilateral coordination of antennal joints, the correl-
ogram showed a horizontal white band at small negative lag
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FIGURE 8 | Summary of kinematic changes, pooled across obstacle

heights. Top left: Working-range; top right: antennal cycle frequency; bottom
left: Center of working-range; bottom right: body axis orientation.
Box-and-whisker plots pool data from 100 trials from five animals and four
obstacle heights. Asterisks denote significant effects (Wilcoxon’s rank sum

test on mean values per animal, n = 5, Bonferroni-corrected, p < 0.0167).
During sampling, antennal working-range decreased and cycle frequency
increased in both joints. At the same time, the antennal working-range
shifted upward (levation) and the body axis got elevated (negative pitch
angle).

values. This is typical for non-contact episodes of tactile explo-
ration (Krause et al., 2012). This indicated that the alternating
movement pattern of the SP joint lead that of the ipsilateral HS
joint. During the wall contact episode, the phase between HS
and SP joint was less stable, revealing a phase shift compared to
the before-contact episode (Figure 9 with a gray to black band
where previously was a white band). For contralateral homolo-
gous joints the correlogram shows a drifting phase relationship.
For contralateral, functionally analogous joints, the initial white
band persists well into the tactile sampling episodes, indicat-
ing that their coupling changes only little in response to contact
events.

The quantitative analysis of cycle-to-cycle inter-joint cou-
pling (Figure 10) revealed similar results as the simple cor-
relation analysis in Figure 9A for contralateral joints (both
homologous and functionally analogous joints), and empha-
sized the role of a systematic phase shift during tactile sam-
pling in case of ipsilateral joints. The phase relationship between
peaks revealed consistent and strong coupling between all joint
pairs before antennal contact (Rayleigh test, p < 0.0001) with a
phase lag between 338◦ and 361◦ (Figure 10, Table 1). During
tactile sampling, cycle-to-cycle phase lag was more variable,

but was still significant for ipsilateral joints (in both tactile
sampling episodes, Rayleigh test, p < 0.01) and contralateral,
functionally analogous joints (wall contact episode, Rayleigh test,
p < 0.01). In case of contralateral homologous joints, no con-
sistent phase lag could be observed. After the last edge contact,
phase relationships tended to return to the values before antennal
contact values and showed a significant phase lag in all cases
(p < 0.01).

If a phase lag in Figure 10 was found to be statistically signifi-
cant (Table 2), we tested whether the preferred phase lag changed
between subsequent episodes. In the coupling of ipsilateral anten-
nal joints, the phase lag did not change significantly from the
before-contact episode (φ = 338.4◦) to the wall contact episode
(φ = 337.6◦, Watson–Williams test, p = 0.9427), but did change
significantly from wall to edge contact episode (φ = 375.6◦,
p = 0.0082) and again after the last edge contact (φ = 324.9◦,
Watson–Williams test, p < 0.0001). For contralateral joint pairs,
the phase lag after antennal contact was not significantly differ-
ent from that before antennal contact in case of homologous
HS joints (Watson–Williams test, p = 0.0535) and functionally
analogous joints (p = 0.1328), but was weakly significant for
homologous SP joints (Watson–Williams test, p = 0.0270).
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FIGURE 9 | Correlations between ipsilateral and contralateral antennal

joints. (A) Box-whisker plots show correlation coefficients between the pair
of joint angle time courses indicated (HS: head scape joint; SP: scape
pedicel joint; -L: left; -R: right), for the four subsequent trial episodes (before,
wall, edge, and after). Data from all four obstacle heights were pooled
(n = 100). Coefficients were calculated for the duration of whole trial
episodes. Asterisks denote significant difference from zero (Wilcoxon’s rank
sum test on mean values per animal, n = 5, Bonferroni-corrected to

p < 0.0167). (B) Sliding cross-correlograms of a representative trial.
The ordinate shows the lead/lag of the joints SP-L (top), HS-R (middle), and
SP-R (bottom) relative to the joint HS-L. Gray levels code the correlation
coefficient from −1 (black) to 1 (white), centred on the middle of a sliding
window of 0.75 s width. Vertical red lines mark the start of the wall
contact episode, edge contact episode, and after-contact episode. Wall and
edge contact episodes are marked by light and dark gray shading,
respectively.

Taken together, antennal inter-joint coupling clearly changed
during tactile sampling, though to different degree between
different pairs of joints. During active exploration movements
without contact events, as in the “before-contact” episode of
climbing trials, all antennal joint pairs revealed mutual coupling.
Contralateral, homologous joints had an inter-joint coupling
with nearly zero phase lag (between −12 and 1◦), while phase
lag between contralateral, functionally analogous joints was very
similar to ipsilateral joints (9–20◦). During tactile sampling, inter-
joint coupling generally got weaker (as revealed by lower resultant

vector lengths in Table 2) but was still statistically significant
between pairs of SP joints and HS joints, though with different
phase lag in at least one tactile sampling episode, compared to the
episode before contact.

