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Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires
were more prevalent than at present. We propose that the development of fire systems
through this interval was controlled predominantly by the elevated atmospheric oxygen
concentration (p(O2)) that mass balance models predict prevailed. At higher levels
of p(O2), increased fire activity would have rendered vegetation with high-moisture
contents more susceptible to ignition and would have facilitated continued combustion.
We argue that coal petrographic data indicate that p(O2) rather than global temperatures
or climate, resulted in the increased levels of wildfire activity observed during the
Late Paleozoic and can, therefore, be used to predict it. These findings are based
upon analyses of charcoal volumes in multiple coals distributed across the globe and
deposited during this time period, and that were then compared with similarly diverse
modern peats and Cenozoic lignites and coals. Herein, we examine the environmental
and ecological factors that would have impacted fire activity and we conclude that of
these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-
forming environments and, by inference, ecosystems generally, when compared with
their prevalence in the modern world.
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Introduction

Fire is an important part of the Earth system (Bowman et al., 2009) and its roles in climate feedbacks
and forcing are becoming better constrained (Bowman et al., 2009; Belcher, 2013; Scott et al., 2014).
To understand the evolution of the Earth system in deep time, the role of ancient fires also needs to
be taken into account (Scott, 2000, 2010; Pausas and Keeley, 2009; Belcher et al., 2013; Scott et al.,
2014); however, our understanding of this phenomenon is itself still developing.

In investigating ancient fire systems, it is necessary to understand the primary factors controlling
combustion. One of these factors, p(O2) is generally little considered by those studying modern
wildfires as it is effectively a constant (present atmospheric oxygen level (PAL) = ∼21%).
However, over geological time mass balance modeling suggests there were periods throughout
the Phanerozoic when p(O2) differed significantly from the PAL (Berner et al., 2003; Hansen
and Wallmann, 2003; Bergman et al., 2004; Berner, 2006, 2009; Kump, 2010; Lenton, 2013).
Significantly, it has been recognized for more than 30 years that there is a relationship between
the occurrence of fire in the fossil record and p(O2) (Cope and Chaloner, 1980). In a series of
experiments Watson et al. (1978) demonstrated that as oxygen levels increased so plants with
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higher moisture contents became liable to combust (see also
Watson and Lovelock, 2013) and conversely that as levels fell
below PAL so combustion became impossible. This relationship
between p(O2) and flammability means that these fluctuations in
p(O2) over the Phanerozoic should have had a profound effect
on fire occurrences (Berner et al., 2003; Scott and Glasspool,
2006; Belcher and McElwain, 2008; Glasspool and Scott, 2010;
Kump, 2010; Lenton, 2013; Scott et al., 2014). Studies are showing
increasingly that this is so, with p(O2) highs being increasingly
correlated with global ‘high-fire’ conditions (e.g., Brown et al.,
2012; Belcher et al., 2013; Scott et al., 2014). In addition to the
effects of p(O2) on fire, additional data on fluctuations in Late
Paleozoic p(O2) should help to elucidate potential relationships
to changes in climate and faunal evolution, radiation, and size
over this interval (e.g., Poulsen et al., 2015).

Fire is an exothermic oxidation reaction dependent on the
rapid combination of fuel and oxygen in the presence of heat
(Jones and Chaloner, 1991). From this it can be concluded the
primary controls on fire are sources of fuel, heat, and a supply
of oxygen. To relate wildfire occurrence in deep time to p(O2) it
is necessary to decouple both sources of heat and fuel from this
relationship as limiting factors.

While meteor strikes, volcanic activity, spontaneous
combustion, and even rock fall may act as the sources of
heat to ignite wildfires, the vast majority of fossil wildfires are
considered to have been initiated by lightning strikes (Cope
and Chaloner, 1980). At present lightning strikes occur at a
rate of 44 ± 5 strikes/s across the globe (Christian et al., 2003).
The occurrence of fulgurites in the fossil record demonstrates
the occurrence of lightning in deep time, and it is generally
considered that a lack of lightning strikes is unlikely to have been
a limiting factor on fire ignition (Scott and Jones, 1991, 1994).
Perhaps surprisingly, recent research on modern ecosystems
indicates that the number of lightning strikes does not even have
a direct relationship to the total area burnt, largely due to the
extremely skewed nature of fire size, in which extremely large
fires only propagate under weather conditions suitable for fuel
production and rapid fire spread (Bistinas et al., 2014).

All terrestrial vegetation has the potential to be fuel. As
the record of fossil wildfire dates back at least to the latest
Silurian (Glasspool et al., 2004) and, with the exception of a
few gaps, there is continuous evidence of charcoal from this
time onward (Scott and Glasspool, 2006; Diessel, 2010; Glasspool
and Scott, 2010; Rimmer et al., 2015), globally there must have
been a source of fuel from about 419 million years through to
the present. However, in the fossil record the distribution of
biomass has varied both spatially and temporally. Peat-forming
environments are by definition regions of biomass accumulation
and in this environment an absence of fire ignition cannot be
attributed to an absence of vegetation (Glasspool and Scott,
2010).

