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The intestine is home to trillions of microorganisms, and the vast diversity within this gut 
microbiota exists in a balanced state to protect the intestinal mucosal barrier. Research 
into the association of the intestinal microbiota with health and disease (including diet, 
nutrition, obesity, inflammatory bowel disease, and cancer) continues to expand, with 
the field advancing at a rapid rate. Intestinal stem cells (ISCs) are the fundamental 
component of the mucosal barrier; they undergo continuous proliferation to replace 
the epithelium, which is also intimately involved in intestinal diseases. The intestinal 
microbiota, such as Lactobacillus, communicates with ISCs both directly and indirectly 
to regulate the proliferation and differentiation of ISCs. Moreover, Salmonella infection 
significantly decreased the expression of intestinal stem cell markers Lgr5 and Bmi1. 
However, the detailed interaction of intestinal microbiota and ISCs are still unclear. This 
review considers the progress of research on the model and niches of ISCs, as well as 
the complex interplay between the gut microbiota and ISCs, which will be crucial for 
explaining the mechanisms of intestinal diseases related to imbalances in the intestinal 
microbiota and ISCs.
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iNTRODUCTiON

Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), is 
the important cause of gastrointestinal disease (1). Although the precise etiology of IBD remains 
unclear and controversial, the intestinal microbiota and the integrity of mucosal epithelial function 
have been demonstrated to play key roles in its pathogenesis (2, 3). Moreover, diets high in fat and 
protein but low in fruits and vegetables have been demonstrated to be associated with particular 
compositions of intestinal microbiota that increase the risk of IBD (4). Moreover, a high-fat diet 
induces change of intestinal stem cells (ISCs) and enhances the risk for intestinal cancer incidence 
(5). Unlike other stem cells, ISCs coexist with the intestinal microbiota, which may influence the 
growth status of the epithelium (6). The intestinal mucosal barrier is maintained by ISCs, located at 
the base part of the intestinal crypts, play a key role in governing the proliferation and differentiation 
of the intestinal epithelium.

The gastrointestinal tract harbors a diverse community of microorganisms, including bacteria, 
fungi, and viruses, which are considered as the intestinal microbiota (7). The intestinal microbiota 
interact closely with ISCs. Although the elucidation of host pathways that regulate ISCs function is 
progressing, the effects of exogenous factors on ISCs biology are poorly understood. Recent stud-
ies demonstrated that ISCs protected itself from butyrate produced by beneficial microbes (8, 9). 
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Table 1 | Cell markers and functions of intestinal stem cells (iSCs).

Name Functional description active vs. 
quiescent

Reference

Sox9  1 Transcription factor
 2 The involvement of the proliferation and differentiation of embryonic stem/progenitor cells and CSCs through the 

Wnt/beta-catenin pathway

Active (16, 17)

Ascl2  1 Basic helix loop helix transcription factor
 2 The master regulatory gene for Lgr5 + ISCs
 3 Overexpressed in intestinal neoplasia

Active (18, 19)

MSI1  1 Translational repressor and involvement the Notch signaling
 2 Control stemness in drosophila
 3 Overexpression in intestinal epithelial progenitors enhancing their proliferative capacity

Active (20, 21)

LGR5  1 R-spondin receptor
 2 Wnt target and binding the R-spondin to enhance the downstream Wnt signaling
 3 lgr5 also expressed in colorectal cancer

Active (22, 23)

OLFM4  1 Encoding a secreted molecule with unknown function from human myeloblasts
 2 Xenopus ONT1, an OLFM4 family member, acting as a BMP antagonist

Active (24, 25)

Hopx  1 Atypical homeobox protein
 2 Inhibit the Wnt signaling and maintain stem cell quiescence

Quiescent (26, 27)

mTert  1 Enzymatic catalytic subunit of mouse telomerase
 2 Targeting the TGF-beta pathway and increasing the proliferative potential of primary mouse embryonic fibroblasts

Quiescent (28, 29)

BMI1  1 Polycomb transcription repressor complex
 2 Transcription repressors
 3 Part of the Polycomb group gene family, and specifically a member of polycomb-repressing complex 1

Quiescent (30, 31)

DCLK1  1 Microtubule-associated protein kinase
 2 DCAMKL-1 disruption resulting in inhibition of the Notch-1 pathway
 3 Regulate the EMT through a miR-200a-dependent mechanism

Quiescent (32, 33)
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However, when the intestine tract is damaged, butyrate inhibits 
the proliferation of ISCs through preventing the intestine tissue 
from repairing itself after damage or injury (10). However, the 
detailed mechanism by which the intestinal microbiota regulates 
ISCs remains unknown. This review will focus on ISCs niches and 
the regulation of ISCs by the intestinal microbiota.