DISCUSSION
Stick insects use their antennae for near-range exploration (Dürr
et al., 2001; Krause et al., 2012) and active tactile sampling of
obstacles (Dürr et al., 2003; Schütz and Dürr, 2011). Building on
these previous studies on non-contact exploration and unilateral
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FIGURE 10 | Inter-joint coupling of ipsilateral and contralateral

antennal joints. Columns show phase histograms of four types of inter-joint
coupling (ipsilateral HS and SP joints; contralateral homologous HS or SP
joints; contralateral functionally analogous HS and SP joints). The four
plots of each column correspond to the same trial episode (before, wall,
edge, and after contact). Wall and edge contact episodes are marked by light

and dark gray shading, respectively. Red arrows indicate the mean
phase lag. Asterisks indicate statistically significant preferred phase
lag (Rayleigh test). Before and after antennal contact, all pairs of
antennal joints show significant cycle-to-cycle coupling. During
the sampling episodes, contralateral homologous joints are not
coupled.

tactile sampling, here we contribute first insights on kinemat-
ics and coordination of unrestrained bilateral tactile sampling
in a climbing paradigm (Figures 1, 2). We show (1) that the
distribution of antennal contact locations differs for distinct
object features such as a wall or an edge (Figures 3, 4); (2) that

the distribution of contacts along the antenna depends on
the contact type, revealing a functional regionalization of the
antenna: wall contacts are sampled with the distal part of the
flagellum, edge contacts are sampled with the whole flagellum
(Figure 4); (3) that antennal working-range and cycle frequency
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Table 2 | Parameters of the phase histograms.

φ R P

IPSILATERAL

Before 338.36 0.6774 0.0000∗

Wall 337.60 0.1932 0.0070∗

Edge 375.57 0.1779 0.0064∗

After 324.90 0.4137 0.0000∗

CONTRALATERAL: HS

Before 348.58 0.3977 0.0000∗

Wall 433.72 0.0105 0.9911

Edge 387.38 0.0801 0.5847

After 373.68 0.2486 0.0016∗

CONTRALATERAL: SP

Before 361.09 0.4693 0.0000∗

Wall 377.70 0.0896 0.5766

Edge 454.70 0.0814 0.6096

After 390.28 0.1935 0.0084∗

CONTRALATERAL: FUNCTIONALLY ANALOGOUS

Before 342.47 0.4932 0.0000∗

Wall 366.33 0.1859 0.0072∗

Edge 392.31 0.1152 0.1227

After 355.07 0.2501 0.0000∗

φ, mean phase; R, resultant vector length; P, p-values of a Rayleigh test.

Asterisks mark rows with p-values below 0.05. Same data as in Figure 10.

is significantly different before, during and after obstacle sam-
pling (Figures 6, 8); (4) that body axis inclination and turning
tendency increases with step height (Figures 7, 8); (5) that corre-
lations and phase relationships between ipsilateral, contralateral
homologous, and contralateral functionally analogous joints dif-
fer between the four trial episodes, revealing a strong coupling
between all antennal joints during the pre-contact phase and a
weaker coupling of ipsilateral and functionally analogous joints
(left HS joint with right SP joint and vice versa) during sampling
of the obstacle (Figures 9, 10). Coupling strength of contralateral
homologous joints (left and right HS joint, left and right SP joint)
reduces during antennation of objects.

Some assumptions were made to simplify the experimental
procedure and data analysis. First, possible roll angles around the
rostro-caudal body axis were neglected, because it is known that
stick insects stabilise their roll angle, keeping it below 10◦ even on
highly inclined surfaces up to 60◦ (Diederich et al., 2002). Second,
the stick insect antennae were assumed to be a straight beam for
contact point calculation. This neglects the bending of the anten-
nal flagellum during obstacle contacts especially in the highly
flexible, distal part of the flagellum. When deflected, the site of
maximum curvature of the stick insect flagellum shifts with the
contact site (Dürr and Dirks, 2006). This fits well to the finding
that the flagellar cuticle gets thicker toward the base (Dirks and
Dürr, 2011), suggesting that it is getting stiffer towards the base as
well. Thus, edge contacts made with the medial or proximal part
of the antenna should cause little antennal deflection. Bending of
the flagellum particularly concerns the wall contact events. Owing
to the bending, the calculated contact locations on the flagellum

must be considered an estimate of the most proximal contact site.
The precise location and also the length of the flagellum part that
is in contact with the obstacle could not be determined by this
study, but it is likely that the contacting region of the flagellum
may be several millimetres long, beginning distally from the con-
tact site calculated. As for the contact location on the obstacle,
the upward movement of the calculated contact site suggests that
the true contact location of the bent distal flagellum is located
below, owing to the contacting part being dragged upwards along
the contacted wall. As a result, computed wall contact points tend
to deviate from the real contact position. Nonetheless, we assume
that calculated contact durations are not influenced by antennal
bending, because the antenna rapidly returns to its straight pos-
ture after object contact (Dirks and Dürr, 2011). Future studies
will need to employ a model of antennal bending biomechan-
ics in order to determine contact locations both on the flagellum
and on the obstacle with higher precision. Third, prothorax and
head movements were suppressed by fixating them with hot bee’s
wax. This simplified the calculation of the body axis orientation
by removing four degrees of freedom from the body model used
for marker based motion tracking. These were yaw and pitch rota-
tion of the mesothorax-prothorax joint and of the neck joint. The
fixation did not affect locomotion other than making the walking
direction more straight. Animals readily climbed obstacles of all
heights. Nevertheless, observed body axis elevation values might
be different compared to animals with full flexibility in prothorax
and head joints.