However, while these peat-forming environments may be
vegetated this does not presuppose that this vegetation is
combustible under the prevailing environmental conditions.
Vegetation is heterogeneous in composition, where in terms
of flammability the most important heterogeneity is moisture
content (Whelan, 1995). For fuel to ignite, it must be heated

sufficiently to first drive-off moisture and then to liberate
volatiles that can be oxidized to generate a self-supporting
exothermic pyrolytic reaction (i.e., fire). The greater the moisture
content of a fuel the more energy that must be expended
to drive that moisture off before volatiles can be liberated
and so the less flammable a fuel is the more moisture it
contains (Whelan, 1995). While not immune to fluctuations
in moisture content, peat-forming environments do require
that “groundwater must remain throughout the whole year,
above or close to the ground surface” (Taylor et al., 1998).
Therefore, these environments can be viewed as “high-moisture”
settings where typical variations in weather and climate are
less likely to have an impact on fire occurrence. Glasspool and
Scott (2010) presented charcoal data from a range of Modern-
Pleistocene aged peats representing divergent ecological settings
and vegetation types to support this supposition, concluding that
despite profound variations in weather and climate these settings
showed consistently low levels of charcoal accumulation and
hence wildfire activity and that, therefore, these settings reduced
(but did not eliminate) the role fluctuations of moisture play on
flammability.

While increasing moisture content reduces fuel flammability
there is considerable experimental evidence that indicates this
can be greatly off-set by the prevailing p(O2). Calculation of
fuel flammability at varying oxygen concentrations enables past
p(O2) to be constrained within the range 16–30% [“fire window”
(Cope and Chaloner, 1980; Chaloner, 1989)] whenever charcoal
is recovered from the fossil record (Belcher et al., 2010b, 2013;
Watson and Lovelock, 2013). These experiments indicate that
below, 16% p(O2) fires will not propagate nomatter howminimal
the moisture content of the fuel available. However, at levels
above 21% fires will ignite more readily and at levels much above
23% they become highly prevalent (Belcher et al., 2010b, 2013).
These findings make clear that as p(O2) climbs so the moisture
content of fuel has less bearing on whether it is liable to combust,
even high-moisture content fuels becoming readily flammable.
Therefore, we should expect that the Late Paleozoic, a geological
interval widely agreed to have experienced p(O2) greatly elevated
above present, would have been a “high-fire world”.

Fires are not only directly impacted by atmospheric
composition, but also feedback back onto it, in the short-term
elevating CO2 levels while potentially decreasing them in the
long term through carbon sequestration in the form of charcoal
burial (Berner et al., 2003; Lehmann et al., 2006; Masek, 2013).
However, fires may also impact climate change through other
mechanisms, for example through the impact of smoke and black
carbon on radiative energy (Bowman et al., 2009). This impact
may have been of particular relevance during the latest Paleozoic,
an interval that saw extensive southern polar ice accumulation
(Rygel et al., 2008), in that in modern settings black carbon
deposited on snow has been noted to impact ice cap melt rates
(Keegan et al., 2014).

The role of fire on some elements of the latest Paleozoic flora
has already been considered (Robinson, 1989, 1990, 1991) but
some of her arguments have been shown not to stand up with new
data (Rimmer et al., 2015). However, our knowledge of both fire
frequency and feedback mechanisms has developed considerably
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since this work and the subject is worth revisiting as part of
an assessment of the impacts of this phenomenon on the latest
Paleozoic world.

Materials and Methods

Coals and lignites are compressed and altered peats (Taylor
et al., 1998), and are widely distributed both spatially and
temporally throughout the Phanerozoic. Due to their economic
importance these deposits have been extensively characterized
and reported. One routine method of characterization is optical
reflectance microscopy, whereby the organic constituents are
described visually in terms of macerals (Taylor et al., 1998).
One maceral group (inertinite) is almost exclusively considered
the by-product of wildfires and is synonymous with charcoal
(Scott and Glasspool, 2007; Glasspool and Scott, 2013). The
amount of inertinite in a coal is commonly reported on a
percentage by volume basis (either including or excluding the
mineral matter content of the coal) and, therefore, provides an
extensive record of charcoal abundance (Glasspool and Scott,
2010). To standardize the data for this paper, where mineral
matter was included in the volumetric count, the inertinite
content of a coal (Inert%) was recalculated and is presented
on a mineral matter free (m.m.f.) basis. Much of the bulk
data on inertinite in coals, used herein, was first published in
Glasspool and Scott (2010). However, these data are augmented
by new and previously unincorporated results, expanding the
number of seams analyzed by >40% and taking into account the
revised stratigraphic framework for the Phanerozoic published by
Cohen et al. (2013). These data include >400 new data points
for the interval spanning the Famennian to the Early Triassic.
Of particular note are new data points from the Permian of
Russia, China, and Australia (e.g., Smyth, 1972; Huleatt, 1991;
Finkelman et al., 2000; Brownfield et al., 2001; Tewalt et al.,
2010; Hudspith et al., 2012; Shao et al., 2012; Supplementary
Table S1).

Maceral data from the literature, used to determine Inert%
(charcoal in coal) were only included in this analysis where
the inclusion/exclusion of mineral matter was clear. These
data were then aggregated into both 10- and 15-million
year binning intervals and averaged (Supplementary Table
S2; Figure 1). It should be noted that binning the data can
present some apparent anomalies, especially when data are
compared graphically with an absolute chronostratigraphic
framework, e.g., latest Permian inertinite data bin at
250 million years, an apparently earliest Triassic age. With
two exceptions, coals whose stratigraphic resolution was
greater than 15 million years were excluded (e.g., Taiyuan
Formation = Kasimovian–Sakmarian). The two exceptions
included in the database derive from poorly sampled
stratigraphic intervals where they represent the only data:
Givetian–Frasnian (Weatherall–Hecla Bay–Beverley Inlet
formations) and the Anisian–Carnian (Basin Creek and
Mungaroo formations). Where not tabulated or stated in the
text, data were measured from graphics by pasting the image
into Corel-Draw and overlaying guidelines to obtain exact

measurements of data point positions. Preference was given
to literature citing named seams. Where multiple references
provide data from one seam, this data was averaged and all
references cited.