PROGReSS OF ReSeaRCH ON iSCs

The intestine is composed of columnar epithelial with glandular 
invaginations, and the intestinal columnar epithelium is con-
tinually shed and replaced by the self-renewal capacity of ISCs. 
Recently, Lgr5 was identified as an important active ISCs marker 
of ISCs located at the base of crypt, and Bmi1 was another marker 
of quiescent ISCs predominantly at the +4 position (11, 12). 
Detailed cell markers and functions of ISCs were listed in Table 1. 
Studies have shown that the Lgr + crypt base columnar cells (CBC 
cells) are rapidly dividing ISCs, which is necessary for gut renewal 
(13). Conversely, the +4 label-retaining cells (LRCs) are more 
quiescent, protecting them from the environmental stress. The 
+4 LRCs are activated during stress of injury, and subsequently 
produce intestinal progenitor cells to replace the damaged intes-
tinal cells (14). Moreover, CBC cells can also regenerate new +4 
LRCs under injury (15). Conversely, the active ISCs could replace 
the damaged quiescent stem cells under special conditions (15). 
The intestinal crypt maintains a balance between rapid-cycling, 
easy-to-damage stem cells, and quiescent +4 LRCs to maintain 
self-renewal and flexible damage repair (Figure 1).

THe eSTabliSHMeNT OF iSCs MODelS

Studies using intestinal organoids are advancing our under-
standing of the role of the epithelium in intestinal physiology 
and pathophysiology. Intestinal organoids are composed only 
of epithelial cell types and are thus useful for understanding 
intestinal epithelial cell function in the absence of other cell 
types. For example, studies in mouse intestinal organoids have 
confirmed the importance of Paneth cells in the epithelial barrier 
at the intestinal organoid level. Paneth cells synthesize and secrete 
substantial quantities of antimicrobial peptides to modulate the 
homeostatic balance with colonizing microbiota and innate 
immune protection from enteric pathogens (34). Unexpectedly, 
epidermal growth factor (EGF), delta-like 1/4, and Wnt-3 are also 
expressed in Paneth cells, suggesting that this cell type provides 
ISCs niche signaling (35).

The new culture condition established by Wang et al. could 
produce highly homogeneous population of ISCs, avoiding 
heterogeneous cell populations in 3D organoids in  vivo (36). 
Current culture method for ISCs relies on a 3D culture system 
using Matrige, which is not approved by FDA for clinical use. 
A new 2D culture system for expansion of ISCs as an intesti-
nal epithelial monolayer and cultured on a thin coat of type I 
collagen or laminin instead of Matrigel was established (37). 
Moreover, current models of intestinal organoids lack enteric 
nerves and immune cells, and one goal is to add these com-
ponents to develop a more complex in  vitro intestinal model 
using coculture approaches. Long-term culture of the human 
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FiGURe 1 | intestinal stem cells (iSCs) are periodically activated to produce progenitor or transit amplifying cells, which are committed to produce 
two mature cell lineages: absorptive type (enterocytes) and secretory type (enteroendocrine, goblet, tuft, and Paneth cells). The Paneth cells or 
subepithelial myofibroblasts could secret epidermal growth factor, TGF-α, Wnt3, and the Notch ligand Dll4, which are essential for the maintenance of ISCs, whereas 
their maturation depends on Wnt signaling. Innate lymphoid cells (ILC3s) could also activate ISCs regeneration through the secretion of IL-22.