When walking stick insects encounter an obstacle in their path,
they show a strong tendency to climb that obstacle after ini-
tial antennal contact (Dürr et al., 2003; Schütz and Dürr, 2011).
Antennation continues until the obstacle is climbed, resulting in
numerous contacts. Climbing small obstacles caused little change
in heading and animals kept almost straight during climbing. In
contrast, high obstacles increased the variability of body axis yaw
rotation up to 80◦. Contact induced change in heading was also
reported for cockroaches (Camhi and Johnson, 1999; Okada and
Toh, 2000, 2006) and crayfish (Sandeman and Varju, 1988).

Antennal contact information plays an important role for ini-
tiation of climbing (Dürr et al., 2003) and body axis inclination
increases already after a single antennal contact event (Schütz and
Dürr, 2011). During wall- and edge-sampling, animals inclined
their body axis, with higher obstacles inducing a more pro-
nounced body axis elevation up to 72◦ for the 66 mm step.
Similar results were reported for other insect species. Colorado
potato beetles for example raise their body axis proportional to
obstacle height after antennal contact to reach the top of the
obstacle with the prothoracic leg (Pelletier and McLeod, 1994).
Stick insects with cut antennae are less efficient in climbing obsta-
cles (Dürr et al., 2003) or in crossing large gaps (Bläsing and
Cruse, 2004b) underlining the importance of tactile information
for obstacle negotiation. Cockroaches alter their body posture
by first tilting the front of the body upwards and then elevat-
ing the center of mass to the height of the step (Watson et al.,
2002; Harley et al., 2009). Changes in body posture after wall con-
tacts are also observed in rats. Rats tilt their head upwards as a
“contact maximizing” strategy for exploring walls (Grant et al.,
2009).
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WHERE DO CONTACT EVENTS OCCUR?
We show that contact point distribution along the stick insect
flagellum differs for contacts on vertical walls and horizon-
tal edges. Stick insects may use the contact distance along the
flagellum for behavior adaptation. For example, distal antennal
contacts are more likely to occur with a large obstacle (such as a
wall) with uncertain height, whereas proximal contacts are more
likely to occur with the top edge of an object. While both objects
may require climbing, proximal edge contacts contain informa-
tion about the height to be climbed, whereas distal contacts
may require additional sampling for acquiring this information.
Comparable results show that cockroaches can maintain a con-
stant distance to a vertical wall using the bend position and con-
tact point along the flagellum in wall-following behavior (Camhi
and Johnson, 1999). In their interpretation, flagellar informa-
tion constitutes a one dimensional sensory map, enabling the
control of wall-distance. This interpretation matches the obser-
vation of a somatotopic organization of antennal afferents in
the deutocerebrum and subesophageal ganglion of the cockroach
(Nishino et al., 2005) as well as antennal mechanosensory affer-
ents entering the deutocerebrum of crickets in parallel bands, sug-
gesting a somatotopic map (Staudacher and Schildberger, 1999).
We show that left and right antenna of stick insects sample sepa-
rate “regions of interest” with very little overlap. Mean locations
of left and right antennal contacts along the width of the obsta-
cles (y-direction) are more than two standard deviations apart.
Broader overlap may be expected for animals without fixed neck
and prothorax-mesothorax joints because active head movements
may add variability. Separate “regions of interest” per antenna
might increase tactile sampling efficacy in terms of overall energy
consumption, as was suggested in a previous simulation study
(Krause and Dürr, 2004). Assuming dominant viscoelastic fric-
tion in joints and muscles, seperate regions of interest reduce
overall angular velocity necessary to cover the combined sam-
pling area of left and right antenna and thus reduce energy loss
due to velocity dependent friction. Average horizontal edge con-
tact durations (115 ms) are close to reported contact durations
of unilateral sampling of a vertical beam (90 ms) (Schütz and
Dürr, 2011). Mean contact durations seem to be independent of
predominant edge or surface orientation of sampled objects, but
future studies will need to clarify the relationship between object
properties and contact durations in stick insects.