To calculate p(O2) from Inert%, it was necessary to generate
calibration curves. Our curves for converting observed inertinite
concentration into estimates of past p(O2) are based upon three
known points:

1. Present day p(O2) = 21% and is associated with a
mean inertinite concentration of 4.27 ± 0.64% (1 SE):
(data from Supplementary Tables S3 and S4; based on
21 ecologically, climatically and geographically differing
peats of Modern-to-Pleistocene age).

2. As discussed above, experimental data indicate that
wildfires are unsustainable at levels of p(O2) = 16%
and hence, at this point, inertinite concentration should
be 0%.

3. Prior research indicates that in the Late Paleozoic p(O2)
exceeded 25% (Wildman et al., 2004), but due to
increased plant flammability was less than 30% (Jones
and Chaloner, 1991; Lenton and Watson, 2000; Wildman
et al., 2004; Belcher and McElwain, 2008; Belcher et al.,
2010b, 2013; Watson and Lovelock, 2013). Focusing
on the best temporally constrained dataset (10-million
year binning), Inert% for the Late Paleozoic reaches an
averaged maximum value of 50 ± 2% (1 SE) at 280 Ma
(Supplementary Table S2). We make the assumption
that, around 280 Ma, the high inertinite concentrations
are associated with high p(O2). The precise p(O2) level
is not known but it must be <30% since, otherwise,
uncontrolled global wildfires would have resulted and
there is no evidence for these. Hence, we assume that
p(O2) = 28 ± 2% which encompasses a wide range of
plausible values and spans the scope outlined above.

The fixed points and error bars are plotted in Figure 2.
The fitted curves in Figure 2 are assumed to be S-shaped. This

ensures a smooth transition from 0% inertinite at low oxygen
levels to 100% inertinite at high oxygen levels. In reality it is
not known whether the maximum inertinite could indeed be
100% as it may peak at some lower level (and perhaps even fall
thereafter). However, the precise details of the calibration curve
above p(O2) = 30% are relatively unimportant as this region of
the plot is not used in practice. The curves used here are of the
form:

I = (0.5−0.5cos[π(o − omin)/(omax − omin)])n omin < o < omax

= 0% o≤omin
(1)= 100% o≥omax

where I is the inertinite concentration, o is the oxygen level, omin
is the oxygen level for no inertinite, omax is the oxygen level when
inertinite reaches 100% and n controls the maximum steepness
of the S-curve. The chosen values of these parameters are given
in Table 1.
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FIGURE 1 | The distribution of inertinite (charcoal) in coal. Based on data from Glasspool and Scott (2010) with additional data added. The raw inertinite data
are presented up to 240 Mya. Crosses, data binned to 15 million years. Circles, data binned to 10 million years. Dashed red line, average inertinite data binned by
15 million year intervals. Solid black line, average inertinite data binned by 10 million year intervals.

FIGURE 2 | Inertinite to p(O2) calibration curve. Points, and associated error bars, show the data constraints. S-shaped curves are assumed, to ensure smooth
transition from 0% inertinite to 100% inertinite.

The final curves shown in Figure 2 are then used to produce
a best estimate and uncertainty for p(O2) as follows. The mean
inertinite concentration, I, and its SE, s, are calculated within any
given age-bin. This mean is then inserted into Eq. 1 along with
the best-fit parameters from Table 1 to give our best estimate

TABLE 1 | Parameters used in Eq. (1) to produce the curves shown in
Figure 2.

Best Max Min

omin (%) 16 16 16

omax (%) 35 33 38

n 1.8 1.7 1.8

of o. The minimum estimate is produced by inserting parameters
from the maximum column of Table 1 [N.B. the upper curve
in Figure 2 gives the minimum p(O2)] along with an inertinite
concentration given by I = I – s. Similarly, the maximum estimate
is given by the minimum parameters in Table 1 together with
I = I + s.

While these are significant assumptions, they appear to be
supported by mass balance, biogeochemical, and carbon isotopic
fractionation models independent of fire data. These models
predict maximal Phanerozoic p(O2) during the Permian at ∼30–
35% (e.g., Berner and Canfield, 1989; Beerling et al., 1998,
2002; Berner, 2006, 2009). The timing of these maximal p(O2)
data corresponds well with the timing of maximal inertinite
abundance [i.e., Early Permian (280- and 285-million year bins)].
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Results

Despite adding numerous new data points on Late Paleozoic
inertinite in coal, including from intervals previously
unrepresented, the basic predictions made in Glasspool
and Scott (2010) remain unchanged. These data show that
throughout the Middle Devonian charcoal occurrences were
rare. This observation is supported by data from Kennedy
et al. (2013) not included in the final analysis, the samples
reported not being “coals”. These authors categorized two
“coaly shales” from the Pragian and Emsian of New Brunswick,
the former from the Val d’Amour Formation contained 0.8%
inertinite, while the latter from the Campbellton Formation
contained no inertinite. Had these data been included the
former would have binned at 410 and 390 million years and
the latter at 400 and 390 million years using the two binning
intervals. The 15 million year 390 bin would have been little
effected, its mean rising from 0.2% inert to 0.3 ± 0.2% inert
(1 SE). However, the 10-million year binned data would have
generated an earlier 410-million year bin of 0.8% inert and
400-million year bin of 0.1 ± 0.1% inert (1 SE). From the
Middle Devonian to the Late Devonian there was a dramatic
rise in wildfire occurrence within a 10-million year interval
(see also Rimmer et al., 2015). From this point until the
Early Triassic our data predict that p(O2) remained above
the PAL.