FiGURe 2 | intestinal organoids, the ex vivo culture systems, are ideal intestinal structure models to explore the interaction between intestinal 
microbiota and epithelial cells, as well as for drug screening and intestinal barrier function. The organoids could be established from the isolated crypt 
from the intestine or single intestinal stem cell. The current models of intestinal organoids lack enteric nerves and immune cells. In future, the dendritic cells  
or lamina propria lymphocytes (LPLs) could be cocultured in vitro to improve the model further.
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small intestine epithelium requires the presence of subepithelial 
myofibroblasts, even when exposed to Wnt3a-containing media 
(38). Most recently, reports have demonstrated the successful 
regeneration of the human small intestine from collagenase-
digested “organoid units” that contain Lgr5 + ISCs and mesen-
chyme. Group 3 innate lymphoid cells (ILC3s) have also been 
shown to be important for maintaining ISCs proliferation (39) 
(Figure 2).

The intestinal organoids containing ISCs is a promising 
model to explore the interaction between intestinal microbiota 
and intestinal mucosa. Salmonella could infect the intestinal 
organoids, and the infection also significantly decreased the 
expression of intestinal stem cell marker Lgr5 and Bmi 1 (40, 41). 

Intestinal organoids could not only be infected by rotavirus, and 
infected organoids are also capable of producing infectious rota-
virus particles (42, 43). The human noroviruses (HuNoVs) have 
been successfully cultivated in enterocytes in stem cell-derived, 
non-transformed human intestinal enteroid monolayer cultures, 
and the Replication of HuNoV Replication occurred in a bile 
dose-dependent manner (44).

ReSeaRCH ReGaRDiNG THe iSCs NiCHe

The activity of ISCs is tightly regulated by several niche-signaling 
pathways to balance the intestinal homeostasis under physi-
ological and pathological stimulation. The Wnt signaling has 
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been identified as the most indispensable pathways for ISCs. 
Recently, study demonstrated that Wnt3 produced specifically by 
Paneth cells shapes the concentration gradient in the intestinal 
crypt, and the ISCs membrane constitutes a reservoir for Wnt 
proteins (45). R-spondin-1 cooperates with Wnt3 pathway activa-
tion through the modulation of Rnf43 (46). Furthermore, ASCL2 
regulated downstream of the Wnt pathway has also been shown 
to be ISCs-specific genes (47).

Besides Wnt signaling, the Notch pathway is another indispen-
sable pathway in regulating the proliferation and differentiation of 
ISCs (48). Notch1 and Notch2 are two indispensable receptors for 
maintaining the normal proliferation and differentiation of ISCs 
in the intestine (49, 50). Loss of the ligands Dll1 and Dll4 could 
induce the silencing of Notch activation in intestinal epithelial 
cells (51). Activation of Notch pathway could stimulate ISCs dif-
ferentiation into absorptive cell lineages, while cis-inhibition of 
Notch directs ISCs toward secretory lineage cells, such as goblet 
cells, enteroendocrine cells, Paneth cells, or tuft cells (48). Recent 
in vitro and in vivo models have suggested that Notch suppression 
reduces the ratio of BMI1+/LGR5+ ISCs, while Notch stimulation 
increases this ratio. Furthermore, Notch signaling can activate 
asymmetric division after intestinal inflammation (52).

BMP signaling is also required for the maintenance of ISCs 
replication and the terminal differentiation of intestinal cells. 
Both epithelial and mesenchymal cells could produce BMP 
ligands. BMP signaling can suppress Wnt signaling to ensure the 
appropriate balance of epithelial stem cell self-renewal (53). BMP 
signaling controls the terminal differentiation of the intestinal 
secretory cell lineage (51). However, BMP2 inhibits epithelial cell 
growth in the colon by promoting apoptosis and differentiation 
(52). Several other signal pathways, such as EGF and Hippo sign-
aling pathway also take part in the formation of ISCs niches (54).

iNTeSTiNal MUCOSa iNJURY wiTH 
iNTeSTiNal MiCRObiOTa DYSbiOSiS

In the physiological state, the intestinal microbiota either has 
direct bactericidal effects or inhibits the adherence and invasion 
of pathogens to the gut mucosa (55). However, intestinal micro-
biota dysbiosis may facilitate the adhesion of pathogens that may 
be associated with irritable bowel syndrome (IBS) symptoms 
(56). The exact cause of IBS is also unknown and is thought to 
be multifactorial. Variation in the gut microbiota is thought to 
be complicit in the low-grade intestinal inflammation associated 
with this syndrome (57). Alterations in the microbiota composi-
tion in IBS patients may aggravate the development of IBS symp-
toms (58). The relative abundance of the Firmicutes population 
may be greatly reduced in IBD patients, which is of particular 
interest because these bacteria are known producers of important 
short-chain fatty acids, which have potent anti-inflammatory 
properties (59). The defects in ISCs differentiation to Paneth 
cells or goblet cells are always observed in IBD, which results in 
luminal microbe invasion of the mucosa and inflammation (60).