TACTUALLY INDUCED CHANGES IN KINEMATICS AND INTER-JOINT
COUPLING
While sampling the wall of an obstacle, stick insects show sig-
nificantly higher antennal cycle frequencies in both the HS and
SP joint. In combination with a significantly reduced working-
range in both joints a contextual switch after first antennal con-
tact from a broad, exploratory search pattern to a fine-grained
object sampling pattern was observed. Schütz and Dürr (2011)
reported a four-fold increase in antennal cycle frequency after
first contact with a vertical beam. In this study, cycle frequency
increase is not as pronounced. Reasons can be the different
behavioural context (step with vertical face and horizontal edge
vs. vertical beam) and different analysis methods. Here, cycle
frequency was estimated from a weighted average of the FFT

spectrum in contrast to frequency estimation by counting the
number of local minima and maxima in Schütz and Dürr (2011).
Context- modulated changes in antennal behavior were reported
in Okada and Toh (2006) for cockroaches, where contact fre-
quency positively correlates with the animals turn angle toward
a wooden rod placed at a lateral position relative to the animal.
Rats show a very similar behavior: in “exploratory whisking,”
they sweep their whiskers in large amplitudes with a frequency
in a range of 5–15 Hz. If presented an object, rats thrust their
whiskers forward and palpate the object with low-amplitude
and high frequency (15–25 Hz) movements called “foveal whisk-
ing” (Berg and Kleinfeld, 2003). Additionally, rats reduce the
“spread” between individual whiskers to maximize surface con-
tacts while sampling vertical walls (Grant et al., 2009). Other
small mammals also show contact induced changes in whisk-
ing patterns (Brecht et al., 2011; Mitchinson et al., 2011). An
interesting question is the role of antennal proprioceptors for
the control of active tactile sampling. Okada and Toh (2000)
have shown the importance of HS joint hair plates for ori-
entation toward touched objects in cockroaches. Krause et al.
(2012) have shown the influence of antennal hair fields on anten-
nal working-range during exploratory, non-contact antennal
movements in stick insects. Future studies will need to investigate
the effect of antennal proprioceptor ablation on antennal coor-
dination, kinematic parameters, and contact patterns in the stick
insect.

Little is known about the temporal coordination of antennal
movements on the level of individual joints in insects. Okada and
Toh (2004) found that bilateral antennal coordination depends
on the animal’s behavioral state and is significantly stronger in
walking than in resting. Schütz and Dürr (2011) reported a dis-
tinct switch in ipsilateral antennal coordination while unilateral
sampling of vertical rods. Ipsilateral antennal joint coordina-
tion in stick insects was reported to be strong in non-contact
situations and was not affected by ablation of proprioceptive
hair fields close to the antennal joints (Krause et al., 2012).
Apart than that, a simulation study suggested that an ellipti-
cal sampling pattern with a fixed phase relationship in ipsilat-
eral antennal joints increases the likelihood to detect obstacles
(Krause and Dürr, 2004). In this study we show that anten-
nal inter-joint coordination changes upon obstacle contact. In
the pre-contact episode, we observe a strong cycle-to-cycle cou-
pling among ipsilateral, contralateral and functionally analogous
joints. After antennal contact, ipsilateral cycle-to-cycle coordina-
tion is weaker, but still significant with a distinct change in mean
phase while edge-sampling, indicating a contact-triggered switch
in sampling behaviour (Figure 10, Table 2). Bilateral antennal
coordination changes upon obstacle contact. Correlation val-
ues in Figure 9 indicate a clear difference between contralat-
eral homologous and contralateral functionally analogous joints.
Functionally analogous joints keep a weak but significant cycle-
to-cycle coupling during wall sampling (Figure 10), resulting in
concerted parallel movements of both antennae. This might be a
special characteristic of stick insect antennae or could be an effi-
cient bilateral obstacle sampling strategy. Homologous joints in
contrast show no consistent phase lag anymore during contact
episodes.
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During obstacle sampling, both antennae now seem to operate
more contact-feedback driven and independent from each other.
After tactual contacts (post-contact episode), bilateral phase cou-
pling tends to return to pre-contact values. Post-contact episodes
in this set of experiments were rather short, because high speed
recording time was limited to RAM size. A full recovery to pre-
contact coordination and phase relationships after an obstacle was
completely climbed is predicted. Contact driven feedback control
is discussed by Mitchinson et al. (2007) for rats. They found that
whisker movements are under active, contact induced feedback
control to increase the likelihood of environmental contacts.

The presented obstacle climbing paradigm revealed context
dependent and contact induced behavior adaptation of active
antennal movements in the stick insect Carausius morosus, gain-
ing further insights into tactile object sampling strategies using
long, thin probes.

ACKNOWLEDGMENTS
This work was supported by DFG grant DU380/3 and EU grant
EMICAB (FP7-ICT, grant no. 270182), both to Volker Dürr. We
thank Leslie Theunissen for helpful comments on earlier versions
of the manuscript.

REFERENCES
Ahissar, E., and Knutsen, P. M. (2008).

Object localization with whiskers.
Biol. Cybern. 98, 449–458.

Anjum, F., Turni, H., Mulder, P. G., van
der Burg, J., and Brecht, M. (2006).
Tactile guidance of prey capture in
Etruscan shrews. Proc. Natl. Acad.
Sci. U.S.A. 103, 16544–16549.

Barnes, T. G., Truong, T. Q., Adams,
G. G., and McGruer, N. E. (2001).
Large deflection analysis of a
biomimetic lobster antenna due to
contact and flow. ASME J. Appl.
Mech. 68, 948–951.

Berg, R. W., and Kleinfeld, D. (2003).
Rhythmic whisking by rat: retrac-
tion as well as protraction of the
vibrissae is under active muscu-
lar control. J. Neurophysiol. 89,
104–117.