From the latest Devonian–earliest Mississippian high p(O2)
[the timing of this high is affected by the binning interval
used (10 vs. 15 million year), but it is clear that p(O2) rose
dramatically only in the last 20 million years of the Devonian,
probably the last 10–15 million years] is predicted to have
declined moderately but steadily throughout the Mississippian
and Early–Middle Pennsylvanian before increasing rapidly from
that point to a Phanerozoic high point in the middle to
Late Cisuralian. However, Inert% predicts a bimodal p(O2)
distribution in the Permian similar to previous modeling
(Bergman et al., 2004) with a low point in the Guadalupian
and a rebound in the Changhsingian. However, while these
data indicate a Guadalupian decline in p(O2) they do not
indicate hypoxia as a contributing factor in the end Guadalupian
(∼260 Mya) mass extinction event (Retallack et al., 2006), as
oxygen levels remained significantly above those experienced
at present. Similarly, examination of Changhsingian (254.14–
252.17 Mya) age coals indicates abundant charcoal and hence
major wildfire activity within the last 2 million years of the
Permian. This indicates that in the terrestrial realm p(O2)
remained high despite widespread and persistent oceanic
anoxia (‘superanoxia’) being reported in the Lopingian, with
an onset ranging anywhere from the Early Wuchiapingian
(Isozaki, 1997; Kato et al., 2002) to the Late Wuchiapingian
or Early Changhsingian (Nielsen and Shen, 2004; Wignall
et al., 2010; see also Wei et al., 2015). From these data,
it also seems probable that p(O2) levels did not drive
catastrophic terrestrial faunal diversity loss either during the
Middle Permian (Capitanian) mass extinction event (Bond et al.,
2015) or at the subsequent Permo-Triassic mass extinction
event.

Discussion

Fire Vegetation and Climate in a High-Fire
World
As has been discussed above, oxygen is a prerequisite for the
propagation of fire and its level impacts flammability. The
result of this is that when the oxygen level is under 16%, even
during periods of Earth history where there are extensive dry
seasons with large quantities of fuel to burn, there is unlikely
to have been more than trivial wildfire activity (Belcher and
McElwain, 2008). Equally, experiments have shown (Watson
et al., 1978; Wildman et al., 2004) that as p(O2) rises wetter
plants become liable to burn, and at levels >30% even plants
and fuels with high-moisture contents would burn easily, even
without a distinct dry season. Under these conditions fires
would be widespread, frequent and catastrophic and could
even proliferate in everwet ecosystems (Glasspool and Scott,
2010).

During the Late Paleozoic plants diversified greatly (Stewart
and Rothwell, 1993; Taylor et al., 2009). As their growth forms,
and range of growth environment evolved so too did the range of
landscapes in which fire occurred (Scott and Glasspool, 2006). Of
particular note, the authors observed that by the Carboniferous
more potential fuel existed, especially through the development
of extensive mires and upland vegetation, and that levels of p(O2)
were elevated well above PAL, and that this combination would
have led to the diversification of fire systems through this interval
(Figure 3).

The nature of the growth, physiology and distribution of
plants across these landscapes was not homogenous through
the Late Paleozoic and this variation bears some discussion.
In the Early Devonian early land plants were small and
herbaceous, lacking both secondary tissues and macrophyllous
leaves (Edwards, 1996). The reproductive strategies of these
plants dictated their growth near to water courses and so their
patchiness across the landscape (Algeo and Scheckler, 1998)
would have meant they could not have supported extensive fires,
although scattered records of charcoal do exist (e.g., Glasspool
et al., 2006). The lack of any significant charcoal records in the
Middle Devonian (Glasspool and Scott, 2010), despite the growth
of the first forests at this time (Stein et al., 2007), has led to this
interval being termed a “charcoal gap”, the existence of which has
been correlated with low levels of p(O2) rather than an absence of
fuel (Glasspool and Scott, 2010).

However, it was not until the development of extensive
secondary tissues (wood in the progymnosperms and
gymnosperms, secondary cortex in the lycopods), which
allowed the evolution of trees and tree-like plants (Bateman
et al., 1998; Meyer-Berthaud et al., 1999; Meyer-Berthaud and
Decombeix, 2009) that the potential for extensive fuel loads
developed. These fuels were perhaps for the first time both living
and more than just recently senesced, their secondary tissues
being more resistant to decay (Robinson, 1989, 1990, 1991; Boyce
et al., 2010); however, wood-rotting fungi and bacteria are known
and the arguments of Robinson can no longer be considered
secure (see Rimmer et al., 2015). Significantly, “the worldwide
appearance and rapid spread of Archaeopteris was complete”
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FIGURE 3 | The evolution of Late Paleozoic fire systems (based partly on data from Scott and Glasspool (2006). The oxygen curves have been calculated
from the inertinite in coal data (see Materials and Methods) and are based on 10 mllion year (solid black line) and 15 million year (dashed red line) binning of the data.

by the upper Frasnian (Scheckler, 2006) and is compatible with
the timing of increased charcoal occurrence. Greater fuel build
up combined with elevated p(O2) would greatly have promoted
the potential for extensive fire events. In particular, later in the
Carboniferous the rapid rate of growth of up to 50-m tall, 1-m
diameter arborescent lycophytes in as little as 10 years with a
plant density of 500–1800 plants per hectare (Cleal and Thomas,
2005) provides a huge potential, rapidly cycled, fuel load for
combustion.

