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Postnatal maturation of immune regulation is largely driven by exposure to microbes. The
gastrointestinal tract is the largest source of microbial exposure, as the human gut micro-
biome contains up to 1014 bacteria, which is 10 times the number of cells in the human
body. Several studies in recent years have shown differences in the composition of the gut
microbiota in children who are exposed to different conditions before, during, and early after
birth. A number of maternal factors are responsible for the establishment and colonization
of gut microbiota in infants, such as the conditions surrounding the prenatal period, time
and mode of delivery, diet, mother’s age, BMI, smoking status, household milieu, socioe-
conomic status, breastfeeding and antibiotic use, as well as other environmental factors
that have profound effects on the microbiota and on immunoregulation during early life.
Early exposures impacting the intestinal microbiota are associated with the development
of childhood diseases that may persist to adulthood such as asthma, allergic disorders
(atopic dermatitis, rhinitis), chronic immune-mediated inflammatory diseases, type 1 dia-
betes, obesity, and eczema. This overview highlights some of the exposures during the
pre- and postnatal time periods that are key in the colonization and development of the
gastrointestinal microbiota of infants as well as some of the diseases or disorders that
occur due to the pattern of initial gut colonization.

Keywords: antibiotics, cesarean section, diet, gut microbiota, immunity, inflammatory diseases

INTRODUCTION
The human body houses trillions of microbes that are found in
different parts of the body. The largest microbial population of the
human microbiome is found in the gastrointestinal tract, and the
greatest prevalence is in the colon, which is estimated to harbor
1014 bacterial cells and more than 100 times the number of genes in
the human genome (1–3). The gut bacteria play an important role
in human health by promoting intestinal homeostasis, stimulating
the development and maturation of the immune system, protect-
ing against pathogens, digesting fibrous food materials through
fermentation, and harvesting nutrients (4–6). An alteration of the
gut microbiota has been associated with an increasing number
of diseases including inflammatory bowel disease (IBD), obesity,
diabetes, asthma, and allergies (6, 7).

The current widespread use of high-throughput molecular
microbiology techniques has enhanced our knowledge about the
development of the intestinal microbiota to greater levels than
were possible with classical culture techniques (8, 9). As a result of
comprehensive microbiota analyses over time, insights into funda-
mental questions about the human microbiome dynamics under
different microbial and host conditions are increasing (10). Lon-
gitudinal studies including the Human Microbiome Project have
investigated the diversity of the bacterial population associated
with the human body, its variability within and between indi-
viduals, the impact of internal and external factors, as well as

characterizing its key components (8, 11, 12), and there is still
much to learn. The human gut microbiota of a healthy adult is
thought to be highly resilient and stable over time, a condition
that may differ from one individual to another (13, 14). However,
before reaching maturity, the gut microbiota needs to develop and
establish a mutual beneficial co-existence with the host.

It has been suggested that the first contacts with pioneer
bacteria could be deterministic for subsequent gut maturation,
metabolic and immunologic programing, and consequently for
short- and long-term health status (15). In addition, although
there are discrepancies, metadata analysis over time has suggested
an association between the nature of the initial gut microbiota
colonization or microbial dysbiosis and a number of disease con-
ditions in infancy and later in life (16, 17). This review will
summarize some of the key factors (pre and postnatal) underly-
ing the establishment of the neonatal gut microbiota and identify
its potential impact on some of the immune-, intestinal-, and
metabolic-related diseases in childhood or adulthood.