Bläsing, B., and Cruse, H. (2004a).
Mechanisms of stick insect locomo-
tion in a gap crossing paradigm.
J. Comp. Physiol. A Neuroethol. Sens.
Neural Behav. Physiol. 190, 173–183.

Bläsing, B., and Cruse, H. (2004b).
Stick insect locomotion in a
complex environment: climbing
over large gaps. J. Exp. Biol. 207,
1273–1286.

Bouguet, J. Y. (2005). Complete
camera calibration toolbox
for Matlab. Avaliable online at:
http://www.vision.caltech.edu/boug
uetj/calib-doc

Brecht, M. (2007). Barrel cortex and
whisker-mediated behaviors. Curr.
Opin. Neurobiol. 17, 408–416.

Brecht, M., Naumann, R., Anjum, F.,
Wolfe, J., Munz, M., Mende, C.,
and Roth-Alpermann, C. (2011).
The neurobiology of Etruscan shrew
active touch. Philos. Trans. R. Soc.
Lond. B Biol. Sci. 366, 3026–3036.

Camhi, J. M., and Johnson, E. N.
(1999). High-frequency steering
maneuvers mediated by tactile
cues: antennal wall-following in
the cockroach. J. Exp. Biol. 202,
631–643.

Comer, C. M., Parks, L., Halvorsen, M.
B., and Breese-Terteling, A. (2003).

The antennal system and cockroach
evasive behavior. II. Stimulus iden-
tification and localization are sepa-
rable antennal functions. J. Comp.
Physiol. A Neuroethol. Sens. Neural
Behav. Physiol. 189, 97–103.

de Sinéty, R. (1901). “Recherches
sur la biologie et l’ anatomie des
Phasmes,” La Cellule XIX (J. van In
and Cie, Lierre), 118–278.

Dehnhardt, G., Mauck, B., and
Bleckmann, H. (1998). Seal
whiskers detect water movements.
Nature 394, 235–236.

Diamond, M. E., von Heimendahl,
M., and Arabzadeh, E. (2008).
Whisker-mediated texture discrim-
ination. PLoS Biol. 6:e220. doi:
10.1371/journal.pbio.0060220

Diederich, B., Schumm, M., and Cruse,
H. (2002). Stick insects walking
along inclined surfaces. Integr.
Comp. Biol. 42, 165–173.

Dirks, J. H., and Dürr, V. (2011).
Biomechanics of the stick insect
antenna: damping properties and
structural correlates of the cuticle.
J. Mech. Behav. Biomed. Mater. 4,
2031–2042.

Dürr, V., and Dirks, J. H. (2006).
“Biomechanics of active tactile
sensing with an insect antenna,”
in Proceedings of the 99th Annual
Meeting of the German Zoological
Society, (Münster, Germany), 59.

Dürr, V., Krause, A. F., Schmitz, J., and
Cruse, H. (2003). Neuroethological
concepts and their transfer to walk-
ing machines. Int. J. Robotics. Res.
22, 151–167.

Dürr, V., König, Y., and Kittmann, R.
(2001). The antennal motor sys-
tem of the stick insect Carausius
morosus: anatomy and antennal
movement pattern during walking.
J. Comp. Physiol. A 187, 131–144.

Erber, J., Kierzek, S., Sander, E., and
Grandy, K. (1998). Tactile learning
in the honeybee. J. Comp. Physiol. A
183, 737–744.

Gewecke, M., and Heinzel, H.-G.
(1980). Aerodynamic and mechan-
ical properties of the antennae

as air-current sense-organs in
Locusta migratoria. I. Static char-
acteristics. J. Comp. Physiol. A 139,
357–366.

Grant, R. A., Mitchinson, B., Fox, C.
W., and Prescott, T. J. (2009). Active
touch sensing in the rat: antici-
patory and regulatory control of
whisker movements during surface
exploration. J. Neurophysiol. 101,
862–874.

Harley, C. M., English, B. A.,
and Ritzmann, R. E. (2009).
Characterization of obstacle nego-
tiation behaviors in the cockroach,
Blaberus discoidalis. J. Exp. Biol. 212,
1463–1476.

Heinzel, H.-G., and Gewecke, M.
(1987). Aerodynamic and mechan-
ical properties of the antennae as
air-current sense-organs in Locusta
migratoria. II. Dynamic charac-
teristics. J. Comp. Physiol. A 161,
671–680.

Kevan, P. G., and Lane, M. A. (1985).
Flower petal microtexture is a tactile
cue for bees. Proc. Natl. Acad. Sci.
U.S.A. 82, 4750–4752.

Krause, A. F., and Dürr, V. (2004).
Tactile efficiency of insect antennae
with two hinge joints. Biol. Cybern.
91, 168–181.

Krause, A. F., Winkler, A., and Dürr,
V. (2012). Central drive and propri-
oceptive control of antennal move-
ments in the walking stick insect.
J. Physiol. Paris (in press).

Miersch, L., Hanke, W., Wieskotten,
S., Hanke, F. D., Oeffner, J., Leder,
A., Brede, M., Witte, M., and
Dehnhardt, G. (2011). Flow sens-
ing by pinniped whiskers. Philos.
Trans. R. Soc. Lond. B Biol. Sci. 366,
3077–3084.