Plants from the Late Paleozoic onward can be considered:
fire susceptible/sensitive; fire tolerant; fire resistant, or require
fire. Interestingly, these characteristics are seen to develop
through geological time. Differing approaches exist to unravel
the relationships between plants and fire: (i) examination of the
pattern of the evolution of different plants and their association
with fire (Scott, 2000), (ii) examination of the evolution of traits
linked to fire (Keeley et al., 2011b), and (iii) consideration of the
relationship of modern plants with fire (Bond and van Wilgen,
1996) and their relationships as seen through cladistic analyses
(Crisp et al., 2011; He et al., 2012).

Our understanding of fire traits is fraught with controversy
(Keeley et al., 2011a). As pointed out by Keeley et al. (2011b) “No
species is fire adapted but rather is adapted to a particular fire
regime, which, among other things, includes fire frequency, fire
intensity and patterns of fuel consumption.” However, a number
of traits evolved by plants can be considered advantageous in a
fire-prone ecosystem or biome. It is impossible to know from the

fossil record whether or not a trait that is useful to a plant in a fire
prone setting evolved because of an interaction with fire or simply
that such a trait favored a plant in a fire-prone environment. For
example, modern eucalypts are well-adapted to a high-frequency
fire regime. It has been noted that these plants probably evolved
near the transition from the Cretaceous to the Paleogene (Crisp
et al., 2011) a time of high fire frequency (Bond and Scott, 2010;
Glasspool and Scott, 2010) and that this may not be coincidental
(Brown et al., 2012).

The clonal growth habit evolved in the Devonian (Bateman
et al., 1998). In modern ecosystems, this trait allows plants to
regrow after surface fires. This trait did not evolve as a response
to fire but would have allowed plants with this growth form to
take advantage of these events as a disturbance factor, e.g., during
frequent surface fires of the Early Carboniferous (Scott, 2010; see
also Robinson, 1989). Late Paleozoic sphenopsids had a variety
of growth habits, from small creeping ground cover vegetation
to tree-like forms that grew in thickets (Scott, 1978; Gastaldo,
1992). While the arborescent calamites may well have burned
there is relatively little recognizable calamite charcoal. Vegetative
reproduction in some ferns is common and is documented
by organs such as Kankakeea grundyi in the Pennsylvanian
(Pfefferkorn, 1973) and many ferns also exhibit clonal growth
(Collinson et al., 2000; Collinson, 2001, 2002). They can thrive
in disturbed environments, such as in volcanic landscapes and
are also associated with fires (Scott and Galtier, 1985). Some
of the oldest ferns in the Early Carboniferous are preserved as
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charcoal (Galtier and Scott, 1985; Scott and Galtier, 1985; Scott
et al., 1985). This preservation may have related to volcanism,
but some examples at least were charcoalified as a result of fire
(Scott and Jones, 1994; Scott, 2010). Ferns with underground
rhizomes are well placed to regenerate even if the above ground
foliage is destroyed by fire (see for example Scott et al., 2000).
Fire-fern relationships have also been reported for the Paleocene
(Collinson et al., 2007), but this is less frequently considered in
the Late Paleozoic (e.g., Glasspool, 2000; McParland et al., 2007).

Pteridosperms, or seed-ferns, originated in the latest Devonian
and then diversified during the Early Carboniferous (Hilton and
Bateman, 2006; Decombeix et al., 2011). They too are often
found in disturbed settings preserved as charcoal (Scott et al.,
1986, 2009; Rex and Scott, 1987). Glasspool (2000) reported the
destruction of a glossopterid pteridosperm community as a result
of a peat fire, where previous fire events had had little impact on
the prevalence of these plants, suggesting that while they were
fire tolerant major fire events still had the potential to negatively
impact them. It is possible, regular low-intensity fires may have
promoted the spread of certain glossopterids. Conversely, some
liana-like plants appear to have been particularly susceptible
to fire and periods of very high fire activity may have led to
their extinction (Robinson, 1989). However, this seems unlikely
given the prevalence of the gigantopterids, some of which were
climbing plants and are interpreted to have been liana-like
(see Seyfullah et al., 2014), during the Permian in Cathaysia
an interval and locality with many heavily fire influenced
coals.