IMPACT OF THE PRENATAL PERIOD ON GUT MICROBIOTA
The intrauterine environment and the unborn infant are generally
thought to be sterile until delivery. However, some studies have
reported the presence of bacteria in the intrauterine environment,
which suggest that these bacteria may influence the microbiota
of the infant before birth (18–22). For example, Lactobacillus and
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Bifidobacterium DNA were detected in the placenta of vaginally
and cesarean section-delivered infants (23), and Enterococcus fae-
cium strains that were orally inoculated to pregnant mice were
later detected in the amniotic fluid and meconium of the pups
following delivery (20). In addition, a unique placental micro-
biome niche similar to the human oral microbiome composed
of non-pathogenic commensal microbiota from different phyla
including Firmicutes, Tenericutes, Proteobacteria, Bacteroidetes,
and Fusobacteria were characterized from a population-based
cohort of placental specimens (24). This suggests that the pla-
centa is not actually sterile and that oral microbiota may play a
major role in the colonization of the placenta although the mech-
anism through which oral microbes find their way into the placenta
remains to be elucidated. It is therefore possible that bacteria in
the intrauterine environment could result in prenatal colonization
of the meconium (6, 25). Jimenez and colleagues showed that the
presence of bacterial species in the meconium, such as Escherichia
coli, E. faecium, and Staphylococcus epidermidis, could result from
the translocation of the mother’s gut bacteria via the bloodstream
(19). Despite these findings, it is not clear whether colonization of
the infant’s gut microbiota starts before birth, because the pres-
ence of bacteria in the amniotic fluid could also be an indication of
undetected infection, which may increase the risk of miscarriages
or preterm delivery (20). In this case, an association of the placen-
tal microbiome with a remote history of antenatal infections such
as urinary tract infection in the first trimester and preterm birth
has been reported (24). However, as reviewed by Li et al. (6), Bifi-
dobacterium has been reported in meconium, amniotic fluid, fetal
membranes, umbilical cord blood, and placenta of healthy moth-
ers and infants with no detectable or known clinical infections or
inflammation.

External factors during pregnancy may also influence the future
development and behavior of the infant. For example, infant
monkeys born from mothers stressed during pregnancy had sig-
nificantly lower counts of Bifidobacterium and Lactobacillus (26).
Probiotic administration (Lactobacillus rhamnosus) to mothers
during late pregnancy also resulted in increased fecal Bifidobac-
terium longum counts in their infants (27), although, it is not
clear whether these microbes were acquired from the mother dur-
ing pregnancy, during birth, or after birth. Several other variables
during pregnancy, including the use of antibiotics in the peri-
natal period, have been associated with delayed colonization by
some microbes especially Bifidobacteria and Lactobacillus species
(28, 29). This may have long-term impacts since these species are
considered to have beneficial properties; for example, allergies,
irritable bowel syndrome (IBS), and IBD, have all been frequently
reported in antibiotic-exposed children (30–36). Roberts et al.
(37) showed that children born to mothers who smoked have
a higher risk of IBD, which may be due to disturbed microbial
colonization since the cessation of smoking was correlated with
increased Firmicutes and Actinobacteria, and a lower proportion
of Bacteroidetes and Proteobacteria (38).

The length of the gestational period may also play an impor-
tant role in initial infant gut microbial colonization. Colonization
in preterm infants has been shown to take place slowly, have a
low diversity, and several interindividual differences as opposed
to that of full-term infants (6, 39). It is also mostly dominated by

potential pathogens including Clostridium species, E. coli, Ente-
rococcus, Streptococcus, Klebsiella, and Staphylococcus (6, 29, 39,
40). Healthy full-term infants are usually colonized by benefi-
cial microbes, such as Bifidobacterium and Lactobacillus, which are
not present or are detected in low levels in preterm infants (41).
The delayed rate of colonization could result from the events sur-
rounding the delivery, because most preterm infants are delivered
through emergency or elective cesarean delivery. Infants born by
cesarean section, notably electively, have been shown to have low
bacterial richness and diversity (42), which could be a result of less
exposure to the mothers’ delivery fluids, delayed oral feeding, and
high hygienic care of the preterm infants and use of antibiotics that
may consequently lead to colonization by few resistant/notorious
microbes that are potentially pathogenic (6).

EXTERNAL FACTORS AFFECTING THE DEVELOPMENT OF GUT
MICROBIOTA IN INFANTS DURING AND AFTER BIRTH
A number of factors (both intrinsic and extrinsic) may influence
the process of microbial colonization in infants, which may conse-
quently affect the infant’s health. The following section highlights
some of the external factors that affect the initial colonization and
establishment of gut microbiota in infants (Table 1).