Mitchinson, B., Grant, R. A., Arkley, K.,
Rankov, V., Perkon, I., and Prescott,
T. J. (2011). Active vibrissal sensing
in rodents and marsupials. Philos.
Trans. R. Soc. Lond. B Biol. Sci. 366,
3037–3048.

Mitchinson, B., Martin, C. J., Grant,
R. A., and Prescott, T. J. (2007).
Feedback control in active sensing:

rat exploratory whisking is mod-
ulated by environmental contact.
Proc. R. Soc. B Biol. Sci. 274,
1035–1041.

Morita, T., Kang, H., Wolfe, J., Jadhav,
S. P., and Feldman, D. E. (2011).
Psychometric curve and behav-
ioral strategies for whisker-based
texture discrimination in rats.
PLoS ONE 6:e20437. doi: 10.1371/
journal.pone.0020437

Mujagic, S., Krause, A. F., and Dürr,
V. (2007). Slanted joint axes
of the stick insect antenna:
an adaptation to tactile acuity.
Naturwissenschaften 94, 313–318.

Nishino, H., Nishikawa, M., Yokohari,
F., and Mizunami, M. (2005). Dual,
multilayered somatosensory maps
formed by antennal tactile and con-
tact chemosensory afferents in an
insect brain. J. Comp. Neurol. 493,
291–308.

Okada, J., and Toh, Y. (2000). The role
of antennal hair plates in object-
guided tactile orientation of the
cockroach (Periplaneta americana).
J. Comp. Physiol. A 186, 849–857.

Okada, J., and Toh, Y. (2004). Spatio-
temporal patterns of antennal
movements in the searching
cockroach. J. Exp. Biol. 207,
3693–3706.

Okada, J., and Toh, Y. (2006). Active
tactile sensing for localization of
objects by the cockroach antenna.
J. Comp. Physiol. A Neuroethol.
Sens. Neural Behav. Physiol. 192,
715–726.

Pelletier, Y., and McLeod, C. D.
(1994). Obstacle perception by
insect antennae during terrestrial
locomotion. Physiol. Entomol. 19,
360–362.

Prescott, T. J., Diamond, M. E., and
Wing, A. M. (2011). Active touch
sensing. Philos. Trans. R. Soc. Lond.
B Biol. Sci. 366, 2989–2995.

Sandeman, D. C., and Varju, D. (1988).
A behavioral study of tactile local-
ization in the crayfish Cherax
destructor. J. Comp. Physiol. A 163,
525–536.

Frontiers in Behavioral Neuroscience www.frontiersin.org June 2012 | Volume 6 | Article 30 | 172

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive
http://www.vision.caltech.edu/bouguetj/calib_doc
http://www.vision.caltech.edu/bouguetj/calib_doc


Krause and Dürr Active tactile sampling during step-climbing

Schütz, C., and Dürr, V. (2011). Active
tactile exploration for adaptive loco-
motion in the stick insect. Philos.
Trans. R. Soc. Lond. B Biol. Sci. 366,
2996–3005.

Srinivasan, M. V. (2010). Honey bees as
a model for vision, perception, and
cognition. Annu. Rev. Entomol. 55,
267–284.

Staudacher, E., Gebhardt, M. J., and
Dürr, V. (2005). Antennal move-
ments and mechanoreception: neu-
robiology of active tactile sensors.
Adv. Insect Physiol. 32, 49–205.

Staudacher, E., and Schildberger, K.
(1999). A newly described neuropile
in the deutocerebrum of the cricket:

antennal afferents and descending
interneurons. J. Zool. 102, 212–226.

Watson, J. T., Ritzmann, R. E., Zill,
S. N., and Pollack, A. J. (2002).
Control of obstacle climbing in
the cockroach, Blaberus discoidalis.
I. Kinematics. J. Comp. Physiol.
A Neuroethol. Sens. Neural Behav.
Physiol. 188, 39–53.

Woo, A. (1990). “Fast ray-box inter-
section,” in Graphics Gems, ed A. S.
Glassner (San Diego, CA: Academic
Press Professional, Inc.), 395.

Zakotnik, J., and Dürr, V. (2005).
“Motion analysis using stochastic
optimisation and posture disam-
biguation,” in Proceedings of the

3rd International Symposium on
Adaptive Motion in Animals and
Machines, ed H. Witte (Ilmenau,
Germany: AMAM2005).

Zakotnik, J., Matheson, T., and Dürr,
V. (2004). A posture optimisa-
tion algorithm for model-based
motion capture of movement
sequences. J. Neurosci. Methods 135,
43–54.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 28 March 2012; accepted: 01
June 2012; published online: 28 June
2012.
Citation: Krause AF and Dürr V (2012)
Active tactile sampling by an insect
in a step-climbing paradigm. Front.
Behav. Neurosci. 6:30. doi: 10.3389/
fnbeh.2012.00030
Copyright © 2012 Krause and Dürr.
This is an open-access article dis-
tributed under the terms of the
Creative Commons Attribution Non
Commercial License, which permits
non-commercial use, distribution, and
reproduction in other forums, provided
the original authors and source are
credited.