Cordaites and conifers are frequently found as charcoal in the
Late Paleozoic fossil record (Scott, 2000). Thewood of cordaites is
easily recognizable (Falcon-Lang and Scott, 2000) and even leaves
have been found as charcoal (Scott and Collinson, 1978). During
the Carboniferous, conifers diversified and spread into upland
and extra-basinal environments. Many of the earliest known
conifer remains occur as charcoal and demonstrate that fires
occurred in these environments (Scott, 1974; Scott and Chaloner,
1983; Scott et al., 2010). The small needle-like leaves of these
plants (e.g., Scott et al., 2010), with a large surface are to volume
ratio, would have been particularly flammable (c.f. Belcher et al.,
2010a). The shedding of lower branches in walchian conifers may
also have been a response to frequent fires (Looy, 2013). As many
early conifers are considered have grown in drier extra-basinal
or even upland settings (Scott, 1974; Falcon-Lang et al., 2009;
Scott et al., 2010), it is likely that these early conifer forests were
more prone to fires that the better known vegetation thriving in
lowland mire settings.

For the first time in the Late Carboniferous and Permian, a
continuity of vegetation existed across the world. This combined
with elevated p(O2) would have given rise to significant fire
events across a range of biomes, especially in tropical and
temperate mires (Scott and Glasspool, 2006). Were this the
case, then fire would be expected to have played a role in
the maintenance or change in vegetational structure (Bond
and Midgley, 1995; Bond and Keeley, 2005; Bond et al., 2005;
Bowman, 2005; Harrison et al., 2010).

Regular fires within open vegetation would have favored
fast-growing, perhaps ‘weedy’, plants, particularly those with

clonal growth that could tolerate low-temperature ground fires
(Bond and Scott, 2010). In forested ecosystems, regular fires
would have burned the floor litter and living surface vegetation
without necessarily killing the forest trees (e.g., Glasspool, 2000).
A build-up of fuel on the surface would have promoted more
intense fires and may have initiated crown fires (Scott et al.,
2014). This would have resulted in a more open vegetation
pattern with a concomitant change in forest dynamics. Over
short time scales, fluctuations in fire frequency and intensity
would be reflected in the floral composition of successive
beds, while over longer time scales the overall vegatational
structure would be affected (Scott et al., 2014). Those working
on modern fire systems have hypothesized on a super fire
regime that incorporates concepts of a longer time scale and
stability (Whitlock et al., 2010) and also the concept of pyromes
(Archibald et al., 2013) that incorporates aspects of climate
and rainfall, but these concepts have yet to be taken up by
paleoecologists.

Fuel structure is an important element of fire propagation and
spread (Scott et al., 2014). However, it is evident that vegetation
and vegetation structure changed through the Late Paleozoic
(DiMichele, 2014). The lowland vegetation of Euramerica has
been reviewed in detail by DiMichele (2014), the differing
plant groups and their differing growth habits and strategies.
Most of the arborescent lycopods were cheaply constructed and
grew very rapidly (Bateman and DiMichele, 1994; DiMichele,
2014). This rapid growth would potentially have facilitated
survival of surface fires; in modern floras a tree height of
1 or 2 meters above ground level greatly reduces mortality
(see Scott et al., 2014, for a review of this topic). Immature
arborescent lycopsids often had long leaves that protected the
growing apex of the plant. As the plant grew these leaves
were shed and photosynthesis took place in the trunk surface
(Phillips and DiMichele, 1992). Later, and depending on the
taxon, the plant would branch (DiMichele, 2014). However,
significantly there would have been a large gap between the
ground and branched crown. This would have prevented the
movement of fire up the trunk through extensive ladder fuels.
Charred lycopsids leaves have rarely been reported, and it is
possible that following dehiscence they were prevented from
becoming fuel either by having been submerged or having
rotted very quickly so that they did not form extensive fuel
beds. Their needle-like form would otherwise have been highly
flammable (see Belcher et al., 2010a). If the fire reached the
crown then it is likely that all the leaves would have been
fully combusted, leaving no charcoal residue. The evolution of
thick bark layers would have afforded arborescent lycopsids
significant protection against fire (Robinson, 1989, 1991; Falcon-
Lang, 2000). However, the thick periderm of these plants once
ignited would have been a significant fuel source and there is
ample evidence of charred periderm in the fossil record (Falcon-
Lang, 2000). Some charred branches are also reported from
permineralized Pennsylvanian peats (DiMichele and Phillips,
1985).

Tree density and fuel connectivity are important
considerations in the propagation of fire. An extreme example
would be the Saguaro cactus forests of the Southwest United
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States, where a lightning strike may hit a cactus and cause
it to catch fire, but the fire used not to spread due to a lack
of surface fuel. In recent years foreign grasses have invaded
this habitat and have provided fuel interconnectivity between
cacti so that large areas of the vegetation may be destroyed
in a single fire, as compared with a single cactus (Scott et al.,
2014). As discussed above, during the Pennsylvanian Period
peat-forming arborescent lycophytes with a diameter of about
1m grew at a density of between 500 and 1800 plants per hectare
(Cleal and Thomas, 2005). Compared with mature angiosperm
forests, this is a high tree density, though it’s noteworthy that
arborescent lycophytes did not develop a canopy until maturity.
However, this density may, in and of itself, have been sufficient
to allow fire spread or it may have required additional fuel
connectivity.