DELIVERY MODE
During the birth process and immediately after birth, microbes
from the mother and surrounding environment colonize the gas-
trointestinal tract of the infant leading to the development of a
dense complex microbiota (22). The mode of delivery (vaginally
or by cesarean section) has been demonstrated to have a strong
influence on early gut colonization (43). A review by Mackie
and colleagues (22) showed that, in cases of vaginal delivery, a
longer birth process has been associated with the presence of viable

Table 1 | Summary of the factors affecting gut microbiota colonization

in infants.

(a) Factors affecting

colonization of gut

microbiota before

birth

(b) Factors affecting

colonization of gut

microbiota during/

at birth

(c) Factors affecting

colonization of gut

microbiota after birth

- Intra-uterine

environment

- Maternal exposures

- Mode of delivery

(caesarean section

vs vaginal delivery)

- Breastfeeding vs formula

feeding

- Weaning or food

or practices such as

stress, antibiotic

use, smoking

- The environment at

the time of delivery

- Contact with the

supplementation

- Antibiotic exposure

- Length of gestation

period (term vs

preterm)

mother or health

care staff

- Home or family setting

(rural vs urban)

- Home structure (contact

with the mother and

other family members

including siblings and

close contact relatives
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microbes in the stomach and mouth of the infant, and the same
E. coli serotypes were found in both the mouths of babies and in
their mothers’ feces immediately after birth. This implies that the
proximity of the birth canal and the anus play an important role
in the transmission of microbes from the mother to the infant.
In addition, bacteria present in the mother’s vagina immediately
before birth were reported in the nasopharynxes of over 50% of
babies born vaginally (22).

Children born by cesarean section are also exposed to their
mothers’ microbiota, but initial exposure is most likely to non-
maternally derived environmental isolates from equipment, air,
and other infants, with the nursing staff serving as vectors for
transfer (44). A number of studies have described altered fecal
or intestinal microbiota profiles in cesarean section-delivered
infants beginning at 1 day after birth and persisting to 6 weeks
(7), 6 months, and even 7 years of age (45). Infants delivered by
cesarean section have a lower total microbial diversity within the
first 2 years of life associated with a less abundance and diversity
of phylum Bacteroidetes (46). They are also less often colonized by
Bifidobacteria, Bacteroides, and E. coli, but are more frequently col-
onized by both Clostridium cluster I and Clostridium difficile (46,
47). It has also been shown that skin microbes including Staphylo-
coccus, Corynebacterium, and Propionibacterium dominate the gut
microbiota of cesarean-delivered infants, while vaginally delivered
infants have a higher prevalence of vaginal-related microbes such
as Lactobacillus, Prevotella, and Sneathia (48–50). Generally, chil-
dren born by cesarean section have an altered intestinal microbial
colonization and studies have highlighted that this may be associ-
ated with a subsequent increased risk of developing various dis-
eases including asthma and/or type 1 diabetes (T1D). This could
be due to poor development of the immune system since infants
born through cesarean section have also been reported to have
remarkably lower levels of the Th1-related chemokines CXL10
and CXL11 in their blood, which may translate to less protection
(46). A meta-analysis of the association between cesarean section
and childhood asthma involving studies with different designs,
conducted in different countries and using different measures of
asthma reported an increased risk of asthma after cesarean section
(17), whereas a 20% increase in the risk of childhood onset of T1D
was reported in another meta-analysis of children born through
cesarean section (51). An additional meta-analysis investigating
the use of antibiotics in infants reported that the use of antibiotics
in childhood was associated with asthma and wheezing (16).

DIET
The succession of microbial colonization in the intestinal tract
most occurs during the early development stages especially the
first year of life. During this period, the feeding mode shifts from
breastfeeding to formula feeding and/or to the introduction of
solid food; however, individual instances of gut colonization may
vary in terms of microbiota richness and diversity (7, 22, 52).
Dynamic balances exist between the gastrointestinal microbiota,
host physiology, and diet that directly influence the initial acqui-
sition, developmental succession, and eventual stability of the gut
ecosystem (53). Breastfeeding modulates the gut microbiota (54),
and this might confer some protective effects to the infant against
various forms of diseases or disorders (55), because evidence exists