Frontiers in Behavioral Neuroscience www.frontiersin.org June 2012 | Volume 6 | Article 30 | 173

http://dx.doi.org/10.3389/fnbeh.2012.00030
http://dx.doi.org/10.3389/fnbeh.2012.00030
http://dx.doi.org/10.3389/fnbeh.2012.00030
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive

	Cover 
	Frontiers Copyright Statement
	Active Touch Sensing
	Table of Contents
	Active touch sensing: finger tips, whiskers, and antennae
	References

	An fMRI study on cortical responses during active self-touch and passive touch from others
	Introduction
	Materials and Methods
	Results
	Discussion
	References

	Bayesian exploration for intelligent identification of textures
	Introduction
	Materials and Methods
	Classification theory and strategy
	Bayesian inference for discrimination of textures
	Adaptive selection of optimal exploratory movements

	Biomimetic tactile sensor
	Experimental apparatus
	Force Control with Stepper Motor
	Velocity control with linear stage
	Textures
	Software

	Analytical measures of descriptive texture properties
	Traction of texture
	Roughness of texture
	Fineness of texture
	Normality of Signals
	The curse of dimensionality

	Selection of set of exploratory movements
	Classifier Training and Data Collection
	Texture discrimination and comparison with human performance
	Absolute texture identification

	Results
	Analysis of descriptive texture properties
	Identifying the most useful exploratory movements
	Training dataset
	Texture discrimination and comparison with human performance
	Absolute texture classification

	Discussion
	Summary of Findings
	Considerations for improving the classifier
	Considerations for identifying objects by all available sensory modalities

	Acknowledgments
	Supplementary Material
	References

	Learning tactile skills through curious exploration
	Introduction
	Materials and Methods
	Curiosity-Driven Modular Reinforcement Learning
	Skill learning
	Adaptive model-based reinforcement learning
	Skill types

	Robotic Platform for Tactile Skill Learning
	Biomimetic robotic finger
	Fingertip with MEMS tactile sensor array
	Platform


	Results
	Example: Restricted Chain Walk
	Setup
	Skill learning
	Skill exploitation

	Curiosity-Driven Skill Learning on the Robotic Platform
	Setup
	Skill learning
	Skill exploitation


	Discussion
	Acknowledgments
	References

	Use of tactile feedback to control exploratory movements to characterize object compliance
	Introduction
	Materials and Methods
	Experiment Setup
	Overview of the biomimetic tactile sensor (BioTac)
	Testing materials
	Experimental procedure

	Robot Exploratory Movements
	Online orientation control using tactile sensor feedback
	Robot position control
	Robot force control

	Normal and Tangential Force Extraction

	Results
	Force Extraction
	Pressing with Orientation Uncertainty
	Compliance Discrimination
	Force and displacement
	Deformation


	Discussion
	References

	Texture-induced vibrations in the forearm during tactile exploration
	Introduction
	Materials and Methods
	Subjects
	Stimuli
	Apparatus
	Experimental Procedure
	Data Acquisition
	Data Processing

	Results
	Typical Trials
	Spectral Analysis
	Vibration Magnitude
	Coefficient of Friction

	Discussion
	Conclusion
	Acknowledgments
	References

	Rasch-built measure of pleasant touch through active fingertip explorations
	Introduction
	Materials and Methods
	Subjects
	Instrument
	Procedure
	Data Analysis
	Material selection
	Ordered response scale
	Unidimensional scale

	Differential item functioning
	Reliability of the Pleasant Touch Scale

	Results
	Metric properties of the Pleasant Touch Scale
	Description of the Pleasant Touch Scale
	Reliability of the Pleasant Touch Scale

	Discussion
	Acknowledgments
	References

	Whisker encoding of mechanical events during active tactile exploration
	Introduction
	Results
	Quasi-Static Evolution of a Whisker Scanned Across a Rectangular Object
	Whisker Resonant Dynamics
	Dependence of the Whisker Resonance Frequency on the Contact Point Location
	Shock Against the Object's Edge
	Experimental Measurements of Shock-Induced Oscillation
	Consequence for Event-Based Object Position Encoding
	Detachment
	Vibrissae can be Assumed to be Uniformly Damped Over all Spatial Modes

	Discussion
	Methods
	Equilibrium Profile of a Frictional Whisker
	Orthogonality of the Resonant Modes
	Coupling The Whisker's Rapid Dynamics to Its Quasi-Static Evolution
	Surgical Preparation and Whisker Stimulation for In vivo Experiments
	High-Speed Videography of Whisker Deflections
	Whisker Tracking
	Analysis of Experimental Data

	Acknowledgments
	References

	Sensory prediction on a whiskered robot: a tactile analogy to ``optical flow''
	Introduction
	Methods
	Algorithms for the Determination of Radial Distance, Slope, and Curvature
	Radial distance determination using translations instead of rotations
	Computing object slope and curvature from radial distances
	Calculating slope and curvature based on radial distances measured with multiple whiskers