Inoculation of UC patients with feces from healthy population, 
who were extensively screened for parasites and bacterial patho-
gens, relieved the severe and recurrent inflammatory symptoms 

within 1  week, and induce complete reversal of inflammatory 
symptoms in 4  months after the fecal transfer in UC patients, 
which indicated that infusion of healthy donor human intestinal 
flora can reverse UC (61). The promise of intestinal stem cell 
biology lies in the ability of these remarkable cells to give rise to 
more differentiated intestinal cell types that can repair damaged 
or diseased tissues. Several therapeutic approaches, including 
intestinal organoids, are currently being explored as a possible 
treatment for intestinal disease (62–64). Moreover, recent studies 
also demonstrated that gut–microbe interactions are also involved 
in determination of ISCs activity through Janus kinase–signal 
transducers and activators of transcription (JAK–STAT) pathway, 
which indicated modulation intestinal microbiota could also 
stimulate the ISCs proliferation to treat intestinal injury (65–67).

eFFeCTS OF THe iNTeSTiNal 
MiCRObiOTa ON iSCs

Regulation of the intestinal Microbiota by 
wnt and Notch Signals through Pattern 
Recognition Receptors (PRRs)
The intestinal epithelium recognizes bacterial components 
through PRRs and communicates with the resident luminal 
bacteria (68). The innate immune system senses the pathogenic 
invasion or epithelium injury via toll-like receptors (TLRs) 
and nod-like receptors and provide immediate responses (69). 
Recent evidence suggests the existence of cross talk among the 
Wnt and Notch pathways, TLR signaling, and the microbiota 
(70). Previous study demonstrated that, in alveolar epithelial 
cells, the Wnt/β-catenin is a negative feedback loop to repress 
TLR-triggered inflammatory responses (71). TLR signaling has 
been shown to alter intestinal homeostasis and to affect the 
proliferation and apoptosis rates in the crypt (72). It has been 
shown that ISCs also express TLR4, and the direct activation 
of TLR4 on ISCs, especially Lgr5-positive ISCs, regulates their 
ability to proliferate in intestinal crypts. TLR4 suppressed Wnt 
signaling, decreased activation of the Wnt receptor LRP6, and 
blocked the protective effect of the Wnt3a ligand (73). Epithelial 
differentiation into goblet cells was increased upon inhibiting the 
Notch signaling in the intestine, and the Notch signaling could 
also be modulated by TLR4 (74, 75).

Within the intestinal crypt, Lgr5+ stem cells constitutively 
express much higher levels of the cytosolic innate immune sensor 
Nod2 than do Paneth cells (76). Stimulation of Nod2 by its bona 
fide agonist, muramyl dipeptide, a peptidoglycan motif common 
to all bacteria, triggers stem cell survival, which leads to strong 
cytoprotection against oxidative stress-mediated cell death. Thus, 
gut epithelium restitution is Nod2 dependent and triggered by the 
presence of microbiota-derived molecules (76).

The effect of Reactive Oxygen Species 
(ROS) Produced by the intestinal 
Microbiota on the Regulation of iSCs
The interaction between gut and intestinal microbiota is criti-
cal for the ISCs proliferation and differentiation, as well as the 
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FiGURe 3 | The pathogens in the intestine damage the intestinal 
epithelial and cause inflammation. However, both in Drosophila and mice, 
Lactobacillus could stimulate the intestinal epithelial to produce reactive 
oxygen species (ROS), and then stimulate JNK signaling and increase 
unpaired expression, thereby stimulating intestinal stem cells proliferation and 
epithelial turnover or regeneration.