for an entero-mammary pathway that transfers diverse microbes
from the mother’s gut to the baby through breast milk (56–59).
However, human milk is known to contain complex polysaccha-
rides that act as selective prebiotics and therefore promote the
colonization of the infant gut with beneficial microbiota (60, 61),
as opposed to children fed with formula. Formula feeding has
been associated with an increased microbial richness of species in
infants at four months of age with overrepresentation of C. difficile,
a known gastrointestinal pathogen (42, 62). In addition, formula
feeding induces intestinal hypertrophy and accelerates matura-
tion of hydrolysis capacities; it increases intestinal permeability
and bacterial translocation. Therefore, the microbiota may not
be the principal actor. However, a recent publication observed
more than two times increased numbers of bacteria cells in breast-
fed infants, compared to formula-fed ones (63). It is therefore
clear that breastfeeding may encourage proliferation or coloniza-
tion by bacteria that may have protective effects on the growing
infant, while formula feeding may predispose children to potential
pathogens.

The gut microbiota of children is also influenced by the nature
of food (other than formula) they receive, which could also be
stratified by income status, mode of upbringing, or geograph-
ical location. The microbiota of children in Burkina Faso was
found to be dominated by Bacteroidetes, compared with that
of Italians, which was dominated by Firmicutes (64). Similarly,
the biodiversity of microbiota from USA was lower than that
from Malawians or Venezuelan Amerindians (65). Moreover, the
effect of the natural environment, such as housing conditions, has
also been investigated in animals. In this case, genetically related
piglets were housed in either indoor or outdoor environments and
sequencing of the 16S rRNA revealed that Lactobacillus strains
were dominant in the gut of pigs raised outdoors, compared with
hygienic indoor pigs, which had reduced Lactobacillus and more
potentially pathogenic phylotypes (66).

MOTHER AND IMMEDIATE FAMILY MEMBERS
The influence of the mother on the child’s microbiota is evi-
dent during the first year after birth (43). This effect is reported
to be stronger within the first month of life during which the
infant’s intestinal microbiota is both functionally and phyloge-
netically close to that of the mother. However, at 1 year of age,
phylogenetic differences appear while the similarities persist at the
functional level (67). With respect to fecal microbiota, close simi-
larities were found between the mother and the infant during the
first six months after birth of the infant, which was mainly due
to the presence of Bifidobacterium bifidum, Bifidobacterium breve,
and Staphylococcus aureus (68).

After birth, environmental, oral, and skin microbes from the
mother are mechanically transferred to the newborn in different
ways, which may influence the diversity of intestinal microbiota
in the neonate. For example, biodiversity in the homes, in the sur-
rounding environment and in family members who have a close
or constant contact with the baby have a direct impact on the
diversity of microbes that are transferred to the infant (69–71).
In addition, hygienic practices (e.g., cleaning of baby’s pacifier
through sucking or by other methods) may influence the microbial
diversity. Differences in microbial diversity have been associated
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with the development of allergy and/or asthma later in life (72,
73). Numerous population studies have also confirmed an inverse
relationship between allergy prevalence and various measures of
“hygiene,” such as growing up on a farm, early day care, and low
socioeconomic standards (74, 75). There are also observed differ-
ences in the composition of the gut microbiota between infants
living in countries with a high and a low prevalence of allergy
and between healthy and allergic infants, even very early in life
before they have developed any clinical symptoms of disease (76).
In addition, an increasing number of older siblings are associated
with the colonization of Lactobacilli and Bacteroides at 5 weeks
of age, all of which are associated with beneficial effects (47). The
mother and family at large, therefore, play a major role in the initial
microbial colonization in infants who may have a health impact
on the child. Table 1 shows a summary of the factors discussed in
this review.