	Prediction of Future Points of Contact and Future Curvature Over Two Different Spatial Scales
	"Tactile flow'' permits prediction of sensory data
	Interpreting ``tactile flow'' for an array of vibrissae
	Simultaneous prediction with single and multiple vibrissae

	Hardware Methods
	Vibrissa and vibrissa array design
	Linear actuation
	Device calibration
	Error calculations in simulation and hardware


	Results
	Prediction: Simulation Results
	Importance of Whisker Spacing
	Hardware Results: Validation of the Translational Sweep Algorithm
	Hardware Results: Implementation of Prediction with a Single Vibrissa: Object of Constant Curvature
	Hardware implementation of prediction with multiple vibrissae: object of constant curvature
	Hardware Implementation of Prediction with a Single Vibrissa: Object with Abrupt Curvature Change
	Hardware Implementation of Prediction with Multiple Vibrissae: Object with Gradual Curvature Change

	Discussion
	Prediction Algorithm Performance
	A Computational Mechanism for the Instant Detection of Motion
	Advantages of Using Prediction During Wall Following Behavior
	Possible Improvements in Vibrissa Sensing/Prediction

	Acknowledgments
	References

	The effect of whisker movement on radial distance estimation: a case study in comparative robotics
	Introduction
	Active Whisker Touch Sensing in Rodents
	Active Whisker Touch sensing in Robots
	Whisker Materials
	Radial Distance to Contact Estimation
	A Comparative Robotics Approach

	Materials and Methods
	Robot Platforms
	XY positioning robot platform
	SCRATCHbot robot platform
	CrunchBot robot platform

	Artificial Whiskers
	Data Collection
	XY positioning robot data collection
	SCRATCHbot data collection
	CrunchBot data collection

	Feature-Based Radial Distance Estimation with Uncertain Contact Speeds

	Results
	XY Positioning Robot
	SCRATCHbot
	CrunchBot

	Discussion
	Comparison and Synthesis Across Robot Platforms
	Relation to Other Studies of Radial Distance Estimation
	Implications for Understanding Biological Whisker Systems

	Conclusion
	Acknowledgments
	References

	The role of orienting in vibrissal touch sensing
	Introduction
	Orienting in Vibrissal Touch

	Study 1: Orienting and Dabbing in Adult Rats
	Materials and Methods
	Animals
	Procedures
	Recording
	Data selection
	Data analysis
	Analysis of the orienting data-set
	Analysis of the dabbing data-set

	Results
	Rats orient toward unexpected object contacts
	Rats orient toward the closest whisker-object contact position
	Dabbing occurs at a behaviorally relevant frequency


	Study 2: Orienting in Development
	Materials and Methods
	Animals
	Procedures
	Data analysis

	Results
	Young rat pups turn toward contacts with conspecifics
	Rat pups dig in to the huddle, or move in and around it, from P2–10


	Discussion
	Acknowledgments
	References

	Tactile experience shapes prey-capture behavior in Etruscan shrews
	Introduction
	Materials and methods
	Etruscan Shrews
	Prey
	Crickets
	Giant cockroaches

	Young Shrews
	Whisker Removal
	Experience with Novel Prey
	Video Recordings, Analysis, and Classification of Attacks

	Results
	Prey Capture in Young Shrews
	Attack histograms
	Completed and aborted attacks
	Repeated attacks
	Cricket size

	Whisker Deprivation
	Attack histograms
	Completed and aborted attacks
	Repeated attacks and cricket size

	Experience with Novel Prey
	Attack histograms
	Completed and aborted attacks
	Attack durations
	Paw-use


	Discussion
	Young Animals
	Whisker Deprivation in Early Life
	Novel Prey
	The Role of Whiskers in Attack Behaviors
	The Role of Experience in the Somatosensory System

	Conclusion
	References

	An insect-inspired bionic sensor for tactile localization and material classification with state-dependent modulation
	Introduction
	Materials and Methods
	Bionic Antenna
	Pre-Processing, Detection of Contact Events, and Parameter Extraction
	Neural Network for Localization and Material Classification
	Robotic Platform
	Spiking Neural Model

	Results
	Tactile Contact LocaliZation
	Tactile Material Classification
	Reducing Network Dimensionality While Maintaining Performance
	Sensory Data Processing in Spiking Neural Network
	Spiking-Based Processing and Forward Model by Sensory Gating

	Discussion
	Tactile LocaliZation and Material Classification
	State-Dependent Sensory Gating by Means of a Forward Model

	Acknowledgments
	References

	Active tactile sampling by an insect in a step-climbing paradigm
	Introduction
	Materials and Methods
	Animal Preparation
	Motion Capture
	Kinematic Analysis
	Data Analysis

	Results
	Overall Observations
	Contact Patterns on Obstacles
	Contact Locations on the Antenna Reveal Functional Regionalization
	Antennal Working-Range and Cycle Frequency Change during Tactile Sampling
	Antennal Inter-Joint Coupling Changes during Tactile Sampling

	Discussion
	Where do Contact Events Occur?
	Tactually Induced Changes in Kinematics and Inter-Joint Coupling

	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