In parts of the forest floor ferns and pteridosperms were very
common though they differed in both their growth strategies
(DiMichele and Phillips, 2002; DiMichele et al., 2006) and
presentation in the charcoal record. Many ferns were small
ground-dwelling or scrambling climbing plants with small,
thinly cuticularized, leaves (Phillips and Galtier, 2005, 2011).
It is likely fire would have consumed these organs completely
leaving a sparse fossil record. The axes of these ferns were
more robust and charred examples appear commonly in the
Mississippian (Scott, 2010) and can be seen frequently in
Pennsylvanian coal ball assemblages from Illinois and Ohio
(Glasspool pers. obs). However, many ferns were not small having
developed a tree habit (DiMichele, 2014). While not extensively
documented, the trunk root mantle of these plants can be found
preserved as charcoal in many Late Paleozoic peats (Glasspool,
pers. obs.).

The growth and nature of pteridosperms is very different to
that of ferns. They produced larger leaves and pinnules with
thicker cuticles (DiMichele, 2014), the fronds and fragments
of fronds were readily shed and produced a significant
litter (DiMichele et al., 2006). This may have facilitated the
spread of surface fires. Pteridosperm pinnules and charred
fragments are relatively common in a range of settings
(Scott, 1978, 1984) including peat-forming environments where
they may be the predominant group of plants found as
charcoal (Scott, 2000, 2010; DiMichele et al., 2006). Climbing
pteridosperms such as Karinopteris, Pseudomariopteris, and
Gigantonoclea hallei were climbing plants (DiMichele et al.,
1984; Krings and Kerp, 2000; Seyfullah et al., 2014). Such
climbers may have acted as ladder fuels facilitating crown
fires.

It has been suggested that the regular shedding of the
branches of walchian conifers may have been an adaptation
to fire, preventing the build-up of ladder fuels (Looy, 2013).
However, this shedding would also have promoted more frequent
surface fires. Similarly, while the southern hemisphere Permian
Gondwanan glossopterids had a range of vegetative strategy,
some having been small shrubs while others were large trees
(Gould and Delevoryas, 1977; McLoughlin, 2012), all appear
to have been deciduous. This characteristic would have built
a more extensive litter. This in turn would probably have
promoted regular surface fires but without resulting in tree

mortality. However, as yet, no charred glossopterid leaves
have been reported and most Permian charcoal appears to
be from a range of gymnospermous trees (Jasper et al.,
2013).

Fire and the Earth System
As charcoal degrades much more slowly than uncharred wood
(Ascough et al., 2011), there has been much recent discussion
of using biochar to reduce present day atmospheric CO2 levels
(Masek, 2013). This refractory phenomenon has been overlooked
in deep time where intervals of frequent extensive fire may have
had a similar potential to lock down atmospheric CO2.

Burning of vegetation in the short term increases the
levels of CO2 in the atmosphere. However, in general this is
balanced by the growth of plants, which takes up this CO2
(Lenton, 2013). On a slightly longer period, extensive regular
forest combustion will modify the vegetation affecting plant
productivity and stimulating global warming through charcoal
burial and so CO2 draw-down. Extensive burning of peats would
rapidly elevate atmospheric CO2 levels, a mechanism that has
been proposed to explain the rapid temperature rise at the
Paleocene–Eocene thermal maximum (PETM; Kurtz et al., 2003;
Pancost et al., 2007), but which has never been suggested as
a mechanism for global change in the Late Paleozoic. This
is strange given the extent of peatlands in the Carboniferous
and Permian. Climate drying, raised temperatures and peat
cessation toward the end of the Permian could have led to
regular and extensive peat fires across Gondwana, Cathaysia,
and Angara that would have raised CO2 levels and contributed
to the greenhouse effect. New evidence suggests that the ice
caps melted before the end of the Permian (Rygel et al., 2008;
Figure 3) and fire may have increased at that time. Shao et al.
(2012) showed charcoal in coal levels in China rose through
the latest Permian. Emphasis has been placed on the role of
volcanicity and methane release, not on the burning of peats
(albeit the effect of igneous intrusions in to the peat have
been considered (see Benton and Newell, 2014 and references
therein).

Various scenarios can be played out around this theme: for
example if increased volcanism led to elevated atmospheric CO2
levels and the world warmed fire frequency would be expected to
increase. This should result in increased charcoal burial, which
would be expected to partially offset the CO2 level rise. However,
plant productivity may decline and community structure change
(e.g., Belcher et al., 2010a) again affecting fire systems and
charcoal burial. In short, the feedback mechanisms are complex
and need better analysis.

While there has been some consideration of charcoal
occurrences on land there have been few studies on the
contribution of charcoal to oceanic carbon (Smith et al., 1973;
Goldberg, 1985). This is surprising given the importance of such
a carbon sink in the modern oceans (Forbes et al., 2006). Indeed
recent research suggests that remobilized charcoal is significant
in reaching the modern ocean (Jaffe et al., 2013).

Vegetation and peat combustion produces smoke and
aerosols. Increases in birth defects in the human population
have been related to smoke emissions (Johnston et al., 2012),
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the same may be true for other animals regularly exposed
to the effects of fire. However, smoke and aerosols have the
potential to affect more than just the fauna, in modern tropical
rainforests, aerosols from fires affect cloud formation and can
prevent rain (Artaxo et al., 2009; Bowman et al., 2009). Further,
fires may raise the levels of NOx in the atmosphere, with
plumes spreading into the upper atmosphere (Belcher, 2013;
Scott et al., 2014). This mechanism has been little considered
when compared with that from volcanoes (e.g., Benton and
Newell, 2014).