LONG-TERM EFFECTS OF MICROBIAL COLONIZATION
Gut microbiota are generally associated with the development
and maturation of the immune system (77). The immune sys-
tem acquires most of its data from exposure to certain subsets
of micro- and macro-organisms (78). For example, early col-
onization with Escherichia coli and Bifidobacteria is associated
with higher numbers of CD20 + B cells that express the mem-
ory marker CD27 at 4 and 18 months of age (79). Disruption of
exposure to these organisms is at least partly responsible for the
immunoregulatory deficits that underlie the increased prevalence
of conditions, such as chronic immune inflammatory diseases
(i.e., IBD), asthma, and atopic dermatitis (7, 47, 80). Molecular
microbiology techniques suggest that a high diversity of the gut
microbiota in childhood could be more important as opposed
to low diversity, which is associated with increased risk of sub-
sequent allergic diseases, since repeated exposure to different
bacterial antigens would enhance the development of immune
regulation through inhibition of responses to inappropriate tar-
gets, such as gut contents and allergens (81, 82). The microbial
diversity and composition of 47 infants as analyzed using bar-
coded 16S rRNA 454 pyrosequencing in stool samples at 1 week,
1 month, and 12 months of age, revealed that low total diversity
of the gut microbiota during the first month of life was associ-
ated with asthma in the children at 7 years of age (83). A low gut
microbial diversity during the first month of life was also asso-
ciated with subsequent sensitization and atopic eczema at 2 years
of age (82). In addition, reduced bacterial diversity of the infant’s
intestinal microbiota was associated with increased risk of allergic
sensitization, allergic rhinitis, and peripheral blood eosinophilia,
in the first 6 years of life (81). Early-life exposures, including
those known to impact gastrointestinal microbiome composition,
such as antibiotic administration have also been associated with
increased risk for childhood asthma due to altered microbiota
profiles or long-term reduction in microbial diversity (7, 84, 85).
Alterations of the intestinal microbiota in preterm infants char-
acterized by low microbial diversity and abundance of potentially
pathogenic bacteria have been highlighted in the development of
necrotizing enterocolitis (NEC), although there are discrepancies
among different studies (86, 87). Hällström and colleagues (88)
reported a link between cesarean delivery and disturbed intestinal

colonization, with an increased frequency of Enterococcus species
and Candida albicans, and the probable occurrence of NEC in
preterm infants. These findings may not be exclusively due to a
disturbed intestinal microbiota because other confounding factors
may also be responsible for NEC; however, further investigation
will provide useful information on this topic and further clarify
the existing discrepancies.

The birth order or family size and the presence or absence
of pets have also been implicated in the initial microbial colo-
nization in infants. Over two decades ago, Strachan observed that
children who had older siblings were less likely to manifest hay
fever as adults, as compared to firstborn children, which could
be due to a protective effect of infections brought home by the
older siblings (89). Similarly, exposure to livestock or pets, partic-
ularly dogs, early in life significantly decreases the risk for asthma
and/or allergic reactions since dog ownership is associated with a
distinct house dust microbial exposure (74, 90). In addition, mice
exposed to dog-associated house dust were found to be protected
against airway allergen challenge, because they exhibited less Th2
cytokine production, fewer activated T cells, and a distinct gut
microbiome composition that was highly enriched for Lactobacil-
lus johnsonii, which itself can confer airway protection when orally
supplemented as a single species (91).

Selective microbial targets have been associated with infants
developing eczema (92). Yap and colleagues (93) evaluated the
composition of fecal microbiota of infants who developed eczema
in the first 5 years of life compared with healthy controls and
reported that longitudinal analysis of fecal microbiota compo-
sition at 3 days, 1 and 3 months, and 1 year of life showed a higher
abundance of Enterobacteriaceae and Clostridium perfringens in
children who developed eczema in the first 2 years of life, whereas
a lower abundance of Bifidobacterium was observed in those who
developed eczema at 5 years of age. The authors suggested that
relative abundance of selective microbial targets might contribute
to the subsequent development of eczema in childhood. Studies
have also associated gut microbiota with the development of T1D
(77). For example, metagenomic analysis revealed that the propor-
tion of Bacteroidetes was increased in children with T1D while the
proportion of Firmicutes was increased in normal healthy chil-
dren (78). Conversely, the relative proportion of Bacteroidetes is
decreased in obese people compared with lean people, while the
proportion of Firmicutes is increased in obese people (78). In
addition, colonization with clostridia, at the age of 5 and 13 weeks
is associated with an increased risk of developing atopic dermatitis
in the subsequent 6 months of life (47). Breastfeeding and formula
feeding play major roles in defining the initial microbial coloniza-
tion, and a previous meta-analysis showed that breast-fed children
have a lower risk of being overweight compared to formula-fed
children and that the duration of breastfeeding is inversely and
linearly associated with the risk of overweight (94).