5

Hou et al. Intestinal Microbiota and ISCs

Frontiers in Immunology | www.frontiersin.org May 2017 | Volume 8 | Article 599

modulation of epithelium regeneration. However, the detailed 
mechanism of ISCs activation after microbe-induced issue 
damage is currently unknown. ROS, traditionally viewed as 
toxic, is now clearly recognized as a key modulator in all kinds 
of biological processes. Recent study has demonstrated that 
intestinal epithelia contacted by enteric commensal bacteria 
rapidly generate ROS, and physiologically generated ROS acts 
as signaling molecules to mediate increased cellular prolifera-
tion and motility and to modulate innate immune signaling 
(77, 78) (Figure 3). However, high levels of ROS during enteric 
infections likely act indiscriminately against both commensals 
and pathogens (65, 79). S. Typhimurium infects and damages 
the intestinal epithelial, then promotes migration of neutrophils 
that produce ROS, which facilitate conversion of S O2 3

2− gener-
ated by commensal bacteria, into S O4 6

2− (80, 81). Commensal 
Lactobacilli stimulates ROS production via Nox rather than 
Duox, thereby activating ISCs in Drosophila and mice under 
physiological status (82, 83). Recent studies demonstrated 
that redox homeostasis is critical in the regulation of stem cell 
differentiation and ROS specifically modulate the stem cell 
self-renewal (84). Many molecules involved in ROS-regulated 
stem cell self-renewal were redox sensors, which were found 
to be modified at redox-active cysteine residues (78). The Wnt 
and Notch signaling pathways can also be affected by ROS, 
which then influence the proliferation of ISCs (85). However, 
we are still not clear whether ROS act as direct inducers of 
ISCs signaling or simply cause epithelial damage that signals 
to ISCs.

The effect of the intestinal Microbiota  
on Paneth Cells
Paneth cells, located at the base of the crypts in the small intestine, 
are highly specialized secretory cells. As an important source of 
antimicrobial peptides, Paneth cells have an antimicrobial function 
and regulate the intestinal microbiome by secreting bactericidal 
proteins such as α-defensins and lysozyme (34). Salmonella infection 
could stimulate the expansion of the Paneth cells population with 
increased expression of MyD88 in Paneth cells, which is sufficient 
to limit Salmonella penetration across the mucosal barrier (86, 87).

Recent study also demonstrated that Paneth cells are impor-
tant for the differentiation and proliferation of ISCs, which are 
interspersed between Paneth cells (35). Paneth cells secret EGF, 
TGF-α, Wnt3, and the Notch ligand Dll4, which are essential for 
the maintenance of ISCs, whereas their maturation depends on 
Wnt signaling (88). Coculturing of ISCs with Paneth cells could 
markedly stimulate the formation of intestinal organoids in vitro 
(35). Crypt cells do not grow ex vivo after the inducible deletion of 
transcription factor Math1 (Atoh1). However, the complete loss of 
Paneth cells did not damage the intestinal crypt structure and main-
tain the physiological proliferation of ISCs in vivo, which implied 
the underlying mucosal cells may act as a potential ISCs niche (89).

Paneth cells are an initial source of IL-1β signaling during 
early infection with pathogens, causing gut inflammation. 
However, intestinal inflammation can be controlled by treatment 
with Lactobacillus plantarum via the reversal of IL-1β signaling 
(90). Moreover, the release of antimicrobial products by Paneth 
cells was controlled by IFN-γ (91). Recently, Paneth cells could 
augment stem cell function in response to caloric restriction. 
Calorie intake could regulate the mTORC1 pathway in Paneth 
cells and affect the ISCs niche (92). Paneth cells are able to directly 
sense commensal gut bacteria. The role of Paneth cells as critical 
mediators of microbe-ISC interactions is critical for ISCs, and 
this topic deserves further exploration.

The Relationship between  
Crypt-Specific Core Microbiota  
(CSCM) and iSCs
The microbiota provides continuous stimulation to the intestinal 
epithelial and affects the ISCs differentiation and proliferation. 
Recent studies further demonstrated that several signals induced 
by intestine–microbe interactions are involved in the determi-
nation of ISCs activity (93). A particular CSCM was found to 
survive in the colonic crypt environment (93). The CSCM could 
prevent the proliferation intestinal pathogens and provide optimal 
signaling to ISCs (Figure 4). Several particular species, such as 
Acinetobacter genus, may be evolutionarily selected because they 
provide advantage to the intestinal epithelial, probably through 
the expression of particular microbe-associated molecular pat-
terns or the production of specific metabolites to maintain crypt 
homeostasis (6).