Like today, the Earth during the Carboniferous and Permian
was an icehouse world (Rygel et al., 2008). However, it is now
thought that instead of there being a single icecap over the South
Pole, there were several that waxed and waned. The effects of
orbital cyclicity on Late Paleozoic ice melt and climate change
are appreciated and have been discussed extensively (e.g., Jerrett
et al., 2011). Meanwhile, the effects of fire on rates of ice melt have
not been considered beyond the modern world, where there effect
on albedo has been acknowledged (Bowman et al., 2009). This
effect can be by blackening vegetation and in some cases changing
green vegetation to bare soil. This may have only a short-term
effect. However, there is also the effect of fine particulate carbon
on snow. It has been shown in the recent icehouse that periods of
high fire have coincided with large amounts of black carbon on
ice and this has been linked to ice melting (Keegan et al., 2014). If
sustained, for example in the southern hemisphere Permian, this
would have played a role at least in the short-term contraction
and expansion of the southern icecaps. This may have been more
exaggerated if there were several smaller rather than one large
icecap.

Fire may affect the movement of phosphorous both on land
and in the oceans. This topic has been widely discussed (Kump,
1988; Lenton and Watson, 2000; Brown et al., 2012; Lenton,
2013), but not often taken fully into account when modeling the
Late Paleozoic Earth system. Indeed, the impact of fire on the
ocean system is not negligible. Carbon transport to the oceans
is elevated by fires through the effects of post-fire erosion and
transport (Jaffe et al., 2013). The organic carbon transported
during such events includes both charcoal and un-charred plant
matter. Large volumes of organic material can choke river
systems [as seen in the Canadian Carboniferous (Falcon-Lang
and Scott, 2000)] and make its way into the sea where it may
be deposited in near-shore marine sediments (Nichols and Jones,
1992; Scott and Jones, 1994; Falcon-Lang, 1999, 2000; Scott, 2000)
but may also be transported out into deeper marine settings
(Scott, 2000). However, the volumes of finer black carbon may be
large, as in the recent oceans (Smith et al., 1973; Herring, 1985;
Forbes et al., 2006). A combination of large amounts of plant
material entering the ocean together with enhanced phosphorus
content may lead, or at least amplify, ocean anoxia. There have
been few studies on the impact of fire in the Late Permian to the
widespread anoxia observed in the oceans at this time.

A widely recognized relationship exists between fire, climate
and atmosphere (Bowman et al., 2009). Changes in fire frequency
and extent play a part in the regulation of atmospheric gasses
(Turquety, 2013) but also impact climate (Beerling et al., 1998).
Models of the Earth system in the Carboniferous and Permian

are beginning to take this in to account (e.g., Beerling et al., 1998,
2002). The Permian-Triassic mass extinction event has been
extensively studied (Benton and Newell, 2014). Climate warming
is predicted leading up to this event (Benton, 2003; Benton and
Newell, 2014), with an ensuing loss of floral ecosystem health.
This event would have changed the vegetation structure, with less
interconnectivity between plants. This in turn would have made
fire spread more difficult. However, were vegetation mortality
rising due to rising levels of NOx from volcanic activity then dry
fuel should have become more abundant and fire activity should
have spiked along with an associated rise in run-off and erosion.
Markers suggesting increased wildfire activity have been reported
at the Permian-Triassic boundary in China (Shen et al., 2011),
but whether this is a global signal remains to be demonstrated.
However, while not mentioning fire, massive erosion at the
Permian-Triassic boundary has been suggested (Benton and
Newell, 2014). Perhaps the role of fire at the boundary, clearly
from the data presented herein not a time of low p(O2), was
greater than has currently been appreciated?

Conclusion

New data from Kennedy et al. (2013) support the concept of a
Middle Devonian “charcoal gap”, but notably hint at higher levels
of fire activity during earliest Devonian. Increased fire activity
during the latest Silurian to earliest Devonian is in accord with
predictions made by Scott and Glasspool (2006) and would fit
with elevated levels of p(O2) during that interval predicted by
Berner (2006).

Data from charcoal abundance in coal indicate a dramatic
rise in p(O2) levels during the last 10–15 million years of the
Devonian, atmospheric oxygen concentration then remained
above present day levels, and usually above 23%, until at least end
Permian. During this time, fires would have profoundly affected
the Earth system, impacting the vegetation and the fauna as
well as the carbon, oxygen and even phosphorous cycles. The
Late Paleozoic at this time can be characterized as a ‘high-fire’
world, where fires were promoted by elevated levels of p(O2) and
an ecologically and physiologically diverse vegetation capable of
acting as a major and extensive fuel resource.

Levels of p(O2) appear to have peaked in the Middle-to-Late
Cisuralian at levels of about 28%, before declining modestly into
the Guadalupian and then recovering again in the Lopingian.
Despite this bimodal distribution in the Permian, p(O2) does not
appear to have declined to levels that would have induced hypoxia
either during the Guadalupian or the latest Changhsingian,
despite the predicted onset of widespread and persistent oceanic
anoxia in the Lopingian (Wei et al., 2015).

The direct impacts of fire on the Late Paleozoic world are
numerous and are largely apparent, e.g., ecosystems subjected
to frequent fires, more run-off and erosion following fire,
particularly in areas of elevated topography leading to more
disturbed environments. However, fires would also have had
more subtle and indirect feedbacks. These feedbacks have
impacted the Earth system over varied durations, from the short
term to some effects that are still being felt today: the exploitation
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of many Permian charcoal-rich coals is still a major part of the
economies of the world’s two most populous nations.
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