The use of antibiotics is generally known to change the gut
microbiota. A meta-analysis on antibiotic use in infants reported
that wheezing and asthma were related to antibiotic use (16).
In addition, high-throughput sequencing revealed an incomplete,
short-term recovery of infant gut microbiota following parenteral
antibiotic treatment with ampicillin and gentamicin (95). The
use of antibiotics in this context has been implicated in the
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development of IBD and current research has shown that chil-
dren with IBD are more likely to have received antibiotics in their
first year of life as compared to healthy controls (35), suggesting
that microbial dysbiosis associated with early antibiotic exposure
in neonates may be a predisposing factor to IBD, including other
disease conditions, such as wheezing and asthma. Table 2 shows a
summary of the factors affecting gut microbiota and their effects
in neonates, infants or children, as discussed in this review.

MODIFICATIONS OF EARLY CHILDHOOD MICROBIOTA
Several methods can be used to attempt to modify disturbed
gut microbiota and many of them have been implicated in the
improvement of gut microbiota in early childhood. However, an
extensive discussion of the methods used to modify gut micro-
biota is beyond the scope of this review and only brief highlights
on probiotics are included. As defined by the Food and Agricul-
ture Organization/World Health Organization, probiotics are live
microorganisms that, when administered in adequate amounts,
confer health benefits on the host. The mechanisms by which pro-
biotics exert beneficial effects on the host are currently a main
area of focus although this may vary depending on the species
or the strain involved. In this case, infants fed with a blend of
Lactobacillus acidophilus and Bifidobacterium infantis as well as

other probiotics had less cases of NEC and a reduced mortality
rate compared to the controls (96), supporting the use of probi-
otics in preterm infants to prevent NEC. Although limited research
has been done on the use of probiotics in NEC, probiotics appear
promising for use as a prevention strategy for NEC; Abrahamsson
and colleagues (97) argue that the time for confirmative NEC pro-
biotic prevention trial in the extremely low birth weight infants in
North America is now. On the other hand, the “hygiene hypothe-
sis” suggests that a lack of exposure to microbial stimulus early in
childhood is a major factor involved in the development of aller-
gic reactions and immune-related disorders (89, 98), and therefore
provides a rationale for using probiotics to modify the gut micro-
biota to shape the immune response of the host, especially in
infancy. In this case, studies have provided evidence for a bene-
ficial effect of different probiotics in the primary prevention and
management of allergic diseases (atopic eczema, allergic rhinitis)
(99, 100). For further reading on the use of probiotics in aller-
gic diseases, the reader is referred to other detailed review articles
(99–102).

SUMMARY AND CONCLUSION
The characteristics of the inherited microbiome are likely very
important in understanding offspring health as recent research

Table 2 | Factors affecting colonization of gut microbiota in neonates and infants or children, specific microbial effect, and the resultant health

conditions.

Factor Observed effect on microbiota Specific health condition/disorder/disease Reference

Intrauterine

environment

Presence of bacteria in the uterus Remote history of antenatal infections such as

urinary tract infection during the first trimester

Preterm birth

(18–25)

Presence of bacteria in the amniotic fluid

Presence of bacteria in the meconium

Stress during

pregnancy

Low counts of beneficial bacteria

(e.g., Bifidobacteria, Lactobacillus)

Allergic reactions (26)

Probiotic use during

pregnancy

Increased colonization by beneficial bacteria Reduced incidence of allergic reactions (27)

Increased bacterial diversity

Antibiotic use during

pregnancy

Delayed colonization or reduced abundance of

beneficial bacteria

Increased allergic reactions (asthma, allergic

sensitization, allergic rhinitis)

(7, 28–36, 47, 80–83)

Irritable bowel syndrome (IBS)

Inflammatory bowel disease (IBD)

Smoking during

pregnancy

Microbial dysbiosis (decrease in Firmicutes and

Actinobacteria and an increase in Bacteroidetes

and Proteobacteria

Increased risk of IBD (37, 38)

Length of gestation

period – preterm

Slow rate of bacterial colonization Necrotic enterocolitis (NEC) (6, 29, 39, 40, 86, 87)