The iSCs Development under Germ-free 
Conditions
Mammalian intestines are similar in structure and function with 
Drosophila, but the gut microbiota of Drosophila is composed 
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FiGURe 4 | (a) In a normal intestinal microbiota environment, the microbiota, especially the crypt-specific core microbiota (CSCM), survive in the crypt, where they 
can stimulate the proliferation of intestinal stem cells (ISCs) and induce their differentiation to repair the intestinal epithelium via the TLR4, NOD2, or reactive oxygen 
species (ROS) signaling pathway to maintain the integrity of the mucosal barrier. (b) Under the pressure of microbiota dysbiosis, the composition of the microbiota 
and the CSCM will change and affect the stem cell niches, thus hindering the physiological processes regulated by stem cells, inducing epithelial damage and 
causing mucosal inflammation.
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of only 5–10 bacterial species, thus making it an ideal model to 
explore the intestine–microbe interactions (94, 95). Comparative 
studies of germ-free and conventionally reared Drosophila dem-
onstrated that intestinal microbiota alters intestinal homeostasis, 
intestinal metabolism, and digestive enzymes expression (95, 
96). Furthermore, the intestinal microbiota affects the ISCs activ-
ity by the modulation of nutrition metabolism. The damaging 
effects of a lack of microbiota are more evident in old flies, as the 
intestinal mucosa of germ-free flies was less over-proliferation 
and misdifferentiation than conventionally reared flies (97).

In Drosophila larvae, the intestinal microbiota promotes 
growth in nutrient-scarce conditions, and the intestinal pepti-
dase expression and proteolytic activity were recovered after 
re-association with L. plantarum alone, thus leading to increased 
digestive abilities (98). Lactobacilli modulate ISCs and stimulate 
gut epithelium proliferation via the Nox-mediated generation of 
ROS (79, 83). The intestinal microbiota can become imbalanced 
after an injury, and probiotics can help the gut flora to recover 
and restore balance in the gut (99). Unlike the normal microbiota, 
Pseudomonas entomophila and P. aeruginosa cause the epithelial 
cell loss in the midgut and induce apoptosis in intestinal epithelial 
cells, resulting in ISCs over-proliferation (100).

The intestinal microbiota promotes substantial changes in 
intestinal morphology, including villus structure, crypt depth, 
stem cell proliferation, and maturation of mucosa-associated lym-
phoid tissues. In the absence of bacteria, intestinal crypts are less 
deep and contain fewer proliferating stem cells (101). During the 
suckling period in mice, extensive dynamic epigenetic changes are 
observed in ISCs, and the postnatal DNA methylation increased 
at 3′ CpG islands (CGIs) are responsible for intestinal matura-
tion. Moreover, the DNA methyltransferases, Dnmt1 is a critical 

regulator of postnatal epigenetic changes in ISCs. However, the 
postnatal 3′ CGI methylation and associated gene activation in 
ISCs are significantly altered by germ-free conditions (102).

FUTURe POSSibiliTieS

Most recently, IL-22 was shown to be important for maintaining 
the proliferation of ISCs. Previous studies have demonstrated 
that Paneth cells or intestinal subepithelial myofibroblasts can 
secrete Wnt and R-spondin-1 to regulate ISCs function and 
induce epithelium regeneration. However, the most recent 
reports have shown that the immune system can support the 
intestinal epithelium, activating ISCs to promote regeneration 
through IL-22 secretion by ILC3s (39). Furthermore, the intes-
tinal microbiota can modulate the mucosal immune response, 
including the secretion of IL-22. However, whether the intestinal 
microbiota can stimulate ISCs proliferation through IL-22 
secretion remains unknown. This phenomenon opens up the 
possibility of exploring the interaction between the intestinal 
microbiota and ISCs.

Intestinal organoids containing ISCs transplantation is a 
promising therapy method for cure intestinal inflammation. 
Single Lgr5 + ISC-derived colonoids transplantation accelerated 
the recovery of epithelial barrier function and reversal of inflam-
mation in the DSS colitis model (103). The regulation effects of 
intestinal microbiota on ISCs need to be further explored for 
future application of intestinal microbiota to prevent intestinal 
inflammation. Several challenges, such as the difference between 
rodent model and human systems, efficient protocol to enrich 
ISCs, ensuring the safety and efficacy of ISCs-based products, 
need to be solved in the further.
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