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Behavior analysis—the science of adaptive behavior—focuses on behavior as a subject matter in its
own right, not as an index of cognitive events, and is, thus, not dualistic. Behavior analysis incorpo-
rates several laws of learning discovered by researchers using single-subject experimental designs.
I argue that behavior analysis can provide neuroscientists with an experimental and a theoreti-
cal framework within which to investigate the neural bases of behaviors, including those that are
usually described in cognitive terms.

The Importance of Behavior for Neuroscience

Behavior includes anything an organism does whether it is observed or not. The emphasis on
behavior should be appreciated within biopsychology given that behavior is a crucial evolu-
tionary determinant of survival. It is what organisms do—for example, finding shelter, escap-
ing predation, mating, or caring for offspring—that is important. As a result, the nervous sys-
tem has evolved to meet the demands of interacting with and adapting to the environment. As
Engel and Schneiderman (1984) noted, “the raison d’etre of the CNS is to optimize the organism’s
ability to interact with its environment” (p. 199).

Roughly speaking, the nervous system has evolved to carry out two functions related to an
“organism’s ability to interact with its environment”: detecting energy changes and controlling
movement, with specific sensory and motor areas of the cortex devoted to each of these func-
tions. Other cortical areas, however, are programmed largely by learning experiences (i.e., Pavlovian
and operant conditioning). Research using Positron Emission Tomography (PET) scans that com-
pares brain activity in newborns to that in older children and adults (e.g., Chugani et al., 1987;
Chugani, 1999) has shown the most activity in the neonate’s brain occurs in the primary sensory
and motor cortexes, thalamus, and brainstem, areas associated with the primitive reflexes seen in
infants. Activity in the frontal association cortex and other areas associated with “higher corti-
cal and cognitive function” is relatively nonexistent. As infants interact with their environments,
more activity is seen in areas of the cortex that mediate these behaviors. Such research supports the
suggestion that learning is responsible for the significant changes in the brain related to complex
behavior (Schlinger, 2004) and underscores the importance of behavioral plasticity.

The physical basis of behavioral plasticity is neuroplasticity; that is, interactions between an
organism’s behavior and its environment cause changes in the structure of the brain. There is a
wealth of evidence of such changes in nonhumans (e.g., Turner and Greenough, 1985; Kolb and
Whishaw, 1998; Rioult-Pedotti et al., 2000). Moreover, research shows that treatments based on
operant conditioning can produce distinct changes in the human brain (e.g., Schwartz et al., 1996;
Temple et al., 2003). To better investigate how the nervous system mediates adaptive behaviors,
neuroscientists need to understand the functions of the behaviors themselves. Because organisms
interact with their environment by behaving, then, “only when these organismic-environmental
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interactions are studied both behaviorally and physiologically, in
a broad biological context, will it be possible to develop rational
models of” behavioral causation (Engel and Schneiderman, 1984,
p. 199).

Levels of Behavioral Causation

Both evolutionary biologists (e.g., Mayr, 1988, 1997) and behav-
ior analysts (e.g., Alessi, 1992) have classified behavioral cau-
sation in terms of ultimate and proximate causation. Ultimate
causation answers why questions by describing the processes by
which traits (analyzed by the sciences of proximate causation)
evolved (Alessi, 1992, p. 1360). Ultimate causes are further classi-
fied as either phylogenetic or ontogenetic. The process of phylo-
genetic ultimate causation is natural selection, and is the domain
of evolutionary biology. The processes of ontogenetic ultimate
causation—Pavlovian and operant conditioning—are character-
ized by the selection of behavioral features of organisms during
their lifetimes, and are the domain of behavior analysis (Skinner,
1981; Glenn et al., 1992). Proximate causation answers how ques-
tions and “is the domain of functional biology” (Alessi, 1992). At
one level, functional biology is concerned with discovering how
patterns of neuronal activity are translated into behavior. This
enterprise is the domain of behavioral neuroscience.