Reduced bacterial diversity

High interindividual differences in colonization

Increased level of potential pathogenic bacteria

Length of gestation

period – term

Increased abundance of beneficial bacteria Lower incidence of NEC (6, 29, 39–41, 86, 87)

High bacterial diversity

Cesarean delivery Reduced bacterial richness and diversity Increased risk of asthma, allergic reactions, Type 1

diabetes, atopic eczema, obesity and NEC

(6, 7, 17, 42, 46, 47,

51, 77, 78, 80, 88)Reduced colonization by beneficial bacteria

Increased colonization by potential pathogens Low levels of Thl responses

Vaginal delivery Increased microbial diversity Decreased risk of asthma, allergic (48–50, 81, 82)
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suggests that aberrant metabolic phenotypes can be directly
attributed to intestinal bacterial communities. Here, we have
summarized some of the current interactions and associations
on early-life exposures that may influence the development and
colonization of the gut microbiota in infants and disease con-
ditions that may result due to the nature of colonization. Some
studies have already demonstrated the predictive power of the
microbiota in enteric diseases while others have actually conducted
research and consistently reported similar findings, although dis-
crepancies do exist. In general, a reduction in overall bacterial
diversity, a reduced abundance of commensal bacteria, and an
increase in abundance of potentially pathogenic bacteria have
been associated with immune-related disorders, and in some
situations specific bacteria have being involved in the develop-
ment of allergic reactions in both animal models and human
studies. On the other hand, the importance of the gastrointesti-
nal microbiome in defining the immune environment has been
demonstrated in a number of studies, indicating that strategies
to manipulate gut microbiome membership and function may
have far-reaching implications for better health. This, therefore,
shows that colonization by a certain subset of microbiota may be
a threat or a benefit to the health of the infant during childhood
and/or in adulthood. Consequently, future studies should focus
on ways of promoting and/or maintaining colonization by the
beneficial bacteria in infants who are exposed to compromising
situations that encourage colonization by potentially pathogenic
phylotypes. Prebiotics and/or probiotics have been suggested to
have a promising impact in the prevention and treatment of some
immune-related diseases by modulating gut microbiota and reg-
ulating host mucosal immune function; however, their efficacy
is inconsistent and further studies and the exploration of other
treatments are required.

Whether the altered microbiome causes the disease or is the
disease affecting the microbiome remains an issue of debate. How-
ever, for neonates, it is possible to argue that the first colonizers
play a major role in the development of the disease because if this
is not the case, then why are some disorders/disease conditions
more common in infants born via caesarian delivery compared
with vaginally delivered infants? Or, why do formula-fed infants
more frequently have metabolic disorders as opposed to breast-
fed infants? Other questions include why is it that the majority
of potentially known pathogenic microbes are found in children
exposed to antibiotics, born by cesarean section, or raised under
high hygienic conditions, whereas there are more known beneficial
microbes in their counterparts? In support of our argument, dif-
ferences in the composition of the gut microbiota between infants
living in countries with a high and a low prevalence of allergy and
between healthy and allergic infants, have been reported even very
early in life before development of any clinical symptoms of disease
(76), suggesting the role of the gut microbiota in the development
of the disease conditions. This topic still remains open for discus-
sion and the answers to the above questions will shed more light on
this debate; future research should incorporate extended micro-
biota analyses, detailed nutrition assessments, and longitudinal
measures of disease conditions throughout childhood.

Meta-analyses have substantiated the association between some
disease conditions with cesarean section, formula feeding, and use

of antibiotics in infants. However, these conditions may result
from the impact of differences or changes already observed in
the gut microbiota, or they could result from other confounding
factors. Advanced molecular microbiology approaches including
functional metagenomic analysis may shed more light on factors
that affect infant microbial colonization and extend our knowl-
edge on bacterial species that are potentially undesirable or actually
beneficial, and that can be considered as potential probiotics for
novel formula development in order to closely emulate nature’s
models. Future studies should, therefore, focus on functionally
characterizing the gut microbiota of children with the aim of
identifying some of the metabolic pathways and processes that
may be targeted for modulation with beneficial microbiota, and
consequently aid in management of the disease conditions that are
associated with altered gut microbiota or colonization by potential
pathogens.
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