Behavior is also caused proximately by changes in an organ-
ism’s immediate environment. Stimuli that occur immediately
prior to or contemporaneously with behavior are said to evoke
the behavior (Schlinger and Blakely, 1994), but a more complete
picture is that such stimuli evoke neural changes that, in turn,
evoke behavior. For example, the patellar reflex is initiated by
a tap on the patellar tendon, which causes a stretch receptor in
the quadriceps muscle to fire. The sensory neuron synapses with
a motor neuron in the lumbar region of the spinal cord, which
sends a nerve impulse back to the quadriceps muscle causing it to
contract, which is evident in leg extension. The proximate causes
of the contraction of the quadriceps muscle are the stimulus (tap)
and the sensory-motor nerve firing. The ultimate cause of the
reflex lies in the evolutionary history of organisms in which it is
found. Similarly, the question “What is two plus two?” initiates a
chain of physiological events, which as proximate causes produce
the behavior of saying “four.” The ultimate cause of this behavior
lies in the operant learning history of the individual.

Said another way, ultimate causes establish proximate causes.
For example, natural selection, as an ultimate cause, is respon-
sible for genes, which as proximate causes produce proteins, the
physical basis of the body including the brain and behavior. Like-
wise, (Pavlovian and operant) conditioning, as an ultimate cause,
establishes and modifies both environmental stimuli and neural
connections, which as proximate causes produce learned behav-
ior. The structure of the brain, then, as a set of proximate causes
for behavior, is co-determined by the ultimate causes of evolu-
tion by natural selection and conditioning. As Skinner (1990)
explained, “Physiology studies the product of which the sciences
of variation and selection study the production... [P]hysiology
tells us how the body works; the sciences of variation and selec-
tion tell us why it is a body that works that way” (p. 1208). In an
effort to understand behavior, then, behavior analysts explainwhy

it occurs in terms of general laws, and neuroscientists explain how
it occurs in terms of more elementary physiological processes.
In order for neuroscientists to fully understand how learned
behavior occurs (i.e., its proximate physiological causes), they
must first understand why it occurs. In other words, neurosci-
entists need a theory of ultimate ontogenetic causation. Other-
wise, they risk simply producing a vast taxonomy of unrelated
neurophysiological functions. As Skinner (1938) wrote,

The discovery of neurological facts may proceed independently of

a science of behavior if the facts are directly observed as structural

and functional changes in tissue, but before such a fact may be

shown to account for a fact of behavior, both must be quantita-

tively described and shown to correspond in all their properties

(p. 422).

From a behavior-analytic perspective, then, behavioral neuro-
scientists examine the neurophysiological processes that under-
lie established functional relationships between behavior and
environment. As such, neuroscientists will eventually be able to
explain how behavioral processes (e.g., reinforcement, discrimi-
nation) work, and how environment-behavior relationships are
established by conditioning and represented in the nervous sys-
tem. That is, the behavioral laws can provide a road map for
neuroscientists. As Donahoe and Palmer (1994) wrote, “analy-
ses at the behavioral level define the boundaries within which the
underlying physiological mechanisms must operate” (p. 54).

The Neural Bases of Operant Conditioning

One advantage of a behavior-analytic approach, which stresses
single-subject experimental methodology, is the elegant control
(i.e., influencing directly the behavior of the single organism
without relying on aggregate measures) that it affords. Substan-
tial research already demonstrates how such experimental control
can elucidate the neurophysical foundations of behavior. Begin-
ning with the groundbreaking work by Olds and Milner (1954)
showing that electrical brain stimulation in certain neural path-
ways could function as a powerful reinforcer, neuroscientists have
identifiedmany of the quantitative, anatomical, and physiological
properties of those neural pathways (e.g., Gallistel, 1988; Hoebel,
1988). For example, research has shown that the most reliable
location of reinforcing electrical brain stimulation is a bundle of
axons, called the medial forebrain bundle, that travel from the
ventral tegmental area (VTA) of the midbrain to the forebrain
(Olds and Forbes, 1981). Moreover, dopaminergic neurons in the
VTA and forebrain are primarily involved in the reinforcement
of operant behavior (Hoebel, 1988).

The role of dopaminergic neurons in reinforcement is sup-
ported, in part, by findings showing that dopamine antago-
nists block the effects of natural reinforcers such as food, the
effects of reinforcing electrical brain stimulation, and the effects
of conditioned reinforcers (e.g., Franklin and McCoy, 1979;
Gallistel and Karras, 1994). Conversely, dopamine agonists, such
as amphetamine, function as powerful reinforcers whether they
are injected into the blood stream, as in self-administration
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preparations, or directly into the brain, as in intracranial admin-
istration preparations (e.g., Hoebel et al., 1983; Guerin et al.,
1984). Furthermore, electrical brain stimulation, dopamine ago-
nists, and natural reinforcers all stimulate the release of dopamine
in the mesolimbic and mesocortical systems (e.g., Moghaddam
and Bunney, 1989; Nakahara et al., 1989), suggesting that the
physiological mechanism of these different reinforcing events is
the same.

Research has also revealed the possible cellular bases of
operant conditioning by showing that individual neurons can be
operantly conditioned (e.g., Belluzzi and Stein, 1983; Stein and
Belluzzi, 1985). Other research has shown that operant condi-
tioning can alter the structure of the brain, to include (1) regulat-
ing the dynamics of neuronal activity (Nargeot et al., 1999a), (2)
changing synaptic terminals on primate motor neurons (Feng-
Chen and Wolpaw, 1996), (3) altering dendritic branching and
spine densities of CA3 pyramidal neurons of the hippocam-
pus (Mahajan and Desiraju, 1988), and reorganizing the cerebral
cortex (Bao et al., 2001).

Research on synaptic changes due to operant conditioning,
as well as the susceptibility of individual neurons to operant
conditioning, suggests that, “the individual neuron could be an
important functional unit for positive reinforcement in the brain”
(Stein and Belluzzi, 1988, p. 261). If so, such findings may illu-
minate “the neuronal substrate that underlies the selective mod-
ification in operant conditioning” (Nargeot et al., 1999b), and
may help to persuade other neuroscientists that behavior anal-
ysis offers both a fruitful theory of behavior and a scientific
methodology within which to better understand their findings,
a guide for future research, and, hence, a more unified scientific
understanding of behavior.

Implications

Ironically, a science that deals with an objective and measur-
able subject matter—behavior—may offer neuroscientists a more

productive theoretical model with regard to so-called cognitive
events than an approach (i.e., cognitive science) that deals only
indirectly with its subject matter. For example, neuroscientific
evidence supports an interpretation of listening (Schlinger, 2008)
and auditory imagining (Schlinger, 2009) as operant behavior.
Studies using transcranial magnetic stimulation have shown that
there is in increase in motor-evoked potentials recorded from
the tongue muscles (Fadiga et al., 2002) and from the lip mus-
cles (Watkins et al., 2003) during speech perception, that is,
when someone is said to be listening. Other research supports
the suggestion that when we are said to imagine “hearing” speech
or music, we are behaving subvocally (Schlinger, 2009). Thus,
studies have shown activation in Broca’s area and the premotor
and motor cortexes when either listening or auditorily imagin-
ing (e.g., Paulesu et al., 1993; Zatorre et al., 1996; Halpern and
Zatorre, 1999; Rosen et al., 2000; Palmer et al., 2001;Wilson et al.,
2004), and support the contention that what we speak of as lis-
tening and auditory imagining are more parsimoniously viewed
as behaviors, not cognitive processes.

Conclusion

It is behavior, not cognitive events, which is important for
organisms—human and nonhuman—both evolutionarily and in
their own lifetimes. Behavior interacts with and adapts to the
(i.e., is selected by the) environment; and the nervous system has
evolved to support that interaction. Behavior analysis, as a science
of behavior in its own right, and not as an indicator of inferred
cognitive structures or processes, is best positioned to parsimo-
niously explain that interaction. Neuroscientists require a cogent
theory of behavior to support their search for the neurophysio-
logical correlates of behavior. Thus, behavior analysis can offer
both an experimental model based on single-subject research and
an elegant theory of behavior that can provide neurophysiologists
a non-dualistic road map for understanding the neurophysical
correlates of adaptive behavior.
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